

AI LAB MANUAL

(R20)

AI -LAB MANUAL

1. Write a program to implement DFS and BFS

Breadth-first search (BFS) is an algorithm used for tree traversal on graphs or tree data

structures. BFS can be easily implemented using recursion and data structures like dictionaries

and lists.

The Algorithm

1. Pick any node, visit the adjacent unvisited vertex, mark it as visited, display it, and insert

it in a queue.

2. If there are no remaining adjacent vertices left, remove the first vertex from the queue.

3. Repeat step 1 and step 2 until the queue is empty or the desired node is found.

Implementation

Consider the below graph, which is to be implemented:

SOURCE CODE:

graph = {

 'A' : ['B','C'],

 'B' : ['D', 'E'],

 'C' : ['F'],

 'D' : [],

 'E' : ['F'],

 'F' : []

}

visited = [] # List to keep track of visited nodes.

queue = [] #Initialize a queue

def bfs(visited, graph, node):

 visited.append(node)

 queue.append(node)

 while queue:

 s = queue.pop(0)

 print (s, end = " ")

 for neighbour in graph[s]:

 if neighbour not in visited:

 visited.append(neighbour)

 queue.append(neighbour)

bfs(visited, graph, 'A')

OUTPUT:

A B C D E F

Explanation

 Lines 3-10: The illustrated graph is represented using an adjacency list. An easy way

to do this in Python is to use a dictionary data structure, where each vertex has a

stored list of its adjacent nodes.

 Line 12: visited is a list that is used to keep track of visited nodes.

 Line 13: queue is a list that is used to keep track of nodes currently in the queue.

 Line 29: The arguments of the bfs function are the visited list, the graph in the form

of a dictionary, and the starting node A.

 Lines 15-26: bfs follows the algorithm described above:

1. It checks and appends the starting

node to the visited list and the queue.

2. Then, while the queue contains

elements, it keeps taking out nodes from the queue, appends the neighbors of that node to

the queue if they are unvisited, and marks them as visited.

3. This continues until the queue is

empty.

Time Complexity

Since all of the nodes and vertices are visited, the time complexity for BFS on a graph

is O(V + E)O(V+E); where VV is the number of vertices and EE is the number of edges.

Depth-first search (DFS), is an algorithm for tree traversal on graph or tree data structures. It

can be implemented easily using recursion and data structures like dictionaries and sets.

The Algorithm

1. Pick any node. If it is unvisited, mark it as visited and recur on all its adjacent nodes.

2. Repeat until all the nodes are visited, or the node to be searched is found.

Implementation

Consider the below graph, which is to be implemented:

SOURCE CODE:

Using a Python dictionary to act as an adjacency list

graph = {

 'A' : ['B','C'],

 'B' : ['D', 'E'],

 'C' : ['F'],

 'D' : [],

 'E' : ['F'],

 'F' : []

}

https://www.educative.io/edpresso/what-is-depth-first-search

visited = set() # Set to keep track of visited nodes.

def dfs(visited, graph, node):

 if node not in visited:

 print (node)

 visited.add(node)

 for neighbour in graph[node]:

 dfs(visited, graph, neighbour)

dfs(visited, graph, 'A')

OUTPUT:

A B C D E F

Explanation

 Lines 2-9: The illustrated graph is represented using an adjacency list - an easy way to

do it in Python is to use a dictionary data structure. Each vertex has a list of its adjacent

nodes stored.

 Line 11: visited is a set that is used to keep track of visited nodes.

 Line 21: The dfs function is called and is passed the visited set, the graph in the form of a

dictionary, and A, which is the starting node.

 Lines 13-18: dfs follows the algorithm described above:

1. It first checks if the current node is unvisited - if yes, it is appended in

the visited set.

2. Then for each neighbor of the current node, the dfs function is invoked again.

3. The base case is invoked when all the nodes are visited. The function then returns.

Time Complexity

 Since all the nodes and vertices are visited, the average time complexity for DFS on a

graph is O(V + E)O(V+E), where VV is the number of vertices and EE is the number of

edges. In case of DFS on a tree, the time complexity is O(V)O(V), where VV is the

number of nodes.

