
SOFTWARE ENGINEERING

UNIT-I

INTRODUCTION

Computers were very slow in the initial years and lacked sophistication. If similar improvements could
have occurred to aircrafts, now personal mini-airplanes should have become available, costing as much as a
bicycle, and flying at over 1000 times the speed of the supersonic jets. The more powerful a computer is, the
more sophisticated programs can it run. Therefore, with every increase in the raw computing capabilities of
computers, software engineers have been called upon to solve increasingly larger and complex problems, and
that  too  in  cost-effective  and  efficient  ways.  Software  engineers  have  coped  up  with  this  challenge  by
innovating and building upon their past programming experiences.

Software engineering is a systematic and cost-effective technique for software development. These
techniques help develop software using an engineering approach. The innovations and past experiences
towards writing good quality programs cost- effectively, have contributed to the emergence of the software
engineering discipline.

For example: If someone wants to travel from Punjab to Delhi. There are two approaches one can
follow to achieve the same result:

1. The normal approach is just to go out and catch the bus/train that is available.

2. A systematic  approach  is  constructed  as  Firstly  check  on Google  Maps  about  distance  and  after
analyzing the timing of trains and buses online and after that, match user’s preference suppose user
have some work till 4:00 PM and trains slot are: 1:00 PM, 6:00 PM then the user will choose 6:00 PM
time slot and reach Delhi.

From the above situation, one can easily analyze that Creating a systematic Approach is more optimal
and  time  and  cost-effective  as  compared  to  a  normal  approach.  This  will  same occur  while  designing
Software.  So  in  Software  Engineering  working  on  an  Engineering  or  a  Systematic  approach  is  more
beneficial.

What is software engineering?

A  popular  definition  of  software  engineering  is:  “A  systematic  collection  of  good  program
development practices and techniques”.Good program development techniques have resulted from research
innovations as well as from the lessons learnt by programmers through years of programming experiences.
An alternative definition of software engineering is :“An engineering approach to develop software”.



Suppose you have asked a petty contractor to build a small house for you. Petty contractors are not
really experts in house building.They normally carryout minor repair works and at most undertake very small
building works such as the construction of boundary walls. For example,he might  not  know the optimal
proportion in which cement and sand should be mixed to realize sufficient strength for supporting the roof.In
such situations, he would have to fallback upon his intuitions. Of course,the house constructed by him may
not look as good as one constructed by a professional,may lack proper planning,and display several defects
and imperfections. It may even cost more and take longer to build. The failure might  come  in  several forms
—the  building  might  collapse during  the construction stage itself due to his ignorance of the basic theories
concerning the strengths of materials; the construction might get unduly delayed, and  quantities  of  raw
materials   required,the  times  at  which  these   are  required,etc.In  short,to  be  successful  in  constructing  a
building of large magnitude, one needs a good understanding of various civil and architectural engineering
techniques such as analysis, estimation, prototyping, planning,designing, and testing.

For  sufficiently  small-sized  problems,one  might  proceed  according  to   one’s   intuition  and
succeed;though  the  solution may  have  several imperfections, cost more, take longer to complete,etc.

As is  usual in  all  engineering  disciplines,in  software engineering several conflicting goals are
encountered while solvinga problem.In such  situations,  several alternate  solutions  are first  proposed.An
appropriate solution is chosen out of the candidate solutions based on various trade-offs that need to be made on
account of issues of cost,maintainability,  and usability.Therefore,while arriving  at the  final solution,several iterations
and are possible.

Abstraction Versus Decomposition

Two important principles that are deployed by software engineering to overcome the problems  arising  due  to
human  cognitive limitations are—abstraction and decomposition

Abstraction:

 In software engineering and computer science, abstraction is a technique for arranging complexity of
computer systems. Abstraction means displaying only essential information and hiding the details.  It works
by establishing  a  level  of  simplicity  on which  a person interacts  with the  system, suppressing the more
complex details below the current level. Data abstraction refers to providing only essential information about
the data to the outside world, hiding the background details or implementation. Consider a real life example
of a man driving a car.



Decomposition:

It is another important principle that is available in the repertoire of a software engineer to handle
problem complexity.  This  principle  is  profusely  made use  by  several  software  engineering  techniques  to
contain the exponential growth of the perceived problem complexity. The decomposition principle is popularly
known as the divide and conquer principle.The decomposition principle advocates decomposing the problem
into many small independent parts. The small parts are then taken up one by one and solved separately. The
idea is that each small part would be easy to grasp and understand and can be easily solved. The full problem
is solved when all the parts are solved.

Evolution  of  software  design  techniques

1. Early Computer Programming: Early commercial computers were very slow and too elementary as 
compared to today’s standards. Even simple processing tasks took considerable computation time on those 
computers. No wonder that programs at that time were very small in size and lacked sophistication. Those 
programs were usually written in assembly languages.

            Program lengths were typically limited to about a few hundreds of lines of monolithic assembly code. 
Every programmer developed his own individualistic style of writing programs according to his intuition and 
used this style ad hoc while writing different programs.

2. High-level Language Programming: Computers became faster with the introduction of semiconductor 
technology in the early 1960s. Faster semiconductor transistors replaced the prevalent vacuum tube-based 
circuits in a computer. With the availability of more powerful computers, it became possible to solve larger 
and more complex problems.

                At this time, high-level languages such as FORTRAN, ALGOL, and COBOL were introduced. This 
considerably reduced the effort required to develop software and helped programmers to write larger 
programs.Writing each high-level programming construct in effect enables the programmer to write several 
machine instructions. However, the programmers were still using the exploratory style of software 
development.

3. Control Flow-based Design: A program’s control flow structure indicates the sequence in which the 
program’s instructions are executed. In order to help develop programs having good control flow structures, 
the flowcharting technique was developed. Even today, the flowcharting technique is being used to represent 
and design algorithms.

4. Data Structure-oriented Design: Computers became even more powerful with the advent of Integrated 
Circuits (ICs) in the early 1970s. These could now be used to solve more complex problems. Software 
developers were tasked to develop larger and more complicated software. which often required writing in 
excess of several tens of thousands of lines of source code.

              It is much more important to pay attention to the design of the important data structures of the 
program than to the design of its control structure. Design techniques based on this principle are called Data 
Structure-oriented Design.

Example: Jackson’s Structured Programming (JSP) technique developed by Michael Jackson (1975). In JSP 
methodology, a program’s data structure is first designed using the notations for sequence, selection, and 



iteration. The JSP methodology provides an interesting technique to derive the program structure from its data 
structure representation.

5. Data Flow-oriented Design: As computers became still faster and more powerful with the introduction of 
very large scale integrated (VLSI) Circuits and some new architectural concepts, more complex and 
sophisticated software were needed to solve further challenging problems. Therefore, software developers 
looked out for more effective techniques for designing software and Data Flow-Oriented Design techniques 
were proposed.

The functions are also called as processes and the data items that are exchanged between the different 
functions are represented in a diagram is known as a Data Flow Diagram (DFD).

6. Object-oriented Design: Object-oriented design technique is an intuitively appealing approach, where the 
natural objects (such as employees, etc.) relevant to a problem are first identified and then the relationships 
among the objects such as composition, reference, and inheritance are determined. Each object essentially acts 
as a data hiding is also known as data abstraction.

   Object-oriented techniques have gained wide spread acceptance because of their simplicity, the scope for 
code and design reuse, promise of lower development time, lower development cost, more robust code, and 
easier maintenance.

let us first examine what are the current challenges in designing software. First,program sizes are further 
increasing as compared to what was being developed a decade back. Second, many of the present day software
are  required to  work  in  a  client-server  environment through  a  web browser-based access(called web-
based software).



The improvements to the software design methodologies over the  last five decades  have  indeed  been  
remarkable. These new techniques include  life  cycle  models,specification  techniques,project management  
techniques,testing techniques,debugging techniques,quality  assurance  techniques,software measurement 
techniques,computer aided software engineering(CASE)tools,etc

Software life cycle: It is well known that all living organisms undergo a life cycle. For example when a seed 
is planted,It germinates, grows into a full tree,and finally dies.Based on this concept of a biological life 
cycle,the term software life cycle has been defined to imply the different stages (or phases)over which a 
software evolves from an initial customer request for it,to a fully developed software,and finally to a stage 
where it is no longer useful to any user, and then it is discarded.

Software Development life cycle

                   software life cycle model (also termed process model) is a pictorial and diagrammatic 
representation of the software life cycle. A life cycle model represents all the methods required to make 
a software product transit through its life cycle stages. SDLC is a systematic process for building software that 
ensures the quality and correctness of the software built. SDLC process aims to produce high-quality software 
that meets customer expectations. The system development should be complete in the pre-defined time frame 
and cost. SDLC consists of a detailed plan which explains how to plan, build, and maintain specific software. 
Every phase of the SDLC life Cycle has its own process and deliverables that feed into the next phase. SDLC 
stands for Software Development Life Cycle and is also referred to as the Application Development life-cycle.

 It offers a basis for project planning, scheduling, and estimating

 Provides a framework for a standard set of activities and deliverables

 It is a mechanism for project tracking and control

 Increases visibility of project planning to all involved stakeholders of the development process

 Increased and enhance development speed

 Improved client relations

 Helps you to decrease project risk and project management plan overhead.

 Requirement analysis-- Feasibility study-- Design-- Coding-- Testing-- 
Installation/Deployment-- Maintenance

 Phase 1: Requirement collection and analysis

 Phase 2: Feasibility study

 Phase 3: Design

 Phase 4: Coding

 Phase 5: Testing

 Phase 6: Installation/Deployment

 Phase 7: Maintenance



Phase 1: Requirement collection and analysis:

The requirement is the first stage in the SDLC process. It is conducted by the senior team members with 
inputs from all the stakeholders and domain experts in the industry. Planning for the quality assurance 
requirements and recognization of the risks involved is also done at this stage.

This stage gives a clearer picture of the scope of the entire project and the anticipated issues, opportunities,
and directives which triggered the project.

Requirements Gathering stage need teams to get detailed and precise requirements. This helps companies 
to finalize the necessary timeline to finish the work of that system.

Phase 2: Feasibility study:

Once the requirement analysis phase is completed the next sdlc step is to define and document software 
needs. This process conducted with the help of 'Software Requirement Specification' document also known
as 'SRS' document. It includes everything which should be designed and developed during the project life 
cycle.

There are mainly five types of feasibilities checks:

 Economic: Can we complete the project within the budget or not?

 Legal: Can we handle this project as cyber law and other regulatory framework/compliances.

 Operation feasibility: Can we create operations which is expected by the client?

 Technical: Need to check whether the current computer system can support the software

 Schedule: Decide that the project can be completed within the given schedule or not.

Phase 3: Design:

In this third phase, the system and software design documents are prepared as per the requirement 
specification document. This helps define overall system architecture.This design phase serves as input for 
the next phase of the model.There are two kinds of design documents developed in this phase:

High-Level Design (HLD)

 Brief description and name of each module

 An outline about the functionality of every module

 Interface relationship and dependencies between modules

 Database tables identified along with their key elements

 Complete architecture diagrams along with technology details

Low-Level Design(LLD)

 Functional logic of the modules



 Database tables, which include type and size

 Complete detail of the interface

 Addresses all types of dependency issues

 Listing of error messages

 Complete input and outputs for every module

Phase 4: Coding:

Once the system design phase is over, the next phase is coding. In this phase, developers start build the 
entire system by writing code using the chosen programming language. In the coding phase, tasks are 
divided into units or modules and assigned to the various developers. It is the longest phase of the Software
Development Life Cycle process.

In this phase, Developer needs to follow certain predefined coding guidelines. They also need to use 
programming tools like compiler, interpreters, debugger to generate and implement the code.

Phase 5: Testing:

Once the software is complete, and it is deployed in the testing environment. The testing team starts testing
the functionality of the entire system. This is done to verify that the entire application works according to 
the customer requirement.

During this phase, QA and testing team may find some bugs/defects which they communicate to 
developers. The development team fixes the bug and send back to QA for a re-test. This process continues 
until the software is bug-free, stable, and working according to the business needs of that system.

Phase 6: Installation/Deployment:

Once the software testing phase is over and no bugs or errors left in the system then the final deployment 
process starts. Based on the feedback given by the project manager, the final software is released and 
checked for deployment issues if any.

Phase 7: Maintenance:

Once the system is deployed, and customers start using the developed system, following 3 activities occur

 Bug fixing - bugs are reported because of some scenarios which are not tested at all

 Upgrade - Upgrading the application to the newer versions of the Software

 Enhancement - Adding some new features into the existing software

Iterative waterfall model:

The waterfall is a widely accepted SDLC model. In this approach, the whole process of the software 
development is divided into various phases of SDLC. In this SDLC model, the outcome of one phase acts 
as the input for the next phase.



This SDLC model is documentation-intensive, with earlier phases documenting what need be performed in
the subsequent phases.

Waterfall approach was first SDLC Model to be used widely in Software Engineering to ensure success of 
the project. In "The Waterfall" approach, the whole process of software development is divided into 
separate phases. In this Waterfall model, typically, the outcome of one phase acts as the input for the next 
phase sequentially.

The following illustration is a representation of the different phases of the Waterfall Model.

The sequential phases in Waterfall model are −

 Requirement Gathering and analysis − All possible requirements of the system to be developed are 
captured in this phase and documented in a requirement specification document.

 System Design − The requirement specifications from first phase are studied in this phase and the 
system design is prepared. This system design helps in specifying hardware and system requirements 
and helps in defining the overall system architecture.

 Implementation − With inputs from the system design, the system is first developed in small 
programs called units, which are integrated in the next phase. Each unit is developed and tested for its 
functionality, which is referred to as Unit Testing.

 Integration and Testing − All the units developed in the implementation phase are integrated into a 
system after testing of each unit. Post integration the entire system is tested for any faults and failures.

 Deployment of system − Once the functional and non-functional testing is done; the product is 
deployed in the customer environment or released into the market.

 Maintenance − There are some issues which come up in the client environment. To fix those issues, 
patches are released. Also to enhance the product some better versions are released. Maintenance is 
done to deliver these changes in the customer environment.



Advantages and Disadvantages of Waterfall-Model

Advantages Dis-Advantages

 Before the next phase of development, each 
phase must be completed

 Error can be fixed only during the phase

 Suited for smaller projects where 
requirements are well defined

 It is not desirable for complex project where 
requirement changes frequently

 They should perform quality assurance test 
(Verification and Validation) before 
completing each stage.

 Testing period comes quite late in the 
developmental process

 Elaborate documentation is done at every 
phase of the software's development cycle

 Documentation occupies a lot of time of 
developers and testers

 Project is completely dependent on project 
team with minimum client intervention

 Clients valuable feedback cannot be included
with ongoing development phase

 Any changes in software is made during the 
process of the development

 Small changes or errors that arise in the 
completed software may cause a lot of 
problems

Prototyping Model:

             Prototyping Model is a software development model in which prototype is built, tested, and
reworked until an acceptable prototype is achieved. It also creates base to produce the final system or
software.  It  works best in scenarios where the project's  requirements  are not known in detail.  It is an
iterative, trial and error method which takes place between developer and client.

RequirementsQuick DesignBuild prototypeUser EvaluationRefining prototypeImplement and
prototype

Step 1: Requirements gathering and analysis

A prototyping model starts with requirement analysis. In this phase, the requirements of the system are defined
in detail. During the process, the users of the system are interviewed to know what is their expectation from 
the system.

Step 2: Quick design

The second phase is a preliminary design or a quick design. In this stage, a simple design of the system is 
created. However, it is not a complete design. It gives a brief idea of the system to the user. The quick design 
helps in developing the prototype.



Step 3: Build a Prototype

In this phase, an actual prototype is designed based on the information gathered from quick design. It is a 
small working model of the required system.

Step 4: Initial user evaluation

In this stage, the proposed system is presented to the client for an initial evaluation. It helps to find out the 
strength and weakness of the working model. Comment and suggestion are collected from the customer and 
provided to the developer.

Step 5: Refining prototype

If the user is not happy with the current prototype, you need to refine the prototype according to the user's 
feedback and suggestions.

This phase will not over until all the requirements specified by the user are met. Once the user is satisfied with 
the developed prototype, a final system is developed based on the approved final prototype.

Step 6: Implement Product and Maintain

Once the final system is developed based on the final prototype, it is thoroughly tested and deployed to 
production. The system undergoes routine maintenance for minimizing downtime and prevent large-scale 
failures.

Fig : prototyping paradigm
Phases of prototyping Model

1. Requirement Identification: Here identification of product requirements is cleared in details. It is 
done through interview some product's future users and other members of the departments.

2. Design Stage: A first-round design is created in this stage for the new system.

3. Build the Initial Prototype: An initial prototype the target software is built from the original design. 
Working off all the product components may not be perfect or accurate. The first sample model is 
tailored as per the comments were given by the users and based on that the second prototype is built.

4. Review of the Prototype: After the product completes all the iterations of the update, it is presented to 
the customer or other stakeholders of the project. The response is accumulated in an organized way so 
that they can be used for further system enhancements.



5. Iteration and Enhancement of Prototype: Once the review of the product is done, it is set for further 
enhancement based on factors like - time, workforce as well as budget. Also, the technical feasibility of
actual implementation is checked.

The final system is thoroughly evaluated and tested. Periodic maintenance is conceded on an ongoing basis for
preventing large-scale breakdown as well as to minimize downtime.

There are four types of model available: 
 A) Rapid Throwaway Prototyping – 
This technique offers a useful method of exploring ideas and getting customer feedback for each of them. In 
this method, a developed prototype need not necessarily be a part of the ultimately accepted prototype. 
Customer feedback helps in preventing unnecessary design faults and hence, the final prototype developed is 
of better quality. 
 B) Evolutionary Prototyping – 
In this method, the prototype developed initially is incrementally refined on the basis of customer feedback till 
it finally gets accepted. In comparison to Rapid Throwaway Prototyping, it offers a better approach which 
saves time as well as effort. This is because developing a prototype from scratch for every iteration of the 
process can sometimes be very frustrating for the developers. 
 C) Incremental Prototyping – In this type of incremental Prototyping, the final expected product is broken 
into different small pieces of prototypes and being developed individually. In the end, when all individual 
pieces are properly developed, then the different prototypes are collectively merged into a single final product 
in their predefined order. It’s a very efficient approach which reduces the complexity of the development 
process, where the goal is divided into sub-parts and each sub-part is developed individually. The time interval
between the project begin and final delivery is substantially reduced because all parts of the system are 
prototyped and tested simultaneously. 

D) Extreme Prototyping – This method is mainly used for web development. It is consists of three sequential 
independent phases:

D.1) In this phase a basic prototype with all the existing static pages are presented in the HTML format.

D.2)  In the 2nd phase, Functional screens are made with a simulate data process using a prototype services 
layer.

D.3) This is the final step where all the services are implemented and associated with the final prototype.

Advantages – 

 The customers get to see the partial product early in the life cycle. This ensures a greater level of 
customer satisfaction and comfort.

 New requirements can be easily accommodated as there is scope for refinement.

 Missing functionalities can be easily figured out.

 Errors can be detected much earlier thereby saving a lot of effort and cost, besides enhancing the 
quality of the software.

 The developed prototype can be reused by the developer for more complicated projects in the future. 

 Flexibility in design.



Disadvantages – 

 Costly w.r.t time as well as money.

 There may be too much variation in requirements each time the prototype is evaluated by the customer.

 Poor Documentation due to continuously changing customer requirements.

 It is very difficult for developers to accommodate all the changes demanded by the customer.

 There is uncertainty in determining the number of iterations that would be required before the 
prototype is finally accepted by the customer.

 After seeing an early prototype, the customers sometimes demand the actual product to be delivered 
soon.

 Developers in a hurry to build prototypes may end up with sub-optimal solutions.

 The customer might lose interest in the product if he/she is not satisfied with the initial prototype.

Use – 
The Prototyping Model should be used when the requirements of the product are not clearly understood or are 
unstable. It can also be used if requirements are changing quickly. This model can be successfully used for 
developing user interfaces, high technology software-intensive systems, and systems with complex algorithms 
and interfaces. It is also a very good choice to demonstrate the technical feasibility of the product. 

EVOLUTIONARY MODEL:

The evolutionary approach is suitable for large problems which can be decomposed into a
set of modules for incremental development and delivery. This model is also widely used for object-
oriented development projects. Of course, this model can only be used if the incremental delivery of the
system is acceptable to the customer.

An evolutionary  approach  lets  the  customer experiment  with  a  working  product  much
earlier than the monolithic approaches. Another important advantage of the incremental model is that it
reduces the customer’s trauma of getting used to an entirely new system. The gradual introduction of
the product via incremental phases provides time to the customer to adjust to the new product. Also,
from the customer’s financial viewpoint, incremental development does not require a large upfront
capital outlay. The customer can order the incremental versions as and when he can afford them.

 It is also called successive versions model or incremental model. At first, a simple working
model is built. Subsequently it undergoes functional improvements & we keep on adding new functions
till the desired system is built. Applications: 

 Large projects where you can easily find modules for incremental implementation. Often used when
the customer wants to start using the core features rather than waiting for the full software. 

 Also used in object oriented software development because the system can be easily portioned into
units in terms of objects. 

Advantages: 1.User gets a chance to experiment partially developed system 

 2.Reduce the error because the core modules get tested thoroughly. 

Disadvantages: It is difficult to divide the problem into several versions that would be acceptable to
the customer which can be incrementally implemented & delivered.



This model has many of the features of the incremental model. As in case of the incremental
model, the software is developed over a number of increments. At each increment, a concept
(feature) is implemented and is deployed at the client site. The software successively refined and
feature-enriched until the full software is realised. The principal idea behind the evolutionary life cycle
model is conveyed by its name. In the incremental development model, complete requirements are
first developed and the SRS document prepared.  In contrast, in the evolutionary model, the
requirements, plan, estimates, and solution evolve over the iterations, rather than fully defined and
frozen in a major up-front specification effort before the development iterations begin. Such evolution
is consistent with the pattern of unpredictable feature discovery and feature changes that take place in
new product development.

Though the evolutionary model can also be viewed as an extension of  the waterfall model, but it
incorporates a major paradigm shift that has been widely adopted in many recent life cycle models.
Due to obvious reasons, the evolutionary software development process is sometimes referred to as
design  a  little,  build  a  little,  test  a  little,  deploy a little model.  This  means  that after the
requirements have been specified, the design, build, test, and deployment activities are iterated.

Advantages

The evolutionary model of development has several advantages.Two important advantages 

of using this model are the following:

Effective elicitation of actual  customer requirements:  In  this model,  the  user  gets  a
chance  to  experiment  with  a  partially  developed software much before the complete
requirements are developed. Therefore, the evolutionary model helps to accurately elicit user
requirements with the help of feedback obtained on the delivery of different versions of the
software.  As a result,  the change requests after delivery of the complete software gets
substantially reduced.



The evolutionary model is well-suited to use in object-oriented software development 
projects.

Easy handling change requests: In this model, handling change requests is easier as no long term 
plans are made. Consequently, reworks required due to change requests are normally much smaller 
compared to the sequential models.

Disadvantages: The main disadvantages of the successive versions model are as follows

Feature division into incremental parts can be non-trivial:  For many development projects,
especially for small-sized projects, it is difficult to divide the required features into several parts that can be
incrementally implemented and delivered. Further, even for larger problems,  often  the  features  are  so
interwined and dependent on each other that even an expert would need considerable effort to plan the
incremental deliveries.

Ad hoc  design:  Since at  a time design for only the current increment  is done,  the design can
become ad hoc without specific attention being paid to maintainability and optimality. Obviously,
for moderate  sized problems and for those for which the customer requirements  are  clear, the
iterative waterfall model can yield a better solution.

Evolutionary model is appropriate for object-oriented development project, since it is easy to partition the
software into stand alone units in terms of the classes. Also, classes are more or less self contained units that
can be developed independently.

The Spiral Model : Originally proposed by Barry Boehm, the spiral model is an evolutionary software 
process model that couples the iterative nature of prototyping with the controlled and systematic aspects of the 
waterfall model. It provides the potential for rapid development of increasingly more complete versions of the 
software. Boehm describes  the model in the following manner.

The spiral development model is a risk-driven process model generator that is used to guide multi-
stakeholder concurrent engineering of software intensive systems. It has two main distinguishing features.
One is a cyclic approach for incrementally growing a system’s degree of definition and implementation while
decreasing  its  degree  of  risk.  The  other  is  a  set  of  anchor  point  milestones  for  ensuring  stakeholder
commitment to feasible and mutually satisfactory system solutions.

                     
  

Fig : The Spiral Model 



First quadrant (Objective Setting)
 During the first quadrant, it is needed to identify the objectives of the phase.

 Examine the risks associated with these objectives.

Second Quadrant (Risk Assessment and Reduction)

 A detailed analysis is carried out for each identified project risk.
 Steps are taken to reduce the risks. For example, if there is a risk that the requirements are

inappropriate, a prototype system may be developed.
Third Quadrant (Development and Validation)

 Develop and validate the next level of the product after resolving the identified risks.

Fourth Quadrant (Review and Planning)

 Review the results achieved so far with the customer and plan the next iteration around the
spiral.Progressively more complete version of the software gets built with each iteration around
the spiral.

Using  the  spiral  model,  software  is  developed  in  a  series  of  evolutionary  releases.  During  early
iterations,  the release might  be a  model  or  prototype.  During later  iterations,  increasingly  more complete
versions of the engineered system are produced.!!br0ken!!

During early iterations, the release might be a model or prototype. During later iterations, increasingly more
complete versions of the engineered system are produced.

A spiral model is divided into a set of framework activities defined by the software engineering team.
As this evolutionary process begins, the software team performs activities that are implied by a circuit around
the spiral in a  clockwise  direction, beginning at the  center. Risk is considered as each revolution is made.
Anchor point milestones are a combination of work products and conditions that are attained along the path of
the spiral are noted for each evolutionary pass.

The  first  circuit  around  the  spiral  might  result  in  the  development  of  a  product  specification;
subsequent  passes  around  the  spiral  might  be  used  to  develop  a  prototype  and  then progressively  more
sophisticated versions of the software. Each pass through the planning region results in adjustments to the
project plan.The spiral model can be adapted to apply throughout the life of the computer software. Therefore,
the first circuit around the spiral might represent a “concept development project” that starts at the core of
the spiral and continues for multiple iterations until concept development is complete. The new product will
evolve through a number of iterations around the spiral. Later, a circuit around the spiral might be used to
represent a “product enhancement project.”

The spiral model is a  realistic approach  to the development of  large-scale systems  and software.
Because software evolves as the process progresses, the developer and customer better understand and react to
risks at each evolutionary level. It maintains the systematic stepwise approach suggested by the classic life
cycle but incorporates it into an iterative framework that more realistically reflects the real world.

RAD (Rapid Application Development) Model:

The Rapid Application Development Model was first proposed by IBM in 1980’s. The critical
feature of this model is the use of powerful development tools and techniques.A software project can be
implemented using this model if the project can be broken down into small modules wherein each
module can be assigned independently to separate teams. These modules can finally be combined to
form the final product.



Development of each module involves the various basic steps as in waterfall model i.e analyzing, designing, 
coding and then testing, etc. as shown in the figure.Another striking feature of this model is a short time span 
i.e the time frame for delivery(time-box) is generally 60-90 days.

The use of powerful developer tools such as JAVA, C++, Visual BASIC, XML, etc. is also an integral part of 
the projects.

This model consists of 4 basic phases:

1.Requirements Planning –It involves the use of various techniques used in requirements elicitation like 

brainstorming, task analysis, form analysis, user scenarios, FAST (Facilitated Application Development 

Technique), etc. It also consists of the entire structured plan describing the critical data, methods to obtain it

and then processing it to form final refined model.

2.User Description –This phase consists of taking user feedback and building the prototype using developer 

tools. In other words, it includes re-examination and validation of the data collected in the first phase. The 

dataset attributes are also identified and elucidated in this phase.

3.Construction –In this phase, refinement of the prototype and delivery takes place. It includes the actual 

use of powerful automated tools to transform process and data models into the final working product. All 

the required modifications and enhancements are too done in this phase.

4.Cutover –All the interfaces between the independent modules developed by separate teams have to be 

tested properly. The use of powerfully automated tools and subparts makes testing easier. This is followed 

by acceptance testing by the user.



The process involves building a rapid prototype, delivering it to the customer and the taking feedback. After 
validation by the customer, SRS document is developed and the design is finalised.

Advantages –

Use of reusable components helps to reduce the cycle time of the project.

Feedback from the customer is available at initial stages.

Reduced costs as fewer developers are required.

Use of powerful development tools results in better quality products in comparatively shorter time spans.

The progress and development of the project can be measured through the various stages.

It is easier to accommodate changing requirements due to the short iteration time spans.

Disadvantages –

The use of powerful and efficient tools requires highly skilled professionals.

The absence of reusable components can lead to failure of the project.

The team leader must work closely with the developers and customers to close the project in time.

The systems which cannot be modularized suitably cannot use this model.

Customer involvement is required throughout the life cycle.

It is not meant for small scale projects as for such cases, the cost of using automated tools and techniques 

may exceed the entire budget of the project.

Applications –
1.This model should be used for a system with known requirements and requiring short development time.

2.It is also suitable for projects where requirements can be modularized and reusable components are also 

available for development.

3.The model can also be used when already existing system components can be used in developing a new 

system with minimum changes.

4.This model can only be used if the teams consist of domain experts. This is because relevant knowledge 

and ability to use powerful techniques is a necessity.

5.The model should be chosen when the budget permits the use of automated tools and techniques required.

Agile Model

In earlier days Iterative Waterfall model was very popular to complete a project. But nowadays developers face
various problems while using it to develop a software. The main difficulties included handling change requests from
customers during project development and the high cost and time required to incorporate these changes. To overcome
these drawbacks of Waterfall model, in the mid-1990s the Agile Software Development model was proposed. "Agile
process model" refers to a software development approach based on iterative development. Agile methods break tasks
into smaller iterations, or parts do not directly involve long term planning. The project scope and requirements are laid
down at the beginning of the development process. Plans regarding the number of iterations, the duration and the scope
of each iteration are clearly defined in advance.



Each iteration is considered as a short time "frame" in the Agile process model, which typically lasts from one to
four weeks. The division of the entire project into smaller parts helps to minimize the project risk and to reduce the
overall project delivery time requirements. Each iteration involves a team working through a full software development
life  cycle  including  planning,  requirements  analysis,  design,  coding,  and  testing  before  a  working  product  is
demonstrated to the client.

Phases of Agile Model: Following are the phases in the Agile model are as follows:

1.Requirements gathering

2.Design the requirements

3.Construction/ iteration

4.Testing/ Quality assurance

5.Deployment

6.Feedback

1. Requirements gathering: In this phase, you must define the requirements. You should explain business opportunities
and plan the time and effort needed to build the project. Based on this information, you can evaluate technical and
economic feasibility.

2. Design the requirements: When you have identified the project, work with stakeholders to define requirements. You
can use the user flow diagram or the high-level UML diagram to show the work of new features and show how it will
apply to your existing system.

3. Construction/ iteration: When the team defines the requirements, the work begins. Designers and developers start
working  on  their  project,  which  aims  to  deploy  a  working  product.  The  product  will  undergo  various  stages  of
improvement, so it includes simple, minimal functionality.

4. Testing: In this phase, the Quality Assurance team examines the product's performance and looks for the bug.

5. Deployment: In this phase, the team issues a product for the user's work environment.

6. Feedback: After releasing the product, the last step is feedback. In this, the team receives feedback about the product
and works through the feedback.

Agility principles for those who want to achieve agility:

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
2.  Welcome changing requirements,  even  late  in  development.  Agile  processes harness  change  for  the  customer’s
competitive advantage.
3. Deliver working software frequently, from a couple of weeks to a couple of months,  with a preference to the shorter
timescale.
4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and support they need, and  
    trust them to get the job done.
6. The most efficient and effective method of conveying information to and within a development team     
    is face-to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and users should be 
    able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity—the art of maximizing the amount of work not done—is essential.
11. The best architectures, requirements, and designs emerge from self– organizing teams.



12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its 
      behavior accordingly.

Human Factors:  Agile development focuses on the talents and skills of individuals, molding the process to specific
people and teams.” The key point in this statement is that the process molds to the needs of the people and team
1.Competence.  In an agile development context,  “competence” encompasses innate talent,  specific software-related
skills, and overall knowledge of the process that the team has chosen to apply. Skill and knowledge of process can and
should be taught to all people who serve as agile team members.
2.Common focus.  Although members of the agile team may perform different tasks and bring different skills to the
project, all should be focused on one goal—to deliver a working software increment to the customer within the time
promised. To achieve this goal, the team will also focus on continual adaptations (small and large) that will make the
process fit the needs of the team.
3.Collaboration. Software engineering (regardless of process) is about assessing, analyzing, and using information that
is communicated to the software team; creating information that will help all stakeholders understand the work of the
team;  and  building  information  (computer  software  and  relevant  databases)  that  provides  business  value  for  the
customer. To accomplish these tasks, team members must collaborate—with one another and all other stakeholders.
4.Decision-making ability. Any good software team (including agile teams) must be allowed the freedom to control its
own destiny. This implies that the team is given autonomy—decision-making authority for both technical and project
issues.
5.Fuzzy  problem-solving ability.  Software  managers  must  recognize  that  the  agile  team will  continually  have  to
deal with ambiguity and will continually be buffeted by change.
6.Mutual trust and respect. The agile team must become what DeMarco and Lister call a “jelled” team. A jelled team
exhibits the trust and respect that are necessary to make them “so strongly knit that the whole is greater than the sum of
the parts.”
7.Self-organization. In the context of agile development, self-organization implies three things:

1. The agile team organizes itself for the work to be done, 
2. The team organizes the process to best accommodate its local environment
3.The team organizes the work schedule to best achieve delivery of the software increment. Self-organization has a
number of technical benefits, but more importantly, it serves to improve collaboration and boost team morale.

1.EXTREME PROGRAMMING (XP):

Extreme  Programming  (XP),  the  most  widely  used  approach  to  agile  software  development,  emphasizes
business results first and takes an incremental, get-something-started approach to building the product, using continual
testing and revision.
1.1 XP Values

Beck defines a set of  five  values  that establish a foundation for all work performed as part of XP—communication,
simplicity, feedback, courage, and respect. Each of these values is used as a driver for specific XP activities, actions,
and tasks.
Communication :In order to achieve effective communication between software engineers and other stakeholders, XP
emphasizes  close,  yet  informal  collaboration  between  customers  and  developers,  the  establishment  of  effective
metaphors3  for  communicating  important  concepts,  continuous  feedback,  and  the  avoidance  of  voluminous
documentation as a communication medium.
Simplicity :To achieve  simplicity,  XP restricts developers to design only for immediate needs, rather than consider
future needs. The intent is to create a simple design that can be easily implemented in code). If the design must be
improved, it can be refactored at a later time.

Feedback:  is  derived  from three  sources:  the  implemented  software  itself,  the  customer,  and  other  software  team
members.  By  designing  and  implementing  an  effective  testing  strategy  the  software  provides  the  agile  team with



feedback. XP makes use of the unit test as its primary testing tactic. As each class is developed, the team develops a unit
test to exercise each operation according to its specified functionality.
Courage :  Beck  argues  that  strict  adherence  to  certain  XP  practices  demands  courage.  A better  word  might  be
discipline. An agile XP team must have the discipline (courage) to design for today, recognizing that future requirements
may change dramatically, thereby demanding substantial rework of the design and implemented code.

Respect:By  following  each  of  these  values,  the  agile  team  inculcates  respect among  it  members,  between  other
stakeholders and team members, and indirectly, for the software itself. As theyachieve successful delivery of software
increments, the team develops growing respect for the XP process.

1.2 The XP Process

Extreme  Programming  uses  an  object-oriented  approach  as  its  preferred  development  paradigm  and
encompasses a set of rules and practices that occur within the context of four framework activities: planning, design,
coding, and testing. Following figure illustrates the XP process and notes some of the key ideas and tasks that are
associated with each framework activity.

                      

Fig : The Extreme Programming process

 Planning:The planning activity (also called the planning game) begins with listening—a requirements gathering
activity that enables the technical members of the XP team to understand the business context for the software
and to get a broad feel for required output and major features and functionality.

 Design:XP design rigorously follows the KIS (keep it simple) principle. A simple design is always preferred
over a more complex representation. In addition, the design provides implementation guidance for a story as it is
written—nothing  less,  nothing  more.  The  design  of  extra  functionality  If  a  difficult  design  problem  is
encountered as part of the design of a story, XP recommends the immediate creation of an operational prototype
of that portion of the design. Called a  spike solution, the design prototype is implemented and evaluated. XP
encourages refactoring—a construction technique that is also a method for design optimization.

    refactoring in the following manner: Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves the internal structure. It is a disciplined way to
clean up code [that minimizes the chances of introducing bugs].

      Coding. After stories are developed and preliminary design work is done, the team does not move to code, but
rather develops a series of unit tests that will exercise each of the stories that is to be included in the current release
Once the code is complete,  it  can be unit-tested immediately,  thereby providing instantaneous feedback to the
developers.



A key concept during the coding activity is pair programming. XP recommends that two people work together at
one computer workstation to create code for a story. This provides a mechanism for real time problem solving (two
heads are often better than one) and real-time quality assurance.

    Testing. The creation of unit tests before coding commences is a key element of the XP approach. The unit tests
that are created should be implemented using a framework that enables them to be automated. This encourages a
regression testing strategy whenever code is modified. As the individual unit tests are organized into a “universal
testing suite” integration and validation testing of the system can occur on a daily basis. This provides the XP team
with a continual indication of progress and also can raise warning flags early if things go awry. Wells states:
“Fixing small problems every few hours takes less time than fixing huge problems just before the deadline.”

XP acceptance tests, also called customer tests, are specified by the customer and focus on overall system features
and functionality that are visible and reviewable by the customer. Acceptance tests are derived from user stories
that have been implemented as part of a software release.

1.3 Industrial XP: 

Industrial Extreme Programming (IXP) in the following manner: “IXP is an organic evolution of XP. It is imbued with 
XP’s minimalist, customer-centric, test- driven spirit. IXP differs most from the original XP in its greater inclusion of 
management, its expanded role for customers, and its upgraded technical practices.” IXP incorporates six new practices 
that are designed to help ensure that an XP project works successfully for significant projects within a large organization.

Readiness  assessment.  Prior  to  the  initiation  of  an  IXP  project,  the  organization  should  conduct  a  readiness
assessment. The assessment ascertains whether (1) an appropriate development environment exists to support
IXP, (2) the team will be populated by the proper set of stakeholders, (3) the organization has a distinct quality
program and supports continuous improvement, (4) the organizational culture will support the new values of
an agile team, and (5) the broader project community will be populated appropriately.
Project community. Classic XP suggests that the right people be used to populate the agile team to ensure success. The
implication is that people on the team must be well- trained, adaptable and skilled, and have the proper temperament to
contribute to a self- organizing team. When XP is to be applied for a significant project in a large organization, the
concept of the “team” should morph into that of a community. In  IXP, the community members and their  roles should
be explicitly defined and mechanisms for communication and coordination between community members should be
established.

Project chartering. The IXP team assesses the project itself to determine whether an appropriate business justification
for the project exists and whether the project will further the overall goals and objectives of the organization. Chartering
also examines the context of the project to determine how it complements, extends, or replaces existing systems or
processes.

Test-driven management.  An IXP project requires measurable criteria for assessing the state of the project and the
progress that has been made to date. Test-driven management establishes a series of measurable “destinations” and then
defines mechanisms for determining whether or not these destinations have been reached.

Retrospectives. An IXP team conducts a specialized technical review after a software increment is delivered. Called a
retrospective,  the review examines “issues, events, and lessons-learned” across a software increment and/or the entire
software release. The intent is to improve the IXP process.

Continuous learning. Because learning is a vital part of continuous process improvement, members of the XP team are
encouraged (and possibly, incented) to learn new methods and techniques that can lead to a higher quality product.

1.4  THE XP DEBATE:
All  new process  models  and  methods  spur  worthwhile  discussion  and  in  some  instances  heated  debate.  Extreme
Programming has done both. In an interesting book that examines the efficacy of XP Stephens and Rosenberg argue that
many XP practices are worthwhile, but others have been overhyped, and a few are problematic.

Requirements volatility. Because the customer is an active member of the XP team, changes to requirements are
requested informally. As a consequence, the scope of the project can change and earlier work may have to be modified



to accommodate current needs. Proponents argue that this happens  regardless of the process that is applied and that XP
provides mechanisms for controlling scope creep.

Conflicting customer needs. Many projects have multiple customers, each with his own set of needs. In XP, the team
itself is tasked with assimilating the needs of different customers, a job that may be beyond their scope of authority.

Requirements  are  expressed  informally. User  stories  and  acceptance  tests  are  the  only  explicit  manifestation  of
requirements in XP. Critics argue that a more formal model or specification is often needed to ensure that omissions,
inconsistencies, and errors are uncovered before the system is built. 

Lack of formal design. XP deemphasizes the need for architectural design and in many instances, suggests that design
of all kinds should be relatively informal. Critics argue that when complex systems are built, design must be emphasized
to ensure that the overall structure of the software will exhibit quality and maintainability. XP proponents suggest that
the incremental nature of the XP process limits complexity (simplicity is a core value) and therefore reduces the need for
extensive design.

OTHER AGILE PROCESS MODELS

Other agile process models have been proposed and are in use across the industry.

Adaptive Software Development (ASD)

Scrum

Dynamic Systems Development Method (DSDM)

Crystal

Feature Drive Development (FDD)

Lean Software Development (LSD)

Agile Modeling (AM)

Agile Unified Process (AUP)

1.Adaptive Software Development (ASD)

Adaptive Software Development (ASD) has been proposed by Jim Highsmith as a technique for building complex
software  and  systems.  The  philosophical  underpinnings  of  ASD  focus  on  human  collaboration  and  team  self-
organization.

High smith argues that an agile, adaptive development approach based on collaboration is “as much a source of order in
our complex interactions as discipline and engineering.” He defines an ASD “life cycle” that incorporates three phases,
speculation, collaboration, and learning.

                                       

                                                                Fig : Adaptive software development



During  speculation,  the project is initiated and  adaptive cycle planning  is conducted. Adaptive cycle planning uses
project initiation information—the customer’s mission statement, project constraints 

motivated people use  collaboration  in a way that  multiplies their  talent and creative output beyond their  absolute
numbers.  This  approach  is  a  recurring  theme  in  all  agile  methods.  But  collaboration  is  not  easy.  It  encompasses
communication and teamwork, but it also emphasizes individualism, because individual creativity plays an important
role in collaborative thinking. 

It is, above all, a matter of trust. People working together must trust one another to (1) criticize without animosity, (2)
assist without resentment, (3) work as hard as or harder than they do, (4) have the skill set to contribute to the work at
hand, and (5) communicate problems or concerns in a way that leads to effective action.As members of an ASD team
begin to develop the components that are part of an adaptive cycle, the emphasis is on “learning” as much as it is on
progress toward a completed cycle.

ASD teams learn in three ways: focus groups, technical reviews , and project postmortems. ASD’s overall emphasis
on the dynamics of self-organizing teams, interpersonal collaboration, and individual and team learning yield software
project teams that have a much higher likelihood of success.

2.SCRUM

Scrum is an agile software development method that was conceived by Jeff Sutherland and his development
team in the early 1990s. Scrum principles are consistent with the agile manifesto and are used to guide development
activities within a process that incorporates the following framework activities: requirements, analysis, design, evolution,
and delivery.  Within each framework activity,  work tasks occur within a process pattern called a  sprint.  The work
conducted within a sprint is adapted to the problem at hand and is defined and often modified.in real time by the Scrum
team. The overall flow of the Scrum process is illustrated in following figure

                                 

Scrum  emphasizes the use of a set of software process patterns that  have proven effective for projects with tight
timelines, changing requirements, and business criticality. Each of these process patterns defines a set of development
actions:

Backlog—a prioritized list of project requirements or features that provide business value for the customer. Items can
be added to the backlog at any time. The product manager assesses the backlog and updates priorities as required.

Sprints—consist of work units that are required to achieve a requirement defined in the backlog that must be fit into a
predefined time-box (typically 30 days). Changes (e.g., backlog work items) are not introduced during the sprint. Hence,
the sprint allows team members to work in a short-term, but stable environment.

Scrum meetings—are short (typically 15 minutes) meetings held daily by the Scrum team. Three key questions are
asked and answered by all team members

What did you do since the last team meeting?

What obstacles are you encountering?

What do you plan to accomplish by the next team meeting?



A team leader, called a Scrum master, leads the meeting and assesses the responses from each person. The Scrum 
meeting helps the team to uncover potential problems as early as possible. Also, these daily meetings lead to 
“knowledge socialization”
Demos—deliver  the  software  increment  to  the  customer  so  that  functionality  that  has  been  implemented  can  be
demonstrated  and  evaluated  by  the  customer.  It  is  important  to  note  that  the  demo  may  not  contain  all  planned
functionality, but rather those functions that can be delivered within the time-box that was established.

3.Dynamic Systems Development Method (DSDM)

         The Dynamic Systems Development Method (DSDM) is an agile software development approach that “provides a
framework for building and maintaining systems which meet  tight  time constraints  through the use of  incremental
prototyping in a controlled project environment” The DSDM philosophy is borrowed from a modified version of the
Pareto principle—80 percent of an application can be delivered in 20 percent of the time. It would take to deliver
the complete (100 percent) application. DSDM is an iterative software process in which each iteration follows the 80
percent rule. That is, only enough work is required for each increment tofacilitate movement to the next increment. The
remaining detail can be completed later when more business requirements are known or changes have been requested
and accommodated.
The DSDM life cycle that defines three different iterative cycles, preceded by two additional life cycle activities:

Feasibility study—establishes the basic business requirements and constraints associated with the application to be
built and then assesses whether the application is a viable candidate for the DSDM process

Business study—establishes the functional and information requirements that will allow the application to provide
business value; also, defines the basic application architecture and identifies the maintainability requirements for the
application.

Functional model iteration—produces a set of incremental prototypes that demonstrate functionality for the customer.

Design and build iteration—revisits prototypes built during functional model iteration to ensure that each has been
engineered in a manner that will enable it to provide operational business value for end users. In some cases, functional
model iteration and design and build iteration occur concurrently.

Implementation—places the latest software increment into the operational environment. It should be noted that (1) the
increment may not be 100 percent complete or (2) changes may be requested as the increment is put into place. In either
case, DSDM development work continues by returning to the functional model iteration activity.

4 .CRYSTAL

             Alistair Cockburn and Jim Highsmith created the Crystal family of agile methods in  order to achieve a software
development approach that puts a premium on “maneuverability” during what Cockburn characterizes as “a resource
limited, cooperative game of invention and communication, with a primary goal of delivering useful, working software
and a secondary goal of setting up for the next game”

The Crystal family is actually a set of example agile processes that have been proven effective for different
types of projects. The intent is to allow agile teams to select the member of the crystal family that is most appropriate for
their project and environment.

5.FEATURE DRIVEN DEVELOPMENT (FDD)

        Feature Driven Development (FDD) was originally conceived by Peter Coad and his colleagues as a practical
process  model  for  object-oriented  software  engineering.  Stephen  Palmer  and  John  Felsing  have  extended  and
improvedCoad’s work, describing an adaptive, agile process that can be applied to moderately sized and larger software
projects.
          Like other agile approaches, FDD adopts a philosophy that (1) emphasizes collaboration among people on an FDD
team; (2) manages problem and project complexity using feature- based decomposition followed by the integration of
software increments, and (3) communication of technical detail using verbal, graphical, and text-based means.



         FDD emphasizes software quality assurance activities by encouraging an incremental development strategy, the
use of design and code inspections, the application of software quality assurance audits, the collection of metrics, and the
use of patterns (for analysis, design, and construction).In the context of FDD, a feature “is a client-valued function that
can be implemented in two weeks or less” The emphasis on the definition of features provides the following benefits:
Because features are small blocks of deliverable functionality, users can describe them more easily; understand how they
relate to one another more readily; and better review them for ambiguity, error, or omissions.Features can be organized
into a hierarchical business-related grouping.
                  Since a feature is the FDD deliverable software increment, the team develops operational featuresevery two
weeks.Because features are small, their design and code representations are easier to inspect effectively.

Project planning, scheduling, and tracking are driven by the feature hierarchy, rather than an arbitrarily adopted
software engineering task set.

   Coad and his colleagues suggest the following template for defining a feature:

<action> the <result> <by for of to> a(n) <object>

where an <object> is “a person, place, or thing

                

                                                            Fig : Feature Driven Development (FDD)
FDD provides greater emphasis on project management guidelines and techniques than many other agile methods. FDD
defines  six  milestones  during  the  design  and  implementation  of  a  feature:  “design  walkthrough,  design,  design
inspection, code, code inspection, promote to build”

6. LEAN SOFTWARE DEVELOPMENT (LSD)

                 Lean Software Development  (LSD) has adapted the principles of lean manufacturing to the world of software
engineering. The lean principles that inspire the LSD process can be summarized as eliminate waste, build quality in,
create knowledge, defer commitment, deliver fast, respect people, and optimize the whole. Each of these principles
can be adapted to the software process.

7.AGILE MODELING (AM)

          Agile Modeling (AM) is a practice-based methodology for effective modeling and documentation of software-
based systems.  Simply put,  Agile  Modeling (AM) is  a collection of  values,  principles,  and practices  for  modeling
software that can be applied on a software development project in an effective and light-weight manner. Agile models
are more effective than traditional models because they are just barely good, they don’t have to be perfect

 Agile  modeling adopts  all  of  the  values  that  are  consistent  with  the  agile  manifesto.  The agile  modeling
philosophy recognizes that an agile team must have the courage to make decisions that may  cause it to reject a design
and refactor. The team must also have the humility to recognize that technologists do not have all the answers and that
business experts and other stakeholders should be respected and embraced.



