
Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

R Programming Basics
 Basic arithmetic operations
 Basic arithmetic functions
 Assigning values to variables
 Basic data types
 Vectors

o Create a vector
o Case of missing values
o Get a subset of a vector
o Calculations with vectors

 Matrices
o Create and naming matrix
o Dimensions of a matrix
o Get a subset of a matrix
o Calculations with matrices

 Factors
o Create a factor
o Calculations with factors

 Data frames
o Create a data frame
o Subset a data frame
o Extend a data frame

 Calculations with data frame
 Lists

o Create a list
o Subset a list
o Extend a list

Here, we described the basics you should know about R programming, including :

 Performing basic arithmetic operations and using basic arithmetic functions
 Creating and subsetting basic data types in R

Basic arithmetic operations

R can be used as a calculator.

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

The basic arithmetic operators are:

1. + (addition)
2. - (subtraction)
3. * (multiplication)
4. / (division)
5. and ^ (exponentiation).

Type directly the command below in the console:

Addition
3 + 7
[1] 10
Substraction
7 - 3
[1] 4
Multiplication
3 * 7
[1] 21
Divison
7/3
[1] 2.333333
Exponentiation
2^3
[1] 8
Modulo: returns the remainder of the division of 8/3
8 %% 3
[1] 2

Note that, in R, ‘#’ is used for adding comments to explain what the R code is about.

Basic arithmetic functions
1. Logarithms and Exponentials:

log2(x) # logarithms base 2 of x
log10(x) # logaritms base 10 of x
exp(x) # Exponential of x

3. Trigonometric functions:

cos(x) # Cosine of x
sin(x) # Sine of x
tan(x) #Tangent of x
acos(x) # arc-cosine of x
asin(x) # arc-sine of x
atan(x) #arc-tangent of x

4. Other mathematical functions

abs(x) # absolute value of x

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

sqrt(x) # square root of x

Assigning values to variables

A variable can be used to store a value.

For example, the R code below will store the price of a lemon in a variable, say “lemon_price”:

Price of a lemon = 2 euros
lemon_price <- 2
or use this
lemon_price = 2

Note that, it’s possible to use <- or = for variable assignments.

Note that, R is case-sensitive. This means that lemon_price is different from Lemon_Price.

To print the value of the created object, just type its name:

lemon_price
[1] 2

or use the function print():

print(lemon_price)
[1] 2

R saves the object lemon_price (also known as a variable) in memory. It’s possible to make
some operations with it.

Multiply lemon price by 5
5 * lemon_price
[1] 10

You can change the value of the object:

Change the value
lemon_price <- 5
Print again
lemon_price
[1] 5

The following R code creates two variables holding the width and the height of a rectangle.
These two variables will be used to compute of the rectangle.

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Rectangle height
height <- 10
rectangle width
width <- 5
compute rectangle area
area <- height*width
print(area)
[1] 50

The function ls() can be used to see the list of objects we have created:

ls()
[1] "area" "height" "info" "lemon_price" "PACKAGES"
"R_VERSION"
[7] "width"

The collection of objects currently stored is called the workspace.

Note that, each variable takes some place in the computer memory. If you work on a big project,
it’s good to clean up your workspace.

To remove a variable, use the function rm():

Remove height and width variable
rm(height, width)
Display the remaining variables
ls()
[1] "area" "info" "lemon_price" "PACKAGES" "R_VERSION"

Basic data types
Basic data types are numeric, character and logical.

Numeric object: How old are you?
my_age <- 28
Character object: What's your name?
my_name <- "Nicolas"
logical object: Are you a data scientist?
(yes/no) <=> (TRUE/FALSE)
is_datascientist <- TRUE

Note that, character vector can be created using double (“) or single (’) quotes. If your text
contains quotes, you should escape them using”\" as follow.

'My friend\'s name is "Jerome"'
[1] "My friend's name is \"Jerome\""
or use this
"My friend's name is \"Jerome\""
[1] "My friend's name is \"Jerome\""

It’s possible to use the function class() to see what type a variable is:

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

class(my_age)
[1] "numeric"
class(my_name)
[1] "character"

You can also use the functions is.numeric(), is.character(), is.logical() to check whether a
variable is numeric, character or logical, respectively. For instance:

is.numeric(my_age)
[1] TRUE
is.numeric(my_name)
[1] FALSE

If you want to change the type of a variable to another one, use the as.* functions, including:
as.numeric(), as.character(), as.logical(), etc.

my_age
[1] 28
Convert my_age to a character variable
as.character(my_age)
[1] "28"

Note that, the conversion of a character to a numeric will output NA (for not available). R
doesn’t know how to convert a numeric variable to a character variable.