Note: We say average time complexity because a set’s in operation has an average time

complexity of O(1)O(1). If we used a list, the complexity would be higher.

2. Write a Program to find the solution for travelling salesman Problem.

What is a Travelling Salesperson Problem?

 The travelling salesperson problem (TSP) is a classic optimization problem where the

goal is to determine the shortest tour of a collection of n “cities” (i.e. nodes), starting and

ending in the same city and visiting all of the other cities exactly once.

 In such a situation, a solution can be represented by a vector of n integers, each in the

range 0 to n-1, specifying the order in which the cities should be visited.

 TSP is an NP-hard problem, meaning that, for larger values of n, it is not feasible to

evaluate every possible problem solution within a reasonable period of time.

Consequently, TSPs are well suited to solving using randomized optimization algorithms.

Traveling Salesman Problem (TSP) Implementation

Travelling Salesman Problem (TSP) : Given a set of cities and distances between every pair of

cities, the problem is to find the shortest possible route that visits every city exactly once and

returns to the starting point.

Note the difference between Hamiltonian Cycle and TSP. The Hamiltoninan cycle problem is to

find if there exist a tour that visits every city exactly once. Here we know that Hamiltonian Tour

exists (because the graph is complete) and in fact many such tours exist, the problem is to find a

minimum weight Hamiltonian Cycle.

Explanation

1. Consider city 1 as the starting and ending point. Since the route is cyclic, we can

consider any point as a starting point.

2. Generate all (n-1)! permutations of cities.

3. Calculate the cost of every permutation and keep track of the minimum cost

permutation.

4. Return the permutation with minimum cost.

SOURCE CODE

Python3 program to implement traveling salesman problem using naive approach.

from sys import maxsize

from itertools import permutations

V = 4

implementation of traveling Salesman Problem

def travellingSalesmanProblem(graph, s):

 # store all vertex apart from source vertex

 vertex = []

 for i in range(V):

 if i != s:

 vertex.append(i)

 # store minimum weight Hamiltonian Cycle

 min_path = maxsize

 next_permutation=permutations(vertex)

 for i in next_permutation:

 # store current Path weight(cost)

 current_pathweight = 0

 # compute current path weight

 k = s

 for j in i:

 current_pathweight += graph[k][j]

 k = j

 current_pathweight += graph[k][s]

 # update minimum

 min_path = min(min_path, current_pathweight)

 return min_path

if __name__ == "__main__":

 # matrix representation of graph

 graph = [[0, 10, 15, 20], [10, 0, 35, 25],

 [15, 35, 0, 30], [20, 25, 30, 0]]

 s = 0

 print(travellingSalesmanProblem(graph, s))

OUTPUT

80

3. Write a program to implement Simulated Annealing Algorithm

SOURCE CODE

convex unimodal optimization function

from numpy import arange

from matplotlib import pyplot

objective function

def objective(x):

 return x[0]**2.0

define range for input

r_min, r_max = -5.0, 5.0

sample input range uniformly at 0.1 increments

inputs = arange(r_min, r_max, 0.1)

compute targets

results = [objective([x]) for x in inputs]

create a line plot of input vs result

pyplot.plot(inputs, results)

define optimal input value

x_optima = 0.0

draw a vertical line at the optimal input

pyplot.axvline(x=x_optima, ls='--', color='red')

show the plot

pyplot.show()

SOURCE CODE

explore temperature vs algorithm iteration for simulated annealing

from matplotlib import pyplot

total iterations of algorithm

iterations = 100

initial temperature

initial_temp = 10

array of iterations from 0 to iterations - 1

iterations = [i for i in range(iterations)]

temperatures for each iterations

temperatures = [initial_temp/float(i + 1) for i in iterations]

plot iterations vs temperatures

pyplot.plot(iterations, temperatures)

pyplot.xlabel('Iteration')

pyplot.ylabel('Temperature')

pyplot.show()

SOURCE CODE

explore metropolis acceptance criterion for simulated annealing

from math import exp

from matplotlib import pyplot

total iterations of algorithm

iterations = 100

initial temperature

initial_temp = 10

array of iterations from 0 to iterations - 1

iterations = [i for i in range(iterations)]

temperatures for each iterations

temperatures = [initial_temp/float(i + 1) for i in iterations]

metropolis acceptance criterion

differences = [0.01, 0.1, 1.0]

for d in differences:

 metropolis = [exp(-d/t) for t in temperatures]

