ENGINEERING DRAWING

 (20A03101T)Mr. P. KUMAR., M.Tech., (Ph.D)
Assistant Professor
Department of Mechanical Engineering VEMU Institute of Technology

UNIT-1

ENGINEERING CURVES

Part- I \{Conic Sections\}

ELLIPSE
1.Concentric Circle Method
2.Rectangle Method
3.Oblong Method
4.Arcs of Circle Method
5.Rhombus Metho
6.Basic Locus Method
(Directrix - focus)

PARABOLA

1.Rectangle Method

2 Method of Tangents (Triangle Method)
3.Basic Locus Method
(Directrix - focus)

HYPERBOLA

1.Rectangular Hyperbola (coordinates given)

2 Rectangular Hyperbola (P-V diagram - Equation given)
3.Basic Locus Method
(Directrix - focus)

Methods of Drawing Tangents \& Normals
To These Curves.

ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SECTIONS BECAUSE

THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOME TYPICAL CUTTING PLANES.

COMMON DEFINATION OF ELLIPSE, PARABOLA \& HYPERBOLA:

These are the loci of points moving in a plane such that the ratio of it's distances
from a fixed point And a fixed line always remains constant.
The Ratio is called ECCENTRICITY. (E)
A) For Ellipse $\quad \mathbf{E}<1$
B) For Parabola $\mathrm{E}=1$
C) For Hyperbola $\mathbf{E}>1$

Refer Problem nos. 6. 9 \& 12

SECOND DEFINATION OF AN ELLIPSE:-

It is a locus of a point moving in a plane such that the SUM of it's distances from TWO fixed points always remains constant.
\{And this sum equals to the length of major axis.\}
These TWO fixed points are FOCUS $1 \&$ FOCUS 2
Refer Problem no. 4
Ellipse by Arcs of Circles Method.

Problem 1 :-

Draw ellipse by concentric circle method.

Take major axis 100 mm and minor axis 70 mm long.

Steps:

1. Draw both axes as perpendicular bisectors of each other \& name their ends as shown.
2. Taking their intersecting point as a center, draw two concentric circles considering both as respective diameters.
3. Divide both circles in 12 equal parts \& name as shown.
4. From all points of outer circle draw vertical lines downwards and upwards respectively.
5.From all points of inner circle draw horizontal lines to intersect those vertical lines.
5. Mark all intersecting points properly as those are the points on ellipse.
6. Join all these points along with the ends of both axes in smooth possible curve. It is required ellipse.

Steps:

1 Draw a rectangle taking major and minor axes as sides.
2. In this rectangle draw both axes as perpendicular bisectors of each other..
3. For construction, select upper left part of rectangle. Divide vertical small side and horizontal long side into same number of equal parts.(here divided in four parts)
4. Name those as shown..
5. Now join all vertical points $1,2,3,4$, to the upper end of minor axis. And all horizontal points i.e. $1,2,3,4$ to the lower end of minor axis.
6. Then extend C-1 line upto D-1 and mark that point. Similarly extend C-2, C-3, C-4 lines up to D-2, D-3, \& D-4 lines.
7. Mark all these points properly and join all along with ends A and D in smooth possible curve. Do similar construction in right side part.along with lower half of the rectangle.Join all points in smooth curve.
It is required ellipse.

Problem 3:-

Draw ellipse by Oblong method.
Draw a parallelogram of 100 mm and 70 mm long sides with included angle of 75°.Inscribe Ellipse in it.

STEPS ARE SIMILAR TO
THE PREVIOUS CASE
(RECTANGLE METHOD)
ONLY IN PLACE OF RECTANGLE,
HERE IS A PARALLELOGRAM.

PROBLEM 4.

MAJOR AXIS AB \& MINOR AXIS CD ARE 100 AMD 70MM LONG RESPECTIVELY .DRAW ELLIPSE BY ARCS OF CIRLES METHOD.

STEPS:

1.Draw both axes as usual.Name the ends \& intersecting point
2.Taking AO distance I.e.half major axis, from C , mark $\mathrm{F}_{1} \& \mathrm{~F}_{2} \mathrm{On} \mathrm{AB}$ (focus 1 and 2.)
3.On line $\mathrm{F}_{1}-\mathrm{O}$ taking any distance, mark points $1,2,3, \& 4$
4.Taking F_{1} center, with distance $\mathrm{A}-1$ draw an arc above AB and taking F_{2} center, with $\mathrm{B}-1$ distance cut this arc. Name the point p_{1}
5.Repeat this step with same centers but taking now A-2 \& B-2 distances for drawing arcs. Name the point p_{2}
6.Similarly get all other P points.

With same steps positions of P can be located below AB.
7.Join all points by smooth curve to get an ellipse/

ELLIPSE
BY ARCS OF CIRCLE METHOD

As per the definition Ellipse is locus of point P moving in a plane such that the SUM of it's distances from two fixed points $\left(F_{1} \& F_{2}\right)$ remains constant and equals to the length of major axis AB.(Note A.1+ B.1=A. 2 + B. 2 = AB)

PROBLEM 5.
DRAW RHOMBUS OF $100 \mathrm{MM} \& 70 \mathrm{MM}$ LONG
ELLIPSE DIAGONALS AND INSCRIBE AN ELLIPSE IN IT.

STEPS:

1. Draw rhombus of given dimensions.
2. Mark mid points of all sides \& name Those A,B,C,\& D
3. Join these points to the ends of smaller diagonals.
4. Mark points $1,2,3,4$ as four centers.
5. Taking 1 as center and 1-A radius draw an arc AB .
6. Take 2 as center draw an arc CD.
7. Similarly taking $3 \& 4$ as centers and 3-D radius draw arcs DA \& BC

PROBLEM 6:- POINT F IS 50 MM FROM A LINE AB.A POINT P IS MOVING IN A PLANE SUCH THAT THE RATIO OF IT'S DISTANCES FROM F AND LINE AB REMAINS CONSTANT AND EQUALS TO $2 / 3$ DRAW LOCUS OF POINT P. $\{$ ECCENTRICITY $=2 / 3\}$

ELLIPSE

DIRECTRIX-FOCUS METHOD

STEPS:

1.Draw a vertical line AB and point F 50 mm from it.
2 . Divide 50 mm distance in 5 parts.
3 .Name $2^{\text {nd }}$ part from F as V. It is 20 mm and 30 mm from F and AB line resp. It is first point giving ratio of it's distances from F and AB 2/3 i.e 20/30
4 Form more points giving same ratio such as $30 / 45,40 / 60,50 / 75$ etc.
5.Taking 45,60 and 75 mm distances from line $A B$, draw three vertical lines to the right side of it.
6. Now with 30,40 and 50 mm distances in compass cut these lines above and below, with F as center.
7. Join these points through V in smooth curve.
This is required locus of P.It is an ELLIPSE.

ELLIPSE

PROBLEM 7: A BALL THROWN IN AIR ATTAINS 100 M HIEGHT AND COVERS HORIZONTAL DISTANCE 150 M ON GROUND.

Draw the path of the ball (projectile)-

STEPS:

1.Draw rectangle of above size and divide it in two equal vertical parts 2.Consider left part for construction. Divide height and length in equal number of parts and name those $1,2,3,4,5 \& 6$
3. Join vertical $1,2,3,4,5 \& 6$ to the top center of rectangle
4.Similarly draw upward vertical lines from horizontal1,2,3,4,5 And wherever these lines intersect previously drawn inclined lines in sequence Mark those points and further join in smooth possible curve. 5.Repeat the construction on right side rectangle also.Join all in sequence. This locus is Parabola.

Draw a parabola by tangent method given base 7.5 m and axis 4.5 m
Take scale $1 \mathrm{~cm}=0.5 \mathrm{~m}$

PROBLEM 9: Point F is 50 mm from a vertical straight line AB .
Draw locus of point P , moving in a plane such that it always remains equidistant from point F and line AB .

SOLUTION STEPS:

1.Locate center of line, perpendicular to AB from point F . This will be initial point P and also the vertex.
2.Mark 5 mm distance to its right side, name those points $1,2,3,4$ and from those
draw lines parallel to AB .
3.Mark 5 mm distance to its left of P and name it 1 .
4.Take $\mathrm{O}-1$ distance as radius and F as center draw an arc
cutting first parallel line to AB . Name upper point P_{1} and lower point P_{2}.

$$
\left(\mathrm{FP}_{1}=\mathrm{O} 1\right)
$$

5.Similarly repeat this process by taking again 5 mm to right and left and locate $\mathrm{P}_{3} \mathrm{P}_{4}$.
6. Join all these points in smooth curve.

It will be the locus of P equidistance from line $A B$ and fixed point F.

Problem No.10: Point P is 40 mm and 30 mm from horizontal and vertical axes respectively.Draw Hyperbola through it.

Solution Steps:

1) Extend horizontal line from P to right side.
2) Extend vertical line from P upward.
3) On horizontal line from P, mark some points taking any distance and name them after $\mathrm{P}-1$, 2,3,4 etc.
4) Join 1-2-3-4 points to pole O . Let them cut part [P-B] also at 1,2,3,4 points.
5) From horizontal 1,2,3,4 draw vertical lines downwards and 6) From vertical $1,2,3,4$ points [from P-B] draw horizontal lines.
6) Line from 1 horizontal and line from 1 vertical will meet at P_{1}.Similarly mark $\mathrm{P}_{2}, \mathrm{P}_{3}$, P_{4} points.
7) Repeat the procedure by marking four points on upward vertical line
 from P and joining all those to pole O. Name this points $\mathrm{P}_{6}, \mathrm{P}_{7}, \mathrm{P}_{8}$ etc. and join them by smooth curve.

Problem no.11: A sample of gas is expanded in a cylinder from 10 unit pressure to 1 unit pressure. Expansion follows law $\mathrm{PV}=$ Constant. If initial volume being 1 unit, draw the curve of expansion. Also Name the curve.

Form a table giving few more values of $\mathbf{P} \& \mathrm{~V}$

$\mathrm{P} \times \mathrm{V}=\mathrm{C}$
$10 \times 1=10$
$5 \times 2=10$
$4 \times 2.5=10$
$2.5 \times 4=10$
$2 \times 5=10$
$1 \times 10=10$

Now draw a Graph of Pressure against Volume. It is a PV Diagram and it is Hyperbola.
Take pressure on vertical axis and Volume on horizontal axis.

PROBLEM 12:- POINT F IS 50 MM FROM A LINE AB.A POINT P IS MOVING IN A PLANE SUCH THAT THE RATIO OF IT'S DISTANCES FROM F AND LINE AB REMAINS CONSTANT AND EQUALS TO $2 / 3$ DRAW LOCUS OF POINT P. $\{$ ECCENTRICITY $=2 / 3\}$

HYPERBOLA DIRECTRIX FOCUS METHOD

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

1. JOIN POINT Q TO $F_{1} \& F_{2}$

2. BISECT ANGLE $F_{1} Q F_{2}$ THE ANGLE BISECTOR IS NORMAL
3. A PERPENDICULAR LINE DRAWN TO IT IS TANGENT TO THE CURVE.

Problem 14:

ELㄴIPSE

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)
1.JOIN POINT Q TO F.
2.CONSTRUCT 900 ANGLE WITH
THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX AT T
4. JOIN THIS POINT TO Q AND EXTEND. THIS IS TANGENT TO ELLIPSE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.

Problem 15:

PARABOLA

TANGENT \& NORMAL

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

```
1.JOIN POINT Q TO F.
2.CONSTRUCT 90
    THIS LINE AT POINT F
3.EXTEND THE LINE TO MEET DIRECTRIX
    AT T
4. JOIN THIS POINT TO Q AND EXTEND. THIS IS
    TANGENT TO THE CURVE FROM Q
5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.
```


Problem 16

TO DRAW TANGENT \& NORMAL TO THE CURVE FROM A GIVEN POINT (Q)

1.JOIN POINT Q TO F.
 2.CONSTRUCT 90° ANGLE WITH THIS LINE AT POINT F
 3.EXTEND THE LINE TO MEET DIRECTRIX AT T 4. JOIN THIS POINT TO Q AND EXTEND. THIS IS TANGENT TO CURVE FROM Q 5.TO THIS TANGENT DRAW PERPENDICULAR LINE FROM Q. IT IS NORMAL TO CURVE.

ENGINEERING CURVES Part-II

(Point undergoing two types of displacements)

INVOLUTE

1. Involute of a circle
a)String Length $=\pi \mathrm{D}$
b)String Length $>\pi \mathrm{D}$
c)String Length $<\pi \mathrm{D}$
2. Pole having Composite shape.
3. Rod Rolling over a Semicircular Pole.

CYCLOID

1. General Cycloid
2. Trochoid (superior)
3. Trochoid
(Inferior)
4. Epi-Cycloid
5. Hypo-Cycloid

SPIRAL

1. Spiral of One Convolution.
2. Spiral of Two Convolutions. HELIX
3. On Cylinder
4. On a Cone

AND Methods of Drawing
Tangents \& Normals To These Curves.

DEFINITIONS

CYCLOID:

IT IS A LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE WHICH ROLLS ON A STRAIGHT LINE PATH.

INVOLUTE:

IT IS A LOCUS OF A FREE END OF A STRING WHEN IT IS WOUND ROUND A CIRCULAR POLE

SP|RALE

IT IS A CURVE GENERATED BY A POINT WHICH REVOLVES AROUND A FIXED POINT AND AT THE SAME MOVES TOWARDS IT.

SUPERIORTROCHOID: IF THE POINT IN THE DEFINATION OF CYCLOID IS OUTSIDE THE CIRCLE

INFERIOR TROCHOID.: IF IT IS INSIDE THE CIRCLE

EPI-CYCLOID
IF THE CIRCLE IS ROLLING ON ANOTHER CIRCLE FROM OUTSIDE

HYPO-CYCLOID.
IF THE CIRCLE IS ROLLING FROM INSIDE THE OTHER CIRCLE,

HELIX:

IT IS A CURVE GENERATED BY A POINT WHICH MOVES AROUND THE SURFACE OF A RIGHT CIRCULAR CYLINDER / CONE AND AT THE SAME TIME ADVANCES IN AXIAL DIRECTION AT A SPEED BEARING A CONSTANT RATIO TO THE SPPED OF ROTATION.
(for problems refer topic Development of surfaces)

Problem: Draw involute of an equilateral triangle of 35 mm sides.

Problem: Draw involute of a square of 25 mm sides

Problem no 17: Draw Involute of a circle.

String length is equal to the circumference of circle.

Solution Steps:

1) Point or end P of string $A P$ is exactly πD distance away from A. Means if this string is wound round the circle, it will completely cover given circle. B will meet A after winding.
2) Divide $\pi \mathrm{D}$ (AP) distance into 8 number of equal parts.
3) Divide circle also into 8 number of equal parts.
4) Name after A, 1, 2, 3, 4, etc. up to 8 on $\pi \mathrm{D}$ line AP as well as on circle (in anticlockwise direction). 5) To radius $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3$ up to $\mathrm{C}-8$ draw tangents (from 1,2,3,4,etc to circle).
5) Take distance 1 to P in compass and mark it on tangent from point 1 on circle (means one division less than distance AP).
6) Name this point P1
7) Take 2-P distance in compass and mark it on the tangent from point 2. Name it point P2.
8) Similarly take 3 to $P, 4$ to $P, 5$ to P up to 7 to P distance in compass and mark on respective tangents and locate P3, P4, P5 up to P8 (i.e. A) points and join them in smooth curve it is an INVOLUTE of a given
 circle.

Problem 18: Draw Involute of a circle.

Solution Steps:

In this case string length is more than Π D.

But remember!

Whatever may be the length of string, mark Π D distance horizontal i.e.along the string and divide it in 8 number of equal parts, and not any other distance. Rest all steps are same as previous INVOLUTE. Draw the curve completely.

Problem 19: Draw Involute of a circle.

INVOLUTE OF A CIRCLE

String length is LESS than the circumference of circle.
String length LESS than $\pi \mathrm{D}$

Solution Steps:

In this case string length is Less than П D.

But remember!
Whatever may be the length of string, mark П D distance horizontal i.e.along the string and divide it in 8 number of equal parts, and not any other distance. Rest all steps are same as previous INVOLUTE. Draw the curve completely.

PROBLEM 21 : Rod AB 85 mm long rolls over a semicircular pole without slipping from it's initially vertical position till it becomes up-side-down vertical.
Draw locus of both ends A \& B.

Solution Steps?

If you have studied previous problems properly, you can surely solve this also. Simply remember that this being a rod,
it will roll over the surface of pole. Means when one end is approaching, other end will move away from poll. OBSERVE ILLUSTRATION CAREFULLY!

Problem 22: Draw locus of a point on the periphery of a circle which rolls on straight line path. Take circle diameter as 50 mm . Draw normal and tangent on the curve at a point $\mathbf{4 0} \mathbf{~ m m}$ above the directing line.

Solution Steps:

1) From center C draw a horizontal line equal to πD distance.
2) Divide πD distance into 12 number of equal parts and name them C_{1}, C_{2}, C_{3} _ etc.
3) Divide the circle also into 12 number of equal parts and in anticlockwise direction, after P name $1,2,3$ up to 12 .
4) From all these points on circle draw horizontal lines. (parallel to locus of C)
5) With a fixed distance $C-P$ in compass, C_{1} as center, mark a point on horizontal line from 1. Name it P.
6) Repeat this procedure from $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ up to C_{12} as centers. Mark points $\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}$ up to P_{12} on the horizontal lines drawn from 1,2, 3, 4, 5, 6, 7 respectively.
7) Join all these points by curve. It is Cycloid.

PROBLEM 25: DRAW LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE WHICH ROLLS ON A CURVED PATH. Take diameter of rolling Circle $\mathbf{5 0} \mathbf{~ m m}$ And radius of directing circle i.e. curved path, $\mathbf{7 5} \mathbf{~ m m}$.

Solution Steps:

1) When smaller circle will roll on larger circle for one revolution it will cover $\pi \mathrm{D}$ distance on arc and it will be decided by included arc angle θ.
2) Calculate θ by formula $\theta=(r / R)$ $\times 3600$.
3) Construct angle θ with radius OC and draw an arc by taking O as center OC as radius and form sector of angle θ.
4) Divide this sector into 12 number of equal angular parts. And from C onward name them C_{1}, C_{2}, C_{3} up to C_{12}.
5) Divide smaller circle (Generating circle) also in 12 number of equal parts. And next to P in anticlockwise direction name those $1,2,3$, up to 12.
6) With O as center, $\mathrm{O}-1$ as radius draw an arc in the sector. Take 0-2, $0-3,0-4,0-5$ up to $0-12$ distances with center O , draw all concentric arcs in sector. Take fixed distance CP in compass, C_{1} center, cut arc of 1 at P_{1}.
Repeat procedure and locate $\mathrm{P}_{2}, \mathrm{P}_{3}$, $\mathrm{P}_{4}, \mathrm{P}_{5}$ unto P_{12} (as in cycloid) and join them by smooth curve. This is EPI - CYCLOID.

PROBLEM 26: DRAW LOCUS OF A POINT ON THE PERIPHERY OF A CIRCLE WHICH ROLLS FROM THE INSIDE OF A CURVED PATH. Take diameter of rolling circle 50 mm and radius of directing circle (curved path) 75 mm .

Solution Steps:

1) Smaller circle is rolling here, inside the larger circle. It has to rotate anticlockwise to move ahead.
2) Same steps should be taken as in case of EPI CYCLOID. Only change is in numbering direction of 12 number of equal parts on the smaller circle.
3) From next to P in clockwise direction, name $1,2,3,4,5,6,7,8,9,10,11,12$ 4) Further all steps are that of epi - cycloid. This is called HYPO - CYCLOID.

$\mathrm{OP}=$ Radius of directing circle $=75 \mathrm{~mm}$ $\mathrm{PC}=$ Radius of generating circle $=25 \mathrm{~mm}$ $\theta=r / R \times 360^{\circ}=25 / 75 \times 360^{\circ}=120^{\circ}$

IMPORTANT APPROACH FOR CONSTRUCTION! FIND TOTAL ANGULAR AND TOTAL LINEAR DISPLACEMENT AND DIVIDE BOTH IN TO SAME NUMBER OF EQUAL PARTS.

Solution Steps

1. With PO radius draw a circle and divide it in EIGHT parts. Name those $1,2,3,4$, etc. up to 8
2 . Similarly divided line PO also in EIGHT parts and name those $1,2,3,--$ as shown.
2. Take o-1 distance from op line and draw an arc up to O 1 radius vector. Name the point P_{1}
3. Similarly mark points $\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$ up to P_{8}
And join those in a smooth curve. It is a SPIRAL of one convolution.

