
C-PROGRAMMING & DATA STRUCTURES

 LECTURE NOTES

(20A05201T)

I – BTECH

Prepared by

P.Khatija Khan & K.Khushboo

Department of Computer Science & Engineering

VEMU INSTITUTE OF TECHNOLOGY

(Approved by AICTE, New Delhi and Affiliated to JNTUA, Ananthapuramu)

Accredited by NAAC, NBA (EEE , ECE & CSE) & ISO 9001-2015 Certified Institution

Near Pakala. P. Kothakota, Chittoor-Tirupati Highway

Chittoor, Andhra Pradesh -517112

Website: www.vemu.org

http://www.vemu.org/

 R20 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

(Established by Govt. of A.P., ACT No.30 of 2008)

ANANTAPUR – 515 002 (A.P) INDIA

Course Code
C&DS

L T P C

20A05201T 3 0 0 3

Course Objectives

 To illustrate the basic concepts of C programming language.

 To discuss the concepts of Functions, Arrays, Pointers and Structures.

 To familiarize with Stack, Queue and Linked lists data structures.

 To explain the concepts of non-linear data structures like graphs and trees.

 To learn different types of searching and sorting techniques.

Course outcomes (CO) : After completion of the course, the student can able to

CO-1: To illustrate the Basic concepts of C programming language.

CO-2: To apply the concepts of Functions, Arrays, Pointers and Structures in programming.

CO-3: To use concepts like Stack, Queue and Linked list in Data Structures.

CO-4: To apply the concepts of Non-Linear data Structures like graphs and Trees in organizing and

storing the data.

CO-5: To use different types of Searching and Sorting techniques for data retrieving and arranging.

Syllabus

UNIT-1

Introduction to C Language - C language elements, variable declarations and data types, operators and

expressions, decision statements - If and switch statements, loop control statements - while, for, do-

while statements, arrays.

UNIT – 2

Functions, types of functions, Recursion and argument passing, pointers, storage allocation, pointers to

functions, expressions involving pointers, Storage classes – auto, register, static, extern, Structures,

Unions, Strings, string handling functions, and Command line arguments.

UNIT-3

Data Structures, Overview of data structures, stacks and queues, representation of a stack, stack related

terms, operations on a stack, implementation of a stack, evaluation of arithmetic expressions, infix,

prefix, and postfix notations, evaluation of postfix expression, conversion of expression from infix to

postfix, recursion, queues - various positions of queue, representation of queue, insertion, deletion,

searching operations.

UNIT – 4

Linked Lists – Singly linked list, dynamically linked stacks and queues, polynomials using singly

linked lists, using circularly linked lists, insertion, deletion and searching operations, doubly linked lists

and its operations, circular linked lists and its operations.

UNIT-5

Trees - Tree terminology, representation, Binary trees, representation, binary tree traversals. binary tree

operations, Graphs - graph terminology, graph representation, elementary graph operations, Breadth

First Search (BFS) and Depth First Search (DFS), connected components, spanning trees. Searching

and Sorting – sequential search, binary search, exchange (bubble) sort, selection sort, insertion sort.

Text Books:

1. The C Programming Language, Brian W Kernighan and Dennis M Ritchie, Second Edition,

Prentice Hall Publication.

2. Fundamentals of Data Structures in C, Ellis Horowitz, SartajSahni, Susan Anderson-Freed,

Computer Science Press.

3. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. AnandaRao,

Pearson Education.

4. B.A. Forouzon and R.F. Gilberg, “COMPUTER SCIENCE: A Structured Programming

Approach Using C”, Third edition, CENGAGE Learning, 2016.

5. Richard F. Gilberg & Behrouz A. Forouzan, “Data Structures: A Pseudocode Approach with

C”, Second Edition, CENGAGE Learning, 2011.

Reference Books:

1. Pradip Dey and Manas Ghosh, Programming in C, Oxford University Press, 2nd Edition 2011.

2. E. Balaguruswamy, “C and Data Structures”, 4th Edition, Tata Mc Graw Hill.

3. A.K. Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.

4. M.T. Somashekara, “Problem Solving Using C”, PHI, 2nd Edition 2009.

UNIT-1

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

UNIT-I

What is a Computer?

Definition : Computer is an advanced electronic device that takes raw data as an input from the user and

processes it under the control of a set of instructions (called program), produces a result (output), and saves it

for future use

Functionalities of a Computer:

If we look at it in a very broad sense, any digital computer carries out the following five functions −

Step 1 − Takes data as input.

Step 2 − Stores the data/instructions in its memory and uses them as required.

Step 3 − Processes the data and converts it into useful information.

Step 4 − Generates the output.

Step 5 − Controls all the above four steps.

Block Diagram of a computer:

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Input Unit:

This unit contains devices with the help of which we enter data into the computer. This unit creates a link

between the user and the computer. The input devices translate the information into a form understandable by

the computer.

CPU (Central Processing Unit):

CPU is considered as the brain of the computer. CPU performs all types of data processing operations. It stores

data, intermediate results, and instructions (program). It controls the operation of all parts of the computer.

CPU itself has the following three components −

 ALU (Arithmetic Logic Unit)

 Memory Unit

 Control Unit

Arithmetic Logic Unit (ALU):

Data entered into computer is sent to RAM, from where it is then sent to ALU, where rest of data processing

takes place. All types of processing, such as comparisons, decision-making and processing of non-numeric

information takes place here and once again data is moved to RAM.

Control Unit:

As name indicates, this part of CPU extracts instructions, performs execution, maintains and directs operations

of entire system.

Functions of Control Unit

Control unit performs following functions −

 It controls all activities of computer

 Supervises flow of data within CPU

 Directs flow of data within CPU

 Transfers data to Arithmetic and Logic Unit

 Transfers results to memory

 Fetches results from memory to output devices

Memory Unit:

This is unit in which data and instructions given to computer as well as results given by computer are stored.

Unit of memory is "Byte".

1 Byte = 8 Bits

Output Unit:

The output unit consists of devices with the help of which we get the information from the computer. This unit

is a link between the computer and the users. Output devices translate the computer's output into a form

understandable by the users.

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Structure of C Program

The structure of a C program can be mainly divided into six parts, each having its purpose. It makes the program

easy to read, easy to modify, easy to document, and makes it consistent in format.

Basic Structure of the C Program:

Section Description

Documentation

Consists of the description of the program, programmer's name,

and creation date. These are generally written in the form of

comments.

Link

All header files are included in this section which contains

different functions from the libraries. A copy of these header

files is inserted into your code before compilation.

Definition

Includes preprocessor directive, which contains symbolic

constants. E.g.: #define allows us to use constants in our code.

It replaces all the constants with its value in the code.

Global

Declaration

Includes declaration of global variables, function declarations,

static global variables, and functions.

Main()

Function

For every C program, the execution starts from

the main() function. It is mandatory to include

a main() function in every C program.

Subprograms

Includes all user-defined functions (functions the user

provides). They can contain the inbuilt functions and the

function definitions declared in the Global Declaration section.

These are called in the main() function.

Let's look at an example to understand the structure of a C program:

Example: Write a program to calculate our age.

In the following example, we'll calculate age concerning a year.

Code:

/** //Documentation

 * file: age.c

 * author: you

 * description: program to find our age.

 */

#include <stdio.h> //Link

#define BORN 2000 //Definition

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

int age(int current); //Global Declaration

int main(void) //Main() Function

{

 int current = 2021;

 printf("Age: %d", age(current));

 return 0;

}

int age(int current) { //Subprograms

 return current - BORN;

}

Output

Age: 21

Let's explore the code:

Different sections of the above code

Documentation

In a C program, single-line comments can be written using two forward slashes i.e., //, and we can create multi-

line comments using /* */. Here, we've used multi-line comments.

/**

 * file: age.c

 * author: you

 * description: program to find our age.

 */

Link

All header files are included in this section.

A header file is a file that consists of C declarations that can be used between different files. It helps us in using

others' code in our files. A copy of these header files is inserted into your code before compilation.

#include <stdio.h>

Definition

A preprocessor directive in C is any statement that begins with the "#" symbol. The #define is a preprocessor

compiler directive used to create constants. In simple terms, #define basically allows the macro definition, which

allows the use of constants in our code.

#define BORN 2000

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

We've created a constant BORN which is assigned a value of 2000. Generally, uppercase letters are preferred for

defining the constants. The above constant BORN will be replaced by 2000 throughout our code wherever used.

#define is typically used to make a source program easy to modify and compile in different execution

environments.

The define statement does not ends with a semicolon.

Global Declaration

This section includes all global variables, function declarations, and static variables. The variables declared in

this section can be used anywhere in the program. They're accessible to all the functions of the program. Hence,

they are called global variables.

int age(int current);

We've declared our age function, which takes one integer argument and returns an integer.

Main() Function

In the structure of a C program, this section contains the main function of the code. The compiler starts execution

from the main() function. It can use global variables, static variables, inbuilt functions, and user-defined

functions. The return type of the main() function can be void and also not necessarily int.

int main(void)

{

 int current = 2022;

 printf("Age: %d", age(current));

 return 0;

}

Here, we've declared a variable named current and assigned the value as 2022. Then we've called

the printf() function, with calls the age() function, which takes only one parameter.

Subprograms

This includes the user-defined functions called in the main() function. User-defined functions are generally

written after the main() function irrespective of their order.

When the user-defined function is called from the main() function, the control of the program shifts to the called

function, and when it encounters a return statement, it returns to the main() function. In this case, we've defined

the age() function, which takes one parameter, i.e., the current year.

int age(int current) {

 return current - BORN;

}

This function is called in the main function. It returns an integer to the main function.

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Conclusion

 To conclude, the structure of a C program can be divided into six sections, namely - Documentation, Link,

Definition, Global Declaration, Main() Function, and Subprograms.

 The main() function is compulsory to include in every C program, whereas the rest are optional.

 A well-structured C program makes debugging easier and increases the readability and modularity of the

code.

Elements of C Programming Language
As every language has some basic geometrical rules and elements, similarly C language has some elements

and rules for building a program which has some meaning.

Character Set: In Real world to communicate with people we use language like Hindi English Urdu extra

which is constructed and Defined by some characters, words extra. Similarly in C programming language we

have various characters to communicate with the computer in order to produce a meaningful program and can

produce an output.

Character Set in C Language

Type Set

Lowercase a-z

Uppercase A-Z

Digits 0-9

special characters !,@,#,$,%

White space space, tab, and new lines

Keywords:
1) they are those elements of C language whose meaning has already being defined or explained.

2) keyword are called pre-defined words.

32 keywords in C language

Auto Do Goto signed unsigned Break

Void Else Int Case static Double

Sizeof Enum Long struct char If

While Const extern register continue Volatile

defualt For typeodef Float short Return

Union Const

Data types: In every language we have to perform some operations means some task on some values of

variables.

Example:

Like 'Suhaan' Here suhaan is a set of alphabets all characters.

like '290' here 290 is a Numerical value.

So here Ramesh and 290 are different types and they are allotted to some variables. So in order to recognize

each variables and its type we have to specify their types and their types are called 'data types' of that

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

variable.

So the real Example is:

int a=6;
here a is a variable of int datatype

 6 is a value assigned to the variable ‘a’ using assignment operator

Every data type in C language has Storage Size and Value Ranges.

Data types Storage size Value range

Char 1 byte a-z, A-z, special characters (-128 to 127)

Unsigned

char
1 byte a-z, A-z, special character(0 to 255)

Int 2-4 bytes
-32768 to 32767 or -214748348 to

2147483647

unsigned int 2-4 bytes 0 to 65535 or 0 to 4294967295

Short 2 bytes -32768 to 32767

unsigned

short
2 bytes 0 to 65535

Long 4 bytes -2147483648 to 2147483647

unsigned

long
4 bytes 0 to 4294967295

Float 4 bytes 1.2E-38 to 3.4E+38 6 decimal place

Double 8 bytes 2.3E-308 to 1.7E+308 15 decimal place

long double 10 bytes 3.4E-4932 to 1.1E+4932 19 decimal place

Constants: Symbolic name or an entity that does not change its value during the execution of a program.

There are two major categories of a constant:

Constants are classified into two types they are:

1. Primary Constant

2. Secondary Constant

Primary Constant: This category consist basic constants of C language like integer constant, float or real

integer constant, character constant.

Secondary Constant: This category consist arrays, pointers, structure, union, enum etc.

We will discuss only primary constants :

a) Integer Constant:

const int rate= 50;

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

In this const is a keyword, int is a data type, rate is a value , = is a assignment operator, 50 is a value, ; is

a terminate operator to terminate the statement

In this value of variable rate'' will not be changed throughout the program .

b) const float or real integer:

const float pi= 3.1415;---> this is called the declaration with complete statement .

c) Character Constant:

const char ch= 'A';
a character data type value is always assigned with ''quotes.

Variables: It is the most fundamental aspect of any language. It is a location in the Computer memory

which can store value and is a given symbolic name for easy reference. Variable declaration requires that you

inform c of the variable's name and date data types.

Example:

int page_no; char grade; float salary;

or

int page-no, no-books;

char first, middle, last;

These all examples are the different ways of declaration for variable.

Initialisation of variables: When a variable is declared it contains and defined values for garbage values. So

we can initially initialise a value to the variable.

Example:

int page-no=10;

char grade='A';

float salary= 1200.50;

int a=10, b=20, c=30;

Expressions: An expression consist of combination of operands, operators, variables and functions calls.

An expression can be arithmetic, logical, or relational.

Example of Expressions:

a+b=c [arithmetic operation]

a>b [relational operation]

a==b [logical operations]

func(a,b) [function calls]

Statement: A statement is a complete instruction to the computer. In C, statements are indicated by

semicolon ; at the end.

Example:

legs =4; it is a statement.
legs=4 it is an expression.

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Other examples are

y=x+4;

x=90;

x=a+b/c+d*z;

x=16+(y+10-5);

What is algorithm?

An algorithm is a procedure or step-by-step instruction for solving a problem. They form the foundation of writing

a program.

For writing any programs, the following has to be known:

 Input

 Tasks to be preformed

 Output expected

Algorithm 1: Add two numbers entered by the user

Step 1: Start

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

 sum←num1+num2

Step 5: Display sum

Step 6: Stop

Algorithm 2: Find the largest number among three numbers

Step 1: Start

Step 2: Declare variables a,b and c.

Step 3: Read variables a,b and c.

Step 4: If a > b

 If a > c

 Display a is the largest number.

 Else

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 Display c is the largest number.

 Else

 If b > c

 Display b is the largest number.

 Else

 Display c is the greatest number.

Step 5: Stop

Algorithm 3: Find Roots of a Quadratic Equation ax2 + bx + c = 0

Step 1: Start

Step 2: Declare variables a, b, c, D, x1, x2, rp and ip;

Step 3: Calculate discriminant

 D ← b2-4ac

Step 4: If D ≥ 0

 r1 ← (-b+√D)/2a

 r2 ← (-b-√D)/2a

 Display r1 and r2 as roots.

 Else

 Calculate real part and imaginary part

 rp ← -b/2a

 ip ← √(-D)/2a

 Display rp+j(ip) and rp-j(ip) as roots

Step 5: Stop

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Algorithm 4: Find the factorial of a number

Step 1: Start

Step 2: Declare variables n, factorial and i.

Step 3: Initialize variables

 factorial ← 1

 i ← 1

Step 4: Read value of n

Step 5: Repeat the steps until i = n

 5.1: factorial ← factorial*i

 5.2: i ← i+1

Step 6: Display factorial

Step 7: Stop

Algorithm 5: Check whether a number is prime or not

Step 1: Start

Step 2: Declare variables n, i, flag.

Step 3: Initialize variables

 flag ← 1

 i ← 2

Step 4: Read n from the user.

Step 5: Repeat the steps until i=(n/2)

 5.1 If remainder of n÷i equals 0

 flag ← 0

 Go to step 6

 5.2 i ← i+1

Step 6: If flag = 0

 Display n is not prime

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 else

 Display n is prime

Step 7: Stop

Flowchart:

 Flowchart is a diagrammatic representation of sequence of logical steps of a program. Flowcharts use

simple geometric shapes to depict processes and arrows to show relationships and process/data flow.

Flowchart Symbols:

Here is a chart for some of the common symbols used in drawing flowcharts.

Symbol Symbol Name Purpose

Start/Stop

Used at the beginning and end of the

algorithm to show start and end of the

program.

Process
Indicates processes like mathematical

operations.

Input/ Output
Used for denoting program inputs and

outputs.

Decision

Stands for decision statements in a

program, where answer is usually Yes

or No.

Arrow

Shows relationships between different

shapes.

On-page Connector

Connects two or more parts of a

flowchart, which are on the same

page.

Off-page Connector

Connects two parts of a flowchart

which are spread over different pages.

Guidelines for Developing Flowcharts:

These are some points to keep in mind while developing a flowchart −

 Flowchart can have only one start and one stop symbol

 On-page connectors are referenced using numbers

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 Off-page connectors are referenced using alphabets

 General flow of processes is top to bottom or left to right

 Arrows should not cross each other

Here is a flowchart to calculate the average of two numbers:

Flow chart for prime numbers:

l

C – Variables
 A variable is nothing but a name given to a storage area that our programs can manipulate. Each variable

in C has a specific type, which determines the size and layout of the variable's memory; the range of

values that can be stored within that memory; and the set of operations that can be applied to the variable.

 The name of a variable can be composed of letters, digits, and the underscore character. It must begin

with either a letter or an underscore. Upper and lowercase letters are distinct because C is case-sensitive

Variable Definition in C:

A variable definition tells the compiler where and how much storage to create for the variable. A variable

definition specifies a data type and contains a list of one or more variables of that type as follows −

type variable_list;

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Here, type must be a valid C data type including char, int, float, double, bool, or any user-defined object;

and variable_list may consist of one or more identifier names separated by commas. Some valid declarations

are shown here −

int i, j, k;

char c, ch;

float f, salary;

double d;

The line int i, j, k; declares and defines the variables i, j, and k; which instruct the compiler to create variables

named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer consists of an equal

sign followed by a constant expression as follows −

datatype variable_name = value;

Some examples are −

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

For definition without an initializer: variables with static storage duration are implicitly initialized with NULL

(all bytes have the value 0); the initial value of all other variables are undefined.

Variable Declaration in C:

A variable declaration provides assurance to the compiler that there exists a variable with the given type and

name so that the compiler can proceed for further compilation without requiring the complete detail about the

variable. A variable definition has its meaning at the time of compilation only, the compiler needs actual

variable definition at the time of linking the program.