 # plot iterations vs metropolis

 label = 'diff=%.2f' % d

 pyplot.plot(iterations, metropolis, label=label)

inalize plot

pyplot.xlabel('Iteration')

pyplot.ylabel('Metropolis Criterion')

pyplot.legend()

pyplot.show()

4. Write a program to find the solution for wampus world problem

SOURCE CODE

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']

Data generation

train_num = 200

test_num = 100

config = {

 'Corn': [[150, 190], [40, 700], [20,4]],

 'Potato': [[300, 600], [70, 10], [10, 20]],

 'grass': [[100, 40], [10, 40], [505, 1]]

}

plants = list(config.keys())

dataset = pd.DataFrame(columns=['height(cm)', 'Leaf length(cm)', 'Stem diameter(cm)', 'type'])

index = 0

Natural

for p in config:

 for i in range(int(train_num/3-3)):

 row = []

 for j, [min_val, max_val] in enumerate(config[p]):

 v = round(np.random.rand()*(max_val-min_val)+min_val, 2)

 while v in dataset[dataset.columns[j]]:

 v = round(np.random.rand()*(max_val-min_val)+min_val, 2)

 row.append(v)

 row.append(p)

 dataset.loc[index] = row

 index += 1

Wrong data

for i in range(train_num - index):

 k = np.random.randint(3)

 p = plants[k]

 row = []

 for j, [min_val, max_val] in enumerate(config[p]):

 v = round(np.random.rand()*(max_val-min_val)+min_val, 2)

 while v in dataset[dataset.columns[j]]:

 v = round(np.random.rand()*(max_val-min_val)+min_val, 2)

 row.append(v)

 row.append(plants[(k+1)%3])

 dataset.loc[index] = row

 index+=1

dataset = dataset.infer_objects()

dataset = dataset.reindex(np.random.permutation(len(dataset)))

dataset.reset_index(drop=True, inplace=True)

dataset.iloc[:int(train_num), :-1].to_csv('potato_train_data.csv', index=False)

dataset.iloc[:int(train_num):, [-1]].to_csv('potato_train_label.csv', index=False)

"""Here, only the training data set is generated, and the test data is similar to this

Data visualization

We can see the distribution of data points by drawing a scatter diagram of the data of two

dimensions."""

def visualize(dataset, labels, features, classes, fig_size=(10, 10), layout=None):

 plt.figure(figsize=fig_size)

 index = 1

 if layout == None:

 layout = [len(features), 1]

 for i in range(len(features)):

 for j in range(i+1, len(features)):

 p = plt.subplot(layout[0], layout[1], index)

 plt.subplots_adjust(hspace=0.4)

 p.set_title(features[i]+'&'+features[j])

 p.set_xlabel(features[i])

 p.set_ylabel(features[j])

 for k in range(len(classes)):

 p.scatter(dataset[labels==k, i], dataset[labels==k, j], label=classes[k])

 p.legend()

 index += 1

 plt.show()

dataset = pd.read_csv('potato_train_data.csv')

labels = pd.read_csv('potato_train_label.csv')

features = list(dataset.keys())

classes = np.array(['Corn', 'Potato', 'grass'])

for i in range(3):

 labels.loc[labels['type']==classes[i], 'type'] = i

dataset = dataset.values

labels = labels['type'].values

visualize(dataset, labels, features, classes)