Agile Modeling suggests a wide array of “core” and “supplementary” modeling principles, those that make AM unique
are :

Model with a purpose. A developer who uses AM should have a specific goal in mind before creating the model. Once
the goal for the model is identified, the type of notation to be used and level of detail required will be more obvious.

Use multiple models.  There are many different models and notations that can be used to describe software. Only a
small subset is essential for most projects. AM suggests that to provide needed insight, each model should present a
different aspect of the system and only those models that provide value to their intended audience should be used.

Travel light.  As software engineering work proceeds, keep only those models that will provide long-term value and
jettison the rest. Every work product that is kept must be maintained as changes occur. This represents work that slows
the team down. Ambler notes that “Every time you decide to keep a model you trade-off agility for the convenience of
having that information available to your team in an abstract manner

Content is more important than representation.  Modeling should impart information to its intended audience. A
syntactically perfect model that imparts little useful content is not as valuable as a model with flawed notation that
nevertheless provides valuable content for its audience.

Know the models and the tools you use to create them. Understand the strengths and weaknesses of each model and
the tools that are used to create it.

Adapt locally. The modeling approach should be adapted to the needs of the agile team.

8.AGILE UNIFIED PROCESS (AUP)

              The Agile Unified Process (AUP) adopts a “serial in the large” and “iterative in the small” philosophy for
building computer-based systems. By adopting the classic UP phased activities— inception, elaboration, construction,
and transition—AUP provides a serial overlay that enables a team to visualize the overall process flow for a software
project. However, within each of the activities, the team iterates to achieve agility and to deliver meaningful software
increments to end users as rapidly as possible. Each AUP iteration addresses the following activities.

Modeling. UML representations of the business and problem domains are created.

Implementation. Models are translated into source code.

Testing. Like XP, the team designs and executes a series of tests to uncover errors and ensure that the source code
meets its requirements.

Deployment.  Like  the  generic  process  activity  deployment  in  this  context  focuses  on  the  delivery  of  a  software
increment and the acquisition of feedback from end users.

Configuration  and  project  management.  In the  context  of  AUP,  configuration  management  addresses  change
management, risk management, and the control of any persistent work products that are produced by the team. Project
management tracks and controls the progress of the team and coordinates team activities.
Environment management.  Environment management coordinates a process infrastructure that  includes  standards,
tools, and other support technology available to the team.



Software project management :project planning

A  theoretical  knowledge  of  different  project  management  techniques  is  certainly
necessary  to  become  a  successful  project  manager.  However,  effective  software project
management frequently calls for good qualitative judgment and decision taking capabilities. In
addition to having a good grasp of the latest software project management techniques such as cost
estimation, risk management, configuration  management,  project  managers  need  good
communication skills and the ability get work done. However, some skills such as tracking and
controlling the progress of the project, customer interaction, managerial presentations, and team
building  are  largely  acquired  through  experience.  None the less, the importance of sound
knowledge of the prevalent project management techniques cannot be overemphasized

Project planning:

         Once a project is found to be feasible, software project managers undertake project planning.
Project planning is undertaken and completed even before any development activity starts. Project
planning consists of the following essential activities:

  Project size: What will be problem complexity in terms of the effort and time required to 
develop the product?

  Cost: How much is it going to cost to develop the project? 

  Duration: How long is it going to take  to complete development? 

     Effort: How much effort would be required?

The  effectiveness  of  the  subsequent planning  activities  is  based on  the accuracy of  these
estimations.

 Scheduling manpower and other resources
 Staff organization and staffing plans
 Risk identification, analysis, and abatement planning
 Miscellaneous plans such as quality assurance plan, configuration management

plan, etc.

                          

Fig:Precedence ordering among planning activities                               



Metrics for software project size estimation:Accurate estimation of the problem size is fundamental
to satisfactory estimation of effort, time duration and cost of a software project. In order to be able
to accurately estimate the project size, some important metrics should be defined in terms of which
the project size can be expressed. The size of a problem is obviously not the number of bytes that
the source code occupies. It is neither the byte size of the executable code. The project size is a
measure  of  the  problem complexity in terms of the effort and time required to develop the
product.Currently  two metrics  are  popularly  being  used  widely  to  estimate  size: lines of code
(LOC) and function point (FP). The usage of each of these metrics in project size estimation has
its own advantages and disadvantages.

1.Lines of Code (LOC): LOC is the simplest among all metrics available to estimate project size.
This metric is very popular because it is the simplest to use. Using this metric, the project size is
estimated by counting the number of  source instructions  in  the developed program. Obviously,
while  counting the number of source instructions, lines used for commenting the code and the
header lines should be ignored.

Determining the LOC count at the end of a project is a very simple job. However, accurate
estimation of the LOC count at the beginning of a project is very difficult. In order to estimate the
LOC count at the beginning of a project, project managers usually divide the problem into modules,
and each module into submodules and so on, until the sizes of the different leaf-level modules can
be approximately predicted. To be able to do this, past experience in developing similar products is
helpful. By using the estimation of the lowest level modules, project managers arrive at the total
size estimation.

2.Function  point  (FP):  Function  point  metric  was  proposed  by  Albrecht  [1983].  This  metric
overcomes many of the shortcomings of the LOC metric. Since its inception in late 1970s, function
point  metric has been slowly gaining popularity.  One of the important advantages of using the
function point metric is that it can be used to easily estimate the size of a software product directly
from the  problem specification. This is in contrast to the LOC metric, where the size can be
accurately determined only after the product has fully been developed.The conceptual idea behind
the function point metric is that the size of a software product is directly dependent on the number
of different functions or features it supports. A software product supporting many features would
certainly be of larger size than a product with less number of features. Each function when invoked
reads some input data and transforms it to the corresponding output data.

Fig: System function as a map of input data to output data



It is computed using the following three steps:
Step 1: Compute the unadjusted function point (UFP) using a heuristic expression.

Step 2: Refine UFP to reflect the actual complexities of the different parameters used in 
UFP computation.
Step 3: Compute FP by further refining UFP to account for the specific characteristics 
of the project that can influence the entire development effort.

Step 1: UFP computation

Function point is computed in two steps. The first step is to compute the unadjusted function point
(UFP).                    

 UFP =  (Number  of  inputs)*4  +  (Number  of  outputs)*5  + (Number     of     inquiries  )*4 +
(Number     of     files  )*10 +(Number     of     interfaces  )*10

Number  of  inputs: Each  data  item  input  by  the  user  is  counted.  Data  inputs should  be
distinguished from user  inquiries.  Inquiries  are  user  commands such as  print-account-balance.
Inquiries are counted separately. It must be noted that individual data items input by the user are
not  considered  in  the  calculation  of  the number of inputs, but a group of related inputs are
considered as a single input.

For example, while entering the data concerning an employee to an employee pay roll software; the
data items name, age, sex, address, phone number, etc. are together considered as a single input.
All these data items can be considered to be related, since they pertain to a single employee.

Number  of  outputs: The  outputs  considered  refer  to  reports  printed,  screen outputs,  error
messages produced, etc. While outputting the number of outputs the individual data items within a
report are not considered, but a set of related data items is counted as one input.

Number of inquiries: Number of inquiries is the number of distinct interactive queries which can
be made by the users. These inquiries are the user commands which require specific action by the
system.

Number of files: Each logical file is counted. A logical file means groups of logically related data.
Thus, logical files can be data structures or physical files.

Number of  interfaces:    Here  the  interfaces  considered  are  the  interfaces  used to exchange
information with other systems. Examples of such interfaces are data files on tapes, disks,
communication links with other systems etc.

Step 2: Refine parameters

UFP computed at the end of step 1 is a gross indicator of the problem size. This UFP needs
to be refined.  This is  possible,  since each parameter  (input, output, etc.) has been implicitly
assumed to be of average complexity. However, this  is rarely true. For example, some input
values may be extremely  complex,  some very  simple,  etc.  In  order  to  take  this  issue  into
account,  UFP is refined by taking into account the complexities of the parameters of UFP
computation.The complexity of each parameter is graded into three broad categories—simple,
average, or complex. The weights  for  the  different  parameters  are  determined  based  on  the
numerical values shown in Table 3.1. Based on these weights of the parameters, the parameter
values in the UFP are refined. For example, rather than each input being computed as four FPs,
very simple inputs are computed as three FPs and very complex inputs as six FPs



Table : Refinement of Function Point Entities

Type Simple      Average  Complex

Input(I) 3 4 6

Output (O) 4 5 7

Inquiry (E) 3 4 6

Number of files (F) 7            10 15

Number of 
interfaces

5 7 10

Step 3: Refine UFP based on complexity of the overall project
In the final step, several factors that can impact the overall project size are considered to refine the
UFP computed in step 2. Examples of such project parameters that can influence the project sizes
include high transaction rates, response time requirements, scope for reuse, etc. Albrecht identified
14 parameters that can influence the development effort.Each of these 14 parameters is assigned a
value  from 0 (not  present  or  no influence)  to  6 (strong influence). The resulting  numbers  are
summed, yielding the total degree of influence (DI). A technical complexity factor (TCF) for the
project  is  computed and the TCF is  multiplied  with UFP to yield  FP.  The TCF expresses  the
overall impact of the  corresponding  project  parameters  on  the  development  effort.  TCF  is
computed as (0.65+0.01*DI). As DI can vary from 0 to 84, TCF can vary from 0.65 to 1.49.
Finally, FP is given as the product of UFP and TCF. That is, FP=UFP*TCF.

Example :Determine the function point measure of the size of the following supermarket
software. A supermarket needs to develop  the following  software  to  encourage  regular
customers. For this, the customer needs to supply his/her residence address, telephone number,
and the driving license number.  Ea ch customer who registers  for this  scheme is  assigned a
unique customer number (CN) by the computer. Based on the generated CN, a clerk manually
prepares a customer identity card after getting the market manager’s signature on it. A customer
can present his customer identity card to the check out staff when he makes any purchase. In this
case,  the  value  of his purchase is credited against his CN. At  the end of each year, the
supermarket intends to award surprise gifts to 10 customers who make the highest total purchase
over the year. Also, it intends to award a 22 caret gold coin to every customer whose purchase
exceeded Rs. 10,000. The entries against the CN are reset on the last day of every year after the
prize winners’ lists are generated. Assume that various project characteristics determining the
complexity of software development to be average.

Answer:
Step 1: From an examination of the problem description, we find that there are two inputs,

three outputs, two files, and no interfaces. Two files would be required, one for storing
the customer details and another for storing the daily purchase records.  Now, using
equation ,we get:

UFP = 2 × 4 + 3 × 5 + 1 × 4 + 10 × 2 + 0 × 10 = 47

Step 2: All the parameters are of moderate complexity, except the output parameter
of  customer  registration,  in  which  the  only  output  is the  CN  value.  Consequently,  the
complexity of the output parameter of the customer registration function can be categorized
as simple. By consulting Table 3.1, we find that the value for simple output is given to be 4.
The UFP can be refined as follows:

UFP = 3 × 4 + 2 × 5 + 1 × 4 + 10 × 2 + 0 × 10 = 46

Therefore, the UFP will be 46.



Step 3: Since the complexity adjustment factors have average values, therefore the total 
degrees of influence would be: DI = 14 × 4 = 56

TCF = 0.65 + 0.01 + 56 = 1.21

Therefore, the adjusted FP=46*1.21=55.66

Project Estimation techniques

Estimation of various project parameters is a basic project planning activity. The important
project parameters that are estimated include: project size, effort required to develop the
software, project duration, and cost. These estimates not only help in quoting the project

cost to the customer, but are also useful in resource planning and scheduling. There are
three broad categories of estimation techniques:

 Empirical estimation techniques
 Heuristic techniques
 Analytical estimation techniques

Empirical Estimation Techniques

Empirical  estimation  techniques  are  based  on  making  an  educated  guess  of  the project
parameters. While using this technique, prior experience with development of similar products is
helpful. Although empirical estimation techniques are based on common sense, different activities
involved in estimation have been formalized over the years. Two popular empirical estimation
techniques are: Expert judgment technique and Delphi cost estimation.
Expert Judgment Technique

Expert judgment is one of the most widely used estimation techniques. In this approach, an
expert  makes  an educated guess of the problem size after analyzing the problem thoroughly.
Usually, the expertestimates the cost of the different components (i.e. modules or subsystems) of
the system and then combines them to arrive at the overall estimate. However, this technique is
subject to human errors and individual bias. Also, it is possible that the expert may overlook some
factors  inadvertently.  Further,  an  expert  making  an  estimate  may  not  have experience  and
knowledge of all aspects of a project. For example, he may be conversant with the database and
user interface parts but may not be very knowledgeable about the computer communication part.

A more  refined  form  of  expert  judgment  is  the  estimation  made  by group  of  experts.
Estimation by a group of experts minimizes factors such as individual oversight, lack of familiarity
with a particular aspect of a project, personal bias, and the desire to win contract through overly
optimistic estimates. However, the estimate made by a group of experts may still exhibit bias on
issues  where  the  entire  group  of  experts  may  be biased  due  to  reasons  such  as  political
considerations.  Also,  the  decision made by the group may be dominated by overly assertive
members.

Delphi cost estimation:Delphi cost estimation approach tries to overcome some of the shortcomings
of the expert judgment approach. Delphi estimation is carried out by a team comprising of a group
of experts and a coordinator. In this approach, the coordinator provides each estimator with a copy
of the  software  requirements  specification  (SRS)  document  and  a  form for recording  his  cost
estimate.  Estimators  complete  their  individual  estimates anonymously and submit to the
coordinator. In their estimates, the estimators mention any unusual characteristic of the product
which has influenced his estimation. The coordinator prepares and distributes the summary of the
responses of all the estimators, and includes any unusual rationale noted by any of the estimators.
Based on this  summary,  the estimators re-estimate. This process is iterated for several rounds.



However, no discussion among the estimators is allowed during the entire estimation process. The
idea behind this is that if any discussion is allowed among the estimators, then many estimators
may easily get influenced by the rationale of an estimator who may be more experienced or senior.
After the completion of several iterations of estimations, the coordinator takes the responsibility of
compiling the results and preparing the final estimate.

Heuristic Techniques

Heuristic techniques assume that the relationships among the different project parameters
can be modeled using suitable mathematical expressions. Once the basic (independent) parameters
are known, the other (dependent) parameters can be easily determined by substituting the value of
the basic parameters in the mathematical expression. Different heuristic estimation models can be
divided into the following two classes: single variable model and the multi variable model.

Single variable estimation models provide a means to estimate the desired characteristics of
a problem, using some previously estimated basic (independent)  characteristic  of  the  software
product such as its size. A single variable estimation model takes the following form:

d1
Estimated Parameter = c1 * e 

In the above expression, e is the characteristic of the software which has already been estimated
(independent variable). Estimated Parameter is the dependent parameter to be estimated.  The
dependent parameter to be estimated could be effort, project duration, staff size, etc. c1 and d1 are
constants. The values of the constants c1 and d1 are usually determined using data collected from
past projects (historical data). The basic COCOMO model is an example of single variable cost
estimation model.

A multivariable cost estimation model takes the following form: 

Estimated Resource = c1*e1 1 + c2*e2 2 + ...

Where e1, e2, … are the basic (independent) characteristics of the software already estimated,
and c1,  c2,  d1,  d2,  … are constants.  Multivariable  estimation models are  expected to  give more
accurate estimates compared to the single variable models, since a project parameter is typically
influenced by several independent parameters. The independent parameters influence the dependent
parameter to different extents. This is modeled by the constants c1, c2, d1, d2, … . Values of these
constants are usually determined from historical data. The intermediate COCOMO model can be
considered to be an example of a multivariable estimation model.

Analytical Estimation Techniques

Analytical estimation techniques derive the required results starting with basic assumptions
regarding the project. Thus, unlike empirical and heuristic techniques, analytical techniques do
have scientific  basis.  Halstead’s  software science is an example of an analytical technique.
Halstead’s software science can be used to derive some interesting results starting with a few
simple assumptions. Halstead’s software science is especially useful for estimating software
maintenance efforts. In fact, it outperforms both empirical and heuristic techniques when used for
predicting software maintenance efforts.



Three basic classes of software development projects

Boehm postulated that any software development project can be classified into one of the
following  three  categories  based  on  the  development  complexity: organic,  semidetached,  and
embedded. In order to classify a product into the identified categories, Boehm not only considered
the characteristics of the product  but  also  those  of  the  development  team  and  development
environment. Roughly speaking, these three product classes correspond to application, utility and
system programs, respectively. Normally, data processing programs are considered to be
application programs. Compilers, linkers, etc., are utility programs. Operating systems and real-
time  system programs,  etc.  are  system programs.  System programs  interact  directly  with  the
hardware and typically involve meeting timing constraints and concurrent processing.

Boehm’s [1981] definition of organic, semidetached, and embedded systems are 
elaborated below.

Organic:  A development  project  can  be  considered  of  organic  type,  if  the  project deals  with
developing a well understood application program, the size of the development team is reasonably
small, and the team members are experienced in developing similar types of projects.

Semidetached:  A  development  project  can  be  considered  of  semidetached type,  if  the
development consists of a mixture of experienced and inexperienced staff. Team members may
have limited experience on related systems but may be unfamiliar with some aspects of the system
being developed.

Embedded: A development project is considered to be of embedded type, if the software being
developed  is  strongly  coupled  to  complex  hardware,  or  if  the stringent regulations on the
operational procedures exist.

COCOMO

COCOMO (Constructive Cost Estimation Model) was proposed by Boehm [1981]. According to
Boehm,  software  cost  estimation  should  be  done  through three stages: Basic COCOMO,
Intermediate COCOMO, and Complete COCOMO.
Basic COCOMO Model

The basic COCOMO model gives an approximate estimate of the project parameters. The basic
COCOMO estimation model is given by the following expressions:

Effort  =  a1  ×  (KLOC)a2  PM

Tdev = b1 × (Effort)b2 months

 KLOC is the estimated size of the software product expressed in Kilo Lines Of 
Code.

 a1, a2, b1, b2 are constants for each category of software product.

  Tdev is the estimated time to develop the software, expressed in months

Person-month (PM) is considered to be an appropriate unit for measuring effort, 

because developers are typically assigned to a project for a certain number of months.



 Effort is the total effort required to develop the software product, expressed 
in person- months (PMs).

Estimation of development effort: For the three classes of software products, the formulas for
estimating the effort based on the code size are shown below:

Organic : Effort = 2.4(KLOC)1.05 PM
Semi-detached : Effort = 3.0(KLOC)1.12 PM 
Embedded : Effort = 3.6(KLOC)1.20 PM

Estimation of development time: For the three classes of software products, the formulas for 
estimating the development time based on the effort are given below:

Organic : Tdev = 2.5(Effort)0.38 Months
Semi-detached : Tdev = 2.5(Effort)0.35 Months Embedded : 
Tdev = 2.5(Effort)0.32 Months

Example:Assume that  the size of  an organic type software product  has been estimated to  be
32,000 lines of source code. Assume that the average salary of a software developer is Rs. 15,000
per  month.  Determine  the  effort required  to  develop  the  software  product,  the  nominal
development time, and the cost to develop the product.

From the basic COCOMO estimation formula for organic software: 

Effort = 2.4 х (32)1.05 = 91 PM
  Nomina l  deve lopment  t ime  =  2.5  х  (91) 0 . 3 8  = 14 months

Staff cost required to develop the product = 91 × Rs. 15, 000 = Rs.1,465,000

Some  insight  into  the  basic  COCOMO  model  can  be  obtained  by  plotting  the estimated
characteristics for different software sizes. Thus, the effort required to develop a product increases
very rapidly with project size.

Intermediate COCOMO model

The basic COCOMO model assumes that effort and development time are functions  of  the
product size alone. However, a host of other project parameters besides the product size affect the
effort required to develop the product as well as the development time. Therefore, in order to
obtain  an  accurate  estimation  of the  effort  and  project  duration,  the  effect  of  all  relevant
parameters must be taken into account. The intermediate COCOMO model recognizes this fact
and refines the initial estimate obtained using the basic COCOMO expressions by using a set
of 15 cost drivers (multipliers) based on various attributes of software development. For example,
if  modern  programming  practices  are  used,  the  initial estimates  are  scaled  downward  by
multiplication  with  a  cost  driver  having  a  value less  than  1.  If  there  are  stringent  reliability
requirements on the software product, this initial estimate is scaled upward. Boehm requires the
project manager to rate these 15 different parameters for a particular project on a scale of one to
three. Then, depending on these ratings, he suggests appropriate cost driver values which should
be multiplied with the initial estimate obtained using the basic COCOMO. In general, the cost
drivers can be classified as being attributes of the following items:

Product: The characteristics of the product that are considered include the inherent complexity of
the product, reliability requirements of the product, etc.



 Computer: Characteristics  of  the  computer  that  are  considered  include  the execution speed
required, storage space required etc.

Personnel: The attributes of development personnel that are considered include the experience
level of personnel, programming capability, analysis capability, etc.

Development  Environment: Development  environment  attributes  capture  the development
facilities available to the developers. An important parameter that is considered is the sophistication
of the automation (CASE) tools used for software development.

Complete COCOMO model

A major shortcoming of both the basic and intermediate COCOMO models is that they consider
a software product as a single homogeneous entity. However, most large systems are made up
several smaller sub-systems. These sub- systems may have widely different characteristics. For
example, some sub- systems may be considered as organic type, some semidetached, and some
embedded. Not  only  that the  inherent  development  complexity of  the  subsystems  may  be
different, but also for some subsystems the reliability requirements may be high, for some the
development team might have no previous experience of similar development, and so on. The
complete COCOMO model considers these differences in characteristics of the subsystems and
estimates  the  effort  and development  time  as  the  sum  of  the  estimates  for  the  individual
subsystems. The cost of each subsystem is estimated separately. This approach reduces the margin
of error in the final estimate.

The following development project can be considered as an example application of the
complete COCOMO model. A distributed Management Information System (MIS) product for an
organization  having  offices  at  several places across the country can have the following sub-
components:

 Database part
 Graphical User Interface (GUI) part
 Communication part

Of these, the communication part can be considered as embedded software. The database part could
be semi-detached software, and the GUI part organic software. The costs for these three
components can be estimated separately, and summed up to give the overall cost of the system.

Halstead’s Software Science – An Analytical Technique

Halstead’s software science is an analytical technique to measure size, development effort,
and development cost of software products. Halstead used a few primitive program parameters to
develop the expressions for over all program length, potential minimum value, actual volume, effort,
and development time.
For a given program, let:

 η1 be the number of unique operators used in the program,
 η2 be the number of unique operands used in the program,
 N1 be the total number of operators used in the program,
 N2 be the total number of operands used in the program.



Operators and Operands for the ANSI C language

The following is a suggested list of operators for the ANSI C language:

 ( [ . , -> * + - ~ ! ++ -- * / % + - << >> < > <= >= !=
== & ^ | && || = *= /= %= += -= <<= >>= &= ^= |= : ? { ;

 CASE DEFAULT IF ELSE SWITCH WHILE DO FOR GOTO CONTINUE
BREAK RETURN and a function name in a function call

Operands are those variables and constants which are being used with operators in expressions. 
Note that variable names appearing in declarations are not considered as operands.

Example :The function name in a function definition is not counted as an 
operator.

int func ( int a, int b )
{

. . .
}

For the above example code, the operators are: {}, ( ) We do not consider func, a,
and b as operands, since these are part of the function definition.

Length and Vocabulary

The length of a program as defined by Halstead, quantifies total usage of all operators and
operands  in  the  program.  Thus,  length  N =  N1 +N2. Halstead’s  definition  of  the  length  of  the
program as the total number of operators and operands roughly agrees with the intuitive notation
of the program length as the total number of tokens used in the program.

The program vocabulary is the number of unique operators and operands used in the program.
Thus, program vocabulary η = η1 + η2.

Program Volume

The length of a program (i.e. the total number of operators and operands used in the code)
depends on the choice of the operators and operands used. In other words, for the same
programming problem,  the  length  would  depend  on  the  programming  style.  This  type of
dependency would produce different measures of length for essentially the same problem when
different programming languages are used. Thus, while expressing program size, the programming
language used must be taken into consideration:

V = Nlog2η
Here the program volume V is the minimum number of bits needed to encode the program. In fact,
to represent η different identifiers uniquely, at least log2η bits (where η is the program vocabulary)
will be needed.  In  this  scheme,  Nlog2η  bits  will  be  needed  to  store  a  program of length N.
Therefore, the volume V represents the size of the program by approximately compensating for
the effect of the programming language used.

Potential Minimum Volume

The potential minimum volume V* is defined as the volume of most succinct program in which a
problem can be coded. The minimum volume is obtained when the program can be expressed using
a single source code instruction., say a function call like foo( ) ;. In other words, the volume is
bound from below due to the fact that a program would have at least two operators and no less than
the requisite number of operands.



Thus, if an algorithm operates on input and output data d1, d2, … dn, the most succinct program
would be f(d1, d2, … dn); for which η1 = 2, η2 = n. Therefore, V* = (2 + η2)log2(2 + η2).

The program level L is given by L = V*/V. The concept of program level L is introduced in an
attempt to measure the level of abstraction provided by the programming language.Using this
definition, languages can be ranked into levels that also appear intuitively correct. The above result
implies that the higher the level of a language,the less effort it takes to develop a program using
that language. This result agrees with the intuitive notion that it takes more effort to develop a
program in  assembly  language than  to  develop a  program in a high-level language to solve  a
problem.

Effort and Time

The effort required to develop a program can be obtained by dividing the program volume
with the level of the programming language used to develop the code. Thus, effort E = V/L, where
E is the number of mental discriminations required to implement the program and also the effort
required to read and understand the program. Thus, the programming effort E = V²/V* (since L =
V*/V) varies as the square of the volume. Experience shows that E is well correlated to the effort
needed for maintenance of an existing program.
            The programmer’s time T = E/S, where S the speed of mental discriminations. The value of
S has been empirically developed from psychological reasoning, and its recommended value for
programming applications is 18.

Length Estimation

Even though the length of  a  program can be found by calculating the total number of
operators and operands in a program, Halstead suggests a way to determine the length of a program
using the number of unique operators and operands used in the program. Using this method, the
program parameters such as length, volume, cost, effort, etc. can be determined even before the
start of any programming activity. His method is summarized below.

Halstead assumed that it is quite unlikely that a program has several identical parts – in
formal language terminology identicalsubstrings – of length greater than η (η being the program
vocabulary). In fact, once a piece of code occurs identically at several places, it is made into a
procedure or a function. Thus, it can be assumed that any program of length N consists of N/ η
unique strings of length η. Now, it is standard combinatorial result that for any given alphabet of
size K, there are exactly Kr different strings of length r.

N/η ≤ηη Or, N ≤ ηη+1

Since operators and operands usually alternate in a program, the upper bound can be further refined
into N ≤ η η1

η1 η2
η2. Also, N must include not only the ordered set of n elements, but it should also

include all possible subsets of that ordered sets, i.e. the power set of N strings (This particular
reasoning of Halstead is not very convincing!!!).

Therefore,2N = η η1
η1 η2

η2

Or, taking logarithm on both sides,

N = log2η +log 2(η1
η1 η2

η2)

So we get,



N = log 2(η1
η1 η2

η2)

(approximately, by ignoring log2η)

N = log2η1
η1 + log2η2

η2

= η1log2η1 + η2log2η2

Experimental evidence gathered from the analysis of larger number of programs suggests that the
computed and actual lengths match very closely. However, the results may be inaccurate when
small programs when considered individually.

In conclusion, Halstead’s theory tries to provide a formal definition and quantification of
such  qualitative  attributes  as  program complexity,  ease  of  understanding,  and  the  level  of
abstraction based on some low-level parameters such as the number of operands, and operators
appearing in the program. Halstead’s software science provides gross estimation of properties of a
large collection of software, but extends to individual cases rather inaccurately.
Example:Let us consider the following C program:

main( )
{

int a, b, c, avg;
 scanf(“%d %d %d”, &a, &b, &c); 
avg = (a+b+c)/3;

printf(“avg = %d”, avg);
}

The unique operators are:main,(),{},int,scanf,&,“,”,“;”,=,+,/, printf
The unique operands are:a, b, c, &a, &b, &c, a+b+c, avg, 3, “%d %d %d”, “avg = %d”

Therefore,η1 = 12, η2 = 11

Estimated Length= (12*log12 + 11*log11)

      = (12*3.58 + 11*3.45)
               = (43+38) = 81

Volume = Length*log(23)
                = 81*4.52

            = 366
Staffing level estimation

Once the effort required to develop a software has been determined, it is necessary to determine
the staffing requirement for the project. Putnam first studied the problem of what should be a
proper staffing pattern for software projects. He extended the work of Norden who had earlier
investigated the staffing pattern of research and development (R&D) type of projects. In order to
appreciate the staffing pattern of software projects, Norden’s and Putnam’s results must  be
understood.



Norden’s Work
Norden studied the staffing patterns of several R & D projects. He found that the staffing

pattern can be approximated by the Rayleigh distribution curve. Norden represented the Rayleigh
curve by the following equation:

Figure: Rayleigh curve.

Norden represented the Rayleigh curve by the following equation:

where, E is the effort required at time t. E is an indication of the number  of developers (or the
staffing level) at any particular time during the duration of the project, K is the area under the
curve, and td is the time at which the curve attains its maximum value. It must be remembered that
the results of Norden are applicable to general R&D projects and were not meant to model the
staffing pattern of software development projects.

Putnam’s Work

Putnam  studied  the  problem  of  staffing  of  software  projects  and  found  that  the software
development has characteristics very similar to other R & D projects studied by Norden and that
the Rayleigh-Norden curve can be used to relate the number of delivered lines of code to the effort
and the  time required  to  develop the  project.  By analyzing a  large  number  of  army projects,
Putnam derived the following expression:

L = Ck K
1/3td

4/3

The various terms of this expression are as follows:

 K is the total effort expended (in PM) in the product development and L is the product size
in KLOC.

 td corresponds  to  the  time  of  system  and  integration  testing.  Therefore,  td can  be
approximately considered as the time required to develop the software.

 Ck is the state of technology constant and reflects constraints that impede the progress of
the programmer. Typical values of Ck = 2 for poor development environment (no
methodology, poor documentation, and review,  etc.),  Ck =  8  for  good  software
development environment (software engineering principles are adhered to), Ck = 11 for an



excellent environment (in addition to following software engineering principles,
automated tools and techniques are used). The exact value of Ck for a specific project can
be computed from the historical data of the organization developing it.
Putnam suggested  that  optimal  staff  build-up on a  project  should  follow the Rayleigh
curve. Only a small number of engineers are needed at the beginning of a project to carry
out planning and specification tasks. As the project progresses and more detailed work is
required, the number of engineers reaches a peak. After implementation and unit testing,
the number of project staff falls.

Effect of schedule change on cost

By  analyzing  a  large  number  of  army  projects,  Putnam  derived  the  following
expression:

                                                          
Where, K is the total effort expended (in PM) in the product development and L is the
product size in KLOC, td corresponds to the time of system and integration testing and Ck

is the state of technology constant and reflects constraints that impede the progress of the
programmer.

Example :The nominal effort and duration of a project have been estimated to be 1000PM and 15
months. The project cost has been negotiated to be Rs. 200,000,000. The needs the product to be
developed and delivered in 12 month time. What should be the new cost to be negotiated?

Answer: The project can be classified as a large project. Therefore, the new cost to be negotiated
can be given by the Putnam’s formula: 

new cost = Rs. 200, 000, 000 × (15/12)4 = Rs. 488,281,250.

Project scheduling
Project-task scheduling is an important project planning activity. It involves deciding
which tasks would be taken up when. In order to schedule the project activities, a software
project manager needs to do the following:

 Identify all the tasks needed to complete the project.
 Break down large tasks into small activities.
 Determine the dependency among different activities.
 Establish the most likely estimates for the time durations necessary to complete the 

activities.
 Allocate resources to activities.
 Plan the starting and ending dates for various activities.



 Determine the critical path. A critical path is the chain of activities that determines the 
duration of the project.

The first step in scheduling a software project involves identifying all the tasks necessary
to  complete  the  project.  A good  knowledge  of  the  intricacies  of  the project  and  the
development process helps the managers to effectively identify the important tasks of the
project. Next, the large tasks are broken down into a logical set of small activities which
would be assigned to different engineers. The work breakdown structure formalism helps
the manager to breakdown the tasks systematically.

After the project manager has broken down the tasks and created the work breakdown structure, he
has  to  find  the  dependency  among  the  activities. Dependency  among  the  different  activities
determines the order in which the different activities would be carried out. If an activity A requires
the results of another activity B, then activity A must be scheduled after activity B. In general, the
task dependencies define a partial ordering among tasks, i.e. each tasks may precede a subset of
other tasks, but some tasks might not have any precedence ordering defined between them (called
concurrent task). The dependency among the activities are represented in the form of an activity
network.

Once the activity network representation has been worked out, resources are allocated to
each activity. Resource allocation is typically done using a Gantt chart. After resource allocation is
done, a PERT chart representation is developed. The PERT chart representation is suitable for
program monitoring and control. For task scheduling, the project manager needs to decompose the
project tasks into a set of activities. The time frame when each activity is to be performed is to be
determined. The end of each activity is called milestone. The project manager tracks the progress of
a project by monitoring the timely completion of the milestones. If he observes that the milestones
start getting delayed, then he has to carefully control the activities, so that the overall deadline can
still be met.

Work breakdown structure

Work Breakdown Structure (WBS) is used to decompose a given task set recursively into
small activities. WBS provides a notation for representing the major tasks need to be carried out in
order to solve a problem. The root of the tree is labeled by the problem name. Each node of the tree
is  broken down into smaller activities that are made the children of the node. Each activity is
recursively decomposed into smaller  sub-activities until  at  the leaf  level,  the activities  requires
approximately two weeks to develop.It represents the WBS of an MIS (Management Information
System) software.

While breaking down a task into smaller tasks, the manager has to make some hard decisions. If a
task  is  broken  down  into  large  number  of  very small activities, these can be carried out
independently. Thus, it becomes possible to develop the product faster (with the help of additional
manpower). Therefore, to be able to complete a project in the least amount of time, the manager
needs to break large tasks into smaller ones, expecting to find more parallelism. However, it is not
useful  to  subdivide tasks  into units  which  take  less than a week or two to execute. Very fine
subdivision means that a disproportionate amount of time must be spent on preparing and revising
various charts.



Figure: Work breakdown structure of an MIS problem.

How long to decompose?
The decomposition of the activities is carried out until any of the following is satisfied:

 A leaf-level subactivity (a task) requires approximately two weeks to develop.

 Hidden complexities are exposed, so that the job to be done is understood and can be 
assigned as a unit of work to one of the developers.

 Opportunities for reuse of existing software components is identified.

Activity Networks
An activity network shows the different activities making up a project, their estimated
durations, and their interdependencies. Two equivalent representations for activity networks are
possible and are in use: 

Activity on Node (AoN): In this representation,each activity is represented by a rectangular
(some use circular) node and the duration of the activity is shown alongside each task in the
node. The inter-task dependencies are shown using directional edges.

Activity on Edge (AoE): In this representation tasks are associated with the edges. The edges
are also annotated with the task duration. The nodes in the graph represent project milestones.



Figure: Activity network representation of the MIS problem.

Example:  Determine the Activity network representation for the MIS development project of
Example.Assume that the manager has determined the tasks to be represented from the work
breakdown structure of Figure, and has determined the durations and dependencies for each task
as shown in Table

Answer: The activity network representation has been shown in Figure

Table : Project Parameters Computed from Activity Network

Task Number Task Duration Dependent on Tasks

T1 Specification 15 –

T2 Design database 45 T 1

T3 Design GUI 30 T 1

T4 Code database 105 T 2

T5 Code GUI part 45 T 3

T6 Integrate and test 120 T 4 and T 5

T7 Write user manual 60 T 1

Critical Path Method (CPM)
CPM and PERT are operation research techniques that were developed in the late 1950s. Since then,
they have remained extremely popular among project managers. Of late, these two techniques have
got merged and many project management tools support them as CPM/PERT. How ever, we point
out the fundamental differences between the two and discuss CPM in this subsection and PERT in
the next subsection.

A path in the activity network graph is any set of consecutive nodes and edges in this graph
from the starting node to the last node. A critical path consists of a set of dependent tasks that
need to be performed in a sequence and which together take the longest time to complete.



CPM is an algorithmic approach to determine the critical paths and slack times for tasks not on the critical 
paths involves calculating the following quantities:

Minimum time (MT):  It  is  the  minimum  time  required  to  complete  the project.  It  is  computed  by
determining the maximum of all paths from start to finish.

Earliest start (ES): It is the time of a task is the maximum of all paths from the start to this task. The ES for
a task is the ES of the previous task plus the duration of the preceding task.

Latest start time (LST): It is the difference between MT and the maximum of all paths from this task to the
finish. The LST can be computed by subtracting the duration of the subsequent task from the LST of the
subsequent task.

Earliest finish time (EF): The EF for a task is the sum of the earliest start time of the task and the duration
of the task.

Latest  finish (LF):  LF  indicates  the  latest  time by which a  task can  finish without  affecting  the  final
completion time of the project. A task completing beyond its LF would cause project delay. LF of a task can
be obtained by subtracting maximum of all paths from this task to finish from MT.

Slack time (ST): The slack time (or float time) is the total time that a task may be delayed before it will
affect the end time of the project. The slack time indicates the ”flexibility” in starting and completion of
tasks. ST for a task is LS-ES and can equivalently be written as LF-EF.

Example: Use the Activity network of Figure to determine the ES and EF for every task for the MIS 
problem of Example.

Answer: The activity network with computed ES and EF values has been shown in Figure

Figure 1 : AoN for MIS problem with (ES,EF).



Figure 2: AoN of MIS problem with (LS,LF).

In Figure 1 and Figure 2, we show computation of (ES,EF) and (LS,LF) respectively. From this project 
parameters for different tasks for the MIS problem have been represented in Table 3.8.

Table : Project Parameters Computed From Activity Network

Task ES EF LS LF ST

Specification 0 15 0 15 0

Design data base 15 60 15 60 0

Design GUI part 15 45 90 120 75

Code data base 60 165 60 165 0

Code GUI part 45 90 120 165 75

Integrate and test 165 285 165 285 0

Write user manual 15 75 225 285 210

The critical paths are all the paths whose duration equals MT. The critical path

PERT chart

PERT (Project Evaluation and Review Technique) charts consist of a network of boxes and arrows.
The boxes represent activities and the arrows represent task dependencies. PERT chart represents the statistical
variations in the project estimates assuming a normal distribution. Thus, in a PERT chart instead of making a single
estimate for each task, pessimistic, likely, and optimistic estimates are made. The boxes of PERT charts are usually
annotated with the pessimistic, likely, and optimistic estimates for every task. Since all possible completion times
between the minimum and maximum duration for every task has to be considered, there are not one but many
critical paths, depending on the permutations of the estimates for each task. This makes critical path analysis in PERT
charts very complex. A critical path in a PERT chart is shown by using thicker arrows. The PERT chart representation
of the MIS problem. PERT charts are a more sophisticated form of activity chart. In activity diagrams only the
estimated task durations are represented. Since, the actual durations might vary from the estimated durations, the
utility of the activity diagrams are limited. 

Gantt chart representation of a project schedule is helpful in planning the utilization of resources, while
PERT chart is useful for monitoring the timely progress of activities. Also, it is easier to identify parallel activities in a



project using a PERT chart. Project managers need to identify the parallel activities in a project for assignment to
different engineers.

Each task is annotated with three estimates:

 Optimistic (O): The best possible case task completion time.

 Most likely estimate (M): Most likely task completion time. 

 Worst case (W): The worst possible case task completion time.
The standard deviation for a task ST = (P – O)/6.

The mean estimated time is calculated as ET = (O + 4M + W )/6.

Fig: PERT chart representation of the MIS problem

Gantt Charts
Gantt chart has been named after its developer Henry Gantt. A Gantt chart is a form of bar chart. The

vertical axis lists all the tasks to be performed. The bars are drawn along the y-axis, one for each task. Gantt
charts used in software project management are actually an enhanced version of the standard Gantt charts. In
the Gantt charts used for software project management, each bar consists of a unshaded part and a shaded
part. The shaded part of the bar shows the length of time each task is estimated to take. The unshaded part
shows the slack time or lax time. The lax time represents the leeway or flexibility available in meeting the
latest  time by which a  task must  be finished.Gantt charts  are useful for resource planning (i.e. allocate
resources to activities). The different types of resources that need to be allocated to activities include staff,
hardware, and software.

Gantt chart representation of a project schedule is helpful in planning the utilisation of resources, while PERT
chart is useful for monitoring the timely progress of activities. Also, it is easier to identify parallel activities in a
project using a PERT chart. Project managers need to identify the parallel activities in a project for assignment to
different developers.



A Gantt chart is a special type of bar chart where each bar represents an activity. The bars are
drawn along a time line. The length of each bar is proportional to the duration of time planned
for the corresponding activity.

Figure 3.12: Gantt chart representation of the MIS problem.

ORGANISATION AND TEAM STRUCTURES

Usually every software development organisation handles several projects at any time. Software
organisations assign different teams of developers to handle different software projects. With regard to staff
organisation, there are two important issues—How is the organisation as a whole structured? And, how
are the individual project teams structured? There are a few standard ways in which software organisations
and teams can be structured.

Functional format
In the functional format, the development staff are divided based on the specific functional group to which
they belong to. This format has schematically.

The different projects borrow developers from various functional groups for specific phases of the
project and return them to the functional group upon the completion of the phase. As a result, different
teams of programmers from different functional groups perform different phases of a project. For example,
one team might do the requirements specification, another do the design, and so on. The partially completed
product passes from one team to another as the product evolves. Therefore, the functional format requires
considerable  communication  among  the  different  teams  and  development  of good  quality documents
because the work of one team must be clearly understood by the subsequent teams working on the project.
The functional organisation therefore mandates  good quality  documentation to  be produced after every
activity.

Project format
In the project format, the development staff are divided based on the project for which they work.A

set of developers is assigned to every project at the start of the project, and remain with the project till the
completion of the project. Thus, the same team carries out all the life cycle activities. An advantage of the
project  format  is  that  it  provides  job  rotation. That  is,  every  developer  undertakes  different  life  cycle
activities in a project. However, it results in poor manpower utilisation, since the full project team is formed 



Figure: Schematic representation of the functional and project organisation.

Advantages of functional organization over project organization

Even though greater communication among the team members may appear as an avoidable overhead,
the functional format has many advantages. The main advantages of a functional organization are:

l Ease of staffing
l Production of good quality documents
l Job specialization
l Efficient handling of the problems associated with manpower turnover.

The functional organization allows the engineers to become specialists in particular roles, e.g. requirements
analysis, design, coding, testing, maintenance, etc. They perform these roles again and again for different projects and
develop deep insights to their work. It also results in more attention being paid to proper documentation at the end of a
phase because of the greater need for clear communication as between teams doing different phases. The functional
organization also provides an efficient solution to the staffing problem. We have already seen that the staffing pattern
should approximately follow the Rayleigh distribution for efficient utilization of the personnel by minimizing their wait
times. The project staffing problem is eased significantly because personnel can be brought onto a project as needed,
and returned to the functional group when they are no more needed. This possibly is the most important advantage of
the functional organization. A project organization structure forces the manager to take in almost a constant number of
engineers for the entire duration of his project. This results in engineers idling in the initial phase of the software
development and are under tremendous pressure in the later phase of the development. A further advantage of the
functional organization is that it is more effective in handling the problem of manpower turnover. This is because
engineers can be brought in from the functional pool when needed. Also, this organization mandates production of
good quality documents, so new engineers can quickly get used to the work already done.

Matrix format
A matrix organisation is intended to provide the advantages of both functional and project

structures. In a matrix organisation, the pool of functional specialists are assigned to different projects as
needed. Thus, the deployment of the different functional specialists in different projects can be represented



in a matrix observe that different members of a functional specialisation are assigned to different projects.
Therefore in a matrix organisation, the project manager needs to share responsibilities for the project with a
number of individual functional managers.

Figure: Matrix organisation.

Matrix organisations can be characterised as weak or strong, depending upon the relative authority of the
functional managers and the project managers. In a strong functional matrix, the functional managers have
authority to assign workers to projects and project managers have to accept the assigned personnel. In a
weak matrix, the project manager controls the project budget, can reject workers from functional groups, or
even decide to hire outside workers.

Two important problems that a matrix organisation often suffers from are:
Conflict between functional manager and project managers over allocation of workers.
Frequent shifting of workers in a firefighting mode as crises occur in different projects.

Team structures

Team structure addresses the issue of organization of the individual project teams. There are some possible
ways in which the individual project teams can be organized. There are mainly three formal team structures:
chief programmer, democratic, and the mixed team organizations although several other variations to these
structures are possible. Problems of different complexities and sizes often require different team structures for
chief solution.

 Chief Programmer Team

In this team organization, a senior engineer provides the technical leadership and is designated as the
chief programmer. The chief programmer partitions the task into small activities and assigns them to
the team members. He also verifies and integrates the products developed by different team members.
The structure of the chief programmer team.The chief programmer provides an authority, and this
structure  is  arguably  more  efficient  than  the  democratic team for well-understood problems.
However, the chief programmer team leads to lower team morale, since team-members work under
the constant supervision of the chief programmer. This also inhibits their original thinking. The chief
programmer team is  subject to single point  failure since too much responsibility and authority is
assigned to the chief programmer.



Figure: Chief programmer team structure.

The chief programmer team is probably the most efficient way of completing simple and small projects since
the chief programmer can quickly work out a satisfactory design and ask the programmers to code different
modules of his design solution.

Democratic team
The democratic team structure, as the name implies, does not enforce any formal team
hierarchy. Typically, a manager provides the  administrative leadership. At different times, different
members of the group provide technical leadership.

Figure: Democratic team structure.

In a democratic organisation, the team members have higher morale and job satisfaction. Consequently, it
suffers from less manpower turnover. Though the democratic teams are less productive compared to the
chief programmer team, the democratic team structure is appropriate for less understood problems, since a
group of developers can invent better solutions than a single individual as in a chief programmer team. A
democratic team structure is suitable for research-oriented projects requiring less than five or six developers.
For  large  sized  projects,  a  pure  democratic  organisation  tends to  become chaotic.  The democratic  team
organisation encourages egoless programming as programmers can share and review each other’s work. To
appreciate  the  concept  of  egoless  programming,  we  need  to  understand  the concept  of ego from  a
psychological perspective.



   Mixed control team organisation
The mixed control team organisation, as the name implies, draws upon the ideas from both the democratic
organisation and the chief-programmer organisation. The mixed control team organisation is shown
pictorially. This  team organisation  incorporates  both  hierarchical  reporting and  democratic  set  up.  the
communication paths are shown as dashed lines and the reporting structure is shown using solid arrows. The
mixed control team organisation is suitable for large team sizes. The democratic arrangement at the senior
developers  level  is  used  to  decompose the  problem  into  small  parts.  Each  democratic  setup  at  the
programmer level attempts solution to a single part.  Thus, this team organisation is eminently suited to
handle large and complex programs. This team structure is extremely popular and is being used in many
software development companies.

Figure: Mixed team structure.

Egoless programming technique

• Ordinarily, the human psychology makes an individual take pride in everything he creates using
original  thinking.  Software development  requires original thinking too,  although of a different type.  The
human  psychology  makes  one  emotionally involved  with  his  creation  and  hinders  him  from  objective
examination of his creations. Just like temperamental artists, programmers find it extremely difficult to locate
bugs in their own programs or flaws in their own design. Therefore, the best way to find problems in a
design or code is to have someone review it. Often, having to explain one’s program to someone else
gives a person enough objectivity to find out what might have gone wrong. This observation is the basic idea
behind code walk throughs. An application of this, is to encourage democratic  team to  think  that  the
design, code, and other deliverables to belong to the entire group. This is called egoless programming
technique

STAFFING
Software project managers usually take the responsibility of choosing their team. Therefore, they

need to identify good software developers for the success of the project. A common misconception held by
managers as evidenced in their staffing, planning and scheduling practices,  is  the  assumption  that  one
software engineer is as productive as another. H owever, experiments have revealed that there exists a large
variability of productivity between the worst and the best software developers in a scale of 1 to 30. In fact,



the worst developers may sometimes even reduce the overall productivity of the team, and thus in effect
exhibit negative productivity. Therefore, choosing good software developers is crucial to the success of a
project.

Who is a good software engineer?
In the past, several studies concerning the traits of a good software engineer have been carried out. All

these studies roughly agree on the following attributes that good software developers should possess:

 Exposure to systematic techniques, i.e. familiarity with software engineering principles.

 Good technical knowledge of the project areas (Domain knowledge)

  Good programming abilities.

 Good communication skills. These skills comprise of oral, written, and interpersonal skills.

 High motivation.

 Sound knowledge of fundamentals of computer science

  Intelligence.

 Ability to work in a team. 

 Discipline, etc.

Risk management

Every project is susceptible to a large number of risks. Without effective management of the risks, even the 
most meticulously planned project may go hay ware.

A risk is any anticipated unfavourable event or circumstance that can occur while a project is 
underway.

Risk Identification

A software project can be affected by a large variety of risks. In order to be able to systematically identify
the important risks which might affect a software project, it  is necessary to categorize risks into different
classes. The project manager can then examine which risks from each class are relevant to the project. There
are three main categories of risks which can affect a software project:
Project risks. Project risks concern varies forms of budgetary, schedule, personnel, resource, and customer-
related  problems.  An important  project  risk is schedule  slippage.  Since,  software  is  intangible,  it  is  very
difficult to monitor and control a software project. It is very difficult to control something which cannot be
seen. For any manufacturing project, such as manufacturing of cars, the project manager can see the product
taking shape. He can for instance, see that the engine is fitted, after that the doors are fitted, the car is getting
painted, etc. Thus he can easily assess the progress of the work and control it. The invisibility of the product
being developed is an important reason why many software projects suffer from the risk of schedule slippage.