Problem 28

Point P is 80 mm from point O . It starts moving towards O and reaches it in two revolutions around.it Draw locus of point P (To draw a Spiral of TWO convolutions).

IMPORTANT APPROACH FOR CONSTRUCTION! FIND TOTAL ANGULAR AND TOTAL LINEAR DISPLACEMENT AND DIVIDE BOTH IN TO SAME NUMBER OF EQUAL PARTS.
 IMPORTANT APPROACH FOR CONSTRUCTION! FIND TOTAL ANGULAR AND TOTAL LINEAR DISPLACEMENT AND DIVIDE BOTH IN TO SAME NUMBER OF EQUAL PARTS.
 IMPORTANT APPROACH FOR CONSTRUCTION! FIND TOTAL ANGULAR AND TOTAL LINEAR DISPLACEMENT AND DIVIDE BOTH IN TO SAME NUMBER OF EQUAL PARTS.

\square

STEPS:
DRAW INVOLUTE AS USUAL.
MARK POINT Q ON IT AS DIRECTED.
JOIN Q TO THE CENTER OF CIRCLE C. CONSIDERING CQ DIAMETER, DRAW A SEMICIRCLE AS SHOWN.

MARK POINT OF INTERSECTION OF THIS SEMICIRCLE AND POLE CIRCLE AND JOIN IT TO Q.

THIS WILL BE NORMAL TO INVOLUTE.
DRAW A LINE AT RIGHT ANGLE TO THIS LINE FROM Q.

IT WILL BE TANGENT TO INVOLUTE.

STEPS:

DRAW CYCLOID AS USUAL. MARK POINT Q ON IT AS DIRECTED.

WITH CP DISTANCE, FROM Q. CUT THE POINT ON LOCUS OF C AND JOIN IT TO Q.

FROM THIS POINT DROP A PERPENDICULAR

JOIN N WITH Q.THIS WILL BE NORMAL TO CYCLOID.

DRAW A LINE AT RIGHT ANGLE TO THIS LINE FROM Q.

IT WILL BE TANGENT TO CYCLOID.

SPIRAL (ONE CONVOLUSION.)

 Spiral.

Method of Drawing

 Tangent \& Normal

STEPS:

*DRAW SPIRAL AS USUAL.
DRAW A SMALL CIRCLE OF RADIUS EQUAL TO THE CONSTANT OF CURVE CALCULATED ABOVE.

* LOCATE POINT Q AS DISCRIBED IN PROBLEM AND THROUGH IT DRAW A TANGENTTO THIS SMALLER CIRCLE.THIS IS A NORMAL TO THE SPIRAL.
*DRAW A LINE AT RIGHT ANGLE
*TO THIS LINE FROM Q.
IT WILL BE TANGENT TO CYCLOID.

Basic Locus Cases:

PROBLEM 1.: Point F is 50 mm from a vertical straight line $A B$.
Draw locus of point P , moving in a plane such that it always remains equidistant from point F and line AB .

SOLUTION STEPS:

1.Locate center of line, perpendicular to AB from point F . This will be initial point P.
2. Mark 5 mm distance to its right side, name those points $1,2,3,4$ and from those draw lines parallel to AB .
3.Mark 5 mm distance to its left of P and name it 1.
4.Take F-1 distance as radius and F as center draw an arc cutting first parallel line to AB . Name upper point P_{1} and lower point P_{2}.
5.Similarly repeat this process by taking again 5 mm to right and left and locate $\mathrm{P}_{3} \mathrm{P}_{4}$.
6.Join all these points in smooth curve.

It will be the locus of P equidistance from line $A B$ and fixed point F.

Problem 5:-Two points A and B are 100 mm apart.
There is a point P , moving in a plane such that the difference of it's distances from A and B always remains constant and equals to 40 mm .
Draw locus of point P.

Solution Steps:

1. Locate A \& B points 100 mm apart. 2.Locate point P on AB line, 70 mm from A and 30 mm from B As $\mathrm{PA}-\mathrm{PB}=40(\mathrm{AB}=100 \mathrm{~mm})$ 3.On both sides of P mark points 5 mm apart. Name those $1,2,3,4$ as usual. 4.Now similar to steps of Problem 2, Draw different arcs taking A \& B centers and A-1, B-1, A-2, B-2 etc as radius.
2. Mark various positions of p i.e. and join them in smooth possible curve.
It will be locus of \mathbf{P}

Problem No.7:

A Link $\mathbf{O A}, 80 \mathrm{~mm}$ long oscillates around \mathbf{O}, 60° to right side and returns to it's initial vertical Position with uniform velocity.Mean while point \mathbf{P} initially on \mathbf{O} starts sliding downwards and reaches end \mathbf{A} with uniform velocity.
Draw locus of point \mathbf{P}

Solution Steps:

Point P-Reaches End A (Downwards)

1) Divide OA in EIGHT equal parts and from O to A after O name 1, 2, 3, 4 up to 8 . (i.e. up to point A).
2) Divide 60° angle into four parts (15° each) and mark each point by $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$ and for return $\mathrm{A}_{5}, \mathrm{~A}_{6}, \mathrm{~A}_{7}$ and A_{8}. (Initial A point).
3) Take center O, distance in compass $\mathrm{O}-1$ draw an arc upto OA_{1}. Name this point as P_{1}.
4) Similarly O center $O-2$ distance mark P_{2} on line $O-A_{2}$.
5) This way locate $P_{3}, P_{4}, P_{5}, P_{6}, P_{7}$ and P_{8} and join them. (It will be thw desired locus of P)

Problem No 8:

A Link $\mathbf{O A}, 80 \mathrm{~mm}$ long oscillates around \mathbf{O}, 60^{0} to right side, 120° to left and returns to it's initial vertical Position with uniform velocity.Mean while point \mathbf{P} initially on \mathbf{O} starts sliding downwards, reaches end \mathbf{A} and returns to \mathbf{O} again with uniform velocity. Draw locus of point \mathbf{P}

Solution Steps:

(P reaches A i.e. moving downwards. \& returns to O again i.e.moves upwards) 1.Here distance traveled by point P is PA.plus AP.Hence divide it into eight equal parts.(so total linear displacement gets divided in 16 parts) Name those as shown.
2. Link OA goes 60° to right, comes back to original (Vertical) position, goes 60° to left and returns to original vertical position. Hence total angular displacement is 240°.
Divide this also in 16 parts. (15^{0} each.) Name as per previous problem.(A, $\mathrm{A}_{1} \mathrm{~A}_{2}$ etc) 3. Mark different positions of P as per the procedure adopted in previous case. and complete the problem.

Problem 9:

Rod AB, 100 mm long, revolves in clockwise direction for one revolution.
Meanwhile point P , initially on A starts moving towards B and reaches B.
Draw locus of point P .

1) $A B$ Rod revolves around center O for one revolution and point P slides along $A B$ rod and reaches end B in one revolution.
2) Divide circle in 8 number of equal parts and name in arrow direction after A-A1, A2, A3, up to A8.
3) Distance traveled by point P is $A B \mathrm{~mm}$. Divide this also into 8 number of equal parts.
4) Initially P is on end A. When A moves to A1, point P goes one linear division (part) away from A1. Mark it from A1 and name the point P1.
5) When A moves to A2, P will be two parts away from A2
(Name it P2). Mark it as above from A2.
6) From A3 mark P3 three parts away from P3.
7) Similarly locate P4, P5, P6, P7 and P8 which will be eight parts away from A8. [Means P has reached $B]$.
8) Join all P points by smooth
 curve. It will be locus of P

Problem 10 :
Rod $\mathrm{AB}, 100 \mathrm{~mm}$ long, revolves in clockwise direction for one revolution.
Meanwhile point P, initially on A starts moving towards B, reaches B
And returns to A in one revolution of rod.
Draw locus of point P .

Solution Steps

1) $A B$ Rod revolves around center O for one revolution and point P slides along rod $A B$ reaches end B and returns to A.
2) Divide circle in 8 number of equal parts and name in arrow direction after A-A1, A2, A3, up to A8.
3) Distance traveled by point P is $A B$ plus AB mm. Divide AB in 4 parts so those will be 8 equal parts on return.
4) Initially P is on end A. When A moves to $A 1$, point P goes one linear division (part) away from A1. Mark it from A1 and name the point P1.
5) When A moves to $A 2, P$ will be two parts away from A2 (Name it P2). Mark it as above from A2.
6) From A3 mark P3 three parts away from P3.
7) Similarly locate P4, P5, P6, P7 and $P 8$ which will be eight parts away from A8. [Means P has reached B].
8) Join all P points by smooth curve. It will be locus of P
The Locus will follow the loop
 path two times in one revolution.

UNIT-2

ORTHOGRAPHIC PROJECTIONS \{ MACHINE ELEMENTS \}

OBJECT IS OBSERVED IN THREE DIRECTIONS.

 THE DIRECTIONS SHOULD BE NORMAL TO THE RESPECTIVE PLANES.AND NOW PROJECT THREE DIFFERENT VIEWS ON THOSE PLANES. THESE VEWS ARE FRONT VIEW, TOP VIEW AND SIDE VIEW.

FRONT VIEW IS A VIEW PROJECTED ON VERTICAL PLANE (VP) TOP VIEW IS A VIEW PROJECTED ON HORIZONTAL PLANE (HP) SIDE VIEW IS A VIEW PROJECTED ON PROFILE PLANE (PP)

FIRST STUDY THE CONCEPT OF 1 ST AND 3RD ANGLE PROJECTION METHODS

AND THEN STUDY NEXT 26 ILLUSTRATED CASES CAREFULLY. TRY TO RECOGNIZE SURFACES PERPENDICULAR TO THE ARROW DIRECTIONS

FIRST ANGLE PROJECTION

IN THIS METHOD,
THE OBJECT IS ASSUMED TO BE SITUATED IN FIRST QUADRANT MEANS

ABOVE HP \& INFRONT OF VP.

OBJECT IS INBETWEEN OBSERVER \& PLANE.

ACTUAL PATTERN OF PLANES \& VIEWS

IN
FIRST ANGLE METHOD OF PROJECTIONS

THIRD ANGLE PROJECTION

IN THIS METHOD,
THE OBJECT IS ASSUMED TO BE SITUATED IN THIRD QUADRANT (BELOW HP \& BEHIND OF VP.)

PLANES BEING TRANSPERENT

 AND INBETWEEN OBSERVER \& OBJECT.

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROJECTIONMETHODCom

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT BY FIRST ANGLE PROJECTION METHOD

PICTORIAL PRESENTATION IS GIVEN

DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROJECTIONMETHOD

DRAW THREE VIEWS OF THIS OBJECT
 BY FIRST ANGLE PROJECTION METHOD ${ }_{\text {id.com }}$

FOR TV.

PICTORIAL PRESENTATION IS GIVEN
DRAW THREE VIEWS OF THIS OBJECT
BY FIRST ANGLE PROJECTION METHOD

ORTHOGRAPHIC PROJECTIONS OF POINTS, LINES, PLANES, AND SOLIDS.

TO DRAW PROJECTIONS OF ANY OBJECT, ONE MUST HAVE FOLLOWING INFORMATION

A) OBJECT
\{ WITH IT'S DESCRIPTION, WELL DEFINED.\}
B) OBSERVER
\{ ALWAYS OBSERVING PERPENDICULAR TO RESP. REF.PLANE\}.
C) LOCATION OF OBJECT,
\{ MEANS IT'S POSITION WITH REFFERENCE TO H.P. \& V.P.\}

Abstract

TERMS 'ABOVE' \& 'BELOW' WITH RESPECTIVE TO H.P. AND TERMS 'INFRONT' \& 'BEHIND' WITH RESPECTIVE TO V.P FORM 4 QUADRANTS. OBJECTS CAN BE PLACED IN ANY ONE OF THESE 4 QUADRANTS.

IT IS INTERESTING TO LEARN THE EFFECT ON THE POSITIONS OF VIEWS (FV, TV) F THE OBJECT WITH RESP. TO X-Y LINE, WHEN PLACED IN DIFFERENT QUADRANT STUDY ILLUSTRATIONS GIVEN ON HEXT PAGES AND NOTE THE RESULTS. TO MAKE IT EASY HERE A POINT A IS TAKEN AS AN OBJECT. BECAUSE IT'S ALL VIEWS ARE JUST POINTS.

NOTATIONS

FOLLOWING NOTATIONS SHOULD BE FOLLOWED WHILE NAMEING DIFFERENT VIEWS IN ORTHOGRAPHIC PROJECTIONS.

OBJECT	POINT A	LINE AB
IT'S TOP VIEW	a	$a b$
IT'S FRONT VIEW	a^{\prime}	$a^{\prime} b^{\prime}$
IT'S SIDE VIEW	$a^{\prime \prime}$	$a^{\prime \prime} b^{\prime \prime}$

SAME SYSTEM OF NOTATIONS SHOULD BE FOLLOWED INCASE NUMBERS, LIKE 1, 2, 3-ARE USED.

THIS QUADRANT PATTERN, IF OBSERVED ALONG X-Y LINE (IN RED ARROW DIRECTION) WILL EXACTLY APPEAR AS SHOWN ON RIGHT SIDE AND HENCE, IT IS FURTHER USED TO UNDERSTAND ILLUSTRATION PROPERLLY.

PROJECTIONS OF A POINT IN FIRST QUADRANT.

SIMPL= CASES OF THITHINE

1. A VERTICAL LINE (LINE PERPENDICULAR TO HP \& // TO VP)
2. LINE PARALLEL TO BOTH HP \& VP.
3. LINE INCLINED TO HP \& PARALLEL TO VP.
4. LINE INCLINED TO VP \& PARALLEL TO HP.
5. LINE INCLINED TO BOTH HP \& VP.

STUDY ILLUSTRATIONS GIVEN ON NEXT PAGE SHOWING CLEARLY THE NATURE OF FV \& TV OF LINES LISTED ABOVE AND NOTE RESULTS.

Orthographic Projections
Means Fv \& Tv of Line AB
are shown below,
with their apparent Inclinations $\alpha \& \beta$

Here TV (ab) is not // to XY line Hence it's corresponding FV
a'b' is not showing True Length \&
True Inclination with Hp.

Note the procedure
When Fv \& Tv known,
How to find True Length.
(Views are rotated to determine
True Length \& it's inclinations
with $H p$ \& $\vee p$).

In this sketch, TV is rotated and made // to XY line.
Hence it's corresponding
FV a' b_{1} 'Is showing
True Length \&
True Inclination with Hp .

Note the procedure
When True Length is known, How to locate Fv \& Tv. (Component a-1 of TL is drawn which is further rotated to determine Fv)

Here a-1 is component of $T L a b_{1}$ gives length of Fv.
Hence it is brought Up to Locus of a' and further rotated to get point b': a' b' will be Fv.
Similarly drawing component of other $\operatorname{TL}\left(a^{\prime} b_{1}{ }^{\prime}\right) T v$ can be drawn.

The most important diagram showing graphical relations among all important parameters of this topic. Study and memorize it as a CIRCUIT DIAGRAM And use in solving various problems.

1) True Length (TL) $-a^{\prime} b_{1}^{\prime} \& a b$
2) Angle of TL with Hp - θ
3) Angle of TL with $V p-\varnothing$
4) Angle of $F V$ with $x y-\alpha$
5) Angle of TV with $x y-\beta$
6) LTV (length of FV) - Component (a-1)
7) LFV (length of TV) - Component ($a^{\prime}-1^{\prime}$)
8) Position of A- Distances of a \& a' from $x y$
9) Position of B- Distances of $b \& b^{\prime}$ from $x y$
10) Distance between End Projectors

NOTE this

θ \& α Construct with a'
\varnothing \& β Construct with a
$b^{\prime} \& b_{1}^{\prime}$ on same locus.
b \& b_{1} on same locus.

Also Remember

True Length is never rotated. It's horizontal component is drawn \& it is further rotated to locate view.

[^0]
PROBLEM 1)

Line $A B$ is 75 mm long and it is 30° \& 40° Inclined to Hp \& Vp respectively. End A is 12 mm above Hp and 10 mm in front of $V p$.
Draw projections. Line is in $1^{\text {st }}$ quadrant.

SOLUTION STEPS:

1) Draw xy line and one projector.
2) Locate a' 12 mm above $x y$ line \& a 10 mm below $x y$ line.
3) Take 30° angle from $a^{\prime} \& 40^{\circ}$ from a and mark TLI.e. 75 mm on both lines. Name those points b_{1} and b_{1} respectively.
4) Join both points with a' and a resp.
5) Draw horizontal lines (Locus) from both points.
6) Draw horizontal component of TL $a b_{1}$ from point b_{1} and name it 1 .
(the length a-1 gives length of Fv as we have seen already.)
7) Extend it up to locus of a and rotating a' as center locate b' as shown. Join $a^{\prime} b^{\prime}$ as Fv.
8) From b' drop a projector down ward \& get point b. Join a \& b I.e. Tv.

GROUP (A)
GENERAL CASES OF THE LINE INCLINED TO BOTH HP \& VP (based on 10 parameters).

PROBLEM 2:

Line AB 75 mm long makes 45° inclination with Vp while it's Fv makes 55°. End A is 10 mm above Hp and 15 mm in front of $V p$.If line is in $1^{\text {st }}$ quadrant draw it's projections and find it's inclination with Hp.

Solution Steps:-

1.Draw $x-y$ line.
2.Draw one projector for a' \& a
3.Locate a' 10 mm above x-y \&

Tv a 15 mm below $x y$.
4.Draw a line 45° inclined to $x y$ from point a and cut TL 75 mm on it and name that point b_{1} Draw locus from point b_{1}
5. Take 55° angle from a' for Fv above xy line.
6. Draw a vertical line from b_{1} up to locus of a and name it 1. It is horizontal component of TL \& is LFV.
7. Continue it to locus of a' and rotate upward up to the line of Fv and name it b^{\prime}.This $a^{\prime} b$ line is Fv.
8. Drop a projector from b' on locus from point b_{1} and name intersecting point b. Line $a b$ is Tv of line AB.
9. Draw locus from b ' and from a^{\prime} with TL distance cut point $b_{1}{ }^{\text {' }}$
10. Join $a^{\prime} b_{1}^{\prime}$ as TL and measure it's angle at a '.
It will be true angle of line with HP.

PROBLEM 3:

Fv of line $A B$ is 50° inclined to $x y$ and measures 55 mm long while it's Tv is 60° inclined to xy line. If end A is 10 mm above Hp and 15 mm in front of Vp , draw it's projections,find TL, inclinations of line with $\mathrm{Hp} \& \mathrm{~V}$.

SOLUTION STEPS:

1.Draw xy line and one projector.
2. Locate a' 10 mm above xy and a 15 mm below xy line.
3. Draw locus from these points.
4. Draw $\mathrm{Fv} 50^{\circ}$ to xy from a' and mark b' Cutting 55 mm on it. 5. Similarly draw Tv 60° to xy from a \& drawing projector from b' Locate point b and join ab .
6. Then rotating views as shown, locate True Lengths a_{1} \& $a^{\prime} b_{1}^{\prime}$ and their angles with Hp and Vp .

PROBLEM 4 :-

Line $A B$ is 75 mm long. It's Fv and Tv measure $50 \mathrm{~mm} \& 60 \mathrm{~mm}$ long respectively. End A is 10 mm above Hp and 15 mm in front of Vp . Draw projections of line $A B$ if end B is in first quadrant. Find angle with $H p$ and $V p$.

SOLUTION STEPS:

1.Draw xy line and one projector. 2. Locate a' 10 mm above xy and a 15 mm below xy line.
3.Draw locus from these points.
4. Cut 60 mm distance on locus of a' \& mark 1^{\prime} on it as it is LTV.
5. Similarly Similarly cut 50 mm on locus of a and mark point 1 as it is LFV.
6.From 1' draw a vertical line upward and from a' taking TL (75 mm) in compass, mark b' ${ }_{1}$ point on it.
Join a' b' ${ }_{1}$ points.
7. Draw locus from b_{1}
8. With same steps below get b_{1} point and draw also locus from it.
9. Now rotating one of the components I.e. a-1 locate b' and join a' with it to get Fv.
10. Locate tv similarly and measure Angles θ \& Φ

PROBLEM 5 :-
T.V. of a 75 mm long Line CD, measures 50 mm .