5. Write a program to implement 8 puzzle problem

SOURCE CODE

import copy

from heapq import heappush, heappop

n = 3

row = [1, 0, -1, 0]

col = [0, -1, 0, 1]

class priorityQueue:

 def __init__(self):

 self.heap = []

 def push(self, k):

 heappush(self.heap, k)

 def pop(self):

 return heappop(self.heap)

 def empty(self):

 if not self.heap:

 return True

 else:

 return False

class node:

 def __init__(self, parent, mat, empty_tile_pos,

 cost, level):

 self.parent = parent

 self.mat = mat

 self.empty_tile_pos = empty_tile_pos

 self.cost = cost

 self.level = level

 def __lt__(self, nxt):

 return self.cost < nxt.cost

def calculateCost(mat, final) -> int:

 count = 0

 for i in range(n):

 for j in range(n):

 if ((mat[i][j]) and

 (mat[i][j] != final[i][j])):

 count += 1

 return count

def newNode(mat, empty_tile_pos, new_empty_tile_pos,

 level, parent, final) -> node:

 new_mat = copy.deepcopy(mat)

 x1 = empty_tile_pos[0]

 y1 = empty_tile_pos[1]

 x2 = new_empty_tile_pos[0]

 y2 = new_empty_tile_pos[1]

 new_mat[x1][y1], new_mat[x2][y2] = new_mat[x2][y2], new_mat[x1][y1]

 cost = calculateCost(new_mat, final)

 new_node = node(parent, new_mat, new_empty_tile_pos,

 cost, level)

 return new_node

def printMatrix(mat):

 for i in range(n):

 for j in range(n):

 print("%d " % (mat[i][j]), end = " ")

 print()

def isSafe(x, y):

 return x >= 0 and x < n and y >= 0 and y < n

def printPath(root):

 if root == None:

 return

 printPath(root.parent)

 printMatrix(root.mat)

 print()

def solve(initial, empty_tile_pos, final):

 pq = priorityQueue()

 cost = calculateCost(initial, final)

 root = node(None, initial,

 empty_tile_pos, cost, 0)

 pq.push(root)

 while not pq.empty():

 minimum = pq.pop()

 if minimum.cost == 0:

 printPath(minimum)

 return

 for i in range(n):

 new_tile_pos = [

 minimum.empty_tile_pos[0] + row[i],

 minimum.empty_tile_pos[1] + col[i],]

 if isSafe(new_tile_pos[0], new_tile_pos[1]):

 child = newNode(minimum.mat,

 minimum.empty_tile_pos,

 new_tile_pos,

 minimum.level + 1,

 minimum, final,)

 pq.push(child)

initial = [[1, 2, 3],

 [5, 6, 0],

 [7, 8, 4]]

final = [[1, 2, 3],

 [5, 8, 6],

 [0, 7, 4]]

empty_tile_pos = [1, 2]

solve(initial, empty_tile_pos, final)

OUTPUT:

1 2 3

5 6 0

7 8 4

1 2 3

5 0 6

7 8 4

1 2 3

5 8 6

7 0 4

1 2 3

5 8 6

0 7 4

6. Write a program to implement Towers of Hanoi problem

SOURCE CODE

class Tower:

 def __init__(self):

 self.terminate = 1

 def printMove(self, source, destination):

 print("{} -> {}".format(source, destination))

 def move(self, disc, source, destination, auxiliary):

 if disc == self.terminate:

 self.printMove(source, destination)

 else:

 self.move(disc - 1, source, auxiliary, destination)

 self.move(1, source, destination, auxiliary)

 self.move(disc - 1, auxiliary, destination, source)

t = Tower();

t.move(3, 'A', 'B', 'C')

OUTPUT

A -> B

A -> C

B -> C

A -> B

C -> A

C -> B

A -> B

7. Write a program to implement A* Algorithm

SOURCE CODE

from queue import PriorityQueue

#Creating Base Class

class State(object):

 def __init__(self, value, parent, start = 0, goal = 0):

 self.children = []

 self.parent = parent

 self.value = value

 self.dist = 0

 if parent:

 self.start = parent.start

 self.goal = parent.goal

 self.path = parent.path[:]

 self.path.append(value)

 else:

 self.path = [value]

 self.start = start

 self.goal = goal

 def GetDistance(self):

 pass

 def CreateChildren(self):

 pass

 # Creating subclass

class State_String(State):

 def __init__(self, value, parent, start = 0, goal = 0):

 super(State_String, self).__init__(value, parent, start, goal)

 self.dist = self.GetDistance()

 def GetDistance(self):

 if self.value == self.goal:

 return 0

 dist = 0

 for i in range(len(self.goal)):

 letter = self.goal[i]

 dist += abs(i - self.value.index(letter))

 return dist

 def CreateChildren(self):

 if not self.children:

 for i in range(len(self.goal)-1):

 val = self.value

 val = val[:i] + val[i+1] + val[i] + val[i+2:]

 child = State_String(val, self)

 self.children.append(child)