Example:

Try the following example, where variables have been declared at the top, but they have been defined and

initialized inside the main function −

#include <stdio.h>

int main () {

 /* variable definition: */

 int a, b;

 int c;

 float f;

 /* actual initialization */

 a = 10;

 b = 20;

 c = a + b;

 printf("value of c : %d \n", c);

 f = 70.0/3.0;

 printf("value of f : %f \n", f);

 return 0;

}

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

When the above code is compiled and executed, it produces the following result −

value of c : 30

value of f : 23.333334

Datatypes in C language:

Data Type Memory (bytes) Range Format Specifier

short int 2 -32,768 to 32,767 %hd

unsigned short int 2 0 to 65,535 %hu

unsigned int 4 0 to 4,294,967,295 %u

int 4 -2,147,483,648 to 2,147,483,647 %d

long int 4 -2,147,483,648 to 2,147,483,647 %ld

unsigned long int 4 0 to 4,294,967,295 %lu

long long int 8 -(2^63) to (2^63)-1 %lld

unsigned long long int 8 0 to 18,446,744,073,709,551,615 %llu

signed char 1 -128 to 127 %c

unsigned char 1 0 to 255 %c

float 4 1.2E-38 to 3.4E+38 %f

double 8 1.7E-308 to 1.7E+308 %lf

long double 16 3.4E-4932 to 1.1E+4932 %Lf

Integer Types:

 The integer data type in C is used to store the whole numbers without decimal values. Octal values,

hexadecimal values, and decimal values can be stored in int data type in C. We can determine the size of the

int data type by using the sizeof operator in C. Unsigned int data type in C is used to store the data values

from zero to positive numbers but it can’t store negative values like signed int. Unsigned int is larger in size

than signed int and it uses “%u” as a format specifier in C programming language. Below is the

programming implementation of the int data type in C.

https://www.geeksforgeeks.org/sizeof-operator-c/

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 Range: -2,147,483,648 to 2,147,483,647

 Size: 2 bytes or 4 bytes

 Format Specifier: %d

Note: The size of an integer data type is compiler-dependent, when processors are 16-bit systems, then it

shows the output of int as 2 bytes. And when processors are 32-bit then it shows 2 bytes as well as 4 bytes.

Character Types

Character data type allows its variable to store only a single character. The storage size of the character

is 1. It is the most basic data type in C. It stores a single character and requires a single byte of memory

in almost all compilers.

 Range: (-128 to 127) or (0 to 255)

 Size: 1 byte

 Format Specifier: %c

Floating-Point Types

In C programming float data type is used to store floating-point values. Float in C is used to store decimal and

exponential values. It is used to store decimal numbers (numbers with floating point values) with single

precision.

 Range: 1.2E-38 to 3.4E+38

 Size: 4 bytes

 Format Specifier: %f

Double Types:

A Double data type in C is used to store decimal numbers (numbers with floating point values) with

double precision. It is used to define numeric values which hold numbers with decimal values in C.

Double data type is basically a precision sort of data type that is capable of holding 64 bits of decimal

numbers or floating points. Since double has more precision as compared to that float then it is much more

obvious that it occupies twice the memory as occupied by the floating-point type. It can easily

accommodate about 16 to 17 digits after or before a decimal point.

 Range: 1.7E-308 to 1.7E+308

 Size: 8 bytes

 Format Specifier: %lf

Void Data types:
The void data type in C is used to specify that no value is present. It does not provide a result value to its caller. It

has no values and no operations. It is used to represent nothing. Void is used in multiple ways as function return

type, function arguments as void, and pointers to void.

C Programming Operators

An operator is a symbol that operates on a value or a variable. For example: + is an operator to perform addition.

https://www.geeksforgeeks.org/void-pointer-c-cpp/

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

C has a wide range of operators to perform various operations.

Arithmetic Operators:

An arithmetic operator performs mathematical operations such as addition, subtraction, multiplication, division etc

on numerical values (constants and variables).

Operator Meaning of Operator

+ addition or unary plus

- subtraction or unary minus

* Multiplication

/ division

% remainder after division (modulo division)

Example 1: Arithmetic Operators

// Working of arithmetic operators

#include <stdio.h>

int main()

{

 int a = 9,b = 4, c;

 c = a+b;

 printf("a+b = %d \n",c);

 c = a-b;

 printf("a-b = %d \n",c);

 c = a*b;

 printf("a*b = %d \n",c);

 c = a/b;

 printf("a/b = %d \n",c);

 c = a%b;

 printf("Remainder when a divided by b = %d \n",c);

 return 0;

}

Output

a+b = 13

a-b = 5

a*b = 36

a/b = 2

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Remainder when a divided by b=1

 Increment and Decrement Operators:

C programming has two operators increment ++ and decrement -- to change the value of an operand (constant or

variable) by 1.

Increment ++ increases the value by 1 whereas decrement -- decreases the value by 1. These two operators are

unary operators, meaning they only operate on a single operand.

Example 2: Increment and Decrement Operators

// Working of increment and decrement operators

#include <stdio.h>

int main()

{

 int a = 10, b = 100;

 float c = 10.5, d = 100.5;

 printf("++a = %d \n", ++a);

 printf("--b = %d \n", --b);

 printf("++c = %f \n", ++c);

 printf("--d = %f \n", --d);

 return 0;

}

Run Code

Output

++a = 11

--b = 99

++c = 11.500000

--d = 99.500000

Here, the operators ++ and -- are used as prefixes. These two operators can also be used as postfixes like a++ and a-

-. Visit this page to learn more about how increment and decrement operators work when used as postfix.

Assignment Operators:

An assignment operator is used for assigning a value to a variable. The most common assignment operator is =

Operator Example Same as

= a = b a = b

https://www.programiz.com/c-programming/online-compiler
https://www.programiz.com/article/increment-decrement-operator-difference-prefix-postfix

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Operator Example Same as

+= a += b a = a+b

-= a -= b a = a-b

*= a *= b a = a*b

/= a /= b a = a/b

%= a %= b a = a%b

Example 3: Assignment Operators

// Working of assignment operators

#include <stdio.h>

int main()

{

 int a = 5, c;

 c = a; // c is 5

 printf("c = %d\n", c);

 c += a; // c is 10

 printf("c = %d\n", c);

 c -= a; // c is 5

 printf("c = %d\n", c);

 c *= a; // c is 25

 printf("c = %d\n", c);

 c /= a; // c is 5

 printf("c = %d\n", c);

 c %= a; // c = 0

 printf("c = %d\n", c);

 return 0;

}

Output

c = 5

c = 10

c = 5

c = 25

c = 5

c = 0

Relational Operators

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

A relational operator checks the relationship between two operands. If the relation is true, it returns 1; if the relation

is false, it returns value 0.

Relational operators are used in decision making and loops.

Operator Meaning of Operator Example

== Equal to 5 == 3 is evaluated to 0

> Greater than 5 > 3 is evaluated to 1

< Less than 5 < 3 is evaluated to 0

!= Not equal to 5 != 3 is evaluated to 1

>= Greater than or equal to 5 >= 3 is evaluated to 1

<= Less than or equal to 5 <= 3 is evaluated to 0

Example 4: Relational Operators

// Working of relational operators

#include <stdio.h>

int main()

{

 int a = 5, b = 5, c = 10;

 printf("%d == %d is %d \n", a, b, a == b);

 printf("%d == %d is %d \n", a, c, a == c);

 printf("%d > %d is %d \n", a, b, a > b);

 printf("%d > %d is %d \n", a, c, a > c);

 printf("%d < %d is %d \n", a, b, a < b);

 printf("%d < %d is %d \n", a, c, a < c);

 printf("%d != %d is %d \n", a, b, a != b);

 printf("%d != %d is %d \n", a, c, a != c);

 printf("%d >= %d is %d \n", a, b, a >= b);

 printf("%d >= %d is %d \n", a, c, a >= c);

 printf("%d <= %d is %d \n", a, b, a <= b);

 printf("%d <= %d is %d \n", a, c, a <= c);

 return 0;

}

Output

5 == 5 is 1

5 == 10 is 0

https://www.programiz.com/c-programming/c-if-else-statement
https://www.programiz.com/c-programming/c-for-loop

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

5 > 5 is 0

5 > 10 is 0

5 < 5 is 0

5 < 10 is 1

5 != 5 is 0

5 != 10 is 1

5 >= 5 is 1

5 >= 10 is 0

5 <= 5 is 1

5 <= 10 is 1

Logical Operators

An expression containing logical operator returns either 0 or 1 depending upon whether expression results true or

false. Logical operators are commonly used in decision making in C programming.

Operator Meaning Example

&&
Logical AND. True only if all

operands are true

If c = 5 and d = 2 then, expression

((c==5) && (d>5)) equals to 0.

||
Logical OR. True only if

either one operand is true

If c = 5 and d = 2 then, expression

((c==5) || (d>5)) equals to 1.

!
Logical NOT. True only if the

operand is 0

If c = 5 then, expression !(c==5)

equals to 0.

Example 5: Logical Operators

// Working of logical operators

#include <stdio.h>

int main()

{

 int a = 5, b = 5, c = 10, result;

 result = (a == b) && (c > b);

 printf("(a == b) && (c > b) is %d \n", result);

 result = (a == b) && (c < b);

 printf("(a == b) && (c < b) is %d \n", result);

 result = (a == b) || (c < b);

 printf("(a == b) || (c < b) is %d \n", result);

 result = (a != b) || (c < b);

 printf("(a != b) || (c < b) is %d \n", result);

https://www.programiz.com/c-programming/c-if-else-statement

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 result = !(a != b);

 printf("!(a != b) is %d \n", result);

 result = !(a == b);

 printf("!(a == b) is %d \n", result);

 return 0;

}

Output

(a == b) && (c > b) is 1

(a == b) && (c < b) is 0

(a == b) || (c < b) is 1

(a != b) || (c < b) is 0

!(a != b) is 1

!(a == b) is 0

Explanation of logical operator program

 (a == b) && (c > 5) evaluates to 1 because both operands (a == b) and (c > b) is 1 (true).

 (a == b) && (c < b) evaluates to 0 because operand (c < b) is 0 (false).

 (a == b) || (c < b) evaluates to 1 because (a = b) is 1 (true).

 (a != b) || (c < b) evaluates to 0 because both operand (a != b) and (c < b) are 0 (false).

 !(a != b) evaluates to 1 because operand (a != b) is 0 (false). Hence, !(a != b) is 1 (true).

 !(a == b) evaluates to 0 because (a == b) is 1 (true). Hence, !(a == b) is 0 (false).

 Bitwise Operators:

 During computation, mathematical operations like: addition, subtraction, multiplication, division, etc are

converted to bit-level which makes processing faster and saves power.

 Bitwise operators are used in C programming to perform bit-level operations.

Operators Meaning of operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

<< Shift left

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Operators Meaning of operators

>> Shift right

Special Operators:

Comma Operator:

Comma operators are used to link related expressions together. For example:

int a, c = 5, d;

The sizeof operator:

The sizeof is a unary operator that returns the size of data (constants, variables, array, structure, etc).

Example 6: sizeof Operator

#include <stdio.h>

int main()

{

 int a;

 float b;

 double c;

 char d;

 printf("Size of int=%lu bytes\n",sizeof(a));

 printf("Size of float=%lu bytes\n",sizeof(b));

 printf("Size of double=%lu bytes\n",sizeof(c));

 printf("Size of char=%lu byte\n",sizeof(d));

 return 0;

}

Output

Size of int = 4 bytes

Size of float = 4 bytes

Size of double = 8 bytes

Size of char = 1 byte

Other operators such as:

 ternary operator ?:,

 reference operator &

 dereference operator *

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Control Structures

Control structures are used to control the flow of execution in a program. These control statements are

classified into the following:

1. Decision making/Conditional/Branching/sectional Statements

2. Looping Statements/Iterative Statements

3. Jump Statements/Loop control statements

Decision Making Statements:
Decision making statements are executed based on the selection. If condition is true then one set of

statements is executed otherwise another set of statements is executed. These statements are again

classified into the following:

1. Simple if

2. if-else

3. if-else-if ladder

4. nested if

5. switch

1. simple if:
This condition occurs when a programmer can skip or execute a set of various instructions on the basis of

the condition value. We select a one-way, simple statement. When the available condition gets evaluated as

true, then a set of various statements will be carried out. In case the condition is false, then the control here

will proceed ahead in the program with the declaration mentioned below, after the program’s if declaration.

The syntax :

If (condition1)

{

Body of if statement;

}

Next statement;

Flowchart:

Program:

include <stdio.h>

 int main () {

int a = 10;

if(a < 20) {

printf("a is less than 20\n");

 }

printf("value of a is : %d\n", a);

 return 0;

}

2.The If… Else Statement:

When we use the if… else statement, there occurs an execution of two different types of statements in a

program. First, if the available condition in the program is true, then there will be an execution of the first

statement. The execution of the else will only occur if the condition available to us is false

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

The syntax :

If (condition 1)

{

Statement 1 ;

}

else

{

Statement 2 ;

}

Next Statement;

Flowchart:

Program:

#include<stdio.h>

void main()

{

int num1, num2;

printf("Please Enter Two different

values\n");

scanf("%d %d", &num1, &num2);

if(num1 > num2)

{

printf("%d is Largest\n", num1);

}

else

{

printf("%d is Largest\n", num2);

}

}

3.The else If Ladder:

In this statement, the execution of an array of instructions occurs only when the available condition is

correct. The verification of the next condition occurs when this first condition is incorrect. In case all of the

specifications fail even after the verification, then there will be an execution of the default block statements.

The remainder of the program’s ladder is shown below.

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

The syntax :

If (condition 1)

{

Statement 1;

}

else if (condition 2)

{

Statement 2;

}

else if (condition 3)

{

Statement 3 ;

}

…………

…………

else

{

Default statement;

}

Next Statement (s);

Flowchart:

Program:

#include<stdio.h>

void main()

{

int scores;

float result;

printf(“enter your
scores:”);

scanf(“%d”,&scores);

if scores>=85:

result=’A+’

else if scores>=65:

result=’B+’

else if scores>=45:

result=’C+’

else:

result=”FAIL”

print(“Result: “,result)

4.nested if statement:

nest if-else statements, which means you can use one if or else if statement inside another if or else if

statement(s).

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

The syntax :

if (condition 1)

{

If (condition 2)

{

Statement 1 (s1);

}

else

{

Statement 2 (s2);

}

}

else

{

Statement 3

}

Next statement;

Flowchart:

Program:

#include <stdio.h>

int main() {

 double n1, n2, n3;

 printf("Enter three numbers: ");

 scanf("%lf %lf %lf", &n1, &n2, &n3);

 // outer if statement

 if (n1 >= n2) {

 // inner if...else

 if (n1 >= n3)

 printf("%.lf is the largest number.",

n1);

 else

 printf("%.lf is the largest number.",

n3);

 }

 // outer else statement

 else {

 // inner if...else

 if (n2 >= n3)

 printf("%.lf is the largest number.",

n2);

 else

 printf("%.lf is the largest number.",

n3);

 }

 return 0;

}

5.The Switch Statements:

A switch statement is a multi-way type of selection statement . The switch declaration comes into play when more

than three alternatives (conditions) exist in a program. This command then switches between all the available blocks

on the basis of the expression value. Then, each block has a corresponding value with it.

Every block is shown here with the use of the case keyword. As a matter of fact, the case keyword is also followed

by the block label. Note that the break statement and default block statement are very optional in the case of the

switch statement.

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Syntax:

Switch

(expression_A)

{

 case_A:

Statement 1;

break;

 case_B:

Statement 2 ;

break;

case_C;

Statement 3 ;

break;

….

 case_Z:

Statement N;

break;

Default:

 Default

Statement;

break;

}

Next statement;

Flowchart:

Program:

/ Program to create a simple

calculator

#include <stdio.h>

int main() {

 char operation;

 double n1, n2;

 printf("Enter (+, -, *, /):");

 scanf("%c", &operation);

 printf("Enter two operands:");

 scanf("%lf %lf",&n1, &n2);

switch(operation)

{

 case '+':

 printf("%.1lf + %.1lf =

%.1lf",n1, n2, n1+n2);

 break;

case '-':

 printf("%.1lf - %.1lf =

%.1lf",n1, n2, n1-n2);

 break;

case '*':

printf("%.1lf * %.1lf =

%.1lf",n1, n2, n1*n2);

 break;

 case '/':

 printf("%.1lf / %.1lf =

%.1lf",n1, n2, n1/n2);

break;

 // operator doesn't match any

case constant +, -, *, /

default:

 printf("Error! operator is

not correct");

 }

return 0;

}

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Looping Statements:
when a block of code needs to be executed several number of times. In general, statements are executed sequentially:

The first statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple times. Given below is the general

form of a loop statement in most of the programming languages −

C programming language provides the following types of loops to handle looping requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is true. It tests the

condition before executing the loop body.

2 for loop

Executes a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

3 do...while loop

It is more like a while statement, except that it tests the condition at the end of the

loop body.

4 nested loops

You can use one or more loops inside any other while, for, or do..while loop.

https://www.tutorialspoint.com/cprogramming/c_while_loop.htm
https://www.tutorialspoint.com/cprogramming/c_for_loop.htm
https://www.tutorialspoint.com/cprogramming/c_do_while_loop.htm
https://www.tutorialspoint.com/cprogramming/c_nested_loops.htm

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

While Loop:

A while loop in C programming repeatedly executes a target statement as long as a given condition is true.

Syntax:

The syntax of a while loop in C programming language is −

while(condition)

{

 statement(s);

}

Next statement;

Here, statement(s) may be a single statement or a block of statements. The condition may be any expression, and

true is any nonzero value. The loop iterates while the condition is true.

When the condition becomes false, the program control passes to the line immediately following the loop.

The syntax of

a while loop in C

programming language is

−

Initialization;

while(condition)

{

 statement(s);

}

Next statement;

Flow Diagram

Program:

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* while loop execution */

 while(a < 20) {

 printf("value of a: %d\n", a);

 a++;

 }

 return 0;

}

 Note : while loop might not execute at all. When the condition is tested and the result is false, the loop body will be

skipped and the first statement after the while loop will be executed.

do...while loop in C:
Unlike for and while loops, which test the loop condition at the top of the loop, the do...while loop in C

programming checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except the fact that it is guaranteed to execute at least one

time.

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

The syntax of
a do...while loop in C

programming language is
−

Initialization;

do {

 statement(s);

} while(condition);

Next statements;

Flow Diagram

Program:

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do {

 printf("value of a:

%d\n", a);

 a = a + 1;

 }while(a < 20);

 return 0;

}

for loop:

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific

number of times.

Here is the flow of control in a 'for' loop −

 The init step is executed first, and only once. This step allows you to declare and initialize any loop control variables.

You are not required to put a statement here, as long as a semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false, the body of the loop does

not execute and the flow of control jumps to the next statement just after the 'for' loop.

 After the body of the 'for' loop executes, the flow of control jumps back up to the increment statement. This

statement allows you to update any loop control variables. This statement can be left blank, as long as a semicolon

appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and the process repeats itself (body of loop, then

increment step, and then again condition). After the condition becomes false, the 'for' loop terminates.