Vectors
A vector is a combination of multiple values (numeric, character or logical) in the same object. In this
case, you can have numeric vectors, character vectors or logical vectors.

Create a vector

A vector is created using the function c() (for concatenate), as follow:

Store your friends'age in a numeric vector
friend_ages <- c(27, 25, 29, 26) # Create
friend_ages # Print
[1] 27 25 29 26
Store your friend names in a character vector
my_friends <- c("Nicolas", "Thierry", "Bernard", "Jerome")
my_friends
[1] "Nicolas" "Thierry" "Bernard" "Jerome"
Store your friends marital status in a logical vector
Are they married? (yes/no <=> TRUE/FALSE)
are_married <- c(TRUE, FALSE, TRUE, TRUE)
are_married
[1] TRUE FALSE TRUE TRUE

It’s possible to give a name to the elements of a vector using the function names().

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Vector without element names
friend_ages
[1] 27 25 29 26
Vector with element names
names(friend_ages) <- c("Nicolas", "Thierry", "Bernard", "Jerome")
friend_ages
Nicolas Thierry Bernard Jerome
 27 25 29 26
You can also create a named vector as follow
friend_ages <- c(Nicolas = 27, Thierry = 25,
 Bernard = 29, Jerome = 26)
friend_ages
Nicolas Thierry Bernard Jerome
 27 25 29 26

Note that a vector can only hold elements of the same type. For example, you cannot have a
vector that contains both characters and numeric values.

 Find the length of a vector (i.e., the number of elements in a vector)

Number of friends
length(my_friends)
[1] 4

Case of missing values

I know that some of my friends (Nicolas and Thierry) have 2 child. But this information is not
available (NA) for the remaining friends (Bernard and Jerome).

In R missing values (or missing information) are represented by NA:

have_child <- c(Nicolas = "yes", Thierry = "yes",
 Bernard = NA, Jerome = NA)
have_child
Nicolas Thierry Bernard Jerome
 "yes" "yes" NA NA

It’s possible to use the function is.na() to check whether a data contains missing value. The result
of the function is.na() is a logical vector in which, the value TRUE specifies that the
corresponding element in x is NA.

Check if have_child contains missing values
is.na(have_child)
Nicolas Thierry Bernard Jerome
 FALSE FALSE TRUE TRUE

Note that, there is a second type of missing values named NaN (“Not a Number”). This is
produced in a situation where mathematical function won’t work properly, for example 0/0 =
NaN.

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Note also that, the function is.na() is TRUE for both NA and NaN values. To differentiate these,
the function is.nan() is only TRUE for NaNs.

Get a subset of a vector

Subsetting a vector consists of selecting a part of your vector.

 Selection by positive indexing: select an element of a vector by its position (index) in square
brackets

Select my friend number 2
my_friends[2]
[1] "Thierry"
Select my friends number 2 and 4
my_friends[c(2, 4)]
[1] "Thierry" "Jerome"
Select my friends number 1 to 3
my_friends[1:3]
[1] "Nicolas" "Thierry" "Bernard"

Note that, R indexes from 1, NOT 0. So your first column is at [1] and not [0].

If you have a named vector, it’s also possible to use the name for selecting an element:

friend_ages["Bernard"]
Bernard
 29

 Selection by negative indexing: Exclude an element

Exclude my friend number 2
my_friends[-2]
[1] "Nicolas" "Bernard" "Jerome"
Exclude my friends number 2 and 4
my_friends[-c(2, 4)]
[1] "Nicolas" "Bernard"
Exclude my friends number 1 to 3
my_friends[-(1:3)]
[1] "Jerome"

 Selection by logical vector: Only, the elements for which the corresponding value in the
selecting vector is TRUE, will be kept in the subset.