Creating a class that hold the final magic

class A_Star_Solver:

 def __init__(self, start, goal):

 self.path = []

 self.vistedQueue =[]

 self.priorityQueue = PriorityQueue()

 self.start = start

 self.goal = goal

 def Solve(self):

 startState = State_String(self.start,0,self.start,self.goal)

 count = 0

 self.priorityQueue.put((0,count, startState))

 while(not self.path and self.priorityQueue.qsize()):

 closesetChild = self.priorityQueue.get()[2]

 closesetChild.CreateChildren()

 self.vistedQueue.append(closesetChild.value)

 for child in closesetChild.children:

 if child.value not in self.vistedQueue:

 count += 1

 if not child.dist:

 self.path = child.path

 break

 self.priorityQueue.put((child.dist,count,child))

 if not self.path:

 print("Goal Of is not possible !" + self.goal)

 return self.path

Calling all the existing stuffs

if __name__ == "__main__":

 start1 = "BHANU"

 goal1 = "NHUBA"

 print("Starting....")

 a = A_Star_Solver(start1,goal1)

 a.Solve()

 for i in range(len(a.path)):

 print("{0}){1}".format(i,a.path[i]))

8. Write a program to implement Hill Climbing Algorithm

SOURCE CODE

hill climbing search of the ackley objective function

from numpy import asarray

from numpy import exp

from numpy import sqrt

from numpy import cos

from numpy import e

from numpy import pi

from numpy.random import randn

from numpy.random import rand

from numpy.random import seed

objective function

def objective(v):

 x, y = v

 return -20.0 * exp(-0.2 * sqrt(0.5 * (x**2 + y**2))) - exp(0.5 * (cos(2 * pi * x) + cos(2 *

pi * y))) + e + 20

check if a point is within the bounds of the search

def in_bounds(point, bounds):

 # enumerate all dimensions of the point

 for d in range(len(bounds)):

 # check if out of bounds for this dimension

 if point[d] < bounds[d, 0] or point[d] > bounds[d, 1]:

 return False

 return True

hill climbing local search algorithm

def hillclimbing(objective, bounds, n_iterations, step_size):

 # generate an initial point

 solution = None

 while solution is None or not in_bounds(solution, bounds):

 solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])

 # evaluate the initial point

 solution_eval = objective(solution)

 # run the hill climb

 for i in range(n_iterations):

 # take a step

 candidate = None

 while candidate is None or not in_bounds(candidate, bounds):

 candidate = solution + randn(len(bounds)) * step_size

 # evaluate candidate point

 candidte_eval = objective(candidate)

 # check if we should keep the new point

 if candidte_eval <= solution_eval:

 # store the new point

 solution, solution_eval = candidate, candidte_eval

 # report progress

 print('>%d f(%s) = %.5f' % (i, solution, solution_eval))

 return [solution, solution_eval]

seed the pseudorandom number generator

seed(1)

define range for input

bounds = asarray([[-5.0, 5.0], [-5.0, 5.0]])

define the total iterations

n_iterations = 1000

define the maximum step size

step_size = 0.05

perform the hill climbing search

best, score = hillclimbing(objective, bounds, n_iterations, step_size)

print('Done!')

print('f(%s) = %f' % (best, score))

9. Build a Chatbot using AWS Lex, Pandora bots.

A Chatbot Python is an intelligent piece of software that is capable of communicating and

performing actions similar to a human. Chatbot In Python Project Report are used a lot in

customer interaction, marketing on social network sites and instantly messaging the client.

This Chatbot In Python Tutorial also includes the downloadable Python Chatbot Code

Download source code for free.

By the way I have here a simple Live Chat System in PHP Free Source Code maybe you are

looking for this source code too.

To start creating this Chatbot In Python Tutorial, make sure that you have PyCharm

IDE installed in your computer.

By the way if you are new to python programming and you don’t know what would be the the

Python IDE to use, I have here a list of Best Python IDE for Windows, Linux, Mac OS that will

suit for you.