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

The syntax of
a for loop in C

programming
language is −

for (init; condition;

increment)

{

 statement(s);

}
Next statement;

Flow Diagram

Program:

#include <stdio.h>

int main () {

 int a;

 /* for loop execution

*/

 for(a = 10; a < 20;

a = a + 1){

 printf("value of a:

%d\n", a);

 }

 return 0;

}

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a scope, all automatic

objects that were created in that scope are destroyed.

C supports the following control statements.

Sr.No. Control Statement & Description

1 break statement

Terminates the loop or switch statement and transfers execution to the statement

immediately following the loop or switch.

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest its

condition prior to reiterating.

3 goto statement

Transfers control to the labeled statement.

https://www.tutorialspoint.com/cprogramming/c_break_statement.htm
https://www.tutorialspoint.com/cprogramming/c_continue_statement.htm
https://www.tutorialspoint.com/cprogramming/c_goto_statement.htm

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

break statement:

The break statement in C programming has the following two usages −

 When a break statement is encountered inside a loop, the loop is immediately terminated and the program control

resumes at the next statement following the loop.

 It can be used to terminate a case in the switch statement (covered in the next chapter).

If you are using nested loops, the break statement will stop the execution of the innermost loop and start executing

the next line of code after the block.

Syntax

The syntax for a break statement in C is as follows −

break;

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 while(a < 20) {

 printf("value of a: %d\n", a);

 a++;

 if(a > 15) {

 /* terminate the loop using break statement */

 break;

 }

 }

 return 0;

}

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

continue statement:

The continue statement in C programming works somewhat like the break statement. Instead of forcing

termination, it forces the next iteration of the loop to take place, skipping any code in between.

For the for loop, continue statement causes the conditional test and increment portions of the loop to execute. For

the while and do...while loops, continue statement causes the program control to pass to the conditional tests.

Syntax

The syntax for a continue statement in C is as follows −

continue;

Flow Diagram

Example

#include <stdio.h>

int main () {

 int a = 10;

 /* do loop execution */

 do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

 continue;

 }

 printf("value of a: %d\n", a);

 a++;

 } while(a < 20);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Output

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

goto statement:

A goto statement in C programming provides an unconditional jump from the 'goto' to a labeled statement in the

same function.

NOTE − Use of goto statement is highly discouraged in any programming language because it makes difficult to

trace the control flow of a program, making the program hard to understand and hard to modify. Any program that

uses a goto can be rewritten to avoid them.

Syntax

The syntax for a goto statement in C is as follows −

goto label;

..

.

label: statement;

Here label can be any plain text except C keyword and it can be set anywhere in the C program above or below

to goto statement.

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 LOOP:do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

 goto LOOP;

 }

 printf("value of a: %d\n", a);

 a++;

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 }while(a < 20);

 return 0;

}

C Array

 An array is defined as the collection of similar type of data items stored at contiguous memory locations.

Arrays are the derived data type in C programming language which can store the primitive type of data such

as int, char, double, float, etc. It also has the capability to store the collection of derived data types, such as

pointers, structure, etc. The array is the simplest data structure where each data element can be randomly

accessed by using its index number.

 C array is beneficial if you have to store similar elements. For example, if we want to store the marks of a

student in 6 subjects, then we don't need to define different variables for the marks in the different subject.

Instead of that, we can define an array which can store the marks in each subject at the contiguous memory

locations.

 By using the array, we can access the elements easily. Only a few lines of code are required to access the

elements of the array.

Properties of Array:

The array contains the following properties.

o Each element of an array is of same data type and carries the same size, i.e., int = 4 bytes.

o Elements of the array are stored at contiguous memory locations where the first element is stored at the smallest

memory location.

o Elements of the array can be randomly accessed since we can calculate the address of each element of the array

with the given base address and the size of the data element.

Advantage of C Array:

1) Code Optimization: Less code to the access the data.

2) Ease of traversing: By using the for loop, we can retrieve the elements of an array easily.

3) Ease of sorting: To sort the elements of the array, we need a few lines of code only.

4) Random Access: We can access any element randomly using the array.

Disadvantage of C Array:

1) Fixed Size: Whatever size, we define at the time of declaration of the array, we can't exceed the limit. So, it

doesn't grow the size dynamically like LinkedList which we will learn later.

Types of Arrays:

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Arrays can be classified into types:

1.One dimensional array

2.Two dimensional array

One dimensional array:

The one-dimensional array can be defined as a sequential collection of elements. The 1D array is also called as

linear array.

Declaration of C Array

We can declare an array in the c language in the following way.

data_type array_name[array_size];

Now, let us see the example to declare the array.

int marks[5];

Here, int is the data_type, marks are the array_name, and 5 is the array_size.

Initialization of Array

The simplest way to initialize an array is by using the index of each element. We can initialize each

element of the array by using the index. Consider the following example.

1. marks[0]=80;//initialization of array

2. marks[1]=60;

3. marks[2]=70;

4. marks[3]=85;

5. marks[4]=75;

1. #include<stdio.h>

2. void main ()

3. {

4. int arr[100],i,n,largest,sec_largest;

5. printf("Enter the size of the array?");

6. scanf("%d",&n);

7. printf("Enter the elements of the array?");

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

8. for(i = 0; i<n; i++)

9. {

10. scanf("%d",&arr[i]);

11. }

12. largest = arr[0];

13. sec_largest = arr[1];

14. for(i=0;i<n;i++)

15. {

16. if(arr[i]>largest)

17. {

18. sec_largest = largest;

19. largest = arr[i];

20. }

21. else if (arr[i]>sec_largest && arr[i]!=largest)

22. {

23. sec_largest=arr[i];

24. }

25. }

26. printf("largest = %d, second largest = %d",largest,sec_largest);

27. }

Declaration with Initialization

We can initialize the c array at the time of declaration. Let's see the code.

1. int marks[5]={20,30,40,50,60};

In such case, there is no requirement to define the size. So it may also be written as the following

code.

1. int marks[]={20,30,40,50,60};

Let's see the C program to declare and initialize the array in C

1. #include<stdio.h>

2. int main(){

3. int i=0;

4. int marks[5]={20,30,40,50,60};//declaration and initialization of array

5. //traversal of array

6. for(i=0;i<5;i++){

7. printf("%d \n",marks[i]);

8. }

9. return 0;

10. }

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Two Dimensional Array:

The two-dimensional array can be defined as an array of arrays. The 2D array is organized as matrices which can

be represented as the collection of rows and columns. However, 2D arrays are created to implement a relational

database lookalike data structure. It provides ease of holding the bulk of data at once which can be passed to any

number of functions wherever required.

Declaration of two dimensional Array :

The syntax to declare the 2D array is given below.

1. data_type array_name[rows][columns];

Consider the following example.

1. int twodimen[4][3];

Here, 4 is the number of rows, and 3 is the number of columns.

Initialization of 2D Array in C:

In the 1D array, we don't need to specify the size of the array if the declaration and initialization are being done

simultaneously. However, this will not work with 2D arrays. We will have to define at least the second dimension

of the array. The two-dimensional array can be declared and defined in the following way.

1. int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

Two-dimensional array example in C

1. #include<stdio.h>

2. int main(){

3. int i=0,j=0;

4. int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

5. //traversing 2D array

6. for(i=0;i<4;i++){

7. for(j=0;j<3;j++){

8. printf("arr[%d] [%d] = %d \n",i,j,arr[i][j]);

9. }//end of j

10. }//end of i

11. return 0;

12. } Output
arr[0][0] = 1

arr[0][1] = 2

arr[0][2] = 3

arr[1][0] = 2

arr[1][1] = 3

arr[1][2] = 4

arr[2][0] = 3

arr[2][1] = 4

arr[2][2] = 5

arr[3][0] = 4

arr[3][1] = 5

arr[3][2] = 6

UNIT-2

1

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

UNIT-II

 Functions

In c, we can divide a large program into the basic building blocks known as function. The function contains the set

of programming statements enclosed by {}. A function can be called multiple times to provide reusability and

modularity to the C program. In other words, we can say that the collection of functions creates a program. The

function is also known as procedure or subroutine in other programming languages.

Advantage of functions in C

There are the following advantages of C functions.

o By using functions, we can avoid rewriting same logic/code again and again in a program.

o We can call C functions any number of times in a program and from any place in a program.

o We can track a large C program easily when it is divided into multiple functions.

o Reusability is the main achievement of C functions.

Function Aspects

There are three aspects of a C function.

o Function declaration A function must be declared globally in a c program to tell the compiler about the function

name, function parameters, and return type.

o Function call Function can be called from anywhere in the program. The parameter list must not differ in function

calling and function declaration. We must pass the same number of functions as it is declared in the function

declaration.

o Function definition It contains the actual statements which are to be executed. It is the most important aspect to

which the control comes when the function is called. Here, we must notice that only one value can be returned from

the function.

SNo C function aspects Syntax

1 Function declaration return_type function_name (argument list);

2 Function call function_name (argument_list)

3 Function definition return_type function_name (argument list)

{

function body;

}

2

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Types of Functions

There are two types of functions in C programming:

1. Library Functions: are the functions which are declared in the C header files such as scanf(), printf(), gets(), puts(),

ceil(), floor() etc.

2. User-defined functions: are the functions which are created by the C programmer, so that he/she can use it many

times. It reduces the complexity of a big program and optimizes the code.

 Return Value

A C function may or may not return a value from the function. If you don't have to return any value from the

function, use void for the return type.

Let's see a simple example of C function that doesn't return any value from the function.

Example without return value

 void hello()

{

printf("hello c");

}

If you want to return any value from the function, you need to use any data type such as int, long, char, etc. The

return type depends on the value to be returned from the function.

Let's see a simple example of C function that returns int value from the function.

Example with return value:

int get()

{

return 10;

 }

In the above example, we have to return 10 as a value, so the return type is int. If you want to return floating-point

value (e.g., 10.2, 3.1, 54.5, etc), you need to use float as the return type of the method.

1. float get(){

2. return 10.2;

3. }

Now, you need to call the function, to get the value of the function.

https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/functions-in-c

3

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Different aspects of function calling/Types of user defined functions:

A function may or may not accept any argument. It may or may not return any value. Based on these facts, There

are four different aspects of function calls.

o function without arguments and without return value

o function without arguments and with return value

o function with arguments and without return value

o function with arguments and with return value

Example for Function without argument and return value

Example 1

1. #include<stdio.h>

2. void printName();

3. void main ()

4. {

5. printf("Hello ");

6. printName();

7. }

8. void printName()

9. {

10. printf("welcome");

11. }

Output

Hello welcome

Example 2

#include<stdio.h>

void sum();

void main()

{

 printf("\nGoing to calculate the sum of two numbers:");

 sum();

}

void sum()

{

 int a,b;

 printf("\nEnter two numbers");

 scanf("%d %d",&a,&b);

 printf("The sum is %d",a+b);

https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/functions-in-c

4

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

}

Output

Going to calculate the sum of two numbers:

Enter two numbers 10

24

The sum is 34

Example for Function without argument and with return value

Example 1

#include<stdio.h>

1. int sum();

2. void main()

3. {

4. int result;

5. printf("\nGoing to calculate the sum of two numbers:");

6. result = sum();

7. printf("%d",result);

8. }

9. int sum()

10. {

11. int a,b;

12. printf("\nEnter two numbers");

13. scanf("%d %d",&a,&b);

14. return a+b;

15. }

Output

Going to calculate the sum of two numbers:

Enter two numbers 10

24

The sum is 34

Example 2: program to calculate the area of the square

1. #include<stdio.h>

2. int sum();

3. void main()

4. {

https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/functions-in-c

5

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

5. printf("Going to calculate the area of the square\n");

6. float area = square();

7. printf("The area of the square: %f\n",area);

8. }

9. int square()

10. {

11. float side;

12. printf("Enter the length of the side in meters: ");

13. scanf("%f",&side);

14. return side * side;

15. }

Output

Going to calculate the area of the square

Enter the length of the side in meters: 10

The area of the square: 100.000000

Example for Function with argument and without return value

Example 1:

1. #include<stdio.h>

2. void sum(int, int);

3. void main()

4. {

5. int a,b,result;

6. printf("\nGoing to calculate the sum of two numbers:");

7. printf("\nEnter two numbers:");

8. scanf("%d %d",&a,&b);

9. sum(a,b);

10. }

11. void sum(int a, int b)

12. {

13. printf("\nThe sum is %d",a+b);

14. }

Output

Going to calculate the sum of two numbers:

Enter two numbers 10

24

The sum is 34

Example 2: program to calculate the average of five numbers

https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/functions-in-c

6

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

1. #include<stdio.h>

2. void average(int, int, int, int, int);

3. void main()

4. {

5. int a,b,c,d,e;

6. printf("\nGoing to calculate the average of five numbers:");

7. printf("\nEnter five numbers:");

8. scanf("%d %d %d %d %d",&a,&b,&c,&d,&e);

9. average(a,b,c,d,e);

10. }

11. void average(int a, int b, int c, int d, int e)

12. {

13. float avg;

14. avg = (a+b+c+d+e)/5;

15. printf("The average of given five numbers : %f",avg);

16. }

Output

Going to calculate the average of five numbers:

Enter five numbers:10

20

30

40

50

The average of given five numbers : 30.000000

Example for Function with argument and with return value

Example:

1. #include<stdio.h>

2. int sum(int, int);

3. void main()

4. {

5. int a,b,result;

6. printf("\nGoing to calculate the sum of two numbers:");

7. printf("\nEnter two numbers:");

8. scanf("%d %d",&a,&b);

9. result = sum(a,b);

10. printf("\nThe sum is : %d",result);

11. }

12. int sum(int a, int b)

13. {

14. return a+b;

15. }

Output

https://www.javatpoint.com/functions-in-c
https://www.javatpoint.com/functions-in-c

7

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Going to calculate the sum of two numbers:

Enter two numbers:10

20

The sum is : 30

Example 2: Program to check whether a number is even or odd

1. #include<stdio.h>

2. int even_odd(int);

3. void main()

4. {

5. int n,flag=0;

6. printf("\nGoing to check whether a number is even or odd");

7. printf("\nEnter the number: ");

8. scanf("%d",&n);

9. flag = even_odd(n);

10. if(flag == 0)

11. {

12. printf("\nThe number is odd");

13. }

14. else

15. {

16. printf("\nThe number is even");

17. }

18. }

19. int even_odd(int n)

20. {

21. if(n%2 == 0)

22. {

23. return 1;

24. }

25. else

26. {

27. return 0;

28. }

29. }

Output

Going to check whether a number is even or odd

Enter the number: 100

The number is even

 Library Functions

Library functions are the inbuilt function in C that are grouped and placed at a common place called the library.

Such functions are used to perform some specific operations. For example, printf is a library function used to print

8

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

on the console. The library functions are created by the designers of compilers. All C standard library functions are

defined inside the different header files saved with the extension .h.

We need to include these header files in our program to make use of the library functions defined in such header

files. For example, To use the library functions such as printf/scanf we need to include stdio.h in our program which

is a header file that contains all the library functions regarding standard input/output.

The list of mostly used header files is given in the following table.

S.No Header file Description

1 stdio.h This is a standard input/output header file. It contains all the library functions

regarding standard input/output.

2 conio.h This is a console input/output header file.

3 string.h It contains all string related library functions like gets(), puts(),etc.

4 stdlib.h This header file contains all the general library functions like malloc(),

calloc(), exit(), etc.

5 math.h This header file contains all the math operations related functions like sqrt(),

pow(), etc.

6 time.h This header file contains all the time-related functions.

7 ctype.h This header file contains all character handling functions.

8 stdarg.h Variable argument functions are defined in this header file.

9 signal.h All the signal handling functions are defined in this header file.

10 setjmp.h This file contains all the jump functions.

11 locale.h This file contains locale functions.

12 errno.h This file contains error handling functions.

13 assert.h This file contains diagnostics functions.

Call by value and Call by reference in C

There are two methods to pass the data into the function in C language, i.e., call by value and call by reference.

9

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Let's understand call by value and call by reference in c language one by one.

Call by value in C:

o In call by value method, the value of the actual parameters is copied into the formal parameters. In other words, we

can say that the value of the variable is used in the function call in the call by value method.

o In call by value method, we can not modify the value of the actual parameter by the formal parameter.

o In call by value, different memory is allocated for actual and formal parameters since the value of the actual

parameter is copied into the formal parameter.

o The actual parameter is the argument which is used in the function call whereas formal parameter is the argument

which is used in the function definition.

Let's try to understand the concept of call by value in c language by the example given below:

1. #include<stdio.h>

2. void change(int num) {

3. printf("Before adding value inside function num=%d \n",num);

4. num=num+100;

5. printf("After adding value inside function num=%d \n", num);

6. }

7. int main() {

8. int x=100;

9. printf("Before function call x=%d \n", x);

10. change(x);//passing value in function

11. printf("After function call x=%d \n", x);

12. return 0;

13. }

Output
Before function call x=100

Before adding value inside function num=100

After adding value inside function num=200

After function call x=100

Call by Value Example: Swapping the values of the two variables
1. #include <stdio.h>

2. void swap(int , int); //prototype of the function

10

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

3. int main()

4. {

5. int a = 10;

6. int b = 20;

7. printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main

8. swap(a,b);

9. printf("After swapping values in main a = %d, b = %d\n",a,b); // The value of actual parameters do not change b

y changing the formal parameters in call by value, a = 10, b = 20

10. }

11. void swap (int a, int b)

12. {

13. int temp;

14. temp = a;

15. a=b;

16. b=temp;

17. printf("After swapping values in function a = %d, b = %d\n",a,b); // Formal parameters, a = 20, b = 10

18. }

Output
Before swapping the values in main a = 10, b = 20

After swapping values in function a = 20, b = 10

After swapping values in main a = 10, b = 20

Call by reference in C

o In call by reference, the address of the variable is passed into the function call as the actual parameter.

o The value of the actual parameters can be modified by changing the formal parameters since the address of the

actual parameters is passed.

o In call by reference, the memory allocation is similar for both formal parameters and actual parameters. All the

operations in the function are performed on the value stored at the address of the actual parameters, and the modified

value gets stored at the same address.

Consider the following example for the call by reference.

1. #include<stdio.h>

2. void change(int *num) {

3. printf("Before adding value inside function num=%d \n",*num);

4. (*num) += 100;

5. printf("After adding value inside function num=%d \n", *num);

6. }

7. int main() {

8. int x=100;

9. printf("Before function call x=%d \n", x);

10. change(&x);//passing reference in function

11. printf("After function call x=%d \n", x);

12. return 0;

13. }

Output
Before function call x=100

11

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Before adding value inside function num=100

After adding value inside function num=200

After function call x=200

Call by reference Example: Swapping the values of the two variables

1. #include <stdio.h>

2. void swap(int *, int *); //prototype of the function

3. int main()

4. {

5. int a = 10;

6. int b = 20;

7. printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main

8. swap(&a,&b);

9. printf("After swapping values in main a = %d, b = %d\n",a,b); // The values of actual parameters do change in c

all by reference, a = 10, b = 20

10. }

11. void swap (int *a, int *b)

12. {

13. int temp;

14. temp = *a;

15. *a=*b;

16. *b=temp;

17. printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters, a = 20, b = 10

18. }

Output
Before swapping the values in main a = 10, b = 20

After swapping values in function a = 20, b = 10

After swapping values in main a = 20, b = 10

Difference between call by value and call by reference in c

S.No Call by value Call by reference

1 A copy of the value is passed into the

function

An address of value is passed into the

function

2 Changes made inside the function is

limited to the function only. The values of

the actual parameters do not change by

changing the formal parameters.