End C is in Hp and 50 mm in front of $V p$.
End D is 15 mm in front of Vp and it is above Hp .
Draw projections of CD and find angles with Hp and ${ }^{d} \not \mathrm{p}$.
d_{1} LOCUS OF d'\& d' ${ }_{1}$

SOLUTION STEPS:

1.Draw xy line and one projector.
2. Locate c' on $x y$ and
c 50 mm below xy line.
3.Draw locus from these points.
4. Draw locus of d 15 mm below xy
5. Cut 50 mm \& 75 mm distances on locus of d from c and mark points $d \& d_{1}$ as these are Tv and line CD lengths resp.\& join both with c.
6. From d_{1} draw a vertical line upward up to $x y$ I.e. up to locus of c^{\prime} and draw an arc as shown.
7 Then draw one projector from d to meet this arc in d' point \& join $c^{\prime} d^{\prime}$
8. Draw locus of d' and cut 75 mm on it from c' as TL 9.Measure Angles θ \& Φ

PROBLEMS INVOLVING TRACES OF THE LINE.

TRACES OF THE LINE:-

THFSE ARETHE PONTSOF INTERSECTIONS OFA HNE (OR IT S EXTENSION) WTH RESPEGTVEREFPERENCE PLANES.

A LNEITSELFORIFS EXTENSION WHERE EVER TOUCHESH.R THAT POINT IS CAL LEDTRAGE OF THE LINE ONHH (IT IS CALLEDH.T.)

SIMILARY, A LINEITSELF ORITS EXTENSION, WHERE EVER TOUCHES V.P. THAT POINT IS CALEDTRACE OF HE LINE ON VP(IT S GALEDVI.)
V.T.:- It is a point on Vp.

Hence it is called Fv of a point in Vp.
Hence it's Tv comes on XY line. (Here onward named as V)
H.T.:- It is a point on Hp .

Hence it is called $T v$ of a point in Hp .
Hence it's Fv comes on XY line.(Here onward named as 'h')

STEPS TO LOCATE HT. (WHEN PROJECTIONS ARE GIVEN.)
 1. Begin with FV. Extend FV up to XY line.
 2. Name this point h^{\prime} (as it is a Fv of a point in Hp)

3. Draw one projector from h '.
4. Now extend Tv to meet this projector. This point is HT

STEPS TO LOCATE VT. (WHEN PROJECTIONS ARE GIVEN.)

1. Begin with TV. Extend TV up to XY line.
2. Name this point \mathbf{V} (as it is a Tv of a point in Vp)
3. Draw one projector from \mathbf{v}.
4. Now extend Fv to meet this projector. This point is VT

PROBLEM 6:- Fv of line AB makes 45^{0} angle with XY line and measures 60 mm .
Line's Tv makes 30° with XY line. End A is 15 mm above Hp and it's VT is 10 mm below Hp. Draw projections of line AB, determine inclinations with Hp \& Vp and locate HT, VT.

SOLUTION STEPS:-
Draw xy line, one projector and locate fv a' 15 mm above xy . Take 45° angle from a' and marking 60 mm on it locate point b'.
 Draw locus of VT, 10 mm below xy \& extending Fv to this locus locate VT. as fv-h'-vt' lie on one st.line.
Draw projector from vt, locate von $x y$.
From v take 30° angle downward as
Tv and it's inclination can begin with v.
Draw projector from b' and locate b l.e.Tv point.
Now rotating views as usual TL and it's inclinations can be found.
Name extension of Fv, touching xy as h' and below it, on extension of Tv, locate HT.

PROBLEM 7 :

One end of line $A B$ is 10 mm above Hp and other end is 100 mm in-front of Vp .
It's Fv is 45° inclined to xy while it's HT \& VT are 45 mm and 30 mm below xy respectively.
Draw projections and find TL with it's inclinations with Hp \& VP.

SOLUTION STEPS:-
Draw xy line, one projector and locate a' 10 mm above xy .
Draw locus 100 mm below $x y$ for points $b \& b_{1}$ Draw loci for VT and HT, 30 mm \& 45 mm below xy respectively.
Take 45° angle from a' and extend that line backward to locate h ' and VT, \& Locate v on $x y$ above VT.
Locate HT below h' as shown.
Then join v-HT - and extend to get top view end b.
Draw projector upward and locate b' Make a b \& a'b' dark.
Now as usual rotating views find TL and it's inclinations.

PROBLEM 8 :- Projectors drawn from HT and VT of a line AB are 80 mm apart and those drawn from it's ends are 50 mm apart. End A is 10 mm above Hp , VT is 35 mm below Hp while it's HT is 45 mm in front of Vp . Draw projections, locate traces and find TL of line \& inclinations with Hp and Vp.

SOLUTION STEPS:-

1.Draw xy line and two projectors, 80 mm apart and locate HT \& VT, 35 mm below xy and 55 mm above xy respectively on these projectors. 2.Locate h ' and v on $x y$ as usual.
3.Now just like previous two problems, Extending certain lines complete Fv \& Tv And as usual find TL and it's inclinations.

Instead of considering a \& a' as projections of first point, if v \& $V T^{\prime}$ are considered as first point, then true inclinations of line with $H p$ \& Vp i.e. angles θ \& Φ can be constructed with points $V T^{\prime}$ \& V respectively.

Then from point $v \& H T$ angles β \& Φ can be drawn.

From point VT' \& h' angles α \& θ can be drawn.

THIS CONCEPT IS USED TO SOLVE NEXT THREE PROBLEMS.

PROBLEM 9 :-

Line AB 100 mm long is 30° and 45^{0} inclined to Hp \& Vp respectively.
End A is 10 mm above Hp and it's VT is 20 mm below Hp
.Draw projections of the line and it's HT.

SOLUTION STEPS:-

Draw xy, one projector and locate on it VT and V.
Draw locus of a' 10 mm above xy . Take 30° from VT and draw a line. Where it intersects with locus of a' name it a_{1} ' as it is TL of that part.
From $a_{1}{ }^{\prime}$ cut $100 \mathrm{~mm}(\mathrm{TL})$ on it and locate point $\mathrm{b}_{1}{ }^{\prime}$ Now from v take 45° and draw a line downwards \& Mark on it distance VT- a_{1} ' I.e.TL of extension \& name it a_{1} Extend this line by 100 mm and mark point b_{1}. Draw it's component on locus of VT^{\prime} \& further rotate to get other end of Fv i.e.b' Join it with VT' and mark intersection point (with locus of $\mathrm{a}_{1}{ }^{\prime}$) and name it a' Now as usual locate points a and b and h^{\prime} and HT.

PROBLEM 10 :-

A line AB is 75 mm long. It's Fv \& Tv make 45° and 60° inclinations with $\mathrm{X}-\mathrm{Y}$ line resp End A is 15 mm above Hp and VT is 20 mm below Xy line. Line is in first quadrant.
Draw projections, find inclinations with Hp \& Vp. Also locate HT.

SOLUTION STEPS:-

Similar to the previous only change is instead of line's inclinations, views inclinations are given. So first take those angles from VT \& v Properly, construct Fv \& Tv of extension, then determine it's TL($\left.V-\mathrm{a}_{1}\right)$ and on it's extension mark TL of line and proceed and complete it.

PROBLEM 11 :- The projectors drawn from VT \& end A of line AB are 40 mm apart. End A is 15 mm above Hp and 25 mm in front of Vp . VT of line is 20 mm below Hp . If line is 75 mm long, draw it's projections, find inclinations with HP \& Vp

Draw two projectors for VT \& end A Locate these points and then

YOU CAN COMPLETE IT.

CASES OF THE LINES IN A.V.P., A.I.P. \& PROFILE PLANE.

Line AB is in AIP as shown in above figure no 1.
It's FV ($a^{\prime} b^{\prime}$) is shown projected on Vp.(Looking in arrow direction)
Here one can clearly see that the
Inclination of AIP with HP = Inclination of FV with XY line

Line $A B$ is in AVP as shown in above figure no 2.
It's TV (a b) is shown projected on Hp.(Looking in arrow direction) Here one can clearly see that the Inclination of AVP with VP = Inclination of TV with XY line

LINE IN A PROFILE PLANE (MEANS IN A PLANE PERPENDICULAR TO BOTH HP \& VP)

1. TV \& FV both are vertical, hence arrive on one single projector.
2. It's Side View shows True Length (TL)
3. Sum of it's inclinations with HP \& VP equals to $90^{\circ}\left(\theta+\Phi=90^{\circ}\right)$
4. It's HT \& VT arrive on same projector and can be easily located From Side View.

PROBLEM 12 :- Line AB 80 mm long, makes 30° angle with Hp and lies in an Aux. Vertical Plane 45° inclined to Vp. End A is 15 mm above Hp and VT is 10 mm below X-y line. Draw projections, fine angle with Vp and Ht .

X

Simply consider inclination of AVP as inclination of TV of our line, well then?
You sure can complete it as previous problems! Go ahead!!

PROBLEM 13 :- A line AB, 75 mm long, has one end A in Vp. Other end B is 15 mm above Hp and 50 mm in front of Vp.Draw the projections of the line when sum of it's
Inclinations with HP \& Vp is 90°, means it is lying in a profile plane.
Find true angles with ref.planes and it's traces.

SOLUTION STEPS:-

After drawing xy line and one projector Locate top view of A I.e point a on xy as It is in Vp ,
Locate Fv of B i.e.b'15 mm above xy as it is above Hp.and Tv of B i.e. $\mathrm{b}, 50 \mathrm{~mm}$ below $x y$ asit is 50 mm in front of Vp Draw side view structure of Vp and Hp and locate S.V. of point B i.e. b" From this point cut 75 mm distance on Vp and Mark a" as A is in Vp. (This is also VT of line.) From this point draw locus to left \& get a' Extend SV up to Hp. It will be HT. As it is a Tv
 Rotate it and bring it on projector of b. Now as discussed earlier SV gives TL of line and at the same time on extension up to Hp \& Vp gives inclinations with those panes.

APPLICATIONS OF PRINCIPLES OF PROJECTIONS OF LINES IN SOLVING CASES OF DIFFERENT PRACTICAL SITUATIONS.

In these types of problems some situation in the field

> or
> some object will be described It's relation with Ground (HP)
> And
a Wall or some vertical object (VP) will be given.
Indirectly information regarding FV \& TV of some line or lines, inclined to both reference Planes will be given and
you are supposed to draw it's projections and
further to determine it's true Length and it's inclinations with ground.
Here various problems along with actual pictures of those situations are given
for you to understand those clearly.
Now looking for views in given ARROW directions, YOU are supposed to draw projections \& find answers, Off course you must visualize the situation properly.

CHECK YOUR ANSWERS WITH THE SOLUTIONS GIVEN IN THE END.
ALL THE BEST !!

PROBLEM 14:-Two objects, a flower (A) and an orange (B) are within a rectangular compound wall, whose P \& Q are walls meeting at 90°. Flower A is $1 \mathrm{M} \& 5.5 \mathrm{M}$ from walls P \& Q respectively. Orange B is 4 M \& 1.5 M from walls P \& Q respectively. Drawing projection, find distance between them If flower is 1.5 M and orange is 3.5 M above the ground. Consider suitable scale..

PROBLEM 15 :- Two mangos on a tree A \& B are 1.5 m and 3.00 m above ground and those are $1.2 \mathrm{~m} \& 1.5 \mathrm{~m}$ from a 0.3 m thick wall but on opposite sides of it.
If the distance measured between them along the ground and parallel to wall is 2.6 m , Then find real distance between them by drawing their projections.

PROBLEM $16:-\mathrm{oa}, \mathrm{ob} \& \mathrm{oc}$ are three lines, $25 \mathrm{~mm}, 45 \mathrm{~mm}$ and 65 mm long respectively.All equally inclined and the shortest is vertical.This fig. is TV of three rods OA, OB and OC whose ends $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ are on ground and end O is 100 mm above ground. Draw their projections and find length of each along with their angles with ground.

PROBLEM 17:- A pipe line from point A has a downward gradient $1: 5$ and it runs due East-South. Another Point B is 12 M from A and due East of A and in same level of A. Pipe line from B runs 20° Due East of South and meets pipe line from A at point C.
Draw projections and find length of pipe line from B and it's inclination with ground.

PROBLEM 18: A person observes two objects, $\mathrm{A} \& \mathrm{~B}$, on the ground, from a tower, 15 M high, At the angles of depression $30^{\circ} \& 45^{\circ}$. Object A is is due North-West direction of observer and object B is due West direction. Draw projections of situation and find distance of objects from observer and from tower also.

PROBLEM 19:-Guy ropes of two poles fixed at 4.5 m and 7.5 m above ground, are attached to a corner of a building 15 M high, make 300 and 450 inclinations with ground respectively.The poles are 10 M apart. Determine by drawing their projections, Length of each rope and distance of poles from building.

PROBLEM 20:- A tank of 4 M height is to be strengthened by four stay rods from each corner by fixing their other ends to the flooring, at a point 1.2 M and 0.7 M from two adjacent walls respectively, as shown. Determine graphically length and angle of each rod with flooring.

PROBLEM 21:- A horizontal wooden platform 2 M long and 1.5 M wide is supported by four chains from it's corners and chains are attached to a hook 5 M above the center of the platform.
Draw projections of the objects and determine length of each chain along with it's inclination with ground.

PROBLEM 22.

A room is of size $6.5 \mathrm{~mL}, 5 \mathrm{~m} \mathrm{D}, 3.5 \mathrm{~m}$ high.
An electric bulb hangs 1 m below the center of ceiling.
A switch is placed in one of the corners of the room, 1.5 m above the flooring. Draw the projections an determine real distance between the bulb and switch.

PROBLEM 23:-

A PICTURE FRAME 2 M WIDE AND 1 M TALL IS RESTING ON HORIZONTAL WALL RAILING
MAKES 35° INCLINATION WITH WALL. IT IS ATTAACHED TO A HOOK IN THE WALL BY TWO STRINGS.
THE HOOK IS 1.5 M ABOVE WALL RAILING. DETERMINE LENGTH OF EACH CHAIN AND TRUE ANGLE BETWEEN THEM

PROBLEM NO. 24

SOME CASES OF THE LINE IN DIFFERENT QUADRANTS.

REMEMBER:
BELOW HP- Means- Fv below xy BEHIND $\vee \mathrm{p}$ - Means- Tv above xy .
T.V. of a 75 mm long Line CD, measures 50 mm .

End C is 15 mm below Hp and 50 mm in front of Vp .
End D is 15 mm in front of Vp and it is above Hp .
Draw projections of CD and find angles with Hp and

PROBLEM NO. 25

End A of line $A B$ is in Hp and 25 mm behind Vp .
End B in Vp.and 50 mm above Hp.
Distance between projectors is 70 mm .
Draw projections and find it's inclinations with Ht, Vt.

PROBLEM NO. 26

End A of a line AB is 25 mm below Hp and 35 mm behind Vp . Line is 300 inclined to Hp .
There is a point P on AB contained by both HP \& VP.
Draw projections, find inclination with Vp and traces.

PROBLEM NO. 27

End A of a line $A B$ is 25 mm above Hp and end B is 55 mm behind Vp .
The distance between end projectors is 75 mm .
If both it's HT \& VT coincide on xy in a point, 35 mm from projector of A and within two projectors, Draw projections, find TL and angles and HT, VT.

UNIT-3

What is usually asked in the problem?

What willoe oiven mothe problem?

In which manner it spesition whithP: \& VP wil be desectbed?

1. Inclination of it's SURFACE with one of the reference planes will be given.
2. Inclination of one of it's EDGES with other reference plane will be given (Hence this will be a case of an object inclined to both reference Planes.)

Study the llustration showing surface \& side inclinationgiven on next page:

CASE OF A RECTANGLE - OBSERVE AND NOTE ALL STEPS

PROCEDURE OF SOLVING THE PROBLEM:
in three steps each problem can be solved:(As Shown In Previous illustration)
STEP 1. Assume suitable conditions \& draw Fv \& Tv of initial position.
STEP 2. Now consider surface inclination \& draw $2^{\text {nd }} \mathrm{Fv}$ \& Tv.
STEP 3. After this,consider side/edge inclination and draw $3^{\text {rd }}$ (final) Fv \& Tv.

ASSUMPTIONS FOR INITIAL POSITION:

(Initial Position means assuming surface // to HP or VP)

1. If in problem surface is inclined to HP - assume it // HP Or If surface is inclined to VP - assume it // to VP
2. Now if surface is assumed // to HP- It's TV will show True Shape. And If surface is assumed // to VP - It's FV will show True Shape.
3. Hence begin with drawing TV or FV as True Shape.
4. While drawing this True Shape -
keep one side/edge (which is making inclination) perpendicular to $x y$ line (similar to pair no. A on previous page illustration).
ow Complete STEP 2. By making surface inclined to the resp plane \& project it's other viev (Ref. $2^{\text {nd }}$ pair B_{-}on previous page illustration) low Complete STEP 3. By making side inclined to the resp plane \& project it's other view. (Ref. 3 ${ }^{\text {nd }}$ pair $\quad \underset{\text { C on previous page illustration) }}{ }$

APPLY SAME STEPS TO SOLVE NEXT ELEVEN PROBLEMS

Problem 1:
Rectangle 30 mm and 50 mm sides is resting on HP on one small side which is 30° inclined to VP, while the surface of the plane makes 45^{0} inclination with HP. Draw it's projections.

Read problem and answer following questions

1. Surface inclined to which plane? ------ HP
2. Assumption for initial position? ------// to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? ---One small side. Hence begin with TV, draw rectangle below X-Y drawing one small side vertical.

Problem 2:
A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long, is in VP and 30° inclined to HP while it's surface is 45° inclined to VP.Draw it's projections

Read problem and answer following questions
1 .Surface inclined to which plane? VP
2. Assumption for initial position?

VP

FV keeping longest side vertical.
4. Which side will be vertical? ------longest side.
side inclined to Hp

Surface // to Vp Surface inclined to Vp

Problem 3:

A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long is in VP and it's surface 45^{0} inclined to VP. One end of longest side is 10 mm and other end is 35 mm above HP. Draw it's projections

Read problem and answer following questions
1 .Surface inclined to which plane? VP
2. Assumption for initial position?
------// to
VP
3. So which view will show True shape? --FV
4. Which side will be vertical? ------Ingest side. Benceabegin withtifd, odrawctriangle aboves Xaid.

Problem 4:
A regular pentagon of 30 mm sides is resting on HP on one of it's sides with it's surface 45^{0} inclined to HP.
Draw it's projections when the side in HP makes 30° angle with VPA ARE DIRECTLY GIVEN.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? ------- any side. Hence begin with TV,draw pentagon below $X-Y$ line, taking one side vertical.

Problem 5:
A regular pentagon of 30 mm sides is resting
on HP on one of it's sides while it's opposite
vertex (corner) is 30 mm above HP.
 inclined to VP.

ONLY CHANGE is
the manner in which surface inclination is described:
One side on Hp \& it's opposite corner 30 mm above Hp .
Hence redraw $1^{\text {st }} \mathrm{Fv}$ as a $2^{\text {nd }}$ Fv making above arrangement. Keep $\mathrm{a}^{\prime} \mathrm{b}^{\prime}$ on xy \& d' 30 mm above xy .

Problem 8: A circle of 50 mm diameter is resting on Hp on end A of it's diameter AC which is 30° inclined to Hp while it's Tv is 45° inclined to $V p$. Draw it's projections.

Read problem and answer following questions

1. Surface inclined to which plane? \qquad HP
2. Assumption for initial position? \qquad HP
3. So which view will show True shape? --TV
4. Which diafneince hforizomtallameter is----

$A C^{\text {cesting on } \mathrm{Hp} \text { on end } A \text { of it's diameter AC }}$
which is 30° inclined to Hp while it makes
 $X-Y$ line, taking longer diå- il // to $X-Y$

Note the difference in construction of $3^{\text {rd }}$ step in both solutions.

Problem 10: End A of diameter AB of a circle is in HP A nd end B is in VP.Diameter $A B, 50 \mathrm{~mm}$ long is 30° \& 60° inclined to HP \& VP respectively. Draw projections of circle.