Steps on how to create a Chatbot In Python

Chatbot In Python Tutorial With Source Code

 Step 1: Create a project name.

First when you finished installed the Pycharm IDE in your computer, open it and then

create a “project name” after creating a project name click the “create” button.

 Step 2: Create a python file.

Second after creating a project name, “right click” your project name and then click

“new” after that click the “python file“.

 Step 3: Name your python file.

Third after creating a python file, Name your python file after that click “enter“.

 Step 4: The actual code.

This is the actual coding on how to create Chatbot In Python, and you are free to copy

this code and download the full source code given below.

SOURCE CODE

def send():

 send = "You:"+ e.get()

https://www.google.com/url?client=internal-element-cse&cx=partner-pub-1754888917725354:6894380425&q=https://itsourcecode.com/free-projects/php-project/live-chat-system-php/&sa=U&ved=2ahUKEwipupHtieHqAhWyyYsBHZKHDHsQFjABegQICRAC&usg=AOvVaw38F619dY9z5d1g5gwN-8Uk
https://data-flair.training/blogs/python-chatbot-project/
https://itsourcecode.com/blogs/best-python-ide-for-windows-2021/

 text.insert(END,"\n" + send)

 if(e.get()=='hi'):

 text.insert(END, "\n" + "Bot: hello")

 elif(e.get()=='hello'):

 text.insert(END, "\n" + "Bot: hi")

 elif (e.get() == 'how are you?'):

 text.insert(END, "\n" + "Bot: i'm fine and you?")

 elif (e.get() == "i'm fine too"):

 text.insert(END, "\n" + "Bot: nice to hear that")

 else:

 text.insert(END, "\n" + "Bot: Sorry I didnt get it.")

text = Text(root,bg='light blue')

text.grid(row=0,column=0,columnspan=2)

e = Entry(root,width=80)

send = Button(root,text='Send',bg='blue',width=20,command=send).grid(row=1,column=1)

e.grid(row=1,column=0)

root = Tk()

root.title('IT SOURCCODE SIMPLE CHATBOT')

root.mainloop()

10. Build a bot which provides all the information related to your college.

SOURCE CODE

SOURCE CODE

def send():

 send = "You:"+ e.get()

 text.insert(END,"\n" + send)

 if(e.get()=='hi'):

 text.insert(END, "\n" + "Bot: hello")

 elif(e.get()=='hello'):

 text.insert(END, "\n" + "Bot: hi")

 elif (e.get() == 'how are you?'):

 text.insert(END, "\n" + "Bot: i'm fine and you?")

 elif (e.get() == "i'm fine too"):

 text.insert(END, "\n" + "Bot: nice to hear that")

 else:

 text.insert(END, "\n" + "Bot: Sorry I didnt get it.")

text = Text(root,bg='light blue')

text.grid(row=0,column=0,columnspan=2)

e = Entry(root,width=80)

send = Button(root,text='Send',bg='blue',width=20,command=send).grid(row=1,column=1)

e.grid(row=1,column=0)

root = Tk()

root.title('IT SOURCCODE SIMPLE CHATBOT')

root.mainloop()

11. Build a virtual assistant for Wikipedia using Wolfram Alpha and Python.

SOURCE CODE

import wolframalpha

Taking input from user

question = input('Question: ')

App id obtained by the above steps

app_id =('U5HXGG-79KT69H58Q')

Instance of wolf ram alpha

client class

client = wolframalpha.Client(app_id)

Stores the response from

wolf ram alpha

res = client.query(question)

Includes only text from the response

answer = next(res.results).text

print(answer)

12. The following is a function that counts the number of times a string occurs in another

string:

Count the number of times string s1 is found in string s2

def countsubstring(s1,s2):

count = 0

for i in range(0,len(s2)-len(s1)+1):

if s1 == s2[i:i+len(s1)]:

count += 1

return count

For instance, countsubstring(’ab’,’cabalaba’) returns 2.

Write a recursive version of the above function. To get the rest of a string (i.e. everything

but the first character).