Technical  risks. Technical  risks  concern  potential  design,  implementation, interfacing, testing, and
maintenance problems. Technical risks also include ambiguous specification, incomplete specification,

changing specification, technical uncertainty, and technical obsolescence. Most technical risks occur due to the
development team’s insufficient knowledge about the project.

Business risks: This type of risks includes the risk of building an excellent product that no one wants, losing
budgetary commitments, etc.



Classification of risks in a project

Example : The project manager can identify several risks in this project. Let us classify them appropriately.

l What if the project cost escalates and overshoots what    wasestimated?:
Project risk.

l What if the mobile phones that are developed become too bulky in size to conveniently carry?:
Business risk.

l What if it is later found out that the level of radiation coming from the phones is harmful to
human being?: Business risk.

l What if call hand-off between satellites becomes too difficult to implement?: Technical
risk.

Risk assessment

The objective of risk assessment is to rank the risks in terms of their damage causing potential. For
risk assessment, first each risk should be rated in two ways:

l The likelihood of a risk coming true (denoted as r).
l The consequence of the problems associated with that risk (denoted as s).

Based on these two factors, the priority of each risk can be computed:

p = r * s

Where, p is the priority with which the risk must be handled, r is the probability of the risk becoming true, and
s is the severity of damage caused due to the risk becoming true. If all identified risks are prioritized, then the
most likely and damaging risks can be handled first and more comprehensive risk abatement procedures can
be designed for these risks.

Risk Mitigation

After all the identified risks of a project are assessed, plans must be made to contain the most damaging
and the most likely risks. Different risks require different containment procedures. In fact, most risks
require ingenuity on the part of the project manager in tackling the risk.

There are three main strategies to plan for risk containment:

Avoid the risk: This may take several forms such as discussing with the customer  to  change  the
requirements to reduce the scope of the work, giving incentives to the engineers to avoid the risk of manpower
turnover, etc.The different categories of constraints that usually give rise to risks are:

Process-related risk: These risks arise due to aggressive work schedule, budget, and resource utilisation.

Product-related risks: These risks arise due to commitment to challenging product features (e.g. response 
time of one second, etc.), quality, reliability etc.

Technology-related risks: These risks arise due to commitment to use certain technology (e.g., satellite 
communication).
A few  examples  of  risk  avoidance  can  be  the  following:  Discussing  with  the customer  to  change  the
requirements  to  reduce  the  scope  of  the  work,  giving incentives to the developers to avoid  the risk of
manpower turnover, etc.



Transfer the risk: This strategy involves getting the risky component developed by a third party,
buying insurance cover, etc.

Risk reduction: This involves planning ways to contain the damage due to a risk. For example, if
there is risk that some key personnel might leave, new recruitment may be planned.

Risk related to schedule slippage

Even though there are three broad ways to handle any risk, but still risk handling requires a lot of
ingenuity on the part of a project manager. As an example, it can be considered the options available to
contain an important type of risk that occurs in many software projects – that of schedule slippage. Risks
relating to schedule slippage arise primarily due to the intangible nature of software. Therefore, these can be
dealt  with  by  increasing  the  visibility  of  the  software product.  Visibility  of  a  software  product  can  be
increased  by  producing  relevant documents  during  the  development  process  wherever  meaningful  and
getting these documents reviewed by an appropriate team. Milestones should be placed at regular intervals
through a software engineering process to provide a manager with regular indication of progress. Completion
of a phase of the development process before followed need not be the only milestones. Every phase can be
broken down to reasonable-sized tasks and milestones can be scheduled for these tasks too. A milestone is
reached,  once  documentation  produced  as  part  of a software engineering task is produced and gets
successfully reviewed. Milestones need not be placed for every activity. An approximate rule of thumb is to
set a milestone every 10 to 15 days.

Software configuration management

The results (also called as the deliverables) of a large software development effort typically consist of a
large number of objects, e.g. source code, design document, SRS document, test document, user’s manual,
etc. These objects are usually referred to and modified by a number of software engineers through out the life
cycle of the software. The state of all these objects at any point of time is called the configuration of the
software product. The state of each deliverable object changes as development progresses and also as bugs
are detected and fixed.

Software revision versus version

A new version of a software is created when there is a significant change in functionality, technology, or the
hardware it runs on, etc. On the other hand a new revision of a software refers to minor bug fix in that
software.  A new release is  created if  there is  only  a  bug fix,  minor  enhancements  to  the  functionality,
usability, etc.

For example, one version of a mathematical computation package might run on Unix-based machines,
another on Microsoft Windows and so on. As a software is released and used by the customer, errors are
discovered that need correction. Enhancements to the functionalities of the software may also be needed. A
new release of software is an improved system intended to replace an old one. Often systems are described as



version m, release n; or simple m.n. Formally, a history relation is version of can be defined between objects.
This relation can be split into two sub relations is revision of and is variant of.

Necessity of software configuration management

There are several reasons for putting an object under configuration management. But, possibly the most
important reason for configuration management is to control the access to the different deliverable objects.
Unless strict  discipline is enforced regarding updation and storage of different objects, several problems
appear. The following are some of the important problems that appear if configuration management is not
used.

 Inconsistency problem when the objects are replicated. A scenario can be considered where every
software engineer has a personal copy of an object (e.g. source code). As each engineer makes changes to his
local copy, he is expected to intimate them to other engineers, so that the changes in interfaces are uniformly
changed across all modules. However, many times an engineer makes changes to the interfaces in his local
copies and forgets to intimate other teammates about the changes. This makes the different copies of the
object inconsistent. Finally, when the product is integrated, it does not work. Therefore, when several team
members work on developing an object, it  is necessary for them to work on a single copy of the object,
otherwise inconsistency may arise.
Problems associated with concurrent access. Suppose there is a single copy of a problem module,
and several engineers are working on it. Two engineers may simultaneously carry out changes to different
portions of the same module, and while saving overwrite each other. Though the problem associated with
concurrent  access  to  program code has been explained,  similar  problems occur for  any other  deliverable
object.

Providing a stable development environment. When a project is underway, the team members need a
stable environment to make progress. Suppose somebody is trying to integrate module A, with the modules B
and C, he cannot make progress if developer of module C keeps changing C; this can be especially frustrating
if a change to module C forces him to recompile A. When an effective configuration management is in
place,  the manager freezes the objects to form a base line. When anyone needs any of the objects under
configuration control, he is provided with a copy of the base line item. The requester makes changes to his
private copy. Only after the requester is through with all modifications to his private copy, the configuration
is updated and a new base line gets formed instantly. This establishes a baseline for others to use and depend
on. Also, configuration may be frozen periodically. Freezing a configuration may involve archiving everything
needed to rebuild it. (Archiving means copying to a safe place such as a magnetic tape).

System accounting and maintaining status information. System accounting keeps track of who
made a particular change and when the change was made.
Handling variants. Existence of variants of a software product causes some peculiar problems. Suppose
somebody has several variants of the same module, and finds a bug in one of them. Then, it has to be fixed in
all versions and revisions. To do it efficiently, he should not have to fix it in each and every version
and revision of the software separately.



Software configuration management activities

Normally, a project manager performs the configuration management activity by using an automated
configuration management tool. A configuration management  tool  provides  automated  support  for
overcoming all the problems mentioned above. In addition, a configuration management tool helps to keep
track of various deliverable objects, so that the project manager can quickly and unambiguously determine
the current state of the project. The configuration management tool enables the engineers to change the
various components in a controlled manner.

Configuration management is carried out through two principal activities:

l Configuration identification involves deciding which parts of the system should be kept 
track of.

l Configuration control ensures that changes to a system happen smoothly

Configuration identification

The project manager normally classifies the objects associated with a software development effort into three
main categories: controlled, precontrolled, and uncontrolled. Controlled objects are those which are already
put under configuration control. One must follow some formal procedures to change them. Precontrolled
objects are not yet under configuration control, but will eventually be under configuration control.
Uncontrolled objects are not and will not be subjected to configuration control. Controllable objects
include both controlled and precontrolled objects. Typical controllable objects include:

l Requirements specification document
l Design documents
l Tools used to build the system, such as compilers, linkers, lexical analyzers, parsers, etc.
l Source code for each module
l Test cases
l Problem reports

The configuration management plan is written during the project planning phase and it lists all controlled
objects.  The  managers  who  develop  the  plan  must  strike a  balance  between  controlling  too  much,  and
controlling  too  little.  If  too much is controlled, overheads due to configuration management increase to
unreasonably high levels. On the other hand, controlling too little might lead to confusion when something
changes.

Configuration control

Configuration control is the process of managing changes to controlled objects. Configuration control is the
part of a configuration management system that most directly affects the day-to-day operations of developers.
The configuration control system prevents unauthorized changes to any controlled objects. In order to change
a controlled object such as a module, a developer can get a private copy of the module by a reserve operation
as shown in fig. 12.5. Configuration management tools allow only one person to reserve a module at a time.
Once an object is reserved, it does not allow any one else to reserve this module until the reserved module is
restored as shown in fig.  12.5.  Thus, by preventing more than one engineer to simultaneously reserve a
module, the problems associated with concurrent access are solved.



Fig: Reserve and restore operation in configuration control

It can be shown how the changes to any object that is under configuration control can be achieved. The
engineer needing to change a module first obtains a private  copy  of  the  module  through  a  reserve
operation. Then, he carries out all necessary changes on this private copy. However, restoring the changed
module to the system configuration requires the permission of a change control board (CCB). The CCB is
usually constituted from among the development team members. For every change that needs to be carried out,
the CCB reviews the changes made to the controlled object and certifies several things about the change:

1 Change is well-motivated.
2 Developer has considered and documented the effects of the change.
3 Changes interact well with the changes made by other developers.
4 Appropriate people (CCB) have validated the change, e.g. someone has tested the changed

code, and has verified that the change is consistent with the requirement.

The change control board (CCB) sounds like a group of people.  However, except for very large
projects, the functions of the change control board are normally discharged by the project manager himself or
some senior member of the development team. Once the CCB reviews the changes to the module, the project
manager updates the old base line through a restore operation (as shown in fig. 12.5). A configuration control
tool does not allow a developer to replace an object he has reserved with his local copy unless he gets an
authorization from the CCB. By constraining the developers’ ability to replace reserved objects, a stable
environment is achieved. Since a configuration management tool allows only one engineer to work on one
module at any one time, problem of accidental overwriting is eliminated. Also, since only the manager can
update the baseline after the CCB approval, unintentional changes are eliminated.

Configuration management tools

SCCS and RCS are two popular configuration management tools available on most UNIX systems. SCCS or
RCS can be used for controlling and managing different versions of text files. SCCS and RCS do not handle
binary files (i.e. executable files, documents, files containing diagrams, etc.) SCCS and RCS provide an
efficient way of storing versions that minimizes the amount of occupied disk space. Suppose, a module
MOD is present in three versions MOD1.1, MOD1.2, and MOD1.3. Then, SCCS and RCS stores the original
module MOD1.1 together with changes needed to transform MOD1.1 into MOD1.2  and  MOD1.2  to
MOD1.3. The changes needed to transform each base lined file to the next version are stored and are called



deltas. The main reason behind storing the deltas rather than storing the full version files is to save disk
space.

The change control facilities provided by SCCS and RCS include the ability to incorporate
restrictions on the set of individuals who can create new versions, and facilities for checking components in

and out (i.e. reserve and restore operations). Individual developers check out components and modify them.
After they have made all necessary changes to a module and after the changes have been reviewed, they

check in the changed module into SCCS or RCS. Revisions are denoted by numbers in ascending order, e.g.,
1.1, 1.2, 1.3 etc. It is also possible to create variants or revisions of a component by creating a fork in the

development history.



SOFTWARE AND SOFTWARE ENGINEERING:
Software engineering stands for the term is made of two words, Software and Engineering.

Software is  more than just  a  program code.  A program is  an executable code,  which serves some
computational  purpose.  Software  is  considered  to  be  collection  of  executable  programming  code,
associated  libraries  and  documentations.  Software,  when  made for  a  specific  requirement  is  called
software product.

Engineering on the other hand,is all about developing products, using well-defined, scientific principles
and methods.
Software engineering is an engineering branch associated with development of software product using
well-defined scientific principles, methods and procedures. The outcome of software engineering is an
efficient and reliable software product.

1.THE NATURE OF SOFTWARE
Software takes Dual role of Software. It is a Product and at the same time a Vehicle for delivering a
product.
Software delivers the most important product of our time is called information

Software is defined as
  1. Instructions: Programs that when executed provide desired function, features, and performance
  2. Data structures: Enable the programs to adequately manipulate information
  3.Documents: Descriptive information in both hard copy and virtual forms that describes the operation
and use of the programs.

1.1.Characteristics of software:
Software has characteristics that are considerably different than those of hardware:

1.Software is developed or engineered, it is not manufactured in the Classical Sense.

Although some similarities exist between software development and hardware manufacture, the two
activities  are  fundamentally  different.  In  both  the  activities,  high  quality  is  achieved through good
design, but the manufacturing phase for hardware can introduce quality problems that are nonexistent or
easily corrected for software. Both the activities are dependent on people, but the relationship between
people  is  totally  varying.  These  two  activities  require  the  construction  of  a  "product"  but  the
approaches are different. Software costs are concentrated in engineering which means that software
projects cannot be managed as if they were manufacturing.

 2.  Software doesn’t “Wear Out”
 The following figure shows the relationship between failure rate and time. Consider the failure rate as a
function of time for hardware. The relationship is called  the bathtub curve, indicates that hardware
exhibits relatively high failure rates early in its life, defects are corrected and the failure rate drops to a
steady-state  level for some period of time.  As time passes,  however,  the failure rate  rises again as
hardware  components  suffer  from  the  cumulative  effects  of  dust,  vibration,  abuse,  temperature
extremes, and many other environmental maladies. So,stated simply, the hardware begins to wear out.
Software is not susceptible to the environmental maladies that cause hardware to wear out



                                                                                                                                       
3. Although the industry is moving toward component-based construction, most software 
    continues to be custom built
     A software component should be designed and implemented so that it can be reused in many  

     Different programs . Modern reusable components encapsulate both data and the processing that 

     is applied to the data, enabling the software engineer to create new applications from reusable  

     parts

1.2.Types of Software:

1. System Software: It is a collection of programs written to service other programs. Some system
software (example- compilers, editors and file management utilities). Some other system applications
(operating system components, drivers, networking software, telecommunications processors). In either
case, the system software area is characterized by heavy interaction with computer hardware, heavy
usage by multiple users, scheduling, resource sharing, process management, complex data structure.
2.  Application  Software:  It  consists  of  standalone  programs  that  solve  a  specific  business  need.
Applications in this area process business or technical data in a way that facilitates business operations
or  management/technical  decision-making.  Application  software  is  mainly  used  to  control  business
functions in real-time.
3.  Engineering/Scientific  Software:  Formerly  characterized  by  “number  crunching”  algorithms,
engineering  and  scientific  software  applications  range  from  as  tronomy  to  volacanology.However,
modern  applications  within  the  engineering/scientific  area  are  moving  away  from  conventional
numerical algorithm Computer-Aided Design (CAD), System simulation has begun to take on real-time.
4.  Embedded Software:  Embedded Software  resides  within a  product  or  system and it  is  used to
implement and control features and functions for the end-user and for the system itself.  Embedded
Software can perform limited and esoteric functions. It also provides significant function and control
capability (Example- Digital Function, Dashboard displays, cracking system, etc).



5.  Product-line  Software:  Designed  to  provide  a  specific  Capability  for  use  by  many  different
customers,  product-line.  The  software  can  focus  on  a  limited  and  esoteric  marketplace  (Example-
inventory  control  products)  or  address  mass  consumer  markets  (Example  –  Word  Processing,
Spreadsheet,  Computer  Graphics,  Multimedia,  entertainment,  database  management,  personal  and
business applications).
6. Web-Applications: “WebApps“, span a wide array of applications. In their simplest form, WebApps
can be little more than a set of linked hypertext files that present information using text and limited
graphics,  such  as-  E-commerce  and  B2B  Applications.  WebApps  are  evolving  into  sophisticated
computing functions and also are integrated with Corporate databases and business applications.
7. Artificial Intelligence Software: AI software makes use of non-numerical algorithms to solve
complex problems that are not amenable to computations or straight-forward analysis. These
applications within this area include robotics, expert systems, pattern recognition (image and
voice), artificial neural networks and game playing.

New Software Challenges

 Open-world computing : Creating software to allow machines of all sizes to communicate with
each other across vast networks (Distributed computing—wireless networks)

 Netsourcing  : Architecting simple and sophisticated applications that benefit targeted end-user
markets worldwide (the Web as a computing engine)

 Open Source : Distributing source code for computing applications so customers can make local
modifications easily and reliably ( “free” source code open to the computing community)

1.3.LEGACY SOFTWARE:

 Legacy software is older programs that are developed decades ago.

 The quality of legacy software is poor because it has inextensible design, convoluted code, poor
and nonexistent documentation, test cases and results that are not achieved.As time passes legacy
systems evolve due to following reasons:

 The software must be adapted to meet the needs of new computing environment or technology.

 The software must be enhanced to implement new business requirements.

 The software must be extended to make it interoperable with more modern systems or database

 The software must be re-architected to make it viable within a network environment.
2.  UNIQUE NATURE OF WEB APPS
In the early days of the World Wide Web, websites consisted of little more than a set of linked hypertext
files that presented information using text and limited graphics. As time passed, the augmentation of
HTML by development tools (e.g., XML, Java) enabled Web engineers to provide computing capability
along with informational content.  Web-based systems and applications  (WebApps) were born. Today,
WebApps have evolved into sophisticated computing tools that not only provide stand-alone function to
the end user, but also have been integrated with corporate databases and business applications.WebApps
are one of a number of distinct software categories. Web-based systems and applications “involve a
mixture  between  print  publishing  and  software  development,  between  marketing  and  computing,
between internal communications and external relations, and between art and technology.”

The following attributes are encountered in the vast majority of WebApps.

 Network intensiveness. A WebApp resides on a network and must serve the needs of a diverse
community of clients. The network may enable worldwide access and communication (i.e., the
Internet) or more limited access and communication (e.g., a corporate Intranet).

 Concurrency. A large number of users may access the WebApp at one time. In many cases, the
patterns of usage among end users will vary greatly.



 Unpredictable load. The number of users of the WebApp may vary by orders of magnitude from
day  to  day.  One  hundred  users  may  show  up  on  Monday;  10,000  may  use  the  system on
Thursday.

 Performance. If a WebApp user must wait too long, he or she may decide to go elsewhere.

 Availability. Although expectation of 100 percent availability is un reasonable, users of popular
WebApps often demand access on a 24/7/365 basis

 Data driven.  The primary function of many WebApps is  to  use hypermedia to  present  text,
graphics, audio, and video content to the end user. In addition, WebApps are commonly used to
access  information  that  exists  on  databases  that  are  not  an  integral  part  of  the  Web-based
environment (e.g., e-commerce or financial applications).

 Content sensitive. The quality and aesthetic nature of content remains an important determinant
of the quality of a WebApp.

 Continuous evolution.  Unlike conventional application software that evolves over a series of
planned, chronologically spaced releases, Web applications evolve continuously.

 Immediacy. Although immediacy—the compelling need to get software to market quickly—is a
characteristic of many application domains, WebApps often exhibit a time- to-market that can be
a matter of a few days or weeks.

 Security. Because WebApps are available via network access, it is difficult, if not impossible, to
limit the population of end users who  may  access the application.  In  order to protect sensitive
content and provide secure modes

 Aesthetics.  An  undeniable  part  of  the  appeal  of  a  WebApp  is  its  look  and  feel.  When  an
application has been designed to market or sell products or ideas, aesthetics may have as much to
do with success as technical design.

3.SOFTWARE MYTHS:
Software Myths- beliefs about software and the process used to build it - can be traced to the earliest
days of computing. Myths have a number of attributes that have made them insidious. For instance,
myths  appear  to  be  reasonable  statements  of  fact,  they  have  an  intuitive  feel,  and  they  are  often
promulgated by experienced practitioners who “know the score”.
We are having 3 types of  myths

 Management Myths

 Customer Myths

 Practioner’s Myths

1.Management Myths :

Managers with software responsibility, like managers in most disciplines, are often under pressure to
maintain budgets,  keep schedules from slipping, and improve quality.  Like a drowning person who
grasps at a straw, a software manager often grasps at belief in a software myth.

Myth :  We already have a book that’s full of standards and procedures for building software. Won’t
That provide  my people with everything  they need to know?

Reality :

   The book of standards may very well exist, but is it used?

   Are software practitioners aware of its existence?



 Does it reflect modern software engineering practice?

 Is it complete?

 Is it adaptable?

 Is it streamlined to improve time to delivery while still maintaining a focus on Quality? In 
many cases, the answer to these entire question is NO.

Myth : If we get behind schedule, we can add more programmers and catch up
Reality : Software development is not a mechanistic process like manufacturing.  “Adding people to 

 a  late  software  project  makes  it  later.”  At  first,  this  statement  may  seem  counterintuitive.
However, as new people are added, people who were working must spend time educating the
newcomers, there by reducing the amount of time spent on productive development effort

Myth : If we decide to outsource the software project to a third party, I can just relax and let that  firm
build it.

Reality : If an organization does not understand how to manage and control software project internally,
it will invariably struggle when it out sources software project.

2.Customer Myths

  A customer who requests computer software may be a person at the next desk,technical g group
down the hall,  the marketing /sales department,  or an outside company that has requested software
under contract. In many cases, the customer believes myths about software because software managers
and practitioners do little to correct misinformation.  Myths led to false expectations and ultimately,
dissatisfaction with the developers.

Myth : A general statement of objectives is sufficient to begin writing programs - we can fill in        
details later.

Reality : Although a comprehensive and stable statement of requirements is not always possible,an
ambiguous statement of objectives is a recipe for disaster. Unambiguous requirements  are  developed
only through effective and continuous communication between    customer and developer.
Myth :  Project  requirements  continually  change,  but  change can  be  easily  accommodated  because
software is flexible.

Reality :  It’s true that software requirement change, but the impact of change varies with the time at
which it is introduced. When requirement changes are requested early, cost impact is relatively small.
However,  as  time  passes,  cost  impact  grows  rapidly  –  resources  have  been  committed,  a  design
framework has been established, and change can cause upheaval that requires additional resources and
major design modification.

3.Practitioner's myths.

Myths that are still believed by software practitioners have been fostered by 50 years of programming
culture. During the early days of software, programming was viewed as an art form. Old ways and
attitudes die hard.
Myth: Once we write the program and get it to work, our job is done.
Reality:  Someone once said that "the sooner you begin 'writing code', the longer it'll take you to get
done.” Industry data indicate that between 60 and 80 percent of all effort expended on software will be
expended after it is delivered to the customer for the first time.
Myth: Until I get the program "running" I have no way of assessing its quality.



Reality:  One of the most effective software quality assurance mechanisms can be applied from the
inception of a project—the formal technical review. Software reviews are a "quality filter" that have
been found to be more effective than testing for finding certain classes of software defects.
Myth: The only deliverable work product for a successful project is the working program. 
Reality: A working program is only one part of a software configuration that includes many elements.
Documentation provides a  foundation for successful  engineering and, more important,  guidance for
software support.
Myth: Software engineering will make us create voluminous and unnecessary documentation and will
invariably slow us down.
Reality:  Software  engineering  is  not  about  creating  documents.  It  is  about  creating  quality.  Better
quality leads to reduced rework. And reduced rework results in faster delivery times. Many software
professionals  recognize  the  fallacy  of  the  myths  just  described.  Regrettably,  habitual  attitudes  and
methods foster poor management and technical practices, even when reality dictates a better approach.
Recognition of software realities is the first step toward formulation of practical solutions for software
engineering.

REQUIREMENTS GATHERING AND ANALYSIS:

The complete set of requirements are almost never available in the form of a single document
from the customer. In fact, it would be unrealistic to expect the customers to produce a comprehensive
document containing a precise description of what he wants. Further, the complete requirements are
rarely obtainable from any single customer representative.  Therefore,  the requirements  have to be
gathered by the analyst  from several sources in bits and pieces. These gathered requirements need to
be analysed to remove several types of problems that frequently occur in the requirements that have
been gathered piecemeal from different sources.

For  any  type  of  software  development  project,  availability  of  a  good  quality requirements
document has been acknowledged to be a key factor in the successful completion of the project. A
good  requirements  document  not  only helps  to  form  a  clear  understanding  of  various  features
required from the software, but also serves as the basis for various activities carried out during later
life  cycle  phases.After  understanding  the  precise  user  requirements,  the analysts analyse the
requirements to weed out inconsistencies, anomalies and incompleteness. They then proceed to
write the software requirements specification (SRS) document.

The project team to ensure that it accurately captures all the user requirements,  and that it  is
understandable,  consistent,  unambiguous, and complete.  The SRS document is  then  given to  the
customer for review. After the customer has reviewed the SRS document and agrees to it, it forms the
basis  for  all  future  development  activities  and  also serves as a contract document between the
customer and the development organisation.

We can conceptually divide the requirements gathering and analysis  activity into two separate
tasks:

• Requirements gathering

• Requirements analysis
We discuss these two tasks in the following subsections.

Requirements Gathering

Requirements gathering is also popularly known as requirements elicitation.The primary
objective of the requirements gathering task is to collect the requirements from the stakeholders.

A stakeholder is a source of the requirements and is usually a person, or a group of 

     persons who either directly or indirectly are concerned with the software.



Requirements gathering may sound like a simple task. However, in practice it is very difficult to
gather  all  the  necessary  information  from a  large  number of stakeholders and from information
scattered across several pieces of documents.  Gathering  requirements  turns  out  to  be  especially
challenging if there is no  working model of the software being developed.Typically even before
visiting the customer site, requirements gathering activity is started by studying the existing
documents to collect all possible information about the system to be developed. During visit to
the customer site,the analysts normally interview the end-users and customer representatives,carry out
requirements gathering activities such as questionnaire surveys, task analysis, scenario analysis, and
form analysis.

The goal of the requirements analysis and specification phase is to clearly understand the  customer
requirements and to systematically organise the requirements into a document called the Software
Requirements Specification (SRS) document.

Good analysts share their experience and expertise with the customer and give his suggestions to 
define certain functionalities more comprehensively, make the functionalities more general and more 
complete. In the following, we briefly discuss the important ways in which an experienced analyst 
gathers requirements:

1.Studying existing documentation: The analyst usually studies all the  available  documents
regarding the system to be developed before visiting the customer  site. Customers usually provide
statement of purpose (SoP) document to the developers. Typically these documents might discuss
issues such as the context in which the software is required, the basic purpose,  the stakeholders,
features of any similar software developed elsewhere, etc.

2.Interview: Typically, there are many different categories of users of a software. Each category of
users typically requires a different set of features from the software. Therefore, it is important for
the analyst to first identify the  different categories of users and then determine the requirements of
each. For example, the different categories of users of a library automation software could be the
library  members,  the  librarians,  and the  accountants. The library  members  would  like  to  use  the
software to query availability of books  and issue and return books. The librarians might like to use
the software to determine books that are overdue, create member accounts, delete member accounts,
etc.  The accounts  personnel  might  use  the software to invoke functionalities  concerning financial
aspects such as the total fee collected from the members, book procurement expenditures, staff salary
expenditures, etc.

3.Task analysis: The users usually have a black-box view of a software and consider the software as
something that provides a set of services (functionalities). A service supported by a software is also
called a  task. We can therefore say that the software performs various tasks of the users. In this
context, the analyst tries to identify and understand the different tasks to be performed by the software.
For  each identified  task,  the analyst  tries  to formulate  the different  steps  necessary  to  realise  the
required functionality in consultation with the users. For example, for the issue book service, the steps
may be—authenticate user, check the number of books issued to the customer and determine if the
maximum number of books that this member can borrow has been reached, check whether the book
has been reserved, post the book issue details in the member’s record, and finally print out a book
issue slip that can be presented by the member at the security counter to take the book out of the
library premises.

4.Scenario analysis: A task can have many scenarios of operation. The different scenarios of a task
may take place when the task is invoked under different situations. For different types of scenarios of a
task, the behaviour of the software can be different. For example, the possible scenarios for the book
issue task of a library automation software may be: 

 Book is issued successfully to the member and the book issue slip is printed.

 The book is reserved, and hence cannot be issued to the member.

 The maximum number of books that can be issued to the member is already reached, and no
more books can be issued to the member.



 For various identified tasks, the possible scenarios of execution are identified and the details of
each scenario is identified in consultation with the users. For each of the identified scenarios, details
regarding system response, the exact conditions under which the scenario occurs, etc. are determined
in consultation with the user.

5.Form analysis: Form analysis is an important and effective requirements gathering activity that is
undertaken by the analyst, when the project involves automating an existing manual system. During
the operation of a manual system, normally several forms are required to be filled up by the
stakeholders, and in turn they receive several notifications (usually manually filled forms). In form
analysis the exiting forms and the formats of the notifications produced are analysed to determine the
data input to the system and the data that are output from the system. For the different sets of data
input to the system, how these input data would be used by the system to produce the corresponding
output data is determined from the users.

Requirements Analysis:

After requirements gathering is complete, the analyst analyses the gathered requirements to form a
clear understanding of the exact customer requirements and to weed out any problems in the gathered
requirements. It is natural to expect that the data collected from various stakeholders to contain
several contradictions, ambiguities, and incompleteness, since each stakeholder typically has only a
partial and incomplete view of the software.

During requirements analysis,the analyst needs to identify and resolve three main types of 
problems in the requirements:

• Anomaly
• Inconsistency
• Incompleteness

Anomaly:  It is an anomaly is an ambiguity in a requirement. When a requirement is anomalous,
several interpretations of that requirement are possible. Any anomaly in any of the requirements can
lead to the development of an incorrect system, since an anomalous requirement can be interpreted
in the several ways during development.

Inconsistency: Two requirements are said to be inconsistent, if one of the requirements contradicts the
other. The follo wing are two examples of inconsistent requirements:

Incompleteness:  An incomplete set of requirements is one in which some requirements have been
overlooked. The lack of these features would be felt by the customer much later, possibly while using
the software. Often, incompleteness is caused by the inability of the customer to visualise the system
that is to be developed and to anticipate all the features that would be required. An experienced
analyst can detect most of these missing features  and  suggest  them  to  the  customer  for  his
consideration and approval for incorporation in the requirements.

Example:one of the clerks expressed the following—If a student secures a grade point average (GPA)
of less than 6, then the parents of the student must be intimated about the regrettable performance
through a (postal) letter as well as through e-mail. However, on an examination of all requirements, it
was found that there is no provision by which either the postal or e-mail address of the parents of
the students can be entered into the system. The feature that would allow entering the e-mail ids and
postal  addresses  of  the  parents  of  the  students  was  missing,  thereby making the requirements
incomplete.

Role of a system analyst

The analyst starts requirements gathering and analysis  activity by collecting all information
from the customer which could be used to develop the requirements of the system. He then analyzes the
collected information to obtain a clear and thorough understanding of the product to be developed, with
a view to removing all  ambiguities and inconsistencies from the initial  customer perception of the



problem. The following basic questions pertaining to the project should be clearly understood by the
analyst in order to obtain a good grasp of the problem

 What is the problem?
 Why is it important to solve the problem?
 What are the possible solutions to the problem?
 What exactly are the data input to the system and what exactly are the data output by

the system?
 What are the likely complexities that might arise while solving the problem?
 If there are external software or hardware with which the developed software has to

interface, then what exactly would the data interchange formats with the external system
be?

After the analyst has understood the exact customer requirements, he proceeds to identify and
resolve the various requirements problems. The most important requirements problems that the analyst
has  to  identify and eliminate  are  the problems of  anomalies,  inconsistencies,  and incompleteness.
When  the  analyst detects any inconsistencies, anomalies or incompleteness in the gather
requirements, he resolves them by carrying out further discussions with the end- users and  the
customers.

SOFTWARE REQUIREMENTS SPECIFICATION (SRS)

After the analyst has gathered all the required information regarding the software to be developed,
and has removed all incompleteness, inconsistencies, and anomalies from the specification, he
starts to systematically organise the requirements in the form of an SRS document.

Users of SRS Document

Usually a large number of different people need the SRS document for very different purposes. Some
of the important categories of users of the SRS document and their needs for use are as follows:

• Users, customers, and marketing personnel: These stakeholders need to refer to the SRS
document to ensure that the system as described in the document will meet their needs. Remember
that the customer may not be the user of the software, but may be some one employed or designated
by the user. For generic products, the marketing personnel need to understand the requirements that
they can explain to the customers.

• Software developers: The software developers refer to the SRS document to make sure that
they are developing exactly what is required by the customer.

• Test engineers: The test engineers use the SRS document to understand the functionalities,
and based on this write the test cases to validate its working. They need that the required functionality
should be clearly described, and the input and output data should have been identified precisely.

• User documentation writers:  The  user  documentation  writers need  to read  the  SRS
document to ensure that they understand the features of the product well enough to be able to write
the users’ manuals.

• Project managers:  The project managers refer to the SRS document to ensure that they can
estimate the cost of the project easily by referring to the SRS document and that it contains all the
information required to plan the project.

• Maintenance engineers: The SRS document helps the maintenance engineers to under- stand
the functionalities supported by the system. A clear knowledge of the functionalities can help them
to understand the design and code.

A well-formulated SRS document finds a variety of usage other than the primary intended usage as a
basis for starting the software development work. In the following subsection, we identify the
important uses of a well-formulated SRS document:



• Forms an agreement between the customers and the developers:  A good SRS document
sets the stage for the customers to form their expectation about the software and the developers
about what is expected from the software.

• Reduces  future  reworks:  The  process  of  preparation  of  the  SRS  document forces the
stakeholders to rigorously think about all of the requirements before design and development get
underway. This reduces later redesign, recoding, and retesting. Careful review of the SRS document
can reveal omissions, misunderstandings, and inconsistencies early in the development cycle.

• Provides a basis for estimating costs and schedules: Project managers usually estimate the
size of the software from an analysis of the SRS document. Based on this estimate they make other
estimations such as the effort required to develop the software and the total cost of development.
The SRS document also serves as a basis  for price negotiations with the customer. The pr oject
manager also uses the SRS document for work scheduling.

• Provides a baseline for validation and verification: The SRS document  provides a
baseline against which compliance of the developed software can be checked. It is also used by the
test engineers to create the test plan.

• Facilitates future extensions: The SRS document usually serves as a basis for planning future
enhancements.

Traceability: Traceability means that it would be possible to identify (trace) the specific design
component which implements a given requirement, the code part that corresponds to a given design
component, and test cases that test a given requirement. Thus, any given code component can be
traced to the corresponding design component, and a design component can be traced to a
specific requirement that it implements a  nd  vice versa. Traceability  analysis is an important
concept and is frequently used during software development.

To  achieve  traceability,  it  is  necessary  that  each  functional  requirement should be numbered
uniquely and consistently. Proper numbering of  the requirements  makes  it  possible  for  different
documents to uniquely refer to specific requirements.

   Problems without a SRS document

 The important problems that an organization would face if it does not develop an
SRS document are as follows:

 Without developing the SRS document, the system would not be implemented
according to customer needs.

 Software developers would not know whether what they are developing is what exactly
required by the customer.

 Without SRS document, it will be very much difficult for the maintenance engineers to
understand the functionality of the system.

 It will be very much difficult for user document writers to write the users’
manuals properly without understanding the SRS document.

Characteristics of a Good SRS Document
The skill of writing a good SRS document usually comes from the experience gained from

writing SRS documents for many projects. However, the analyst  should be aware of the desirable
qualities that every good SRS document should possess. IEEE Recommended Practice for Software



Requirements Specifications[IEEE830] describes the content and qualities of  a good software
requirements specification (SRS). 

Purpose:  This section should describe where the software would be deployed and and how the
software would be used.

Project scope: This section should briefly describe the overall context within which the software is
being developed. For example, the parts of a problem that  are being automated and the parts that
would need to be automated during future evolution of the software.

Environmental Characteristics:This section should briefly outline the environment (hardware and
other software) with which the software will interact.

  Some of the identified desirable qualities of an SRS document are the following:

 Concise: The SRS document should be concise and at the same time unambiguous, consistent,
and complete. Verbose and irrelevant descriptions  reduce readability  and  also  increase the
possibilities of errors in the document.

 Implementation-independent:  The SRS should be free of  design and implementation
decisions unless those decisions reflect actual requirements. It should only specify what the system
should do and refrain from stating how to do these. This means that the SRS document should
specify the externally visible behaviour of the system a nd not discuss the implementation issues.

   

                            

Fig:The black-box view of a system as performing a set of functions

The SRS document should describe the system to be developed as a black box, and should specify
only the externally visible behaviour of the system. For this reason, the S R S document is also called
the black-box specification of the software being

• Traceable: It should be possible to trace a specific requirement to the design elements that
implement it and  vice versa. Similarly, it should be possible  to  trace a  requirement  to  the code
segments that implement it and the test cases that test this requirement and vice versa. Traceability is
also important to verify the results of a phase with respect to the previous phase and to analyse the
impact of changing a requirement on the design elements and the code.

• Modifiable:  Customers  frequently change the requirements during the software
development  development  due to  a  variety of  reasons.  Therefore,  in practice the SRS document
undergoes several revisions during software development. Also, an SRS document is often modified
after the project completes to accommodate future enhancements and evolution. To cope up with the
requirements changes, the SRS document should be easily modifiable. For this, an SRS document
should be well-structured. A well- structured  document is easy to understand and modify. Having
the description of a requirement scattered across many places in the SRS document may not be wrong
—but it tends to make the requirement difficult to understand and also any modification to the



An SRS document should clearly document the following aspects of a software:
• Functional requirements
• Non-functional requirements
— Design and implementation constraints
— External interfaces required
— Other non-functional requirements

• Goals of implementation.

requirement would become difficult as it would require changes to be made at large number of places
in the document.

• Identification of response to undesired events: The SRS document should discuss the 
system responses to various undesired events and exceptional conditions that may arise.

• Verifiable:  All requirements of the system as documented in the SRS document should be
verifiable. This means that it should be possible to design test cases based on the description of the
functionality as to whether or not requirements have been met in an implementation. A requirement
such as “the system should be user friendly” is not verifiable. On the other hand, the requirement
—“When the name of a book is entered, the software should display whether the book is available for
issue or it has been loaned out” is verifiable. Any feature of the required system that is not verifiable
should be listed separately in the goals of the implementation section of the SRS document.

Attributes of Bad SRS Documents

SRS documents  written  by  novices  frequently  suffer  from a  variety  of problems. As discussed
earlier, the most damaging problems are incompleteness, ambiguity, and contradictions.

• Over-specification

• Forward references

• Wishful thinking

• Noise

Important Categories of Customer Requirements

A good SRS document, should properly categorize and organise the requirements into different
sections [IEEE830]. As per  the IEEE 830 guidelines, the important categories of user
requirements are the following.The IEEE 830 standard recommends that out of the various non-
functional requirements,  the  external  interfaces,  and the  design  and implementation  constraints
should be documented in two different sections. The remaining non-functional requirements should
be  documented  later  in  a  section  and  these  should  include  the performance and security
requirements.

Functional requirements:-
The  functional  requirements  part  discusses  the  functionalities  required from the

system. The system is considered to perform a set of high- level functions {fi}. The functional
view of the system is shown in fig.Each function fi of the system can be considered as a
transformation of a set of input data (ii) to the corresponding set of output data (oi). The user can
get some meaningful piece of work done using a high-level function.

Identifying functional requirements from a problem description: 
The high-level functional requirements often need to be identified either from an informal

problem description document or from a conceptual understanding of the problem. Each high-level
requirement characterizes a way of system usage by some user to perform some meaningful piece of



work. There can be many types of users of a system and their requirements from the system may be
very different. So, it is often useful to identify the different types of users who might use the system
and then try to identify the requirements from each user’s perspective.

Here we list all functions {fi} that the system performs. Each function fi as shown in fig
is considered as a transformation of a set of input data to some corresponding output data.

Fig: Function fi

For documenting the functional  requirements,  we need to  specify the set  of functionalities
supported by the system. A function can be specified by identifying the state at which the data is to be
input to the system, its input data domain, the output data domain, and the type of processing to be
carried on the input data to obtain the output data. Let us first try to document the withdraw-cash
function  of an  ATM  (Automated  Teller  Machine)  system.  The  withdraw-cash  is  a  high-level
requirement. It has several sub-requirements corresponding to the different user interactions. These
different interaction sequences capture the different scenarios.

Example: - Withdraw Cash from ATM R1: 

Description: The withdraw cash function first determines the type of account that the user has
and the account number from which the user wishes to withdraw cash. It checks the balance to
determine whether the requested amount is available  in  the  account.  If  enough  balance  is
available, it outputs the required cash, otherwise it generates an error message.

R1.1 select withdraw amount option Input: 

“withdraw amount” option

Output: user prompted to enter the account type 

R1.2: select account type

Input: user option

 Output: prompt to enter amount R1.3:      

get required amount

Input: amount to be withdrawn in integer values greater than 100 and less than 10,000 in 
multiples of 100.

Output: The requested cash and printed transaction statement.



Processing: the amount is debited from the user’s account if sufficient balance is available, otherwise 
an error message displayed.

Non-functional requirements:-
The non-functional requirements are non-negotiable obligations that must be supported by the

software. The non-functional requirements capture those requirements of the customer that cannot be
expressed  as  functions  (i.e., accepting input data and producing output data). Non-functional
requirements usually address aspects concerning external interfaces, user interfaces, maintainability,
portability, usability, maximum number of concurrent users, timing, and throughput (transactions per
second, etc.). The non-functional requirements can be critical in the sense that any failure by the
developed software to achieve some minimum defined level in these requirements can be considered
as a failure and make the software unacceptable by the customer.Nonfunctional requirements may
include:

# reliability issues,

# accuracy of results,

    #performance issues

# human - computer interface issues,

#constraints on the system implementation, 

# security and maintainability of the system, etc.

In the following subsections, we discuss the different categories of non- functional requirements 
that are described under three different sections:

Design and implementation constraints:  Design and implementation constraints are an important
category of non-functional  requirements describe any items or issues that  will  limit  the options
available to the developers. Some of the example constraints can be—corporate or regulatory policies
that needs to be  honoured; hardware limitations; interfaces with other applications;  specific
technologies, tools, and databases to be used; specific communications protocols to be used; security
considerations; design conventions or programming standards to  be followed, etc. Consider an
example of a constraint that can be included in this section—Oracle DBMS needs to be used as this
would facilitate easy  interfacing with other applications  that are already operational in the
organisation.

External interfaces required:  Examples of external interfaces are— hardware, software and
communication interfaces, user interfaces, report formats, etc. To specify the user interfaces, each
interface between the software and the users must be described. The description may include sample
screen images, any GUI standards or style guides that are to be  followed, screen layout
constraints,  standard buttons and functions(e.g., help) that will  appear  on every screen,  keyboard
shortcuts, error message display standards, and so on. One example of a user interface requirement
of a software can be that it should be usable by factory shop floor workers who may not even have a
high school degree. The details of the user interface design such as screen designs, menu structure,
navigation diagram, etc. should be documented in a separate user interface specification document.

External interface requirements:

User interfaces:  This  section  should  describe  a  high-level  description  of various interfaces and
various principles to be followed.The details of the user interface design should be documented in a
separate user interface specification document.

Hardware interfaces: This section should describe the interface between the software and the 
hardware components of the system. This section may include the description of the supported device
types, the nature of the data and control interactions between the software and the hardware, and the 
communication protocols to be used.



Software interfaces: This section should describe the connections between this software and other
specific software components, including databases,operating systems, tools, libraries, and
integrated commercial components, etc. Identify the data items that would be input to the software
and the data that would be output should be identified and the purpose of each should be described.

Communications  interfaces:  This  section  should  describe  the  requirements associated with any
type  of  communications  required  by  the software,  such as  e-mail,  web  access,  network  server
communications protocols, etc. This section should define any pertinent message formatting to be
used. It should also identify any communication standards that will be used, such as TCP sockets,
FTP,  HTTP, or SHTTP. Specify any communication security or encryption  issues  that  may  be
relevant, and also the data transfer rates, and synchronisation mechanisms.

Other  non-functional  requirements: This  section  contains  a  description  of non-  functional
requirements  that  are  neither  design  constraints  and  nor  are external interface requirements.  An
important example is a performance requirement such as the number of transactions completed per
unit time. Besides performance requirements, the other non-functional requirements to be described
in this section may include reliability issues, accuracy of results, and security issues.

Performance requirements: Aspects such as number of transaction to be completed per second 
should be specified here. Some performance requirements may be specific to individual functional 
requirements or features. These should also be specified here.

Safety requirements: Those requirements that are concerned with possible loss or damage that could
result from the use of the software are specified here. For example, recovery after power failure, 
handling software and hardware failures, etc. may be documented here.

Security  requirements:  This section should specify any requirements regarding  security  or
privacy  requirements  on  data  used  or  created  by  the software.  Any  user  identity  authentication
requirements should be described here. It should also refer to any external policies or regulations
concerning the security issues. Define any security or privacy certifications that must be satisfied.

 

Goals of implementation:-

The  goals  of  implementation  part  documents  some  general  suggestions regarding
development. These suggestions guide trade-off among design goals. The goals of implementation
section might document issues such as revisions to the system functionalities that may be required in
the future, new devices to be supported in the future, reusability issues, etc. These are the items which
the developers might keep in their mind during development so that the developed system may meet
some aspects that are not required immediately.

The different scenarios occur depending on the amount entered for withdrawal. The different
scenarios are essentially different behaviour exhibited by the system for the same high-level function.
Typically, each  user  input  and  the  corresponding  system  action  may  be  considered  as  a sub-
requirement of a high-level requirement. Thus, each high-level requirement can consist of several
sub-requirements.



Figure: User and system interactions in high-level functional requirement.

Overall description of organisation of SRS document

Product perspective: This section needs to briefly state as to whether the software is intended to be 
a replacement for a certain existing systems, or it is a new software. If the software being developed 
would be used as a component of a larger system, a simple schematic diagram can be given to show 
the major components of the overall system, subsystem interconnections, and external interfaces can 
be helpful.

Product features: This section should summarize the major ways in which the software would be 
used. Details should be provided in Section 3 of the document. So, only a brief summary should be 
presented here.

User classes: Various user classes that are expected to use this software are identified and described 
here. The different classes of users are identified by the types of functionalities that they are expected 
to invoke, or their levels of expertise in using computers.

Operating environment: This section should discuss in some detail the hardware platform on which 
the software would run, the operating system, and other application software with which the developed
software would interact.

Design and implementation constraints: In this section, the different constraints on the design
and implementation  are  discussed.  These  might include—corporate or  regulatory policies; hardware
limitations (timing requirements, memory requirements); interfaces to other applications; specific
technologies,  tools,  and  databases  to  be  used;  specific  programming language  to  be  used;  specific
communication  protocols  to  be  used;  security considerations; design conventions  or programming
standards.

User documentation:  This section should  list out the types of user documentation, such  as user
manuals, on-line help, and trouble-shooting manuals that will be delivered to the customer along with
the software.



A good  SRS  document  should  properly  characterise  the  conditions  under which  different
scenarios of interaction occur. That is, a high-level function might involve different steps to be
undertaken as a consequence of some decisions made after each step. Sometimes the conditions can be
complex  and  numerous  and  several  alternative interaction and processing sequences may exist
depending on the outcome of the corresponding condition checking. A simple text description in such
cases can be difficult to comprehend and analyse. In such situations, a decision tree or a decision table
can be used to represent the logic and the processing involved. Also, when the decision making in a
functional requirement has been represented as a decision table, it becomes easy to automatically or
at least manually design test cases.

There are two main techniques available to analyse and represent complex processing logic—
decision trees and decision tables. Once the decision making logic is captured in the form of trees
or tables, the test cases to validate these logic can be automatically obtained. It should, however, be
noted that decision trees and decision tables have much broader applicability than just specifying
complex processing logic in an SRS document. For instance, decision trees and decision tables find
applications in information theory and switching theory.

Decision tree:

A decision tree gives a graphic view of the processing logic involved in decision making and
the corresponding actions taken. The edges of a decision tree represent conditions and the leaf nodes
represent the actions to be performed depending on the outcome of testing the condition.
Example: -Consider Library Membership Automation Software (LMS) where it should support the 
following three options:

 New member

 Renewal

 Cancel membership
  
New member option-
Decision: When the 'new member' option is selected, the software asks details about the 
member like the member's name, address, phone number etc.

 Action: If proper information is entered then a membership record for the member is    
created and a bill is printed for the annual membership charge plus the security deposit 
payable.

Renewal option-
Decision: If the 'renewal' option is chosen, the LMS asks for the member's name and his 
membership number to check whether he is a valid member or not.

  Action: If the membership is valid then membership expiry date is updated and the annual    
membership bill is printed, otherwise an error message is displayed.

Cancel membership option-
Decision: If the 'cancel membership' option is selected, then the software asks for member's 
name and his membership number.

 Action: The membership is cancelled, a cheque for the balance amount due to the member is
printed and finally the membership record is deleted from the database.



Decision tree representation of the above example -
The following tree shows the graphical representation of the above example. After getting 
information from the user, the system makes a decision and then performs the corresponding 
actions.

Fig: Decision tree for LMS
Decision table:

A decision table is used to represent the complex processing logic in a tabular or a
matrix form. The upper rows of the table specify the variables or conditions to be evaluated.
The lower rows of the table specify the actions to be taken when the corresponding conditions
are satisfied. A column in a table is called a rule. A rule implies that if a condition is true, then
the corresponding action is to be executed.
Example: -Consider the previously discussed LMS example. The following decision table (fig. 3.5) 
shows how to represent the LMS problem in a tabular form. Here the table is divided into two parts, the 
upper part shows the conditions and the lower part shows what actions are taken. Each column of the 
table is a rule.