Select only married friends
my_friends[are_married == TRUE]
[1] "Nicolas" "Bernard" "Jerome"
Friends with age >=27
my_friends[friend_ages >= 27]
[1] "Nicolas" "Bernard"
Friends with age different from 27
my_friends[friend_ages != 27]
[1] "Thierry" "Bernard" "Jerome"

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

If you want to remove missing data, use this:

Data with missing values
have_child
Nicolas Thierry Bernard Jerome
 "yes" "yes" NA NA
Keep only values different from NA (!is.na())
have_child[!is.na(have_child)]
Nicolas Thierry
 "yes" "yes"
Or, replace NA value by "NO" and then print
have_child[!is.na(have_child)] <- "NO"
have_child
Nicolas Thierry Bernard Jerome
 "NO" "NO" NA NA

Note that, the “logical” comparison operators available in R are:

 <: for less than
 >: for greater than
 <=: for less than or equal to
 >=: for greater than or equal to
 ==: for equal to each other
 !=: not equal to each other

Calculations with vectors

Note that, all the basic arithmetic operators (+, -, *, / and ^) as well as the common arithmetic
functions (log, exp, sin, cos, tan, sqrt, abs, …), described in the previous sections, can be applied
on a numeric vector.

If you perform an operation with vectors, the operation will be applied to each element of the
vector. An example is provided below:

My friends' salary in dollars
salaries <- c(2000, 1800, 2500, 3000)
names(salaries) <- c("Nicolas", "Thierry", "Bernard", "Jerome")
salaries
Nicolas Thierry Bernard Jerome
 2000 1800 2500 3000
Multiply salaries by 2
salaries*2
Nicolas Thierry Bernard Jerome
 4000 3600 5000 6000

As you can see, R multiplies each element in the salaries vector with 2.

Now, suppose that you want to multiply the salaries by different coefficients. The following R
code can be used:

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

create coefs vector with the same length as salaries
coefs <- c(2, 1.5, 1, 3)
Multiply salaries by coeff
salaries*coefs
Nicolas Thierry Bernard Jerome
 4000 2700 2500 9000

Note that the calculation is done element-wise. The first element of salaries vector is multiplied
by the first element of coefs vector, and so on.

Compute the square root of a numeric vector:

my_vector <- c(4, 16, 9)
sqrt(my_vector)
[1] 2 4 3

Other useful functions are:

max(x) # Get the maximum value of x
min(x) # Get the minimum value of x
Get the range of x. Returns a vector containing
the minimum and the maximum of x
range(x)

length(x) # Get the number of elements in x

sum(x) # Get the total of the elements in x

prod(x) # Get the product of the elements in x

The mean value of the elements in x
sum(x)/length(x)
mean(x)
sd(x) # Standard deviation of x
var(x) # Variance of x
Sort the element of x in ascending order
sort(x)

For example, if you want to compute the total sum of salaries, type this:

sum(salaries)
[1] 9300

Compute the mean of salaries:

mean(salaries)
[1] 2325

The range (minimum, maximum) of salaries is:

range(salaries)
[1] 1800 3000

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Matrices
A matrix is like an Excel sheet containing multiple rows and columns. It’s used to combine vectors with
the same type, which can be either numeric, character or logical. Matrices are used to store a data table
in R. The rows of a matrix are generally individuals/observations and the columns are variables.

Create and naming matrix

To create easily a matrix, use the function cbind() or rbind() as follow:

Numeric vectors
col1 <- c(5, 6, 7, 8, 9)
col2 <- c(2, 4, 5, 9, 8)
col3 <- c(7, 3, 4, 8, 7)
Combine the vectors by column
my_data <- cbind(col1, col2, col3)
my_data
 col1 col2 col3
[1,] 5 2 7
[2,] 6 4 3
[3,] 7 5 4
[4,] 8 9 8
[5,] 9 8 7
Change rownames
rownames(my_data) <- c("row1", "row2", "row3", "row4", "row5")
my_data
 col1 col2 col3
row1 5 2 7
row2 6 4 3
row3 7 5 4
row4 8 9 8
row5 9 8 7

 cbind(): combine R objects by columns
 rbind(): combine R objects by rows
 rownames(): retrieve or set row names of a matrix-like object
 colnames(): retrieve or set column names of a matrix-like object

If you want to transpose your data, use the function t():

t(my_data)
 row1 row2 row3 row4 row5
col1 5 6 7 8 9
col2 2 4 5 9 8
col3 7 3 4 8 7

Note that, it’s also possible to construct a matrix using the function matrix().