Changes made inside the function validate

outside of the function also. The values of

the actual parameters do change by

changing the formal parameters.

3 Actual and formal arguments are created at

the different memory location

Actual and formal arguments are created at

the same memory location

Recursion in C

12

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Recursion is the process which comes into existence when a function calls a copy of itself to work on a smaller

problem. Any function which calls itself is called recursive function, and such function calls are called recursive

calls. Recursion involves several numbers of recursive calls. However, it is important to impose a termination

condition of recursion. Recursion code is shorter than iterative code however it is difficult to understand.

Recursion cannot be applied to all the problem, but it is more useful for the tasks that can be defined in terms of

similar subtasks. For Example, recursion may be applied to sorting, searching, and traversal problems.

Generally, iterative solutions are more efficient than recursion since function call is always overhead. Any problem

that can be solved recursively, can also be solved iteratively. However, some problems are best suited to be solved

by the recursion, for example, tower of Hanoi, Fibonacci series, factorial finding, etc.

In the following example, recursion is used to calculate the factorial of a number.

1. #include <stdio.h>

2. int fact (int);

3. int main()

4. {

5. int n,f;

6. printf("Enter the number whose factorial you want to calculate?");

7. scanf("%d",&n);

8. f = fact(n);

9. printf("factorial = %d",f);

10. }

11. int fact(int n)

12. {

13. if (n==0)

14. {

15. return 0;

16. }

17. else if (n == 1)

18. {

19. return 1;

20. }

21. else

22. {

23. return n*fact(n-1);

24. }

25. }

Output
Enter the number whose factorial you want to calculate?5

factorial = 120

We can understand the above program of the recursive method call by the figure given below:

13

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 Recursive Function:

A recursive function performs the tasks by dividing it into the subtasks. There is a termination condition defined in

the function which is satisfied by some specific subtask. After this, the recursion stops and the final result is returned

from the function.

The case at which the function doesn't recur is called the base case whereas the instances where the function keeps

calling itself to perform a subtask, is called the recursive case. All the recursive functions can be written using this

format.

Pseudocode for writing any recursive function is given below.

1. if (test_for_base)

2. {

3. return some_value;

4. }

5. else if (test_for_another_base)

6. {

7. return some_another_value;

8. }

9. else

10. {

11. // Statements;

12. recursive call;

13. }

Example of recursion in C

Let's see an example to find the nth term of the Fibonacci series.

1. #include<stdio.h>

2. int fibonacci(int);

3. void main ()

4. {

5. int n,f;

6. printf("Enter the value of n?");

7. scanf("%d",&n);

8. f = fibonacci(n);

9. printf("%d",f);

10. }

11. int fibonacci (int n)

12. {

13. if (n==0)

https://www.javatpoint.com/recursion-in-c
https://www.javatpoint.com/recursion-in-c
https://www.javatpoint.com/recursion-in-c
https://www.javatpoint.com/recursion-in-c
https://www.javatpoint.com/recursion-in-c
https://www.javatpoint.com/recursion-in-c

14

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

14. {

15. return 0;

16. }

17. else if (n == 1)

18. {

19. return 1;

20. }

21. else

22. { return fibonacci(n-1)+fibonacci(n-2);

23. }

24. }

Output
Enter the value of n?12

144

Memory allocation of Recursive method:

Each recursive call creates a new copy of that method in the memory. Once some data is returned by the method,

the copy is removed from the memory. Since all the variables and other stuff declared inside function get stored in

the stack, therefore a separate stack is maintained at each recursive call. Once the value is returned from the

corresponding function, the stack gets destroyed. Recursion involves so much complexity in resolving and tracking

the values at each recursive call. Therefore we need to maintain the stack and track the values of the variables

defined in the stack.

Let us consider the following example to understand the memory allocation of the recursive functions.

1. int display (int n)

2. {

3. if(n == 0)

4. return 0; // terminating condition

5. else

6. {

7. printf("%d",n);

8. return display(n-1); // recursive call

9. }

10. }

Explanation

Let us examine this recursive function for n = 4. First, all the stacks are maintained which prints the corresponding

value of n until n becomes 0, Once the termination condition is reached, the stacks get destroyed one by one by

returning 0 to its calling stack. Consider the following image for more information regarding the stack trace for the

recursive functions.

https://www.javatpoint.com/recursion-in-c
https://www.javatpoint.com/recursion-in-c

15

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Storage Classes in C

A storage class defines the scope (visibility) and life-time of variables and/or functions within a C Program

Storage classes in C are used to determine the lifetime, visibility, memory location, and initial value of a variable.

There are four types of storage classes in C

o Automatic

o External

o Static

o Register

Storage

Classes

Storage

Place

Default

Value

Scope Lifetime

Auto RAM Garbage

Value

Local Within function

Extern RAM Zero Global Till the end of the main program

Maybe declared anywhere in the

program

Static RAM Zero Local/Global Till the end of the main program,

Retains value between multiple

functions call

16

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Register Register Garbage

Value

Local Within the function

Automatic

o Automatic variables are allocated memory automatically at runtime.

o The visibility of the automatic variables is limited to the block in which they are defined.

The scope of the automatic variables is limited to the block in which they are defined.

o The automatic variables are initialized to garbage by default.

o The memory assigned to automatic variables gets freed upon exiting from the block.

o The keyword used for defining automatic variables is auto.

o Every local variable is automatic in C by default.

Example 1
1. #include <stdio.h>

2. int main()

3. {

4. int a; //auto

5. char b;

6. float c;

7. printf("%d %c %f",a,b,c); // printing initial default value of automatic variables a, b, and c.

8. return 0;

9. }

Output:

garbage garbage garbage

Example 2
1. #include <stdio.h>

2. int main()

3. {

4. int a = 10,i;

5. printf("%d ",++a);

6. {

7. int a = 20;

8. for (i=0;i<3;i++)

9. {

10. printf("%d ",a); // 20 will be printed 3 times since it is the local value of a

11. }

12. }

13. printf("%d ",a); // 11 will be printed since the scope of a = 20 is ended.

14. }

Output:

17

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 11 20 20 20 11

Static

o The variables defined as static specifier can hold their value between the multiple function calls.

o Static local variables are visible only to the function or the block in which they are defined.

o A same static variable can be declared many times but can be assigned at only one time.

o Default initial value of the static integral variable is 0 otherwise null.

o The visibility of the static global variable is limited to the file in which it has declared.

o The keyword used to define static variable is static.

Example 1

1. #include<stdio.h>

2. static char c;

3. static int i;

4. static float f;

5. static char s[100];

6. void main ()

7. {

8. printf("%d %d %f %s",c,i,f); // the initial default value of c, i, and f will be printed.

9. }

Output:

0 0 0.000000 (null)

Example 2
1. #include<stdio.h>

2. void sum()

3. {

4. static int a = 10;

5. static int b = 24;

6. printf("%d %d \n",a,b);

7. a++;

8. b++;

9. }

10. void main()

11. {

12. int i;

13. for(i = 0; i< 3; i++)

14. {

15. sum(); // The static variables holds their value between multiple function calls.

16. }

17. }

Output:

10 24

11 25

18

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

12 26

Register

o The variables defined as the register is allocated the memory into the CPU registers depending upon the size of the

memory remaining in the CPU.

o We can not dereference the register variables, i.e., we can not use &operator for the register variable.

o The access time of the register variables is faster than the automatic variables.

o The initial default value of the register local variables is 0.

o The register keyword is used for the variable which should be stored in the CPU register. However, it is compiler?s

choice whether or not; the variables can be stored in the register.

o We can store pointers into the register, i.e., a register can store the address of a variable.

o Static variables can not be stored into the register since we can not use more than one storage specifier for the same

variable.

Example 1

1. #include <stdio.h>

2. int main()

3. {

4. register int a; // variable a is allocated memory in the CPU register. The initial default value of a is 0.

5. printf("%d",a);

6. }

Output:

0

Example 2
1. #include <stdio.h>

2. int main()

3. {

4. register int a = 0;

5. printf("%u",&a); // This will give a compile time error since we can not access the address of a register variable.

6. }

Output:

main.c:5:5: error: address of register variable ?a? requested

printf("%u",&a);

^~~~~~

External

o The external storage class is used to tell the compiler that the variable defined as extern is declared with an external

linkage elsewhere in the program.

o The variables declared as extern are not allocated any memory. It is only declaration and intended to specify that

the variable is declared elsewhere in the program.

o The default initial value of external integral type is 0 otherwise null.

19

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

o We can only initialize the extern variable globally, i.e., we can not initialize the external variable within any block

or method.

o An external variable can be declared many times but can be initialized at only once.

o If a variable is declared as external then the compiler searches for that variable to be initialized somewhere in the

program which may be extern or static. If it is not, then the compiler will show an error.

Example 1
1. #include <stdio.h>

2. int main()

3. {

4. extern int a;

5. printf("%d",a);

6. }

Output

main.c:(.text+0x6): undefined reference to `a'

collect2: error: ld returned 1 exit status

Example 2
1. #include <stdio.h>

2. int a;

3. int main()

4. {

5. extern int a; // variable a is defined globally, the memory will not be allocated to a

6. printf("%d",a);

7. } Output

 0

Example 3
1. #include <stdio.h>

2. int a;

3. int main()

4. {

5. extern int a = 0; // this will show a compiler error since we can not use extern and initializer at same time

6. printf("%d",a);

7. }

Output

compile time error

main.c: In function ?main?:

main.c:5:16: error: ?a? has both ?extern? and initializer

extern int a = 0;

Example 4
1. #include <stdio.h>

2. int main()

3. {

4. extern int a; // Compiler will search here for a variable a defined and initialized somewhere in the pogram or not.

20

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

5. printf("%d",a);

6. }

7. int a = 20;

Output

20

Example 5
1. extern int a;

2. int a = 10;

3. #include <stdio.h>

4. int main()

5. {

6. printf("%d",a);

7. }

8. int a = 20; // compiler will show an error at this line

Output

compile time error

Pointers:

The pointer in C language is a variable which stores the address of another variable. This variable can be of type

int, char, array, function, or any other pointer.

Consider the following example to define a pointer which stores the address of an integer.

1. int n = 10;

2. int* p = &n; // Variable p of type pointer is pointing to the address of the variable n of type integer.

Declaring a pointer:

The pointer in c language can be declared using * (asterisk symbol). It is also known as indirection pointer used to

dereference a pointer.

1. int *a;//pointer to int

2. char *c;//pointer to char

Pointer Example

An example of using pointers to print the address and value is given below.

21

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

68M

1.3K

As you can see in the above figure, pointer variable stores the address of number variable, i.e., fff4. The value of number

variable is 50. But the address of pointer variable p is aaa3.

By the help of * (indirection operator), we can print the value of pointer variable p.

Let's see the pointer example as explained for the above figure.

1. #include<stdio.h>

2. int main(){

3. int number=50;

4. int *p;

5. p=&number;//stores the address of number variable

6. printf("Address of p variable is %x \n",p); // p contains the address of the number therefore printing p gives the ad

dress of number.

7. printf("Value of p variable is %d \n",*p); /* As we know that * is used to dereference a pointer therefore if we

8. print *p, we will get the value stored at the address contained by p. */

9. return 0;

10. }

Output

Address of number variable is fff4

Address of p variable is fff4

Value of p variable is 50

Advantage of pointer

22

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

1) Pointer reduces the code and improves the performance, it is used to retrieving strings, trees, etc. and used

with arrays, structures, and functions.

2) We can return multiple values from a function using the pointer.

3) It makes you able to access any memory location in the computer's memory.

Usage of pointer

There are many applications of pointers in c language.

1) Dynamic memory allocation:

In c language, we can dynamically allocate memory using malloc() and calloc() functions where the pointer is used.

2) Arrays, Functions, and Structures:

Pointers in c language are widely used in arrays, functions, and structures. It reduces the code and improves the

performance.

Address Of (&) Operator:

The address of operator '&' returns the address of a variable. But, we need to use %u to display the address of a

variable.

1. #include<stdio.h>

2. int main(){

3. int number=50;

4. printf("value of number is %d, address of number is %u",number,&number);

5. return 0;

6. } Output

value of number is 50, address of number is fff4

Memory Allocation in C Programs

The C language supports two kinds of memory allocation through the variables in C programs:

 Static allocation is what happens when you declare a static or global variable. Each static or global variable

defines one block of space, of a fixed size. The space is allocated once, when your program is started (part of the

exec operation), and is never freed.

 Automatic allocation happens when you declare an automatic variable, such as a function argument or a local

variable. The space for an automatic variable is allocated when the compound statement containing the declaration

is entered, and is freed when that compound statement is exited.

In GNU C, the size of the automatic storage can be an expression that varies. In other C implementations, it must

be a constant.

23

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

A third important kind of memory allocation, dynamic allocation, is not supported by C variables but is available

via GNU C Library functions.

 Dynamic Memory Allocation

Dynamic memory allocation is a technique in which programs determine as they are running where to store some

information. You need dynamic allocation when the amount of memory you need, or how long you continue to

need it, depends on factors that are not known before the program runs.

For example, you may need a block to store a line read from an input file; since there is no limit to how long a line

can be, you must allocate the memory dynamically and make it dynamically larger as you read more of the line.

Dynamic memory allocation in C:

The concept of dynamic memory allocation in c language enables the C programmer to allocate memory at

runtime. Dynamic memory allocation in c language is possible by 4 functions of stdlib.h header file.

1.malloc()

2.calloc()

3.realloc()

4.free()

Let's understand the difference between static memory allocation and dynamic memory allocation.

Now let's have a quick look at the methods used for dynamic memory allocation.

malloc() allocates single block of requested memory.

calloc() allocates multiple block of requested memory.

static memory allocation dynamic memory allocation

memory is allocated at compile time. memory is allocated at run time.

memory can't be increased while executing program. memory can be increased while executing program.

used in array. used in linked list.

https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html#Dynamic-Memory-Allocation

24

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

realloc() reallocates the memory occupied by malloc() or calloc() functions.

free() frees the dynamically allocated memory.

malloc() function in C:

The malloc() function allocates single block of requested memory.

It returns NULL if memory is not sufficient.

The syntax of malloc() function is given below:

1. ptr=(cast-type*)malloc(byte-size)

Let's see the example of malloc() function.

1. #include<stdio.h>

2. #include<stdlib.h>

3. int main(){

4. int n,i,*ptr,sum=0;

5. printf("Enter number of elements: ");

6. scanf("%d",&n);

7. ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc

8. if(ptr==NULL)

9. {

10. printf("Sorry! unable to allocate memory");

11. exit(0);

12. }

13. printf("Enter elements of array: ");

14. for(i=0;i<n;++i)

15. {

16. scanf("%d",ptr+i);

17. sum+=*(ptr+i);

18. }

19. printf("Sum=%d",sum);

20. free(ptr);

21. return 0;

22. }

Output

Enter elements of array: 3

Enter elements of array: 10

10

10

25

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Sum=30

calloc() function in C:

The calloc() function allocates multiple block of requested memory.

It initially initialize all bytes to zero.

It returns NULL if memory is not sufficient.

The syntax of calloc() function is given below:

1. ptr=(cast-type*)calloc(number, byte-size)

Let's see the example of calloc() function.

1. #include<stdio.h>

2. #include<stdlib.h>

3. int main(){

4. int n,i,*ptr,sum=0;

5. printf("Enter number of elements: ");

6. scanf("%d",&n);

7. ptr=(int*)calloc(n,sizeof(int)); //memory allocated using calloc

8. if(ptr==NULL)

9. {

10. printf("Sorry! unable to allocate memory");

11. exit(0);

12. }

13. printf("Enter elements of array: ");

14. for(i=0;i<n;++i)

15. {

16. scanf("%d",ptr+i);

17. sum+=*(ptr+i);

18. }

19. printf("Sum=%d",sum);

20. free(ptr);

21. return 0;

22. } Output

Enter elements of array: 3

Enter elements of array: 10

10

10

Sum=30

realloc() function in C:

If memory is not sufficient for malloc() or calloc(), you can reallocate the memory by realloc() function. In short, it

changes the memory size.

26

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Let's see the syntax of realloc() function.

1.ptr=realloc(ptr, new-size)

free() function in C:

The memory occupied by malloc() or calloc() functions must be released by calling free() function. Otherwise, it

will consume memory until program exit.

Let's see the syntax of free() function.

1. free(ptr)

Reading complex pointers:

There are several things which must be taken into the consideration while reading the complex pointers in C. Lets

see the precedence and associativity of the operators which are used regarding pointers.

Operator Precedence Associativity

(), [] 1 Left to right

*, identifier 2 Right to left

Data type 3 -

Here,we must notice that,

o (): This operator is a bracket operator used to declare and define the function.

o []: This operator is an array subscript operator

o * : This operator is a pointer operator.

o Identifier: It is the name of the pointer. The priority will always be assigned to this.

o Data type: Data type is the type of the variable to which the pointer is intended to point. It also includes the modifier

like signed int, long, etc).

C Function Pointer:

As we know that we can create a pointer of any data type such as int, char, float, we can also create a pointer pointing

to a function. The code of a function always resides in memory, which means that the function has some address.

We can get the address of memory by using the function pointer.

Let's see a simple example.

1. #include <stdio.h>

27

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

2. int main()

3. {

4. printf("Address of main() function is %p",main);

5. return 0;

6. }

The above code prints the address of main() function.

Output

In the above output, we observe that the main() function has some address. Therefore, we conclude that every

function has some address.

Declaration of a function pointer:

Till now, we have seen that the functions have addresses, so we can create pointers that can contain these addresses,

and hence can point them.

Syntax of function pointer

1. return type (*ptr_name)(type1, type2…);

For example:

1. int (*ip) (int);

In the above declaration, *ip is a pointer that points to a function which returns an int value and accepts an integer

value as an argument.

1. float (*fp) (float);

In the above declaration, *fp is a pointer that points to a function that returns a float value and accepts a float value

as an argument.

We can observe that the declaration of a function is similar to the declaration of a function pointer except that the

pointer is preceded by a '*'. So, in the above declaration, fp is declared as a function rather than a pointer.

Till now, we have learnt how to declare the function pointer. Our next step is to assign the address of a function to

the function pointer.

1.float (*fp) (int , int); // Declaration of a function pointer.