  
   Conditions

Valid selection No Yes Yes Yes
New member - Yes No No
Renewal - No Yes No
Cancellation - No No Yes
Actions
Display error message x - - -
Ask member's details - x - -
Build customer record - x - -
Generate bill - x x -
Ask member's name & membership number - - x x
Update expiry date - - x -
Print cheque - - - x
Delete record - - - x

Fig: Decision table for LMS



From the above table you can easily understand that, if the valid selection
condition is false then the action taken for this condition is 'display error message'. Similarly, the
actions taken for other conditions can be inferred from the table.

Decision table versus decision tree
Even though both decision tables and decision trees can be used to represent complex program

logic, they can be distinguishable on the following three considerations:

Readability:  Decision trees are easier to read and understand when the number of conditions are
small. On the other hand, a decision table causes the analyst to look at every possible combination of
conditions which he might otherwise omit.

Explicit representation of the order of decision making: In contrast to the decision trees, the order
of decision making is abstracted out in decision tables. A situation where decision tree is more useful
is  when  multilevel decision  making  is  required.  Decision  trees  can  more intuitively  represent
multilevel decision making hierarchically, whereas decision tables can only represent a single decision
to select the appropriate action for execution.

Representing complex decision logic: Decision trees become very complex to understand when the
number of conditions and actions increase. It may even be to draw the tree on a single page. When
very large number of decisions are involved, the decision table representation may be preferred.

Formal technique

A formal technique is a mathematical method to specify a hardware and/or software system,
verify whether a specification is realizable, verify that an implementation satisfies its specification,
prove properties of a system without necessarily running the system, etc. The mathematical basis of a
formal method is provided by the specification language.

Formal specification language

A formal specification language consists of two sets syn and sem, and a relation sat between
them. The set syn is called the syntactic domain, the set sem is called the semantic domain, and the
relation sat is called the satisfaction relation.For a given specification syn, and model of the system
sem, if sat (syn, sem), as shown in figure then syn is said to be the specification of sem, and sem is
said to be the specificand of syn.

Fig: sat (syn, sem)
Syntactic Domains

The syntactic domain of a formal specification language consists of an alphabet of symbols
and  set  of  formation  rules  to  construct  well-formed  formulas  from the alphabet. The  well-formed
fsormulas are used to specify a system.

Semantic Domains
Formal  techniques  can  have  considerably  different  semantic  domains.  Abstract data  type

specification languages are used to specify algebras, theories, and programs. Programming languages
are  used  to  specify  functions  from  input  to output  values.  Concurrent  and  distributed  system



specification  languages  are used  to  specify  state  sequences,  event  sequences,  state-transition
sequences, synchronization trees, partial orders, state machines, etc.

Satisfaction Relation
Given the model of a system, it is important to determine whether an element of the semantic

domain satisfies the specifications. This satisfaction is determined by using a homomorphism known as
semantic abstraction function. The semantic abstraction function maps the elements of the semantic
domain into equivalent classes. There can be different specifications describing different aspects of a
system model, possibly using different specification languages. Some of these specifications describe
the system’s behavior and the others describe the system’s structure. Consequently, two broad classes
of semantic abstraction functions are defined: those that preserve a system’s behavior and those that
preserve a system’s structure.

Model-oriented vs. property-oriented approaches

Formal methods are usually classified into two broad categories – model-oriented and property
–  oriented  approaches.  In  a  model-oriented  style,  one defines  a  system’s  behavior  directly  by
constructing  a  model  of  the  system in terms of mathematical structures such as tuples, relations,
functions, sets, sequences, etc.In the property-oriented style, the system's behavior is defined indirectly
by stating its properties, usually in the form of a set of axioms that the system must satisfy.

Example:-
Let us consider a simple producer/consumer example. In a property- oriented style, it is probably

started by listing the properties of the system like: the consumer can start consuming only after the
producer has produced an item, the producer starts  to produce an item only after the consumer has
consumed the last item, etc. A good example of a producer-consumer  problem  is  CPU-Printer
coordination. After processing of data, CPU outputs characters to the buffer for printing. Printer, on the
other hand, reads characters from the buffer and prints them. The CPU is constrained by the capacity
of the buffer, whereas the printer is constrained by an empty buffer.Examples of property-oriented
specification styles are axiomatic specification and algebraic specification.

In a model-oriented approach, we start by defining the basic operations, p (produce)  and c
(consume). Then we can state that S1 + p → S, S + c → S1. Thus the model-oriented approaches
essentially specify a program by writing another, presumably simpler program. Examples of popular
model-oriented specification techniques are Z, CSP, CCS, etc.

Model-oriented approaches are more suited to use in later phases of life cycle because here even
minor changes to a specification may lead to drastic changes to the entire specification. They do not
support logical conjunctions (AND) and disjunctions (OR).

Property-oriented approaches are suitable for requirements specification because they can be
easily changed. They specify a system as a conjunction of axioms and you can easily replace one
axiom with another one.
Operational semantics

Informally,  the  operational  semantics  of  a  formal  method  is  the  way  computations are
represented. There are different types of operational semantics according to what is meant by a single
run of the system and how the runs are grouped together to describe the behavior of the system. Some
commonly used operational semantics are as follows:

Linear Semantics:-
In this approach, a run of a system is described by a sequence (possibly infinite) of events or

states. The concurrent activities of the system are represented by non-deterministic interleavings of the
automatic actions. For example, a concurrent  activity  a║b is  represented  by  the  set  of  sequential
activities a;b and b;a. This is simple but rather unnatural representation of concurrency. The behavior of



a system in this model consists of the set of all its runs. To make this model realistic, usually justice and
fairness restrictions are imposed on computations to exclude the unwanted interleavings.

Branching Semantics:-
In this approach, the behavior of a system is represented by a directed graph as shown in the

figure.The nodes of the graph represent the possible states in the evolution of a system. The descendants
of each node of the graph represent the states which can be generated by any of the atomic actions
enabled at that state. An example involving the transactions in an ATM is shown in fig. Although this
semantic model distinguishes the branching points in a computation, still it represents concurrency by
interleaving.

Maximally parallel semantics:-
In  this  approach,  all  the  concurrent  actions  enabled  at  any  state  are  assumed  to be  taken

together. This is again not a natural model of concurrency since it implicitly assumes the availability of
all the required computational resources.

Partial order semantics:-
Under this view, the semantics ascribed to a system is a structure of states satisfying a partial

order relation among the states (events). The partial  order represents a precedence ordering among
events, and constraints some events to occur only after some other events have occurred; while the
occurrence  of  other events  (called  concurrent  events)  is  considered  to  be  incomparable.  This  fact
identifies concurrency as a phenomenon not translatable to any interleaved representation.

For example, figure shows the semantics implied by a simplified beverage selling machine.
From the figure, we can infer that beverage is dispensed only if an inserted coin is accepted by the
machine  (precedence). Similarly, preparation of ingredients and milk are done simultaneously
(concurrence). Hence, node Ingredient can be compared with node Brew, but neither can it be compared
with node Hot/Cold nor with node Accepted.

Merits of formal requirements specification

Formal methods possess several positive features, some of which are discussed below.
 Formal specifications encourage rigour. Often, the very process of construction of a rigorous

specification  is  more  important  than  the  formal specification  itself.  The  construction  of  a
rigorous specification clarifies several aspects of system behavior that are not obvious in an
informal specification.

 Formal methods usually have a well-founded mathematical basis. Thus, formal specifications
are not only more precise, but also mathematically sound and can be used to reason about the
properties  of  a  specification and to rigorously prove that an implementation satisfies its
specifications.

 Formal methods have well-defined semantics. Therefore, ambiguity is specifications is
automatically avoided when one formally specifies a system.

 The  mathematical  basis  of  the  formal  methods  facilitates  automating  the analysis  of
specifications. For example, a tableau-based technique has been used to automatically check
the consistency of specifications. Also, automatic theorem proving techniques can be used to
verify that an implementation satisfies its specifications. The possibility of automatic
verification is one of the most important advantages of formal methods.

 Formal specifications can be executed to obtain immediate feedback on the features of the
specified system. This concept of executable specifications is related to rapid prototyping.
Informally,  a prototype is a “toy” working model of a system that can provide immediate
feedback on the behavior of the specified system, and is especially useful in checking the
completeness of specifications.



Limitations of formal requirements specification

 It is clear that formal methods provide mathematically sound frameworks within large, complex
systems can be specified, developed and verified in a systematic rather than in an ad hoc manner.
However, formal methods suffer from several shortcomings, some of which are the following:

 Formal methods are difficult to learn and use.

The basic incompleteness results of first-order logic suggest that it is impossible to check absolute
correctness of systems using theorem proving techniques.

 Formal techniques are not able to handle complex problems. This shortcoming results from the
fact that, even moderately complicated problems blow up the complexity of formal specification and
their analysis. Also, a large unstructured set of mathematical formulas is difficult to comprehend.

Axiomatic specification

 In axiomatic  specification of  a  system, first-order  logic  is  used to  write  the  pre  and post-
conditions to specify the operations of the system in the form of axioms. The pre-conditions basically
capture the conditions that must be satisfied before an operation can successfully be invoked. In
essence, the pre-conditions capture the requirements on the input parameters of a function. The post-
conditions are the conditions that must  be satisfied when a function completes execution for the
function to be considered to have executed successfully. Thus, the post- conditions are essentially
constraints on the results produced for the function execution to be considered successful.

 The following are the sequence of steps that can be followed to systematically develop the
axiomatic specifications of a function:

 Establish the range of input values over which the function should behave correctly. Also find
out other constraints on the input parameters and write it in the form of a predicate.

 Specify a predicate defining the conditions which must hold on the output of the function
if it behaved properly.

 Establish the changes made to the function’s input parameters after execution of the function.
Pure mathematical  functions  do not change their input and therefore this type of assertion is not
necessary for pure functions.

 Combine all of the above into pre and post conditions of the function.

Example1: -Specify the pre- and post-conditions of a function that takes a real number as argument
and returns half the input value if the input is less than or equal to 100, or else returns double the value.

   f (x : real) : real

                  pre : x  R

              post : {(x≤100)  (f(x) = x/2)}  {(x>100)  (f(x) = 2x)}

Example2: Axiomatically specify a function named search which takes an integer array and an 
integer key value as its arguments and returns the index in the array where the key value is present.

                   search(X : IntArray, key :Integer) :Integer

pre :  i  [Xfirst….Xlast], X[i] = key

        post : {(X[search(X, key)] = key)  (X = X)}



Here the convention followed is: If a function changes any of its input parameters and if
that  parameter  is  named  X,  then  it  is  referred  to  as  X after  the  function completes
execution.mes faster.
Algebraic specification

 In  the  algebraic  specification  technique  an  object  class  or  type  is  specified  in terms of
relationships existing between the operations defined on that type. It was  first  brought  into
prominence  by  Guttag  [1980,  1985]  in  specification  of abstract  data  types.  Various  notations  of
algebraic specifications have evolved, including those based on OBJ and Larch languages.
Representation of algebraic specification:

Essentially,  algebraic  specifications  define  a  system  as  a  heterogeneous  algebra. A
heterogeneous algebra is a collection of different sets on which several operations  are  defined.
Traditional algebras are homogeneous. A homogeneous algebra consists of a single set and several
operations; {I, +, -, *, /}. In contrast, alphabetic strings together with operations of concatenation and
length {A, I, con, len}, is not a homogeneous algebra, since the range of the length operation is the set
of integers.

Each set of symbols in the algebra, in turn, is called a  sort  of the algebra. To define a
heterogeneous algebra, we first need to specify its signature, the involved operations, and their
domains and ranges. Using algebraic specification, we define the meaning of a set of interface
procedure by using equations. An algebraic specification is usually presented in four sections.

Types section: In this section, the sorts (or the data types) being used is specified.

Exception section: This section gives the names of the exceptional conditions that might occur 
when different operations are carried out. These exception conditions are used in the later sections of 
an algebraic specification.For example, in a queue, possible exceptions are novalue (empty queue), 
underflow (removal from an empty queue), etc.

Syntax section: This section defines the signatures of the interface procedures. The collection of sets
that  form input  domain  of  an  operator  and the  sort  where  the  output  is  produced  are  called  the
signature of the operator. For example, PUSH takes a stack and an element as its input and returns a
new stack that has been created.

                                 append : queue x element  queue
Equations section: This section gives a set of rewrite rules (or equations) defining the meaning of the
interface procedures in terms of each other. In general, this section is allowed to contain conditional
expressions.By convention each equation is implicitly universally quantified over all possible values of
the variables. Names not mentioned in the syntax section such as ‘r’ or ‘e’ are variables. The first step
in defining  an  algebraic  specification  is  to  identify  the  set  of  required operations. After having
identified the required operators, it is helpful to classify them as either basic constructor operators,
extra constructor operators, basic inspector operators, or extra inspection operators. The definition of
these categories of operators is as follows:

Basic construction operators. These operators are used to create or modify entities of a type.
The  basic  construction operators  are  essential  to  generate  all  possible  element  of the  type  being
specified. For example, ‘create’ and ‘append’ are basic construction operators for a FIFO queue.

Extra  construction  operators.  These  are  the  construction operators  other  than  the  basic
construction operators. For example, the operator ‘remove’ is an extra construction operator for a FIFO
queue because even without using ‘remove’, it is possible to generate all values of the type being
specified

Basic inspection operators. These operators evaluate attributes of a type without modifying them,
e.g., eval, get, etc. Let S be the set of operators whose range is not the data type being specified.
The set of the basic operators S1 is a subset of S, such that each operator from S-S1 can be expressed in



terms of the operators from S1. For example, ‘isempty’ is a basic inspection operator because it does not
modify the FIFO queue type.

Extra inspection operators. These are the inspection operators that are not basic inspectors.
A good rule  of  thumb while  writing  an  algebraic  specification,  is  to  first  establish which  are  the
constructor (basic and extra) and inspection operators (basic and extra). Then write down an axiom for
composition  of  each  basic  construction operator  over  each  basic  inspection operator  and  extra
constructor operator. Also, write down an axiom for each of the extra inspector in terms of any of the
basic inspectors. Thus, if there are m1 basic constructors, m2 extra constructors, n1 basic inspectors,
and n2 extra inspectors, we should have m1  (m2+n1) + n2 axioms are the minimum required and
many more axioms may be needed to make the specification complete. Using a complete set of rewrite
rules, it is possible to simplify an arbitrary sequence of operations on the interface procedures.

Develop algebraic specification of simple problems

 The first step in defining an algebraic specification is to identify the set of required operations.
After having identified the required operators, it is helpful to classify them into different catgories.
 A simple way to determine whether an operator is a constructor (basic or extra) or  an
inspector (basic or extra) is to check the syntax expression for the operator. If the type being specified
appears on the right hand side of the expression then it is a constructor, otherwise it is an inspection
operator.  For example,  in a  FIFO queue,  ‘create’ is  a constructor because the data type specified
‘queue’ appears on the right hand side of the expression.  But,  ‘first’ and ‘isempty’ are inspection
operators since they do not modify the queue data type.

Example 1:-

Let us specify a data type point supporting the operations create, xcoord, ycoord, isequal; where the 
operations have their usual meaning.

Types:
 defines point
 uses boolean, integer

Syntax:

1.create : integer × integer → point

2.xcoord : point → integer

3.ycoord : point → integer

4.isequal : point × point → boolean

Equations:

1.xcoord(create(x, y)) = x

2.ycoord(create(x, y)) = y

3.isequal(create(x1, y1), create(x2, y2)) = ((x1 = x2)and(y1 = y2))

In this example, we have only one basic constructor (create), and three basic inspectors (xcoord, 
ycoord, and isequal). Therefore, we have only 3 equations.

The rewrite rules let you determine the meaning of any sequence of calls on the point type. Consider
the following expression: isequal (create (xcoord (create(2, 3)), 5),create (ycoord (create(2, 3)), 5)). 
By applying the rewrite rule 1, you can simplify the given expression as isequal (create (2, 5), create
(ycoord (create(2, 3)), 5)). By using rewrite rule 2, you can further simplify this as isequal (create (2, 
5),create (3, 5)). This is false by rewrite rule 3.



Example 2:
 Let us specify a FIFO queue supporting the operations  create, append, remove, first, and
isempty where the operations have their usual meaning.

Types:
defines queue

uses boolean, integer

Exceptions:
             underflow, novalue

Syntax:
1.create :   queue

         2.append : queue x element  queue
   3.remove : queue  queue + {underflow}

         4.first : queue  element + {novalue}
         5.isempty : queue  boolean

Equations:
1.isempty(create()) = true

         2.isempty((append(q,e)) = false
         3.first(create()) = novalue
         4.first(append(q,e)) = is isempty(q) then e else first(q)
         5.remove(create()) = underflow
         6.remove(append(q,e)) = if isempty(q) then create() else append(remove(q),e)

           In this example, there are two basic constructors (create and append), one extra construction 
operator (remove) and two basic inspectors (first and empty). Therefore, there are 2 x (1+2) + 0 = 6 
equations.
Properties of algebraic specifications
Three important properties that every algebraic specification should possess are:

 Completeness: This property ensures that using the equations, it should be possible
to reduce any arbitrary sequence of operations on the interface procedures. There is no
simple procedure to ensure that an algebraic specification is complete.

 Finite  termination  property:  This  property  essentially  addresses the following
question: Do applications of the rewrite rules to arbitrary expressions involving the
interface procedures always terminate? For arbitrary algebraic equations, convergence
(finite termination) is undecidable. But, if the right hand side of each rewrite rule has
fewer terms than the left, then the rewrite process must terminate.

 Unique termination property: This property indicates whether application  of
rewrite  rules  in  different  orders  always  result  in  the same  answer.  Essentially,  to
determine this property, the answer to the following question needs to be checked:
Can all possible sequence of choices in application of the rewrite rules to an arbitrary
expression involving the interface procedures always give the same number? Checking
the unique termination property is a very difficult problem.

Structured specification:  Developing algebraic specifications is time consuming. Therefore 
efforts have been made to device ways to ease the task of developing algebraic specifications. The 
following are some of the techniques that have successfully been used to reduce the effort in writing the 
specifications.

 Incremental specification. The idea behind incremental specification is to
first  develop  the  specifications  of  the  simple  types and  then  specify  more
complex types by using the specifications of the simple types.



 Specification instantiation. This involves taking an existing specification
which has been developed using a generic parameter and instantiating it with
some other sort.

Advantages and disadvantages of algebraic specifications

Algebraic specifications have a strong mathematical basis and can be viewed as heterogeneous
algebra. Therefore, they are unambiguous and precise.Using an algebraic specification, the effect of
any arbitrary sequence of operations involving the interface procedures can automatically be studied.
A major shortcoming of algebraic specifications is that they cannot deal with side effects. Therefore,
algebraic specifications are difficult to interchange with typical programming languages. Also,
algebraic specifications are hard to understand.

Executable specification language (4GLs).
If the specification of a system is expressed formally or by using a programming language,

then it becomes possible to directly execute the specification. However, executable specifications are
usually slow and inefficient, 4GLs3 (4th Generation Languages) are examples of executable specification
languages. 4GLs are successful because there is a lot of commonality across data processing
applications. 4GLs rely on software reuse, where the common abstractions have been identified and
parameterized. Careful experiments have shown that rewriting 4GL programs in higher level languages
results in up to 50% lower memory usage and also the program execution time can reduce ten folds.
Example of a 4GL is Structured Query Language (SQL).



Software design and its activities

Software design deals with transforming the customer requirements, as described in the SRS document,
into a form (a set of documents) that is suitable for implementation in a programming language. A good
software design is seldom arrived by using a single step procedure but rather through several iterations
through a series of steps. Design activities can be broadly classified into two important parts:

 Preliminary (or high-level) design and

 Detailed design

Fig:The design process.

Through high-level design, a problem is decomposed into a set of modules. The control
relationships among the modules are identified, and also the interfaces among various
modules are identified.

The following items are designed and documented during the design phase.

 Different  modules  required:  The  different  modules  in  the  solution  should be  clearly
identified.  Each  module  is  a  collection  of  functions  and the  data shared  by the  functions  of  the
module. Each module should accomplish some well-defined task out of the overall responsibility of
the software. Each module should be named according to the task it performs. For example, in an
academic  automation  software,  the  module  consisting  of  the  functions  and data necessary  to
accomplish the task of registration of the students should be named handle student registration.

 Control relationships among modules:  A  control  relationship  between two  modules
essentially arises due to function calls across the two modules. The control relationships existing
among various modules should be identified in the design document.

 Interfaces among different modules:  The interfaces between two modules  identifies  the
exact data items that are exchanged between the two modules when one module invokes a function of
the other module.

 Data structures of the individual modules: Each module normally stores some data that the
functions of the module need to share to accomplish the overall responsibility of the module. Suitable
data structures for storing and managing the data of a module need to be properly designed and
documented.

 Algorithms required to implement the individual modules: Each function in a module
usually performs some processing activity. The algorithms required to accomplish the
processing activities of various modules need to be carefully designed and documented
with due considerations given to the accuracy of the results, space and time complexities.

The outcome of high-level design is called the program structure or the software architecture.A
notation that is widely being used for procedural development  is  a  tree-like  diagram called  the
structure chart. Another popular design representation techniques called UML that is being used to
document object-oriented design, involves developing several types of diagrams to document  the
object-oriented design of a systems.



Characteristics of a good software design

The definition of “a good software design” can vary depending on the application being designed. For
example, the memory size used by a program may be an important issue to characterize a good solution
for embedded software development – since embedded applications are often required to be
implemented using memory of limited size due to cost, space, or power consumption considerations. For
embedded applications, one may sacrifice design comprehensibility to achieve code compactness. For
embedded applications, factors like design comprehensibility may take a back seat while judging the
goodness of design. Therefore, the criteria used to judge how good a given design solution is can vary
widely depending upon the application. Not only is the goodness of design dependent on the targeted
application, but also the notion of goodness of a design itself varies widely across software engineers
and academicians.  However,  most  researchers  and  software  engineers  agree  on  a few desirable
characteristics that every good software design for general application must possess. The characteristics
are listed below:

 Correctness: A good design should correctly implement all the functionalities 
identified in the SRS document.

 Understandability: A good design is easily understandable
 Efficiency: It should be efficient.
 Maintainability: It should be easily amenable to change.

A design solution is correct, understandability of a design is possibly the most important issue to be
considered while judging the goodness of a design. A design that is easy to understand is also easy to
develop,  maintain  and  change.  Thus,  unless  a  design is  easily  understandable,  it  would  require
tremendous effort to implement and maintain it.

Features of a design document:
                   In order to facilitate understandability, the design should have the following features:

 It should use consistent and meaningful names for various design components.
 The design should be modular. The term modularity means that it should use a cleanly

decomposed set of modules.It should neatly arrange the modules in a hierarchy, e.g.
in a tree-like diagram.

Cohesion
Most researchers and engineers agree that a good software design implies clean decomposition

of the problem into modules, and the neat arrangement of these modules in a hierarchy. The primary
characteristics of neat module decomposition  are  high  cohesion  and  low coupling.  Cohesion  is  a
measure of functional strength of a module. A module having high cohesion and low coupling is said to
be functionally independent of other modules. By the term functional independence, we mean that a
cohesive module performs a single task or function. A functionally independent module has minimal
interaction with other modules.
Classification of cohesion

The different classes of cohesion that a module may possess are depicted

Fig:Classification of cohesion.



Coincidental cohesion: A module is said to have coincidental cohesion, if it performs a set of
tasks that relate to each other very loosely, if at all. In this case, the module contains a random collection
of functions. It is likely that the functions have been put in the module out of pure coincidence without
any thought or design. For example, in a transaction processing system (TPS), the get-input, print-
error, and summarize-members functions are grouped into one module. The grouping does not have any
relevance to the structure of the problem.

           

Fig: Examples of cohesion

Logical cohesion: A module is said to be logically cohesive, if all elements of the module perform
similar operations, e.g. error handling, data input, data output, etc. An example of logical cohesion is the
case where a set of print functions generating different output reports are arranged into  a  single
module.As an example of logical cohesion, consider a module that contains a set of print functions to
generate various types of output reports such as grade sheets, salary slips, annual reports, etc.
Temporal cohesion:  When a module contains  functions  that  are  related by the  fact  that  all  the
functions must be executed in the same time span, the module is said to exhibit temporal cohesion. The
set of functions responsible for initialization, start-up, shutdown of some process, etc. exhibit temporal
cohesion.

Procedural cohesion: A module is said to possess procedural cohesion, if the set of functions of the
module are all part of a procedure (algorithm) in which certain sequence of steps have to be carried out
for achieving an objective, e.g. the algorithm for decoding a message.The functions login(),  place-
order(), check-order(), print- bill(), place-order-on-vendor(), update-inventory(), and  logout()  all do
different thing and operate on different data

Communicational cohesion: A module is said to have communicational cohesion, if all functions
of the module refer to or update the same data structure, e.g. the set of functions defined on an array or
a stack.As an example of procedural cohesion, consider a module named student in which the different
functions in the module such as admitStudent, enterMarks, printGradeSheet, etc. access and manipulate
data stored in an array named studentRecords defined within the module.

Sequential cohesion: A module is said to possess sequential cohesion, if the elements of a module
form the parts of sequence, where the output from one element of the sequence is input to the next. For
example,  in  a TPS, the get-input, validate-input, sort-input functions are grouped into one
module.As  an  example consider  the  following  situation.  In  an  on-line  store  consider  that  after  a
customer requests for some item, it is first determined if the item is in stock. In this case, if the
functions  create-order(),  check-item-availability(),  place- order-on-vendor()  are placed  in  a single
module, then the module would exhibit sequential cohesion.



Functional  cohesion:  Functional  cohesion  is  said  to  exist,  if  different elements of a module
cooperate to achieve a single function. For example, a module containing all the functions required to
manage employees’ pay-roll exhibits functional cohesion. Suppose a module exhibits functional
cohesion and we are asked to describe what the module does, then we would be able to describe it
using a single sentence.

Coupling

Coupling between two modules is a measure of the degree of interdependence or interaction between
the  two  modules.  A module  having  high  cohesion  and  low coupling  is  said  to  be  functionally
independent of other modules. If two modules interchange large amounts of data, then they are highly
interdependent.  The degree of coupling between two modules depends on their interface
complexity.The interface complexity is basically determined by the number of types of parameters that
are interchanged while invoking the functions of the module.
Classification of Coupling

Even if  there are no techniques to precisely and quantitatively estimate the coupling between two
modules, classification of the different types of coupling will help to quantitatively estimate the degree
of coupling between two modules. Five types of coupling can occur between any two modules. 

Data Stamp Control Common Content

Low High

Fig: Classification of coupling
Data coupling: Two modules are data coupled, if they communicate through a parameter. An example
is an elementary data  item passed as a parameter  between two modules,  e.g.  an integer,  a  float,  a
character, etc. This data item should be problem related and not used for the control purpose.

Stamp coupling: Two modules are stamp coupled, if they communicate using a composite data item
such as a record in PASCAL or a structure in C.

Control coupling: Control coupling exists between two modules, if data from one module is used to
direct the order of instructions execution in another. An example of control coupling is a flag set in one
module and tested in another module.

Common coupling: Two modules are common coupled, if they share data through some global
data items.

Content coupling: Content coupling exists between two modules, if they share code, e.g. a branch
from one module into another module.

Control Hierarchy:

Layered Arrangement Of Modules:

In a  layered design solution,  the modules  are  arranged into several  layers based on their  call
relationships. A module is allowed to call only the modules that are at a lower layer. That is, a module
should not call a module that is either at a higher layer or even in the same layer.In a layered design,
the top-most module in the hierarchy can be considered as a manager that only invokes the services
of the lower level module to discharge its responsibility.



Superordinate and subordinate modules: In a control hierarchy, a module that controls another 
module is said to be superordinate to it. Conversely, a module controlled by another module is said to
be subordinate to the controller.

Visibility: A module B is said to be visible to another module A, if A directly calls B. Thus, only the 
immediately lower layer modules are said to be visible to a module.

Control abstraction: In a layered design, a module should only invoke the functions of the modules 
that are in the layer immediately below it. In other words, the modules at the higher layers, should not 
be visible (that is, abstracted out) to the modules at the lower layers. This is referred to as control 
abstraction.

Depth and width:  Depth and width of a control hierarchy provide an indication of the number of
layers and the overall span of control respectively.

Fan-out:  Fan-out is  a measure of the number of modules that  are directly controlled by a given
module.In the fan-out of the module M1 is 3. A design in which the modules have very high fan-out
numbers is not a good design. The reason for this is that a very high fan-out is an indication that the
module lacks cohesion. A module having a large fan-out(greater than 7) is likely to implement several
different functions and not just a single cohesive function.

Fan-in: Fan-in indicates the number of modules that directly invoke a given module. High fan-in 
represents code reuse and is in general, desirable in a good design. In the fan-in of the module M1 is 0,
that of M2 is 1, and that of M5 is 2.

Figure: Examples of good and poor control abstraction.

Functional independence

A module having high cohesion and low coupling is said to be functionally independent of other
modules. By the term functional independence, we mean that a cohesive module performs a single task
or function. A functionally independent module has minimal interaction with other modules

Need for functional independence

Functional independence is a key to any good design due to the following reasons:

 Error isolation: Functional independence reduces error propagation. The reason behind this
is that if a module is functionally independent, its degree of interaction with the other modules
is less. Therefore, any error existing in a module would not directly effect the other modules.



 Scope of reuse: Reuse of a module becomes possible. Because each module does some
well-defined and precise function, and the interaction of the module with the other modules is
simple and minimal. Therefore, a cohesive module can be easily taken out and reused in a
different program.

 Understandability: Complexity of the design is reduced, because different modules can be
understood in isolation as modules are more or less independent of each other.

Function-oriented design

The following are the salient features of a typical function-oriented design approach:

Top-down decomposition:  A system, to start with, is viewed as a black box that provides certain
services (also known as high-level functions) to the users of the system.In top-down decomposition,
starting at a high-level view of the system, each high-level function is successively refined into more
detailed functions.
             A system is viewed as something that performs a set of functions.For example, consider a
function create-new- library-member which essentially creates the record for a new member, assigns a
unique membership number to him, and prints a bill towards his membership charge. This function may
consist of the following sub- functions:

 Assign-membership-number
 create-member-record
 print-bill

Centralised system state:  The system state can be defined as the values of certain data items that
determine the response of the system to a user action or external event.Each of these sub-functions may
be split into more detailed subfunctions and so on.
               The system state is centralized and shared among different functions, e.g. data such as member-
records is available for reference and updation to several functions such as:
 create-new-member
 delete-member
 update-member-record

Object-oriented design

In  the  object-oriented  design  approach,  the  system  is  viewed  as  collection  of objects  (i.e.
entities).  The  state  is  decentralized  among  the  objects  and  each object  manages  its  own  state
information. For example, in a Library Automation Software, each library member may be a separate
object with its own data and functions to operate on these data. In fact, the functions defined for one
object cannot refer or change data of other objects. Objects have their own internal data which define
their state. Similar objects constitute a class. In other words, each object is a member of some class.
Classes may inherit features from super class. Conceptually, objects communicate by message passing.

 Data abstraction:  The principle of data abstraction implies that how data is exactly stored is
abstracted away. This means that any entity external to the object (that is, an instance of an ADT)
would have no knowledge about how data is exactly stored, organised, and manipulated inside the
object.

 Data structure: A data structure is constructed from a collection of primitive data items. Just as
a civil engineer builds a large civil engineering structure using primitive building materials such as
bricks, iron rods, and cement; a programmer can construct a data structure as an organised collection
of primitive data items such as integer, floating point numbers, characters, etc.



 Data type:  A type is a programming language terminology that refers to anything that can be
instantiated. For example, int, float, char etc., are the basic data types supported by C programming
language. Thus, we can say that ADTs are user defined data types.

Function-oriented vs. object-oriented design approach

 The following are some of the important differences between function-oriented and object- oriented
design.

 Unlike  function-oriented  design  methods,  in  OOD,  the  basic  abstraction are  not  real-world
functions such as sort, display, track, etc, but real- world entities such as employee, picture, machine,
radar system, etc. For example in OOD, an employee pay-roll software is not developed by designing
functions such as update-employee-record, get- employee-address, etc. but by designing objects such
as employees, departments, etc. Grady Booch sums up this difference as “identify verbs if you are after
procedural design and nouns if you are after object-oriented design”

 In OOD, state information is not represented in a centralized shared memory but is distributed
among the objects of the system. For example, while developing an employee pay-roll system, the
employee data such as the names of the employees, their code numbers, basic salaries, etc. are usually
implemented as global data in a traditional programming system; whereas in an object-oriented system
these data are distributed among different employee objects of the system. Objects communicate by
message  passing.  Therefore,  one  object  may discover  the  state  information  of  another  object  by
interrogating it.  Of course, somewhere or other the real-world functions must be implemented. In
OOD, the functions are usually associated with specific real-world entities (objects); they directly
access only part of the system state information.

 Function-oriented  techniques  such  as  SA/SD  group  functions  together if,  as  a  group,  they
constitute a higher-level  function.  On the  other hand,  object-oriented  techniques  group  functions
together on the basis of the data they operate on.

Example: Fire-Alarm System
The owner of a large multi-stored building wants to have a computerized fire alarm system for

his building. Smoke detectors and fire alarms would be placed in each room of the building. The fire
alarm system would monitor  the status  of these smoke detectors. Whenever a fire condition is
reported by any of the smoke detectors, the fire alarm system should determine the location at
which the  fire  condition  is  reported  by  any  of  the  smoke  detectors,  the  fire  alarm system should
determine the location at which the fire condition has occurred and then sound the alarms only in the
neighboring  locations.  The fire  alarm system should also flash an  alarm message on the  computer
console.  Fire  fighting  personnel man the  console  round the  clock.  After  a  fire  condition  has  been
successfully handled,  the fire  alarm system should support resetting the alarms by the fire fighting
personnel.

Function-Oriented Approach:

/* Global data (system state) accessible by various functions*/
BOOL detector_status[MAX_ROOMS]; 
int detector_locs[MAX_ROOMS]; 
BOOL alarm_status[MAX_ROOMS];
/* alarm activated when status is set */ 



int alarm_locs[MAX_ROOMS];

/* room number where alarm is located*/

int neighbor-alarm[MAX_ROOMS][10];

/* each detector has atmost 10 neighboring locations */

The functions which operate on the system state are: 

interrogate_detectors();
get_detector_location();

determine_neighbor(); 
ring_alarm(); 
reset_alarm(); 
report_fire_location();

Object-Oriented Approach:
class detector
attributes:

status, location, neighbors
operations:

create, sense_status, get_location, 

find_neighbors
class alarm
attributes:

location, status
operations:
create, ring_alarm, get_location, reset_alarm

 In the object oriented program, an appropriate number of instances of the class detector
and alarm should be created. If the function-oriented and the object- oriented programs are
examined, it can be seen that in the function-oriented program, the system state is centralized
and several functions accessing this central data are defined. In case of the object-oriented
program, the state information is distributed among various sensor and alarm objects.

 It is not necessary an object-oriented design be implemented by using an object-oriented
language only. However, an object-oriented language such as C++ supports the definition of all
the  basic  mechanisms of  class,  inheritance, objects,  methods,  etc.  and also support  all  key
object-oriented  concepts  that  we have just discussed. Thus, an object-oriented language
facilitates the implementation of an OOD. However, an OOD can as well be implemented using
a conventional procedural language – though it may require more effort to implement an OOD
using a procedural language as compared to the effort required for implementing the same
design using an object-oriented language.

 Even though object-oriented and function-oriented approaches are remarkably  different
approaches to software design, yet they do not replace each other but complement each other in some
sense.  For  example,  usually  one applies  the  top-down function-oriented  techniques  to  design  the



internal methods of a class, once the classes are identified. In this case, though outwardly the system
appears to have been developed in an object-oriented fashion, but inside each class there may be a
small hierarchy of functions designed in a top-down manner.

The SA/SD technique can be used to perform the high-level design of a software. The details of SA/SD 
technique are discussed further.

OVERVIEW OF SA/SD METHODOLOGY

As the name itself implies, SA/SD methodology involves carrying out two distinct activities:
 Structured analysis (SA)

 Structured design (SD)

The roles of structured analysis (SA) and structured design (SD) have been shown schematically in 
Figure.Observe the following from the figure:

----> During structured analysis, the SRS document is transformed into a data flow diagram 
(DFD) model.

-----> During structured design, the DFD model is transformed into a structure chart.

Figure: Structured analysis and structured design methodology.

The structured analysis activity transforms the SRS document into a graphic model called the DFD
model.  During structured analysis, functional decomposition of the system is achieved.Each
function  that  the  system needs to perform is analysed  and hierarchically decomposed into more
detailed functions. On the other hand, during structured design, all functions identified during
structured analysis are mapped to a module structure. This module structure is also called the  high-
level design or the software architecture for the given problem. This is represented using a structure
chart.

Structured Analysis

 Structured analysis is used to carry out the top-down decomposition of a set of high-level
functions depicted in the problem description and to represent them graphically. During structured
analysis, functional decomposition of the system is achieved. That is, each function that the system
performs is analyzed and hierarchically decomposed into more detailed functions. Structured analysis
technique is based on the following essential underlying principles:

Top-down decomposition approach.
Divide and conquer principle.Each function is decomposed independently.
Graphical representation of the analysis results using Data Flow Diagrams (DFDs).



Data Flow Diagram (DFD)

The DFD (also known as a bubble chart) is a hierarchical graphical model of a system that shows
the different processing activities or functions that the system performs and the data interchange among
these functions. Each function is considered as a processing station (or process) that consumes some
input data and produces some output data. The system is represented in terms of the input data to the
system, various processing carried out on these data, and the output data generated by the system. A
DFD model uses a very limited number of primitive symbols to represent the functions performed by a
system and the data flow among these functions.

Primitive symbols used for constructing DFDs

There are essentially five different types of symbols used for constructing DFDs. These 
primitive symbols are depicted in Figure. The meaning of these symbols are explained as follows:

Figure: Symbols used for designing DFDs.

 Function symbol: A function is represented using a circle. This symbol is called a process ora  
bubble. Bubbles are annotated with the names of the corresponding functions .

 External entity symbol: An external entity such as a librarian, a library member, etc. is 
represented by a rectangle. The external entities are essentially those physical entities external
to the software system which interact with the system by inputting data to the system or by 
consuming the data produced by the system. In addition to the human users, the external entity 
symbols can be used to represent external hardware and software such as another application 
software that would interact with the software being modelled.

 Data flow symbol: A directed arc (or an arrow) is used as a data flow symbol. A data flow 
symbol represents the data flow occurring between two processes or between an external entity
and a process in the direction of the data flow arrow. Data flow symbols are usually annotated 
with the corresponding data names. For example the DFD. I t  shows three data flows—the 
data  item  number  flowing  from the  process  read-number  to  validate-number,  data- item 
flowing into read-number, and valid-number flowing out of validate-number.

 Data store symbol: A data store is represented using two parallel lines. It represents a logical 
file. That is, a data store symbol can represent either a data structure or a physical file on disk. 
Each data store is connected to a process by means of a data flow symbol. The direction of the 
data flow arrow shows whether data is being read from or written into a data store. An arrow 
flowing in or out of a data store implicitly represents the entire data of the data store and 
hence arrows connecting to  a data store need not be annotated  with  the name  of  the  
corresponding data items. As an example of a data store, number is a data store.



 Output symbol: The output symbol i s as shown in Figure. The output symbol is used when a
hard copy is produced.

Important concepts associated with constructing DFD models

Before we discuss how to construct the DFD model of a system, let us discuss some important 
concepts associated with DFDs:

Synchronous and asynchronous operations

If two bubbles are directly connected by a data flow arrow, then they are synchronous. This
means  that  they  operate  at  t  he  same speed. An example  of  such  an  arrangement  .Here,  the
validate-number bubble can start processing only after t h e read- number bubble has supplied

data to it; and the  read-number bubble has to wait until the  validate-number bubble has

consumed its data.

However, if two bubbles are connected through a data store, then the speed of operation of the
bubbles are independent. This statement can be explained using the following reasoning. The data
produced by a producer bubble gets stored in the data store. It is therefore possible that the producer
bubble stores several pieces of data items, even before the consumer bubble consumes any of them.

         Figure: Synchronous and asynchronous data flow.

Data dictionary

A data dictionary lists all data items appearing in the DFD model of a system. The data
items listed include all data flows and the contents of all data stores appearing on the DFDs in the DFD
model  of  a  system.  A data  dictionary  lists  the purpose  of  all  data  items  and  the  definition  of  all
composite data items in terms of their component data items. For example, a data dictionary entry may
represent that the data grossPay consists of the components regularPay and overtimePay.

           grossPay = regularPay + overtimePay
For the smallest units of data items, the data dictionary lists their name and their type. Composite data
items can be defined in terms of primitive data items using the following data definition operators. The
dictionary plays a very important role in any software development process, especially for the following
reasons:

 A data dictionary provides a standard terminology for all relevant data for use by the developers
working in a project. A consistent vocabulary for data items is very important, since in large projects
different developers of the project have a tendency to use different terms to refer to the same data,
which unnecessarily causes confusion.

 The data dictionary helps the developers to determine the definition of different data structures
in terms of their component elements while implementing the design.



 The data dictionary helps to perform impact analysis. That is, it is possible to determine the
effect of some data on various processing activities and vice versa. Such impact analysis is especially
useful  when one  wants  to  check  the  impact  of  changing an  input  value type,  or  a bug in some
functionality, etc.

Data definition

Composite data items can be defined in terms of primitive data items using the following data 
definition operators.

 +:  denotes composition of two data items, e.g. a+b represents data a and b.

 [,,]: represents selection, i.e. any one of the data items listed in the brackets

can occur. For example, [a,b] represents either a occurs or b occurs.

 ():  the contents inside the bracket represent optional data which may or may

not appear. e.g. a+(b)represents either a occurs or a+b occurs.

 {}: represents iterative data definition, e.g.  {name}5 represents five name
data. {name}* represents zero or more instances of name data.

  =: represents equivalence, e.g. a=b+c means that a represents b and  c.

/* */:Anything appearing within /* and */ is considered as a comment.

DEVELOPING THE DFD MODEL OF A SYSTEM

A DFD model of a system graphically represents how each input data is transformed 
to its corresponding output data through a hierarchy of DFDs.

The DFD model of a system i s constructed by using a hierarchy of DFDs .The top level DFD is
called the level 0 DFD or the context diagram. This is the most abstract (simplest) representation of the
system (highest level). It is the easiest to draw and understand. At each successive lower level DFDs,
more and more details are gradually introduced. To develop a higher-level DFD model, processes are
decomposed into their subprocesses and the data flow among these subprocesses are identified.

To develop the data flow model of a system, first the most abstract representation (highest level) of
the problem is to be worked out. Subsequently,  the lower level DFDs are developed. Level 0 and
Level 1 consist of only one DFD each. Level 2 may contain up to 7 separate DFDs, and level 3 up to
49 DFDs, and so on. However, there is only a single data dictionary for the entire DFD model. All the
data names appearing in all DFDs are populated in the data dictionary and the data dictionary contains
the definitions of all the data items.

Context diagram:
The  context  diagram  is  the  most  abstract  data  flow  representation  of  a  system.  It

represents the entire system as a single bubble. This bubble is labeled according to the main function
of the system. The various external entities with which the system interacts and the data flow occurring
between the system and the external entities are also represented. The data input to the system and the
data output from the system are represented as incoming and outgoing arrows. These data flow arrows
should be annotated with the corresponding data names. The name ‘context diagram’ is well justified
because it represents the context in which the system is to exist, i.e. the external entities who would
interact with the system and the specific data items they would be supplying the system and the data
items they would be receiving from the system. The context diagram is also called as the level 0
DFD.

The DFD model of a problem consists of many of DFDs and a single data dictionary.



To develop the  context diagram of the system, it is required to analyze the SRS document to
identify the different types of users who would be using the system and the kinds of data they would be
inputting to the system and the data they would be receiving the system. Here, the term “users of the
system” also includes the external systems which supply data to or receive data from the system.

The bubble in the context diagram is annotated with the name of the software system being
developed (usually a noun). This is in contrast with the bubbles in all other levels which are annotated
with verbs. This is expected since the purpose of the context diagram is to capture the context of the
system rather than its functionality.
We can now describe how to go about developing the DFD model of a system more
systematically.
Construction of context diagram: Examine the SRS document to determine:

• Different high-level functions that the system needs to perform.

• Data input to every high-level function.

• Data output from every high-level function.

• Interactions (data flow) among the identified high-level functions. Represent these aspects
of the high-level functions in a diagrammatic form. This would form the top-level data
flow diagram (DFD), usually called the DFD 0.

Construction of level 1 diagram: Examine the high-level functions described in the SRS document.
If there are three to seven high-level requirements in the SRS document, then represent each of the
high-level function in  the form of a bubble. If there are more than seven bubbles, then some of them
have to be combined. If there are less than three bubbles, then some of these have to be split.

construction  of  lower-level  diagrams:  Decompose  each  high-level  function into its constituent
subfunctions through the following set of activities:

• Identify the different subfunctions of the high-level function.

• Identify the data input to each of these subfunctions.

• Identify the data output from each of these subfunctions.

• Identify the interactions (data flow) among these subfunctions. Represent these aspects in
a diagrammatic form using a DFD. 

Decomposition:-
         Each bubble in  the DFD represents  a function performed by the system. The bubbles are
decomposed into sub-functions at the successive levels of the DFD. Decomposition of a bubble is also
known as factoring or exploding a bubble. Each bubble at any level of DFD is usually decomposed to
anything between 3 to  7 bubbles.  Too few bubbles  at  any level  make  that  level  superfluous.  For
example,  if  a  bubble  is  decomposed  to  just  one  bubble  or  two  bubbles,  then  this  decomposition
becomes redundant. Also, too many bubbles, i.e. more than 7 bubbles at any level of a DFD makes the
DFD model  hard  to  understand. Decomposition  of  a  bubble  should  be  carried  on  until  a  level  is
reached at which the function of the bubble can be described using a simple algorithm.

Numbering of Bubbles:-
      It is necessary to number the different bubbles occurring in the DFD. These numbers help in
uniquely identifying any bubble in the DFD by its bubble number. The bubble at the context level is
usually assigned the number 0 to indicate that it is the 0 level DFD. Bubbles at level 1 are numbered,
0.1, 0.2, 0.3, etc, etc. When a bubble numbered x is decomposed, its children bubble are numbered x.1,
x.2, x.3, etc. In this numbering scheme, by looking at the number of a bubble we can unambiguously
determine its level, its ancestors, and its successors.



Balancing a DFD
The data that flow into or out of a bubble must match the data flow at the next level of DFD.

This is known as balancing a DFD. The concept of balancing a DFD has been illustrated in fig.In
the level 1 of the DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item d2 flows
into the bubble 0.1. In the next level, bubble 0.1 is decomposed. The decomposition is balanced, as d1
and d3 flow out of the level 2 diagram and d2 flows in. 

Fig:Level 1 DFD

   Fig:Level 2 DFD

some important shortcomings of the DFD model.
DFD models suffer from several shortcomings. The important shortcomings of the DFD 

models are the following:

 DFDs leave ample scope to be imprecise. In the DFD model,  the function performed by a
bubble is judged from its label. However, a short label may not capture the entire functionality
of a bubble. For example, a bubble named find-book-position has only intuitive meaning and
does not specify several things, e.g. what happens when some input information are missing or
are incorrect. Further, the find-book-position bubble may not convey anything regarding what
happens when the required book is missing.

 Control  aspects  are  not  defined  by  a  DFD.  For  instance,  the  order  in  which inputs are
consumed and outputs are produced by a bubble is not specified.  A DFD model does not
specify the order in which the different bubbles are executed. Representation of such aspects
is very important for modeling real-time systems.

 The method of carrying out decomposition to arrive at the successive levels and the ultimate
level to which decomposition is carried out are highly subjective and depend on the choice and
judgment of the analyst. Due to this reason, even for the same problem, several alternative
DFD representations are possible. Further, many times it is not possible to say which DFD
representation is superior or preferable to another one.



 The data flow diagramming technique does not provide any specific guidance as to how
exactly  to  decompose  a  given  function  into  its  sub- functions and we have to use
subjective judgment to carry out decomposition.

Example.1(Tic-Tac-Toe Computer Game ) Tic-tac-toe is a computer game in which a human player
and the computer make alternate moves on a 3 × 3 square. A move consists of marking a previously
unmarked square. The player who is first to place three consecutive marks along a straight line (i.e.,
along a row, column, or diagonal) on the square wins. As soon as either of the human player or
the  computer  wins,  a  message  congratulating  the  winner should  be  displayed.  If  neither player
manages to get three consecutive marks along a straight line, and all the squares on the board are
filled up, then the game is drawn. The computer always tries to win a game.

The context diagram and the level 1 DFD are shown in Figure.

Data dictionary for the DFD model of Example

move: integer /* number between 1 to 9 */

display: game+result

game: board 

board: {integer}9
result: [“computer won”, “human won”, “drawn”]

                   

                    

Figure: Context diagram and level 1 DFDs for Example 1



Example 2(Supermarket Prize Scheme)  A super market needs to develop a software that would
help it to automate a scheme that it plans to introduce to encourage regular customers. In this
scheme,  a  customer  would  have  first  register  by  supplying  his/her  residence  address,  telephone
number, and the driving license number. Each customer who registers for this scheme is assigned a
unique customer number (CN) by the computer. A customer can present his CN to the check out staff
when he makes any purchase. In this case, the value of his purchase is credited against his CN. At the
end of each year,  the supermarket intends to award surprise gifts  to 10 customers who make the
highest total purchase over the year. Also, it intends to award a 22 caret gold coin to every customer
whose purchase exceeded Rs. 10,000. The entries against the CN are reset on the last day of every
year after the prize winners’ lists are generated.