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

The simplified format of matrix() is as follow:

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
 dimnames = NULL)

 data: an optional data vector
 nrow, ncol: the desired number of rows and columns, respectively.
 byrow: logical value. If FALSE (the default) the matrix is filled by columns, otherwise the matrix

is filled by rows.
 dimnames: A list of two vectors giving the row and column names respectively.

In the R code below, the input data has length 6. We want to create a matrix with two columns.
You don’t need to specify the number of rows (here nrow = 3). R will infer this automatically.
The matrix is filled column by column when the argument byrow = FALSE. If you want to fill
the matrix by rows, use byrow = TRUE.

mdat <- matrix(
 data = c(1,2,3, 11,12,13),
 nrow = 2, byrow = TRUE,
 dimnames = list(c("row1", "row2"), c("C.1", "C.2", "C.3"))
)
mdat
 C.1 C.2 C.3
row1 1 2 3
row2 11 12 13

Dimensions of a matrix

The R functions nrow() and ncol() return the number of rows and columns present in the data,
respectively.

ncol(my_data) # Number of columns
[1] 3
nrow(my_data) # Number of rows
[1] 5
dim(my_data) # Number of rows and columns
[1] 5 3

Get a subset of a matrix

 Select rows/columns by positive indexing

rows and/or columns can be selected as follow: my_data[row, col]

Select row number 2
my_data[2,]
col1 col2 col3

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

 6 4 3
Select row number 2 to 4
my_data[2:4,]
 col1 col2 col3
row2 6 4 3
row3 7 5 4
row4 8 9 8
Select multiple rows that aren't contiguous
e.g.: rows 2 and 4 but not 3
my_data[c(2,4),]
 col1 col2 col3
row2 6 4 3
row4 8 9 8
Select column number 3
my_data[, 3]
row1 row2 row3 row4 row5
 7 3 4 8 7
Select the value at row 2 and column 3
my_data[2, 3]
[1] 3

 Select by row/column names

Select column 2
my_data[, "col2"]
row1 row2 row3 row4 row5
 2 4 5 9 8
Select by index and names: row 3 and olumn 2
my_data[3, "col2"]
[1] 5

 Exclude rows/columns by negative indexing

Exclude column 1
my_data[, -1]
 col2 col3
row1 2 7
row2 4 3
row3 5 4
row4 9 8
row5 8 7

 Selection by logical: In the R code below, we want to keep only rows where col3 >=4:

col3 <- my_data[, "col3"]
my_data[col3 >= 4,]
 col1 col2 col3
row1 5 2 7
row3 7 5 4
row4 8 9 8
row5 9 8 7

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Calculations with matrices

 It’s also possible to perform simple operations on matrice. For example, the following R code
multiplies each element of the matrix by 2:

my_data*2
 col1 col2 col3
row1 10 4 14
row2 12 8 6
row3 14 10 8
row4 16 18 16
row5 18 16 14

Or, compute the log2 values:

log2(my_data)
 col1 col2 col3
row1 2.321928 1.000000 2.807355
row2 2.584963 2.000000 1.584963
row3 2.807355 2.321928 2.000000
row4 3.000000 3.169925 3.000000
row5 3.169925 3.000000 2.807355

 rowSums() and colSums() functions: Compute the total of each row and the total of each
column, respectively.

Total of each row
rowSums(my_data)
row1 row2 row3 row4 row5
 14 13 16 25 24
Total of each column
colSums(my_data)
col1 col2 col3
 35 28 29

If you are interested in row/column means, you can use the function rowMeans() and
colMeans() for computing row and column means, respectively.

Note that, it’s also possible to use the function apply() to apply any statistical functions to
rows/columns of matrices.

The simplified format of apply() is as follow:

apply(X, MARGIN, FUN)

 X: your data matrix
 MARGIN: possible values are 1 (for rows) and 2 (for columns)
 FUN: the function to apply on rows/columns

Use apply() as follow:

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Compute row means
apply(my_data, 1, mean)
 row1 row2 row3 row4 row5
4.666667 4.333333 5.333333 8.333333 8.000000
Compute row medians
apply(my_data, 1, median)
row1 row2 row3 row4 row5
 5 4 5 8 8
Compute column means
apply(my_data, 2, mean)
col1 col2 col3
 7.0 5.6 5.8

Factors

Factor variables represent categories or groups in your data. The function factor() can be used to create
a factor variable.