2.float func(int , int); // Declaration of function.

3.fp = func; // Assigning address of func to the fp pointer.

In the above declaration, 'fp' pointer contains the address of the 'func' function.

28

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Note: Declaration of a function is necessary before assigning the address of a function to the function pointer.

Calling a function through a function pointer:

We already know how to call a function in the usual way. Now, we will see how to call a function using a function

pointer.

Suppose we declare a function as given below:

1. float func(int , int); // Declaration of a function.

Calling an above function using a usual way is given below:

1. result = func(a , b); // Calling a function using usual ways.

Calling a function using a function pointer is given below:

1. result = (*fp)(a , b); // Calling a function using function pointer.

Or

1. result = fp(a , b); // Calling a function using function pointer, and indirection operator can be removed.

The effect of calling a function by its name or function pointer is the same. If we are using the function pointer, we

can omit the indirection operator as we did in the second case. Still, we use the indirection operator as it makes it

clear to the user that we are using a function pointer.

Let's understand the function pointer through an example

1. #include <stdio.h>

2. int add(int,int);

3. int main()

4. {

5. int a,b;

6. int (*ip)(int,int);

7. int result;

8. printf("Enter the values of a and b : ");

9. scanf("%d %d",&a,&b);

10. ip=add;

11. result=(*ip)(a,b);

12. printf("Value after addition is : %d",result);

13. return 0;

14. }

15. int add(int a,int b)

16. {

17. int c=a+b;

18. return c;

19. }

29

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Output

Pointer Expressions

Arithmetic Operators:

We can perform arithmetic operations to pointer variables using arithmetic operators. We can add an

integer or subtract an integer using a pointer pointing to that integer variable. The given table shows

the arithmetic operators that can be performed on pointer variables:

Examples:
*ptr1 + *ptr2

*ptr1 * *ptr2

*ptr1 + *ptr2 - *ptr3

We can also directly perform arithmetic expression using integers. Lets look at the example given

below where p1 and p2 are pointers.

p1+10, p2-5, p1-p2+10, p1/2

Below diagram represents how exactly the expression/operators work with pointers.

Let us understand pointer arithmetic expression better with given code:

#include <stdio.h>
int main()

30

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

{
 // Integer variables
 int a = 20, b = 10;

 // Variables for storing arithmetic
 // operations solution
 int add, sub, div, mul, mod;

 // Pointer variables for variables
 // a and b
 int *ptr_a, *ptr_b;

 // Initialization of pointers
 ptr_a = &a;
 ptr_b = &b;

 // Performing arithmetic Operations
 // on pointers
 add = *ptr_a + *ptr_b;
 sub = *ptr_a - *ptr_b;
 mul = *ptr_a * *ptr_b;
 div = *ptr_a / *ptr_b;
 mod = *ptr_a % *ptr_b;

 // Printing values
 printf("Addition = %d\n", add);
 printf("Subtraction = %d\n", sub);
 printf("Multiplication = %d\n", mul);
 printf("Division = %d\n", div);
 printf("Modulo = %d\n", mod);
 return 0;
}

Output:
Addition = 30

Subtraction = 10

Multiplication = 200

Division = 2

Modulo = 0

Note: While performing division, make sure you put a blank space between ‘/’ and ‘*’ of the pointer

as together it would make a multi-line comment(‘/*’).

Example:
 Incorrect: *ptr_a/*ptr_b;

 Correct: *ptr_a / *ptr_b;

 Correct: (*ptr_a)/(*ptr_b);

Relational Operators:
Relational operations are often used to compare the values of the variable based on which we can take

decisions. The given table shows the relational operators that can be performed on pointer variables.

31

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Example:
*ptr1 > *ptr2

*ptr1 < *ptr2

The value of the relational expression is either 0 or 1 that is false or true. The expression will return

value 1 if the expression is true and it’ll return value 0 if false.

Let us understand relational expression on pointer better with the code given below:

// Program showing pointer expressions
// during Relational Operations
#include <stdio.h>
int main()
{
 // Initializing integer variables
 int a = 20, b = 10;
 // Declaring pointer variables
 int* ptr_a;
 int* ptr_b;
 // Initializing pointer variables
 ptr_a = &a;
 ptr_b = &b;
 // Performing relational operations
 // less than operator
 if (*ptr_a < *ptr_b)

 {
 printf("%d is less than %d.", *ptr_a, *ptr_b);
 }
 // Greater than operator
 if (*ptr_a > *ptr_b)

 {
 printf("%d is greater than %d.", *ptr_a, *ptr_b);
 }

 // Equal to
 if (*ptr_a == *ptr_b) {
 printf(
 "%d is equal to %d.", *ptr_a, *ptr_b);

https://media.geeksforgeeks.org/wp-content/uploads/20200210161806/Relational-Operations-on-Pointers-in-C.png

32

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 }
 return 0;
}

Output:
20 is greater than 10.

Output:
20 is greater than 10.

Assignment Operators:

Assignment operators are used to assign values to the identifiers. There are multiple shorthand

operations available. A table is given below showing the actual assignment statement with its

shorthand statement.

Examples:
*a=10

*b+=20

*z=3.5

*s=4.56743

Let us understand assignment operator in better way with the help of code given below:

// Program showing pointer expressions
// during Assignment Operations
#include <stdio.h>
int main()
{
 // Initializing integer variable
 int a = 30;

 // Declaring pointer variable

https://media.geeksforgeeks.org/wp-content/uploads/20200210162602/Assignment-Operations-on-Pointers-in-C.png

33

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 int* ptr_a;

 // Initializing pointer using
 // assignment operator
 ptr_a = &a;

 // Changing the variable's value using
 // assignment operator
 *ptr_a = 50;

 // Printing value of 'a' after
 // updating its value
 printf("Value of variable a = %d", *ptr_a);

 return 0;
}

Output:
Value of variable a = 50

Conditional Operators
There is only one mostly used conditional operator in C known as Ternary operator. Ternary operator

first checks the expression and depending on its return value returns true or false, which

triggers/selects another expression.

Syntax:
expression1 ? expression2 : expression3;

Example:
c = (*ptr1 > *ptr2) ? *ptr1 : *ptr2;

 As shown in example, assuming *ptr1=20 and *ptr2=10 then the condition here becomes true for

the expression, so it’ll return value of true expression i.e. *ptr1, so variable ‘c’ will now contain

value of 20.

 Considering same example, assume *ptr1=30 and *ptr2=50 then the condition is false for the

expression, so it’ll return value of false expression i.e. *ptr2, so variable ‘c’ will now contain value

50.

Let us understand the concept through the given code:

// Program showing pointer expressions
// during Conditional Operations
#include <stdio.h>
int main()
{
 // Initializing integer variables
 int a = 15, b = 20, result = 0;

 // Declaring pointer variables
 int *ptr_a, *ptr_b;

 // Initializing pointer variables
 ptr_a = &a;

34

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 ptr_b = &b;

 // Performing ternary operator
 result = ((*ptr_a > *ptr_b) ? *ptr_a : *ptr_b);

 // Printing result of ternary operator
 printf("%d is the greatest.", result);
 return 0;
}

Output:
20 is the greatest.

Unary Operators:

There are mainly two operators which are given as follows.

Examples:
(*ptr1)++

(*ptr1)--

Let us understand the use of the unary operator through the given code:

// Program showing pointer expressions
// during Unary Operations
#include <stdio.h>
int main()
{
 // Initializing integer variable
 int a = 34;

 // Declaring pointer variable
 int* ptr_a;

 // Initializing pointer variable
 ptr_a = &a;

 // Value of a before increment
 printf("Increment:\n");
 printf(

https://media.geeksforgeeks.org/wp-content/uploads/20200210163637/Unary-Operations-on-Pointers-in-C.png

35

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 "Before increment a = %d\n", *ptr_a);

 // Unary increment operation
 (*ptr_a)++;

 // Value of a after increment
 printf(
 "After increment a = %d", *ptr_a);

 // Value before decrement
 printf("\n\nDecrement:\n");
 printf(
 "Before decrement a = %d\n", *ptr_a);

 // unary decrement operation
 (*ptr_a)--;

 // Value after decrement
 printf("After decrement a=%d", *ptr_a);

 return 0;
}

Output:
Increment:

Before increment a = 34

After increment a = 35

Decrement:

Before decrement a = 35

After decrement a=34

Bitwise Operators:
Binary operators are also known as bitwise operators. It is used to manipulate data at bit level. Bitwise

operators can’t be used for float and double datatype. A table is shown below with all bitwise

operators:

36

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Examples:
*ptr1 & *ptr2

*ptr1 | *ptr2

*ptr1 ^ *ptr2

Let us understand the concept through the given code:

// Program showing pointer expressions
// during Bitwise Operations
#include <stdio.h>
int main()
{
 // Declaring integer variable for
 // storing result
 int and, or, ex_or;

 // Initializing integer variable
 int a = 1, b = 2;

 // Performing bitwise operations
 // AND operation
 and = a & b;

 // OR operation
 or = a | b;

 // EX-OR operation
 ex_or = a ^ b;

 // Printing result of operations
 printf("\na AND b = %d", and);
 printf("\na OR b = %d", or);
 printf("\na Exclusive-OR b = %d", ex_or);
 return 0;
}

Output:
a AND b = 0

a OR b = 3

https://media.geeksforgeeks.org/wp-content/uploads/20200210164649/Bitwise-Operations-on-Pointers-in-C.png

37

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

a Exclusive-OR b = 3

Structures

Arrays allow to define type of variables that can hold several data items of the same kind. Similarly structure is

another user defined data type available in C that allows to combine data items of different kinds.

Structures are used to represent a record. Suppose you want to keep track of your books in a library. You might

want to track the following attributes about each book −

 Title

 Author

 Subject

 Book ID

Defining a Structure:

To define a structure, you must use the struct statement. The struct statement defines a new data type, with more

than one member. The format of the struct statement is as follows −

struct [structure tag] {

 member definition;

 member definition;

 ...

 member definition;

} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable definition, such as int i; or float f;

or any other valid variable definition. At the end of the structure's definition, before the final semicolon, you can

specify one or more structure variables but it is optional. Here is the way you would declare the Book structure −

struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

} book;

Accessing Structure Members:

To access any member of a structure, we use the member access operator (.). The member access operator is

coded as a period between the structure variable name and the structure member that we wish to access. You would

use the keyword struct to define variables of structure type. The following example shows how to use a structure

in a program −

#include <stdio.h>

#include <string.h>

38

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

};

int main() {

 struct Books Book1; /* Declare Book1 of type Book */

 struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 strcpy(Book1.title, "C Programming");

 strcpy(Book1.author, "Nuha Ali");

 strcpy(Book1.subject, "C Programming Tutorial");

 Book1.book_id = 6495407;

 /* book 2 specification */

 strcpy(Book2.title, "Telecom Billing");

 strcpy(Book2.author, "Zara Ali");

 strcpy(Book2.subject, "Telecom Billing Tutorial");

 Book2.book_id = 6495700;

 /* print Book1 info */

 printf("Book 1 title : %s\n", Book1.title);

 printf("Book 1 author : %s\n", Book1.author);

 printf("Book 1 subject : %s\n", Book1.subject);

 printf("Book 1 book_id : %d\n", Book1.book_id);

 /* print Book2 info */

 printf("Book 2 title : %s\n", Book2.title);

 printf("Book 2 author : %s\n", Book2.author);

 printf("Book 2 subject : %s\n", Book2.subject);

 printf("Book 2 book_id : %d\n", Book2.book_id);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

39

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Union

A union is a user defined data type available in C that allows to store different data types in the same memory

location. You can define a union with many members, but only one member can contain a value at any given time.

Unions provide an efficient way of using the same memory location for multiple-purpose.

Defining a Union:

To define a union, you must use the union statement in the same way as you did while defining a structure. The

union statement defines a new data type with more than one member for your program. The format of the union

statement is as follows −

union [union tag] {

 member definition;

 member definition;

 ...

 member definition;

} [one or more union variables];

The union tag is optional and each member definition is a normal variable definition, such as int i; or float f; or

any other valid variable definition. At the end of the union's definition, before the final semicolon, you can specify

one or more union variables but it is optional. Here is the way you would define a union type named Data having

three members i, f, and str −

union Data {

 int i;

 float f;

 char str[20];

} data;

Now, a variable of Data type can store an integer, a floating-point number, or a string of characters. It means a

single variable, i.e., same memory location, can be used to store multiple types of data. You can use any built-in or

user defined data types inside a union based on your requirement.

The memory occupied by a union will be large enough to hold the largest member of the union. For example, in

the above example, Data type will occupy 20 bytes of memory space because this is the maximum space which can

be occupied by a character string. The following example displays the total memory size occupied by the above

union .

#include <stdio.h>

#include <string.h>

 union Data {

 int i;

 float f;

 char str[20];

};

40

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 int main()

 {

 union Data data;

printf("Memory size occupied by data : %d\n", sizeof(data));

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Memory size occupied by data : 20

Accessing Union Members:

To access any member of a union, we use the member access operator (.). The member access operator is coded

as a period between the union variable name and the union member that we wish to access. You would use the

keyword union to define variables of union type. The following example shows how to use unions in a program −

#include <stdio.h>

#include <string.h>

union collecton {

 int i;

 float f;

 char str[20];

};

int main() {

 union collection data;

 data.i = 10;

 data.f = 220.5;

 strcpy(data.str, "C Programming");

 printf("data.i : %d\n", data.i);

 printf("data.f : %f\n", data.f);

 printf("data.str : %s\n", data.str);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

data.i : 1917853763

data.f : 4122360580327794860452759994368.000000

data.str : C Programming

Here, we can see that the values of i and f members of union got corrupted because the final value assigned to the

variable has occupied the memory location and this is the reason that the value of str member is getting printed

very well.

Now let's look into the same example once again where we will use one variable at a time which is the main purpose

of having unions −

41

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

#include <stdio.h>

#include <string.h>

 union Data {

 int i;

 float f;

 char str[20];

};

int main() {

 union Data data;

 data.i = 10;

 printf("data.i : %d\n", data.i);

 data.f = 220.5;

 printf("data.f : %f\n", data.f);

 strcpy(data.str, "C Programming");

 printf("data.str : %s\n", data.str);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

data.i : 10

data.f : 220.500000

data.str : C Programming

Here, all the members are getting printed very well because one member is being used at a time.

Enumeration

Enumeration (or enum) is a user defined data type in C. It is mainly used to assign names to integral constants,

the names make a program easy to read and maintain.

42

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

enum State {Working = 1, Failed = 0};

The keyword ‘enum’ is used to declare new enumeration types in C and C++. Following is an example of

enum declaration.

// An example program to demonstrate working of enum in C

#include<stdio.h>

enum week{Mon, Tue, Wed, Thur, Fri, Sat, Sun};

int main()

{

 enum week day;

 day = Wed;

 printf("%d",day);

 return 0;

}

Output:

In the above example, we declared “day” as the variable and the value of “Wed” is allocated to day, which is 2.

So as a result, 2 is printed.

Another example of enumeration is:

// Another example program to demonstrate working

// of enum in C

#include<stdio.h>

enum year{Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec};

3

43

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

int main()

{

 int i;

 for (i=Jan; i<=Dec; i++)

 printf("%d ", i);

 return 0;

}

Output:

0 1 2 3 4 5 6 7 8 9 10 11

In this example, the for loop will run from i = 0 to i = 11, as initially the value of i is Jan which is 0 and the

value of Dec is 11.

C Strings

 The string can be defined as the one-dimensional array of characters terminated by a null ('\0'). The character

array or the string is used to manipulate text such as word or sentences.

 Each character in the array occupies one byte of memory, and the last character must always be 0. The

termination character ('\0') is important in a string since it is the only way to identify where the string ends.

 When we define a string as char s[10], the character s[10] is implicitly initialized with the null in the

memory.

 There are two ways to declare a string in c language.

1. By char array

2. By string literal

Let's see the example of declaring string by char array in C language.
1. char ch[10]={'p', 'r', 'o', 'g', 'r', 'a', 'm', '\0'};

As we know, array index starts from 0, so it will be represented as in the figure given below.

p r o g r a m \0

While declaring string, size is not mandatory. So we can write the above code as given below:
1. char ch[]={'p', 'r', 'o', 'g', 'r', 'a', 'm', '\0'};

We can also define the string by the string literal in C language. For example:
1. char ch[]="program";

In such case, '\0' will be appended at the end of the string by the compiler.

Difference between char array and string literal:

There are two main differences between char array and literal.
o We need to add the null character '\0' at the end of the array by ourself whereas, it is appended internally by the

compiler in the case of the character array.

44

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

o The string literal cannot be reassigned to another set of characters whereas, we can reassign the characters of the
array.

String Example in C:

Let's see a simple example where a string is declared and being printed. The '%s' is used as a format specifier for

the string in c language.
1. #include<stdio.h>

2. #include <string.h>
3. int main(){

4. char ch[11]= {'p', 'r', 'o', 'g', 'r', 'a', 'm', '\0'};

5. char ch2[11]="program";

6.
7. printf("Char Array Value is: %s\n", ch);

8. printf("String Literal Value is: %s\n", ch2);

9. return 0;
10. }

Output
Char Array Value is: program

String Literal Value is: program

Traversing String:
 Traversing string is somewhat different from the traversing an integer array. We need to know the length of the

array to traverse an integer array, whereas we may use the null character in the case of string to identify the end the

string and terminate the loop.

Hence, there are two ways to traverse a string.
o By using the length of string

o By using the null character.

Let's discuss each one of them.

Using the length of string:
Let's see an example of counting the number of vowels in a string.

1. #include<stdio.h>

2. void main ()

3. {
4. char s[11] = "javatpoint";

5. int i = 0;

6. int count = 0;
7. while(i<11)

8. {

9. if(s[i]=='a' || s[i] == 'e' || s[i] == 'i' || s[i] == 'u' || s[i] == 'o')

10. {
11. count ++;

12. }

13. i++;
14. }

15. printf("The number of vowels %d",count);

16. }

Output
The number of vowels 4

Using the null character:
Let's see the same example of counting the number of vowels by using the null character.