Read problem and answer following questions

1. Surface inclined to which plane? HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? ---

The problem is similar to previous problem of circle - no. T V

But in the $3^{\text {rd }}$ step there is one more change.
Like $9^{\text {th }}$ problem True Length inclination of dia. AB is defintely Which diameter horizontal? \qquad
but if you carefully note - the the SUM of it's inclinations A:B HP \& VP is 90°.
Means Line AB lies in a Profile Plane.
Hence begin with TV,draw CIRCLE below Hence it's both Tv \& Fv must arrive on one single projector. So do the construction accordingly AND note the case careffultyking DIA. AB // to X-Y

SOLVE SEPARATELY ON DRAWING SHEET GIVING NAMES TO VARIOUS POINTS AS USUAL, AS THE CASE IS IMPORTANT

Problem 11:
A hexagonal lamina has its one side in HP and Its apposite parallel side is 25 mm above Hp and In Vp. Draw it's projections.
Take side of hexagon 30 mm long.

Read problem and answer following questions

1. Surface inclined to which plane? HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? ---
4. Which diameter horizontal? \qquad

Hence begin with TV,draw rhombus below

TV
ONLY CHANGE is the manner in which surface inclination is described:
One side on Hp \& it's opposite side 25 mm above Hp . Hence redraw $1^{\text {st }} \mathrm{Fv}$ as a $2^{\text {nd }}$ Fv making above arrangement $A C$ Keep a'b' on xy \& d'e' 25 mm above xy .

FREELY SUSPENDED CASES.

Problem 12:

An isosceles triangle of 40 mm long base side, 60 mm long altitude Is freely suspended from one corner of Base side. It's plane is 45° inclined to Vp. Draw it's projections.

First draw a given triangle With given dimensions, Locate it's centroid position And
join it with point of suspension.

IMPORTANT POINTS

1.In this case the plane of the figure always remains perpendicular to Hp . 2.It may remain parallel or inclined to Vp .
3. Hence $T V$ in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspended position as FV. (Here keep line joining point of contact \& centroid of fig. vertical)
5.Always begin with FV as a True Shape but in a suspended position.

AS shown in $1^{\text {st }} \mathrm{FV}$.

Similarly solve next problem
of Semi-circle

IMPORTANT POINTS

Problem 13

:A semicircle of 100 mm diameter is suspended from a point on its straight edge 30 mm from the midpoint of that edge so that the surface makes an angle of 45° with VP.
Draw its projections.
1.In this case the plane of the figure always remains perpendicular to Hp . 2.It may remain parallel or inclined to Vp .
3. Hence $T V$ in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspended position as FV. (Here keep line joining point of contact \& centroid of fig. vertical)
5.Always begin with FV as a True Shape but in a suspended position.

AS shown in $1^{\text {st }} \mathrm{FV}$.

First draw a given semicircle
With given diameter,
Locate it's centroid position And
join it with point of suspension.

To determine true shape of plane figure when it's projections are given. BY USING AUXILIARY PLANE METHOD

WHAT WILL BE THE PROBLEM?

Description of final Fv \& Tv will be given.
You are supposed to determine true shape of that plane f
Follow the below given steps:

1. Draw the given Fv \& Tv as per the given information in problem.
2. Then among all lines of Fv \& Tv select a line showing True Length (T.L.)
(It's other view must be // to $x y$)
3. Draw $x_{1}-y_{1}$ perpendicular to this line showing T.L.
4. Project view on $x_{1}-y_{1}$ (it must be a line view)
5. Draw $x_{2}-y_{2} / /$ to this line view \& project new view on it.

It will be the required answer i.e. True Shape.
The facts you must know:-
If you carefully study and observe the solutions of all previous problems,
You will find
IF ONE VIEW IS A LINE VIEW \& THAT TOO PARALLEL TO XY LINE, THEN AND THEN IT'S OTHER VIEW WILL SHOW TRUE SHAPE:

NOW FINAL VIEWS ARE ALWAYS SOME SHAPE, NOT LINE VIEWS: SO APPLYING ABOVE METHOD:
WE FIRST CONVERT ONE VIEW IN INCLINED LINE VIEW .(By using x1y1 aux.plane) THEN BY MAKING IT // TO X2-Y2 WE GET TRUE SHAPE.

Study Next
Four Cases

Problem 14 Tv is a triangle abc. Ab is 50 mm long, angle cab is 300 and angle cba is 650. $a^{\prime} b^{\prime} c^{\prime}$ ' is a Fv . a^{\prime} is $25 \mathrm{~mm}, \mathrm{~b}^{\prime}$ is 40 mm and c^{\prime} is 10 mm above Hp respectively. Draw projections of that figure and find it's true shape.

As per the procedure-

1. First draw Fv \& Tv as per the data.
2. In Tv line $a b$ is // to $x y$ hence it's other view a 'b' is TL. So draw $x_{1} y_{1}$ perpendicular to it.
3.Project view on x1y1.
a) First draw projectors from $a^{\prime} b^{\prime} \& c^{\prime}$ on $x_{1} y_{1}$.
b) from xy take distances of $a, b \& c(T v)$ mark on these projectors from $x_{1} y_{1}$. Name points a1b1 \& c1.
c) This line view is an Aux.Tv. Draw $x_{2} y_{2} / /$ to this line view and project Aux. Fv on it. for that from $x_{1} y_{1}$ take distances of $a^{\prime} b^{\prime} \& c^{\prime}$ and mark from $x_{2} y=$ on new projectors.
3. Name points $\mathrm{a}^{\prime}{ }_{1} \mathrm{~b}_{1} \& \mathrm{c}_{1}$ and join them. This will be the required true shape.

ALWAYS FOR NEW FV TAKE
DISTANCES OF PREVIOUS FV
AND FOR NEW TV, DISTANCES OF PREVIOUS TV
REMEMBER!!

Problem 15: Fv \& Tv of a triangular plate are shown.
Determine it's true shape.
USE SAME PROCEDURE STEPS OF PREVIOUS PROBLEM: BUT THERE IS ONE DIFFICULTY

NO LINE IS // TO XY IN ANY VIEW. MEANS NO TLIS AVAILABLE.

IN SUCH CASES DRAW ONE LINE // TO XY IN ANY VIEW \& IT'S OTHER VIEW CAN BE CONSIDERED AS TL FOR THE PURPOSE.

HERE a' 1' line in Fv is drawn // to $x y$. HENCE it's Tv a-1 becomes TL.

THEN FOLLOW SAME STEPS AND DETERMINE TRUE SHAPE.
(STUDY THE ILLUSTRATION)

REMEMBER!!

PROBLEM 16: Fv \& Tv both are circles of 50 mm diameter. Determine true shape of an elliptical plate.

ADOPT SAME PROCEDURE.

ac is considered as line // to $x y$.
Then a'c' becomes TL for the purpose. Using steps properly true shape can be Easily determined.

Study the illustration.

ALWAYS, FOR NEW FV TAKE DISTANCES OF PREVIOUS FV AND FOR NEW TV, DISTANCES OF PREVIOUS TV REMEMBER!!

Problem 17 : Draw a regular pentagon of 30 mm sides with one side 30° inclined to xy . This figure is Tv of some plane whose Fv is A line 45° inclined to $x y$. Determine it's true shape.

IN THIS CASE ALSO TRUE LENGTH IS NOT AVAILABLE IN ANY VIEW.

BUT ACTUALLY WE DONOT REQUIRE TL TO FIND IT'S TRUE SHAPE, AS ONE VIEW (FV) IS ALREADY A LINE VIEW. SO JUST BY DRAWING X1Y1 // TO THIS VIEW WE CAN PROJECT VIEW ON IT AND GET TRUE SHAPE:

STUDY THE ILLUSTRATION..

> ALWAYS FOR NEW FV TAKE DISTANCES OF PREVIOUS FV AND FOR NEW TV, DISTANCES OF PREVIOUS TV

REMEMBER!!

To understand and remember various solids in this subject properly, those are classified \& arranged in to two major groups.

Group A
Solids having top and base of same shape

Group B
Solids having base of some shape and just a point as a top, called apex.

SOLIDS

Dimensional parameters of different solids.

While observing Fv, x-y line represents Horizontal Plane. (Hp)

X While observing Tv, $x-y$ line represents Vertical Plane. (Vp) Y

STEPS TO SOLVE PROBLEMS IN SOLIDS

Problem is solved in three steps:
STEP 1: ASSUME SOLID STANDING ON THE PLANE WITH WHICH IT IS MAKING INCLINATION.
(IF IT IS INCLINED TO HP, ASSUME IT STANDING ON HP)
(IF IT IS INCLINED TO VP, ASSUME IT STANDING ON VP)
IF STANDING ON HP - IT'S TV WILL BE TRUE SHAPE OF IT'S BASE OR TOP:
IF STANDING ON VP - IT'S FV WILL BE TRUE SHAPE OF IT'S BASE OR TOP.
BEGIN WITH THIS VIEW:
IT'S OTHER VIEW WILL BE A RECTANGLE (IF SOLID IS CYLINDER OR ONE OF THE PRISMS): IT'S OTHER VIEW WILL BE A TRIANGLE (IF SOLID IS CONE OR ONE OF THE PYRAMIDS):

DRAW FV \& TV OF THAT SOLID IN STANDING POSITION:
STEP 2: CONSIDERING SOLID'S INCLINATION (AXIS POSITION) DRAW IT'S FV \& TV.
STEP 3: IN LAST STEP, CONSIDERING REMAINING INCLINATION, DRAW IT'S FINAL FV \& TV.

GENERAL PATTERN (THREE STEPS) OF SOLUTION:

GROUP B SOLID. $\xrightarrow[\text { AXIS }]{\substack{\text { CONE }}}$
 If solid is inclined to Hp

GROUP A SOLID. CYLINDER

Three steps
If solid is inclined to Hp

GROUP B SOLID. CONE

Three steps
If solid is inclined to Vp

GROUP A SOLID. CYLINDER

AXIS

Three steps
If solid is inclined to Vp

Study Next Twelve Problems and Practice them separately !!

Problem 1. A square pyramid, 4 mm base sides and axis 60 mr long, has a triangular face on th ground and the vertical plan containing the axis makes a angle of 45° with the VP. Draw it projections. Take apex nearer t VP

Solution Steps:
Triangular face on Hp , means it is lying on Hp :
1.Assume it standing on Hp .
2.It's Tv will show True Shape of base(square)
3.Draw square of 40 mm sides with one side vertical Tv \& taking 50 mm axis project Fv. (a triangle)
4. Name all points as shown in illustration.
5.Draw $2^{\text {nd }} \mathrm{Fv}$ in lying position I.e.o'c'd' face on xy . And project it's Tv. 6. Make visible lines dark and hidden dotted, as per the procedure.
7. Then construct remaining inclination with $V p$
(Vp containing axis ic the center line of $2^{\text {nd }}$ Tv.Make it 45° to xy as shown take apex near to $x y$, as it is nearer to Vp) \& project final Fv .
1.Draw proper outline of new view DARK. 2. Decide direction of an observer.

FROM V.P.)
3. Select nearest point to observer and draw all lines starting from it-dark.
4. Select farthest point to observer and draw all lines (remaining)from it- dotted.

Problem 2:

A cone 40 mm diameter and 50 mm axis is resting on one generator on Hp which makes 30° inclination with Vp Draw it's projections.

For dark and dotted lines

1. Draw proper outline of new vie DARK.
2. Decide direction of an observer.
3. Select nearest point to observer and draw all lines starting from it-dark.
4. Select farthest point to observer and draw all lines (remaining) from it- dotted.

Solution Steps:

Resting on Hp on one generator, means lying on Hp :

1. Assume it standing on Hp .
2.It's Tv will show True Shape of base(circle)
3.Draw 40 mm dia. Circle as Tv \& taking 50 mm axis project Fv. (a triangle)
2. Name all points as shown in illustration.
5.Draw $2^{\text {nd }} \mathrm{Fv}$ in Iying position I.e.o'e' on xy. And project it's Tv below xy.
3. Make visible lines dark and hidden dotted, as per the procedure.
7.Then construct remaining inclination with Vp (generator $0_{1} e_{1} 30^{\circ}$ to $x y$ as shown) \& project final Fv.

Problem 3:
A cylinder 40 mm diameter and 50 mm axis is resting on one point of a base circle on Vp while it's axis makes 45° with Vp and Fv of the axis 35^{0} with Hp . Draw projections..

Solution Steps:
Resting on Vp on one point of base, means inclined to Vp:
1.Assume it standing on Vp
2.It's Fv will show True Shape of base \& top(circle)
3. Draw 40 mm dia. Circle as Fv \& taking 50 mm axis project Tv. (a Rectangle)
4. Name all points as shown in illustration.
5.Draw $2^{\text {nd }}$ Tv making axis 45° to xy And project it's Fv above xy.
6. Make visible lines dark and hidden dotted, as per the procedure.
7. Then construct remaining inclination with Hp
(Fv of axis I.e. center line of view to $x y$ as shown) \& project final Tv.

Problem 4:A square pyramid 30 mm base side and 50 mm long axis is resting on it's apex on Hp such that it's one slant edge is vertical and a triangular face through it is perpendicular to Vp. Draw it's projections.

Solution Steps:
1.Assume it standing on Hp but as said on apex. (inverted).
2.It's Tv will show True Shape of base(square)
3.Draw a corner case square of 30 mm sides as Tv (as shown) Showing all slant edges dotted, as those will not be visible from top. 4.taking 50 mm axis project Fv. (a triangle)
5. Name all points as shown in illustration.
6. Draw $2^{\text {nd }} \mathrm{Fv}$ keeping o'a' slant edge vertical \& project it's Tv
7.Make visible lines dark and hidden dotted, as per the procedure.
8. Then redrew $2^{\text {nd }} T v$ as final Tv keeping $\mathrm{a}_{1} \mathrm{o}_{1} \mathrm{~d}_{1}$ triangular face perpendicular to Vp I.e.xy. Then as usual project final Fv.

Problem 5: A cube of 50 mm long edges is so placed on Hp on one corner that a body diagonal is parallel to Hp and perpendicular to Vp Draw it's projections.

Solution Steps:
1.Assuming standing on Hp , begin with Tv , a square with all sides equally inclined to xy.Project Fv and name all points of FV \& TV.
2. Draw a body-diagonal joining c' with 3 '(This can become // to xy)
3.From 1' drop a perpendicular on this and name it p '
4.Draw $2^{\text {nd }} \mathrm{Fv}$ in which 1'-p' line is vertical means c'-3' diagonal must be horizontal. .Now as usual project Tv..
6.In final Tv draw same diagonal is perpendicular to Vp as said in problem. Then as usual project final FV.

Problem 6:A tetrahedron of 50 mm long edges is resting on one edge on Hp while one triangular face containing this edge is vertical and 45° inclined to Vp. Draw p IMPORTANT:

Tetrahedron is a special type of triangular pyramid in which base sides \& slant edges are equal in length. Solid of four faces. Like cube it is also described by One dimension only.. Axis length generally not given.

RREELY SUSPENDED SOLIDS

Postions of \mathcal{G}, gomaxis, from base for different sofids are shown below

Problem 7: A pentagonal pyramid 30 mm base sides \& 60 mm long axis, is freely suspended from one corner of base so that a plane containing it's axis remains parallel to Vp. Draw it's three views.

Solution Steps:

In all suspended cases axis shows inclination with Hp .

1. Hence assuming it standing on Hp , drew Tv - a regular pentagon, corner case.
2. Project Fv \& locate CG position on axis - ($1 / 4 \mathrm{H}$ from base.) and name g ' and Join it with corner d'
3.As $2^{\text {nd }} \mathrm{Fv}$, redraw first keeping line $g^{\prime} d^{\prime}$ vertical.
4.As usual project corresponding Tv and then Side View looking from.

IMPORTANT:

When a solid is freely
suspended from a corner, then line joining point of contact \& C.G. remains vertical. (Here axis shows inclination with Hp . So in all such cases,
assume solid standing on Hp initially.)

Solution Steps:

1. Assuming it standing on Hp begin with Tv , a square of corner case. 2.Project corresponding Fv.\& name all points as usual in both views. 3. Join a'1' as body diagonal and draw $2^{\text {nd }} \mathrm{Fv}$ making it vertical (I' on xy) 4.Project it's Tv drawing dark and dotted lines as per the procedure. 5.With standard method construct Left-hand side view.

Problem 8:

A cube of 50 mm long edges is so placed on Hp on one corner that a body diagonal through this corner is perpendicular to Hp and parallel to Vp Draw it's three views.
(Draw a 45^{0} inclined Line in Tv region (below xy). Project horizontally all points of Tv on this line and reflect vertically upward, above xy.After this, draw horizontal lines, from all points of Fv, to meet these lines. Name points of intersections and join properly. For dark \& dotted lines locate observer on left side of Fv as shown.)

Problem 9: A right circular cone, 40 mm base diameter and 60 mm long axis is resting on Hp on one point of base circle such that it's axis makes 45° inclination with Hp and 40° inclination with Vp. Draw it's projections.

This case resembles to problem no. 7 \& 9 from projections of planes topic. In previous all cases $2^{\text {nd }}$ inclination was done by a parameter not showing TL.Like Tv of axis is inclined to Vp etc. But here it is clearly said that the axis is 40° inclined to Vp. Means here TL inclination is expected. So the same construction done in those Problems is done here also. See carefully the final Tv and inclination taken there.

So assuming it standing on HP begin as usual.

Problem 10: A triangular prism, 40 mm base side 60 mm axis is lying on Hp on one rectangular face with axis perpendicular to Vp .
One square pyramid is leaning on it's face centrally with axis // to vp. It's base side is 30 mm \& axis is 60 mm long resting on Hp on one edge of base. Draw FV \& TV of both solids. Project another FV on an AVP 45° inclined to VP.

Steps:

Draw Fv of lying prism (an equilateral Triangle) And Fv of a leaning pyramid. Project Tv of both solids.
Draw $\mathrm{x}_{1} \mathrm{y}_{1} 45^{0}$ inclined to xy and project aux. Fv on it. Mark the distances of first FV from first $x y$ for the distances of aux. Fv from $x_{1} y_{1}$ line. Note the observer's directions Shown by arrows and further steps carefully.

Problem 11:A hexagonal prism of base side 30 mm longand axis 40 mm long, is standing on Hp on it's base with one base edge // to Vp. A tetrahedron is placed centrally on the top of it.The base of tetrahedron is a triangle formed by joining alternate corners of top of prism..Draw projections of both solids. Project an auxiliary Tv on AIP 45° inclined to Hp .

STEPS:

Draw a regular hexagon as Tv of standing prism With one side // to xy and name the top points.Project it's Fv a rectangle and name it's top. Now join it's alternate corners a-c-e and the triangle formed is base of a tetrahedron as said.
Locate center of this triangle \& locate apex $\underline{0}$
Extending it's axis line upward mark apex o'
By cutting TL of edge of tetrahedron equal to a-c. and complete Fv of tetrahedron.
Draw an AIP (x 1 y 1) 45° inclined to xy And project Aux.Tv on it by using similar Steps like previous problem.

Problem 12: A frustum of regular hexagonal pyramid is standing on it's larger base
On Hp with one base side perpendicular to Vp.Draw it's Fv \& Tv.
Project it's Aux.Tv on an AIP parallel to one of the slant edges showing TL.
Base side is 50 mm long, top side is 30 mm long and 50 mm is height of frustum.

PROJECTIONS OF PLANES

In this topic various plane figures are the objects.

What is usually asked in the problem?
To draw their projections means F.V, T.V. \& S.V.
What will be given in the problem?

1. Description of the plane figure.
2. It's position with HP and VP.

In which manner it's pesition with HP \& VP will be described?
1.Inclination of it's SURFACE with one of the reference planes will be given.
2. Inclination of one of it's EDGES with other reference plane will be given (Hence this will be a case of an object inclined to both reference Planes.)

Study the illustration showing
surface \& side inclination given on next page.

SURFACE PARALLEL TO HP
PICTORIAL PRESENTATION

SURFACE INCLINED TO HP PICTORIAL PRESENTATION

TV- Reduced Shape

ONE SMALL SIDE INCLINED TO VP PICTORIAL PRESENTATION

PROCEDURE OF SOLVING THE PROBLEM:

in three steps each problem can be solved:(As Shown In Previous Illustration) STEP 1. Assume suitable conditions \& draw Fv \& Tv of initial position.
STEP 2. Now consider surface inclination \& draw $2^{\text {nd }} \mathrm{Fv}$ \& Tv.
STEP 3. After this,consider side/edge inclination and draw 3 ${ }^{\text {rd }}$ (final) Fv \& Tv.