                

Figure: Context diagram for Example 2

Figure: Level 1 diagram for Example 2



 
Figure: Level 2 diagram for Example 2

Data dictionary for the DFD model of Example 2

address: name+house#+street#+city+pin

sales-details: {item+amount}* + CN
CN: integer

customer-data: {address+CN}* 

sales-info: {sales-details}*

winner-list: surprise-gift-winner-list + gold-coin-winner-list 
surprise-gift-winner-list: {address+CN}*
gold-coin-winner-list: {address+CN}*
gen-winner-command: command 

          total-sales: {CN+integer}*

Extending DFD Technique to make it Applicable to Real-time Systems

In  a  real-time  system,  some of  the high-level  functions  are  associated with  deadlines.
Therefore,a  function  must  not  only  produce  correct results  but  also  should  produce  them by  some
prespecified time. For real-time systems, execution time is an important consideration for arriving at a
correct design. Therefore, explicit representation of control and event flow aspects are essential. One of
the widely accepted techniques for extending the DFD technique to real-time system analysis is the
Ward and Mellor technique [1985]. In the Ward and Mellor notation, a type of process that handles only
control flows is introduced. These processes representing control processing are denoted using dashed
bubbles. Control flows are shown using dashed lines/arrows.
            To be able to separate the data processing and the control processing aspects, a control flow 
diagram (CFD) is defined. This reduces the complexity of the diagrams. In order to link the data 



processing and control processing diagrams, a notational reference (solid bar) to a control 
specification is used. The CSPEC describes the following:

The effect of an external event or control signal.

The processes that are invoked as a consequence of an event.
 Control specifications represents the behavior of the system in two different ways:

 It contains a state transition diagram (STD). The STD is a sequential specification of  behaviour.

 It contains a program  activation table (PAT). The PAT is a combinatorial specification of
behaviour. PAT represents invocation sequence of bubbles in a DFD.

Structured Design

The  aim  of  structured  design  is  to  transform  the  results  of  the  structured  analysis (i.e.  a  DFD
representation)  into  a  structure  chart.  Structured  design  provides  two strategies to guide
transformation of a DFD into a structure chart.

 Transform analysis
 Transaction analysis

Normally, one starts with the level 1 DFD, transforms it into module representation using either
the transform or the transaction analysis and then proceeds towards the lower-level DFDs. At each
level of transformation,  it  is important to first  determine whether the transform or the transaction
analysis is applicable to a particular DFD. These are discussed in the subsequent sub- sections.

Structure Chart

A structure chart represents the software architecture, i.e. the various modules making up the
system, the dependency (which module calls which other modules), and the parameters that are passed
among the different modules. Hence,  the structure chart  representation can be easily implemented
using some programming language. Since the main focus in a structure chart representation is on the
module structure of the software and the interactions among different modules, the procedural aspects
(e.g. how a particular functionality is achieved) are not represented.

The basic building blocks using which structure charts are designed are as following:

Rectangular boxes: A rectangular box represents a module. Usually, every rectangular box is 
annotated with the name of the module it represents.

Module invocation arrows: An arrow connecting two modules implies that during program 
execution control is passed from one module to the other in the direction of the connecting arrow. 
However, just by looking at the structure chart, we cannot say whether a modules calls another 
module just once or many times. Also, just by looking at the structure chart, we cannot tell the 
order in which the different modules are invoked.

Data flow arrows: These are small arrows appearing alongside the module invocation arrows. The 
data flow arrows are annotated with the corresponding data name. Data flo w arrows represent the 
fact that the named data passes from one module to the other in the direction of the arrow.

Library modules: A library module is usually represented by a rectangle with double edges. 
Libraries comprise the frequently called modules. Usually, when a module is invoked by many 
other modules, it is made into a library module.

Selection:  The diamond symbol represents the fact that one module of several modules connected
with the diamond symbol i s invoked depending on the outcome of the condition attached with the
diamond symbol.



Repetition:  A loop  around  the  control  flow  arrows  denotes  that  the  respective modules are invoked
repeatedly.

Structure Chart vs. Flow Chart

We are  all  familiar  with  the  flow chart  representation  of  a  program.  Flow chart  is  a convenient
technique to represent the flow of control in a program. A structure chart differs from a flow chart in
three principal ways:

 It is usually difficult to identify the different modules of the software from its flow 
chart representation.

 Data interchange among different modules is not represented in a flow chart.

 Sequential ordering of tasks inherent in a flow chart is suppressed in a structure chart.

  Transform Analysis

Transform analysis identifies the primary functional components (modules) and the high level
inputs and outputs for these components. The first step in transform analysis is to divide the DFD into
3 types of parts:

 Input
 Logical processing
 Output

 The  input  portion  of  the  DFD  includes  processes  that  transform  input  data  from physical  (e.g.
character from terminal) to logical forms (e.g. internal tables, lists, etc.). Each input portion is called
an afferent branch.

 The output  portion  of  a  DFD transforms output  data  from logical  to  physical  form. Each output
portion is called an efferent branch. The remaining portion of a DFD is called the central transform.

 In  the  next  step  of  transform analysis,  the  structure  chart  is  derived  by  drawing one functional
component for the central transform, and the afferent and efferent branches. These are drawn below a
root module, which would invoke these modules.

Identifying the highest level input and output transforms requires experience and skill. One possible approach
is to trace the inputs until a bubble is found whose output cannot be deduced from its inputs alone. Processes
which validate input or add information to them are not central transforms. Processes which sort input or filter
data from it are. The first level structure chart is produced by representing each input and output unit as boxes
and each central transform as a single box.

In the third step of transform analysis, the structure chart is refined by adding sub-functions required by
each of the high-level functional components.  Many levels of functional components may be added. This
process of breaking functional components into subcomponents is called factoring. Factoring includes adding
read and write modules, error-handling modules, initialization and termination process, identifying customer
modules, etc. The factoring process is continued until all bubbles in the DFD are represented in the structure
chart.



Example:Draw the structure chart for the RMS software

By observing the level 1 DFD , we can identify validate-input as the afferent branch and write-output as
the efferent branch. The remaining (i.e., compute-rms) as the central transform. By applying the step 2 and
step 3 of transform analysis, we get the structure chart shown in Figure.

Figure: Structure chart for Example

Transaction Analysis

A transaction allows the user to perform some meaningful piece of work. Transaction analysis is
useful while designing transaction processing programs. In a transaction-driven system, one of several
possible paths through the DFD is traversed depending upon the input data item. This is in contrast to
a transform centered system which is characterized by similar processing steps for each data item.
Each  different  way  in  which  input  data  is  handled  is  a  transaction.  A simple way  to  identify  a
transaction is to check the input data. The number of bubbles on which the input data to the DFD are
incident defines the number of transactions. However, some transaction may not require any input
data. These transactions can be identified from the experience of solving a large number of examples.

For each identified transaction, trace the input data to the output. All the traversed bubbles
belong to the transaction. These bubbles should be mapped to the same module on the structure
chart. In the structure chart, draw a root  module  and below this  module  draw each identified
transaction a module. Every transaction carries a tag, which identifies its type. Transaction analysis uses
this tag to divide the system into transaction modules and a transaction-center module.

Example:Draw the structure chart for the personal library software of Example
The structure chart for the personal library software is shown in Figure



Figure: Structure chart for Example
DETAILED DESIGN

During detailed design the pseudo code description of the processing and the different data structures
are designed for the different modules of the structure chart. These are usually described in the form
of  module specifications (MSPEC). MSPEC is usually written using structured English.  The
MSPEC for the non-leaf modules describe the different conditions under which the responsibilities
are delegated to the lower- level modules. The MSPEC for the leaf-level modules should describe in
algorithmic form how the primitive processing steps are carried out. To develop the MSPEC of a
module, it is usually necessary to refer to the DFD model and the SRS document to determine the
functionality of the module.

DESIGN REVIEW

After a design is complete, the design is required to be reviewed. The review team usually consists of
members with design, implementation, testing, and maintenance perspectives, who may or may not be the
members of the development team. Normally, members of the team who would code the design, and test the
code,  the  analysts,  and  the maintainers  attend  the  review meeting.  The  review team checks  the design
documents especially for the following aspects:

Traceability:  Whether each bubble of the DFD can be traced to some module in the structure chart a  nd
vice versa. They check whether each functional requirement in the SRS document can be traced to some
bubble in the DFD model and vice versa.

Correctness: Whether all the algorithms and data structures of the detailed design are correct.

Maintainability: Whether the design can be easily maintained in future.

Implementation: Whether the design can be easily and efficiently be implemented.



Model
A model is constructed by focusing only on a few aspects of the problem and ignoring the rest. The

model of a problem is called an analysis model. On the other hand, the model of the solution (code) is called
the design model. The design model is usually obtained by carrying out iterative refinements to the analysis
model using a design methodology.

A model captures aspects important for some application while omitting (or abstracting) the rest.  A
model in the context of software development can be graphical, textual, mathematical, or program code-based.
Models are very useful in documenting the design and analysis results. Models also facilitate the analysis and
design procedures themselves. Graphical models are very popular because they are easy to understand and
construct.  UML is  primarily  a  graphical modeling  tool.  However,  it  often  requires  text  explanations  to
accompany the graphical models.

Need for a model

An important reason behind constructing a model is that it helps manage complexity.  Once models of a
system have been constructed,  these can be used for a variety of purposes during software development,
including the following:

 Analysis
 Specification
 Code generation
 Design
 Visualize and understand the problem and the working of a system
 Testing, etc.

In all these applications, the UML models can not only be used to document the results but also to
arrive at the results themselves. Since a model can be used for a variety of purposes, it is reasonable to
expect that the model would vary depending on the purpose for which it is being constructed. For
example, a model developed for initial analysis and specification should be very different from the one
used for design. A model that is being used for analysis and specification would not show any of the design
decisions that would be made later on during the design stage. On the other hand, a model used for design
purposes  should  capture  all  the  design  decisions.  Therefore,  it  is  a  good idea  to explicitly  mention  the
purpose for which a model has been developed, along with the model.

Unified Modeling Language (UML)

UML, as the name implies, is a modeling language. It may be used to visualize, specify, construct, and
document the artifacts of a software system. It provides a set of notations (e.g. rectangles, lines, ellipses,
etc.) to create a visual model of the system. Like any other language, UML has its own syntax (symbols and
sentence formation rules) and semantics  (meanings of symbols and sentences). Also, we should clearly
understand that UML is not a system design or development methodology, but can be used to document
object-oriented and analysis results obtained using some methodology.

 



Origin of UML

In the late 1980s and early 1990s, there was a proliferation of object-oriented design techniques and
notations. Different software development houses were using different notations to document their object-
oriented designs. These diverse notations used to give rise to a lot of confusion.

UML was developed to standardize the large number of object-oriented modeling notations that existed
and were used extensively in the early 1990s. The principles ones in use were:

 Object Management Technology [Rumbaugh 1991]
 Booch’s methodology [Booch 1991]
 Object-Oriented Software Engineering [Jacobson 1992]
 Odell’s methodology [Odell 1992]
 Shaler and Mellor methodology [Shaler 1992]

It  is  needless  to  say  that  UML has  borrowed  many  concepts  from these modeling  techniques.Especially,
concepts from the first  three methodologies have been heavily drawn upon. UML was adopted by Object
Management Group (OMG) as a de facto standard in 1997. OMG is an association of industries which tries to
facilitate early formation of standards.

We shall see that UML contains an extensive set of notations and suggests construction of many types
of diagrams. It has successfully been used to model both large and small problems. The elegance of UML, its
adoption by OMG, and a strong industry backing have helped UML find widespread acceptance. UML is now
being used in a large number of software development projects worldwide.

UML diagrams

UML can be used to construct nine different types of diagrams to capture five different views of a
system. Just as a building can be modeled from several views (or  perspectives)  such as  ventilation
perspective,  electrical  perspective, lighting perspective, heating perspective, etc.; the different UML
diagrams provide different perspectives of the software system to be developed and facilitate  a
comprehensive understanding of the system. Such models can be refined to get the actual implementation of
the system.

   The UML diagrams can capture the following five views of a system:

 User’s view
 Structural view
 Behavioral view
 Implementation view
 Environmental view

It shows the different views that the UML diagrams can document. Observe that the users’ view is
shown as the central view. This is because based on the users’ view, all other views are developed and all
views need to conform to the user’s view. Most of the object oriented analysis and design methodologies,
including the one we are going to discuss in Chapter 8 require us to iterate among the different views several
times to arrive at the final design. We first provide a brief overview of the different views of a system which
can be documented using UML. In the subsequent sections, the diagrams used to realize the important views
are discussed.



            Figure: Different types of diagrams and views supported in UML.

Users’ view: This view defines the functionalities (facilities) made available by the system to its users.
The users’ view captures the external users’ view of the system in terms of the functionalities offered by
the system. The users view is a black-box view of the system where the internal structure, the dynamic
behavior of different system components, the implementation etc. are not visible. The users’ view is
very different from all other views in the sense that it is a functional model compared to the object
model of all other views. The users’ view can be considered as the central view and all other views
are expected to conform to this view. This thinking is in fact the crux of any user  centric development
style.
Structural view: The structural view defines the kinds of objects (classes) important to the understanding of
the working of a system and to its implementation. It also captures the relationships among the classes
(objects). The structural model is also called the static model, since the structure of a system does not change
with time.

Behavioral view: The behavioral view captures how objects interact with each other to realize the system
behavior. The system behavior captures the time-dependent (dynamic) behavior of the system.

Implementation view: This view captures the important components of the system and their dependencies.

Environmental view: This view models how the different components are implemented on different
pieces of hardware.

Use Case Model

The use case model for any system consists of a set of “use cases”. Intuitively, use cases represent the
different ways in which a system can be used by the users. A simple way to find all the use cases of a system is
to ask the question: “What the users can do using the system?” Thus for the Library Information System (LIS),
the use cases could be:

 issue-book

 query-book



 return-book

 create-member

 add-book, etc

Use cases correspond to the high-level functional requirements. The use cases partition the system
behavior into transactions, such that each transaction performs some useful action from the user’s point of
view. To complete each transaction may involve either a single message or multiple message exchanges
between the user and the system to complete.

 Purpose of use cases

The purpose of a use case is  to define a piece of coherent behavior without revealing the internal
structure of the system. The use cases do not mention any specific algorithm to be used or the internal data
representation, internal structure  of  the  software,  etc.  A use  case  typically  represents  a  sequence  of
interactions between the user and the system. These interactions consist  of one mainline sequence. The
mainline sequence represents the normal interaction between a user and the system. The mainline sequence
is the most occurring sequence of interaction. For example, the mainline sequence of the withdraw cash use
case supported by a bank ATM drawn, complete the transaction, and get the amount. Several variations to the
main line sequence may also exist. Typically,  a variation from the mainline sequence occurs when some
specific conditions hold. 

For the bank ATM example, variations or alternate scenarios may occur, if the password is invalid or
the amount to be withdrawn exceeds the amount balance. The variations are also called alternative paths. A
use case can be viewed as a set of related scenarios tied together by a common goal. The mainline sequence
and each of the variations are called scenarios or instances of the use case. Each scenario is a single path
of user events and system activity through the use case.

  Representation of use cases

Use cases  can  be  represented  by  drawing a  use  case  diagram and  writing  an accompanying  text
elaborating the drawing. In the use case diagram, each use case is represented by an ellipse with the name
of the use case written inside the ellipse. All the ellipses (i.e. use cases) of a system are enclosed within a
rectangle which represents the system boundary. The name of the system being modeled (such as Library
Information System) appears inside the rectangle.

The different users of the system are represented by using the stick person icon. Each
stick person icon is normally referred to as an actor. An actor is a role played by a user with respect to
the system use. It is possible that the same user may play the role of multiple actors. Each actor can
participate in one or more use cases.  The line connecting the actor and the use case is  called the
communication relationship. It indicates that the actor makes use of the functionality provided by the
use case. Both the human users and the external systems can be represented by stick person icons.
When a stick person icon represents an external system, it is annotated by the stereotype <<external
system>>.



Example:The use case model for the Tic-tac-toe game software is shown.This software has only one use
case, namely, “play move”. Note that we did not name the use case “get-user-move”, as “get- user-move”
would be inappropriate because this would represent the developer’s perspective of the use case. The use cases
should be named from the users’ perspective.

   Figure: Use case model for Example

Text description
Each ellipse on the use case diagram should be accompanied by a text description. The text description

should define the details of the interaction between the user and the computer and other aspects of the use
case. It should include all the behavior associated with the use case in terms of the mainline sequence,
different variations to the normal behavior, the system responses associated with the use case, the exceptional
conditions that may occur in the behavior, etc. The behavior description is often written in a conversational
style describing the interactions between the actor and the system. The text description may be informal, but
some structuring is recommended. The following are some of the information which may be included in a
use case text description in addition to the mainline sequence, and the alternative scenarios.

Contact persons: This section lists the personnel of the client organization with whom the use case was
discussed, date and time of the meeting, etc.

Actors: In addition to identifying the actors, some information about actors using this use case which may
help the implementation of the use case may be recorded.

Pre-condition: The preconditions would describe the state of the system before the use case execution
starts.
Post-condition: This captures the state of the system after the use case has successfully completed.

Non-functional  requirements:  This  could  contain  the  important  constraints for the design and
implementation, such as platform and environment conditions, qualitative response time requirements,
etc.
Exceptions, error situations: This contains only the domain-related errors such as lack of user’s access
rights, invalid entry in the input fields, etc. Obviously, errors that are not domain related, such as software
errors, need not be discussed here.

Sample dialogs: These serve as examples illustrating the use case.

Specific user interface requirements: These contain specific requirements for the user interface of the
use case. For example, it may contain forms to be used, screen shots, interaction style, etc.



Document references:  This part contains references to specific domain- related documents which
may be useful to understand the system operation.

Example:The use case diagram of the Super market prize scheme described in example 

Figure : Use case model for Example

Text description
U1: register-customer: Using this use case, the customer can register himself by providing the necessary
details.

Scenario 1: Mainline sequence
1.Customer: select register customer option

2 . System: display prompt to enter name, address, and telephone number.
3. Customer: enter the necessary values

4 : System: display the generated id and the message that the customer has successfully been registered.

Scenario 2: At step 4 of mainline sequence

4 : System: displays the message that the customer has already registered.

Scenario 3: At step 4 of mainline sequence

4 : System: displays message that some input information have not been entered. The system displays a
prompt to enter the missing values.

U2: register-sales: Using this use case, the clerk can register the details of the purchase made by a customer.

Scenario 1: Mainline sequence

1. Clerk: selects the register sales option.

2. System: displays prompt to enter the purchase details and the id of the customer.

3. Clerk: enters the required details.

4.  System: displays a message of having successfully registered the sale.

U3: select-winners. Using this use case, the manager can generate the winner list.



Scenario 2: Mainline sequence

1. Manager: selects the select-winner option.

2.System: displays the gold coin and the surprise gift winner list.

Utility of use case diagrams: From use case diagram, it is obvious that the utility of the use cases are
represented by ellipses. They along with the accompanying text description serve as a type of requirements
specification of the system and form the core model to which all other models must conform. But, what about
the actors (stick person icons)? One possible use of identifying the different types of users (actors) is  in
identifying and implementing a security mechanism through a login system, so that each actor can involve only
those functionalities to which he is entitled to. Another possible use is in preparing the documentation (e.g.
users’ manual)  targeted  at  each  category  of  user.  Further,  actors  help  in  identifying  the use cases and
understanding the exact functioning of the system.

Factoring of use cases
 It is often desirable to factor use cases into component use cases. Actually, factoring of use cases are required
under two situations. 

 First, complex use cases need to be factored into simpler use cases. This would not only
make the behavior associated with the use case much more comprehensible, but also
make the corresponding interaction diagrams more tractable. Without decomposition,  the
interaction diagrams for complex use cases may become too large to be accommodated on a
single sized (A4) paper. 

 Secondly,  use cases need to  be factored whenever  there  is  common behavior  across
different use cases. Factoring would make it possible to define such behavior only once and
reuse it whenever required. It is desirable to factor out common usage such as error handling
from a set of use cases. This makes analysis of the class design much simpler and elegant.
However,  a  word of caution here.  Factoring of  use cases  should not  be done except  for
achieving the above two objectives. From the design point of view, it is not advantageous to
break up a use case into many smaller parts just for the shake of it.

UML offers three mechanisms for factoring of use cases as follows:
Generalization

            Use case generalization can be used when one use case that is similar to  another, but does something
slightly differently or something more. Generalization works the same way with use cases as it does with
classes. The child use case inherits the behavior and meaning of the parent use case. The notation is the same
too. It is important to remember that the base and the derived use cases are separate use cases and should have
separate text description

Figure: Representation of use case generalisation.

     



Includes

The  includes  relationship  in  the  older  versions  of  UML (prior  to  UML) was  known  as  the  uses
relationship. The includes relationship involves one use case including the behavior of another use case in its
sequence of events and actions. The includes relationship occurs when a chunk of behavior that is similar
across a number of use cases. The factoring of such behavior will help in not repeating the specification and
implementation  across  different  use  cases.  Thus,  the  includes  relationship explores  the  issue  of  reuse  by
factoring out the commonality across use cases. It can also be gainfully employed to decompose a large and
complex use cases into more manageable parts. As shown in fig, the includes relationship is represented
using a predefined stereotype<<include>>. In the includes relationship, a base use case compulsorily and
automatically includes the behavior of the common use cases. As shown in example fig. issue-book and renew-
book both include check-reservation use case. The base use case may include several use cases. In such cases,
it may interleave their associated common use cases together. The common use case becomes a separate use
case and the independent text description should be provided for it.

Figure: Representation of use case inclusion.

     Figure: Example of use case inclusion

Extends

The main idea behind the extends relationship among the use cases is that  it  allows you to show
optional  system  behavior.  An  optional  system behavior is extended only under certain conditions. This
relationship among use cases is also predefined as a stereotype as shown in fig.The extends relationship is
similar to generalization. But unlike generalization, the extending use case can add additional behavior only at
an extension point only when certain conditions are satisfied. The extension points are points within the use
case where variation to the mainline (normal) action sequence may occur. The extends relationship is normally
used to capture alternate paths or scenarios.



Figure: Example of use case extension.

The extends  relationship is similar to generalisation. But unlike generalisation, the extending use case
can add additional behaviour only at an extension point only when certain conditions are satisfied. The
extension points are points within the use case where variation to the mainline (normal) action sequence
may occur.The extends relationship is normally used to capture alternate paths or scenarios.

Organization of use cases
When the use cases are factored, they are organized hierarchically. The high- level use cases are refined

into a set of smaller and more refined use cases as shown in fig.Top-level use cases are super-ordinate to the
refined use cases.  The refined  use cases  are  sub-ordinate  to  the  top-level  use cases.  Note that  only  the
complex use cases should be decomposed and organized in a hierarchy. It is not necessary to decompose
simple use cases. The functionality of the super-ordinate use cases is traceable to their sub-ordinate use cases.
Thus, the functionality provided by the super-ordinate use cases is composite of the functionality of the sub-
ordinate use cases. In the highest level of the use case model, only the fundamental use cases are shown. The
focus is on the application context. Therefore, this level is also referred to as the context diagram. In the
context diagram, the system limits are emphasized. In the top- level diagram, only those use cases with which
external users of the system. The subsystem-level use cases specify the services offered by the subsystems.
Any number of levels involving the subsystems may be utilized. In the lowest level of the use case hierarchy,
the class-level use cases specify the functional fragments or operations offered by the classes.  

                              

Figure: Hierarchical organisation of use cases.



Class diagrams

A class diagram describes the static structure of a system. It shows how a system is structured rather than
how  it  behaves.  The  static  structure  of  a  system comprises  of  a  number  of  class  diagrams  and  their
dependencies. The main constituents of a class diagram are classes and their relationships: generalization,
aggregation, association, and various kinds of dependencies.

  Classes

The  classes  represent  entities  with  common  features,  i.e.  attributes  and operations. Classes are
represented as solid outline rectangles with compartments. Classes have a mandatory name compartment
where the name is  written  centered  in  boldface.  The  class  name  is  usually  written  using  mixed case
convention and begins with an uppercase.  The class names are usually chosen to be singular nouns.  An
example of a class is shown in fig.

Classes  have  optional  attributes  and  operations  compartments.  A class may appear on several
diagrams. Its attributes and operations are suppressed on all but one diagram.

Figure: Different representations of the LibraryMember class.
Attributes

An attribute is a named property of a class. It represents the kind of data that an object might contain.
Attributes are listed with their names, and may optionally contain specification of their type,(that is, their
class, e.g., Int, Book, Employee, etc.), an initial value, and constraints. The type of the attribute is written by
appending a colon and the type name after the attribute name. Typically, the first letter of a class name is a
small letter. An example for an attribute is given. e.g. sensorStatus[1]:Int=0.

bookName : String

Operation

Operation is the implementation of a service that can be requested from any object of the class to
affect behaviour. An object’s data or state can be changed by invoking an operation of the object. A class may
have any number of operations or no operation at all. Typically, the first letter of an operation name is  a small
letter. Abstract operations are written in italics. The parameters of an operation (if any), may have a kind



specified, which may be ‘in’, ‘out’ or ‘inout’. An operation may have a return type consisting of a single
return type expression. An example for an operation is given.

issueBook(in bookName):Boolean

Association

Associations are needed to enable objects to communicate with each other. An association describes a
connection between classes. The association relation between two objects is called object connection or link.
Links are instances of associations. A link is a physical or conceptual connection between object instances.
Mathematically, a link can be considered to be a tuple, i.e. an ordered list of object instances. An association
describes  a  group of  links  with  a  common structure and common semantics. For example, consider the
statement that Library  Member  borrows  Books.  Here,  borrows  is  the  association  between  the class
LibraryMember  and  the  class  Book.  Usually,  an  association  is  a  binary relation  (between  two  classes).
However, three or more different classes can be involved in an association. A class can have an association
relationship with itself (called recursive association). In this case, it  is usually assumed that two different
objects of the class are linked by the association relationship.

Association  between two classes  is  represented by drawing a straight  line between the concerned
classes.it  illustrates the graphical representation of the association relation. The name of the association is
written along side the association line. An arrowhead may be placed on the association line to indicate the
reading direction of the association. The arrowhead should not be misunderstood to be indicating the direction
of a pointer implementing an association. On each side of the association relation, the multiplicity is noted as
an individual number or as a value range. The multiplicity indicates how many instances of one class are
associated with each other. Value ranges of multiplicity are noted by specifying the minimum and maximum
value, separated by two dots, e.g.An asterisk is a wild card and means many (zero or more). The association of
fig. should be read as “Many books may be borrowed by a Library Member”. Observe that associations (and
links) appear as verbs in the problem statement.

Figure: Association between two classes.

Associations are usually realized by assigning appropriate reference attributes to the classes involved.
Thus, associations can be implemented using pointers from one object class to another. Links and associations
can also be implemented by using a separate class that stores which objects of a class are linked to which
objects of another class. Some CASE tools use the role names of the association relation for the corresponding
automatically generated attribute.

Aggregation

Aggregation  is  a  special  type  of  association  where  the  involved  classes  represent a  whole-part
relationship. The aggregate takes the responsibility of forwarding messages to the appropriate parts. Thus,
the aggregate takes the responsibility of delegation and leadership. When an instance of one object contains
instances of some other objects, then aggregation (or composition) relationship exists between the composite



object and the component object. Aggregation is represented by the diamond symbol at the composite end of
a relationship. The number of instances of the component class aggregated can also be shown as in fig.

Fig: Representation of aggregation

Aggregation relationship cannot be reflexive (i.e. recursive). That is, an object cannot contain objects of the
same class as itself.  Also, the aggregation relation is not symmetric. That is,  two classes A and B cannot
contain  instances of  each  other.  However,  the  aggregation  relationship  can  be  transitive.  In  this case,
aggregation may consist of an arbitrary number of levels.

Composition

Composition is a stricter form of aggregation, in which the parts are existence-dependent on the
whole. This means that the life of the parts closely ties to the life of the whole. When the whole is created,
the  parts  are  created  and when  the  whole  is  destroyed,  the  parts  are  destroyed.  A typical  example  of
composition is an invoice object with invoice items. As soon as the invoice object is created, all the invoice
items in it are created and as soon as the invoice object is destroyed, all invoice items in it are also destroyed.
The composition relationship is represented as a filled diamond drawn at the composite-end. An example of
the composition relationship is shown in fig.

Fig: Representation of composition

Dependency:
A dependency relationship is shown as a dotted arrow that is drawn from the dependent class to the 
independent class.

Figure:Representation of dependence between classes.

Association vs. Aggregation vs. Composition

 Association is the most general (m:n) relationship. Aggregation is a stronger relationship where
one is a part of the other. Composition is even stronger than aggregation, ties the lifecycle of the
part and the whole together.

 Association relationship can be reflexive (objects  can have relation to itself),  but  aggregation
cannot be reflexive. Moreover, aggregation is anti-symmetric (If B is a part of A, A can not be a
part of B).



 Composition has the property of exclusive aggregation i.e. an object can be a part of only one
composite at a time. For example, a Frame belongs to exactly one Window whereas in simple
aggregation, a part may be shared by several objects. For example, a Wall may be a part of one or
more Room objects.

 In addition, in composition, the whole has the responsibility for the disposition of all its parts, i.e.
for their creation and destruction.

o in general, the lifetime of parts and composite coincides
o parts with non-fixed multiplicity may be created after composite itself
o parts might be explicitly removed before the death of the composite

For example, when a Frame is created, it has to be attached to an enclosing Window. Similarly, when the
Window is destroyed, it must in turn destroy its Frame parts

Inheritance vs. Aggregation/Composition

 Inheritance describes ‘is a’ / ‘is a kind of’ relationship between classes (base class - derived class)
whereas aggregation describes ‘has a’ relationship between classes. Inheritance means that the object
of the derived class inherits the properties of the base class; aggregation means that the object of the
whole has objects of the part. For example, the relation “cash payment  is a kind of  payment” is
modeled using inheritance; “purchase order has a few items” is modeled using aggregation.

Inheritance is used to model a “generic-specific” relationship between classes whereas
aggregation/composition is used to model a “whole-part” relationship between classes.

 Inheritance means that the objects of the subclass can be used anywhere the super class may appear,
but  not  the reverse;  i.e.  wherever  we could use instances of ‘payment’ in the system, we could
substitute it with instances of ‘cash payment’, but the reverse can not be done.

 Inheritance is defined statically. It can not be changed at run-time. Aggregation is defined
dynamically and can be changed at run-time. Aggregation is used when the type of the object can
change over time.

For example, consider this situation in a business system. A BusinessPartner might be a
Customer or a Supplier or both. Initially we might be tempted to model it as in Fig 7.12(a). But in
fact, during its lifetime, a business partner might become a customer as well as a supplier, or it might
change from one to the other. In such cases, we prefer aggregation instead (see Fig 7.12(b). Here, a
business partner is a Customer if it has an aggregated Customer object, a Supplier if it has an
aggregated  Supplier  object and a "Customer_Supplier" if it has both. Here, we have only two
types. Hence, we are able to model it as inheritance. But what if there were several different types and
combinations there of? The inheritance tree would be absolutely incomprehensible.

Also, the aggregation model allows the possibility for a business partner to be neither -
i.e. has neither a customer nor a supplier object aggregated with it.

 The advantage of aggregation is the integrity of encapsulation. The operations of an object are
the interfaces of other objects which imply low implementation dependencies. The significant
disadvantage of aggregation is the increase in the number of objects and their relationships.
On  the  other  hand,  inheritance  allows  for  an  easy  way  to modify  implementation  for
reusability.  But  the  significant  disadvantage  is that it breaks encapsulation, which implies
implementation dependence.



Object diagrams
Object diagrams shows the snapshot of the objects in a system at a point in time. Since it shows 

instances of classes, rather than the classes themselves, it is often called as an instance diagram. The objects 
are drawn using rounded rectangles

Figure: Different representations of a LibraryMember object.

An object diagram may undergo continuous change as execution proceeds. For example, links may get formed 
between objects and get broken. Objects may get created and destroyed, and so on. Object diagrams are useful 
to explain the working of a system.

Interaction Diagrams

Interaction diagrams are models that describe how group of objects collaborate to realize some
behavior. Typically, each interaction diagram realizes the behavior of a single use case. An interaction
diagram shows a number of example objects and the messages that are passed between the objects within the
use case.

There are two kinds of interaction diagrams: sequence diagrams and collaboration diagrams. These
two diagrams are equivalent in the sense that any one diagram can be derived automatically from the other.
However, they are both useful. These two actually portray different perspectives of behavior of the system
and different types of inferences can be drawn from them. The interaction diagrams can be considered as a
major tool in the design methodology.

Sequence Diagram

A sequence diagram shows interaction among objects as a two dimensional chart. The chart is read
from top to bottom. The objects participating in the interaction are shown at the top of the chart as boxes
attached to a vertical dashed line. Inside the box the name of the object is written with a colon separating it
from the  name of  the  class  and both  the  name of  the  object  and the class  are  underlined.  The objects
appearing  at  the  top  signify  that  the  object already  existed  when  the  use  case  execution  was  initiated.
However, if some object is created during the execution of the use case and participates in the interaction



(e.g. a method call), then the object should be shown at the appropriate place on the diagram where it is
created. The vertical dashed line is called the object’s lifeline. The lifeline indicates the existence of the object
at  any particular point of time. The rectangle drawn on the lifetime is called the activation symbol and
indicates that the object is active as long as the rectangle exists. Each message is indicated as an arrow
between the lifeline of two objects. The messages are shown in chronological order from the top to the
bottom. That is,  reading the diagram from the top to the bottom would show the sequence in which the
messages occur.  Each message is labeled with the message name. Some control information can also be
included. Two types of control information are particularly valuable.

 A condition (e.g. [invalid]) indicates that a message is sent, only if the condition is true.
 An iteration marker shows the message is sent many times to multiple receiver objects as

would happen when a collection or the elements of an array are being iterated. The basis
of the iteration can also be indicated e.g. [for every book object].

The sequence diagram for the book renewal use case for the Library Automation Software is shown in fig The
development of the sequence diagram in the development methodology would help us in determining the
responsibilities of the different classes; i.e. what methods should be supported by each class.

Figure: Sequence diagram for the renew book use case



Collaboration Diagram

 A collaboration diagram shows both structural and behavioral aspects explicitly. This is unlike
a sequence diagram which shows only the behavioral aspects. The structural aspect of a collaboration
diagram consists of objects and the links existing between them. In this diagram, an object is
also called a collaborator. The behavioral aspect is described by the set of messages exchanged
among the different collaborators. The link between objects is shown as a solid line and can be used to
send messages between two objects. The message is shown as a labeled arrow placed near the link.
Messages are prefixed with sequence numbers because they are only way to describe the relative
sequencing of the messages in this diagram. The collaboration diagram for the example of fig.The use
of the collaboration diagrams in our development process would be to help us to determine which
classes are associated with which other classes.

Figure: Collaboration diagram for the renew book use case.

Activity diagrams
The  activity  diagram  is  possibly  one  modeling  element  which  was  not  present  in any  of  the

predecessors of UML.The activity diagram focuses on representing activities or chunks of processing which
may or may not correspond to the methods of classes. An activity is a state with an internal action and one or
more outgoing transitions which automatically follow the termination of the internal activity. If an activity has
more than one outgoing transitions, then these must be identified through conditions. An interesting feature
of the activity diagrams is the swim lanes. Swim lanes enable you to group activities based on who is
performing them, e.g. academic department vs. hostel office. Thus swim lanes subdivide activities based on
the  responsibilities  of  some  components.  The  activities  in  a  swim lane can be assigned to some model
elements, e.g. classes or some component, etc.

Activity diagrams are normally employed in business process modeling. This is carried out during the
initial stages of requirements analysis and specification. Activity diagrams can be very useful to understand
complex processing  activities involving many components. Later these diagrams can be used to develop
interaction diagrams which help to allocate activities (responsibilities) to classes.



The student admission process in IIT is  shown as an activity diagram.This shows the part
played by different components of the Institute in the admission procedure. After the fees are received
at the account section, parallel activities start at the hostel office, hospital, and the Department. After
all these activities complete (this synchronization is represented as a horizontal line), the identity card
can be issued to a student by the Academic section.

Figure: Activity diagram for student admission procedure at IIT.

Activity diagrams are normally employed in business process modelling. This is carried out during
the initial stages  of  requirements  analysis  and specification. Activity diagrams can be very
useful to understand complex  processing  activities  involving  the  roles  played  by  many
components. Besides helping the developer to understand the complex processing activities, these
diagrams  can  also  be  used  to  develop  interaction  diagrams  which  help  to allocate activities
(responsibilities) to classes.
State chart diagram

A state chart  diagram is  normally used to model how the state of an object changes in its
lifetime. State chart diagrams are good at describing how the behavior of an object changes across
several use case executions. However, if we are interested in modeling some behavior that involves
several objects collaborating  with  each  other,  state  chart  diagram is  not  appropriate.  State  chart
diagrams are based on the finite state machine (FSM) formalism.

 An FSM consists  of  a  finite  number of  states  corresponding to  those of  the  object being
modeled. The object undergoes state changes when specific events occur. The FSM formalism existed
long before the object-oriented technology and has been used for a wide variety of applications. Apart
from modeling,  it  has  even been used in theoretical computer science as a generator for regular
languages.



A major disadvantage of the FSM formalism is the state explosion problem. The number of states becomes too
many and the model too complex when used to model practical systems. This problem is overcome in UML by
using  state  charts. The  state  chart  formalism  was  proposed  by  David  Harel  [1990].  A state  chart  is  a
hierarchical model of a system and introduces the concept of a composite state (also called nested state).

Actions are associated with transitions and are considered to be processes that occur quickly and are
not interruptible. Activities are associated with states and can take longer. An activity can be interrupted by an
event.

The basic elements of the state chart diagram are as follows:

Initial state. This is represented as a filled circle.

Final state. This is represented by a filled circle inside a larger circle.

State. These are represented by rectangles with rounded corners.

Transition. A transition is shown as an arrow between two states. Normally, the name of the event
which causes the transition is places along side the arrow. A guard to the transition can also be assigned.
A guard is a Boolean logic condition. The transition can take place only if the grade evaluates to true.
The syntax for the label of the transition is shown in 3 parts: event[guard]/action.
An example state chart for the order object of the Trade House Automation software is shown
in fig.

Figure: State chart diagram for an order object.



Package diagram
A package is a grouping of several classes. In fact, a package diagram can beused to group any

UML artifacts.  We  had  already  discussed  packaging  of  use cases.Packages  are  popular  way  of
organising source code files.  Java packages  are  a good example  which can be modelled using a
package diagram. Such package diagrams show the different class groups (packages) and their inter
dependencies. These are very useful to document organisation of source files for large projects that
have a large number of program files. An example of a package diagram has been shown in Figure 

     Figure: An example package diagram.

Component diagram
 A component represents a piece of software that can be independently purchased, upgraded, and

integrated into an existing software. A component diagram can be used to represent the physical structure
of an implementation in terms of the various components of the system. A component diagram is typically
used to achieve the following purposes:

 Organise source code to be able to construct executable releases.

 Specify dependencies among different components.

 A package diagram can be used to provide a high-level view of each component in
terms the different classes it contains.

Deployment diagram
The deployment  diagram  shows  the environmental view  of  a system. That  is,  it  captures  the

environment in which the software solution is implemented. In other words, a deployment diagram shows
how  asoftware system will be physically deployed in the hardware environment. That is, which component
will execute on which hardware component and how they will they communicate with each other. Since the
diagram models the run time architecture of an application, this diagram can be very useful to the system’s
operation staff.

 The environmental view provided by the deployment diagram is important for complex and large 
software solutions that run on hardware systems comprising multiple components. In this case, 
deployment diagram provides an overview of how the different components are distributed among the 
different hardware components of the system.



Composite structure diagram
The composite structure diagram lets you define how a class is defined by a further structure of classes 
and the communication paths between these parts. Some new core constructs such as parts, ports and 
connectors are introduced.

Part: The concept of parts makes possible the description of the internal structure of a class.

Port: The concept of a port makes it possible to describe connection points formally. These are 
addressable, which means that signals can be sent to them.

Connector: Connectors can be used to specify the communication links between two or more parts.

                   

  Figure: An example sequence diagram showing a combined fragment in UML 2.0.

UML defines thirteen types of diagrams, divided into three categories as follows:

Structure diagrams:  These include the class diagram, object diagram, component diagram, composite
structure diagram, package diagram, and deployment diagram.

Behaviour diagrams:  These diagrams include the usecase diagram, activity diagram, and state machine
diagram.

Interaction diagrams:  These diagrams include the sequence diagram, communication  diagram,  timing
diagram, and interaction overview diagram. The collaboration diagram of UML 1.X has been renamed in UML
2.0 as communication diagram. This renaming was necessary as the earlier name was somewhat misleading,
it  shows the  communications  among the  classes during  the  execution  of  a  use  case  rather  than  showing
collaborative problem solving.



Characteristics of a user interface

It is very important to identify the characteristics desired of a good user interface. Because unless we are
aware of these, it is very much difficult to design a good user interface. A few important characteristics of a
good user interface are the following:

 Speed of learning. A good user interface should be easy to learn. Speed of learning is hampered
by complex syntax and semantics of the command issue procedures. A good user interface should
not  require  its users to memorize commands. Neither should the user be asked to remember
information from one screen to another while performing various tasks using the interface. Besides,
the following three issues are crucial to enhance the speed of learning:

 Use of Metaphors and intuitive command names. Speed of learning an interface is greatly
facilitated if these are based on some day-to-day real-life examples or some physical objects with
which the users are familiar. The abstractions of real-life objects or concepts used in user interface
design are called metaphors. If the user interface of a text editor uses concepts similar to the tools
used by a writer for text editing such as cutting lines and paragraphs and pasting it at other places,
users can immediately relate to it. Another popular metaphor is a shopping cart. Everyone knows how
a shopping cart is used to make choices while purchasing items in a supermarket. If a user interface
uses the shopping cart metaphor for designing the interaction style for a situation where similar types
of choices have to be made, then the users can easily understand and learn to use the interface. Yet
another example of a metaphor is the trashcan. To delete a file, the user may drag it to the trashcan.
Also, learning is facilitated by intuitive command names and symbolic command issue procedures.

 Consistency. Once a user learns about a command, he should be able to use the similar commands
in different circumstances for carrying out similar actions. This makes it easier to learn the interface

since the user can extend his knowledge about one part of the interface to the other parts. For example, in a
word processor, “Control-b” is the short-cut key to embolden the selected text. The same short-cut should be
used  on the  other  parts  of  the  interface,  for example,  to  embolden  text  in  graphic  objects  also  -  circle,
rectangle, polygon, etc. Thus, the different commands supported by an interface should be consistent.

 Component-based interface. Users  can learn an interface faster  if the interaction style  of the
interface is very similar to the interface of other applications with which the user is already familiar.
This can be achieved if the interfaces of different applications are developed using some standard user
interface components. This, in fact, is the theme of the component-based user interface. Examples of
standard user interface components are: radio button, check box, text field, slider, progress bar, etc.

The speed of learning characteristic of a user interface can be determined by measuring the training
time and practice that users require before they can effectively use the software.

 Speed of use. Speed of use of a user interface is determined by the time and user effort necessary to
initiate and execute different commands. This characteristic of the interface is some times referred to as
productivity support of the interface. It indicates how fast the users can perform their intended tasks.
The time and user effort necessary to initiate and execute different commands should be minimal. This
can be achieved through careful design of the interface. For example, an interface that requires users to
type in lengthy commands or involves mouse movements to different areas of the screen that are wide
apart for issuing commands can slow down the operating speed of users. The most frequently used
commands should have the smallest length or be available at the top of the menu to minimize the
mouse movements necessary to issue commands.

 Speed of recall.  Once users learn how to use an interface, the speed with which they can recall the
command issue procedure should be maximized. This characteristic is very important for intermittent
users. Speed of recall is improved if the interface is based on some metaphors, symbolic command
issue procedures, and intuitive command names.



 Error prevention. A good user  interface should minimize the scope of committing errors while
initiating different commands. The error rate of an interface can be easily determined by monitoring the
errors committed by average users while using the interface. This monitoring can be automated by
instrumenting the user interface code with monitoring code  which can record the frequency and
types of user error and later display the statistics of various kinds of errors committed by different
users.

Moreover, errors can be prevented by asking the users to confirm any potentially destructive actions specified
by them, for example,  deleting a group of files.Consistency of names, issue procedures,  and behavior of
similar commands and the simplicity of the command issue procedures minimize error possibilities. Also, the
interface should prevent the user from entering wrong values.

  Aesthetic and attractive. A good user interface should be attractive to use. An attractive user
interface  catches  user  attention  and  fancy.  In  this  respect, graphics-based  user  interfaces  have  a
definite advantage over text-based interfaces.

 Consistency. The commands supported by a user interface should be consistent. The basic purpose
of consistency is to allow users to generalize the knowledge about aspects of the interface from one
part  to another.  Thus,  consistency facilitates speed of learning,  speed of recall, and also helps in
reduction of error rate.

 Feedback. A good user interface must provide feedback to various user actions. Especially, if any
user request takes more than few seconds to process, the user should be informed about the state of
the processing of his request. In the absence of any response from the computer for a long time, a
novice user might even start recovery/shutdown procedures in panic. If required, the user should be
periodically informed about the progress made in processing his command.
For example, if the user specifies a file copy/file download operation, a progress bar can be displayed
to display the status. This will help the user to monitor the status of the action initiated.

 Support  for  multiple  skill  levels. A good  user  interface  should  support multiple  levels  of
sophistication of command issue procedure for different categories of users. This is necessary because
users  with  different  levels of experience in using an application prefer different types of user
interfaces.  Experienced  users  are  more  concerned  about  the  efficiency  of the  command  issue
procedure,  whereas  novice  users  pay  importance  to usability aspects. Very cryptic and complex
commands discourage a novice, whereas elaborate command sequences make the command issue
procedure very slow and therefore put off experienced users. When someone uses an application for
the first  time,  his  primary concern is speed of learning. After using an application for extended
periods of time,he becomes familiar with the operation of the software. As a user becomes more and
more familiar with an interface, his focus shifts from usability aspects to speed of command issue
aspects. Experienced users look for options such as “hot-keys”, “macros”, etc. Thus, the skill level of
users improves as they keep using a software product and they look for commands to suit their skill
levels.

 Error recovery (undo facility). While issuing commands, even the expert  users can commit
errors. Therefore, a good user interface should allow a user to undo a mistake committed by him
while using the interface. Users are put to inconvenience, if they cannot recover from the errors they
commit while using the software.

 User guidance and on-line help. Users seek guidance and on-line help when they either forget a
command or are unaware of some features of the software. Whenever users need guidance or seek
help from the system, they should be provided with the appropriate guidance and help.



User guidance and online help

Users may seek help about the operation of the software any time while using the software. This is
provided by the on-line help system. This is different from the guidance and error messages which are
flashed automatically without the user asking for them. The guidance messages prompt the user regarding the
options he has regarding the next command, and the status of the last command, etc.

 On-line Help System. Users expect the on-line help messages to be tailored to the context in
which they invoke the “help system”. Therefore, a good on-line help system should keep track of
what a user is doing while invoking the help system and provide the output message in a context-
dependent way. Also, the help messages should be tailored to the user’s experience level. Further, a
good on-line help system should take advantage of any graphics and animation characteristics of the
screen and should not just be a copy of the user’s manual.gives a snapshot of a typical on-line help
provided by a user interface.

              

  Fig. Example of an on-line help interface

 Guidance Messages. The guidance messages should be carefully designed to prompt the user about
the next actions he might purse, the current status of the system, the progress made so far in processing
his  last  command,  etc.  A good guidance  system should have different levels of sophistication for
different categories of users. For example, a user using a command language interface might need a
different type of guidance compared to a user using a menu or iconic interface. Also, users should have
an option to turn off detailed messages.

Mode-based interface vs. modeless interface
 - A mode is a state or collection of states in which only a subset of all  user interaction tasks

can be performed. In a modeless interface, the same set of commands can be invoked at any
time during the running of the software. Thus, a modeless interface has only a single mode
and all the commands are available all the time during the operation of the software. On the
other hand, in a mode-based interface, different set of commands can be invoked depending
on the mode in which the system is, i.e. the mode at any instant is determined by the sequence
of commands already issued by the user.

 A mode-based interface can be represented using a state transition diagram, where each node
of  the state  transition diagram would represent  a  mode.  Each state  of  the  state  transition
diagram can be annotated with the commands that are meaningful in that state.



                  

Fig:An example of mode-based interface
It shows the interface of a word processing program. The top-level menu provides the user with a
gamut of operations like file open, close, save, etc. When the user chooses the open option, another
frame is popped up which limits the user to select a name from one of the folders.

Types of user interfaces
User interfaces can be classified into the following three categories:

 Command language based interfaces

 Menu-based interfaces

 Direct manipulation interfaces

1.Command Language-based Interface

A command language-based interface – as the name itself suggests, is based on designing a
command language which the user can use to issue the commands. The user is expected to frame the
appropriate commands in the language and type them in appropriately whenever required. A simple
command language-based interface might simply assign unique names to the different commands.
However, a more sophisticated command  language-based  interface  may  allow  users  to  compose
complex commands by using a set of primitive commands. Such a facility to compose commands
dramatically reduces the number of command names one would have to remember. Thus, a command
language-based interface can be made concise requiring minimal typing by the user. Command
language-based interfaces allow fast interaction with the computer and simplify the input of complex
commands.