SOURCE CODE

Python3 program to count occurrences of pattern in a text.

def KMPSearch(pat, txt):

 M = len(pat)

 N = len(txt)

 # Create lps[] that will hold the longest prefix suffix values for pattern

 lps = [None] * M

 j = 0 # index for pat[]

 # Preprocess the pattern (calculate lps[] array)

 computeLPSArray(pat, M, lps)

 i = 0 # index for txt[]

 res = 0

 next_i = 0

 while (i < N):

 if pat[j] == txt[i]:

 j = j + 1

 i = i + 1

 if j == M:

 # When we find pattern first time,we iterate again to check if there exists more pattern

 j = lps[j - 1]

 res = res + 1

 # We start i to check for more than once appearance of pattern, we will reset i to previous

start+1

 if lps[j] != 0:

 next_i = next_i + 1

 i = next_i

 j = 0

 # Mismatch after j matches

 elif ((i < N) and (pat[j] != txt[i])):

 # Do not match lps[0..lps[j-1]] characters, they will match anyway

 if (j != 0):

 j = lps[j - 1]

 else:

 i = i + 1

 return res

def computeLPSArray(pat, M, lps):

 # Length of the previous longest

 # prefix suffix

 len = 0

 i = 1

 lps[0] = 0 # lps[0] is always 0

 # The loop calculates lps[i] for

 # i = 1 to M-1

 while (i < M):

 if pat[i] == pat[len]:

 len = len + 1

 lps[i] = len

 i = i + 1

 else: # (pat[i] != pat[len])

 # This is tricky. Consider the example.

 # AAACAAAA and i = 7. The idea is similar

 # to search step.

 if len != 0:

 len = lps[len - 1]

 # Also, note that we do not increment

 # i here

 else: # if (len == 0)

 lps[i] = len

 i = i + 1

Driver code

if __name__ == "__main__":

 txt = "WELCOME TO PYTHON WORLD PYTHON PYTHON"

 pat = "THON"

 ans = KMPSearch(pat, txt)

 print(ans)

13. Higher order functions. Write a higher-order function count that counts the number of

elements in a list that satisfy a given test. For instance: count(lambda x: x>2, [1,2,3,4,5])

should return 3, as there are three elements in the list larger than 2. Solve this task without

using any existing higher-order function.

SOURCE CODE

Python3 program to count occurrences of an element if x is present in arr[] thenreturns the

count of occurrencesof x, otherwise returns -1.

def count(arr, x, n):

 # get the index of first occurrence of x

 i = first(arr, 0, n-1, x, n)

 # If x doesn't exist in arr[] then return -1

 if i == -1:

 return i

 # Else get the index of last occurrence of x. Note that we are only looking in the subarray after

first occurrence

 j = last(arr, i, n-1, x, n);

 # return count

 return j-i+1;

if x is present in arr[] then return the index of FIRST occurrence of x in arr[0..n-1], otherwise

returns -1

def first(arr, low, high, x, n):

 if high >= low:

 # low + (high - low)/2

 mid = (low + high)//2

 if (mid == 0 or x > arr[mid-1]) and arr[mid] == x:

 return mid

 elif x > arr[mid]:

 return first(arr, (mid + 1), high, x, n)

 else:

 return first(arr, low, (mid -1), x, n)

 return -1;

if x is present in arr[] then return the index of LAST occurrence of x in arr[0..n-1], otherwise

returns -1

def last(arr, low, high, x, n):

 if high >= low:

 # low + (high - low)/2

 mid = (low + high)//2;

 if(mid == n-1 or x < arr[mid+1]) and arr[mid] == x :

 return mid

 elif x < arr[mid]:

 return last(arr, low, (mid -1), x, n)

 else:

 return last(arr, (mid + 1), high, x, n)

 return -1

driver program to test above functions

arr = [1, 2, 2, 3, 3, 3, 3]

x = 3 # Element to be counted in arr[]

n = len(arr)

c = count(arr, x, n)

print ("%d occurs %d times "%(x, c))

OUTPUT

3 occurs 4 times

14. Brute force solution to the Knapsack problem. Write a function that allows you to

generate random problem instances for the knapsack program. This function should

generate a list of items containing N items that each have a unique name, a random size in

the range 1 5 and a random value in the range 1 10.