1. #include<stdio.h>

2. void main ()

45

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

3. {
4. char s[11] = "javatpoint";

5. int i = 0;

6. int count = 0;
7. while(s[i] != NULL)

8. {

9. if(s[i]=='a' || s[i] == 'e' || s[i] == 'i' || s[i] == 'u' || s[i] == 'o')

10. {
11. count ++;

12. }

13. i++;
14. }

15. printf("The number of vowels %d",count);

16. }

Output
The number of vowels 4

Accepting string as the input:
Till now, we have used scanf to accept the input from the user. However, it can also be used in the case of strings

but with a different scenario. Consider the below code which stores the string while space is encountered.
1. #include<stdio.h>
2. void main ()

3. {

4. char s[20];
5. printf("Enter the string?");

6. scanf("%s",s);

7. printf("You entered %s",s);
8. }

Output
Enter the string?programing language

You entered programing

It is clear from the output that, the above code will not work for space separated strings. To make this code working

for the space separated strings, the minor changed required in the scanf function, i.e., instead of writing

scanf("%s",s), we must write: scanf("%[^\n]s",s) which instructs the compiler to store the string s while the new

line (\n) is encountered. Let's consider the following example to store the space-separated strings.
1. #include<stdio.h>

2. void main ()

3. {

4. char s[20];
5. printf("Enter the string?");

6. scanf("%[^\n]s",s);

7. printf("You entered %s",s);
8. }

Output
Enter the string? programing language

You entered programing language

Here we must also notice that we do not need to use address of (&) operator in scanf to store a string since string s

is an array of characters and the name of the array, i.e., s indicates the base address of the string (character array)

therefore we need not use & with it.

gets() and puts() functions:

46

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

The gets() and puts() are declared in the header file stdio.h. Both the functions are involved in the input/output

operations of the strings.

gets() function:
The gets() function enables the user to enter some characters followed by the enter key. All the characters entered

by the user get stored in a character array. The null character is added to the array to make it a string. The gets()

allows the user to enter the space-separated strings. It returns the string entered by the user.

Declaration
1. char[] gets(char[]);

Reading string using gets()
1. #include<stdio.h>
2. void main ()

3. {
4. char s[30];

5. printf("Enter the string? ");

6. gets(s);
7. printf("You entered %s",s);

8. }

Output
Enter the string? programing language

You entered programing language

The gets() function is risky to use since it doesn't perform any array bound checking and keep reading the characters

until the new line (enter) is encountered. It suffers from buffer overflow, which can be avoided by using fgets().

The fgets() makes sure that not more than the maximum limit of characters are read. Consider the following

example.

puts() function:
The puts() function is very much similar to printf() function. The puts() function is used to print the string on the

console which is previously read by using gets() or scanf() function. The puts() function returns an integer value

representing the number of characters being printed on the console. Since, it prints an additional newline character

with the string, which moves the cursor to the new line on the console, the integer value returned by puts() will

always be equal to the number of characters present in the string plus 1.

Declaration
1. int puts(char[])

Let's see an example to read a string using gets() and print it on the console using puts().
1. #include<stdio.h>
2. #include <string.h>

3. int main(){

4. char name[50];
5. printf("Enter your name: ");

6. gets(name); //reads string from user

7. printf("Your name is: ");

8. puts(name); //displays string
9. return 0;

10. }

Output:
Enter your name: Sonoo Jaiswal

47

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Your name is: Sonoo Jaiswal

String Functions:
There are many important string functions defined in "string.h" library.

No. Function Description

1) strlen(string_name) returns the length of string name.

2) strcpy(destination, source) copies the contents of source string to destination string.

3) strcat(first_string,

second_string)

concats or joins first string with second string. The result of the string is

stored in first string.

4) strcmp(first_string,

second_string)

compares the first string with second string. If both strings are same, it

returns 0.

5) strrev(string) returns reverse string.

6) strlwr(string) returns string characters in lowercase.

7) strupr(string) returns string characters in uppercase.

String Length: strlen() function:
The strlen() function returns the length of the given string. It doesn't count null character '\0'.

1. #include<stdio.h>

2. #include <string.h>

3. int main(){
4. char ch[20]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

5. printf("Length of string is: %d",strlen(ch));

6. return 0;

7. }

Output:
Length of string is: 10

Copy String: strcpy():
The strcpy(destination, source) function copies the source string in destination.

1. #include<stdio.h>

2. #include <string.h>

3. int main(){

4. char ch[20]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};
5. char ch2[20];

6. strcpy(ch2,ch);

7. printf("Value of second string is: %s",ch2);

https://www.javatpoint.com/c-strlen
https://www.javatpoint.com/c-strcpy
https://www.javatpoint.com/c-strcat
https://www.javatpoint.com/c-strcat
https://www.javatpoint.com/c-strcmp
https://www.javatpoint.com/c-strcmp
https://www.javatpoint.com/c-strrev
https://www.javatpoint.com/c-strlwr
https://www.javatpoint.com/c-strupr

48

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

8. return 0;
9. }

Output:
Value of second string is: javatpoint

String Concatenation: strcat():
The strcat(first_string, second_string) function concatenates two strings and result is returned to first_string.

1. #include<stdio.h>
2. #include <string.h>

3. int main(){

4. char ch[10]={'h', 'e', 'l', 'l', 'o', '\0'};
5. char ch2[10]={'c', '\0'};

6. strcat(ch,ch2);

7. printf("Value of first string is: %s",ch);
8. return 0;

9. }

Output:
Value of first string is: helloc

 Compare String: strcmp():
The strcmp(first_string, second_string) function compares two string and returns 0 if both strings are equal.

Here, we are using gets() function which reads string from the console.
1. #include<stdio.h>

2. #include <string.h>
3. int main(){

4. char str1[20],str2[20];

5. printf("Enter 1st string: ");
6. gets(str1);//reads string from console

7. printf("Enter 2nd string: ");

8. gets(str2);

9. if(strcmp(str1,str2)==0)
10. printf("Strings are equal");

11. else

12. printf("Strings are not equal");
13. return 0;

14. }

Output:
Enter 1st string: hello
Enter 2nd string: hello

Strings are equal

 Reverse String: strrev():
The strrev(string) function returns reverse of the given string. Let's see a simple example of strrev() function.

1. #include<stdio.h>

2. #include <string.h>

3. int main(){
4. char str[20];

5. printf("Enter string: ");

6. gets(str);//reads string from console

49

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

7. printf("String is: %s",str);
8. printf("\nReverse String is: %s",strrev(str));

9. return 0;

10. }

Output:
Enter string: javatpoint

String is: javatpoint

Reverse String is: tnioptavaj

 String Lowercase: strlwr():
The strlwr(string) function returns string characters in lowercase. Let's see a simple example of strlwr() function.

1. #include<stdio.h>
2. #include <string.h>

3. int main(){

4. char str[20];

5. printf("Enter string: ");
6. gets(str);//reads string from console

7. printf("String is: %s",str);

8. printf("\nLower String is: %s",strlwr(str));
9. return 0;

10. }

Output:
Enter string: JAVATpoint
String is: JAVATpoint

Lower String is: javatpoint

String Uppercase: strupr():
The strupr(string) function returns string characters in uppercase. Let's see a simple example of strupr() function.

1. #include<stdio.h>
2. #include <string.h>

3. int main(){

4. char str[20];

5. printf("Enter string: ");
6. gets(str);//reads string from console

7. printf("String is: %s",str);

8. printf("\nUpper String is: %s",strupr(str));
9. return 0;

10. }

Output:
Enter string: javatpoint

String is: javatpoint

Upper String is: JAVATPOINT

String strstr():
The strstr() function returns pointer to the first occurrence of the matched string in the given string. It is used to

return substring from first match till the last character.

50

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Syntax:
1. char *strstr(const char *string, const char *match)

String strstr() parameters:
string: It represents the full string from where substring will be searched.

match: It represents the substring to be searched in the full string.

String strstr() example:

1. #include<stdio.h>

2. #include <string.h>
3. int main(){

4. char str[100]="this is javatpoint with c and java";

5. char *sub;
6. sub=strstr(str,"java");

7. printf("\nSubstring is: %s",sub);

8. return 0;

9. }

Output:
javatpoint with c and java

UNIT-3

1

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

UNIT-III

What are Data Structures?

 Data Structure can be defined as the group of data elements which provides an efficient way of storing

and organising data in the computer so that it can be used efficiently.

 Some examples of Data Structures are arrays, Linked List, Stack, Queue, etc. Data Structures are widely

used in almost every aspect of Computer Science i.e. Operating System, Compiler Design, Artifical

intelligence, Graphics and many more.

 Data Structures are the main part of many computer science algorithms as they enable the programmers

to handle the data in an efficient way. It plays a vital role in enhancing the performance of a software or

a program as the main function of the software is to store and retrieve the user's data as fast as possible.

Basic Terminology

Data structures are the building blocks of any program or the software. Choosing the appropriate data structure

for a program is the most difficult task for a programmer. Following terminology is used as far as data structures

are concerned.

Data: Data can be defined as an elementary value or the collection of values, for example, student's name and

its id are the data about the student.

Group Items: Data items which have subordinate data items are called Group item, for example, name of a

student can have first name and the last name.

Record: Record can be defined as the collection of various data items, for example, if we talk about the student

entity, then its name, address, course and marks can be grouped together to form the record for the student.

File: A File is a collection of various records of one type of entity, for example, if there are 60 employees in the

class, then there will be 20 records in the related file where each record contains the data about each employee.

Attribute and Entity: An entity represents the class of certain objects. it contains various attributes. Each

attribute represents the particular property of that entity.

Field: Field is a single elementary unit of information representing the attribute of an entity.

Need for Data Structures

As applications are getting complexed and amount of data is increasing day by day, there may arrise the following

problems:

Processor speed: To handle very large amout of data, high speed processing is required, but as the data is

growing day by day to the billions of files per entity, processor may fail to deal with that much amount of data.

Data Search: Consider an inventory size of 106 items in a store, If our application needs to search for a particular

item, it needs to traverse 106 items every time, results in slowing down the search process.

2

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Multiple requests: If thousands of users are searching the data simultaneously on a web server, then there are

the chances that a very large server can be failed during that process

in order to solve the above problems, data structures are used. Data is organized to form a data structure in such

a way that all items are not required to be searched and required data can be searched instantly.

Advantages of Data Structures

Efficiency: Efficiency of a program depends upon the choice of data structures. For example: suppose, we have

some data and we need to perform the search for a perticular record. In that case, if we organize our data in an

array, we will have to search sequentially element by element. hence, using array may not be very efficient here.

There are better data structures which can make the search process efficient like ordered array, binary search tree

or hash tables.

Reusability: Data structures are reusable, i.e. once we have implemented a particular data structure, we can use

it at any other place. Implementation of data structures can be compiled into libraries which can be used by

different clients.

Abstraction: Data structure is specified by the ADT which provides a level of abstraction. The client program

uses the data structure through interface only, without getting into the implementation details.

Types of Data Structures

Linear Data Structures

A data structure is called linear if all of its elements are arranged in the linear order. In linear data structures, the

elements are stored in non-hierarchical way where each element has the successors and predecessors except the

first and last element.

3

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Types of Linear Data Structures are given below:

Arrays: An array is a collection of similar type of data items and each data item is called an element of the array.

The data type of the element may be any valid data type like char, int, float or double.

The elements of array share the same variable name but each one carries a different index number known as

subscript. The array can be one dimensional, two dimensional or multidimensional.

The individual elements of the array age are:

age[0], age[1], age[2], age[3],......... age[98], age[99].

What is a Stack?

 A Stack is a linear data structure that follows the LIFO (Last-In-First-Out) principle.

 Stack has one end, whereas the Queue has two ends (front and rear). It contains only one pointer top

pointer pointing to the topmost element of the stack.

 Whenever an element is added in the stack, it is added on the top of the stack, and the element can be

deleted only from the stack.

 In other words, a stack can be defined as a container in which insertion and deletion can be done from

the one end known as the top of the stack.

Some key points related to stack

o It is called as stack because it behaves like a real-world stack, piles of books, etc.

o A Stack is an abstract data type with a pre-defined capacity, which means that it can store the elements of a

limited size.

o It is a data structure that follows some order to insert and delete the elements, and that order can be LIFO or

FILO.

Working of Stack

 Stack works on the LIFO pattern. As we can observe in the below figure there are five memory blocks

in the stack; therefore, the size of the stack is 5.

 Suppose we want to store the elements in a stack and let's assume that stack is empty. We have taken the

stack of size 5 as shown below in which we are pushing the elements one by one until the stack becomes

full.

4

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Since our stack is full as the size of the stack is 5. In the above cases, we can observe that it goes from the top to

the bottom when we were entering the new element in the stack. The stack gets filled up from the bottom to the

top.

When we perform the delete operation on the stack, there is only one way for entry and exit as the other end is

closed. It follows the LIFO pattern, which means that the value entered first will be removed last. In the above

case, the value 5 is entered first, so it will be removed only after the deletion of all the other elements.

Standard Stack Operations

The following are some common operations implemented on the stack:

o push(): When we insert an element in a stack then the operation is known as a push. If the stack is full then the

overflow condition occurs.

o pop(): When we delete an element from the stack, the operation is known as a pop. If the stack is empty means

that no element exists in the stack, this state is known as an underflow state.

o isEmpty(): It determines whether the stack is empty or not.

o isFull(): It determines whether the stack is full or not.'

o peek(): It returns the element at the given position.

o count(): It returns the total number of elements available in a stack.

o change(): It changes the element at the given position.

o display(): It prints all the elements available in the stack.

PUSH operation

The steps involved in the PUSH operation is given below:

o Before inserting an element in a stack, we check whether the stack is full.

o If we try to insert the element in a stack, and the stack is full, then the overflow condition occurs.

o When we initialize a stack, we set the value of top as -1 or NULL to check that the stack is empty.

o When the new element is pushed in a stack, first, the value of the top gets incremented, i.e., top=top+1, and the

element will be placed at the new position of the top.

o The elements will be inserted until we reach the max size of the stack.

5

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

POP operation

The steps involved in the POP operation is given below:

o Before deleting the element from the stack, we check whether the stack is empty.

o If we try to delete the element from the empty stack, then the underflow condition occurs.

o If the stack is not empty, we first access the element which is pointed by the top

o Once the pop operation is performed, the top is decremented by 1, i.e., top=top-1.

Applications of Stack

The following are the applications of the stack:

o Balancing of symbols: Stack is used for balancing a symbol. For example, we have the following program:

1. int main()

2. {

3. cout<<"Hello";

6

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

4. cout<<"javaTpoint";

5. }

As we know, each program has an opening and closing braces; when the opening braces come, we push the

braces in a stack, and when the closing braces appear, we pop the opening braces from the stack. Therefore, the

net value comes out to be zero. If any symbol is left in the stack, it means that some syntax occurs in a program.

o String reversal: Stack is also used for reversing a string. For example, we want to reverse a "javaTpoint" string,

so we can achieve this with the help of a stack.

First, we push all the characters of the string in a stack until we reach the null character.

After pushing all the characters, we start taking out the character one by one until we reach the bottom of the

stack.

o UNDO/REDO: It can also be used for performing UNDO/REDO operations. For example, we have an editor in

which we write 'a', then 'b', and then 'c'; therefore, the text written in an editor is abc. So, there are three states,

a, ab, and abc, which are stored in a stack. There would be two stacks in which one stack shows UNDO state,

and the other shows REDO state.

If we want to perform UNDO operation, and want to achieve 'ab' state, then we implement pop operation.

o Recursion: The recursion means that the function is calling itself again. To maintain the previous states, the

compiler creates a system stack in which all the previous records of the function are maintained.

o DFS(Depth First Search): This search is implemented on a Graph, and Graph uses the stack data structure.

o Backtracking: Suppose we have to create a path to solve a maze problem. If we are moving in a particular path,

and we realize that we come on the wrong way. In order to come at the beginning of the path to create a new

path, we have to use the stack data structure.

o Expression conversion: Stack can also be used for expression conversion. This is one of the most important

applications of stack. The list of the expression conversion is given below:

o Infix to prefix

o Infix to postfix

o Prefix to infix

o Prefix to postfix

Postfix to infix

o Memory management: The stack manages the memory. The memory is assigned in the contiguous memory

blocks. The memory is known as stack memory as all the variables are assigned in a function call stack memory.

The memory size assigned to the program is known to the compiler. When the function is created, all its variables

are assigned in the stack memory. When the function completed its execution, all the variables assigned in the

stack are released.

7

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Array implementation of Stack

In array implementation, the stack is formed by using the array. All the operations regarding the stack are

performed using arrays. Lets see how each operation can be implemented on the stack using array data structure.

Adding an element onto the stack (push operation):

Adding an element into the top of the stack is referred to as push operation. Push operation involves following

two steps.

1. Increment the variable Top so that it can now refere to the next memory location.

2. Add element at the position of incremented top. This is referred to as adding new element at the top of the stack.

Stack is overflown when we try to insert an element into a completely filled stack therefore, our main function

must always avoid stack overflow condition.

Algorithm:

Time Complexity : o(1)

implementation of push algorithm in C language

1. void push (int val,int MAX) //n is size of the stack

2. {

3. if (top == MAX-1)

4. printf("\n Overflow");

5. else

6. {

7. top = top +1;

https://www.javatpoint.com/ds-array-implementation-of-stack
https://www.javatpoint.com/ds-array-implementation-of-stack

8

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

8. stack[top] = val;

9. }

10. }

Deletion of an element from a stack (Pop operation)

Deletion of an element from the top of the stack is called pop operation. The value of the variable top will be

incremented by 1 whenever an item is deleted from the stack. The top most element of the stack is stored in an

another variable and then the top is decremented by 1. the operation returns the deleted value that was stored in

another variable as the result.

The underflow condition occurs when we try to delete an element from an already empty stack.

Algorithm :

Time Complexity : o(1)

Implementation of POP algorithm using C language

1. int pop ()

2. {

3. if(top == NULL)

4. {

5. printf("Underflow");

6. return 0;

9

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

7. }

8. else

9. {

10. return stack[top - -];

11. }

12. }

Visiting each element of the stack (Peek operation)

Peek operation involves returning the element which is present at the top of the stack without deleting it.

Underflow condition can occur if we try to return the top element in an already empty stack.

Algorithm :

Time complexity: o(n)

Implementation of Peek algorithm in C language

1. int peek()

2. {

3. if (top == -1)

4. {

5. printf("Underflow");

6. return 0;

10

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

7. }

8. else

9. {

10. return stack [top];

11. }

12. }

C program for implantation stack using arrays

1. #include <stdio.h>

2. int stack[100],i,j,choice=0,n,top=-1;

3. void push();

4. void pop();

5. void show();

6. void main ()

7. {

8.

9. printf("Enter the number of elements in the stack ");

10. scanf("%d",&n);

11. printf("*********Stack operations using array*********");

12.

13. printf("\n--\n");

14. while(choice != 4)

15. {

16. printf("Chose one from the below options...\n");

17. printf("\n1.Push\n2.Pop\n3.Show\n4.Exit");

18. printf("\n Enter your choice \n");

19. scanf("%d",&choice);

20. switch(choice)

21. {

22. case 1:

23. {

24. push();

25. break;

26. }

27. case 2:

11

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

28. {

29. pop();

30. break;

31. }

32. case 3:

33. {

34. show();

35. break;

36. }

37. case 4:

38. {

39. printf("Exiting....");

40. break;

41. }

42. default:

43. {

44. printf("Please Enter valid choice ");

45. }

46. };

47. }

48. }

49.