2.Menu-based Interface

An important advantage of a menu-based interface over a command language-based interface is
that a menu-based interface does not require the users to remember the exact syntax of the commands.
A menu-based interface  is  based on recognition  of  the  command names,  rather  than recollection.
Further, in a menu-based interface the typing effort is minimal as most interactions are carried out
through menu selections using a pointing device. This factor is an important consideration for the
occasional user who cannot type fast.

 However, experienced users find a menu-based user interface to be slower than a command
language-based interface because an experienced user can type fast and can get speed advantage by
composing different primitive commands to express complex commands. Composing commands in a
menu-based  interface  is  not  possible.  This  is because  of  the  fact  that  actions  involving  logical
connectives (and, or, etc.) are awkward to specify in a menu-based system. Also, if the number of
choices is large, it is difficult to select from the menu. In fact, a major  challenge in the design of a
menu-based interface is to structure large number of menu choices into manageable forms.When the
menu choices are large, they can be structured as the following way:

Scrolling menu

 When a full choice list can not be displayed within the menu area, scrolling of the menu items
is  required.  This  would  enable  the  user  to  view  and select the menu items that cannot be
accommodated on the screen. However, in a scrolling menu all the commands should be highly
correlated, so that the user can easily locate a command that he needs. This is important since the user
cannot see all the commands at any one  time.  An  example  situation  where  a  scrolling  menu  is
frequently used is font size selection in a document processor.Here, the user knows that the command
list contains only the font sizes that are arranged in some order and he can scroll up and down to find
the size he is looking for. However, if the commands do not have any definite ordering relation, then
the user would have to in the worst case, scroll through all the commands to find the exact command
he is looking for, making this organization inefficient.

                  Fig: Font size selection using scrolling menu

Walking menu

Walking menu is very commonly used to structure a large collection of menu items. In this
technique, when a menu item is selected, it causes further menu items to be displayed adjacent to
it in a sub-menu. An example of a walking menu. A walking menu can successfully be used to



structure  commands  only  if  there  are  tens  rather than  hundreds  of  choices  since  each adjacently
displayed menu does take up screen space and the total screen areaisafterlimited.    

                  Fig.: Example of walking menu

Hierarchical menu

In this technique, the menu items are organized in a hierarchy or tree structure. Selecting a
menu item causes the current menu display to be replaced by an appropriate sub-menu. Thus in this
case, one can consider the menu and its various sub-menus to form a hierarchical tree-like structure.
Walking menu can be considered to be a form of hierarchical menu which is practicable when the tree
is shallow. Hierarchical menu can be used to manage large number of choices, but the users are likely
to face navigational problems because they might lose track of where they are in the menu tree. This
probably is the main reason why this type of interface is very rarely used.
3.Direct Manipulation Interfaces

Direct manipulation interfaces present the interface to the user in the form of visual models (i.e.
icons  or  objects).  For  this  reason,  direct  manipulation interfaces are sometimes called as iconic
interface. In this type of interface,  the user issues commands by performing actions on the visual
representations of the objects, e.g. pull an icon representing a file into an icon representing a trash box,
for deleting the file. Important advantages of iconic interfaces include the fact that the icons can be
recognized  by  the users  very  easily,  and  that  icons  are  language-independent.  However, direct
manipulation  interfaces  can  be considered  slow for  experienced users. Also, it is difficult to give
complex commands using a direct manipulation interface. For example, if one has to drag an icon
representing the file to a trash box icon for deleting a file, then in order to delete all the files in the
directory one has to perform this operation individually for all files – which could be very easily done
by issuing a command like delete *.*.



Characteristics of command language-based interface have been discussed earlier.

Disadvantages of command language-based interface
 Command  language-based  interfaces  suffer  from  several  drawbacks.  Usually, command
language-based interfaces are difficult to learn and require the user to memorize the set of primitive
commands. Also, most users make errors while formulating commands in the command language and
also while typing them in. Further, in a command language-based interface, all interactions with the
system is through a key-board and can not take advantage of effective interaction devices such as a
mouse. Obviously, for casual and inexperienced users, command language-based interfaces are not
suitable.

Issues in designing a command language-based interface

 Two overbearing command design issues are to reduce the number of primitive commands that
a user has to remember and to minimize the total typing required while issuing commands. These can
be elaborated as follows:

 The designer has to decide what mnemonics are to be used for the different commands. The
designer should try to develop meaningful mnemonics and yet be concise to minimize the amount of
typing required. For example, the shortest mnemonic should be assigned to the most frequently used
commands.

 The designer has to decide whether the users will be allowed to redefine the command names to
suit their own preferences. Letting a user define his own mnemonics for various commands is a useful
feature, but it increases the complexity of user interface development.

 The designer has to decide whether it should be possible to compose primitive commands to
form more complex commands.  A sophisticated command composition facility  would require the
syntax and semantics of the various command composition options to be clearly and unambiguously
specified. The ability to combine commands is a powerful facility in the hands of experienced users,
but quite unnecessary for inexperienced users.

Types of menus and their features

 Three main types of menus are scrolling menu, walking menu, and hierarchical menu. The features
of scrolling menu, walking menu, and hierarchical menu have been discussed earlier.

Iconic interface

 Direct manipulation interfaces present the interface to the user in the form of visual models (i.e.
icons or objects). For this reason, direct manipulation interfaces  are  sometimes  called  iconic
interfaces. In this type of interface, the user issues commands by performing actions on the visual
representations of the objects, e.g. pull an icon representing a file into an icon representing a trash
box, for deleting the file.



                                             Fig:Example of an iconic interface
It shows an iconic interface. Here, the user is presented with a set of icons at the top of the frame for
performing various activities. On clicking on any of the icons, either the user is prompted with a sub
menu or the desired activity is performed.

Component-based GUI development

  A development style based on widgets (window objects) is called component- based (or widget-
based) GUI development style. There are several important advantages of using a widget-based design
style. One of the most important reasons to use widgets as building blocks is because they help users
learn an interface fast. In this style of development, the user interfaces for different applications are
built from the same basic components. Therefore, the user can extend his knowledge of the behavior
of  the  standard  components  from  one application  to  the  other.  Also,  the  component-based  user
interface development style reduces the application programmer’s work significantly as he is more of
a user interface component integrator than a programmer in the traditional sense.

Need for component-based GUI development

The current style of user interface development is component-based. It recognizes that every
user interface can easily be built from a handful of predefined components such as menus, dialog
boxes, forms, etc. Besides the standard components, and the facilities to create good interfaces from
them, one of the basic support available to the user interface developers is the window system. The
window system lets the application programmer create and manipulate windows without having to
write the basic windowing functions.

Visual Programming

Visual programming is the drag and drop style of program development. In this style of user
interface development, a number of visual objects (icons) representing the GUI components are
provided by the programming environment. The application programmer can easily develop the user
interface by dragging the required component types (e.g. menu, forms, etc.) from the displayed icons
and  placing  them  wherever  required.  Thus,  visual  programming can  be  considered  as  program



development through manipulation of several visual objects. Reuse of program components in the
form of visual objects is an important aspect of this style of programming. Though popular for user
interface development,  this  style  of  programming  can  be  used  for  other  applications  such as
Computer-Aided Design application (e.g. factory design), simulation, etc. User  interface
development using a visual programming language greatly reduces the effort required to develop the
interface.

Examples of popular visual programming languages are Visual Basic, Visual C++, etc. Visual
C++  provides  tools  for  building  programs  with  window- based  user  interfaces  for  Microsoft
Windows environments. In Visual C++, menu bars, icons, and dialog boxes, etc. can be designed
easily before adding them to program. These objects are called as resources. Shape, location, type,
and size of the dialog boxes can be designed before writing any C++ code for the application.

Window

A window is a rectangular area on the screen. A window can be considered to be a virtual screen, in
the sense that it provides an interface to the user for carrying out independent activities, e.g. one
window can be used for editing a program and another for drawing pictures, etc.

A window can be divided into two parts:  client part,  and non-client part. The client area
makes up the whole of the window, except for the borders and scroll bars. The client area is the area
available to a client application for display. The non-client part of the window determines the look
and feel of the window. The look and feel defines a basic behavior for all windows, such as creating,
moving, resizing, and iconifying the windows. A basic window with its different parts.

          Fig: Window with client and user areas marked



Window Management System(WMS)

A graphical user interface typically consists of a large number of windows. Therefore, it is
necessary  to  have  some systematic  way to  manage these windows.  Most  graphical  user  interface
development  environments  do  this through  a  window  management  system  (WMS).  A window
management system is primarily a resource manager. It keeps track of the screen area resource and
allocates it to the different windows that seek to use the screen. From a broader perspective, a WMS
can be considered as a user interface management system (UIMS) – which not only does resource
management, but also provides the basic behavior to the windows and provides several utility routines
to the application programmer for user interface development. A WMS simplifies the task of a GUI
designer to a great extent by providing the basic behavior to the various windows such as move, resize,
iconify, etc. as soon as they are created and by providing the basic routines to manipulate the windows
from the application such as creating, destroying, changing different attributes of the windows, and
drawing text, lines, etc.

A WMS consists of two parts:

• a window manager, and
• a window system.

Figure: Window management system.
Window Manager and Window System

Window manager is the component of WMS with which the end user interacts to do
various window-related operations such as window repositioning, window resizing, iconification, etc.
The window manager is built on the top of the window system in the sense that it makes use of various
services provided by the window system. The window manager and not the window system determines
how the windows look and behave. In fact, several kinds of window managers can be developed based



on the same window system. The window manager can be considered as a special kind of client that
makes use of  the services (function calls) supported by the window system. The application
programmer can also directly invoke the services of the window system to develop the user interface.
The relationship between the window manager, window system, and the application program is
shown in fig.This figure shows that the end-user can either interact with the application itself or with
the window manager (resize, move, etc.) and both the application and the window manager invoke
services of the window manager.

Window Manager

The window manager is responsible for managing and maintaining the non-client area of a
window. Window manager manages the real-estate policy, provides look and feel of each individual
window.

Types of widgets (window objects)

Different interface programming packages support different widget sets. However,  a  surprising
number of them contain similar kinds of widgets, so that one can think of a generic widget set which is
applicable to most interfaces. The following widgets are representatives of this generic class.
Label widget.   This is probably one of the simplest widgets. A label widget does nothing except to
display a label, i.e. it does not have any other interaction capabilities and is not sensitive to mouse
clicks. A label widget is often used as a part of other widgets.

Container widget. These widgets do not stand by themselves, but exist merely to contain other
widgets. Other widgets are created as children of the container widget. When the container widget is
moved or resized, its children widget also get moved or resized. A container widget has no callback
routines associated with it.

Pop-up menu. These are transient  and task specific.  A pop-up menu appears upon pressing the
mouse button, irrespective of the mouse position.

Pull-down menu. These are more permanent and general. You have to move the cursor to a specific
location and pull down this type of menu.

Dialog boxes. We often need to select multiple elements from a selection list. A dialog box remains
visible until explicitly dismissed by the user. A dialog box can include areas for entering text as well as
values.  If  an apply command is  supported in a dialog box, the newly entered values  can be tried
without dismissing the box. Through most dialog boxes ask you to enter some information, there are
some dialog boxes which are merely informative, alerting you to a problem with your system or an
error you have made. Generally, these boxes ask you to read the information presented and then click
OK to dismiss the box.
Push button. A push  button  contains  key  words  or  pictures  that  describe the action that is
triggered when you activate the button. Usually, the  action  related  to  a  push  button  occurs
immediately when you click a push button unless it contains an ellipsis (…). A push button with an
ellipsis generally indicates that another dialog box will appear.



Radio buttons.   A set of radio buttons is used when only one option has to be selected out of
many options. A radio button is a hollow circle followed by text describing the option it stands
for. When a radio button is selected, it appears filled and the previously selected radio button from the
group is unselected. Only one radio button from a group can be selected at any time. This operation
is similar to that of the band selection buttons that were available in old radios.

Combo boxes. A combo box looks like a button until  the user interacts with it.  When the user
presses or clicks it, the combo box displays a menu of items to choose from. Normally a combo box is
used to display either one-of-many choices when space is limited, the number of choices is large,
or when the menu items are computed at run-time.

X-Window.

The X-window functions are low-level functions written in C language which can be called
from application programs. But only the very serious application designer would program directly
using the X-windows library routines. Built on top  of  X-windows  are  higher-level  functions
collectively  called  Xtoolkit.  Xtoolkit consists  of  a  set  of  basic  widgets  and  a  set  of  routines  to
manipulate these widgets. One of the most widely used widget sets is X/Motif.  Digital Equipment
Corporation (DEC) used the basic X-window functions to develop its own look and feel for
interface designs called DECWindows.

Popularity of X-Window

One of the important reasons behind the extreme popularity of the X-window system is probably due
to the fact that it  allows development of portable GUIs. Applications developed using X-window
system are device-independent.  Also, applications developed using the X-window system become
network independent in the sense that the interface would work just as well on a terminal connected
anywhere on the same network as the computer running the application is. Network-independent GUI
operation has been schematically represented in the fig. 9.8. Here, “A” is the computer application in
which the application is running. “B” can be any computer on the network from where interaction
with the application  can  be  made.  Network-independent  GUI  was  pioneered  by  the  X- window
system in the mid-eighties at MIT (Massachusetts Institute of Technology) with support from DEC
(Digital Equipment Corporation). Now-a- days many user interface development systems support
network-independent GUI development, e.g. the AWT and Swing components of Java.

Figure: Network-independent GUI.                                   



Architecture of an X-SystemThe X-architecture is pictorially depicted in fig.The different 
terms used in this diagram are explained below.

Figure: Architecture of the X System.

X-server. The X server runs on the hardware to which the display and keyboard attached. The X
server performs low-level graphics, manages window, and user input functions. The X server controls
accesses to a bit-mapped graphics display resource and manages it.
X-protocol. The  X protocol  defines  the  format  of  the  requests between  client  applications  and
display servers over the network. The X protocol is designed to be independent of hardware, operating
systems, underlying network protocol, and the programming language used.

X-library (Xlib). The Xlib provides a set of about 300 utility routines for applications to call. These
routines convert procedure calls into requests that are transmitted to the server. Xlib provides low level
primitives for developing an user interface, such as displaying a window, drawing characteristics and
graphics on the window, waiting for specific events, etc.

Xtoolkit (Xt).  The Xtoolkit consists of two parts: the intrinsics and the widgets. We have already
seen that widgets are predefined user interface components such as scroll bars, push buttons, etc.
for designing GUIs. Intrinsics are a set of about a dozen library routines that allow a programmer to
combine a set of widgets into a user interface. In order to develop a user interface, the designer has
to  put  together  the  set  of  components  (widgets)  he  needs,  and then  he  needs  to  define  the
characteristics  (called  resources)  and behavior  of  these  widgets  by  using  the  intrinsic  routines  to
complete the development of the interface. Therefore, developing an interface using Xtoolkit is much
easier than developing the same interface using only X library.



USER INTERFACE DESIGN METHODOLOGY

At present, no step-by-step methodology is available which can be followed by rote to come up with
a good user interface. What we present in this section is a set of recommendations which you can
use to complement your ingenuity. Even though almost all popular GUI design methodologies are
user-centered, this concept has to be clearly distinguished from a user interface design by users.
Before we start discussing about the user interface design methodology, let us distinguish between a
user-centered design and a design by users.

User-centered design is the theme of almost all modern user interface design techniques. However,
user-centered design does not mean design by users. One should not get the users to design the
interface, nor should one assume that the user’s opinion of which design alternative is superior is
always right. Though users may have good knowledge of the tasks they have to perrform using a
GUI, but they may not know the GUI design issues.

Users have good knowledge of the tasks they have to perform, they also know whether they find
an interface easy to learn and use but they have less understanding and experience in GUI design
than the GUI developers.

Implications of Human Cognition Capabilities on User Interface Design
An area of human-computer interaction where extensive research has been conducted is how human

cognitive capabilities and limitations influence the way an interface should be designed. In the following
subsections, we discuss some of the prominent issues that have been extensively reported in the literature.

Limited memory: Humans can remember at most seven unrelated items of information for short periods of
time. Therefore, the GUI designer should not require the user to remember too many items of information at
a time. It is the GUI designer’s responsibility to anticipate what information the user will need at what
point of each task and to ensure that the relevant information is displayed for the user to see. Showing the
user some information at some point, and then asking him to recollect that information in a different screen
where they no longer see the information, places a memory burden on the user and should be avoided
wherever possible.

Frequent task closure: Doing a task (except for very trivial tasks) requires doing several subtasks. When
the system gives a clear feedback to the user that a task has been successfully completed, the user gets a
sense of achievement and relief. The user can clear out information regarding the completed task from
memory. This is known as  ta  sk  closure. When the overall task is fairly big and complex, it should be
divided into subtasks, each of which has a clear subgoal which can be a closure point.

Recognition rather than recall. Information recall incurs a larger memory burden on the users and is to
be avoided as far as possible. On the other hand, recognition of information from the alternatives shown
to him is more acceptable.

Procedural versus ob ject-oriented: Procedural designs focus on tasks, prompting the user in each step of
the task, giving them very few options for anything else. This approach is best applied in situations where
the tasks are narrow and well-defined or where the users are inexperienced, such as a bank ATM. An
object-oriented interface on the other hand focuses on objects. This allows the users a wide range of options.

GUI design methodology

GUI design methodology consists of the following important steps:

 Examine the use case model of the software. Interview, discuss, and review the GUI 
issues with the end-users.

 Task and object modeling



 Metaphor selection

 Interaction design and rough layout

 Detailed presentation and graphics design

 GUI construction

 Usability evaluation

The starting point for GUI design is the use case model. This captures the important tasks the users need
to perform using the software. As far as possible, a user interface should be developed using one or more
metaphors. Metaphors help in interface development at lower effort and reduced costs for training the
users. Over time, people have developed efficient methods of dealing with some commonly occurring
situations. These solutions are the themes of the metaphors. Metaphors can also be based on physical
objects such as a visitor’s book, a catalog, a pen, a brush, a scissor, etc. A solution based on metaphors is
easily  understood  by  the  users,  reducing  learning  time and training costs. Some commonly used
metaphors are the following:

 Shopping cart

 whiteboard

 Desktop

 Editor’s work bench

 White page

 Yellow page

 Office cabinet

 Post box

 Bulletin board

 Visitor’s book
Task and Object Modeling

A task is a human activity intended to achieve some goals. Example of task goals can be:

 reserve an airline seat

 buy an item

 transfer money from one account to another
 book a cargo for transmission to an address

A task model is an abstract model of the structure of a task. A task model should show the structure of
the subtasks that the user needs to perform to achieve the overall task goal. Each task can be modeled
as a hierarchy of subtasks. A task model can be drawn using a graphical notation similar to the activity
network model. Tasks can be drawn as boxes with lines showing how a task is broken down into
subtasks. An underlined task box would mean that no further decomposition of the task is required.
An example decomposition of a task into subtasks is shown in fig.



Fig: Decomposition of a task into subtasks

Selecting a metaphor
The first place one should look for while trying to identify the candidate metaphors is the set of

parallels to objects, tasks, and terminologies of the use cases. If no obvious metaphors can be found, then the
designer can fall back on the metaphors of the physical world of concrete objects. The appropriateness of each
candidate metaphor should be tested by restating the objects and tasks of the user interface model in terms of
the metaphor. Another criterion that can be used to judge metaphors is that the metaphor should be as simple
as possible, the operations using the metaphor should be clear and coherent and it should fit with the users’
‘common sense’ knowledge. For example, it would indeed be very awkward and a nuisance for the users if the
scissor metaphor is used to glue different items.

Example:  We need to develop the interface for  the automation shop, where the users  can examine the
contents of the shop through a web interface and can order them.

Several metaphors are possible for different parts of this problem.

 Different items can be picked up from  racks  and examined. The user can request for the  catalog
associated with the items by clicking on the item.

 Related items can be picked from the drawers of an item cabinet.
 The items can be organized in the form of a book, similar to the way information about electronic

components are organized in a semiconductor hand book.
Once the users make up their mind about an item they wish to buy, they can put  them into a shopping
cart.

Visibility of the system status. The system should as far as possible keep the user informed about the
status of the system and what is going on.
Match between the system and the real world. The system should speak the user’s language words,
phrases, and concepts familiar to that used by the user, rather than using system-oriented terms.
Undoing mistakes. The user should feel that he is in control rather than feeling helpless or to be at the
control  of  the  system.  An important  step toward this is that the users should be able to undo and redo
operations.

Consistency. The user should not have to wonder whether different words, concepts, and operations mean
the same thing in different situations.



Recognition rather than recall. The user should not have to recall information which was presented in
another screen. All data and instructions should be visible on the screen for selection by the user.

Support for multiple skill levels. Provision of accelerations for experienced  users  allows  them  to
efficiently carry out the actions they frequently require to perform.

Aesthetic and minimalist design. Dialogs should not contain information which are irrelevant and are
rarely needed. Every extra unit of information in a dialog competes with the relevant units and diminishes their
visibility.
Help and error messages. These should be expressed in plain language (no codes), precisely indicating
the problem, and constructively suggesting a solution.

Error prevention. Error possibilities should be minimized. A key principle in this regard is to prevent the
user from entering wrong values. In situations where a choice has to be made from among a discrete set of
values, the control should present only the valid values using a drop-down list, a set of option buttons or a
similar multichoice control. When a specific format is required for attribute data, the entered data should be
validated when the user attempts to submit the data.



Coding- The objective of the coding phase is to transform the design of a system into code in a
high level language and then to unit test this code. The programmers adhere to standard and well
defined style of coding which they call their coding standard. The main advantages of adhering to
a standard style of coding are as follows:

l A coding standard gives uniform appearances to the code written by
different engineers

l It facilitates code of understanding.
l Promotes good programming practices.

For implementing our design into a code, we require a good high level language. A programming
language should have the following features:

Characteristics of a Programming Language

 Readability: A good high-level language will allow programs to be written in some ways
that resemble a quite-English description of the underlying algorithms. If care is taken, the coding
may be done in a way that is essentially self-documenting.
 Portability:  High-level languages, being essentially machine independent, should be able
to develop portable software.
 Generality:  Most high-level languages allow the writing of a wide variety of programs,
thus relieving the programmer of the need to become expert in many diverse languages.
 Brevity: Language should have the ability to implement the algorithm with less amount of
code. Programs expressed in high-level languages are often considerably shorter than their low-
level equivalents.
 Error checking:  Being human, a programmer is  likely to make many mistakes in  the
development of a computer program. Many high-level languages enforce a great deal of error
checking both at compile-time and at run-time.
 Cost:  The ultimate cost of a programming language is a function of many of its
characteristics.
  Familiar notation: A language should have familiar notation, so it can be understood by
most of the programmers.
 Quick translation: It should admit quick translation.
 Efficiency: It should permit the generation of efficient object code.
 Modularity: It is desirable that programs can be developed in the language as a collection
of  separately  compiled  modules,  with  appropriate  mechanisms  for  ensuring self-consistency
between these modules.
 Widely  available:  Language  should  be  widely  available  and  it  should  be  possible  to
provide translators for all the major machines and for all the major operating systems.

A coding standard lists several rules to be followed during coding, such as the way
variables are to be named, the way the code is to be laid out, error return conventions, etc.

Coding standards and guidelines

Good software development organizations usually develop their own coding standards and
guidelines depending on what best suits their organization and the type of products they develop.



The following are some representative coding standards.

1. Rules for limiting the use of global:  These rules list what types of data can be declared
global and what cannot.

2.  Contents of the headers preceding codes for different modules: The information contained
in the headers of different modules should be standard for an organization. The exact format in
which the header information is organized in the header can also be specified. The following are
some standard header data:

1. Name of the module.
2. Date on which the module was created.
3. Author’s name.
4. Modification history.
5. Synopsis of the module.
6. Different functions supported, along with their input/output parameters.
7. Global variables accessed/modified by the module.

3.   Naming conventions for global variables, local variables, and constant identifiers:  A
possible naming convention can be that global variable names always start with a capital letter,
local variable names are made of small letters, and constant names are always capital letters.
4.   Error return conventions and exception handling mechanisms: The way error conditions
are reported by different functions in a program are handled should be standard  within  an
organization.  For  example,  different  functions  while  encountering  an error  condition  should
either return a 0 or 1 consistently.
The following are some representative coding guidelines recommended by many software
development organizations.

1. Do not use a coding style that is too clever or too difficult to understand: Code should
be easy to understand. Many inexperienced engineers actually take pride in writing cryptic
and incomprehensible code. Clever coding can obscure meaning of the code and hamper
understanding. It also makes maintenance difficult.

2. Avoid obscure side effects:  The side effects  of a function call  include modification of
parameters passed by reference, modification of global variables, and I/O operations. An
obscure  side  effect  is  one  that  is  not  obvious  from a  casual  examination  of  the  code.
Obscure side effects make it difficult to understand a piece of code. For example, if a global
variable is changed obscurely in a called module or some file I/O is performed which is
difficult to infer from the function’s name and header information, it becomes difficult for
anybody trying to understand the code.

3. Do not use an identifier for multiple purposes: Programmers often use the same
identifier  to  denote  several  temporary  entities.  For  example,  some  programmers  use  a
temporary loop variable for computing and a storing the final result. The rationale that is
usually given by  these programmers for such multiple uses of variables is memory
efficiency, e.g. three variables use up three memory locations, whereas the same variable
used in three different ways uses just one memory location. However, there are several
things  wrong with  this  approach and hence  should  be  avoided.  Some of  the  problems
caused by use of variables for multiple purposes as follows:



 Each variable  should be given a  descriptive  name indicating its  purpose.
This is not possible if an identifier is used for multiple purposes. Use of a variable for
multiple purposes can lead to confusion and make it difficult for somebody trying to read
and understand the code.

 Use of variables for multiple purposes usually makes future enhancements
more difficult.

 4.The  code  should  be  well-documented:  As a  rule  of  thumb,  there  must  be  at  least  one
comment line on the average for every three-source line.
 5.The length of  any function should not exceed 10 source lines:  A function that  is  very
lengthy is usually very difficult to understand as it probably carries out many different functions.
For the same reason, lengthy functions are likely to have disproportionately larger number of
bugs.
 6.Do not use goto statements:  Use of goto statements makes a program unstructured and
very difficult to understand.

Code Review
Code review for a model is carried out after the module is successfully compiled and the

all the syntax errors have been eliminated. Code reviews are extremely cost-effective strategies
for reduction in coding errors and to produce high quality code. Normally, two types of reviews
are carried out  on the code of  a  module.  These two types  code review techniques  are  code
inspection and code walk through.

Code Walk Throughs
 Code walk through is an informal code analysis  technique. In this technique,  after  a

module has been coded, successfully compiled and all syntax errors eliminated. A few members
of the development team are given the code few days before the walk through meeting to read
and understand code. Each member selects some test cases and simulates execution of the code
by hand (i.e. trace execution through each statement and function execution). The main
objectives of the walk through are to discover the algorithmic and logical errors in the code. The
members note down their findings to discuss these in a walk through meeting where the coder of
the module  is  present.  Even though a code walk through is  an  informal  analysis  technique,
several guidelines  have  evolved  over  the  years  for  making  this  naïve  but  useful  analysis
technique more effective. Of course, these guidelines are based on personal experience, common
sense,  and several  subjective  factors.  Therefore,  these  guidelines  should  be  considered  as
examples rather than accepted as rules to be applied dogmatically. Some of these guidelines are
the following:

 The team performing code walk through should not be either too big or too small.
Ideally, it should consist of between three to seven members.

 Discussion  should  focus  on  discovery  of  errors  and  not  on  how  to  fix  the
discovered errors.

 In order to foster cooperation and to avoid the feeling among engineers that they
are being evaluated in the code walk through meeting, managers should not attend
the walk through meetings.



Code Inspection
In contrast to code walk through, the aim of code inspection is to discover some

common types of errors caused due to oversight and improper programming. In other words,
during  code inspection  the  code  is  examined  for  the  presence  of  certain  kinds  of  errors,  in
contrast  to the hand simulation of code execution done in code walk throughs. For instance,
consider the classical error of writing a procedure that modifies a formal parameter while the
calling routine calls that procedure with a constant actual parameter. It is more likely that such an
error will be discovered by looking for these kinds of mistakes in the code, rather than by simply
hand simulating execution of the procedure. In addition to the commonly made errors, adherence
to  coding standards  is  also  checked  during  code  inspection.  Good  software  development
companies collect statistics  regarding different  types  of errors  commonly committed by their
engineers and identify the type of errors most frequently committed. Such a list of commonly
committed errors can be used during code inspection to look out for possible errors.
Following is a list of some classical programming errors which can be checked during code
inspection:

l Use of uninitialized variables.
l Jumps into loops.
l Nonterminating loops.
l Incompatible assignments.
l Array indices out of bounds.
l Improper storage allocation and deallocation.
l Mismatches between actual and formal parameter in procedure calls.
l Use of incorrect logical operators or incorrect precedence among operators.
l Improper modification of loop variables.
l Comparison of equally of floating point variables, etc.

Clean Room Testing
Clean room testing was pioneered by IBM. This type of testing relies heavily on walk

throughs, inspection, and formal verification. The programmers are not allowed to test any of
their code by executing the code other than doing some syntax testing using a compiler. The
software development  philosophy is  based  on avoiding software defects  by using a  rigorous
inspection process. The objective of this software is zero-defect software. The name ‘clean room’
was derived from the analogy with semi-conductor fabrication units. In these units (clean rooms),
defects are avoided by manufacturing in ultra-clean atmosphere. In this kind of development,
inspections to check the consistency of the components with their  specifications has replaced
unit-testing.This technique reportedly produces documentation and code that is more reliable and
maintainable than other development methods relying heavily on code execution-based testing.

The clean room approach to software development is based on five characteristics:

 Formal specification: The software to be developed is formally specified. A state-
transition model which shows system responses to stimuli is used to express the
specification.

 Incremental development: The software is partitioned into increments which are
developed and validated separately using the clean room process. These increments are
specified, with customer input, at an early stage in the process.



 Structured programming: Only a limited number of control and data abstraction
constructs are used. The program development process is process of stepwise refinement
of the specification.

 Static verification:  The developed software is  statically verified using rigorous
software inspections. There is no unit or module testing process for code components

 Statistical  testing  of  the  system:  The  integrated  software  increment  is  tested
statistically to determine its reliability. These statistical tests are based on the operational
profile which is developed in parallel with the system specification. The main problem
with this approach is  that  testing effort  is  increased as walk throughs,  inspection,  and
verification are time-consuming.

Software Documentation
When various kinds of software products are developed then not only the executable files

and the source code are developed but also various kinds of documents such as users’ manual,
software requirements specification (SRS) documents, design documents, test documents,
installation manual, etc are also developed as part of any software engineering process. All these
documents are  a  vital  part  of  good software  development  practice.  Good documents  are  very
useful and server the following purposes:

1.Good documents enhance understandability and maintainability of a software product. They
reduce the effort and time required for maintenance.

2.Use documents help the users in effectively using the system.

3.Good documents help in effectively handling the manpower turnover problem. Even when an
engineer leaves the organization,  and a new engineer comes in, he can build up the required
knowledge easily.

4.Production of good documents helps the manager in effectively tracking the progress of the
project. The project manager knows that measurable progress is achieved if a piece of work is
done and the required documents have been produced and reviewed.
Different types of software documents can broadly be classified into the following:

 Internal documentation

External documentation

Internal documentation is the code comprehension features provided as part of the source code
itself. Internal documentation is provided through appropriate module headers and comments.

The important types of internal documentation are the following:

 Comments embedded in the source code. 

 Use of meaningful variable names.

 Module and function headers.

  Code indentation,Code structuring (i.e., code decomposed into modules and functions). 

 Use of enumerated types.

 Use of constant identifiers.



 Use of user-defined data types.

 embedded  in  the  source  code.  Internal  documentation  is  also  provided  through  the  useful
variable names,  module  and  function  headers,  code  indentation,  code  structuring,  use  of
enumerated  types and  constant  identifiers,  use  of  user-defined  data  types,  etc.  Careful
experiments suggest that out of all types of internal documentation meaningful variable names is
most useful in understanding the code. This is of course in contrast to the common expectation
that code commenting would be the most useful. The research finding is obviously true when
comments are written without thought. For example, the following style of code commenting
does not in any way help in understanding the code.

  a = 10; /* a made 10 */

 But even when code is carefully commented, meaningful variable names still are more
helpful  in understanding  a  piece  of  code.  Good  software  development  organizations
usually ensure good internal documentation by appropriately formulating their coding
standards and coding guidelines.

External documentation  is provided through various types of supporting documents such as
users’ manual, software requirements specification document, design document, test documents,
etc. A systematic software development style ensures that all these documents are produced in an
orderly fashion.

Program Testing

Testing a program consists of providing the program with a set of test inputs (or test cases) and
observing if the program behaves as expected. If the program fails to behave as expected, then
the conditions under which failure occurs are noted for later debugging and correction.

Some commonly used terms associated with testing are:

 Failure: This is a manifestation of an error (or defect or bug). But, the mere
presence of an error may not necessarily lead to a failure.

 Test case: This is the triplet [I,S,O], where I is the data input to the system,
S is the state of the system at which the data is input, and O is  the expected
output of the system.

 Test suite:  This  is  the set  of  all  test  cases  with which a  given software
product is to be tested.

Figure: A simplified view of program testing.



Aim of testing

The aim of the testing process is to identify all defects existing in a software product.
However for most practical systems, even after satisfactorily carrying out the testing phase, it is
not possible to guarantee that the software is error free. This is because of the fact that the input
data domain of most software products is very large. It is not practical to test the software
exhaustively with respect to each value that the input data may assume. Even with this practical
limitation of the testing process, the importance of testing should not be underestimated. It must
be remembered that testing does expose many defects existing in a software product.  Thus
testing  provides  a  practical  way  of  reducing  defects  in  a system and increasing the users’
confidence in a developed system.

Differentiate between verification and validation.

 Verification is the process of determining whether the output of one phase of software
development  conforms  to  that  of  its  previous  phase,  whereas  validation is  the  process  of
determining whether a fully developed system conforms to its requirements specification. Thus
while verification is concerned with phase containment of errors, the aim of validation is that
the final product be error free.

 The  primary  techniques  used  for  verification  include  review,  simulation, formal
verification, and testing.  Review, simulation,  and testing are usually considered as informal
verification techniques.

 Verification does  not require execution of the software, whereas validation requires
execution of the software.

 Verification is carried out during the development process to check if the development
activities  are  proceeding  alright,  whereas  validation  is carried  out  to  check  if  the  right  as
required by the customer has been developed.

Testing Activities

Testing involves performing the following main activities:

Test suite design: The set of test cases using which a program is to be tested is designed 
possibly using several test case design techniques. We discuss a few important test case design 
techniques later in this Chapter.

Running test cases and checking the results to detect failures: Each test case is run and the
results  are  compared  with  the  expected  results.  A mismatch  between  the  actual  result  and
expected results indicates a failure. The test cases for which the system fails are noted down for
later debugging.

Locate error: In this activity, the failure symptoms are analysed to locate the errors. For each 
failure observed during the previous activity, the statements that are in error are identified.

Error correction: After the error is located during debugging, the code is appropriately changed
to correct the error.

       The testing activities have been shown schematically . As can be seen, the test cases are first
designed, the test cases are run to detect failures. The bugs causing the failure are identified



through debugging,  and the  identified  error  is  corrected.Of  all  the  above  mentioned  testing
activities, debugging often turns out to be the most time-consuming activity.

Figure: Testing process.

Design of test cases

Exhaustive testing of almost any non-trivial system is impractical due to the fact that the
domain of input data values to most practical software systems is either extremely large or
infinite. Therefore, we must design an optional test suite that is of reasonable size and can
uncover as many errors existing in the system as possible. Actually, if test cases are selected
randomly, many of these randomly selected test cases do not contribute to the significance of
the test suite, i.e. they do not detect any additional defects not already being detected by other
test cases in the suite. Thus, the number of random test cases in a test suite is, in general, not
an indication of the effectiveness of the testing. In other words, testing a system using a large
collection of test cases that are selected at random does not guarantee that all (or even most)
of the errors in the system will be uncovered. Consider the following example code segment
which  finds  the greater of two integer values x and y. This code segment has a simple
programming error.

If (x>y) max = x;
else max = x;

For  the  above  code  segment,  the  test  suite,  {(x=3,y=2);(x=2,y=3)}  can  detect  the error,
whereas a larger test suite {(x=3,y=2);(x=4,y=3);(x=5,y=1)} does not detect the error. So, it
would be incorrect  to  say that  a  larger  test  suite  would always detect  more errors  than a
smaller  one,  unless  of  course  the  larger  test suite  has  also  been  carefully  designed.  This
implies  that  the  test  suite  should  be carefully designed than picked randomly. Therefore,
systematic approaches should be followed to design an optimal test suite. In an optimal test
suite, each test case is designed to detect different errors.



Functional testing vs. Structural testing
In the black-box testing approach, test cases are designed using only the functional

specification of the software, i.e. without any knowledge of the internal structure of the software.
For this reason, black-box testing is known as functional testing.

On the  other  hand,  in  the  white-box testing  approach,  designing  test  cases requires
thorough knowledge about the internal structure of software, and therefore the white-box
testing is called structural testing..

Testing in the large vs. testing in the small

Software products are normally tested first at the individual component (or unit) level. This is
referred to as testing in the small. After testing all the components individually, the components
are slowly integrated and tested at each level of integration (integration testing). Finally, the
fully integrated system is tested (called system testing). Integration and system testing are
known as testing in the large.

Unit testing

Unit  testing  is  undertaken after  a module  has  been coded and successfully reviewed.  Unit
testing (or module testing) is the testing of different units (or modules) of a system in isolation.

Driver and stub modules
In order  to  test  a  single  module,  a  complete  environment  is  needed to provide  all  that  is
necessary  for  execution  of  the  module.  That  is,  besides  the module  under  test  itself,  the
following steps are needed in order to be able to test the module:

 The procedures belonging to other modules that the module under test calls.
 Nonlocal data structures that the module accesses.
 A procedure to call the functions of the module under test with appropriate 

parameters.
Modules required to provide the necessary environment (which either call or are called by the
module under test) is usually not available until they too have been unit tested, stubs and drivers
are designed to provide the complete environment for a module. 

Stub:The role of stub and driver modules is pictorially shown in fig. 10.1. A stub procedure is a
dummy procedure that has the same I/O parameters as the given procedure but has a highly
simplified behavior. For example, a stub procedure may produce the expected behavior using a
simple table lookup mechanism.

 Figure: Unit testing with the help of driver and stub modules.



Driver: A driver module contain the nonlocal data structures accessed by the module under
test, and would also have the code to call the different functions of the module with appropriate
parameter values.

Black box testing

In the black-box testing, test cases are designed from an examination of the input/output
values only and no knowledge of design, or code is required. The following are the two
main approaches to designing black box test cases.

 Equivalence class portioning

 Boundary value analysis
Equivalence Class Partitioning

In this approach, the domain of input values to a program is partitioned into a set of equivalence
classes. This partitioning is done such that the behavior of the program is similar for every input
data belonging to the same equivalence class. The main idea behind defining the equivalence
classes is that testing the code with any one value belonging to an equivalence class is as good
as testing the software with any other value belonging to that equivalence class. Equivalence
classes for a software can be designed by examining the input data and output data. 

The following are some general guidelines for designing the equivalence classes:

1.1If the input data values to a system can be specified by a range of values, then one valid and
two invalid equivalence classes should be defined.

1.2If the input data assumes values from a set of discrete members of some domain, then one
equivalence class for valid input values and another equivalence class for invalid input values
should be defined.

Example#1: For a software that computes the square root of an input integer which can
assume values in the range of 0 to 5000, there are three equivalence classes: The set of
negative integers, the set of integers in the range of 0 and 5000, and the integers larger than
5000.  Therefore,  the  test  cases  must  include representatives  for  each  of  the  three
equivalence classes and a possible test set can be: {-5,500,6000}.

Example#2: Design the black-box test suite for the following program. The program computes
the intersection point of two straight lines and displays the result. It reads two integer pairs (m1,
c1) and (m2, c2) defining the two straight lines of the form y=mx + c.

The equivalence classes are the following:

 Parallel lines (m1=m2, c1c2)
 Intersecting lines (m1m2)
 Coincident lines (m1=m2, c1=c2)

Now, selecting one representative value from each equivalence class, the test suit (2, 2)
(2, 5), (5, 5) (7, 7), (10, 10) (10, 10) are obtained.



Example#3:Design equivalence class partitioning test suite for a function that reads a character
string of size less than five characters and displays whether it is a palindrome.

Answer: The equivalence classes are the leaf level classes shown in Figure.The equivalence 

classes are palindromes, non-palindromes, and invalid inputs. Now, selecting one representative 

value from each equivalence class, we have the required test suite: {abc,aba,abcdef}.

Figure: Equivalence classes for Example 
Boundary Value Analysis

A type of programming error frequently occurs at the boundaries of different equivalence
classes of inputs. The reason behind such errors might purely be due to psychological
factors. Programmers often fail to see the special processing required by the input values
that lie at the boundary of the different equivalence classes. For example, programmers
may improperly use < instead of <=, or conversely <= for <. Boundary value analysis
leads to selection of test cases at the boundaries of the different equivalence classes.

Example:For a function that computes the square root of the integer values in the range of 0 
and 5000, determine the boundary value test suite.

Answer: There are three equivalence classes—The set of negative integers, the set of integers
in the range of 0 and 5000, and the set of integers larger than 5000. The boundary value-based
test suite is: {0,-1,5000,5001}.
White box testing

One white-box testing strategy is said to be stronger than another strategy, if all types of errors
detected by the first testing strategy is also detected by the second testing strategy, and the
second testing strategy additionally detects some more types of errors.  When two testing
strategies detect errors that are different at least with respect to some types of errors, then they
are  called complementary. The concepts of stronger and complementary testing are
schematically illustrated.

        



A white-box testing strategy can either be coverage-based or fault- based.

Fault-based testing

A fault-based testing strategy targets to detect certain types of faults. These faults that a
test strategy focuses on constitutes the fault model  of the strategy. An example of a
fault-based strategy is mutation testing, which is discussed later in this section.

Coverage-based testing

A coverage-based testing strategy attempts to execute (or cover) certain elements of a
program. Popular examples of coverage-based testing strategies are statement coverage,
branch coverage, multiple condition coverage, and path coverage-based testing.

Testing criterion for coverage-based testing

A coverage-based testing strategy typically targets to execute (i.e., cover) certain
program elements for discovering failures

Figure: Ilustration of stronger, weaker, and complementary testing strategies.

Statement coverage

The statement coverage strategy aims to design test cases so that every statement in a
program is executed at least once. The principal idea governing the statement coverage strategy is
that unless a statement is executed, it is very hard to determine if an error exists in that statement.
Unless a statement is executed, it is very difficult to observe whether it causes failure due to some
illegal memory access, wrong result computation, etc. However, executing some statement once
and observing that it behaves properly for that input value is no guarantee that it will behave
correctly for all input values. In the following, designing of test cases using the statement
coverage strategy have been shown.



Example: Consider the Euclid’s GCD computation algorithm: int

compute_gcd(x, y)
int x, y;

{

1 while (x! = y){

2 if (x>y) then

3 x= x – y;

4 else y= y – x; 
5 }

6 return x;

}

By  choosing  the  test  set  {(x=3,  y=3),  (x=4,  y=3),  (x=3,  y=4)},  we  can  exercise  the
program such that all statements are executed at least once.

Branch coverage

In the branch coverage-based testing strategy, test cases are designed to make each branch
condition to assume true and false values in turn. Branch testing is also known as edge testing
as in this testing scheme, each edge of a program’s control flow graph is traversed at least
once.

It is obvious that branch testing guarantees statement coverage and thus is a stronger
testing  strategy  compared  to  the  statement  coverage-based  testing. For  Euclid’s  GCD
computation algorithm , the test cases for branch coverage can be {(x=3, y=3), (x=3, y=2), (x=4,
y=3), (x=3, y=4)}.

Condition coverage

In this structural testing, test cases are designed to make each component of a composite
conditional expression to assume both true and false values. For example, in the conditional
expression ((c1.and.c2).or.c3), the components c1, c2 and c3 are each made to assume both
true and false values. Branch testing is probably the simplest condition testing strategy where
only the compound conditions  appearing  in  the  different  branch  statements  are  made  to
assume the true and false values. Thus, condition testing is a stronger testing strategy than
branch testing and branch testing is stronger testing strategy than the statement coverage-
based testing. For a composite conditional expression of n components,   for   condition
coverage,   2ⁿ  test   cases  are  required.   Thus,   for condition coverage, the number of test
cases  increases  exponentially  with  the number  of  component  conditions.  Therefore,  a
condition coverage-based testing technique is practical only if n (the number of conditions) is
small.



Path coverage

The path coverage-based testing strategy requires us to design test cases such that all linearly
independent paths in the program are executed at least once. A linearly independent path can be
defined in terms of the control flow graph (CFG) of a program.

 
Control Flow Graph (CFG)

A control flow graph describes the sequence in which the different instructions of a program
get executed. In other words, a control flow graph describes how the control flows through the
program. In order to draw the control flow graph of a program, all the statements of a program
must be numbered first. The different numbered statements serve as nodes of the control flow
graph (as shown in fig. 10.3). An edge from one node to another node exists if the execution of
the statement representing the first node can result in the transfer of control to the other node.

The  CFG for  any  program can  be  easily  drawn by  knowing  how to represent  the
sequence, selection, and iteration type of statements in the CFG. After all, a program is made
up from these types of statements. Fig. 10.3 summarizes how the CFG for these three types of
statements can be drawn. It is important to note that for the iteration type of constructs such as
the while construct, the loop condition is tested only at the beginning of the loop and therefore
the control flow from the last statement of the loop is always to the top of the loop. Using these
basic ideas, the CFG of Euclid’s GCD computation algorithm.

              Figure: Control flow diagram of an example program.



Path

A path through a program is a node and edge sequence from the starting node to a terminal
node of the control flow graph of a program. There can be more than one terminal node in a
program. Writing test cases to cover all the paths of a typical program is impractical. For this
reason, the path-coverage testing does not require coverage of all paths but only coverage of
linearly independent paths.

Linearly independent path

A linearly independent path is any path through the program that introduces at least one new
edge that is not included in any other linearly independent paths. If a path has one new node
compared to all other linearly independent paths, then the path is also linearly independent.
This is because, any path having a new node automatically implies that it has a new edge.
Thus, a path that is subpath of another path is not considered to be a linearly independent
path.

In  orde  to  understand  the  path  coverage-based  testing  strategy,  it  is  very  much
necessary  to  understand the control  flow graph (CFG) of  a  program. Control  flow graph
(CFG) of a program has been discussed earlier.

Cyclomatic complexity

For more complicated programs it is not easy to determine the number of independent paths of
the  program.  McCabe’s  cyclomatic  complexity  defines  an upper  bound for  the  number  of
linearly independent paths through a program. Also, the McCabe’s cyclomatic complexity is
very simple to compute. Thus, the McCabe’s cyclomatic complexity metric provides a practical
way of determining the maximum number of linearly independent paths in a program. Though
the McCabe’s metric does not directly identify the linearly independent paths, but it informs
approximately how many paths to look for.

There are three different ways to compute the cyclomatic complexity. The answers 
computed by the three methods are guaranteed to agree.

Method 1:

Given a  control  flow graph G of  a  program,  the  cyclomatic  complexity  V(G) can be
computed as:

V(G) = E – N + 2

where N is the number of nodes of the control flow graph and E is the number of edges in
the control flow graph.
For the CFG of example shown in fig.  10.4,  E=7 and N=6. Therefore,  the cyclomatic
complexity = 7-6+2 = 3.

Method 2:

An  alternative  way  of  computing  the  cyclomatic  complexity  of  a  program from an
inspection of its control flow graph is as follows:

V(G) = Total number of bounded areas + 1



In the program’s control flow graph G, any region enclosed by nodes and edges can be called
as a bounded area. This is an easy way to determine the McCabe’s cyclomatic  complexity.
But,  what if  the graph  G is  not planar, i.e. however you draw the graph, two or more
edges intersect? Actually, it can be shown that structured programs always yield planar graphs.
But, presence of GOTO’s can easily add intersecting edges. Therefore, for non-structured
programs, this way of computing the McCabe’s cyclomatic complexity cannot be used.

The number of bounded areas increases with the number of decision paths and loops.
Therefore, the McCabe’s metric provides a quantitative measure of testing difficulty and the
ultimate reliability. For the CFG example shown in fig. 10.4, from a visual examination of the
CFG the number of bounded areas is 2. Therefore the cyclomatic complexity, computing with
this method is also 2+1 = 3. This method provides a very easy way of computing the cyclomatic
complexity of CFGs, just from a visual examination of the CFG. On the other hand, the other
method of computing CFGs is more amenable to automation, i.e. it can be easily coded into a
program which can be used to determine the cyclomatic complexities of arbitrary CFGs.

Method 3:

The cyclomatic complexity of a program can also be easily computed by computing the
number of decision statements of the program. If N is the number of decision statement of a
program, then the McCabe’s metric is equal to N+1.

Data flow-based testing

Data flow-based testing method selects test paths of a program according to the locations
of the definitions and uses of different variables in a program.

  For a statement numbered S, let

DEF(S) = {X/statement S contains a definition of X}, and 
USES(S) = {X/statement S contains a use of X}

For the statement S:a=b+c;, DEF(S) = {a}. USES(S) = {b,c}. The definition of variable

X at statement S is said to be live at statement S1, if there exists a path from statement S to
statement S1 which does not contain any definition of X.

The definition-use chain (or DU chain) of a variable X is of form [X, S, S1], where
S and S1 are statement numbers, such that X Є DEF(S) and X Є USES(S1), and the definition
of X in the statement S is live at statement S1. One simple data flow testing strategy is to
require that every DU chain be covered at least once. Data flow testing strategies are useful
for selecting test paths of a program containing nested if and loop statements.