Next, you should perform performance measurements to see how long the given knapsack

solver take to solve different problem sizes. You should peform atleast 10 runs with

different randomly generated problem instances for the problem sizes 10,12,14,16,18,20

and 22. Use a

backpack size of 2:5 x N for each value problem size N. Please note that the method used to

generate random numbers can also affect performance, since different distributions of

values can make the initial conditions of the problem slightly more or less demanding.

How much longer time does it take to run this program when we increase the number of

items? Does the backpack size affect the answer?

Try running the above tests again with a backpack size of 1 x N and with 4:0 x N.

SOURCE CODE

Python3 program to solve fractional Knapsack Problem

class ItemValue:

 """Item Value DataClass"""

 def __init__(self, wt, val, ind):

 self.wt = wt

 self.val = val

 self.ind = ind

 self.cost = val // wt

 def __lt__(self, other):

 return self.cost < other.cost

Greedy Approach

class FractionalKnapSack:

 """Time Complexity O(n log n)"""

 @staticmethod

 def getMaxValue(wt, val, capacity):

 """function to get maximum value """

 iVal = []

 for i in range(len(wt)):

 iVal.append(ItemValue(wt[i], val[i], i))

 # sorting items by value

 iVal.sort(reverse=True)

 totalValue = 0

 for i in iVal:

 curWt = int(i.wt)

 curVal = int(i.val)

 if capacity - curWt >= 0:

 capacity -= curWt

 totalValue += curVal

 else:

 fraction = capacity / curWt

 totalValue += curVal * fraction

 capacity = int(capacity - (curWt * fraction))

 break

 return totalValue

Driver Code

if __name__ == "__main__":

 wt = [10, 40, 20, 30]

 val = [60, 40, 100, 120]

 capacity = 50

 # Function call

 maxValue = FractionalKnapSack.getMaxValue(wt, val, capacity)

 print("Maximum value in Knapsack =", maxValue)

OUTPUT:-

Maximum value in Knapsack = 240.0

15. Assume that you are organising a party for N people and have been given a list L of

people who, for social reasons, should not sit at the same table. Furthermore, assume that

you have C tables (that are infinitly large).

Write a function layout(N,C,L) that can give a table placement (ie. a number from 0 : : :C -

1) for each guest such that there will be no social mishaps.

For simplicity we assume that you have a unique number 0N-1 for each guest and that

the list of restrictions is of the form [(X,Y), ...] denoting guests X, Y that are not allowed to

sit together. Answer with a dictionary mapping each guest into a table assignment, if there

are no possible layouts of the guests you should answer False.

SOURCE CODE

Python3 program to solve fractional Knapsack Problem

class ItemValue:

 """Item Value DataClass"""

 def __init__(self, wt, val, ind):

 self.wt = wt

 self.val = val

 self.ind = ind

 self.cost = val // wt

 def __lt__(self, other):

 return self.cost < other.cost

Greedy Approach

class FractionalKnapSack:

 """Time Complexity O(n log n)"""

 @staticmethod

 def getMaxValue(wt, val, capacity):

 """function to get maximum value """

 iVal = []

 for i in range(len(wt)):

 iVal.append(ItemValue(wt[i], val[i], i))

 # sorting items by value

 iVal.sort(reverse=True)

 totalValue = 0

 for i in iVal:

 curWt = int(i.wt)

 curVal = int(i.val)

 if capacity - curWt >= 0:

 capacity -= curWt

 totalValue += curVal

 else:

 fraction = capacity / curWt

 totalValue += curVal * fraction

 capacity = int(capacity - (curWt * fraction))

 break

 return totalValue

Driver Code

if __name__ == "__main__":

 wt = [10, 40, 20, 30]

 val = [60, 40, 100, 120]

 capacity = 50

 # Function call

 maxValue = FractionalKnapSack.getMaxValue(wt, val, capacity)

 print("Maximum value in Knapsack =", maxValue)

OUTPUT:-

Maximum value in Knapsack = 240.0

	The Algorithm
	Implementation
	Explanation
	Time Complexity
	The Algorithm (1)
	Explanation (1)
	Time Complexity (1)
	Explanation (2)
	Steps on how to create a Chatbot In Python