ASSUMPTIONS FOR INITIAL POSITION:

(Initial Position means assuming surface // to HP or VP)

1. If in problem surface is inclined to HP - assume it // HP

Or If surface is inclined to VP - assume it // to VP
2. Now if surface is assumed // to HP- It's TV will show True Shape.

And If surface is assumed // to VP - It's FV will show True Shape.
3. Hence begin with drawing TV or FV as True Shape.
4. While drawing this True Shape -
keep one side/edge (which is making inclination) perpendicular to $x y$ line (similar to pair no.
(A) on previous page illustration).

Now Complete STEP 2. By making surface inclined to the resp plane \& project it's other view. (Ref. $2^{\text {nd }}$ pair B on previous page illustration)

Now Complete STEP 3. By making side inclined to the resp plane \& project it's other view. (Ref. $3^{\text {nd }}$ pair (C) on previous page illustration)

APPLY SAME STEPS TO SOLVE NEXT ELEVEN PROBLEMS

Q12.4: A regular pentagon of 25 mm side has one side on the ground. Its plane is inclined at 45 to the HP and perpendicular to the VP. Draw its projections and show its traces

Hint: As the plane is inclined to HP, it should be kept parallel to HP with one edge perpendicular to VP

Q.12.5:Draw the projections of a circle of 5 cm diameter having its plane vertical and inclined at 30° to the V.P. Its centre is 3 cm above the H.P. and 2 cm in front of the V.P. Show also its traces

Problem 5 : draw a regular hexagon of 40 mm sides, with its two sides vertical. Draw a circle of 40 mm diameter in its centre. The figure represents a hexagonal plate with a hole in it and having its surfacre parallel to the VP. Draw its projections when the surface is vertical abd inclined at 30° to the VP.

Problem 1 : Draw an equilateral triangle of 75 mm sides and inscribe a circle in it. Draw the projections of the figure, when its plane is vertical and inclined at 30° to the VP and one of the sides of the triangle is inclined at 45° to the HP.

Q12.7: Draw the projections of a regular hexagon of 25 mm sides, having one of its side in the H.P. and inclined at 60 to the V.P. and its surface making an angle of $45{ }^{\circ}$ with the H.P.

Side on the H.P. making 60° with the VP.

Plane parallel to HP
Plane inclined to HP
at 45° and \perp to VP

Q12.6: A square $A B C D$ of 50 mm side has its corner A in the H.P., its diagonal $A C$ inclined at 30° to the H.P. and the diagonal BD inclined at $45{ }^{\circ}$ to the V.P. and parallel to the H.P. Draw its projections.

Keep AC parallel to the H.P. \& BD perpendicular to V.P. (considering inclination of AC as inclination of the plane)

Incline AC at 30° to the H.P. i.e. incline the edge view Incline BD at 45° to the V.P. (FV) at 30% to the HP

Q: Draw a rhombus of 100 mm and 60 mm long diagonals with longer diagonal horizontal. The figure is the top view of a square having 100 mm long diagonals. Draw its front view.

Q4: Draw projections of a rhombus having diagonals 125 mm and 50 mm long, the smaller diagonal of which is parallel to both the principal planes, while the other is inclined at 30° to the H.P.

Keep AC parallel to the H.P. \& BD perpendicular to V.P. (considering inclination of AC as inclination of the plane and inclination of BD as inclination

Q 2:A regular hexagon of 40 mm side has a corner in the HP. Its surface inclined at 45° to the HP and the top view of the diagonal through the corner which is in the HP makes an angle of 60° with the VP. Draw its projections.

Q7:A semicircular plate of 80 mm diameter has its straight edge in the VP and inclined at 45 to HP.The surface of the plate makes an angle of 30 with the VP. Draw its projections.

Problem 12.8 : Draw the projections of a circle of 50 mm diameter resting on the HP on point A on the circumference. Its plane inclined at 45° to the HP and (a) The top view of the diameter AB making 30° angle with the VP (b) The the diameter AB making 30° angle with the VP

Q12.10: A thin rectangular plate of sides $60 \mathrm{~mm} \times 30 \mathrm{~mm}$ has its shorter side in the V.P. and inclined at 30° to the H.P. Project its top view if its front view is a square of 30 mm long sides

A rectangle can be seen as a square in the F.V. only when its surface is inclined to VP. So for the first view keep the plane // to VP \& shorter edge \perp to HP
F.V. (square) is drawn first

Incline $a_{1}{ }^{\prime} b_{1}$ ' at 300 to the H.P.

Q12.11: A circular plate of negligible thickness and 50 mm diameter appears as an ellipse in the front view, having its major axis 50 mm long and minor axis 30 mm long. Draw its top view when the major axis of the ellipse is horizontal.

A circle can be seen as a ellipse in the F.V. only when its surface is inclined to VP. So for the first view keep the plane // to VP.

Incline the T.V. till the distance between the end projectors is 30 mm

Incline the F.V. till the major axis becomes horizontal

Problem 9 : A plate having shape of an isosceles triangle has base 50 mm long and altitude 70 mm . It is so placed that in the front view it is seen as an equilateral triangle of 50 mm sides an done side inclined at 45° to xy . Draw its top view

Problem 1:

Rectangle 30 mm and 50 mm sides is resting on HP on one small side which is 30^{0} inclined to VP,while the surface of the plane makes 45^{0} inclination with HP. Draw it's projections.

Read problem and answer following questions

1. Surface inclined to which plane? \qquad HP
2. Assumption for initial position? ------// to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? ---One small side. Hence begin with TV, draw rectangle below X-Y drawing one small side vertical.

The top view of a plate, the surface of which is inclined at 60° to the HP is a circle of 60 mm diameter. Draw its three views.

Problem 12.9:

A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long, is in VP and 30° inclined to HP while it's surface is 45° inclined to VP.Draw it's projections

Read problem and answer following questions 1 .Surface inclined to which plane? ------- VP
2. Assumption for initial position? ------// to VP
3. So which view will show True shape? --- FV
4. Which side will be vertical? ------longest side.
(Surface \& Side inclinations directly given)

Hence begin with FV, draw triangle above X-Y

keeping longest side vertical.

Surface // to Vp Surface inclined to Vp

Problem 3:

A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long is in VP and it's surface 45^{0} inclined to VP. One end of longest side is 10 mm and other end is 35 mm above HP. Draw it's projections
(Surface inclination directly given. Side inclination indirectly given)

Read problem and answer following questions 1 .Surface inclined to which plane? ------- VP
2. Assumption for initial position? ------// to VP
3. So which view will show True shape? --- FV
4. Which side will be vertical? ------longest side.

Hence begin with FV, draw triangle above X-Y

keeping longest side vertical.
First TWO steps are similar to previous problem. Note the manner in which side inclination is given.

Problem 4:

A regular pentagon of $\mathbf{3 0} \mathbf{~ m m}$ sides is resting on HP on one of it's sides with it's surface 45^{0} inclined to HP.
Draw it's projections when the side in HP makes 30° angle with VP
SURFACE AND SIDE INCLINATIONS ARE DIRECTLY GIVEN.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? -------- any side.

Hence begin with TV,draw pentagon below
X-Y line, taking one side vertical.

Problem 5:

A regular pentagon of 30 mm sides is resting on HP on one of it's sides while it's opposite vertex (corner) is 30 mm above HP.
Draw projections when side in HP is 30° inclined to VP.
SURFACE INCLINATION INDIRECTLY GIVEN SIDE INCLINATION DIRECTLY GIVEN:

Read problem and answer following questions

1. Surface inclined to which plane? ------- $\boldsymbol{H P}$
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? -------any side. Hence begin with TV,draw pentagon below
X-Y line, taking one side vertical.

ONLY CHANGE is

the manner in which surface inclination is described:
One side on Hp \& it's opposite corner 30 mm above Hp.
Hence redraw $1^{\text {st }} F v$ as a $2^{\text {nd }}$ Fv making above arr
Keep a'b' on xy \& d' 30 mm above xy.

Problem 8: A circle of 50 mm diameter is resting on Hp on end A of it's diameter AC which is 30° inclined to Hp while it's Tv is 45° inclined to Vp.Draw it's projections.

Read problem and answer following questions 1. Surface inclined to which plane? \qquad HP
2. Assumption for initial position? ------ // to $\boldsymbol{H P}$
3. So which view will show True shape? --- TV
4. Which diameter horizontal? ---------- AC

Hence begin with TV,draw rhombus below X-Y line, taking longer diagonal // to $X-Y$

Problem 9: A circle of 50 mm diameter is resting on Hp on end A of it's diameter AC which is 30° inclined to Hp while it makes 45° inclined to Vp. Draw it's projections.

The difference in these two problems is in step 3 only. In problem no. 8 inclination of Tv of that AC is given, It could be drawn directly as shown in $3^{\text {rd }}$ step. While in no. 9 angle of AC itself i.e. it's TL, is given. Hence here angle of TL is taken,locus of c_{1} Is drawn and then LTV I.e. $a_{1} c_{1}$ is marked and final TV was completed.Study illustration carefully.

夏\| \|

Problem 10: End A of diameter $A B$ of a circle is in HP A nd end B is in VP.Diameter $A B, 50 \mathrm{~mm}$ long is 30° \& 60° inclined to HP \& VP respectively. Draw projections of circle.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which diameter horizontal? --------- $\boldsymbol{A B}$

Hence begin with TV,draw CIRCLE below
$X-Y$ line, taking DIA. AB // to $X-Y$

The problem is similar to previous problem of circle - no.9.

But in the $3^{\text {rd }}$ step there is one more change.
Like $9^{\text {th }}$ problem True Length inclination of dia.AB is definitely expected
but if you carefully note - the the SUM of it's inclinations with HP \& VP is 90°.
Means Line AB lies in a Profile Plane.
Hence it's both Tv \& Fv must arrive on one single projector.
So do the construction accordingly AND note the case careful/y..

Problem 11:
A hexagonal lamina has its one side in HP and Its apposite parallel side is 25 mm above Hp and In Vp. Draw it's projections.
Take side of hexagon 30 mm long.
ONLY CHANGE is the manner in which surface inclination is described:
One side on Hp \& it's opposite side 25 mm above Hp. Hence redraw $1^{\text {st }} \mathrm{Fv}$ as a $2^{\text {nd }} \mathrm{Fv}$ making above arrangement Keep a'b' on xy \& d'e' 25 mm above $x y$.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which diameter horizontal? X-Y line, taking longer diagonal // to X - Y

FREELY SUSPENDED CASES.

IMPORTANT POINTS

Problem 12:

An isosceles triangle of 40 mm long base side, 60 mm long altitude Is freely suspended from one corner of Base side.It's plane is 45° inclined to Vp. Draw it's projections.
1.In this case the plane of the figure always remains perpendicular to Hp . 2.It may remain parallel or inclined to Vp .
3. Hence TV in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspended position as FV. (Here keep line joining point of contact \& centroid of fig, vertical) 5.Always begin with FV as a True Shape but in a suspended position. AS shown in $1^{\text {st }} \mathrm{FV}$.

First draw a given triangle With given dimensions, Locate it's centroid position And join it with point of suspension.

Problem 13

:A semicircle of 100 mm diameter is suspended from a point on its straight edge 30 mm from the midpoint of that edge so that the surface makes an angle of 45° with VP.
Draw its projections.
1.In this case the plane of the figure always remains perpendicular to Hp . 2.It may remain parallel or inclined to Vp .
3. Hence TV in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspended position as FV.
(Here keep line joining point of contact \& centroid of fig. vertical)
5.Always begin with FV as a True Shape but in a suspended position.

AS shown in ${ }^{\text {st }} \mathrm{FV}$.

First draw a given semicircle With given diameter, Locate it's centroid position And
join it with point of suspension.

BY USING AUXILIARY PLANE METHOD

WHAT WILL BE THE PROBLEM?
Description of final Fv \& Tv will be given.
You are supposed to determine true shape of that plane figure.
Follow the below given steps:

1. Draw the given Fv \& Tv as per the given information in problem.
2. Then among all lines of Fv \& Tv select a line showing True Length (T.L.) (It's other view must be // to xy)
3. Draw $x_{1}-y_{1}$ perpendicular to this line showing T.L.
4. Project view on $x_{1}-y_{1}$ (it must be a line view)
5. Draw $x_{2}-y_{2} / /$ to this line view \& project new view on it.

It will be the required answer i.e. True Shape.
The facts you must know:-
If you carefully study and observe the solutions of all previous problems,
You will find
IF ONE VIEW IS A LINE VIEW \& THAT TOO PARALLEL TO XY LINE,
THEN AND THEN IT'S OTHER VIEW WILL SHOW TRUE SHAPE:

NOW FINAL VIEWS ARE ALWAYS SOME SHAPE, NOT LINE VIEWS:
SO APPLYING ABOVE METHOD:

WE FIRST CONVERT ONE VIEW IN INCLINED LINE VIEW .(By using x1y1 aux.plane)

Problem 14 Tv is a triangle abc. Ab is 50 mm long, angle cab is 300 and angle cba is 650. $a^{\prime} b^{\prime} c^{\prime}$ is a Fv . a^{\prime} is 25 mm , b^{\prime} is 40 mm and c^{\prime} is 10 mm above Hp respectively. Draw projections of that figure and find it's true shape.

As per the procedure-

1.First draw Fv \& Tv as per the data.
2.In Tv line $a b$ is // to $x y$ hence it's other view a'b' is TL. So draw $x_{1} y_{1}$ perpendicular to it.
3.Project view on x1y1.
a) First draw projectors from a'b' \& c' on $x_{1} y_{1}$.
b) from $x y$ take distances of $a, b \& c(T v)$ mark on these projectors from $x_{1} y_{1}$. Name points a1b1 \& c1.
c) This line view is an Aux.Tv. Draw $x_{2} y_{2} / /$ to this line view and project Aux. Fv on it.
for that from $x_{1} y_{1}$ take distances of $a^{\prime} b^{\prime} \& c^{\prime}$ and mark from $x_{2} y=$ on new projectors.
4.Name points $a^{\prime}{ }_{1} b^{\prime}{ }_{1} \& c^{\prime}{ }_{1}$ and join them. This will be the required true shape.

Problem 15: Fv \& Tv of a triangular plate are shown.
Determine it's true shape.

PROBLEM 16: Fv \& Tv both are circles of 50 mm diameter. Determine true shape of an elliptical plate.

ADOPT SAME PROCEDURE.

a c is considered as line // to $x y$. Then a'c' becomes TL for the purpose. Using steps properly true shape can be Easily determined.

Study the illustration.

Problem 17 : Draw a regular pentagon of 30 mm sides with one side 30° inclined to xy . This figure is Tv of some plane whose Fv is A line 45^{0} inclined to $x y$. Determine it's true shape.

IN THIS CASE ALSO TRUE LENGTH IS NOT AVAILABLE IN ANY VIEW.

BUT ACTUALLY WE DONOT REQUIRE TL TO FIND IT'S TRUE SHAPE, AS ONE VIEW (FV) IS ALREADY A LINE VIEW. SO JUST BY DRAWING X1Y1 // TO THIS VIEW WE CAN PROJECT VIEW ON IT AND GET TRUE SHAPE:

STUDY THE ILLUSTRATION..

> ALWAYS FOR NEW FV TAKE DISTANCES OF PREVIOUS FV AND FOR NEW TV, DISTANCES OF PREVIOUS TV

REMEMBER!!

SOLIDS

To understand and remember various solids in this subject properly, those are classified \& arranged in to two major groups.

Group A
Solids having top and base of same shape

Group B
Solids having base of some shape and just a point as a top, called apex.

Cylinder

Prisms

Pyramids

Triangular Square Pentagonal Hexagonal
(A solid having six square faces)

Tetrahedron
(A solid having Four triangular faces)

SOLIDS

Dimensional parameters of different solids.

While observing Fv, x-y line represents Horizontal Plane. (Hp)

X While observing Tv, $x-y$ line represents Vertical Plane. (Vp)
T.V.
T.V.

RESTING ON V.P
On one point of base circle.
Axis inclined to Vp And // to Hp
T.V.

LYING ON V.P

On one generator.
Axis inclined to Vp
And // to Hp

STEP 1: ASSUME SOLID STANDING ON THE PLANE WITH WHICH IT IS MAKING INCLINATION.
(IF IT IS INCLINED TO HP, ASSUME IT STANDING ON HP)
(IF IT IS INCLINED TO VP, ASSUME IT STANDING ON VP)
IF STANDING ON HP - IT'S TV WILL BE TRUE SHAPE OF IT'S BASE OR TOP:
IF STANDING ON VP - IT'S FV WILL BE TRUE SHAPE OF IT'S BASE OR TOP.
BEGIN WITH THIS VIEW:
IT'S OTHER VIEW WILL BE A RECTANGLE (IF SOLID IS CYLINDER OR ONE OF THE PRISMS):
IT'S OTHER VIEW WILL BE A TRIANGLE (IF SOLID IS CONE OR ONE OF THE PYRAMIDS):
DRAW FV \& TV OF THAT SOLID IN STANDING POSITION:
STEP 2: CONSIDERING SOLID'S INCLINATION (AXIS POSITION) DRAW IT'S FV \& TV.
STEP 3: IN LAST STEP, CONSIDERING REMAINING INCLINATION, DRAW IT'S FINAL FV \& TV.

GENERAL PATTERN (THREE STEPS) OF SOLUTION:

GROUP B SOLID. CONE
 If solid is inclined to $\mathbf{H p}$

GROUP A SOLID. CYLINDER

GROUP A SOLID. CYLINDER

Three steps
If solid is inclined to $\mathbf{V p}$
Study Next Twelve Problems and Practice them separately !!

CATEGORIES OF ILLUSTRATED PROBLEMS！

PROBLEM NO．1，2，3， 4
PROBLEM NO． 5 \＆ 6
PROBLEM NO． 7
PROBLEM NO． 8
PROBLEM NO． 9
PROBLEM NO． 10 \＆ 11
PROBLEM NO． 12

GENERAL CASES OF SOLIDS INCLINED TO HP \＆VP
CASES OF CUBE \＆TETRAHEDRON
CASE OF FREELY SUSPENDED SOLID WITH SIDE VIEW．
CASE OF CUBE（ WITH SIDE VIEW）
CASE OF TRUE LENGTH INCLINATION WITH HP \＆VP．
CASES OF COMPOSITE SOLIDS．（AUXILIARY PLANE）
CASE OF A FRUSTUM（AUXILIARY PLANE）

Q Draw the projections of a pentagonal prism , base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P. with the axis inclined at 45o to the V.P.
As the axis is to be inclined with the VP, in the first view it must be kept perpendicular to the VP i.e. true shape of the base will be drawn in the FV with one side on XY line

\downarrow

Problem 13.19: Draw the projections of a cone, base 45 mm diameter and axis 50 mm long, when it is resting on the ground on a point on its base circle with (a) the axis making an angle of 30° with the HP and 45° with the VP (b) the axis making an angle of 30° with the HP and its top view making 45° with the VP

Steps

(1) Draw the TV \& FV of the cone assuming its base on the HP
(2) To incline axis at 30° with the HP , incline the base at 60° with HP and draw the FV and then the TV.
(3) For part (a), to find β, draw a line at 45° with XY in the TV, of 50 mm length. Draw the locus of the end of axis. Then cut an arc of length equal to TV of the axis when it is inclined at 30° with HP. Then redraw the TV, keeping the axis at new position. Then draw the new FV
(4) For part (b), draw a line at 45° with XY in the TV. Then redraw the TV, keeping the axis at new position. Again draw the FV.

Q13.22: A hexagonal pyramid base 25 mm side and axis 55 mm long has one of its slant edge on the ground. A plane containing that edge and the axis is perpendicular to the H.P. and inclined at 45° to the V.P. Draw its projections when the apex is nearer to the V.P. than the base.

The inclination of the axis is given indirectly in this problem. When the slant edge of a pyramid rests on the HP its axis is inclined with the HP so while deciding first view the axis of the solid must be kept perpendicular to HP i.e. true shape of the base will be seen in the TV. Secondly when drawing hexagon in the TV we have to keep the corners at the extreme ends.
The vertical plane containing the slant edge on the HP and the axis is seen in the TV as $\mathrm{o}_{1} \mathrm{~d}_{1}$ for drawing auxiliary FV draw an auxiliary plane $X_{1} Y_{1}$ at 45° from $d_{1} o_{1}$ extended. Then draw projectors from each point i.e. a_{1} to f_{1} perpendicular to $X_{1} Y_{1}$ and mark the points measuring their distances in the FV from old XY line.

Problem 5: A cube of 50 mm long edges is so placed on HP on one corner that a body diagonal is parallel to HP and perpendicular to VP Draw it's projections.