Create a factor
Create a factor variable
friend_groups <- factor(c(1, 2, 1, 2))
friend_groups
[1] 1 2 1 2
Levels: 1 2

The variable friend_groups contains two categories of friends: 1 and 2. In R terminology,
categories are called factor levels.

It’s possible to access to the factor levels using the function levels():

Get group names (or levels)
levels(friend_groups)
[1] "1" "2"
Change levels
levels(friend_groups) <- c("best_friend", "not_best_friend")
friend_groups
[1] best_friend not_best_friend best_friend not_best_friend
Levels: best_friend not_best_friend

Note that, R orders factor levels alphabetically. If you want a different order in the levels, you
can specify the levels argument in the factor function as follow.

Change the order of levels
friend_groups <- factor(friend_groups,
 levels = c("not_best_friend", "best_friend"))
Print

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

friend_groups
[1] best_friend not_best_friend best_friend not_best_friend
Levels: not_best_friend best_friend

Note that:

 The function is.factor() can be used to check whether a variable is a factor. Results are TRUE (if
factor) or FALSE (if not factor)

 The function as.factor() can be used to convert a variable to a factor.

Check if friend_groups is a factor
is.factor(friend_groups)
[1] TRUE
Check if "are_married" is a factor
is.factor(are_married)
[1] FALSE
Convert "are_married" as a factor
as.factor(are_married)
[1] TRUE FALSE TRUE TRUE
Levels: FALSE TRUE

Calculations with factors

 If you want to know the number of individuals in each levels, use the function summary():

summary(friend_groups)
not_best_friend best_friend
 2 2

 In the following example, I want to compute the mean salary of my friends by groups. The
function tapply() can be used to apply a function, here mean(), to each group.

Salaries of my friends
salaries
Nicolas Thierry Bernard Jerome
 2000 1800 2500 3000
Friend groups
friend_groups
[1] best_friend not_best_friend best_friend not_best_friend
Levels: not_best_friend best_friend
Compute the mean salaries by groups
mean_salaries <- tapply(salaries, friend_groups, mean)
mean_salaries
not_best_friend best_friend
 2400 2250
Compute the size/length of each group
tapply(salaries, friend_groups, length)
not_best_friend best_friend
 2 2

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

 It’s also possible to use the function table() to create a frequency table, also known as a
contingency table of the counts at each combination of factor levels.

table(friend_groups)
friend_groups
not_best_friend best_friend
 2 2
Cross-tabulation between
friend_groups and are_married variables
table(friend_groups, are_married)
 are_married
friend_groups FALSE TRUE
 not_best_friend 1 1
 best_friend 0 2

Data frames

A data frame is like a matrix but can have columns with different types (numeric, character, logical).
Rows are observations (individuals) and columns are variables.

Create a data frame

A data frame can be created using the function data.frame(), as follow:

Create a data frame
friends_data <- data.frame(
 name = my_friends,
 age = friend_ages,
 height = c(180, 170, 185, 169),
 married = are_married
)
Print
friends_data
 name age height married
Nicolas Nicolas 27 180 TRUE
Thierry Thierry 25 170 FALSE
Bernard Bernard 29 185 TRUE
Jerome Jerome 26 169 TRUE

To check whether a data is a data frame, use the is.data.frame() function. Returns TRUE if the
data is a data frame:

is.data.frame(friends_data)
[1] TRUE
is.data.frame(my_data)
[1] FALSE

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

The object “friends_data” is a data frame, but not the object “my_data”. We can convert-it to a
data frame using the as.data.frame() function:

What is the class of my_data? --> matrix
class(my_data)
[1] "matrix"
Convert it as a data frame
my_data2 <- as.data.frame(my_data)
Now, the class is data.frame
class(my_data2)
[1] "data.frame"

As described in matrix section, you can use the function t() to transpose a data frame:

t(friends_data)

Subset a data frame

To select just certain columns from a data frame, you can either refer to the columns by name or
by their location (i.e., column 1, 2, 3, etc.).