Mutation testing
In mutation testing, the software is first tested by using an initial test suite built up

from the different white box testing strategies. After the initial testing is complete, mutation
testing is taken up. The idea behind mutation testing is to make few arbitrary changes to a
program at a time. Each time the program is changed, it is called as a mutated program and
the change effected is called as a mutant. A mutated program is tested against the full test
suite of the program. If there exists at least one test case in the test suite for which a
mutant gives an incorrect result, then the mutant is said to be dead. If a mutant remains alive
even after all the test cases have been exhausted, the test data is enhanced to kill the mutant.



The process of generation and killing of mutants can be automated by predefining a set of
primitive  changes  that  can  be  applied  to  the  program.  These primitive  changes  can  be
alterations  such  as  changing  an  arithmetic  operator, changing the value of a constant,
changing a data type, etc. A major disadvantage of the mutation-based testing approach is
that it is computationally very expensive, since a large number of possible mutants can be
generated.

Since mutation testing generates a large number of mutants and requires us to check
each mutant with the full test suite, it is not suitable for manual testing. Mutation testing should
be used in conjunction of some testing tool which would run all the test cases automatically.

Need for debugging

Once  errors  are  identified  in  a  program code,  it  is  necessary  to  first  identify  the precise
program statements responsible for the errors and then to fix them. Identifying errors in a
program code and then fix them up are known as debugging.

Debugging approaches

The following are some of the approaches popularly adopted by programmers for debugging.
  Brute Force Method:

This is the most common method of debugging but is the least efficient method. In this
approach, the program is loaded with print statements to print the intermediate values with
the hope that some of the printed values will help to identify the statement in error. This
approach becomes more systematic with the use of a symbolic debugger (also called a source
code debugger), because values of different variables can be easily checked and break points
and watch points can be easily set to test the values of variables effortlessly.

Backtracking:

This is also a fairly common approach. In this approach, beginning from the statement at
which an error symptom has been observed, the source code is traced backwards until the
error is discovered. Unfortunately, as the number of source lines to be traced back increases,
the number of potential backward paths increases and may become unmanageably large thus
limiting the use of this approach.

  Cause Elimination Method:

In this approach, a list of causes which could possibly have contributed to the error symptom is
developed and tests are conducted to eliminate each. A related technique of identification of
the error from the error symptom is the software fault tree analysis.

  Program Slicing:
  This technique is similar to back tracking. Here the search space is reduced by defining slices. A
slice of a program for a particular variable at a particular statement is the set of source lines
preceding this statement that can influence the value of that variable [Mund2002].

 Debugging guidelines

Debugging is often carried out by programmers based on their ingenuity. The following are
some general guidelines for effective debugging:



 Many times debugging requires a thorough understanding of the program design.
Trying  to  debug  based  on  a  partial  understanding  of the system design and
implementation may require an inordinate amount of effort to be put into
debugging even simple problems.

 Debugging may sometimes even require full redesign of the system. In
such  cases,  a  common  mistakes  that  novice  programmers  often make is
attempting not to fix the error but its symptoms.

 One must be beware of the possibility that an error correction may introduce
new errors. Therefore after every round of error-fixing, regression testing
must be carried out.

Program analysis tools

A program analysis tool means an automated tool that takes the source code or the executable
code of a program as input and produces reports regarding several important characteristics of
the program, such as its size, complexity, adequacy of commenting, adherence to programming
standards, etc. We can classify these into two broad categories of program analysis tools:

 Static Analysis tools

 Dynamic Analysis tools

Static program analysis tools

Static analysis  tool is also a program analysis tool.  It  assesses and computes various
characteristics of a software product without executing it. Typically, static analysis tools analyze
some structural representation of a program to arrive at certain analytical conclusions, e.g. that
some structural properties hold. The structural properties that are usually analyzed are:

 Whether the coding standards have been adhered to?
 Certain programming errors such as uninitialized variables and mismatch

between actual  and formal  parameters,  variables  that  are declared but never
used are also checked.

Code walk throughs and code inspections might be considered as static analysis methods.
But,  the  term static  program analysis  is  used  to  denote  automated analysis  tools.  So,  a
compiler can be considered to be a static program analysis tool.

Dynamic program analysis tools

Dynamic program analysis techniques require the program to be executed and its actual
behavior recorded. A dynamic analyzer  usually  instruments the code (i.e.  adds additional
statements in the source code to collect program execution traces). The instrumented code
when executed allows us to record the behavior of the software for different test cases. After
the software has been tested with its full test suite and its behavior recorded, the dynamic
analysis tool caries out a post execution analysis and produces reports which describe the
structural coverage that has been achieved by the complete test suite for the program. For
example, the post execution dynamic analysis report might provide data on extent statement,
branch and path coverage achieved.



Normally the dynamic analysis results are reported in the form of a histogram or a
pie chart to describe the structural coverage achieved for different modules of the program.
The output of a dynamic analysis tool can be stored and printed easily and provides evidence
that  thorough testing  has  been  done.  The dynamic  analysis  results  the  extent  of  testing
performed in white-box mode. If the testing coverage is not satisfactory more test cases can
be  designed  and  added to the test suite. Further, dynamic analysis results can help to
eliminate redundant test cases from the test suite.

 Integration testing

The primary objective of integration testing is to test the module interfaces, i.e. there are no
errors  in  the  parameter  passing,  when  one  module  invokes  another module. During
integration testing, different modules of a system are integrated in a planned manner using
an integration plan. The integration plan specifies the steps and the order in which modules
are combined to realize the full system. After each integration step, the partially integrated
system  is  tested.  An  important factor  that  guides  the  integration  plan  is  the  module
dependency graph. The structure chart (or module dependency graph) denotes the order in
which different modules call each other. By examining the structure chart the integration plan
can be developed.

 Integration test approaches

There  are  four  types  of  integration  testing  approaches.  Any  one  (or  a  mixture)  of the
following approaches can be used to develop the integration test plan. Those approaches are
the following:

 Big bang approach

 Top-down approach

 Bottom-up approach

 Mixed-approach

Big-Bang Integration Testing

It is the simplest integration testing approach, where all the modules making up a system
are integrated in a single step. In simple words, all the modules of the system are simply put
together and tested. However, this technique is practicable only for very small systems. The
main problem with this approach is that once an error is found during the integration testing, it
is very difficult to localize the error as the error may potentially belong to any of the modules
being integrated. Therefore, debugging errors reported during big bang integration testing are
very expensive to fix.
Bottom-Up Integration Testing

In bottom-up testing, each subsystem is tested separately and then the full system is
tested. A subsystem might consist of many modules which communicate  among each other
through well-defined interfaces. The primary purpose of testing each subsystem is to test the
interfaces among various modules making up the subsystem. Both control and data interfaces
are tested. The test  cases must be carefully chosen to exercise the interfaces in all  possible
manners.



Large software systems normally require several levels of subsystem testing; lower-level
subsystems are successively combined to form higher-level subsystems. A principal advantage
of bottom-up integration testing is that several disjoint subsystems can be tested simultaneously.
In a pure bottom-up testing no stubs are required, only test-drivers are required. A disadvantage
of bottom-up testing is the complexity that occurs when the system is made up of a large number
of small subsystems. The extreme case corresponds to the big-bang approach.

  Top-Down Integration Testing

Top-down integration testing starts with the main routine and one or two subordinate routines
in the system. After the top-level ‘skeleton’ has been tested, the immediately subroutines of the
‘skeleton’ are combined with it and tested. Top-down integration testing approach requires the
use  of  program stubs  to simulate  the  effect  of  lower-level  routines  that  are  called  by  the
routines  under test. A pure top-down integration does not require any driver routines. A
disadvantage of the top-down integration testing approach is that in the absence of lower-level
routines, many times it may become difficult to exercise the top- level routines in the desired
manner since the lower-level routines perform several low-level functions such as I/O.
Mixed Integration Testing

A mixed (also called sandwiched) integration testing follows a combination of top- down and
bottom-up testing approaches. In top-down approach, testing can start only after the top-level
modules have been coded and unit tested. Similarly, bottom-up testing can start only after the
bottom level modules are ready. The mixed approach overcomes this shortcoming of the top-
down and bottom-up approaches.  In the mixed testing approaches,  testing can start  as and
when modules become available. Therefore, this is one of the most commonly used integration
testing approaches.

Phased vs. incremental testing

The different integration testing strategies are either phased or incremental. A comparison of
these two strategies is as follows:

 In incremental integration testing, only one new module is added to the partial
system each time.

 In phased integration, a group of related modules are added to the partial 
system each time.

Phased  integration  requires  less  number  of  integration  steps  compared  to  the incremental
integration approach. However, when failures are detected, it is easier to debug the system in the
incremental testing approach since it is known that the error is caused by addition of a single
module. In fact, big bang testing is a degenerate case of the phased integration testing approach.

Grey-Box Testing of Object-oriented Programs

As we have already mentioned, model-based testing is important for object- oriented programs, as
these test cases help detect bugs that are specific to the object-orientation constructs.

The following are some important types of grey-box testing that can be carried on based on
UML models:



State-model-based testing

State coverage: Each method of an object are tested at each state of the object.

State transition coverage: It is tested whether all transitions depicted in the state model 
work satisfactorily.
State transition path coverage: All transition paths in the state model are tested.

Use case-based testing

Scenario coverage: Each use case typically consists of a mainline scenario and several alternate
scenarios. For each use case, the mainline and all alternate sequences are tested to check if any
errors show up.

Class diagram-based testing

Testing derived classes: All derived classes of the base class have to be instantiated and tested.
In addition to testing the new methods defined in the derivec. lass, the inherited methods must 
be retested.

Association testing: All association relations are tested.

Aggregation testing: Various aggregate objects are created and tested.

Sequence diagram-based testing Method coverage: All methods depicted in the sequence 
diagrams are covered. 

Message path coverage: All message paths that can be constructed from the sequence diagrams
are covered.

Integration Testing of Object-oriented Programs

There are two main approaches to integration testing of object-oriented programs:

• Thread-based

• Use based

Thread-based approach:  In this approach, all classes that need to collaborate to realise the
behaviour of a single use case are integrated and tested. After all the required classes for a use
case are integrated and tested,another use case is taken up and other classes (if any) necessary
for execution of the second use case to run are integrated and tested. This is continued till all
use cases have been considered.

Use-based approach: Use-based integration begins by testing classes that either need no 
service from other classes or need services from at most a few other classes. After these classes 
have been integrated and tested, classes that use the services from the already integrated 
classes are integrated and tested. This is continued till all the classes have been integrated and 
tested.

System testing

System tests are designed to validate a fully developed system to assure that it meets its
requirements. There are essentially three main kinds of system testing:

 Alpha Testing. Alpha testing refers to the system testing carried out by the
test team within the developing organization.

 Beta testing. Beta testing is the system testing performed by a select group
of friendly customers.



 Acceptance Testing. Acceptance testing is the system testing performed
by the customer to determine whether he should accept the delivery of the
system.

In each of the above types of tests, various kinds of test cases are designed by referring to the
SRS document. Broadly, these tests can be classified into functionality and performance tests.
The functionality tests test the functionality of the software to check whether it satisfies the
functional requirements as documented in the SRS document. The performance tests test the
conformance of the system with the nonfunctional requirements of the system.

Smoke Testing

Smoke testing is carried out before initiating system testing to ensure that system testing would
be meaningful, or whether many parts of the software would fail. The idea behind smoke testing
is that if the integrated program cannot pass even the basic tests, it is not ready for a vigorous
testing.  For  smoke  testing,  a  few  test  cases  are  designed  to check  whether  the  basic
functionalities are working. For example, for a library automation system, the smoke tests may
check whether books can be created and deleted, whether member records can be created and
deleted, and whether books can be loaned and returned.

Performance testing

Performance testing is  carried out  to  check whether  the system needs the non- functional
requirements identified in the SRS document. There are several types of performance testing.
Among of them nine types are discussed below. The types of performance testing to be carried
out  on  a  system  depend  on  the different non-functional requirements of the system
documented in the SRS document. All performance tests can be considered as black-box tests.

 Stress testing
 Volume testing
 Configuration testing
 Compatibility testing
 Regression testing
 Recovery testing
 Maintenance testing
 Documentation testing
 Usability testing

Stress Testing
Stress testing is also known as endurance testing. Stress testing evaluates system

performance when it is stressed for short periods of time. Stress tests are black box tests which
are designed to impose a range of abnormal and even illegal input conditions so as to stress the
capabilities of the software. Input data volume, input data rate, processing time, utilization of
memory, etc. are tested beyond the designed capacity. For example, suppose an operating system
is supposed to support 15 multiprogrammed jobs, the system is stressed by attempting to run 15
or more jobs  simultaneously.  A real-time system might  be tested to determine the effect  of
simultaneous arrival of several high-priority interrupts.

Stress  testing  is  especially  important  for  systems  that  usually  operate below  the
maximum capacity but are severely stressed at some peak demand hours. For example, if the
non-functional requirement specification states that the response time should not be more than



20 secs per transaction when 60 concurrent users are working, then during the stress testing the
response time is checked with 60 users working simultaneously.

Volume Testing

It is especially important to check whether the data structures (arrays, queues, stacks, etc.)
have been designed to successfully extraordinary situations. For example, a compiler might be
tested to check whether the symbol table overflows when a very large program is compiled.
Configuration Testing

This is used to analyze system behavior in various hardware and software
configurations  specified  in  the  requirements.  Sometimes  systems  are  built  in variable
configurations for different users. For instance, we might define a minimal system to serve a
single  user,  and  other  extension  configurations  to serve additional users. The system is
configured in each of the required configurations and it  is  checked if  the system behaves
correctly in all required configurations.

  Compatibility Testing

This  type  of  testing  is  required  when  the  system interfaces  with  other  types  of systems.
Compatibility aims to check whether the interface functions perform as required. For instance,
if the system needs to communicate with a large database system to retrieve information,
compatibility testing is required to test the speed and accuracy of data retrieval.

Regression Testing

This type of testing is required when the system being tested is an upgradation of an already
existing system to fix some bugs or enhance functionality, performance, etc. Regression
testing is the practice of running an old test suite after each change to the system or after each
bug fix to ensure that no new bug has been introduced due to the change or the bug fix.
However, if only a few statements are changed, then the entire test suite need not be run - only
those test cases that test the functions that are likely to be affected by the change need to be
run.
Recovery Testing

Recovery testing tests the response of the system to the presence of faults, or loss of power,
devices, services, data, etc. The system is subjected to the loss of the mentioned resources (as
applicable and discussed in the SRS document) and it  is checked if  the system recovers
satisfactorily. For example, the printer can be disconnected to check if the system hangs. Or,
the power may be shut down to check the extent of data loss and corruption.
Maintenance Testing

This testing addresses the diagnostic programs, and other procedures that are required to be
developed to help maintenance of the system. It is verified that the artifacts exist and they
perform properly.

  Documentation Testing

It is checked that the required user manual, maintenance manuals, and technical manuals exist
and are consistent. If the requirements specify the types of audience for  which a  specific
manual should be designed, then the manual is checked for compliance.

 Usability Testing



Usability testing concerns checking the user interface to see if it meets all user requirements
concerning the user interface. During usability testing, the display screens, report formats, and
other aspects relating to the user interface requirements are tested.

Error seeding

Sometimes the customer might specify the maximum number of allowable errors that may be
present in the delivered system. These are often expressed in terms of maximum number of
allowable errors per line of source code. Error seed can be used to estimate the number of
residual errors in a system.

Error seeding, as the name implies, seeds the code with some known errors. In other
words, some artificial errors are introduced into the program artificially. The number of these
seeded errors detected in the course of the standard testing procedure is determined. These values
in conjunction with the number of unseeded errors detected can be used to predict:

 The number of errors remaining in the product.
 The effectiveness of the testing strategy.

Let N be the total number of defects in the system and let n of these defects be found 
by testing.

Let S be the total number of seeded defects, and let s of these defects be found during 
testing.

n/N = s/S

or

N = S  n/s

Defects still remaining after testing = N–n = n(S – s)/s
Error seeding works satisfactorily only if the kind of seeded errors matches closely with the kind
of defects that actually exist. However, it is difficult to predict the types of errors that exist in a
software. To some extent, the different categories of errors that remain can be estimated to a first
approximation by analyzing historical data of similar projects. Due to the shortcoming that the
types of seeded errors should match closely with the types of errors actually existing in the code,
error seeding is useful only to a moderate extent.

Test documentation

A piece of documentation that is produced towards the end of testing is the test summary report. 
This report normally covers each subsystem and represents a summary of tests which have been 
applied to the subsystem and their outcome. It normally specifies the following:

 What is the total number of tests that were applied to a subsystem. 

 Out of the total number of tests how many tests were successful.

 How many were unsuccessful, and the degree to which they were 
unsuccessful, e.g., whether a test was an outright failure or whether some of the 
expected results of the test were actually observed.



Software Reliability
Reliability of a software product essentially denotes its trustworthiness or dependability.

Alternatively, reliability of a software product can also be defined as the probability of the product
working “correctly” over a given period of time.It is obvious that a software product having a large
number of defects is unreliable. It is also clear  that the reliability of a  system improves,  if  the
number of defects in it is reduced. However, there is no simple relationship between the observed
system reliability and the number of latent defects in the system. For example, removing errors from
parts of a software which are rarely executed makes little difference to the perceived reliability of the
product. It has been experimentally observed by analyzing the behavior of a large number of programs
that 90% of the execution time of a typical program is spent in executing only 10% of the instructions
in the program. These most used 10% instructions are often called the core of the program. The rest
90% of  the  program statements  are  called  non-core  and  are  executed  only  for  10% of  the  total
execution time. It therefore may not be very surprising to note that removing 60% product defects
from the least used parts of a system would typically lead to only 3% improvement to the product
reliability. It is clear that the quantity by which the overall reliability of a program improves due to the
correction of a single error depends on how frequently the corresponding instruction is executed.

Thus, reliability of a product depends not only on the number of latent errors but also on the
exact location of the errors. Apart from this, reliability also depends upon how the product is used,
i.e. on its execution profile. If it is selected input data to the system such that only the  “correctly”
implemented  functions  are  executed,  none  of  the  errors  will  be  exposed  and  the perceived
reliability of the product will be high. On the other hand, if the input data is selected such that
only those functions which contain errors are invoked, the perceived reliability of the system will
be very low.

Reasons for software reliability being difficult to measure
The reasons why software reliability is difficult to measure can be summarized as follows:

 The reliability improvement due to fixing a single bug depends on where the bug is 
located in the code.

 The perceived reliability of a software product is highly observer-dependent.

 The reliability of a product keeps changing as errors are detected and fixed.
Hardware reliability vs. software reliability differs.

Reliability  behavior  for  hardware  and  software  are  very  different.  For  example,  hardware
failures are inherently different from software failures. Most hardware failures are due to component
wear and tear. A logic gate may be stuck at 1 or 0, or a resistor might short circuit. To fix hardware
faults, one has to either replace or repair the failed part. On the other hand, a software product would
continue to fail until the error is tracked down and either the design or the code is changed. For this
reason, when a hardware is repaired its reliability is maintained at the level that existed before the
failure occurred; whereas when a software failure is repaired, the reliability may either increase or
decrease (reliability  may decrease  if  a  bug introduces  new errors).  To put this  fact  in  a  different
perspective,  hardware reliability  study is  concerned with stability  (for example,  inter-failure times
remain constant). On the other hand, software reliability study aims at reliability growth (i.e. inter-
failure times increase). The change of failure rate over the product lifetime for a typical hardware and
a software product are sketched in fig. 26.1. For hardware products, it can be observed that failure rate
is high initially but decreases as the faulty components are identified and removed. The system then
enters its useful life. After some time (called product life time) the components wear out, and the



failure rate increases. This gives the plot of hardware reliability over time its characteristics “bath tub”
shape. On the other hand, for software the failure rate is at it’s highest during integration and test.
As the system is tested, more and more errors are identified and removed resulting in reduced failure
rate.  This error removal continues at a slower pace during the useful life of the product. As the
software becomes obsolete no error corrections occurs and the failure rate remains unchanged.

Fig: Change in failure rate of a product

Reliability Metrics
The reliability requirements for different categories of software products may be different. For

this reason, it is necessary that the level of reliability required for a software product should be
specified in the SRS (software requirements specification) document. In order to be able to do
this, some metrics are needed to quantitatively express the reliability of a software product. A
good reliability measure should be observer-dependent, so that different people can agree on the
degree  of  reliability  a  system has.  For  example,  there  are  precise  techniques  for  measuring
performance, which would result in obtaining the same performance value irrespective of who is
carrying out the performance measurement. However, in practice, it is very difficult to formulate a
precise reliability measurement technique. The next base case is to have measures that correlate
with reliability. There are six reliability metrics which can be used to quantify the reliability of
software products.

 Rate of occurrence of failure (ROCOF)- ROCOF measures the frequency of occurrence
of  unexpected  behavior  (i.e.  failures).  ROCOF measure  of  a  software  product can  be
obtained by observing the behavior of a software product in operation over a specified
time interval and then recording the total number of failures occurring during the
interval.

 Mean Time To Failure (MTTF) - MTTF is the average time between two successive
failures, observed over a large number of failures. To measure MTTF, we can record the
failure data for n failures. Let the failures occur at the time instants t , t , …, t .
Then,MTTF can be calculated as



It is important to note that only run time is considered in the time measurements, i.e. the
time for which the system is down to fix the error, the boot time, etc are not taken into
account in the time measurements and the clock is stopped at these times.

 Mean Time To Repair (MTTR) -  Once failure occurs, sometime is required to fix the
error. MTTR measures the average time it takes to track the errors causing the failure and
to fix them.

 Mean Time Between Failure (MTBR) - MTTF and MTTR can be combined to get the
MTBR metric: MTBF = MTTF + MTTR. Thus, MTBF of 300 hours indicates that once a
failure occurs, the next failure is expected after 300 hours. In this case, time measurements
are real time and not the execution time as in MTTF.

 Probability of Failure on Demand (POFOD) - Unlike the other metrics discussed, this
metric does not explicitly involve time measurements. POFOD measures the likelihood
of the system failing when a service request is made. For example, a POFOD of 0.001
would mean that 1 out of every 1000 service requests would result in a failure.

 Availability-  Availability  of a  system is  a  measure of  how likely shall  the system be
available for use over a given period of time. This metric not only considers the number
of failures occurring during a time interval, but also takes into account the repair time
(down time) of a system when a failure occurs. This metric is important for systems such
as telecommunication systems, and operating systems, which are supposed to be never
down and where repair and restart time are significant and loss of service during that time
is important.
Classification of software failures

A possible classification of failures of software products into five different types is as follows:

 Transient- Transient failures occur only for certain input values while invoking a 
function of the system.

 Permanent- Permanent failures occur for all input values while invoking a function of 
the system.

 Recoverable- When recoverable failures occur, the system recovers with or without operator 
intervention.

 Unrecoverable- In unrecoverable failures, the system may need to be restarted.
 Cosmetic-  These  classes  of  failures  cause  only  minor  irritations,  and  do  not  lead  to

incorrect results. An example of a cosmetic failure is the case where the mouse button has
to be clicked twice instead of once to invoke a given function through the graphical user
interface.

RELIABILITY GROWTH MODELS

A reliability growth model is a mathematical model of how software reliability improves as errors
are detected and repaired. A reliability growth model can be used to predict when (or if at all) a particular
level of reliability is likely to be attained. Thus, reliability growth modeling can be used to determine
when to stop testing to attain a given reliability level. Although several different reliability growth models
have been proposed, in this text we will discuss only two very simple reliability growth models.
Jelinski and Moranda Model -The simplest reliability growth model is a step function model where it is
assumed that the reliability increases by a constant increment each time an error is detected and repaired.
However, this simple model of reliability which implicitly assumes that all errors contribute equally to



reliability growth, is highly unrealistic since it is already known that correction of different types of errors
contribute differently to reliability growth.

Fig: Step function model of reliability growth

Littlewood and Verall’s Model -This model allows for negative reliability growth to reflect the fact
that when a repair is carried out, it may introduce additional errors. It also models the fact that as
errors are repaired,  the average improvement in reliability per repair  decreases.It  treat’s  an error’s
contribution  to  reliability  improvement  to  be  an  independent  random  variable having  Gamma
distribution.  This  distribution  models  the  fact  that  error  corrections  with  large contributions  to
reliability growth are removed first. This represents diminishing return as test continues.

Statistical testing

Statistical testing is a testing process whose objective is to determine the reliability of software
products  rather  than discovering errors.  Test  cases are designed for statistical  testing with an
entirely different objective than those of conventional testing.

Operation profile

Different categories of users may use a software for different purposes. For example, a Librarian
might use the library automation software to create member records, add books to the library, etc.
whereas a library member might use to software to query about the availability of the book, or to
issue  and  return  books. Formally,  the  operation  profile  of  a  software  can  be  defined  as  the
probability distribution of the input of an average user. If the input to a number of classes
{Ci} is  divided,  the probability  value of a  class  represent  the probability  of  an average user
selecting his next input from this class. Thus, the operation profile assigns a probability value Pi
to each input class Ci.

Steps in statistical testing

Statistical testing allows one to concentrate on testing those parts of the system that are most
likely to be used. The first step of statistical testing is to determine the operation profile of the
software. The next step is to generate a set of test data corresponding to the determined operation
profile. The third step is to apply the test cases to the software and record the time between each
failure. After a statistically significant number of failures have been observed, the reliability can
be computed



Advantages and disadvantages of statistical testing

Statistical testing allows one to concentrate on testing parts of the system that are most likely
to be used. Therefore, it results in a system that the users to be more reliable (than actually it is!).
Reliability  estimation  using  statistical  testing  is more  accurate  compared  to  those  of  other
methods such as ROCOF, POFOD etc. But it is not easy to perform statistical testing properly.
There  is  no  simple and repeatable way of defining operation profiles. Also it is very much
cumbersome to generate test cases for statistical testing cause the number of test cases with
which the system is to be tested should be statistically significant.

Software Quality

Traditionally,  a quality  product is defined in terms of its  fitness of purpose.  That is,  a
quality  product  does  exactly  what  the  users  want  it  to  do.  For  software products,  fitness  of
purpose is usually interpreted in terms of satisfaction of the requirements laid down in the SRS
document. Although “fitness of purpose” is a satisfactory definition of quality for many products
such as a car, a table fan, a grinding machine, etc. – for software products, “fitness of purpose” is
not a wholly satisfactory definition of quality. To give an example, consider a software product
that is functionally correct. That is, it performs all functions as specified in the SRS
document. But, has an almost unusable user interface. Even though it may be functionally correct,
we cannot consider it to be a quality product. Another example may be that of a product which
does everything that the users want but has an almost incomprehensible and unmaintainable code.
Therefore, the traditional concept of quality as “fitness of purpose” for software products is not
wholly satisfactory.

The modern view of a quality associates with a software product several quality factors
such as the following:

 Portability: A software product is said to be portable, if it can be easily made to work in
different operating system environments, in different machines, with other  software
products, etc.

 Usability: A software product has good usability, if different categories of users (i.e. both
expert and novice users) can easily invoke the functions of the product.

 Reusability: A software product has good reusability, if different modules of the product
can easily be reused to develop new products.

 Correctness: A software product is correct, if different requirements as specified in the
SRS document have been correctly implemented.

 Maintainability:   A software product is maintainable, if errors can be easily corrected as
and  when  they  show up,  new functions  can  be  easily added  to  the  product,  and  the
functionalities of the product can be easily modified, etc.

Software quality management system

A quality management system (often referred to as quality system) is the principal
methodology used by organizations  to  ensure  that  the products  they develop have the desired
quality. A quality system consists of the following:

 Managerial Structure and Individual Responsibilities. A quality system is actually
the responsibility of the organization as a whole. However, every organization has a
separate quality department to perform several quality system activities. The quality
system of an organization should have support of the top management. Without support



for the quality system at a high level in a company, few members of staff will take the
quality system seriously.

 Quality System Activities. The quality system activities encompass the following:
---auditing of projects
---review of the quality system
---development of standards, procedures, and guidelines, etc.

        ---production of reports for the top management summarizing t h e  
effectiveness of the quality system in the organization.

Evolution of quality management system

  Quality systems have rapidly evolved over the last five decades. Prior to World War II, the usual
method  to  produce  quality  products  was  to  inspect  the  finished products  to  eliminate  defective
products.  Since that  time,  quality  systems of organizations  have undergone through four  stages  of
evolution as shown in the figure. The initial product inspection method gave way to quality control
(QC). Quality control focuses not only on detecting the defective products and eliminating them but
also on determining the causes behind the defects. Thus, quality control aims at correcting the causes of
errors  and  not  just  rejecting  the products.  The  next  breakthrough  in  quality  systems  was  the
development of quality assurance principles.

 The basic premise of modern quality assurance is that if an organization’s processes are good and
are followed rigorously, then the products are bound to be of good quality. The modern quality paradigm
includes  guidance for  recognizing,  defining,  analyzing,  and  improving  the  production  process.  Total
quality management (TQM) advocates that the process followed by an organization must be
continuously improved through process measurements.
 TQM goes a step further than quality assurance and aims at continuous process improvement.
TQM goes beyond documenting processes to optimizing them through redesign. A term related to TQM is
Business Process Reengineering (BPR). BPR aims at reengineering the way business is carried out in an
organization. From the above discussion it can be stated that over the years the quality paradigm has
shifted from product assurance to process assurance.

    
 Fig: Evolution of quality system and corresponding shift in the quality paradigm

ISO 9000 certification

  ISO (International Standards Organization) is a consortium of 63 countries established  to
formulate  and foster  standardization.  ISO published its  9000 series of  standards  in  1987.  ISO
certification serves as a reference for contract between independent parties. The ISO 9000 standard



specifies the guidelines for maintaining a quality system. We have already seen that the quality
system of an organization applies to all activities related to its product or service. The ISO standard
mainly  addresses  operational  aspects  and  organizational  aspects  such as responsibilities,
reporting, etc. In a nutshell, ISO 9000 specifies a set of guidelines for repeatable and high
quality product development. It is important to realize that ISO 9000 standard is a set of guidelines
for the production process and is not directly concerned about the product itself.

Types of ISO 9000 quality standards

 ISO 9000 is a series of three standards: ISO 9001, ISO 9002, and ISO 9003. The ISO 9000
series of standards is based on the premise that if a proper process is followed for production, then
good quality products are bound to follow automatically. The types of industries to which the
different ISO standards apply are as follows.

 ISO 9001 applies to the organizations engaged in design,  development, production,  and
servicing  of  goods.  This  is  the  standard  that  is  applicable  to  most software development
organizations.

 ISO 9002 applies to those organizations which do not design products but are only involved
in  production.  Examples  of  these  category  industries  include steel and car manufacturing
industries that buy the product and plant designs from external sources and are involved in only
manufacturing those products. Therefore, ISO 9002 is not applicable to software development
organizations.

 ISO 9003 applies to organizations that are involved only in installation and testing of the
products.

Software products vs. other products

There are mainly two differences between software products and any other type of products.
l Software is intangible in nature and therefore difficult to control. It is very difficult to

control and manage anything that is not seen. In contrast, any other industries such as
car manufacturing industries where one can see a product being developed through
various  stages such as fitting engine, fitting doors, etc. Therefore, it is easy to
accurately determine how much work has been completed and to estimate how much
more time will it take.

l During software development, the only raw material consumed is data. In contrast,
large quantities of raw materials are consumed during the development of any other
product.

Need for obtaining ISO 9000 certification

There is a mad scramble among software development organizations for obtaining ISO
certification due to the benefits it offers. Some benefits that can be acquired to organizations by
obtaining ISO certification are as follows:

 Confidence of customers in an organization increases when organization  qualifies  for  ISO
certification.  This  is  especially  true  in  the international  market.  In  fact,  many  organizations
awarding international software development contracts insist that the development organization
have ISO 9000 certification.  For  this  reason,  it  is  vital  for software organizations  involved in
software export to obtain ISO 9000 certification.



l ISO 9000 requires a well-documented software production process to be in place. A
well-documented software production process contributes to repeatable and higher
quality of the developed software.

l ISO 9000 makes the development process focused, efficient, and cost- effective.
l ISO 9000 certification points out the weak points of an organization and

recommends remedial action.
l ISO 9000 sets the basic framework for the development of an optimal process and

Total Quality Management (TQM)

Summary of ISO 9001 certification

A summary of the main requirements of ISO 9001 as they relate of software development
is as follows. Section numbers in brackets correspond to those in the standard itself:

Management Responsibility (4.1)
l The management must have an effective quality policy.
l The  responsibility  and  authority  of  all  those  whose  work  affects  quality must be

defined and documented.
l A management representative, independent of the development process,  must  be

responsible for the quality system. This requirement probably has been put down so
that the person responsible for the quality system can work in an unbiased manner.

l The effectiveness of the quality system must be periodically reviewed by audits.
Quality System (4.2)

             A quality system must be maintained and documented.
Contract Reviews (4.3)
 Before entering into a contract, an organization must review the contract to ensure that it
is understood, and that the organization has the necessary capability for carrying out its
obligations.

Design Control (4.4)
l The design process must be properly controlled, this includes controlling coding also.

This requirement means that a good configuration control system must be in place.
l Design inputs must be verified as adequate.
l Design must be verified.
l Design output must be of required quality.
l Design changes must be controlled.

Document Control (4.5)
l There must be proper procedures for document approval, issue and removal.
l Document changes must be controlled. Thus, use of some configuration management

tools is necessary.
Purchasing (4.6)
 purchasing material, including bought-in software must be checked for conforming to 
requirements.
Purchaser Supplied Product (4.7)

 Material  supplied by a purchaser,  for example,  client-provided software must be
properly managed and checked.

Product Identification (4.8)
 The product must be identifiable at all stages of the process. In software terms this
means configuration management.

Process Control (4.9)
l The development must be properly managed.
l Quality requirement must be identified in a quality plan.



Inspection and Testing (4.10)
 In software terms this requires effective testing i.e., unit testing, integration testing
and system testing. Test records must be maintained.

Inspection, Measuring and Test Equipment (4.11)
 If  integration,  measuring,  and  test  equipments  are  used,  they  must  be properly
maintained and calibrated.

Inspection and Test Status (4.12)
 The status of an item must be identified. In software terms this implies configuration
management and release control.

Control of Nonconforming Product (4.13)
 In software terms, this means keeping untested or faulty software out of the released
product, or other places whether it might cause damage.

Corrective Action (4.14)
 This requirement is both about correcting errors when found, and also investigating
why the errors occurred and improving the process to prevent occurrences. If an error
occurs despite the quality system, the system needs improvement.

Handling, (4.15)
 This clause deals with the storage, packing, and delivery of the software product.

Quality records (4.16)
 Recording the steps taken to control the quality of the process is essential in order to
be able to confirm that they have actually taken place.

Quality Audits (4.17)
 Audits of the quality system must be carried out to ensure that it is effective.

Training (4.18)
 Training needs must be identified and met.

Salient features of ISO 9001 certification

The salient features of ISO 9001 are as follows:
 All documents concerned with the development of a software product should be properly

managed, authorized, and controlled. This requires a configuration management system to
be in place.

 Proper  plans  should  be  prepared  and  then  progress  against  these  plans should  be
monitored.

 Important documents should be independently checked and reviewed for effectiveness and
correctness.

 The product should be tested against specification.
 Several  organizational  aspects  should  be  addressed  e.g.,  management reporting  of  the

quality team.

Shortcomings of ISO 9000 certification

 Even though ISO 9000 aims at setting up an effective quality system in an organization, it
suffers from several shortcomings. Some of these shortcomings of the ISO 9000 certification
process are the following:



 ISO 9000 requires a software production process to be adhered to but does not guarantee
the process to be of high quality. It also does not give any guideline for defining an appropriate
process.

 ISO 9000 certification process is not fool-proof and no international accreditation agency
exists. Therefore it is likely that variations in the norms of awarding certificates can exist among
the different accreditation agencies and also among the registrars.

 Organizations getting ISO 9000 certification often tend to downplay domain expertise.
These organizations  start  to believe that  since a  good process is  in place,  any engineer is  as
effective as any other engineer in doing any particular activity relating to software development.
However, many areas of software development are so specialized that special expertise  and
experience in these areas (domain expertise) is required. In manufacturing industry there is a clear
link between process quality and product quality. Once a process is calibrated, it can be run
again and again producing quality goods. In contrast, software development is a creative process
and individual skills and experience are important.

 ISO 9000 does  not  automatically lead to  continuous process  improvement,i.e. does  not
automatically lead to TQM.

SEI Capability Maturity Model

SEI Capability Maturity Model (SEI CMM) helped organizations to improve the quality of
the software they develop and therefore adoption of SEI CMM model has significant business
benefits.

SEI CMM can be used two ways: capability evaluation and software process assessment.
Capability evaluation and software process assessment differ in motivation, objective, and the final
use of the result. Capability evaluation provides a way to assess the software process capability of
an organization. The results of capability evaluation indicates the likely contractor performance if
the contractor is awarded a work. Therefore, the results of software process capability assessment
can be used to select a contractor. On the other hand, software process assessment is used by an
organization with the objective to improve its process capability. Thus, this type of assessment is
for purely internal use.

SEI CMM classifies software development industries into the following five maturity
levels. The different levels of SEI CMM have been designed so that it is easy for an organization
to slowly build its quality system starting from scratch.

Level 1: Initial. A software development organization at this level is characterized by ad hoc
activities. Very few or no processes are defined and followed. Since software production processes
are not defined, different engineers follow their own process and as a result development efforts
become chaotic. Therefore, it is also called chaotic level. The success of projects depends on
individual efforts and heroics. When engineers  leave,  the  successors  have  great  difficulty  in
understanding the process followed and the work completed. Since formal project management
practices are not followed, under time pressure short cuts are tried out leading to low quality.

Level 2: Repeatable. At this level, the basic project management practices such as tracking
cost and schedule are established. Size and cost estimation techniques like function point analysis,
COCOMO, etc. are used. The necessary process discipline is in place to repeat earlier success on



projects with similar applications. Please remember that opportunity to repeat a process exists only
when a company produces a family of products.

Level 3: Defined. At this level the processes for both management and development activities
are defined and documented. There is a common organization-wide understanding of activities,
roles, and responsibilities. The processes though defined, the process and product qualities are not
measured. ISO 9000 aims at achieving this level.

Level 4: Managed. At this level, the focus is on software metrics. Two types of metrics are
collected. Product metrics measure the characteristics of the product being developed, such as its
size, reliability, time complexity, understandability, etc. Process metrics reflect the effectiveness
of the process being used, such as average defect correction time, productivity, average number of
defects found per hour inspection, average number of failures detected during testing per LOC, etc.
Quantitative quality goals are set for the products. The software process and product quality are
measured and quantitative quality requirements for the product are met. Various tools like Pareto
charts, fishbone diagrams, etc. are used to measure the product and process quality. The process
metrics  are  used  to  check  if  a  project  performed satisfactorily.  Thus,  the  results  of  process
measurements are used to evaluate project performance rather than improve the process.

Level  5: Optimizing. At this  stage,  process  and  product  metrics  are collected. Process and
product measurement data are analyzed for continuous process improvement. For example, if from
an analysis of the process measurement results, it was found that the code reviews were not very
effective and a large number of errors were detected only during the unit testing, then the process
may be fine tuned to  make the review more effective.  Also,  the lessons learned from specific
projects are incorporated in to the process. Continuous process improvement is achieved both by
carefully analyzing the quantitative feedback from the process measurements and also from
application of innovative ideas and technologies. Such an organization identifies the best software
engineering practices and innovations which may be tools, methods, or processes. 

Key process areas (KPA) of a software organization:Except for SEI CMM level 1, each maturity
level is characterized by several Key Process Areas (KPAs) that includes the areas an organization
should focus to improve its software process to the next level. The focus of each level and the
corresponding key process areas are shown in the figure

CMM Level Focus Key Process Ares

1. Initial Competent people
2. Repeatable Project management Software project planning 

Software configuration 
management

3. Defined Definition of processes Process  definition
Training  program
Peer reviews

4. Managed Product and process
quality

Quantitative process metrics 
Software quality management

5. Optimizing Continuous process 
improvement

Defect prevention
Process change management 
Technology change management

Fig: The focus of each SEI CMM level and the corresponding key process areas



SEI CMM provides a list of key areas on which to focus to take an organization from one
level of maturity to the next. Thus, it provides a way for gradual quality improvement over several
stages. Each stage has been carefully designed such that one stage enhances the capability already
built up. For example, it considers that trying to implement a defined process (SEI CMM level 3)
before a repeatable process (SEI CMM level 2) would be counterproductive as it becomes difficult
to follow the defined process due to schedule and budget pressures.

ISO 9000 certification vs. SEI/CMM

For quality appraisal of a software development organization,  the characteristics of ISO 9000
certification and the SEI CMM differ in some respects. The differences are as follows:

 ISO 9000 is awarded by an international standards body. Therefore, ISO 9000 certification
can be  quoted by an organization  in  official  documents, communication with  external
parties, and the tender quotations. However, SEI CMM assessment is purely for internal
use.

 SEI CMM was developed specifically for software industry and therefore addresses many
issues which are specific to software industry alone.

 SEI  CMM goes  beyond  quality  assurance  and  prepares  an  organization  to ultimately
achieve Total Quality Management (TQM). In fact, ISO 9001 aims at level 3 of SEI CMM
model.

 SEI CMM model provides a list of key process areas (KPAs) on which an organization at
any maturity level needs to concentrate to take it from one maturity level to the next. Thus,
it provides a way for achieving gradual quality improvement.

Applicability of SEI CMM to organizations

Highly  systematic  and  measured  approach  to  software  development  suits  large organizations
dealing with negotiated software, safety-critical software, etc. For those large organizations, SEI
CMM model is perfectly applicable. But small organizations typically handle applications such
as Internet, e-commerce, and are  without  an  established  product  range,  revenue  base,  and
experience on past projects, etc. For such organizations, a CMM-based appraisal is probably
excessive. These organizations need to operate more efficiently at the lower levels of maturity.
For example, they need to practice effective project management, reviews,  configuration
management, etc.

Personal software process

Personal Software Process (PSP) is a scaled down version of the industrial software process. PSP
is  suitable  for  individual  use.  It  is  important  to  note  that SEI  CMM does  not  tell  software
developers how to analyze, design, code, test, or document software products, but assumes that
engineers use effective personal practices. PSP recognizes that the process for individual use is
different from that necessary for a team.

The quality and productivity of an engineer is to a great extent dependent on his process.
PSP is a framework that helps engineers to measure and improve the way they work. It helps in
developing personal skills and methods by estimating and planning, by showing how to track
performance against plans, and provides a defined process which can be tuned by individuals.

Time  measurement. PSP advocates  that  engineers  should  rack  the  way  they spend  time.
Because, boring activities seem longer than actual and interesting activities seem short. Therefore,



the actual time spent on a task should be measured with the help of a stop-clock to get an objective
picture of the time spent. For example, he may stop the clock when attending a telephone call,
taking a coffee break etc. An engineer should measure the time he spends for designing, writing
code, testing, etc.

The PSP is schematically shown inWhile carrying out the different phases, they must
record the log data using time measurement. During post-mortem, they can compare the log data
with their project plan to achieve better planning in the future projects, to improve their process,
etc.

Fig: Schematic representation of PSP

The PSP levels are summarized in figure. PSP2 introduces defect management via the use of
checklists for code and design reviews. The checklists are developed from gathering and
analyzing defect data earlier projects.

Fig: Levels of PSP



  Six sigma

The purpose of Six Sigma is to improve processes to do things better, faster, and at lower
cost. It can be used to improve every facet of business, from production, to human resources, to
order entry, to technical support. Six Sigma can be used for any activity that is concerned with
cost, timeliness, and quality of results. Therefore, it is applicable to virtually every industry.

Six Sigma at many organizations simply means striving for near perfection. Six Sigma is a
disciplined, data-driven approach to eliminate defects in any process – from manufacturing to
transactional and product to service.

The  statistical  representation  of  Six  Sigma  describes  quantitatively  how  a process  is
performing. To achieve Six Sigma, a process must not produce more than 3.4 defects per million
opportunities. A Six Sigma defect is defined as any system behavior that is not as per customer
specifications. Total number of Six Sigma opportunities is then the total number of chances for a
defect. Process sigma can easily be calculated using a Six Sigma calculator.

The fundamental objective of the Six Sigma methodology is the implementation of a
measurement-based strategy that focuses on process improvement and variation reduction
through the application of Six Sigma improvement projects. This is accomplished through the
use of two Six Sigma  sub-methodologies: DMAIC and DMADV. The Six Sigma DMAIC
process (define, measure, analyze, improve, control) is an improvement system for existing
processes failing below specification and looking for incremental improvement. The Six Sigma
DMADV process (define, measure, analyze, design, verify) is an improvement system used to
develop new processes or products at  Six Sigma quality levels. It  can also be employed if  a
current process requires more than just incremental improvement. Both Six Sigma processes are
executed by Six Sigma Green Belts and Six Sigma Black Belts, and are overseen by Six Sigma
Master Black Belts.

Many  frameworks  exist  for  implementing  the  Six  Sigma  methodology.  Six Sigma
Consultants all over the world have also developed proprietary methodologies for implementing
Six Sigma quality,  based on the similar change management philosophies and applications of
tools.

CASE tool and its scope

A CASE (Computer Aided Software Engineering) tool is a generic term used to denote any
form of automated support for software engineering. In a more restrictive sense, a CASE tool
means any tool  used to automate some activity associated with software development.  Many
CASE tools  are  available.  Some  of these  CASE  tools  assist  in  phase  related  tasks  such  as
specification, structured analysis, design, coding, testing, etc.; and others to non-phase activities
such as project management and configuration management.

Reasons for using CASE tools

The primary reasons for using a CASE tool are:
 To increase productivity
 To help produce better quality software at lower cost



CASE Environment

Although individual CASE tools are useful, the true power of a tool set can be realized only
when these set of tools are integrated into a common framework or environment. CASE tools are
characterized by the stage or stages of software development life cycle on which they focus. Since
different tools covering different  stages  share  common  information, it  is  required  that  they
integrate through some central repository to have a consistent view of information associated with
the software development artifacts. This central repository is usually a data dictionary containing
the definition of all composite and elementary data items. Through the central repository all the
CASE tools in a CASE environment share common information among themselves. Thus a
CASE environment facilities the automation of the step-by-step methodologies for software
development. A schematic representation of a CASE environment is shown in figure.

Fig: A CASE Environment

The standard programming environments such as Turbo C, Visual C++, etc. come equipped with a
program editor, compiler, debugger, linker, etc., All these tools are integrated. If you click on an
error reported by the compiler, not only does it take you into the editor, but also takes the cursor
to the specific line or statement causing the error.

CASE environment vs programming environment

A CASE environment facilitates the automation of the step-by-step methodologies for software
development. In contrast to a CASE environment, a programming environment is an integrated
collection of tools to support only the coding phase of software development.

Benefits of CASE

Several benefits accrue from the use of a CASE environment or even isolated CASE tools. Some
of those benefits are:



 Use of CASE tools leads to considerable improvements to quality. This is mainly due to the facts
that one can effortlessly iterate through the different phases of software development and the
chances of human error are considerably reduced.

 CASE tools help produce high quality and consistent documents. Since the important
data relating to a software product are maintained in a central repository, redundancy in
the stored data is reduced and therefore chances of inconsistent documentation is reduced
to a great extent.

 CASE tools take out most of the drudgery in a software engineer’s work. For example,
they need not check meticulously the balancing of the DFDs but can do it effortlessly
through the press of a button.

 CASE tools have led to revolutionary cost saving in software maintenance efforts. This
arises not only due to the tremendous value of a CASE environment in traceability
and consistency checks,  but  also due to the systematic information capture during the
various phases of software development as a result of adhering to a CASE environment.

 Introduction of a CASE environment has an impact on the style of working of a company,
and makes it oriented towards the structured and orderly approach.

CASE SUPPORT IN SOFTWARE LIFE CYCLE

 Let us examine the various types of support that CASE provides during the different
phases  of  a  software life  cycle.  CASE tools  should  support  a development  methodology,  help
enforce the same, and provide certain amount of consistency checking between different phases.
Some of the possible support that CASE tools usually provide in the software development life
cycle are discussed below.

Requirements of a prototyping CASE tool

Prototyping is useful to understand the requirements of complex software products, to
demonstrate a concept, to market new ideas, and so on. The important features of a prototyping
CASE tool are as follows:

 Define user interaction
 Define the system control flow
 Store and retrieve data required by the system
 Incorporate some processing logic

Features of a good prototyping CASE tool

There are several stand-alone prototyping tools. But a tool that integrates with the data
dictionary can make use of the entries in the data dictionary, help in populating the data dictionary
and ensure the consistency between the design data and the prototype. A good prototyping tool
should support the following features:

 Since one of the main uses of a prototyping CASE tool is graphical user interface (GUI)
development, prototyping CASE tool should support the user to create a GUI using a
graphics editor. The user should be allowed to define all data entry forms, menus and
controls.



 It should integrate with the data dictionary of a CASE environment.

 If possible, it should be able to integrate with external user defined modules written in C 
or some popular high level programming languages.

 The user should be able to define the sequence of states through which a created prototype
can run. The user should also be allowed to control the running of the prototype.

 The run time system of prototype should support mock runs of the actual system and 
management of the input and output data

Structured analysis and design with CASE tools

Several diagramming techniques are used for structured analysis and structured design. The
following supports might be available from CASE tools.

 A CASE tool should support one or more of the structured analysis and design techniques.

 It should support effortlessly drawing analysis and design diagrams.

 It should support drawing for fairly complex diagrams, preferably through a hierarchy of
levels.

 The CASE tool should provide easy navigation through the different levels and through 
the design and analysis.