Solution Steps:
1.Assuming standing on HP, begin with TV, a square with all sides equally inclined to XY. Project FV and name all points of FV \& TV.
2.Draw a body-diagonal joining c' with 1 '(This can become // to xy)
3.From 3' drop a perpendicular on this and name it p '
4.Draw $2^{\text {nd }} \mathrm{Fv}$ in which 3 ' p ' line is vertical means $\mathrm{c}^{\prime}-1$ ' diagonal must be horizontal. .Now as usual project TV..
6.In final TV draw same diagonal is perpendicular to VP as said in problem. Then as usual project final FV.

-

Problem 6:A tetrahedron of 50 mm long edges is resting on one edge on Hp while one triangular face containing this edge is vertical and 45° inclined to Vp. Draw projections.

IMPORTANT:

Tetrahedron is a special type of triangular pyramid in which base sides \& slant edges are equal in length. Solid of four faces. Like cube it is also described by One dimension only.. Axis length generally not given.
\square

Solution Steps

As it is resting assume it standing on Hp.
Begin with Tv , an equilateral triangle as side case as shown: First project base points of $\mathbf{F v}$ on xy , name those \& axis line. From a' with TL of edge, 50 mm , cut on axis line \& mark ${ }^{\prime}$, (as axis is not known, ${ }^{\prime}$ ' is finalized by slant edge length) Then complete Fv.
In $2^{\text {nd }} \mathbf{F v}$ make face $\mathbf{o}^{\prime}{ }^{\prime}{ }^{\prime} \mathbf{c}^{\prime}$ vertical as said in problem.
And like all previous problems solve completely.
\square

Problem 1. A square pyramid, 40 mm base sides and axis 60 mm long, has a triangular face on the ground and the vertical plane containing the axis makes an angle of 45° with the VP. Draw its projections. Take apex nearer to VP

Solution Steps:

Triangular face on Hp , means it is lying on Hp :
1.Assume it standing on Hp.
2.It's Tv will show True Shape of base(square)
3.Draw square of 40 mm sides with one side vertical Tv \& taking 50 mm axis project Fv. (a triangle)
4. Name all points as shown in illustration.
5.Draw $2^{\text {nd }} \mathrm{Fv}$ in lying position I.e.o'c'd' face on xy. And project it's Tv.
6. Make visible lines dark and hidden dotted, as per the procedure.
7. Then construct remaining inclination with Vp (Vp containing axis ic the center line of $2^{\text {nd }}$ Tv.Make it 45^{0} to $x y$ as shown take apex near to $x y$, as it is nearer to $V p$) \& project final Fv.

3. Select nearest point to observer and draw all lines starting from it-dark.
4. Select farthest point to observer and draw all lines (remaining)from it- dotted.

Problem 13.20:A pentagonal pyramid base 25 mm side and axis 50 mm long has one of its triangular faces in the VP and the edge of the base contained by that face makes an angle of 30° with the HP. Draw its projections.

Step 1. Here the inclination of the axis is given indirectly. As one triangular face of the pyramid is in the VP its axis will be inclined with the VP. So for drawing the first view keep the axis perpendicular to the VP. So the true shape of the base will be seen in the FV. Secondly when drawing true shape of the base in the FV, one edge of the base (which is to be inclined with the HP) must be kept perpendicular to the HP.

Step 2. In the TV side aeo represents a triangular face. So for drawing the TV in the second stage, keep that face on XY so that the triangular face will lie on the VP and reproduce the TV. Then draw the new FV with help of TV

Step 3. Now the edge of the base $\mathrm{a}_{1}{ }^{\prime} \mathrm{e}_{1}$ ' which is perpendicular to the HP must be in clined at 30° to the HP. That is incline the FV till al'e 1 ' is inclined at 30° with the HP. Then draw the TV.

Problem 2:

A cone 40 mm diameter and 50 mm axis is resting on one generator on Hp which makes 30° inclination with VP Draw it's projections.

For dark and dotted lines
1.Draw proper outline of new vie DARK.
2. Decide direction of an observer.
3. Select nearest point to observer and draw all lines starting from it-dark.
4. Select farthest point to observer and draw all lines (remaining) from it- dotted.

Solution Steps:

Resting on Hp on one generator, means lying on Hp :
1.Assume it standing on Hp.
2.It's Tv will show True Shape of base(circle)
3.Draw 40 mm dia. Circle as Tv \&
taking 50 mm axis project Fv. (a triangle)
4. Name all points as shown in illustration.
5.Draw $2^{\text {nd }} \mathrm{Fv}$ in lying position I.e.o'e' on xy. And project it's Tv below xy.
6. Make visible lines dark and hidden dotted, as per the procedure.
7. Then construct remaining inclination with Vp (generator $o_{1} e_{1} 30^{\circ}$ to $x y$ as shown) \& project final Fv.

Problem 3:

A cylinder 40 mm diameter and 50 mm axis is resting on one point of a base circle on Vp while it's axis makes 45° with Vp and Fv of the axis 35^{0} with Hp . Draw projections..

Solution Steps:

Resting on Vp on one point of base, means inclined to Vp :
1.Assume it standing on Vp
2.It's Fv will show True Shape of base \& top(circle)
3.Draw 40 mm dia. Circle as Fv \& taking 50 mm axis project Tv.
(a Rectangle)
4. Name all points as shown in illustration.
5. Draw $2^{\text {nd }}$ Tv making axis 45° to $x y$ And project it's Fv above $x y$.
6.Make visible lines dark and hidden dotted, as per the procedure.
7. Then construct remaining inclination with Hp
(Fv of axis I.e. center line of view to xy as shown) \& project final Tv.

Problem 4:A square pyramid 30 mm base side and 50 mm long axis is resting on it's apex on Hp , such that it's one slant edge is vertical and a triangular face through it is perpendicular to Vp . Draw it's projections.

Solution Steps :
1.Assume it standing on Hp but as said on apex.(inverted).
2.It's Tv will show True Shape of base(square)
3.Draw a corner case square of 30 mm sides as Tv (as shown) Showing all slant edges dotted, as those will not be visible from top.
4.taking 50 mm axis project Fv. (a triangle)
5. Name all points as shown in illustration.
6. Draw $2^{\text {nd }} \mathrm{Fv}$ keeping o'a' slant edge vertical \& project it's Tv
7.Make visible lines dark and hidden dotted, as per the procedure.
8. Then redrew $2^{\text {nd }} T v$ as final Tv keeping $a_{1} 0_{1} d_{1}$ triangular face perpendicular to Vp I.e.xy. Then as usual project final Fv.

FREELY SUSPENDED SOLIDS:

Positions of CG, on axis, from base, for different solids are shown below.

GROUP A SOLIDS (Cylinder \& Prisms)

GROUP B SOLIDS (Cone \& Pyramids)

Problem 7: A pentagonal pyramid 30 mm base sides \& 60 mm long axis, is freely suspended from one corner of base so that a plane containing it's axis remains parallel to Vp .
Draw it's three views.

Solution Steps:

葍|《|
In all suspended cases axis shows inclination with Hp .
1.Hence assuming it standing on Hp, drew Tv - a regular pentagon, corner case.
2.Project Fv \& locate CG position on axis - ($1 / 4 \mathrm{H}$ from base.) and name g ' and Join it with corner d'
3.As $2^{\text {nd }} \mathrm{Fv}$, redraw first keeping line $g^{\prime} d^{\prime}$ vertical.
4.As usual project corresponding Tv and then Side View looking from.

IMPORTANT:
When a solid is freely suspended from a corner, then line joining point of contact \& C.G. remains vertical.
(Here axis shows inclination with Hp.) So in all such cases, assume solid standing on Hp initially.)

LINE d'g' VERTICAL

Solution Steps:

1.Assuming it standing on Hp begin with Tv , a square of corner case. 2.Project corresponding Fv.\& name all points as usual in both views. 3.Join a'1' as body diagonal and draw $2^{\text {nd }} \mathrm{Fv}$ making it vertical (I' on xy) 4.Project it's Tv drawing dark and dotted lines as per the procedure. 5.With standard method construct Left-hand side view. (Draw a 45° inclined Line in Tv region (below xy). Project horizontally all points of Tv on this line and reflect vertically upward, above xy.After this, draw horizontal lines, from all points of Fv, to meet these lines. Name points of intersections and join properly. For dark \& dotted lines locate observer on left side of Fv as shown.)
\square
\square

Problem 8:

A cube of $\mathbf{5 0} \mathbf{~ m m}$ long edges is so placed

 on Hp on one corner that a body diagonal through this corner is perpendicular to $\mathbf{H p}$ and parallel to Vp Draw it's three views.
\square

Problem 9: A right circular cone, 40 mm base diameter and 60 mm long axis is resting on Hp on one point of base circle such that it's axis makes 45° inclination with Hp and 40° inclination with V p. Draw it's projections.

This case resembles to problem no. 7 \& 9 from projections of planes topic.
In previous all cases $2^{\text {nd }}$ inclination was done by a parameter not showing TL.Like Tv of axis is inclined to Vp etc. But here it is clearly said that the axis is 40° inclined to Vp. Means here TL inclination is expected. So the same construction done in those

Problems is done here also. See carefully the final Tv and inclination taken there.
So assuming it standing on HP begin as usual.

Problem 10: A triangular prism,

 40 mm base side 60 mm axis is lying on Hp on one rectangular face with axis perpendicular to V p.One square pyramid is leaning on it's face centrally with axis // to vp. It's base side is $30 \mathrm{~mm} \&$ axis is 60 mm long resting on Hp on one edge of base.Draw FV \& TV of both solids. Project another FV on an AVP 45^{0} inclined to VP.

Steps :

Draw Fv of lying prism (an equilateral Triangle) And Fv of a leaning pyramid. Project Tv of both solids. Draw $\mathrm{x}_{1} \mathrm{y}_{1} 45^{0}$ inclined to xy and project aux.Fv on it. Mark the distances of first FV from first xy for the distances of aux. Fv from $x_{1} y_{1}$ line.
Note the observer's directions Shown by arrows and further steps carefully.

face de is on Hp

\square
T.V.

Problem 11:A hexagonal prism of

base side 30 mm longand axis 40 mm long, is standing on Hp on it's base with one base edge // to Vp.
A tetrahedron is placed centrally on the top of it.The base of tetrahedron is a triangle formed by joining alternate corners of top of prism..Draw projections of both solids. Project an auxiliary Tv on AIP 45° inclined to Hp.

STEPS:

Draw a regular hexagon as Tv of standing prism With one side // to xy and name the top points.Project it's Fv a rectangle and name it's top. Now join it's alternate corners a-c-e and the triangle formed is base of a tetrahedron as said.
Locate center of this triangle \& locate apex o
Extending it's axis line upward mark apex o'
By cutting TL of edge of tetrahedron equal to $\mathrm{a}-\mathrm{c}$. and complete Fv of tetrahedron.

Draw an AIP (x 1 y 1) 45^{0} inclined to xy And project Aux.Tv on it by using similar Steps like previous problem. | |
| :--- |
| Hp. |

Problem 12: A frustum of regular hexagonal pyrami is standing on it's larger base On Hp with one base side perpendicular to Vp.Draw it's Fv \& Tv.
Project it's Aux.Tv on an AIP parallel to one of the slant edges showing TL.
Base side is 50 mm long, top side is 30 mm long and 50 mm is height of frustum.

UNIT-4

ENGINEERING APPLICATIONS

OF
THE PRINCIPLES
OF
PROJECTIONS OF SOLIDS.

1. SECTIONS OF SOLIDS.
2. DEVELOPMENT. 3. INTERSECTIONS.

SECTIONING A SOLID.

An object (here a solid) is cut by
some imaginary cutting plane to understand internal details of that object.

Two cutting actions means section planes are recommended.

A) Section Plane perpendicular to Vp and inclined to Hp . (This is a definition of an Aux. Inclined Plane i.e. A.I.P.) NOTE:- This section plane appears as a straight line in FV.
B) Section Plane perpendicular to Hp and inclined to Vp . (This is a definition of an Aux. Vertical Plane i.e. A.V.P.) NOTE:- This section plane appears as a straight line in TV.

Remember:-

1. After launching a section plane either in FV or TV, the part towards observer is assumed to be removed.
2. As far as possible the smaller part is assumed to be removed.

The action of cutting is called SECTIONING a solid \& The plane of cutting is called SECTION PLANE.

ILLUSTRATION SHOWING IMPORTANT TERMS IN SECTIONING

For TV

Apparent Shape of section

SECTION LINES
$\left(45^{0}\right.$ to XY)

SECTIONAL T.V.

Typical Section Planes \&

Typical Shapes Of Sections.
 Through Apex

Section Plane Parallel to end generator.
 Parallel to Axis.

Cylinder through generators.

Sq. Pyramid through all slant edges

DEVELOPMENT OF SURFACES OF SOLIDS.

MEANING:-
 ASSUME OBJECT HOLLOW AND MADE-UP OF THIN SHEET. CUT OPEN IT FROM ONE SIDE AND UNFOLD THE SHEET COMPLETELY. THEN THE SHAPE OF THAT UNFOLDED SHEET IS CALLED DEVELOPMENT OF LATERLAL SUEFACES OF THAT OBJECT OR SOLID.

LATERLAL SURFACE IS THE SURFACE EXCLUDING SOLID'S TOP \& BASE.

ENGINEERING APLICATION:

THERE ARE SO MANY PRODUCTS OR OBJECTS WHICH ARE DIFFICULT TO MANUFACTURE BY CONVENTIONAL MANUFACTURING PROCESSES, BECAUSE OF THEIR SHAPES AND SIZES.
THOSE ARE FABRICATED IN SHEET METAL INDUSTRY BY USING
DEVELOPMENT TECHNIQUE. THERE IS A VAST RANGE OF SUCH OBJECTS.

EXAMPLES:-

Boiler Shells \& chimneys, Pressure Vessels, Shovels, Trays, Boxes \& Cartons, Feeding Hoppers, Large Pipe sections, Body \& Parts of automotives, Ships, Aeroplanes and many more.

To learn methods of development of surfaces of different solids, their sections and frustums.

> But before going ahead, note following Important points.

1. Development is different drawing than PROJECTIONS.
2. It is a shape showing AREA, means it's a 2-D plain drawing.
3. Hence all dimensions of it must be TRUE dimensions.
4. As it is representing shape of an un-folded sheet, no edges can remain hidden And hence DOTTED LINES are never shown on development.

Development of lateral surfaces of different solids.
(Lateral surface is the surface excluding top \& base)

Cylinder: A Rectangle

Prisms: No.of Rectangles

Tetrahedron: Four Equilateral Triangles

Cone: (Sector of circle)

$$
\mathrm{L}=\mathrm{Slant}_{\mathrm{R}} \text { height. }
$$

$$
\theta=\frac{\mathrm{R}}{\mathrm{~L}} \times 360^{\circ}
$$

Pyramids: (No.of

Cube: Six Squares.

FRUSTUMS

DEVELOPMENT OF FRUSTUM OF CONE

$\mathrm{R}=$ Base circle radius of cone
$\mathrm{L}=$ Slant height of cone
$\mathrm{L}_{1}=$ Slant height of cut part.

DEVELOPMENT OF FRUSTUM OF SQUARE PYRAMID

$\mathrm{L}=$ Slant edge of pyramid
$\mathrm{L}_{1}=$ Slant edge of cut part.

STUDY NEXT NINE PROBLEMS OF SECTIONS \& DEVELOPMENT

Problem 1: A pentagonal prism , 30 mm base side $\& 50 \mathrm{~mm}$ axis is standing on Hp on it's base whose one side is perpendicular to Vp . It is cut by a section plane 45° inclined to Hp , through mid point of axis. Draw Fv, sec.Tv \& sec. Side view. Also draw true shape of section and Development of surface of remaining solid.

Solution Steps:for sectional views: Draw three views of standing prism. Locate sec.plane in Fv as described. Project points where edges are getting Cut on Tv \& Sv as shown in illustration. Join those points in sequence and show Section lines in it.
Make remaining part of solid dark.

For True Shape:

Draw $x_{1} y_{1} / /$ to sec. plane Draw projectors on it from cut points. Mark distances of points of Sectioned part from Tv, on above projectors from $x_{1} y_{1}$ and join in sequence. Draw section lines in it. It is required true shape.

For Development:
Draw development of entire solid. Name from cut-open edge I.e. A. in sequence as shown. Mark the cut points on respective edges. Join them in sequence in st. lines. Make existing parts dev.dark.

Problem 2: A cone, 50 mm base diameter and 70 mm axis is standing on it's base on Hp. It cut by a section plane 45^{0} inclined to Hp through base end of end generator.Draw projections, sectional views, true shape of section and development of surfaces of remaining solid.

Solution Steps:for sectional views:

Draw three views of standing cone. Locate sec.plane in Fv as described. Project points where generators are getting Cut on Tv \& Sv as shown in illustration.Join those points in sequence and show Section lines in it. Make remaining part of solid dark.

B

C

D

For True Shape:

Draw $x_{1} \mathrm{y}_{1} / /$ to sec. plane Draw projectors on it from cut points.
Mark distances of points of Sectioned part from Tv, on above projectors from $\mathrm{x}_{1} \mathrm{y}_{1}$ and join in sequence. Draw section lines in it. It is required true shape.

SECTIONAL T.V

SECTIONAL S.V

DEVELOPMENT

For Development:

Draw development of entire solid. Name from cut-open edge i.e. A. in sequence as shown.Mark the cut points on respective edges. Join them in sequence in curvature. Make existing parts dev.dark.

Problem 2: A cone, 50 mm base diameter and 70 mm axis is standing on it's base on Hp. It cut by a section plane 45^{0} inclined to Hp through base end of end generator.Draw projections, sectional views, true shape of section and development of surfaces of remaining solid.

Solution Steps:for sectional views:

Draw three views of standing cone. Locate sec.plane in Fv as described. Project points where generators are getting Cut on Tv \& Sv as shown in illustration.Join those points in sequence and show Section lines in it. Make remaining part of solid dark.

B

C

D

For True Shape:

Draw $x_{1} \mathrm{y}_{1} / /$ to sec. plane Draw projectors on it from cut points.
Mark distances of points of Sectioned part from Tv, on above projectors from $\mathrm{x}_{1} \mathrm{y}_{1}$ and join in sequence. Draw section lines in it. It is required true shape.

SECTIONAL T.V

SECTIONAL S.V

DEVELOPMENT

For Development:

Draw development of entire solid. Name from cut-open edge i.e. A. in sequence as shown.Mark the cut points on respective edges. Join them in sequence in curvature. Make existing parts dev.dark.

Problem 3: A cone 40 mm diameter and 50 mm axis is resting on one generator on Hp (Iying on Hp) which is // to Vp.. Draw it's projections. It is cut by a horizontal section plane through it's base center. Draw sectional TV, development of the surface of the remaining part of cone.

Follow similar solution steps for Sec.views - True shape - Development as per previous problem!

Problem 6: Draw a semicircle Of 100 mm diameter and inscribe in it a largest circle. If the semicircle is development of a cone and inscribed circle is some curve on it, then draw the projections of cone showing that curve.

TO DRAW PRINCIPAL VIEWS FROM GIVEN DEVELOPMENT.

Solution Steps:

Draw semicircle of given diameter, divide it in 8 Parts and inscribe in it a largest circle as shown. Name intersecting points $1,2,3$ etc. Semicircle being dev.of a cone it's radius is slant height of cone.(L) Then using above formula find R of base of cone. Using this data draw Fv \& Tv of cone and form 8 generators and name. Take o-1 distance from dev., mark on TLi.e.o'a' on Fv \& bring on o'b' and name 1' Similarly locate all points on Fv. Then project all on Tv on respective generators and join by smooth curve.

Problem 7:Draw a semicircle 0f 100 mm diameter and inscribe in it a largest rhombus.If the semicircle is development of a cone and rhombus is some curve on it, then draw the projections of cone showing that curve.

TO DRAW PRINCIPAL VIEWS FROM GIVEN DEVELOPMENT.

$\mathrm{R}=$ Base circle radius.
$\mathrm{L}=$ Slant height.
$\theta=\frac{\mathrm{R}}{\mathrm{L}} \times 360^{\circ}$

Problem 8: A half cone of 50 mm base diameter, 70 mm axis, is standing on it's half base on HP with it's flat face parallel and nearer to VP.An inextensible string is wound round it's surface from one point of base circle and brought back to the same point.If the string is of shortest length, find it and show it on the projections of the cone.