50. void push ()

51. {

52. int val;

53. if (top == n)

54. printf("\n Overflow");

55. else

56. {

57. printf("Enter the value?");

58. scanf("%d",&val);

59. top = top +1;

60. stack[top] = val;

61. }

62. }

63.

12

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

64. void pop ()

65. {

66. if(top == -1)

67. printf("Underflow");

68. else

69. top = top -1;

70. }

71. void show()

72. {

73. for (i=top;i>=0;i--)

74. {

75. printf("%d\n",stack[i]);

76. }

77. if(top == -1)

78. {

79. printf("Stack is empty");

80. }

81. }

Arithmetic Expression Evaluation:

The stack organization is very effective in evaluating arithmetic expressions. Expressions are usually

represented in what is known as Infix notation, in which each operator is written between two operands

(i.e., A + B). With this notation, we must distinguish between (A + B)*C and A + (B * C) by using either

parentheses or some operator-precedence convention. Thus, the order of operators and operands in an

arithmetic expression does not uniquely determine the order in which the operations are to be performed.

1. Polish notation (prefix notation) –

It refers to the notation in which the operator is placed before its two operands. Here no parentheses are

required, i.e.,

+AB

2. Reverse Polish notation(postfix notation) –

It refers to the analogous notation in which the operator is placed after its two operands. Again, no

parentheses is required in Reverse Polish notation, i.e.,

AB+

Stack-organized computers are better suited for post-fix notation than the traditional infix notation. Thus, the

infix notation must be converted to the postfix notation. The conversion from infix notation to postfix

notation must take into consideration the operational hierarchy.

13

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

There are 3 levels of precedence for 5 binary operators as given below:

Highest: Exponentiation (^)

Next highest: Multiplication (*) and division (/)

Lowest: Addition (+) and Subtraction (-)

For example –

Infix notation: (A-B)*[C/(D+E)+F]

Post-fix notation: AB- CDE +/F +*

Here, we first perform the arithmetic inside the parentheses (A-B) and (D+E). The division of C/(D+E) must

be done prior to the addition with F. After that multiply the two terms inside the parentheses and bracket.

Now we need to calculate the value of these arithmetic operations by using a stack.

Evaluating postfix expression

The procedure for getting the result is:

1. Convert the expression in Reverse Polish notation(post-fix notation).

2. Push the operands into the stack in the order they appear.

3. When any operator encounters then pop two topmost operands for executing the operation.

4. After execution push the result obtained into the stack.

5. After the complete execution of expression, the final result remains on the top of the stack.

For example –

Infix notation: (2+4) * (4+6)

Post-fix notation: 2 4 + 4 6 + *

Result: 60

The stack operations for this expression evaluation is shown below:

14

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Evaluation of postfix expression

Algorithm

Scan the input string from left to right.

For each input symbol,

 If it is a digit then, push it on to the stack.

 If it is an operator then, pop out the top most two contents from the stack and apply the operator on them. Later

on, push the result on to stack.

 If the input symbol is ‘\0’, empty the stack.

Following is the C program for an evaluation of postfix expression

#include<stdio.h>

int top = -1, stack [100];

main (){

 char a[50], ch;

 int i,op1,op2,res,x;

 void push (int);

 int pop();

 int eval (char, int, int);

 printf("enter a postfix expression:");

 gets (a);

15

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 for(i=0; a[i]!='\0'; i++){

 ch = a[i];

 if (ch>='0' && ch<='9')

 push('0');

 else{

 op2 = pop ();

 op1 = pop ();

 res = eval (ch, op1, op2);

 push (res);

 }

 }

 x = pop ();

 printf("evaluated value = %d", x);

 getch ();

}

void push (int n){

 top++;

 stack [top] = n;

}

int pop (){

 int res ;

 res = stack [top];

 top--;

 return res;

}

int eval (char ch, int op1, int op2){

 switch (ch){

 case '+' : return (op1+op2);

 case '-' : return (op1-op2);

 case '*' : return (op1*op2);

 case '/' : return (op1/op2);

 }

}

Output:

16

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

When the above program is executed, it produces the following result −

Run 1:

enter a postfix expression:45+

evaluated value = 9

Run 2:

enter a postfix expression: 3 5 2 * +

evaluated value = 13

Convert Infix to Postfix Expression
Infix expressions are readable and solvable by humans. We can easily distinguish the order of operators, and

also can use the parenthesis to solve that part first during solving mathematical expressions. The computer cannot

differentiate the operators and parenthesis easily, that’s why postfix conversion is needed.

To convert infix expression to postfix expression, we will use the stack data structure. By scanning the infix

expression from left to right, when we will get any operand, simply add them to the postfix form, and for the

operator and parenthesis, add them in the stack maintaining the precedence of them.

Algorithm to convert Infix To Postfix

Let, X is an arithmetic expression written in infix notation. This algorithm finds the equivalent postfix

expression Y.

1. Push “(“onto Stack, and add “)” to the end of X.

2. Scan X from left to right and repeat Step 3 to 6 for each element of X until the Stack is empty.

3. If an operand is encountered, add it to Y.

4. If a left parenthesis is encountered, push it onto Stack.

5. If an operator is encountered ,then:

1. Repeatedly pop from Stack and add to Y each operator (on the top of Stack) which has the same precedence as

or higher precedence than operator.

2. Add operator to Stack.

[End of If]

6. If a right parenthesis is encountered ,then:

1. Repeatedly pop from Stack and add to Y each operator (on the top of Stack) until a left parenthesis is

encountered.

2. Remove the left Parenthesis.

[End of If]

[End of If]

7. END.

ADVE RT I SE ME NT

Let’s take an example to better understand the algorithm

Infix Expression: A+ (B*C-(D/E^F)*G)*H, where ^ is an exponential operator.

17

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Resultant Postfix Expression: ABC*DEF^/G*-H*+

Advantage of Postfix Expression over Infix Expression

An infix expression is difficult for the machine to know and keep track of precedence of operators. On the

other hand, a postfix expression itself determines the precedence of operators (as the placement of operators in

a postfix expression depends upon its precedence).Therefore, for the machine it is easier to carry out a postfix

expression than an infix expression.

C Program to Convert Infix to Postfix using Stack

#include<stdio.h>

#include<ctype.h>

char stack[100];

int top = -1;

18

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

void push(char x)

{

 stack[++top] = x;

}

char pop()

{

 if(top == -1)

 return -1;

 else

 return stack[top--];

}

int priority(char x)

{

 if(x == '(')

 return 0;

 if(x == '+' || x == '-')

 return 1;

 if(x == '*' || x == '/')

 return 2;

 return 0;

}

int main()

{

 char exp[100];

 char *e, x;

 printf("Enter the expression : ");

 scanf("%s",exp);

 printf("\n");

 e = exp;

 while(*e != '\0')

 {

 if(isalnum(*e))

 printf("%c ",*e);

 else if(*e == '(')

 push(*e);

 else if(*e == ')')

 {

 while((x = pop()) != '(')

 printf("%c ", x);

 }

 else

 {

 while(priority(stack[top]) >= priority(*e))

 printf("%c ",pop());

19

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 push(*e);

 }

 e++;

 }

 while(top != -1)

 {

 printf("%c ",pop());

 }return 0;

}

Output Test Case 1:

Enter the expression : a+b*c

a b c * +

Output Test Case 2:

Enter the expression : (a+b)*c+(d-a)

a b + c * d a - +

Output Test Case 3:

Enter the expression : ((4+8)(6-5))/((3-2)(2+2))

4 8 + 6 5 - 3 2 - 2 2 + /

Queue

1. A queue can be defined as an ordered list which enables insert operations to be performed at one end

called REAR and delete operations to be performed at another end called FRONT.

2. Queue is referred to be as First In First Out list.

3. For example, people waiting in line for a rail ticket form a queue.

Applications of Queue

20

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Due to the fact that queue performs actions on first in first out basis which is quite fair for the ordering of actions.

There are various applications of queues discussed as below.

1. Queues are widely used as waiting lists for a single shared resource like printer, disk, CPU.

2. Queues are used in asynchronous transfer of data (where data is not being transferred at the same rate between

two processes) for eg. pipes, file IO, sockets.

3. Queues are used as buffers in most of the applications like MP3 media player, CD player, etc.

4. Queue are used to maintain the play list in media players in order to add and remove the songs from the play-

list.

5. Queues are used in operating systems for handling interrupts.

Types of Queue

There are four different types of queue that are listed as follows -

o Simple Queue or Linear Queue

o Circular Queue

o Priority Queue

o Double Ended Queue (or Deque)

Let's discuss each of the type of queue.

21

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Simple Queue or Linear Queue

In Linear Queue, an insertion takes place from one end while the deletion occurs from another end. The end at

which the insertion takes place is known as the rear end, and the end at which the deletion takes place is known

as front end. It strictly follows the FIFO rule.

The major drawback of using a linear Queue is that insertion is done only from the rear end. If the first three

elements are deleted from the Queue, we cannot insert more elements even though the space is available in a

Linear Queue. In this case, the linear Queue shows the overflow condition as the rear is pointing to the last

element of the Queue.

Circular Queue

In Circular Queue, all the nodes are represented as circular. It is similar to the linear Queue except that the last

element of the queue is connected to the first element. It is also known as Ring Buffer, as all the ends are

connected to another end. The representation of circular queue is shown in the below image -

The drawback that occurs in a linear queue is overcome by using the circular queue. If the empty space is

available in a circular queue, the new element can be added in an empty space by simply incrementing the value

of rear. The main advantage of using the circular queue is better memory utilization.

Priority Queue

It is a special type of queue in which the elements are arranged based on the priority. It is a special type of queue

data structure in which every element has a priority associated with it. Suppose some elements occur with the

same priority, they will be arranged according to the FIFO principle. The representation of priority queue is

shown in the below image -

22

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Insertion in priority queue takes place based on the arrival, while deletion in the priority queue occurs based on

the priority. Priority queue is mainly used to implement the CPU scheduling algorithms.

There are two types of priority queue that are discussed as follows -

o Ascending priority queue - In ascending priority queue, elements can be inserted in arbitrary order, but only

smallest can be deleted first. Suppose an array with elements 7, 5, and 3 in the same order, so, insertion can be

done with the same sequence, but the order of deleting the elements is 3, 5, 7.

o Descending priority queue - In descending priority queue, elements can be inserted in arbitrary order, but only

the largest element can be deleted first. Suppose an array with elements 7, 3, and 5 in the same order, so, insertion

can be done with the same sequence, but the order of deleting the elements is 7, 5, 3.

Deque (or, Double Ended Queue)

In Deque or Double Ended Queue, insertion and deletion can be done from both ends of the queue either from

the front or rear. It means that we can insert and delete elements from both front and rear ends of the queue.

Deque can be used as a palindrome checker means that if we read the string from both ends, then the string would

be the same.

Deque can be used both as stack and queue as it allows the insertion and deletion operations on both ends. Deque

can be considered as stack because stack follows the LIFO (Last In First Out) principle in which insertion and

deletion both can be performed only from one end. And in deque, it is possible to perform both insertion and

deletion from one end, and Deque does not follow the FIFO principle.

The representation of the deque is shown in the below image -

23

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

There are two types of deque that are discussed as follows -

o Input restricted deque - As the name implies, in input restricted queue, insertion operation can be performed

at only one end, while deletion can be performed from both ends.

o Output restricted deque - As the name implies, in output restricted queue, deletion operation can be

performed at only one end, while insertion can be performed from both ends.

Now, let's see the operations performed on the queue.

Operations performed on queue:

Basic Operations

Queue operations may involve initializing or defining the queue, utilizing it, and then completely erasing it from

the memory. Here we shall try to understand the basic operations associated with queues −

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue operation efficient. These are −

 peek() − Gets the element at the front of the queue without removing it.

 isfull() − Checks if the queue is full.

 isempty() − Checks if the queue is empty.

In queue, we always dequeue (or access) data, pointed by front pointer and while enqueing (or storing) data in

the queue we take help of rear pointer.

24

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Let's first learn about supportive functions of a queue −

peek()

This function helps to see the data at the front of the queue. The algorithm of peek() function is as follows −

Algorithm

begin procedure peek

 return queue[front]

end procedure

Implementation of peek() function in C programming language −

Example

int peek() {

 return queue[front];

}

isfull()

As we are using single dimension array to implement queue, we just check for the rear pointer to reach at

MAXSIZE to determine that the queue is full. In case we maintain the queue in a circular linked-list, the

algorithm will differ. Algorithm of isfull() function −

Algorithm

begin procedure isfull

 if rear equals to MAXSIZE

 return true

 else

 return false

 endif

end procedure

Implementation of isfull() function in C programming language −

Example

bool isfull() {

 if(rear == MAXSIZE - 1)

 return true;

 else

 return false;

}

isempty()

Algorithm of isempty() function −

Algorithm

begin procedure isempty

 if front is less than MIN OR front is greater than rear

25

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

 return true

 else

 return false

 endif

end procedure

If the value of front is less than MIN or 0, it tells that the queue is not yet initialized, hence empty.

Here's the C programming code −

Example

bool isempty() {

 if(front < 0 || front > rear)

 return true;

 else

 return false;

}

Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its operations are comparatively difficult to

implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue −

 Step 1 − Check if the queue is full.

 Step 2 − If the queue is full, produce overflow error and exit.

 Step 3 − If the queue is not full, increment rear pointer to point the next empty space.

 Step 4 − Add data element to the queue location, where the rear is pointing.

 Step 5 − return success.

Implementation of enqueue() in C programming language −

26

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Dequeue Operation

Accessing data from the queue is a process of two tasks − access the data where front is pointing and remove

the data after access. The following steps are taken to perform dequeue operation −

 Step 1 − Check if the queue is empty.

 Step 2 − If the queue is empty, produce underflow error and exit.

 Step 3 − If the queue is not empty, access the data where front is pointing.

 Step 4 − Increment front pointer to point to the next available data element.

 Step 5 − Return success.

Array representation of Queue:

We can easily represent queue by using linear arrays. There are two variables i.e. front and rear, that are

implemented in the case of every queue. Front and rear variables point to the position from where insertions and

deletions are performed in a queue. Initially, the value of front and queue is -1 which represents an empty queue.

Array representation of a queue containing 5 elements along with the respective values of front and rear, is shown

in the following figure.

27

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

The above figure shows the queue of characters forming the English word "HELLO". Since, No deletion is

performed in the queue till now, therefore the value of front remains -1 . However, the value of rear increases by

one every time an insertion is performed in the queue. After inserting an element into the queue shown in the

above figure, the queue will look something like following. The value of rear will become 5 while the value of

front remains same.

After deleting an element, the value of front will increase from -1 to 0. however, the queue will look something

like following.

28

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

Algorithm to insert any element in a queue(Dequeue)

Check if the queue is already full by comparing rear to max - 1. if so, then return an overflow error.

If the item is to be inserted as the first element in the list, in that case set the value of front and rear to 0 and

insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one having rear as the index.

Algorithm

o Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

o Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

o Step 3: Set QUEUE[REAR] = NUM

o Step 4: EXIT

C implementation:

29

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

1. void insert (int queue[], int max, int front, int rear, int item)

2. {

3. if (rear + 1 == max)

4. {

5. printf("overflow");

6. }

7. else

8. {

9. if(front == -1 && rear == -1)

10. {

11. front = 0;

12. rear = 0;

13. }

14. else

15. {

16. rear = rear + 1;

17. }

18. queue[rear]=item;

19. }

20. }

Algorithm to delete an element from the queue(Dequeue):

If, the value of front is -1 or value of front is greater than rear , write an underflow message and exit.

Otherwise, keep increasing the value of front and return the item stored at the front end of the queue at each time.

Algorithm

o Step 1: IF FRONT = -1 or FRONT > REAR

Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

[END OF IF]

o Step 2: EXIT

C implementation

https://www.javatpoint.com/array-representation-of-queue

30

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

int delete (int queue[], int max, int front, int rear)

1. {

2. int y;

3. if (front == -1 || front > rear)

4.

5. {

6. printf("underflow");

7. }

8. else

9. {

10. y = queue[front];

11. if(front == rear)

12. {

13. front = rear = -1;

14. else

15. front = front + 1;

16.

17. }

18. return y;

19. }

20. }

 Program to implement queue using array:

1. #include<stdio.h>

2. #include<stdlib.h>

3. #define maxsize 5

4. void insert();

5. void delete();

6. void display();

7. int front = -1, rear = -1;

8. int queue[maxsize];

9. void main ()

10. {

11. int choice;

12. while(choice != 4)

31

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

13. {

14. printf("\n*************************Main Menu*****************************\n");

15. printf("\n===\n");

16. printf("\n1.insert an element\n2.Delete an element\n3.Display the queue\n4.Exit\n");

17. printf("\nEnter your choice ?");

18. scanf("%d",&choice);

19. switch(choice)

20. {

21. case 1:

22. insert();

23. break;

24. case 2:

25. delete();

26. break;

27. case 3:

28. display();

29. break;

30. case 4:

31. exit(0);

32. break;

33. default:

34. printf("\nEnter valid choice??\n");

35. }

36. }

37. }

38. void insert()

39. {

40. int item;

41. printf("\nEnter the element\n");

42. scanf("\n%d",&item);

43. if(rear == maxsize-1)

44. {

45. printf("\nOVERFLOW\n");

46. return;

47. }

32

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

48. if(front == -1 && rear == -1)

49. {

50. front = 0;

51. rear = 0;

52. }

53. else

54. {

55. rear = rear+1;

56. }

57. queue[rear] = item;

58. printf("\nValue inserted ");

59.

60. }

61. void delete()

62. {

63. int item;

64. if (front == -1 || front > rear)

65. {

66. printf("\nUNDERFLOW\n");

67. return;

68.

69. }

70. else

71. {

72. item = queue[front];

73. if(front == rear)

74. {

75. front = -1;

76. rear = -1 ;

77. }

78. else

79. {

80. front = front + 1;

81. }

82. printf("\nvalue deleted ");

83. }

33

 K KUSHBOO , ASSISTANT PROFESSOR, VEMU INSTITUTE OF TECHNOLOGY

84.

85.

86. }

87.

88. void display()

89. {

90. int i;

91. if(rear == -1)

92. {

93. printf("\nEmpty queue\n");

94. }

95. else

96. { printf("\nprinting values\n");

97. for(i=front;i<=rear;i++)

98. {

99. printf("\n%d\n",queue[i]);

100. }

101. }

102. }

UNIT-4

1

UNIT-IV

Linked List

o Linked List can be defined as collection of objects called nodes that are randomly stored in the memory.

o A node contains two fields i.e. data stored at that particular address and the pointer which contains the address of

the next node in the memory.

o The last node of the list contains pointer to the null.

Uses of Linked List

o The list is not required to be contiguously present in the memory. The node can reside any where in the memory

and linked together to make a list. This achieves optimized utilization of space.

o list size is limited to the memory size and doesn't need to be declared in advance.

o Empty node can not be present in the linked list.

o We can store values of primitive types or objects in the singly linked list.