 The  tool  must  support  completeness  and  consistency  checking  across  the design and
analysis and through all levels of analysis hierarchy. Whenever it is possible, the system
should disallow any inconsistent operation, but it may be very difficult to implement such
a feature. Whenever there arises heavy computational load while consistency checking, it
should be possible to temporarily disable consistency checking.

Code generation and CASE tools

As far as code generation is concerned, the general expectation of a CASE tool is quite
low. A reasonable requirement is traceability from source file to design data. More pragmatic
supports expected from a CASE tool during code generation phase are the following:

 The CASE tool should support generation of module skeletons or templates in one or more
popular languages. It should be possible to include copyright message, brief description of the
module, author name and the date of creation in some selectable format.

 The  tool  should  generate  records,  structures,  class  definition  automatically from the
contents of the data dictionary in one or more popular languages.

 It should generate database tables for relational database management systems.

 The tool should generate code for user interface from prototype definition for X window
and MS window based applications.



Test case generation CASE tool

The CASE tool for test case generation should have the following features:

1.It should support both design and requirement testing.

2.It should generate test set reports in ASCII format which can be directly imported into 
the test plan document.

Hardware and Environmental Requirements

In most cases, it is the existing hardware that would place constraints upon the CASE tool
selection. Thus, instead of defining hardware requirements  for  a  CASE  tool,  the  task  at  hand
becomes  to  fit  in  an optimal  configuration  of  CASE tool  in  the  existing  hardware  capabilities.
Therefore, we have to emphasise on selecting the most optimal CASE tool configuration for a given
hardware configuration.

The heterogeneous network is one instance of distributed environment and we choose this for
illustration  as it is more popular  due to its machine independent features. The CASE tool
implementation in heterogeneous network makes use of client-server paradigm. The multiple clients
which run different modules access data dictionary through this server. The data dictionary server
may support one or more projects. Though it is possible to run many servers for different projects
but distributed implementation of data dictionary is not common. The tool set is integrated through
the data dictionary which supports multiple projects, multiple users working simultaneously and
allows to share information between users and projects. The data dictionary provides consistent view
of  all project entities,  e.g.,  a data  record  definition  and  its  entity-relationship  diagram  be
consistent. The server should depict the per-project logical view of the data dictionary. This means
that it should allow back up/restore, copy, cleaning part of the data dictionary, etc. The tool should
work satisfactorily for maximum possible number of users working simultaneously. The tool should
support multi- windowing environment for the users. This is important to enable the users to see
more than one diagram at a time. It also facilitates navigation and switching from one part to the
other.

Documentation Support

The deliverable documents  should  be organized  graphically  and  should be able to
incorporate text and diagrams from the central repository. This helps in producing up-to-date
documentation. The CASE tool should integrate with one or more of the commercially available
desk- top publishing packages. It should be possible to export text, graphics, tables, data dictionary
reports to the DTP package in standard forms such as PostScript.

Project Management

It should support collecting, storing, and analysing information on the software project’s 
progress such as the estimated task duration, scheduled and actual task start, completion date, dates 
and results of the reviews, etc.

External Interface

The tool should allow exchange of information for reusability of design. The information
which is to be exported by the tool should be preferably in  ASCII  format  and support  open
architecture.  Similarly,  the data dictionary should provide a programming interface to access
information. It is required for  integration  of  custom utilities, building new techniques, or
populating the data dictionary.



Reverse Engineering Support

The tool should support generation of structure charts and data dictionaries from the existing
source codes. It should populate the data dictionary from the source code. If the tool is used for re-
engineering information systems, it should contain conversion tool from indexed sequential  file
structure, hierarchical and network database to relational database systems.

Data Dictionary Interface

The data  dictionary interface should provide view and update access to the entities  and
relations stored in it.  It should have print facility to obtain hard copy of the viewed screens. It
should provide analysis reports  like  cross-referencing,  impact  analysis,  etc.  Ideally,  it  should
support a query language to view its contents.

Tutorial and Help

The  application  of  CASE  tool  and  thereby  its  success  depends  on  the users’ capability  to
effectively use all the features supported. Therefore, for the uninitiated users, a tutorial is very important.
The tutorial should not be limited to teaching the user interface part only, but should comprehensively
cover the following points:

The tutorial should cover all techniques and facilities through logically classified sections.

The tutorial should be supported by proper documentation.

Second-generation CASE tool

An important feature of the second-generation CASE tool is the direct support of any adapted
methodology. This would necessitate the function of a CASE administrator organization who can
tailor the CASE tool to a particular methodology. In addition, the second-generation CASE tools
have following features:

 Intelligent diagramming support. The fact that diagramming techniques are useful
for system analysis and design is well established.  The future  CASE tools  would
provide help to aesthetically and automatically lay out the diagrams.

 Integration with implementation environment. The CASE tools should provide
integration between design and implementation.

 Data  dictionary  standards. The  user  should  be  allowed  to  integrate many
development tools into one environment. It is highly unlikely that any one vendor will
be able to deliver a total solution. Moreover, a preferred tool would require tuning up
for a particular system. Thus the user would act as a system integrator. This is possibly
only if some standard on data dictionary emerges.

 Customization support. The user should be allowed to define new types of objects
and  connections.  This  facility  may be  used  to  build some special methodologies.
Ideally it should be possible to specify the rules of a methodology to a rule engine
for carrying out the necessary consistency checks.

Architecture of a CASE environment

The architecture of a typical modern CASE environment is shown diagrammatically in
figure. The important components of a modern CASE environment are user interface, tool
set, object management system (OMS), and a repository. Characteristics of a tool set have
been discussed earlier.



Fig: Architecture of a Modern CASE Environment

Object Management System (OMS) and Repository

Different case tools represent the software product as a set of entities such as specification,
design, text data, project plan, etc. The object management system maps these logical entities such into the
underlying storage management system (repository). The commercial relational database management
systems are geared towards supporting large volumes of information structured as simple relatively short
records. There are a few types of entities but large number of instances. By contrast, CASE tools create a
large number of entity and relation types with perhaps  a  few  instances  of  each.  Thus  the  object
management system takes care of appropriately mapping into the underlying storage management system.

CHARACTERISTICS OF SOFTWARE MAINTENANCE

Software maintenance is  becoming  an  important  activity  of  a  large  number of
organisations. This is no surprise, given the rate of hardware obsolescence, the immortality of a
software product per se, and the demand of the user community to see the existing software
products run on newer platforms, run in newer environments, and/or with enhanced features. When
the  hardware platform  changes,  and  a  software  product  performs  some  low-level  functions,
maintenance is necessary. Also, whenever the support environment of a software product changes,
the software product requires rework to cope up with the newer interface. For instance, a software
product may need to be maintained when the operating system changes. Thus, every software
product continues to evolve after its development through maintenance efforts.

Types of software maintenance

There are basically three types of software maintenance. These are:

Corrective: Corrective maintenance of a software product is necessary to rectify the  bugs
observed while the system is in use.

 Perfective: A software product needs maintenance to support the new features that users want it
to support, to change different functionalities of the system according to customer demands or to
enhance the performance of the system.



Problems associated with software maintenance

 Software maintenance work typically is much more expensive than what it should be and
takes more time than required. In software organizations, maintenance work is mostly carried
out using ad hoc techniques. The primary reason being that software maintenance is one of the
most neglected areas of software engineering.  Even  though  software  maintenance  is  fast
becoming an important area of work for many companies as the software products of yester years
age, still software maintenance is mostly being carried out as fire-fighting operations, rather than
through systematic and planned activities.

 Software maintenance has a very poor image in industry. Therefore, an organization often
cannot employ bright engineers to carry out maintenance work. Even though maintenance suffers
from a poor image, the work involved is often more challenging than development work. During
maintenance it is necessary to thoroughly understand someone else’s work and then carry out the
required modifications and extensions.

 Another  problem  associated  with  maintenance  work  is  that  the  majority  of software
products needing maintenance are legacy products.

Software reverse engineering

 Software reverse engineering is the process of recovering the design and the requirements
specification of a product from an analysis of its code. The purpose of reverse engineering is to
facilitate maintenance work by improving the understandability of a system and to produce the
necessary  documents  for  a legacy system. Reverse engineering is becoming important, since
legacy software products lack proper documentation,  and are highly unstructured.  Even well-
designed products become legacy software as their structure degrades through a  series of
maintenance efforts.

 The first stage of reverse engineering usually focuses on carrying out cosmetic changes to
the code to improve its readability, structure, and understandability,  without  changing  of  its
functionalities. A process model for reverse engineering has been shown in figure. A program can
be reformatted using any of the several available prettyprinter programs which layout the program
neatly. Many legacy software products with complex control structure and unthoughtful variable
names are difficult to comprehend. Assigning meaningful variable names is important because
meaningful variable names are the most helpful thing in code documentation. All variables, data
structures, and functions should be assigned meaningful names wherever possible. Complex
nested conditionals in the program can be replaced by simpler conditional statements or
whenever appropriate by case statements.

 



Fig: A process model for reverse engineering

After the cosmetic changes have been carried out on a legacy software, the process of extracting the code,
design,  and  the  requirements  specification  can begin. These activities are schematically shown in
figure.In order to extract the design, a full understanding of the code is needed. Some automatic tools can
be used to derive the data flow and control flow diagram from the code. The structure chart (module
invocation sequence and data interchange among modules) should also be extracted. The SRS document
can be written once the full code has been thoroughly understood and the design extracted.

 

Fig: Cosmetic changes carried out before reverse engineering

Legacy software products

 It is prudent to define a legacy system as any software system that is hard to maintain. The
typical problems associated with legacy systems are poor documentation, unstructured (spaghetti
code with ugly control structure), and lack of personnel knowledgeable in the product.
Many of the legacy systems were developed long time back. But, it is possible that a recently
developed system having  poor  design  and  documentation  can  be  considered  to  be  a  legacy
system.

Factors on which software maintenance activities depend

The activities involved in a software maintenance project are not unique and depend on several
factors such as:



 the extent of modification to the product required
 the resources available to the maintenance team
 the conditions of the existing product (e.g., how structured it is, how well 

documented it is, etc.)
 the expected project risks, etc.

When the changes needed to a software product are minor and straightforward, the code can be
directly modified and the changes appropriately reflected in all  the  documents.  But  more
elaborate activities are required when the required changes are not so trivial. Usually, for complex
maintenance projects for legacy systems, the software process can be represented by a reverse
engineering cycle followed by a forward engineering cycle with an emphasis on as much reuse as
possible from the existing code and other documents.

Software maintenance process models

Two broad categories of process models for software maintenance can be proposed.

First model:The first model is preferred for projects involving small reworks where the code is
changed directly and the changes are reflected in the relevant documents later. This maintenance
process is  graphically  presented in figure. In this  approach, the project starts  by gathering the
requirements for changes. The requirements are next analyzed to formulate the strategies to be
adopted for code change. At this stage, the association of at least a few members of the original
development team goes a long way in reducing the cycle team, especially for projects involving
unstructured and inadequately documented code. The availability of a working old system to the
maintenance engineers at the maintenance site greatly facilitates the task of the maintenance team
as they get a good insight into the working of the old system and also can compare the working of
their modified system with the old system. Also, debugging of the reengineered system becomes
easier as the program traces of both the systems can be compared to localize the bugs.

 Fig: Maintenance process model 1

Second Model:The second process model for software maintenance is preferred for projects where
the amount of rework required is significant. This approach can be represented  by  a  reverse



engineering cycle followed by a forward engineering cycle. Such an approach is also known as
software reengineering. This process model is depicted in figure.

                 
Fig: Maintenance process model 2

The reverse engineering cycle is required for legacy products. During the reverse engineering,
the old code is analyzed (abstracted)  to  extract  the  module  specifications.  The  module
specifications  are then analyzed to  produce the design.  The design  is  analyzed (abstracted)  to
produce  the  original  requirements  specification.  The  change  requests  are  then applied to this
requirements specification to arrive at the new requirements specification. At the design, module
specification, and coding a substantial reuse is made from the reverse engineered products. An
important advantage of this approach is that it produces a more structured design compared to what
the original  product  had,  produces  good  documentation,  and  very  often  results  in increased
efficiency. The efficiency improvements are brought about by a more efficient design. However,
this approach is more costly than the first approach. An empirical study indicates that process
1 is preferable when the amount of rework is no more than 15%. Besides the amount of rework,
several other factors might affect the decision regarding using process model 1 over process model
2:

Fig: Empirical estimation of maintenance cost versus percentage rework



 Reengineering might be preferable for products which exhibit a high failure rate.
 Reengineering might also be preferable for legacy products having poor design 

and code structure.
Software reengineering

Software reengineering is a combination of two consecutive processes i.e. software reverse 
engineering and software forward engineering as shown in the figure.

Estimation of approximate maintenance cost

 It is well known that maintenance efforts require about 60% of the total life cycle cost for a
typical software product. However, maintenance costs vary widely from one application domain
to another. For embedded systems, the maintenance cost can be as much as 2 to 4 times the
development cost.

 Boehm [1981] proposed a formula for estimating maintenance costs as part of his
COCOMO cost estimation model. Boehm’s maintenance cost estimation is made in terms of a
quantity  called  the  Annual  Change  Traffic  (ACT). Boehm defined  ACT as  the  fraction  of  a
software product’s source instructions which undergo change during a typical year either through
addition or deletion.

ACT       
KLOC

added 
 KLOC

deleted
KLOC

total

where, KLOC
added 

is the total kilo lines of source code added during maintenance. KLOC
deleted 

is

the total KLOC deleted during maintenance. 

 Thus, the code that is changed, should be counted in both the code added and the code

deleted. The annual change traffic (ACT)is multiplied with the total development cost to arriveat

the maintenance cost:
maintenance cost = ACT  development cost

 Most maintenance cost estimation models, however, yield only approximate results
because  they  do  not  take  into  account  several  factors  such  as  experience level  of  the
engineers,  and  familiarity  of  the  engineers  with  the  product,  hardware requirements,
software complexity, etc.

Advantages of software reuse

Software products are expensive. Software project managers are worried about the high cost of
software development and are desperately look for ways to cut development cost.  A possible way to
reduce development cost is to reuse parts from previously developed software. In addition to reduced
development cost and time, reuse also leads to higher quality of the developed products since the reusable
components are ensured to have high quality.



Artifacts that can be reused

It is important to know about the kinds of the artifacts associated with software development that
can be reused. Almost all artifacts associated with software development, including project plan and test
plan can be reused. However, the prominent items that can be effectively reused are:

 Requirements specification

 Design

 Code

 Test cases

 Knowledge
Pros and cons of knowledge reuse

Knowledge is  the  most  abstract  development  artifact  that  can  be  reused.  Out  of all  the  reuse
artifacts i.e.  requirements specification,  design, code,  test  cases,the details of the potentially reusable
development knowledge. A planned reuse of knowledge can increase the effectiveness of reuse. For this,
the  reusable knowledge  should  be  systematically  extracted  and  documented.  But,  it  is  usually very
difficult to extract and document reusable knowledge.

Easiness of reuse of mathematical functions

The  routines  of  mathematical  libraries  are  being  reused  very  successfully  by almost every
programmer. No one in his right mind would think of writing a routine to compute sine or cosine.
Reuse of commonly used mathematical functions is easy. Several interesting aspects emerge. Cosine
means the same to all. Everyone has clear ideas about what kind of argument should cosine take, the
type of processing to be carried out and the results returned. Secondly, mathematical libraries have a
small  interface.  For  example,  cosine  requires  only one parameter. Also, the data formats of the
parameters are standardized.

Basic issues in any reuse program

The following are some of the basic issues that must be clearly understood for starting any reuse
program.

 Component creation
 Component indexing and storing
 Component search
 Component understanding
 Component adaptation
 Repository maintenance

Component creation. For component creation, the reusable components have to  be  first
identified.  Selection  of  the  right  kind  of  components  having  potential  for reuse  is  important.
Domain analysis is a promising technique which can be used to create reusable components.

Component indexing and storing. Indexing requires classification of the reusable components so
that they can be easily searched when looking for a component for reuse. The components need to
be stored in a Relational Database Management System (RDBMS) or an Object-Oriented Database
System (ODBMS) for efficient access when the number of components becomes large.



Component searching. The programmers  need to  search for  right  components matching their
requirements  in  a  database  of  components.  To  be  able  to  search components  efficiently,  the
programmers require a proper method to describe the components that they are looking for.
Component  understanding.  The  programmers  need  a  precise  and  sufficiently complete
understanding of what the component does to be able to decide whether they can reuse the
component. To facilitate understanding, the components should be well documented and should do
something simple.
Component adaptation.  Often, the components may need adaptation before they can be reused,
since a selected component may not exactly fit the problem at hand. However, tinkering with the
code is also not a satisfactory solution because this is very likely to be a source of bugs.

Repository maintenance. A component repository once is created requires continuous
maintenance. New components, as and when created have to be entered into the repository. The
faulty  components  have  to  be  tracked.  Further, when  new  applications  emerge,  the  older
applications become obsolete. In this case, the obsolete components might have to be removed
from the repository.

Domain analysis

The aim of domain analysis is to identify the reusable components for a problem domain.
Reuse domain. A reuse domain  is  a  technically  related  set  of  application areas. A body of
information  is  considered  to  be  a  problem  domain  for  reuse,  if  a  deep and comprehensive
relationship exists among the information items as categorized by patterns of similarity among the
development components of the software product. A reuse domain is shared understanding of some
community, characterized by concepts, techniques, and terminologies that show some coherence.
Examples of domains are accounting software domain, banking software  domain,  business
software  domain,  manufacturing  automation  software domain, telecommunication software
domain, etc.

Just to become familiar with the vocabulary of a domain requires months of interaction with
the experts. Often, one needs to be familiar with a network of related domains for successfully
carrying  out  domain  analysis.  Domain  analysis identifies the objects, operations, and the
relationships among them. For example,  consider  the  airline  reservation  system,  the  reusable
objects  can  be seats,  flights,  airports,  crew,  meal  orders,  etc.  The  reusable  operations  can  be
scheduling a flight, reserving a seat, assigning crew to flights, etc. The domain analysis generalizes
the  application  domain.  A  domain  model  transcends  specific applications.  The  common
characteristics or the similarities between systems are generalized.

During domain analysis, a specific community of software developers gets together to
discuss community-wide-solutions. Analysis of the application domain is required to identify the
reusable components.  The actual  construction of reusable components for a domain is  called
domain engineering.
Evolution of a reuse domain. The ultimate result of domain analysis is development  of
problem-oriented  languages.  The  problem-oriented  languages are  also  known  as  application
generators.  These  application  generators,  once developed form application development
standards. The domains slowly develop. As a domain develops, it is distinguishable the various
stages it undergoes:



Stage 1: There is no clear and consistent set of notations. Obviously, no reusable components
are available. All software is written from scratch.

Stage 2: Here, only experience from similar projects is used in a development effort. This means
that there is only knowledge reuse.

Stage 3: At this stage, the domain is ripe for reuse. The set of concepts are stabilized and the
notations standardized. Standard solutions to standard problems are available. There is both
knowledge and component reuse.

Stage 4: The domain has been fully explored. The software development for the domain can be
largely automated.  Programs are not written in the traditional sense any more. Programs are
written using a domain specific language, which is also known as an application generator.

 Re-use at organization level

Achieving organization-level reuse requires adoption of the following steps:
1.Assessing a product’s potential for reuse
2.Refining products for greater reusability
3.Entering the product in the reuse repository

1.Assessing a product’s potential for reuse. Assessment of components reuse potential can be
obtained from an analysis of a questionnaire circulated among the developers. The questionnaire
can  be  devised  to  access  a  component’s reusability.  The  programmers  working  in  similar
application  domain  can  be  used to  answer  the  questionnaire  about  the  product’s  reusability.
Depending on the answers given by the programmers, either the component be taken up for reuse
as it is, it is modified and refined before it is entered into the reuse repository, or it is ignored. A
sample questionnaire to assess a component’s reusability is the following.

 Is the component’s functionality required for implementation of systems in the future?
 How common is the component’s function within its domain?
 Would there be a duplication of functions within the domain if the component is

taken up?
 Is the component hardware dependent?
 Is the design of the component optimized enough?
 If the component is non-reusable, then can it be decomposed to yield some 

reusable components?
 Can we parameterize a non-reusable component so that it becomes reusable?

2.Refining products for greater reusability.  For a product to be reusable, it must be relatively
easy to adapt it to different contexts. Machine dependency must be abstracted out or localized
using data encapsulation techniques. The following refinements may be carried out:

 Name  generalization: The  names  should  be  general,  rather  than being directly
related to a specific application.

 Operation generalization: Operations should be added to make the component more
general. Also, operations that are too specific to an application can be removed.

 Exception  generalization:  This  involves  checking  each  component  to see  which
exceptions it might generate. For a general component, several types of exceptions
might have to be handled.

 Handling portability problems: Programs typically make some assumption
regarding the representation of information in the underlying machine.  These



assumptions are in general not true for all machines. The programs also often
need to call some operating system functionality and these calls may not be same
on all machines. Also, programs use some function libraries, which may not be
available on all host machines. A portability solution to overcome these problems
is  shown  in  figure.The  portability  solution  suggests  that rather than call the
operating system and I/O procedures directly, abstract versions of these should
be called by the application program. Also, all  platform-related calls should be
routed through the portability interface.  One problem with this solution is the
significant  overhead incurred,  which  makes  it  inapplicable  to  many  real-time
systems and applications requiring very fast response.

Fig: Improving reusability of a component by using a portability interface

Factors that inhibit an effective reuse program

In spite of all the shortcomings of the state-of-the-art reuse techniques, it is the experience
of several organizations that most of the factors inhibiting an effective reuse program are non-
technical. Some of these factors are the following.

 Need for commitment from the top management.
 Adequate documentation to support reuse.
 Adequate incentive to reward those who reuse. Both the people contributing new

reusable components and those reusing the existing components should be rewarded
to start a reuse program and keep it going.
Providing access to and information about reusable components. Organizations
are often hesitant to provide an open access to the reuse repository for
the fear of the reuse components finding a way to their competitors.

Challenges faced by software developers

Following are some of the challenges that are being faced by software developers:

To cope up with  fierce competitions,  business houses are rapidly changing  their  business
processes. This requires rapid changes to also occur to the software that support the business
process activities. Therefore, there is a pressing demand to shorten the software delivery time.
However, software is still taking unacceptably long time to develop and is turning out to be a
bottleneck in implementing rapid business process changes. To reduce the software delivery
times, software is being developed by teams working from globally distributed locations. How



software can be effectively developed using globally distributed development teams is not yet
clear and poses many challenges. On the other  hand, radical changes to the software
development principles are being put forward to shorten the development time.

Business houses are getting tired of astronomical software costs, late deliveries, and poor
quality products. On the other hand, hardware costs are dropping and at the same time
hardware is becoming more powerful, sophisticated, and reliable. Hardware and software
cost differentials are becoming more and more glaring. The wisdom of developing every
software from scratch is being questioned.Also,alternate  software  delivery  models  are
being proposed to reduce the software cost.

Software sizes are further increasing.

After Internet has become vastly popular, many software products are now required to 
interface with the Internet. Many products are even expected to work across the Internet. Also, 
with the availability of fast networks, distributed applications are becoming common place. 
However,it is not clear that how software is to be effectively developed in the context of 
distributed platforms and Internet.

In response to the challenges faced, the following software engineering trends are becoming 
noticeable:

 Client-server software

 Service-oriented architecture (SOA)

  Software as a service (SaaS)

Client-server software
 A client is basically a consumer of services and server is a provider of services as shown

in figure.A client requests some services from the server and the server provides the required services to
the client. Client and server are usually software components running on independent machines. Even a
single machine can sometimes acts as a client and at other times a server depending on the situations.
Thus, client and server are mere roles.

Fig: Client-server model
Example:

                A man was visiting his friend’s town in his car. The man had a handheld computer
(client). He knew his friend’s name but he didn’t know his friend’s address. So he sent a
wireless message (request) to the nearest “address server” by his handheld computer to enquire his
friend’s  address.  The message first  came to  the  base  station.  The  base  station  forwarded that
message through landline to local area network where the server is located. After some processing,
LAN sent back that friend’s address (service) to the man.

Advantages of client-server software



 The client-server software architecture is a versatile, message-based and modular
infrastructure that is intended to improve usability, flexibility, interoperability and scalability as
compared to centralized, mainframe, time sharing computing.

 There are many advantages of client-server software products as compared to monolithic ones. 
These advantages are:

 Simplicity and modularity –  Client and server components are loosely coupled and
therefore modular. These are easy to understand and develop.

 Flexibility  – Both  client  and server  software  can  be  easily  migrated  across different
machines in case some machine becomes unavailable or crashes. The client can access the
service anywhere. Also, clients and servers can be added incrementally.

 Loose coupling: Client and server components are inherently loosely- coupled, making
these easy to understand and develop.

 Extensibility – More servers and clients can be effortlessly added.
 Concurrency – The processing is naturally divided across several machines. Clients and

servers reside in different  machines which can operate in parallel and thus processing
becomes faster.

 Cost Effectiveness – Clients can be cheap desktop computers whereas severs can be
sophisticated and expensive computers. To use a sophisticated software, one needs to own
only a cheap client and invoke the server.

 Specialization – One can have different types of computers to run different types of
servers. Thus, servers can be specialized to solve some specific problems.

 Heterogeneous hardware:  In  a  client-server  solution,  it  is  easy  to  have specialised
servers that can efficiently solve specific problems. It is possible to efficiently integrate
heterogeneous computing  platforms  to  support  the requirements of different types of
server software.

 Mobile computing  – Mobile computing implicitly uses client-server technique. Cell
phones (handheld computers) are being provided with small processing power, keyboard,
small memory, and LCD display. Cell phones cannot really compute much as they have
very  limited  processing power  and  storage  capacity  but  they  can  act  as  clients.  The
handhold computers only support the interface to place requests on some remote servers.

 Application  Service  Providers  (ASPs)  –  There  are  many  application software
products  which  are  very  expensive.  Thus  it  makes  prohibitively costly  to  own those
applications.  The  cost  of  those  applications  often  runs into millions of dollars. For
example, a Chemical Simulation Software named “Aspen” is very expensive but very
powerful. For small industries it would not be practical to own that software. Application
Service Providers can own ASPEN and let the small industries use it as client and charge
them based on usage time. A client and simply logs in and ASP charges according to the
time that the software is used.

 Component-based development  – It is the enabler of the client-server technology.
Component-based development is radically different from traditional software
development. In component-based development, a developer  essentially  integrates  pre-
built components purchased off-the- shelf. This is akin to the way hardware developers
integrate ICs on a Printed Circuit Board (PCB). Components might reside on different
computers which act as servers and clients.

 Fault-tolerance  – Client-server based systems are usually fault-tolerant. There can be
many servers. If one server crashes then client requests can be switched to a redundant
server.

There are many other advantages of client-server software. For example, we can locate a server
near to the client. There might be several servers and the client requests can be routed to the
nearest server. This would reduce the communication overhead.



Disadvantages of client-server software

There are several disadvantages of client-server software development. Those disadvantages are:

 Security – In a monolithic application, implementation of security is very easy. But in a
client-server based development a lot of flexibility is provided and a client can connect
from anywhere.  This  makes  it  easy  for hackers  to  break  into  the  system.  Therefore,
ensuring security in client- server system is very challenging.

 Servers can be bottlenecks – Servers can turn out to be bottlenecks because many
clients might try to connect to a server at the same time. This problem arises due to the
flexibility given that any client can connect anytime required.

 Compatibility  – Clients and servers may not  be compatible to each other. Since the
client and server components may be manufactured by different vendors, they may not be
compatible with respect to data types, language, etc.

 Inconsistency – Replication of servers is a problem as it can make data inconsistent.

CLIENT-SERVER ARCHITECTURES

The simplest way to connect clients and servers is by using a two-tier architecture
shown in Figure. In a two-tier architecture, any client can get service from any server by sending a
request over the network.
Two-tier client-server architecture

The simplest way to connect clients and servers is a two-tier architecture as shown in
figure. In a two-tier architecture, any client can get service from any server by initiating a request
over the network. With two tier client-server architectures, the user interface is usually located in
the user’s desktop and the services are usually supported by a server that is a powerful machine
that  can service  many clients.  Processing  is  split  between the  user  interface  and the database
management  server.  There  are  a  number  of  software  vendors  who provide  tools  to  simplify
development of applications for the two-tier client-server architecture.

          Fig: Two-tier client-server architecture

Three-tier client-server architecture

 The three-tier architecture overcomes the important limitations of the two-tier architecture.
In the three-tier architecture, a middleware was added between the user system interface client
environment and the server environment as shown in figure. The middleware keeps track of all
server locations. It also translates client’s requests into server understandable form. For example,



if  the middleware provides queuing, the client can deliver its request to the middleware and
disengage because the middleware will access the data and return the answer to the client.

Fig: Three-tier client-server architecture
SERVICE-ORIENTED ARCHITECTURE (SOA)

Service-orientation principles have their roots in the object-oriented designing. Many claim that
service-orientation will replace object- orientation; others think that the two are complementary
paradigms.

SOA views software as providing a set of services. Each service composed of smaller services.
Let us  first understand what are  software services. Services are implemented and provided  by a
component for use by an application developer. A service is a contractually de fined behaviour. That is,
a  component  providing  a  service  guarantees  that  its  behaviour  is  as  per  the specifications.  A few
examples of services are the following—Filling out an on- line application, viewing an on-line bank-
statement, and placing an online booking. Different services in an application communicate with
each other.

SOA principally leverages the Internet and emerging the standardisations on it for interoperability 
among various services. An application is built using the services available on the Internet, and writing 
only the missing ones.

There are several similarities between services and components, which are as follows:

Reuse: Both a component and a service are reused across multiple applications.

Generic: The components and services are usually generic enough to be useful to a wide 
range of applications.
Composable: Both services and components are integrated together to develop an 
application.
Encapsulated: Both components and services are non-investigable through their interfaces.



Independent  development  and  versioning:  Both  components  and services  are
developed  independently  by  different  vendors  and  also continue to evolve
independently.
Loose coupling:  Both applications  developed using the component paradigm and the
SOA paradigm have loose coupling inherent to them.

SOFTWARE AS A SERVICE (SAAS)

 Owning software is very expensive. For example, a Rs. 50 Lakh software running on an
Rs. 1 Lakh computer is common place. As with hardware, owning software is the current tradition
across individuals and business houses. Most of IT budget now goes in supporting the software
assets. The support cost includes annual maintenance charge (AMC), keeping  the  software
secure and virus free, and taking regular back-ups, etc. But, often the usage of a specific software
package  does  not  exceed  a couple of hours of usage per week. In this situation, it would be
economically  worthwhile  to  pay  per  hour  of  usage.  This  would  also  free the  user  from  the
botherance of maintenance, upgradation, backup, etc. This is exactly what is advocated by SaaS.

SaaS shifts “ownership” of the software from the customer to  a  service  provider.
Software owner provides maintenance,  daily  technical operation,  and support  for the software.
Services are provided to the clients on amount of usage basis. The service provider is a vendor
who hosts the software and lets the users execute on-demand charges per usage units. It also shifts
the responsibility for hardware and software management from the customer to the provider. The
cost of providing software services reduces as more and more customers subscribe to the service.
Elements of outsourcing and application service provisioning are implicit in the SaaS model.Also,
it makes the software accessible to a large number of customers who cannot afford to purchase the
software outright. Target the “long tail” of small customers.


	Advantages
	Disadvantages: The main disadvantages of the successive versions model are as follows
	First quadrant (Objective Setting)
	Second Quadrant (Risk Assessment and Reduction)
	Third Quadrant (Development and Validation)
	Fourth Quadrant (Review and Planning)

	 Agile Model
	Phases of Agile Model: Following are the phases in the Agile model are as follows:
	Agility principles for those who want to achieve agility:
	1.1 XP Values
	1.2 The XP Process
	1.3 Industrial XP:
	Industrial Extreme Programming (IXP) in the following manner: “IXP is an organic evolution of XP. It is imbued with XP’s minimalist, customer-centric, test- driven spirit. IXP differs most from the original XP in its greater inclusion of management, its expanded role for customers, and its upgraded technical practices.” IXP incorporates six new practices that are designed to help ensure that an XP project works successfully for significant projects within a large organization.

	1.4 THE XP DEBATE:
	All new process models and methods spur worthwhile discussion and in some instances heated debate. Extreme Programming has done both. In an interesting book that examines the efficacy of XP Stephens and Rosenberg argue that many XP practices are worthwhile, but others have been overhyped, and a few are problematic.
	OTHER AGILE PROCESS MODELS
	1.Adaptive Software Development (ASD)
	2.SCRUM
	3.Dynamic Systems Development Method (DSDM)
	4 .CRYSTAL
	5.FEATURE DRIVEN DEVELOPMENT (FDD)
	<action> the <result> <by for of to> a(n) <object>
	Fig : Feature Driven Development (FDD)
	6. LEAN SOFTWARE DEVELOPMENT (LSD)
	7.AGILE MODELING (AM)
	8.AGILE UNIFIED PROCESS (AUP)
	The Agile Unified Process (AUP) adopts a “serial in the large” and “iterative in the small” philosophy for building computer-based systems. By adopting the classic UP phased activities— inception, elaboration, construction, and transition—AUP provides a serial overlay that enables a team to visualize the overall process flow for a software project. However, within each of the activities, the team iterates to achieve agility and to deliver meaningful software increments to end users as rapidly as possible. Each AUP iteration addresses the following activities.


	 Project planning:
	 Metrics for software project size estimation:Accurate estimation of the problem size is fundamental to satisfactory estimation of effort, time duration and cost of a software project. In order to be able to accurately estimate the project size, some important metrics should be defined in terms of which the project size can be expressed. The size of a problem is obviously not the number of bytes that the source code occupies. It is neither the byte size of the executable code. The project size is a measure of the problem complexity in terms of the effort and time required to develop the product.Currently two metrics are popularly being used widely to estimate size: lines of code (LOC) and function point (FP). The usage of each of these metrics in project size estimation has its own advantages and disadvantages.
	Step 1: UFP computation
	Step 3: Refine UFP based on complexity of the overall project
	Answer:

	 Project Estimation techniques
	Three basic classes of software development projects

	 COCOMO
	 Intermediate COCOMO model
	 Complete COCOMO model
	Operators and Operands for the ANSI C language
	N/η ≤ηη Or, N ≤ ηη+1
	N = log2η +log 2(η1η1 η2η2)
	N = log 2(η1η1 η2η2)
	N = log2η1η1 + log2η2η2
	main( )
	int a, b, c, avg;
	printf(“avg = %d”, avg);
	= (12*3.58 + 11*3.45)
	= 81*4.52


	 Staffing level estimation
	Norden’s Work
	Putnam’s Work
	
	How long to decompose?
	 Activity Networks
	 Critical Path Method (CPM)

	 PERT chart
	 Gantt Charts
	 ORGANISATION AND TEAM STRUCTURES
	Project format

	 Advantages of functional organization over project organization
	Matrix format

	 Team structures
	Democratic team
	Mixed control team organisation
	 STAFFING
	Who is a good software engineer?

	 Risk management
	 Risk Identification
	 Risk assessment
	 Risk Mitigation
	 Risk related to schedule slippage
	 Software configuration management
	Software revision versus version

	 Necessity of software configuration management
	 Software configuration management activities
	 Configuration identification
	 Configuration control
	 Configuration management tools
	1.THE NATURE OF SOFTWARE
	Software is defined as
	1.1.Characteristics of software:
	1.Software is developed or engineered, it is not manufactured in the Classical Sense.
	
	3. Although the industry is moving toward component-based construction, most software
	continues to be custom built
	New Software Challenges

	2. UNIQUE NATURE OF WEB APPS
	 REQUIREMENTS GATHERING AND ANALYSIS:
	 Requirements Gathering
	 Requirements Analysis:

	Role of a system analyst
	Problems without a SRS document
	Characteristics of a Good SRS Document
	Attributes of Bad SRS Documents
	Important Categories of Customer Requirements
	Functional requirements:-

	Identifying functional requirements from a problem description:
	The high-level functional requirements often need to be identified either from an informal problem description document or from a conceptual understanding of the problem. Each high-level requirement characterizes a way of system usage by some user to perform some meaningful piece of work. There can be many types of users of a system and their requirements from the system may be very different. So, it is often useful to identify the different types of users who might use the system and then try to identify the requirements from each user’s perspective.
	Non-functional requirements:-
	The non-functional requirements are non-negotiable obligations that must be supported by the software. The non-functional requirements capture those requirements of the customer that cannot be expressed as functions (i.e., accepting input data and producing output data). Non-functional requirements usually address aspects concerning external interfaces, user interfaces, maintainability, portability, usability, maximum number of concurrent users, timing, and throughput (transactions per second, etc.). The non-functional requirements can be critical in the sense that any failure by the developed software to achieve some minimum defined level in these requirements can be considered as a failure and make the software unacceptable by the customer.Nonfunctional requirements may include:
	Overall description of organisation of SRS document
	Example: -Consider Library Membership Automation Software (LMS) where it should support the following three options:
	New member
	Cancel membership


	Decision table:
	Example: -Consider the previously discussed LMS example. The following decision table (fig. 3.5) shows how to represent the LMS problem in a tabular form. Here the table is divided into two parts, the upper part shows the conditions and the lower part shows what actions are taken. Each column of the table is a rule.
	
	Conditions
	Fig: Decision table for LMS
	Decision table versus decision tree


	Formal technique
	Formal specification language
	Example:-

	Operational semantics
	Merits of formal requirements specification
	Limitations of formal requirements specification
	Axiomatic specification
	Example1: -Specify the pre- and post-conditions of a function that takes a real number as argument and returns half the input value if the input is less than or equal to 100, or else returns double the value.
	Example2: Axiomatically specify a function named search which takes an integer array and an integer key value as its arguments and returns the index in the array where the key value is present.

	Algebraic specification
	In the algebraic specification technique an object class or type is specified in terms of relationships existing between the operations defined on that type. It was first brought into prominence by Guttag [1980, 1985] in specification of abstract data types. Various notations of algebraic specifications have evolved, including those based on OBJ and Larch languages.
	Representation of algebraic specification:
	Essentially, algebraic specifications define a system as a heterogeneous algebra. A heterogeneous algebra is a collection of different sets on which several operations are defined. Traditional algebras are homogeneous. A homogeneous algebra consists of a single set and several operations; {I, +, -, *, /}. In contrast, alphabetic strings together with operations of concatenation and length {A, I, con, len}, is not a homogeneous algebra, since the range of the length operation is the set of integers.
	Develop algebraic specification of simple problems
	Example 1:-
	Types:
	Exceptions:
	Syntax:
	Equations:

	Properties of algebraic specifications
	Three important properties that every algebraic specification should possess are:
	Structured specification: Developing algebraic specifications is time consuming. Therefore efforts have been made to device ways to ease the task of developing algebraic specifications. The following are some of the techniques that have successfully been used to reduce the effort in writing the specifications.
	Advantages and disadvantages of algebraic specifications
	Executable specification language (4GLs).
	Software design and its activities
	Characteristics of a good software design
	Features of a design document:
	In order to facilitate understandability, the design should have the following features:
	Cohesion
	Most researchers and engineers agree that a good software design implies clean decomposition of the problem into modules, and the neat arrangement of these modules in a hierarchy. The primary characteristics of neat module decomposition are high cohesion and low coupling. Cohesion is a measure of functional strength of a module. A module having high cohesion and low coupling is said to be functionally independent of other modules. By the term functional independence, we mean that a cohesive module performs a single task or function. A functionally independent module has minimal interaction with other modules.
	Classification of cohesion
	Coupling
	Classification of Coupling
	 Control Hierarchy:
	 Layered Arrangement Of Modules:

	Functional independence
	Need for functional independence
	Function-oriented design
	Object-oriented design
	Function-oriented vs. object-oriented design approach
	Function-Oriented Approach:
	class alarm
	OVERVIEW OF SA/SD METHODOLOGY

	Structured Analysis
	Data Flow Diagram (DFD)
	Primitive symbols used for constructing DFDs
	Important concepts associated with constructing DFD models
	Synchronous and asynchronous operations
	Figure: Synchronous and asynchronous data flow.

	Data dictionary
	grossPay = regularPay + overtimePay
	Data definition
	 DEVELOPING THE DFD MODEL OF A SYSTEM

	Context diagram:
	The context diagram is the most abstract data flow representation of a system. It represents the entire system as a single bubble. This bubble is labeled according to the main function of the system. The various external entities with which the system interacts and the data flow occurring between the system and the external entities are also represented. The data input to the system and the data output from the system are represented as incoming and outgoing arrows. These data flow arrows should be annotated with the corresponding data names. The name ‘context diagram’ is well justified because it represents the context in which the system is to exist, i.e. the external entities who would interact with the system and the specific data items they would be supplying the system and the data items they would be receiving from the system. The context diagram is also called as the level 0 DFD.
	Decomposition:-
	Numbering of Bubbles:-

	Balancing a DFD
	The data that flow into or out of a bubble must match the data flow at the next level of DFD. This is known as balancing a DFD. The concept of balancing a DFD has been illustrated in fig.In the level 1 of the DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item d2 flows into the bubble 0.1. In the next level, bubble 0.1 is decomposed. The decomposition is balanced, as d1 and d3 flow out of the level 2 diagram and d2 flows in.
	
	some important shortcomings of the DFD model.
	Data dictionary for the DFD model of Example
	
	Data dictionary for the DFD model of Example 2
	Extending DFD Technique to make it Applicable to Real-time Systems

	Structured Design
	Structure Chart
	Structure Chart vs. Flow Chart
	Transaction Analysis
	 DETAILED DESIGN

	Model
	Need for a model
	
	Origin of UML
	Users’ view: This view defines the functionalities (facilities) made available by the system to its users. The users’ view captures the external users’ view of the system in terms of the functionalities offered by the system. The users view is a black-box view of the system where the internal structure, the dynamic behavior of different system components, the implementation etc. are not visible. The users’ view is very different from all other views in the sense that it is a functional model compared to the object model of all other views. The users’ view can be considered as the central view and all other views are expected to conform to this view. This thinking is in fact the crux of any user centric development style.

	Use Case Model
	Purpose of use cases
	Representation of use cases
	Text description
	Text description
	Scenario 1: Mainline sequence
	Scenario 2: At step 4 of mainline sequence
	Scenario 3: At step 4 of mainline sequence
	Scenario 1: Mainline sequence
	Scenario 2: Mainline sequence


	Utility of use case diagrams: From use case diagram, it is obvious that the utility of the use cases are represented by ellipses. They along with the accompanying text description serve as a type of requirements specification of the system and form the core model to which all other models must conform. But, what about the actors (stick person icons)? One possible use of identifying the different types of users (actors) is in identifying and implementing a security mechanism through a login system, so that each actor can involve only those functionalities to which he is entitled to. Another possible use is in preparing the documentation (e.g. users’ manual) targeted at each category of user. Further, actors help in identifying the use cases and understanding the exact functioning of the system.
	Factoring of use cases
	It is often desirable to factor use cases into component use cases. Actually, factoring of use cases are required under two situations.
	First, complex use cases need to be factored into simpler use cases. This would not only make the behavior associated with the use case much more comprehensible, but also make the corresponding interaction diagrams more tractable. Without decomposition, the interaction diagrams for complex use cases may become too large to be accommodated on a single sized (A4) paper.
	Secondly, use cases need to be factored whenever there is common behavior across different use cases. Factoring would make it possible to define such behavior only once and reuse it whenever required. It is desirable to factor out common usage such as error handling from a set of use cases. This makes analysis of the class design much simpler and elegant. However, a word of caution here. Factoring of use cases should not be done except for achieving the above two objectives. From the design point of view, it is not advantageous to break up a use case into many smaller parts just for the shake of it.
	Organization of use cases
	When the use cases are factored, they are organized hierarchically. The high- level use cases are refined into a set of smaller and more refined use cases as shown in fig.Top-level use cases are super-ordinate to the refined use cases. The refined use cases are sub-ordinate to the top-level use cases. Note that only the complex use cases should be decomposed and organized in a hierarchy. It is not necessary to decompose simple use cases. The functionality of the super-ordinate use cases is traceable to their sub-ordinate use cases. Thus, the functionality provided by the super-ordinate use cases is composite of the functionality of the sub-ordinate use cases. In the highest level of the use case model, only the fundamental use cases are shown. The focus is on the application context. Therefore, this level is also referred to as the context diagram. In the context diagram, the system limits are emphasized. In the top- level diagram, only those use cases with which external users of the system. The subsystem-level use cases specify the services offered by the subsystems. Any number of levels involving the subsystems may be utilized. In the lowest level of the use case hierarchy, the class-level use cases specify the functional fragments or operations offered by the classes.
	
	Figure: Hierarchical organisation of use cases.
	Class diagrams
	bookName : String
	Operation

	Association
	Aggregation
	Association vs. Aggregation vs. Composition
	Object diagrams

	Interaction Diagrams
	Activity diagrams
	The activity diagram is possibly one modeling element which was not present in any of the predecessors of UML.The activity diagram focuses on representing activities or chunks of processing which may or may not correspond to the methods of classes. An activity is a state with an internal action and one or more outgoing transitions which automatically follow the termination of the internal activity. If an activity has more than one outgoing transitions, then these must be identified through conditions. An interesting feature of the activity diagrams is the swim lanes. Swim lanes enable you to group activities based on who is performing them, e.g. academic department vs. hostel office. Thus swim lanes subdivide activities based on the responsibilities of some components. The activities in a swim lane can be assigned to some model elements, e.g. classes or some component, etc.
	State chart diagram
	A state chart diagram is normally used to model how the state of an object changes in its lifetime. State chart diagrams are good at describing how the behavior of an object changes across several use case executions. However, if we are interested in modeling some behavior that involves several objects collaborating with each other, state chart diagram is not appropriate. State chart diagrams are based on the finite state machine (FSM) formalism.
	An FSM consists of a finite number of states corresponding to those of the object being modeled. The object undergoes state changes when specific events occur. The FSM formalism existed long before the object-oriented technology and has been used for a wide variety of applications. Apart from modeling, it has even been used in theoretical computer science as a generator for regular languages.
	Package diagram
	Component diagram
	Deployment diagram
	Composite structure diagram

	Characteristics of a user interface
	User guidance and online help
	Mode-based interface vs. modeless interface
	Types of user interfaces
	Disadvantages of command language-based interface
	Issues in designing a command language-based interface
	Types of menus and their features
	Component-based GUI development
	Visual Programming
	Window
	Window Management System(WMS)
	Window Manager
	Types of widgets (window objects)
	X-Window.
	Popularity of X-Window
	 USER INTERFACE DESIGN METHODOLOGY
	 Implications of Human Cognition Capabilities on User Interface Design

	GUI design methodology
	Task and Object Modeling

	Characteristics of a Programming Language
	Coding standards and guidelines
	Code Review
	Code Walk Throughs
	Code Inspection
	Clean Room Testing
	Software Documentation
	a = 10; /* a made 10 */
	Aim of testing
	Differentiate between verification and validation.
	Design of test cases
	If (x>y) max = x;

	Functional testing vs. Structural testing
	In the black-box testing approach, test cases are designed using only the functional specification of the software, i.e. without any knowledge of the internal structure of the software. For this reason, black-box testing is known as functional testing.
	Testing in the large vs. testing in the small
	Unit testing
	Driver and stub modules

	Black box testing
	White box testing
	Fault-based testing
	Coverage-based testing

	Branch coverage
	Condition coverage
	Path coverage
	Cyclomatic complexity
	Method 1:
	Method 2:
	V(G) = Total number of bounded areas + 1
	Method 3:

	Data flow-based testing
	DEF(S) = {X/statement S contains a definition of X}, and USES(S) = {X/statement S contains a use of X}

	Need for debugging
	Debugging approaches
	Debugging guidelines
	Program analysis tools
	Static program analysis tools
	Dynamic program analysis tools
	Integration testing
	Integration test approaches
	Phased vs. incremental testing
	State-model-based testing
	Use case-based testing
	Class diagram-based testing
	Sequence diagram-based testing Method coverage: All methods depicted in the sequence diagrams are covered.

	 Integration Testing of Object-oriented Programs

	System testing
	 Smoke Testing

	Performance testing
	Error seeding
	n/N = s/S or
	Test documentation

	Software Reliability
	Reasons for software reliability being difficult to measure
	Reliability Metrics
	RELIABILITY GROWTH MODELS
	Statistical testing
	Operation profile
	ISO 9000 certification
	Types of ISO 9000 quality standards
	Management Responsibility (4.1)
	Quality System (4.2)
	A quality system must be maintained and documented.
	Contract Reviews (4.3)
	Design Control (4.4)
	Document Control (4.5)
	Purchasing (4.6)
	purchasing material, including bought-in software must be checked for conforming to requirements.
	Purchaser Supplied Product (4.7)
	Product Identification (4.8)
	Process Control (4.9)
	Inspection and Testing (4.10)
	Inspection, Measuring and Test Equipment (4.11)
	Inspection and Test Status (4.12)
	Control of Nonconforming Product (4.13)
	Corrective Action (4.14)
	Handling, (4.15)
	Quality records (4.16)
	Quality Audits (4.17)
	Training (4.18)

	CASE tool and its scope
	Reasons for using CASE tools
	CASE Environment
	CASE SUPPORT IN SOFTWARE LIFE CYCLE

	Test case generation CASE tool
	 Hardware and Environmental Requirements
	 Documentation Support
	 Project Management
	 External Interface
	 Reverse Engineering Support
	 Data Dictionary Interface
	 Tutorial and Help
	Object Management System (OMS) and Repository

	Types of software maintenance
	Advantages of software reuse
	Artifacts that can be reused
	Pros and cons of knowledge reuse
	Re-use at organization level
	Challenges faced by software developers
	Example:
	CLIENT-SERVER ARCHITECTURES
	SERVICE-ORIENTED ARCHITECTURE (SOA)
	SOFTWARE AS A SERVICE (SAAS)