TO DRAW A CURVE ON PRINCIPAL VIEWS FROM DEVELOPMENT.

Concept: A string wound from a point up to the same Point, of shortest length Must appear st. line on it's Development.

Solution steps:

Hence draw development, Name it as usual and join A to A This is shortest Length of that string.
Further steps are as usual. On dev. Name the points of Intersections of this line with Different generators.Bring Those on Fv \& Tv and join by smooth curves.
Draw 4' a' part of string dotted As it is on back side of cone.

Problem 9: A particle which is initially on base circle of a cone, standing on Hp , moves upwards and reaches apex in one complete turn around the cone.
Draw it's path on projections of cone as well as on it's development.
Take base circle diameter 50 mm and axis 70 mm long.

DEVELOPMENT

It's a construction of curve Helix of one_turn on cone:
Draw Fv \& Tv \& dev.as usual On all form generators \& name. Construction of curve Helix::
Show 8 generators on both views Divide axis also in same parts. Draw horizontal lines from those points on both end generators.
1^{\prime} is a point where first horizontal Line \& gen. b'o' intersect.
2^{\prime} is a point where second horiz. Line \& gen. c'o' intersect. In this way locate all points on Fv. Project all on Tv.Join in curvature. For Development:
Then taking each points true Distance From resp.generator from apex, Mark on development \&-join.

INTERPENETRATION OF SOLIDS

WHEN ONE SOLID PENETRATES ANOTHER SOLID THEN THEIR SURFACES INTERSECT AND
AT THE JUNCTION OF INTERSECTION A TYPICAL CURVE IS FORMED, WHICH REMAINS COMMON TO BOTH SOLIDS.

THIS CURVE IS CALLED CURVE OF INTERSECTION

 ANDIT IC \triangle DECIIT TAE INTEDDENUETR ATIAN AE CAI INC

PURPOSE OF DRAWING THESE CURVES:-

WHEN TWO OBJECTS ARE TO BE JOINED TOGATHER, MAXIMUM SURFACE CONTACT BETWEEN BOTH
BECOMES A BASIC REQUIREMENT FOR STRONGEST \& LEAK-PROOF JOINT.
Curves of Intersections being common to both Intersecting solids, show exact \& maximum surface contact of both solids.

Study Following Illustrations Carefully.

Minimum Surface Contact.

Square Pipes.

Circular Pipes.
(Maximum Surface Contact)
Lines of Intersections.

Square Pipes.

Curves of Intersections.

Circular Pipes.

A machine component having two intersecting cylindrical surfaces with the axis at acute angle to each other.

A Feeding Hopper In industry.

Forged End of a Connecting Rod.

An Industrial Dust collector. Intersection of two cylinders.

Intersection of a Cylindric main and Branch Pipe.

Pump lid having shape of a hexagonal Prism and Hemi-sphere intersecting each other.

FOLLOWING CASES ARE SOLVED. REFFER ILLUSTRATIONS AND
NOTE THE COMMOX GONSTRUCTION FOR ALL
1.CYLINDER TO CYLINDER2.
2.SQ.PRISM TO CYLINDER
3.CONE TO CYLINDER
4.TRIANGULAR PRISM TO CYLNDER
5.SQ.PRISM TO SQ.PRISM
6.SQ.PRISM TO SQ.PRISM (SKEW POSITION)
7.SQARE PRISM TO CONE (from top)

COMMON SOLUTION STEPS

One solid will be standing on HP Other will penetrate horizontally. Draw three views of standing solid. Name views as per the illustrations. Beginning with side view draw three Views of penetrating solids also. On it's S.V. mark number of points And name those(either letters or nos.) The points which are on standard generators or edges of standing solid, (in S.V.) can be marked on respective generators in Fv and Tv. And other points from SV should be brought to Tv first and then projecting upward To Fv.
Dark and dotted line's decision should be taken by observing side view from it's right side as shown by arrow. Accordingly those should be joined by curvature or straight lines.

Incase cone is penetrating solid Side view is not necessary. Similarly in case of penetration from top it is not required.

Problem: A cylinder 50 mm dia.and 70 mm axis is completely penetrated CASE 1. by another of 40 mm dia.and 70 mm axis horizontally Both axes infYECINDER STANDING \& bisect each other. Draw projections showing curves of intersections.

Problem: A cylinder 50 mm dia. and 70 mm axis is completely penetrated
CASE 2.
by a square prism of 25 mm sides. and 70 mm axis, horizontally. BothCaKEANDER STANDING Intersect \& bisect each other. All faces of prism are equally inclined to Hp. \& Draw projections showing curves of intersections.

SQ.PRISM PENETRATING

Problem: A cylinder of 80 mm diameter and 100 mm axis is completely penetrated by a cone of 80 mm diameter and 120 mm long axis horizontally.Both axes intersect \& bisect each other. Draw projections showing curve of intersections.

CASE 3.

CYLINDER STANDING

 \&CONE PENETRATING

Problem: A sq.prism 30 mm base sides.and 70 mm axis is completely penetrateASE 4. by another square prism of 25 mm sides.and 70 mm axis, horizontallyS(W)PRISAM STANDING Intersects \& bisect each other. All faces of prisms are equally inclined to Vp. \& Draw projections showing curves of intersections.

Problem: A cylinder 50 mm dia.and 70 mm axis is completely penetrated by a triangular prism of 45 mm sides. and 70 mm axis, horizontally. One flat face of prism is parallel to Vp and Contains axis of cylinder. Draw projections showing curves of intersections.

CASE 5. CYLINDER STANDING \& TRIANGULAR PRISM PENETRATING

Problem: A sq.prism 30 mm base sides. and 70 mm axis is completely penetrated by another square prism of 25 mm side s.and 70 mm axis, horizontally. Both axes Intersect \& bisect

CASE 6.
SQ.PRISM STANDING \& each other.Two faces of penetrating prism are 30° inclined to HpSQ.PRISM PENETRATING Draw projections showing curves of intersections.

CASE 7.
CONE STANDING \& SQ.PRISM PENETRATING (BOTH AXES VERTICAL)

Problem: A cone 70 mm base diameter and 90 mm a is completely penetrated by a square prism from to with it's axis // to cone's axis and 5 mm away from a vertical plane containing both axes is parallel to V Take all faces of sq.prism equally inclined to V . Base Side of prism is 0 mm and axis is 100 mm lon Draw projections showing curves of intersections.

Problem: A vertical cone, base diameter 75 mm and axis 100 mm long,
CASE 8. is completely penetrated by a cylinder of 45 mm diameter. The axis of theONE STANDING cylinder is parallel to Hp and Vp and intersects axis of the cone at a point
28 mm above the base, Draw projections showing curves of,intersectydnINDER PENETRATING

IT IS A TYPE OF PICTORIAL PROJECTION IN WHICH ALL THREE DIMENSIONS OF AN OBJECT ARE SHOWN IN ONE VIEW AND IF REQUIRED, THEIR ACTUAL SIZES CAN BE MEASURED DIRECTLY FROM IT.

TYPICAL CONDITION.

IN THIS 3-D DRAWING OF AN OBJECT, ALL THREE DIMENSIONAL AXES ARE MENTAINED AT EQUAL INCLINATIONS WITH EACH OTHER.(120°)

3-D DRAWINGS CAN BE DRAWN IN NUMEROUS WAYS AS SHOWN BELOW. ALL THESE DRAWINGS MAY BE CALLED 3-DIMENSIONAL DRAWINGS, OR PHOTOGRAPHIC OR PICTORIAL DRAWINGS.
HERE NO SPECIFIC RELATION AMONG H, L \& D AXES IS MENTAINED.

NOW OBSERVE BELOW GIVEN DRAWINGS.
ONE CAN NOTE SPECIFIC INCLINATION AMONG H, L \& D AXES. ISO MEANS SAME, SIMILAR OR EQUAL.

HERE ONE CAN FIND EDUAL INCLINATION AMONG H, L \& D AXES. EACH IS 120° INCLINED WITH OTHER TWO. HENCE IT IS CALLED ISOMETRIC DRAWING

PURPOSE OF ISOMETRIC DRAWING IS TO UNDERSTAND

SOME IMPORTANT TERMS:

ISOMETRIC AXES, LINES AND PLANE

The three lines $A L, A D$ and $A H$, meeting at point A and making 120° angles with each other are termed Isometric Axes.

The lines parallel to these axes are called Isometric Lines.
The planes representing the faces of of the cube as well as other planes parallel to these planes are called Isometric Planes.

ISOMETRIC SCALE:

When one holds the object in such a way that all three dimensions are visible then in the process all dimensions become proportionally inclined to observer's eye sight and hence appear apparent in lengths.

This reduction is 0.815 or 9 / 11 (approx.) It forms a reducing scale which Is used to draw isometric drawings and is called Isometric scale.

In practice, while drawing isometric projection, it is necessary to convert true lengths into isometric lengths for measuring and marking the sizes. This is conveniently done by constructing an isometric scale as described

TYPES OF ISOMETRIC DRAWINGS

PLANE FIGURES

AS THESE ALL ARE
2-D FIGURES WE REQUIRE ONLY TWO ISOMETRIC AXES.

IF THE FIGURE IS FRONT VIEW, H \& L AXES ARE REQUIRED.

IF THE FIGURE IS TOP VIEW, D \& LAXES ARE REQUIRED.

Shapes containing Inclined lines should be enclosed in a rectangle as shown.
Then first draw isom. of that rectangle and then inscribe that shape as it
is.
SHAPE
Isometric view if the Shape is F.V. or T.V.

STUDY

DRAW ISOMETRIC VIEW OF THE FIGURE SHOWN WITH DIMENTIONS (ON RIGHT SIDE) CONSIDERING IT FIRST AS F.V. AND THEN T.V.

IF FRONT VIEW

ISOMETRIC

 OF
PLANE FIGURES

AS THESE ALL ARE 2-D FIGURES WE REQUIRE ONLY TWO ISOMETRIC AXES.

IF THE FIGURE IS FRONT VIEW, H \& L AXES ARE REQUIRED.

IF THE FIGURE IS TOP
VIEW, D \& L AXES ARFFor Isometric of Circle/Semicircle use Rhombus method. Construct Rhomb REQUIRED. of sides equal to Diameter of circle always. (Ref. topic ENGG. CURVES. SEMI CIRCLE
For Isometric of Circle/Semicircle use Rhombus method. Construct it of sides equal o diameter of circle always. Ref Pryous mo pages)

ISOMETRIC VIEW OF BASE OF PENTAGONAL PYRAMID

STANDING ON H.P.

ISOMETRIC VIEW OF PENTAGONAL PYRAMID STANDING ON H.P.

(Height is added from center of pentagon)

STUDY

ILLUSTRATIONS

ISOMETRIC VIEW OF PENTAGONALL PRISM LYING ON H.P.

ISOMETRIC VIEW OF HEXAGONAL PRISM STANDING ON H.P.

CYLINDER STANDING ON H.P.

CYLINDER LYING ON H.P.

HALF CYLINDER STANDING ON H.P. (ON IT'S SEMICIRCULAR BASE)

HALF CYLINDER
LYING ON H.P.
(with flat face // to H.P.)

PROJECTIONS OF FRUSTOM OF PENTAGONAL PYRAMID ARE GIVEN. DRAW IT'S ISOMETRIC VIEW.

ISOMETRIC VIEW OF

FRUSTOM OF PENTAGONAL PYRAMID

SOLUTION STEPS:
FIRST DRAW ISOMETRIC OF IT'S BASE.

THEN DRAWSAME SHAPE AS TOP, 60 MM ABOVE THE BASE PENTAGON CENTER.

THEN REDUCE THE TOP TO 20 MM SIDES AND JOIN WITH THE PROPER BASE CORNERS.

ISOMETRIC VIEW OF A FRUSTOM OF CONE

PROBLEM: A SQUARE PYRAMID OF 30 MM BASE SIDES AND

50 MM LONG AXIS, IS CENTRALLY PLACED ON THE TOP OF A

 CUBE OF 50 MM LONG EDGES.DRAW ISOMETRIC VIEW OF THE PAIR.

PROBLEM: A TRIANGULAR PYRAMID OF 30 MM BASE SIDES AND 50 MM LONG AXIS, IS CENTRALLY PLACED ON THE TOP OF A CUBE OF 50 MM LONG EDGES. DRAW ISOMETRIC VIEW OF THE PAIR.

SOLUTION HINTS.

TO DRAW ISOMETRIC OF A CUBE IS SIMPLE. DRAW IT AS USUAL.

> BUT FOR PYRAMID AS IT'S BASE IS AN EQUILATERAL TRIANGLE,
> IT CAN NOT BE DRAWN DIRECTLY.SUPPORT OF IT'S TV IS REQUIRED.

STUDY ILLUSTRATIONS

PROBLEM:
A SQUARE PLATE IS PIERCED THROUGH CENTRALLY
BY A CYLINDER WHICH COMES OUT EQUALLY FROM BOTH FACES OF PLATE. IT'S FV \& TV ARE SHOWN. DRAW ISOMETRIC VIEW.

TV

PROBLEM:
A CIRCULAR PLATE IS PIERCED THROUGH CENTRALLY
BY A SQUARE PYRAMID WHICH COMES OUT EQUALLY FROM BOTH FACES OF PLATE. IT'S FV \& TV ARE SHOWN. DRAW ISOMETRIC VIEW.

$\mathrm{C}=$ Center of Sphere.
$\mathrm{P}=$ Point of contact
$\mathrm{R}=$ True Radius of Sphere
$\mathrm{r}=$ Isometric Radius.

TO DRAW ISOMETRIC PROJECTION OF A SPHERE

1. FIRST DRAW ISOMETRIC OF SQUARE PLATE.
2. LOCATE IT'S CENTER. NAME IT P.
3. FROM PDRAW VERTICAL LINE UPWARD, LENGTH ' r mm' AND LOCATE CENTER OF SPHERE "C"
4. 'C' AS CENTER, WITH RADIUS 'R' DRAW CIRCLE. THIS IS ISOMETRIC PROJECTION OF A SPHERE.

TO DRAW ISOMETRIC PROJECTION OF A HEMISPHERE

Adopt same procedure.
Draw lower semicircle only.
Then around ' C ' construct
Rhombus of Sides equal to
Isometric Diameter.
For this use iso-scale.
Then construct ellipse in this Rhombus as usual And Complete Isometric-Projection of Hemi-sphere.

A HEMI-SPHERE IS CENTRALLY PLACED
ON THE TOP OF A FRUSTOM OF CONE.
DRAW ISOMETRIC PROJECTIONS OF THE ASSEMBLY.

50 D

FIRST CONSTRUCT ISOMETRIC SCALE. USE THIS SCALE FOR ALL DIMENSIONS IN THIS PROBLEM.

F.V. \& T.V. of an object are given. Draw it's isometric view.

F.V. \& T.V. of an object are given. Draw it's isometric view.

ILLUSTRATIONS

TV

ALL VIEWS IDENTICAL

F.V. \& T.V. and S.V.of an object are given. Draw it's isometric viem. 25

ALL VIEWS IDENTICAL

F.V. \& T.V. and S.V.of an object are given. Draw it's isometric view.

ORTHOGRAPHIC PROJECTIONS

TOP VIEW
F.V. and S.V.of an object are given. Draw it's isometric view.

TV

F.V. and S.V. of an object are given. Draw it's isometric view.

F.V. and S.V.of an object are given.

F.V. \& T.V. of an object are given. Draw it's isometric view.

F.V. and S.V.of an object are given.

Draw it's isometric view.

FV

STUPY

MLUSTRATIONG

NOTE THE SMALL CHZNGE IN $2^{\text {ND }}$ FV \& SV. DRAW ISOMETRIC ACCORDINGLY.

F.V. and S.V.of an object are given. Draw it's isometric view.

PROJECTIONS OF STRAIGHT LINES

1. A line $A B$ is in first quadrant. Its ends A and B are 25 mm and 65 mm in front of VP respectively. The distance between the end projectors is 75 mm . The line is inclined at 30° to VP and its VT is 10 mm above HP. Draw the projections of AB and determine its true length and HT and inclination with HP.
2. A line AB measures 100 mm . The projections through its VT and end A are 50 mm apart. The point A is 35 mm above HP and 25 mm in front VP. The VT is 15 mm above HP. Draw the projections of line and determine its HT and Inclinations with HP and VP.
3. Draw the three views of line $\mathrm{AB}, 80 \mathrm{~mm}$ long, when it is lying in profile plane and inclined at 35° to HP. Its end A is in HP and 20 mm in front of VP, while other end B is in first quadrant. Determine also its traces.
4. A line $A B 75 \mathrm{~mm}$ long, has its one end A in VP and other end $B 15 \mathrm{~mm}$ above HP and 50 mm in front of VP. Draw the projections of line when sum of inclinations with HP and VP is 90°. Determine the true angles of inclination and show traces.
5. A line AB is 75 mm long and lies in an auxiliary inclined plane (AIP) which makes an angle of 45° with the HP. The front view of the line measures 55 mm . The end A is in VP and 20 mm above HP. Draw the projections of the line $A B$ and find its inclination with HP and VP.

APPLICATIONS OF LINES

Room, compound wall cases
7) A room measures $8 \mathrm{~m} \times 5 \mathrm{~m} \times 4 \mathrm{~m}$ high. An electric point hang in the center of ceiling and 1 m below it. A thin straight wire connects the point to the switch in one of the corners of the room and 2 m above the floor. Draw the projections of the and its length and slope angle with the floor.
8) A room is of size $6 \mathrm{~m} \backslash 5 \mathrm{~m} \backslash 3.5 \mathrm{~m}$ high. Determine graphically the real distance between the top corner and its diagonally apposite bottom corners. consider appropriate scale
9) Two pegs A and B are fixed in each of the two adjacent side walls of the rectangular room $3 \mathrm{~m} \times 4 \mathrm{~m}$ sides. Peg A is 1.5 m above the floor, 1.2 m from the longer side wall and is protruding 0.3 m from the wall. Peg B is 2 m above the floor, 1 m from other side wall and protruding 0.2 m from the wall. Find the distance between the ends of the two pegs. Also find the height of the roof if the shortest distance between peg A and and center of the ceiling is 5 m .
10) Two fan motors hang from the ceiling of a hall $12 \mathrm{~m} \times 5 \mathrm{~m} \times 8 \mathrm{~m}$ high at heights of 4 m and 6 m respectively. Determine graphically the distance between the motors. Also find the distance of each motor from the top corner joining end and front wall.
11) Two mangos on a two tree are 2 m and 3 m above the ground level and 1.5 m and 2.5 m from a 0.25 m thick wall but on apposite sides of it. Distances being measured from the center line of the wall. The distance between the apples, measured along ground and parallel to the wall is 3 m . Determine the real distance between the ranges.

POLES,ROADS, PIPE LINES,, NORTH- EAST-SOUTH WEST, SLOPE AND GRADIENT CASES.

12)Three vertical poles AB, CD and EF are lying along the corners of equilateral triangle lying on the ground of 100 mm sides. Their lengths are $5 \mathrm{~m}, 8 \mathrm{~m}$ and 12 m respectively. Draw their projections and find real distance between their top ends.
13) A straight road going up hill from a point A due east to another point B is 4 km long and has a slop of 25°. Another straight road from B due 30° east of north to a point C is also 4 kms long but going downward and has slope of 15°. Find the length and slope of the straight road connecting A and C .
14) An electric transmission line laid along an uphill from the hydroelectric power station due west to a substation is 2 km long and has a slop of 30°. Another line from the substation, running $\mathrm{W} 45^{0} \mathrm{~N}$ to village, is 4 km long and laid on the ground level. Determine the length and slope of the proposed telephone line joining the the power station and village.
15) Two wire ropes are attached to the top corner of a 15 m high building. The other end of one wire rope is attached to the top of the vertical pole 5 m high and the rope makes an angle of depression of 45°. The rope makes 30° angle of depression and is attached to the top of a 2 m high pole. The pole in the top view are 2 m apart. Draw the projections of the wire ropes.
16) Two hill tops A and B are 90 m and 60 m above the ground level respectively. They are observed from the point C, 20 m above the ground. From C angles and elevations for A and B are 45° and 30° respectively. From B angle of elevation of A is 45°. Determine the two distances between A, B and C .