1. Positive indexing by name and by location

Access the data in 'name' column
dollar sign is used
friends_data$name
[1] Nicolas Thierry Bernard Jerome
Levels: Bernard Jerome Nicolas Thierry
or use this
friends_data[, 'name']
[1] Nicolas Thierry Bernard Jerome
Levels: Bernard Jerome Nicolas Thierry
Subset columns 1 and 3
friends_data[, c(1, 3)]
 name height
Nicolas Nicolas 180
Thierry Thierry 170
Bernard Bernard 185
Jerome Jerome 169

2. Negative indexing

Exclude column 1
friends_data[, -1]
 age height married
Nicolas 27 180 TRUE
Thierry 25 170 FALSE
Bernard 29 185 TRUE
Jerome 26 169 TRUE

3. Index by characteristics

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

We want to select all friends with age >= 27.

Identify rows that meet the condition
friends_data$age >= 27
[1] TRUE FALSE TRUE FALSE

TRUE specifies that the row contains a value of age >= 27.

Select the rows that meet the condition
friends_data[friends_data$age >= 27,]
 name age height married
Nicolas Nicolas 27 180 TRUE
Bernard Bernard 29 185 TRUE

The R code above, tells R to get all rows from friends_data where age >= 27, and then to return
all the columns.

If you don’t want to see all the column data for the selected rows but are just interested in
displaying, for example, friend names and age for friends with age >= 27, you could use the
following R code:

Use column locations
friends_data[friends_data$age >= 27, c(1, 2)]
 name age
Nicolas Nicolas 27
Bernard Bernard 29
Or use column names
friends_data[friends_data$age >= 27, c("name", "age")]
 name age
Nicolas Nicolas 27
Bernard Bernard 29

If you’re finding that your selection statement is starting to be inconvenient, you can put your
row and column selections into variables first, such as:

age27 <- friends_data$age >= 27
cols <- c("name", "age")

Then you can select the rows and columns with those variables:

friends_data[age27, cols]
 name age
Nicolas Nicolas 27
Bernard Bernard 29

It’s also possible to use the function subset() as follow.

Select friends data with age >= 27
subset(friends_data, age >= 27)
 name age height married
Nicolas Nicolas 27 180 TRUE

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Bernard Bernard 29 185 TRUE

Another option is to use the functions attach() and detach(). The function attach() takes a data
frame and makes its columns accessible by simply giving their names.

The functions attach() and detach() can be used as follow:

Attach a data frame
attach(friends_data)
=== Data manipulation ====
friends_data[age>=27,]
=== End of data manipulation ====
Detach the data frame
detach(friends_data)

Extend a data frame

Add new column in a data frame

Add group column to friends_data
friends_data$group <- friend_groups
friends_data
 name age height married group
Nicolas Nicolas 27 180 TRUE best_friend
Thierry Thierry 25 170 FALSE not_best_friend
Bernard Bernard 29 185 TRUE best_friend
Jerome Jerome 26 169 TRUE not_best_friend

It’s also possible to use the functions cbind() and rbind() to extend a data frame.

cbind(friends_data, group = friend_groups)

Calculations with data frame
With numeric data frame, you can use the function rowSums(), colSums(), colMeans(),
rowMeans() and apply() as described in matrix section.

Lists
A list is an ordered collection of objects, which can be vectors, matrices, data frames, etc. In other
words, a list can contain all kind of R objects.

Create a list
Create a list
my_family <- list(
 mother = "Veronique",
 father = "Michel",
 sisters = c("Alicia", "Monica"),

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

 sister_age = c(12, 22)
)
Print
my_family
$mother
[1] "Veronique"
$father
[1] "Michel"
$sisters
[1] "Alicia" "Monica"
$sister_age
[1] 12 22
Names of elements in the list
names(my_family)
[1] "mother" "father" "sisters" "sister_age"
Number of elements in the list
length(my_family)
[1] 4

The list object “my_family”, contains four components, which may be individually referred to as
my_family[[1]], as_family[[2]] and so on.