PROJECTIONS OF PLANES:-

1. A thin regular pentagon of 30 mm sides has one side // to Hp and 30° inclined to Vp while its surface is 45° inclines to Hp. Draw its projections.
2. A circle of 50 mm diameter has end A of diameter AB in Hp and AB diameter 300 inclined to Hp . Draw its projections if
a) the TV of same diameter is 45° inclined to Vp, OR b) Diameter AB is in profile plane.
3. A thin triangle PQR has sides $\mathrm{PQ}=60 \mathrm{~mm} . \mathrm{QR}=80 \mathrm{~mm}$. and $\mathrm{RP}=50 \mathrm{~mm}$. long respectively. Side PQ rest on ground and makes 30° with Vp. Point P is 30 mm in front of Vp and R is 40 mm above ground. Draw its projections.
4. An isosceles triangle having base 60 mm long and altitude 80 mm long appears as an equilateral triangle of 60 mm sides with one side 30° inclined to XY in top view. Draw its projections.
5. A $30^{\circ}-60^{\circ}$ set-square of 40 mm long shortest side in Hp appears is an isosceles triangle in its TV. Draw projections of it and find its inclination with Hp.
6. A rhombus of 60 mm and 40 mm long diagonals is so placed on Hp that in TV it appears as a square of 40 mm long diagonals. Draw its FV.
7. Draw projections of a circle 40 mm diameter resting on Hp on a point A on the circumference with its surface 30° inclined to Hp and 45° to Vp .
8. A top view of plane figure whose surface is perpendicular to Vp and 60° inclined to Hp is regular hexagon of 30 mm sides with one side 30^{0} inclined to xy .Determine it's true shape.
9. Draw a rectangular abcd of side 50 mm and 30 mm with longer 35° with XY , representing TV of a quadrilateral plane ABCD . The point A and B are 25 and 50 mm above Hp respectively. Draw a suitable Fv and determine its true shape.
10.Draw a pentagon abcde having side 50° to XY , with the side $\mathrm{ab}=30 \mathrm{~mm}, \mathrm{bc}=60 \mathrm{~mm}, \mathrm{~cd}=50 \mathrm{~mm}$, $\mathrm{de}=25 \mathrm{~mm}$ and angles abc 120°, cde 125°. A figure is a TV of a plane whose ends A,B and E are 15,25 and 35 mm above Hp respectively. Complete the projections and determine the true shape of the plane figure. 0

PROJECTIONS OF SOLIDS

1. Draw the projections of a square prism of 25 mm sides base and 50 mm long axis. The prism is resting with one of its corners in VP and axis inclined at 30° to VP and parallel to HP.
2. A pentagonal pyramid, base 40 mm side and height 75 mm rests on one edge on its base on the ground so that the highest point in the base is 25 mm . above ground. Draw the projections when the axis is parallel to Vp. Draw an another front view on an AVP inclined at 30° to edge on which it is resting so that the base is visible.
3. A square pyramid of side 30 mm and axis 60 mm long has one of its slant edges inclined at 45° to HP and a plane containing that slant edge and axis is inclined at 30° to VP. Draw the projections.
4. A hexagonal prism, base 30 mm sides and axis 75 mm long, has an edge of the base parallel to the HP and inclined at 45° to the VP. Its axis makes an angle of 60° with the HP. Draw its projections. Draw another top view on an auxiliary plane inclined at 50° to the HP.
5. Draw the three views of a cone having base 50 mm diameter and axis 60 mm long It is resting on a ground on a point of its base circle. The axis is inclined at 40° to ground and at 30° to VP.
6. Draw the projections of a square prism resting on an edge of base on HP. The axis makes an angle of 30° with VP and 45° with HP. Take edge of base 25 mm and axis length as 125 mm .

CASES OF COMPOSITE SOLIDS.

9. A cube of 40 mm long edges is resting on the ground with its vertical faces equally inclined to the VP. A right circular cone base 25 mm diameter and height 50 mm is placed centrally on the top of the cube so that their axis are in a straight line. Draw the front and top views of the solids. Project another top view on an AIP making 45° with the HP
10.A square bar of 30 mm base side and 100 mm long is pushed through the center of a cylindrical block of 30 mm thickness and 70 mm diameter, so that the bar comes out equally through the block on either side. Draw the front view, top view and side view of the solid when the axis of the bar is inclined at 30° to HP and parallel to VP, the sides of a bar being 45° to VP.
11.A cube of 50 mm long edges is resting on the ground with its vertical faces equally inclined to VP. A hexagonal pyramid, base 25 mm side and axis 50 mm long, is placed centrally on the top of the cube so that their axes are in a straight line and two edges of its base are parallel to VP. Draw the front view and the top view of the solids, project another top view on an AIP making an angle of 45° with the HP.
10. A circular block, 75 mm diameter and 25 mm thick is pierced centrally through its flat faces by a square prism of 35 mm base sides and 125 mm long axis, which comes out equally on both sides of the block. Draw the projections of the solids when the combined axis is parallel to HP and inclined at 30° to VP, and a face of the prism makes an angle of 30° with HP. Draw side view also.

SECTION \& DEVELOPMENT

1) A square pyramid of 30 mm base sides and 50 mm long axis is resting on its base in HP. Edges of base is equally inclined to VP. It is cut by section plane perpendicular to VP and inclined at 450 to HP. The plane cuts the axis at 10 mm above the base. Draw the projections of the solid and show its development.
2) A hexagonal pyramid, edge of base 30 mm and axis 75 mm , is resting on its edge on HP which is perpendicular toVP. The axis makes an angle of 300 to HP. the solid is cut by a section plane perpendicular to both HP and VP, and passing through the mid point of the axis. Draw the projections showing the sectional view, true shape of section and development of surface of a cut pyramid containing apex.
3) A cone of base diameter 60 mm and axis 80 mm , long has one of its generators in VP and parallel to HP. It is cut by a section plane perpendicular HP and parallel to VP. Draw the sectional FV, true shape of section and develop the lateral surface of the cone containing the apex.
4) A cube of 50 mm long slid diagonal rest on ground on one of its corners so that the solid diagonal is vertical and an edge through that corner is parallel to VP. A horizontal section plane passing through midpoint of vertical solid diagonal cuts the cube. Draw the front view of the sectional top view and development of surface.
5) A vertical cylinder cut by a section plane perpendicular to VP and inclined to HP in such a way that the true shape of a section is an ellipse with 50 mm and 80 mm as its minor and major axes. The smallest generator on the cylinder is 20 mm long after it is cut by a section plane. Draw the projections and show the true shape of the section. Also find the inclination of the section plane with HP. Draw the development of the lower half of the cylinder.
6) A cube of 75 mm long edges has its vertical faces equally inclined to VP. It is cut by a section plane perpendicular to VP such that the true shape of section is regular hexagon. Determine the inclination of cutting plane with HP.Draw the sectional top view and true shape of section.
7) The pyramidal portion of a half pyramidal and half conical solid has a base ofthree sides, each 30 mm long. The length of axis is 80 mm . The solid rest on its base with the side of the pyramid base perpendicular to VP. A plane parallel to VP cuts the solid at a distance of 10 mm from the top view of the axis. Draw sectional front view and true shape of section. Also develop the lateral surface of the cut solid.
8) A hexagonal pyramid having edge to edge distance 40 mm and height 60 mm has its base in HP and an edge of base perpendicular to VP. It is cut by a section plane, perpendicular to VP and passing through a point on the axis 10 mm from the base. Draw three views of solid when it is resting on its cut face in HP, resting the larger part of the pyramid. Also draw the lateral surface development of the pyramid.
9) A cone diameter of base 50 mm and axis 60 mm long is resting on its base on ground. It is cut by a section plane perpendicular to VP in such a way that the true shape of a section is a parabola having base 40 mm . Draw three views showing section, true shape of section and development of remaining surface of cone removing its apex.
10) A hexagonal pyramid, base 50 mm side and axis 100 mm long is lying on ground on one of its triangular faces with axis parallel to VP. A vertical section plane, the HT of which makes an angle of 300 with the reference line passes through center of base, the apex being retained. Draw the top view, sectional front view and the development of surface of the cut pyramid containing apex.
11) Hexagonal pyramid of 40 mm base side and height 80 mm is resting on its base on ground. It is cut by a section plane parallel to HP and passing through a point on the axis 25 mm from the apex. Draw the projections of the cut pyramid. A particle P, initially at the mid point of edge of base, starts moving over the surface and reaches the mid point of apposite edge of the top face. Draw the development of the cut pyramid and show the shortest path of particle P. Also show the path in front and top views
12) A cube of 65 mm long edges has its vertical face equally inclined to the VP. It is cut by a section plane, perpendicular to VP , so that the true shape of the section is a regular hexagon, Determine the inclination of the cutting plane with the HP and draw the sectional top view and true shape of the section.

PROBLEM 14:-Two objects, a flower (A) and an orange (B) are within a rectangular compound wall, whose P \& Q are walls meeting at 90°. Flower A is 1.5 M \& 1 M from walls P \& Q respectively. Orange B is $3.5 \mathrm{M} \& 5.5 \mathrm{M}$ from walls P \& Q respectively. Drawing projection, find distance between them If flower is 1.5 M and orange is 3.5 M above the ground. Consider suitable scale..

PROBLEM 15:- Two mangos on a tree A \& B are 1.5 m and 3.00 m above ground and those are $1.2 \mathrm{~m} \& 1.5 \mathrm{~m}$ from a 0.3 m thick wall but on opposite sides of it. If the distance measured between them along the ground and parallel to wall is 2.6 m , Then find real distance between them by drawing their projections.
(GL)

REAL DISTANCE BETWEEN MANGOS A \& B IS $=a^{\prime} b_{1}{ }^{\prime}$

PROBLEM 16

oa, ob \& oc are three lines, $25 \mathrm{~mm}, 45 \mathrm{~mm}$ and 65 mm long respectively.All equally inclined and the shortest is vertical.This fig. is TV of three rods OA, OB and OC whose ends $A, B \& C$ are on ground and end O is 100 mm above ground. Draw their projections and find length of each along with their angles with ground.

Answers:
$T L_{1} T L_{2} \& L_{3}$

PROBLEM 17:- A pipe line from point A has a downward gradient $1: 5$ and it runs due South - East.
Another Point B is 12 M from A and due East of A and in same level of A. Pipe line from B runs 15° Due East of South and meets pipe line from A at point C.
Draw projections and find length of pipe line from B and it's inclination with ground.

PROBLEM 18: A person observes two objects, $\mathrm{A} \& \mathrm{~B}$, on the ground, from a tower, 15 M high, At the angles of depression $30^{\circ} \& 45^{\circ}$. Object A is is due North-West direction of observer and object B is due West direction. Draw projections of situation and find distance of objects from observer and from tower also.
 $\mathrm{o}^{\prime} \mathrm{a}_{1}$ \& o'b' From tower
oa \& ob

PROBLEM 19:-Guy ropes of two poles fixed at 4.5 m and 7.5 m above ground, are attached to a corner of a building 15 M high, make 30° and 45° inclinations with ground respectively. The poles are 10 M apart. Determine by drawing their projections, Length of each rope and distance of poles from building.

Answers:
Length of Rope $\mathrm{BC}=\mathrm{b}^{\prime} \mathrm{c}^{\prime}{ }_{2}$ Length of Rope AC= $\mathrm{a}^{\prime} \mathrm{c}^{\prime}{ }_{1}$

Distances of poles from building $=\mathrm{ca} \& \mathrm{cb}$

PROBLEM 20:- A tank of 4 M height is to be strengthened by four stay rods from each corner by fixing their other ends to the flooring, at a point 1.2 M and 0.7 M from two adjacent walls respectively, as shown. Determine graphically length and angle of each rod with flooring.

PROBLEM 21:- A horizontal wooden platform 2 M long and 1.5 M wide is supported by four chains from it's corners and chains are attached to a hook 5 M above the center of the platform.
Draw projections of the objects and determine length of each chain along with it's inclination with ground.

PROBLEM 22.

A room is of size $6.5 \mathrm{~mL}, 5 \mathrm{~m} \mathrm{D}, 3.5 \mathrm{~m}$ high.
An electric bulb hangs 1 m below the center of ceiling.
A switch is placed in one of the corners of the room, 1.5 m above the flooring. Draw the projections an determine real distance between the bulb and switch.

B- Bulb
A-Switch
Answer :- $\mathrm{a}^{\prime} \mathrm{b}_{1}$

PROBLEM 23:-

A PICTURE FRAME 2 M WIDE AND 1 M TALL IS RESTING ON HORIZONTAL WALL RAILING
MAKES 35° INCLINATION WITH WALL. IT IS ATTAACHED TO A HOOK IN THE WALL BY TWO STRINGS.
THE HOOK IS 1.5 M ABOVE WALL RAILING. DETERMINE LENGTH OF EACH CHAIN AND TRUE ANGLE BETWEEN THEM

UNIT-5

ENGINEERING APPLICATIONS
 OF

THE PRINCIPLES
OF
PROJECTIONS OF SOLIDES．

1．SECTIONS OF SOLIDS． 2．DEVELOPMENT． 3．INTERSECTIONS．

STUDY CAREFULLY
THE ILLUSTRATIONS GIVEN ON NEXT SIX PAGES！

The action of cutting is called SECTIONING a solid \&
The plane of cutting is called SECTION PLANE.

Two cutting actions means section planes are recommended.
A) Section Plane perpendicular to Vp and inclined to Hp . (This is a definition of an Aux. Inclined Plane i.e. A.I.P.) NOTE:- This section plane appears as a straight line in FV.
B) Section Plane perpendicular to Hp and inclined to Vp . (This is a definition of an Aux. Vertical Plane i.e. A.V.P.) NOTE:- This section plane appears as a straight line in TV.
Remember:-

1. After launching a section plane either in FV or TV, the part towards observer is assumed to be removed.

2. As far as possible the smaller part is assumed to be removed.

Typical Section Planes

\&
Typical Shapes Of
Sections.

Section Plane Parallel
to end generator.

Cylinder through generators.

 Parallel to Axis.

Sq. Pyramid through all slant edges

DEVELOPMENT OF SURFACES OF SOLIDS.

MEANING:-
 ASSUME OBJECT HOLLOW AND MADE-UP OF THIN SHEET. CUT OPEN IT FROM ONE SIDE AND UNFOLD THE SHEET COMPLETELY. THEN THE SHAPE OF THAT UNFOLDED SHEET IS CALLED DEVELOPMENT OF LATERLAL SUEFACES OF THAT OBJECT OR SOLID.
 LATERLAL SURFACE IS THE SURFACE EXCLUDING SOLID'S TOP \& BASE.
 ENGINEERING APLICATION:
 THERE ARE SO MANY PRODUCTS OR OBJECTS WHICH ARE DIFFICULT TO MANUFACTURE BY CONVENTIONAL MANUFACTURING PROCESSES, BECAUSE OF THEIR SHAPES AND SIZES.
 THOSE ARE FABRICATED IN SHEET METAL INDUSTRY BY USING
 DEVELOPMENT TECHNIQUE. THERE IS A VAST RANGE OF SUCH OBJECTS.

EXAMPLES:-

Boiler Shells \& chimneys, Pressure Vessels, Shovels, Trays, Boxes \& Cartons, Feeding Hoppers, Large Pipe sections, Body \& Parts of automotives, Ships, Aeroplanes and many more.

WHAT IS OUR OBJECTIVE IN THIS TOPIC?

> But before going ahead, note following Important points.

To learn methods of development of surfaces of different solids, their sections and frustums.

Development of lateral surfaces of different solids.
(Lateral surface is the surface excluding top \& base)

Cylinder: A Rectangle

Prisms:
No.of Rectangles

Tetrahedron: Four Equilateral Triangles

Cone: (Sector of circle)

$\theta=\frac{\mathrm{R}}{\mathrm{L}} \times 360^{\circ}$

Pyramids: (No.of triangles)

Cube: Six Squares.

FRUSTUMS

DEVELOPMENT OF FRUSTUM OF CONE

$\mathrm{R}=$ Base circle radius of cone
$\mathrm{L}=$ Slant height of cone
$\mathrm{L}_{1}=$ Slant height of cut part.

DEVELOPMENT OF
FRUSTUM OF SQUARE PYRAMID

L= Slant edge of pyramid
$\mathrm{L}_{1}=$ Slant edge of cut part.

STUDY NEXT NINE PROBLEMS OF SECTIONS \& DEVELOPMENT

Problem 1: A pentagonal prism, 30 mm base side \& 50 mm axis is standing on Hp on it's base with one side of the base perpendicular to VP. It is cut by a section plane inclined at 45° to the HP, through mid point of axis. Draw Fv, sec.Tv \& sec. Side view. Also draw true shape of section and Development of surface of remaining solid.

For True Shape:

Draw $x_{1} y_{1} / /$ to sec. plane Draw projectors on it from cut points.
Mark distances of points of Sectioned part from Tv, on above projectors from $x_{1} y_{1}$ and join in sequence. Draw section lines in it. It is required true shape.

Solution Steps:for sectional views:

Draw three views of standing prism. Locate sec.plane in Fv as described. Project points where edges are getting Cut on $\mathrm{Tv} \& \mathrm{~Sv}$ as shown in illustration. Join those points in sequence and show Section lines in it.
Make remaining part of solid dark.

DEVELOPMENT

For Development:

Draw development of entire solid. Name from cut-open edge l.e. A. in sequence as shown. Mark the cut points on respective edges. Join them in sequence in st. lines. Make existing parts dev.dark.

Problem 2: A cone, 50 mm base diameter and 70 mm axis is standing on it's base on Hp . It cut by a section plane 45^{0} inclined to Hp through base end of end generator.Draw projections, sectional views, true shape of section and development of surfaces of remaining solid.

Solution Steps:for sectional views: Draw three views of standing cone. Locate sec.plane in Fv as described. Project points where generators are getting Cut on Tv \& Sv as shown in illustration.Join those points in sequence and show Section lines in it. Make remaining part of solid dark.

For True Shape:

 Draw $x_{1} y_{1} / /$ to sec. plane Draw projectors on it from cut points.Mark distances of points of Sectioned part from Tv, on above projectors from $\mathrm{x}_{1} \mathrm{y}_{1}$ and join in sequence. Draw section lines in it. It is required true shape.

SECTIONAL S.V

a1

Draw development of entire solid. Name from cut-open edge i.e. A. in sequence as shown.Mark the cut points on respective edges. Join them in sequence in curvature. Make existing parts dev.dark.

Problem 3: A cone 40mm diameter and 50 mm axis is resting on one generator on Hp (lying on Hp) which is // to Vp.. Draw it's projections.It is cut by a horizontal section plane through it's base center. Draw sectional TV, development of the surface of the remaining part of cone.

Follow similar solution steps for Sec.views - True shape - Development as per previous problem!

Q 14.11: A square pyramid, base 40 mm side and axis 65 mm long, has its base on the HP and all the edges of the base equally inclined to the VP. It is cut by a section plane, perpendicular to the VP, inclined at 45° to the HP and bisecting the axis. Draw its sectional top view, sectional side view and true shape of the section. Also draw its development.

.

$$
1
$$

$<$

.

Q 14.11. A square pyramid, base 40 mm side and axis 65 mm long, has its base on the HP and

$$
1
$$

里

號

Q 14.14: A pentagonal pyramid, base 30 mm side and axis 60 mm long is lying on one of its triangular faces on the HP with the axis parallel to the VP. A vertical section plane, whose HT bisects the top view of the axis and makes an angle of 30° with the reference line, cuts the pyramid removing its top part. Draw the top view, sectional front view and true shape of the section and development of the surface of the remaining portion of the pyramid.

Q 14.11: A square pyramid, base 40 mm side and axis 65 mm long, has its base on the HP with two edges of the base perpendicular to the VP. It is cut by a section plane, perpendicular to the VP, inclined at 45° to the HP and bisecting the axis. Draw its sectional top view and true shape of the section. Also draw its development.

Q.15.11: A right circular cylinder, base 50 mm diameter and axis 60 mm long, is standing on HP on its

 base. It has a square hole of size 25 in it. The axis of the hole bisects the axis of the cylinder and is perpendicular to the VP. The faces of the square hole are equally inclined with the HP. Draw its projections and develop lateral surface of the cylinder.

Q: A square prism of 40 mm edge of the base and 65 mm height stands on its base on the HP with vertical faces inclined at 45° with the VP. A horizontal hole of 40 mm diameter is drilled centrally through the prism such that the hole passes through the opposite vertical edges of the prism, draw the development og the surfaces of the prism.

[^0]: Views are always rotated, made horizontal \& further extended to locate TL, θ \& \varnothing