Subset a list

It’s possible to select an element, from a list, by its name or its index:

 my_family$mother is the same as my_family[[1]]
 my_family$father is the same as my_family[[2]]

Select by name (1/2)
my_family$father
[1] "Michel"
Select by name (2/2)
my_family[["father"]]
[1] "Michel"
Select by index
my_family[[1]]
[1] "Veronique"
my_family[[3]]
[1] "Alicia" "Monica"
Select a specific element of a component
select the first ([1]) element of my_family[[3]]
my_family[[3]][1]
[1] "Alicia"

Extend a list

Note that, it’s possible to extend an original list.

In the R code below, we want to add the components “grand_father” and “grand_mother” to
my_family list object:

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Extend the list
my_family$grand_father <- "John"
my_family$grand_mother <- "Mary"
Print
my_family
$mother
[1] "Veronique"
$father
[1] "Michel"
$sisters
[1] "Alicia" "Monica"
$sister_age
[1] 12 22
$grand_father
[1] "John"
$grand_mother
[1] "Mary"

You can also concatenate two lists as follow:

list_abc <- c(list_a, list_b, list_c)

The result is a list also, whose components are those of the argument lists joined together in
sequence.

Importing Data Into R

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Best Practices in Preparing Data Files for
Importing into R
In the previous chapter we provided the essentials of R programming including installation,
launching, basic data types and arithmetic functions. In the next articles you will learn how to
import data into R. To avoid errors during the importation of a file into R, you should make
sure that your data is well prepared.
In this article we’ll describe some best practices for preparing your data before importing into
R.

Open your file
We suppose that you open and prepare your file with Excel as follow.

Prepare your file
1. Row and column names:

 Use the first row as column headers (or column names). Generally, columns represent
variables.

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

 Use the first column as row names. Generally rows represent observations.
 Each row name should be unique, so remove duplicated names.

Column names should be compatible with R naming conventions. As illustrated below, our data
contains some issues that should be fixed before importing:

2. Naming conventions:

 Avoid names with blank spaces. Good column names: Long_jump or Long.jump. Bad
column name: Long jump.

 Avoid names with special symbols: ?, $, *, +, #, (,), -, /, }, {, |, >, < etc. Only underscore
can be used.

 Avoid beginning variable names with a number. Use letter instead. Good column names:
sport_100m or x100m. Bad column name: 100m

 Column names must be unique. Duplicated names are not allowed.
 R is case sensitive. This means that Name is different from Name or NAME.
 Avoid blank rows in your data
 Delete any comments in your file
 Replace missing values by NA (for not available)
 If you have a column containing date, use the four digit format. Good format:

01/01/2016. Bad format: 01/01/16

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

3. Final file:

Our finale file should look like this:

--

Reading Data From TXT|CSV Files: R Base Functions

R base functions for importing data
The R base function read.table() is a general function that can be used to read a file in table
format. The data will be imported as a data frame.

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Note that, depending on the format of your file, several variants of read.table() are available to
make your life easier, including read.csv(), read.csv2(), read.delim() and read.delim2().

 read.csv(): for reading “comma separated value” files (“.csv”).
 read.csv2(): variant used in countries that use a comma “,” as decimal point and a

semicolon “;” as field separators.
 read.delim(): for reading “tab-separated value” files (“.txt”). By default, point (“.”) is

used as decimal points.
 read.delim2(): for reading “tab-separated value” files (“.txt”). By default, comma (“,”)

is used as decimal points.

The simplified format of these functions are, as follow:

Read tabular data into R
read.table(file, header = FALSE, sep = "", dec = ".")
Read "comma separated value" files (".csv")
read.csv(file, header = TRUE, sep = ",", dec = ".", ...)
Or use read.csv2: variant used in countries that
use a comma as decimal point and a semicolon as field separator.
read.csv2(file, header = TRUE, sep = ";", dec = ",", ...)
Read TAB delimited files
read.delim(file, header = TRUE, sep = "\t", dec = ".", ...)
read.delim2(file, header = TRUE, sep = "\t", dec = ",", ...)

 file: the path to the file containing the data to be imported into R.
 sep: the field separator character. “\t” is used for tab-delimited file.
 header: logical value. If TRUE, read.table() assumes that your file has a header row, so

row 1 is the name of each column. If that’s not the case, you can add the argument
header = FALSE.

 dec: the character used in the file for decimal points.

Reading a local file
 To import a local .txt or a .csv file, the syntax would be:

Read a txt file, named "mtcars.txt"
my_data <- read.delim("mtcars.txt")
Read a csv file, named "mtcars.csv"
my_data <- read.csv("mtcars.csv")

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

The above R code, assumes that the file “mtcars.txt” or “mtcars.csv” is in your current working
directory. To know your current working directory, type the function getwd() in R console.

 It’s also possible to choose a file interactively using the function file.choose(), which I
recommend if you’re a beginner in R programming:

Read a txt file
my_data <- read.delim(file.choose())
Read a csv file
my_data <- read.csv(file.choose())

If you use the R code above in RStudio, you will be asked to choose a file.

If your data contains column with text, R may assume that columns as a factors or grouping
variables (e.g.: “good”, “good”, “bad”, “bad”, “bad”). If you don’t want your text data to be
converted as factors, add stringsAsFactor = FALSE in read.delim(), read.csv() and
read.table() functions. In this case, the data frame columns corresponding to string in your text
file will be character.

For example:

my_data <- read.delim(file.choose(),
 stringsAsFactor = FALSE)

 If your field separator is for example “|”, it’s possible use the general function
read.table() with additional arguments:

my_data <- read.table(file.choose(),
 sep ="|", header = TRUE, dec =".")

Reading a file from internet
It’s possible to use the functions read.delim(), read.csv() and read.table() to import files from
the web.

my_data <- read.delim("http://www.sthda.com/upload/boxplot_format.txt")
head(my_data)
 Nom variable Group
1 IND1 10 A
2 IND2 7 A
3 IND3 20 A
4 IND4 14 A
5 IND5 14 A
6 IND6 12 A

Summary

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

 Import a local .txt file: read.delim(file.choose())
 Import a local .csv file: read.csv(file.choose())
 Import a file from internet: read.delim(url) if a txt file or read.csv(url) if a csv file

--

Reading Data From Excel Files (xls|xlsx) into R

In this article, you’ll learn how to read data from Excel xls or xlsx file formats into R. This can
be done either by:

 copying data from Excel
 using readxl package
 or using xlsx package

Preleminary tasks

1. Launch RStudio as described here: Running RStudio and setting up your working directory

2. Prepare your data as described here: Best practices for preparing your data

Copying data from Excel and import into R

On Windows system

1. Open the Excel file containing your data: select and copy the data (ctrl + c)

2. Type the R code below to import the copied data from the clipboard into R and store the data in
a data frame (my_data):

my_data <- read.table(file = "clipboard",

 sep = "\t", header=TRUE)

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Installing and loading readxl package

 Install

install.packages("readxl")

 Load

library("readxl")

Using readxl package

The readxl package comes with the function read_excel() to read xls and xlsx files

1. Read both xls and xlsx files

Loading
library("readxl")
xls files
my_data <- read_excel("my_file.xls")
xlsx files
my_data <- read_excel("my_file.xlsx")

 It’s also possible to choose a file interactively using the function file.choose(), which I
recommend if you’re a beginner in R programming:

my_data <- read_excel(file.choose())

2. Specify sheet with a number or name

Specify sheet by its name
my_data <- read_excel("my_file.xlsx", sheet = "data")

Specify sheet by its index
my_data <- read_excel("my_file.xlsx", sheet = 2)

3. Case of missing values: NA (not available). If NAs are represented by something
(example: “—”) other than blank cells, set the na argument:

my_data <- read_excel("my_file.xlsx", na = "---")

Importing Excel files using xlsx package

The xlsx package, a java-based solution, is one of the powerful R packages to read, write and
format Excel files.

Prepared by Prof P N Rao, VEMU Institute of Technology, P Kothakota, CHITTOOR, A.P.

Installing and loading xlsx package

 Install

install.packages("xlsx")

 Load

library("xlsx")

Using xlsx package

There are two main functions in xlsx package for reading both xls and xlsx Excel files:
read.xlsx() and read.xlsx2() [faster on big files compared to read.xlsx function].

The simplified formats are:

read.xlsx(file, sheetIndex, header=TRUE)
read.xlsx2(file, sheetIndex, header=TRUE)

 file: file path
 sheetIndex: the index of the sheet to be read
 header: a logical value. If TRUE, the first row is used as column names.

Example of usage:

library("xlsx")
my_data <- read.xlsx(file.choose(), 1) # read first sheet