Why use linked list over array?

Till now, we were using array data structure to organize the group of elements that are to be stored individually in

the memory. However, Array has several advantages and disadvantages which must be known in order to decide

the data structure which will be used throughout the program.

Array contains following limitations:

1. The size of array must be known in advance before using it in the program.

2. Increasing size of the array is a time taking process. It is almost impossible to expand the size of the array at run

time.

3. All the elements in the array need to be contiguously stored in the memory. Inserting any element in the array

needs shifting of all its predecessors.

Linked list is the data structure which can overcome all the limitations of an array. Using linked list is useful

because,

1. It allocates the memory dynamically. All the nodes of linked list are non-contiguously stored in the memory and

linked together with the help of pointers.

2. Sizing is no longer a problem since we do not need to define its size at the time of declaration. List grows as per

the program's demand and limited to the available memory space.

2

Singly linked list or One way chain

Singly linked list can be defined as the collection of ordered set of elements. The number of elements may vary

according to need of the program. A node in the singly linked list consist of two parts: data part and link part. Data

part of the node stores actual information that is to be represented by the node while the link part of the node stores

the address of its immediate successor.

One way chain or singly linked list can be traversed only in one direction. In other words, we can say that each

node contains only next pointer, therefore we can not traverse the list in the reverse direction.

Consider an example where the marks obtained by the student in three subjects are stored in a linked list as shown

in the figure.

In the above figure, the arrow represents the links. The data part of every node contains the marks obtained by the

student in the different subject. The last node in the list is identified by the null pointer which is present in the

address part of the last node. We can have as many elements we require, in the data part of the list.

Complexity

Data

Structure

 Time Complexity Space

Compleity

 Average Worst Worst

 Access Search Insertion Deletion Access Search Insertion Deletion

Singly

Linked List

 θ(n) θ(n) θ(1) θ(1) O(n) O(n) O(1) O(1) O(n)

Operations on Singly Linked List

There are various operations which can be performed on singly linked list. A list of all such operations is

given below.

Node Creation
1. struct node

2. {

3. int data;

4. struct node *next;

5. };

6. struct node *head, *ptr;

7. ptr = (struct node *)malloc(sizeof(struct node *));

3

Insertion:

The insertion into a singly linked list can be performed at different positions. Based on the position of the

new node being inserted, the insertion is categorized into the following categories.

S.No Operation Description

1 Insertion at

beginning

It involves inserting any element at the front of the list. We just need to

a few link adjustments to make the new node as the head of the list.

2 Insertion at end

of the list

It involves insertion at the last of the linked list. The new node can be

inserted as the only node in the list or it can be inserted as the last one.

Different logics are implemented in each scenario.

3 Insertion after

specified node

It involves insertion after the specified node of the linked list. We need

to skip the desired number of nodes in order to reach the node after

which the new node will be inserted. .

Deletion and Traversing:

The Deletion of a node from a singly linked list can be performed at different positions. Based on the position

of the node being deleted, the operation is categorized into the following categories.

S.No Operation Description

1 Deletion at

beginning

It involves deletion of a node from the beginning of the list. This is the simplest

operation among all. It just need a few adjustments in the node pointers.

2 Deletion at the

end of the list

It involves deleting the last node of the list. The list can either be empty or full.

Different logic is implemented for the different scenarios.

3 Deletion after

specified node

It involves deleting the node after the specified node in the list. we need to skip the

desired number of nodes to reach the node after which the node will be deleted. This

requires traversing through the list.

4 Traversing In traversing, we simply visit each node of the list at least once in order to perform

some specific operation on it, for example, printing data part of each node present

in the list.

5 Searching In searching, we match each element of the list with the given element. If the element

is found on any of the location then location of that element is returned otherwise

null is returned. .

https://www.javatpoint.com/insertion-in-singly-linked-list-at-beginning
https://www.javatpoint.com/insertion-in-singly-linked-list-at-beginning
https://www.javatpoint.com/insertion-in-singly-linked-list-at-end
https://www.javatpoint.com/insertion-in-singly-linked-list-at-end
https://www.javatpoint.com/insertion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/insertion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/deletion-in-singly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-singly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-singly-linked-list-at-end
https://www.javatpoint.com/deletion-in-singly-linked-list-at-end
https://www.javatpoint.com/deletion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/deletion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/traversing-in-singly-linked-list
https://www.javatpoint.com/searching-in-singly-linked-list

4

Inserting Elements to a Linked List

We will see how a new node can be added to an existing linked list in the following cases.

1. The new node is inserted at the beginning.

2. The new node is inserted at the end.

3. The new node is inserted after a given node.

Insert a Node at the beginning of a Linked list:

Consider the linked list shown in the figure. Suppose we want to create a new node with data 24 and add it as the

first node of the list. The linked list will be modified as follows.

 Allocate memory for new node and initialize its DATA part to 24.

 Add the new node as the first node of the list by pointing the NEXT part of the new node to HEAD.

 Make HEAD to point to the first node of the list.

Algorithm: InsertAtBeginning

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 7

[END OF IF]

Step 2: SET NEW_NODE = AVAIL

Step 3: SET AVAIL = AVAIL -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> NEXT = HEAD

5

Step 6: SET HEAD = NEW_NODE

Step 7: EXIT

Note that the first step of the algorithm checks if there is enough memory available to create a new node. The

second, and third steps allocate memory for the new node.

This algorithm can be implemented in C as follows:

struct node *new_node;

new_node = (struct node*) malloc(sizeof(struct node));

new_node->data = 24;

new_node->next = head;

head = new_node;

Insert a Node at the end of a Linked list:

Take a look at the linked list in the figure. Suppose we want to add a new node with data 24 as the last node of the

list. Then the linked list will be modified as follows.

 Allocate memory for new node and initialize its DATA part to 24.

 Traverse to last node.

 Point the NEXT part of the last node to the newly created node.

 Make the value of next part of last node to NULL.

Algorithm: InsertAtEnd

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 10

[END OF IF]

6

Step 2: SET NEW_NODE = AVAIL

Step 3: SET AVAIL = AVAIL -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> NEXT = NULL

Step 6: SET PTR = HEAD

Step 7: Repeat Step 8 while PTR -> NEXT != NULL

Step 8: SET PTR = PTR -> NEXT

[END OF LOOP]

Step 9: SET PTR -> NEXT = NEW_NODE

Step 10: EXIT

This can be implemented in C as follows,

struct node *new_node;

new_node = (struct node*) malloc(sizeof(struct node));

new_node->data = 24;

new_node->next = NULL;

struct node *ptr = head;

while(ptr->next != NULL){

ptr = ptr->next;

}

ptr->next = new_node;

Insert a Node after a given Node in a Linked list:

The last case is when we want to add a new node after a given node. Suppose we want to add a new node with

value 24 after the node having data 9. These changes will be done in the linked list.

7

 Allocate memory for new node and initialize its DATA part to 24.

 Traverse the list until the specified node is reached.

 Change NEXT pointers accordingly.

Algorithm: InsertAfterAnElement

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 12

[END OF IF]

Step 2: SET NEW_NODE = AVAIL

Step 3: SET AVAIL = AVAIL -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET PTR = HEAD

Step 6: SET PREPTR = PTR

Step 7: Repeat Steps 8 and 9 while PREPTR -> DATA != NUM

Step 8: SET PREPTR = PTR

Step 9: SET PTR = PTR -> NEXT

[END OF LOOP]

Step 1 : PREPTR -> NEXT = NEW_NODE

Step 11: SET NEW_NODE -> NEXT = PTR

Step 12: EXIT

Deleting Elements from a Linked List

Let’s discuss how a node can be deleted from a linked listed in the following cases.

1. The first node is deleted.

2. The last node is deleted.

3. The node after a given node is deleted

Delete a Node from the beginning of a Linked list:

Suppose we want to delete a node from the beginning of the linked list. The list has to be modified as follows:

8

 Check if the linked list is empty or not. Exit if the list is empty.

 Make HEAD points to the second node.

 Free the first node from memory.

Algorithm: DeleteFromBeginning

Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 5

[END OF IF]

Step 2: SET PTR = HEAD

Step 3: SET HEAD = HEAD -> NEXT

Step 4: FREE PTR

Step 5: EXIT

This can be implemented in C as follows,

if(head == NULL)

{

printf("Underflow");

}

else

{

ptr = head;

head = head -> next;

9

free(ptr);

}

Delete last Node from a Linked list:

Suppose we want to delete the last node from the linked list. The linked list has to be modified as follows:

 Traverse to the end of the list.

 Change value of next pointer of second last node to NULL.

 Free last node from memory.

Algorithm: DeleteFromEnd

Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 8

[END OF IF]

Step 2: SET PTR = HEAD

Step 3: Repeat Steps 4 and 5 while PTR -> NEXT != NULL

Step 4: SET PREPTR = PTR

Step 5: SET PTR = PTR -> NEXT

[END OF LOOP]

Step 6: SET PREPTR -> NEXT = NULL

Step 7: FREE PTR

Step 8: EXIT

Here we use two pointers PTR and PREPTR to access the last node and the second last node.

10

This can be implemented in C as follows:

if(head == NULL)

{

printf("Underflow");

}

else

{

struct node* ptr = head;

struct node* preptr = NULL;

while(ptr->next!=NULL){

preptr = ptr;

ptr = ptr->next;

}

preptr->next = NULL;

free(ptr);

}

Delete the Node after a given Node in a Linked list:

Suppose we want to delete the that comes after the node which contains data 9.

 Traverse the list upto the specified node.

 Change value of next pointer of previous node(9) to next pointer of current node(10).

11

Algorithm: DeleteAfterANode

Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 10

[END OF IF]

Step 2: SET PTR = HEAD

Step 3: SET PREPTR = PTR

Step 4: Repeat Steps 5 and 6 while PREPTR -> DATA != NUM

Step 5: SET PREPTR = PTR

Step 6: SET PTR = PTR -> NEXT

[END OF LOOP]

Step 7: SET TEMP = PTR

Step 8: SET PREPTR -> NEXT = PTR -> NEXT

Step 9: FREE TEMP

Step 10 : EXIT

Implementation in C takes the following form:

if(head == NULL)

{

printf("Underflow");

}

else

{

struct node* ptr = head;

struct node* preptr = ptr;

while(ptr->data!=num){

preptr = ptr;

ptr = ptr->next;

}

struct node* temp = ptr;

preptr -> next = ptr -> next;

free(temp);

}

12

Search

Finding an element is similar to a traversal operation. Instead of displaying data, we have to check whether the data matches

with the item to find.

 Initialize PTR with the address of HEAD. Now the PTR points to the first node of the linked list.

 A while loop is executed which will compare data of every node with item.

 If item has been found then control goes to last step.

Algorithm: Search

Step 1: [INITIALIZE] SET PTR = HEAD

Step 2: Repeat Steps 3 and 4 while PTR != NULL

Step 3: If ITEM = PTR -> DATA

SET POS = PTR

Go To Step 5

ELSE

SET PTR = PTR -> NEXT

[END OF IF]

[END OF LOOP]

Step 4: SET POS = NULL

Step 5: EXIT

Search operation can be implemented in C as follows:

struct node* ptr = head;

struct node* pos = NULL;

while (ptr != NULL) {

if (ptr->data == item)

pos = ptr

printf("Element Found");

break;

else

ptr = ptr -> next;

}

Linked List in C: Menu Driven Program
1. #include<stdio.h>

2. #include<stdlib.h>

3. struct node

4. {

13

5. int data;

6. struct node *next;

7. };

8. struct node *head;

9.

10. void beginsert ();

11. void lastinsert ();

12. void randominsert();

13. void begin_delete();

14. void last_delete();

15. void random_delete();

16. void display();

17. void search();

18. void main ()

19. {

20. int choice =0;

21. while(choice != 9)

22. {

23. printf("\n\n*********Main Menu*********\n");

24. printf("\nChoose one option from the following list ...\n");

25. printf("\n===\n");

26. printf("\n1.Insert in begining\n2.Insert at last\n3.Insert at any random location\n4.Delete from Beginni

ng\n

27. 5.Delete from last\n6.Delete node after specified location\n7.Search for an element\n8.Show\n9.Exit\n

");

28. printf("\nEnter your choice?\n");

29. scanf("\n%d",&choice);

30. switch(choice)

31. {

32. case 1:

33. beginsert();

34. break;

35. case 2:

36. lastinsert();

37. break;

38. case 3:

39. randominsert();

40. break;

41. case 4:

42. begin_delete();

43. break;

44. case 5:

45. last_delete();

46. break;

47. case 6:

48. random_delete();

49. break;

50. case 7:

51. search();

52. break;

53. case 8:

54. display();

55. break;

56. case 9:

14

57. exit(0);

58. break;

59. default:

60. printf("Please enter valid choice..");

61. }

62. }

63. }

64. void beginsert()

65. {

66. struct node *ptr;

67. int item;

68. ptr = (struct node *) malloc(sizeof(struct node *));

69. if(ptr == NULL)

70. {

71. printf("\nOVERFLOW");

72. }

73. else

74. {

75. printf("\nEnter value\n");

76. scanf("%d",&item);

77. ptr->data = item;

78. ptr->next = head;

79. head = ptr;

80. printf("\nNode inserted");

81. }

82.
83. }

84. void lastinsert()

85. {

86. struct node *ptr,*temp;

87. int item;

88. ptr = (struct node*)malloc(sizeof(struct node));

89. if(ptr == NULL)

90. {

91. printf("\nOVERFLOW");

92. }

93. else

94. {

95. printf("\nEnter value?\n");

96. scanf("%d",&item);

97. ptr->data = item;

98. if(head == NULL)

99. {

100. ptr -> next = NULL;

101. head = ptr;

102. printf("\nNode inserted");

103. }

104. else

105. {

106. temp = head;

107. while (temp -> next != NULL)

108. {

109. temp = temp -> next;

110. }

15

111. temp->next = ptr;

112. ptr->next = NULL;

113. printf("\nNode inserted");

114.

115. }

116. }

117. }

118. void randominsert()

119. {

120. int i,loc,item;

121. struct node *ptr, *temp;

122. ptr = (struct node *) malloc (sizeof(struct node));

123. if(ptr == NULL)

124. {

125. printf("\nOVERFLOW");

126. }

127. else

128. {

129. printf("\nEnter element value");

130. scanf("%d",&item);

131. ptr->data = item;

132. printf("\nEnter the location after which you want to insert ");

133. scanf("\n%d",&loc);

134. temp=head;

135. for(i=0;i<loc;i++)

136. {

137. temp = temp->next;

138. if(temp == NULL)

139. {

140. printf("\ncan't insert\n");

141. return;

142. }

143.

144. }

145. ptr ->next = temp ->next;

146. temp ->next = ptr;

147. printf("\nNode inserted");

148. }

149. }

150. void begin_delete()

151. {

152. struct node *ptr;

153. if(head == NULL)

154. {

155. printf("\nList is empty\n");

156. }

157. else

158. {

159. ptr = head;

160. head = ptr->next;

161. free(ptr);

162. printf("\nNode deleted from the begining ...\n");

163. }

164. }

16

165. void last_delete()

166. {

167. struct node *ptr,*ptr1;

168. if(head == NULL)

169. {

170. printf("\nlist is empty");

171. }

172. else if(head -> next == NULL)

173. {

174. head = NULL;

175. free(head);

176. printf("\nOnly node of the list deleted ...\n");

177. }

178.

179. else

180. {

181. ptr = head;

182. while(ptr->next != NULL)

183. {

184. ptr1 = ptr;

185. ptr = ptr ->next;

186. }

187. ptr1->next = NULL;

188. free(ptr);

189. printf("\nDeleted Node from the last ...\n");

190. }

191. }

192. void random_delete()

193. {

194. struct node *ptr,*ptr1;

195. int loc,i;

196. printf("\n Enter the location of the node after which you want to perform deletion \n");

197. scanf("%d",&loc);

198. ptr=head;

199. for(i=0;i<loc;i++)

200. {

201. ptr1 = ptr;

202. ptr = ptr->next;

203.

204. if(ptr == NULL)

205. {

206. printf("\nCan't delete");

207. return;

208. }

209. }

210. ptr1 ->next = ptr ->next;

211. free(ptr);

212. printf("\nDeleted node %d ",loc+1);

213. }

214. void search()

215. {

216. struct node *ptr;

217. int item,i=0,flag;

218. ptr = head;

17

219. if(ptr == NULL)

220. {

221. printf("\nEmpty List\n");

222. }

223. else

224. {

225. printf("\nEnter item which you want to search?\n");

226. scanf("%d",&item);

227. while (ptr!=NULL)

228. {

229. if(ptr->data == item)

230. {

231. printf("item found at location %d ",i+1);

232. flag=0;

233. }

234. else

235. {

236. flag=1;

237. }

238. i++;

239. ptr = ptr -> next;

240. }

241. if(flag==1)

242. {

243. printf("Item not found\n");

244. }

245. }

246.

247. }

248.

249. void display()

250. {

251. struct node *ptr;

252. ptr = head;

253. if(ptr == NULL)

254. {

255. printf("Nothing to print");

256. }

257. else

258. {

259. printf("\nprinting values\n");

260. while (ptr!=NULL)

261. {

262. printf("\n%d",ptr->data);

263. ptr = ptr -> next;

264. }

265. }

266. }

267.

Output:

18

 *********Main Menu*********

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

1

Enter value

1

Node inserted

*********Main Menu*********

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

2

Enter value?

2

Node inserted

*********Main Menu*********

Choose one option from the following list ...

===

19

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

3

Enter element value1

Enter the location after which you want to insert 1

Node inserted

*********Main Menu*********

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

8

printing values

1

2

1

*********Main Menu*********

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

20

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

2

Enter value?

123

Node inserted

*********Main Menu*********

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

1

Enter value

1234

Node inserted

*********Main Menu*********

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

21

Enter your choice?

4

Node deleted from the begining ...

*********Main Menu*********

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

5

Deleted Node from the last ...

*********Main Menu*********

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

6

Enter the location of the node after which you want to perform deletion

1

Deleted node 2

*********Main Menu*********

Choose one option from the following list ...

22

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

8

printing values

1

1

*********Main Menu*********

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

7

Enter item which you want to search?

1

item found at location 1

item found at location 2

*********Main Menu*********

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Insert at any random location

4.Delete from Beginning

23

5.Delete from last

6.Delete node after specified location

7.Search for an element

8.Show

9.Exit

Enter your choice?

9

Traverse a Linked List

Accessing the nodes of a linked list in order to process it is called traversing a linked list. Normally we use the

traverse operation to display the contents or to search for an element in the linked list. The algorithm for traversing a

linked list is given below.

Algorithm: Traverse

Step 1: [INITIALIZE] SET PTR = HEAD

Step 2: Repeat Steps 3 and 4 while PTR != NULL

Step 3: Apply process to PTR -> DATA

Step 4: SET PTR = PTR->NEXT

[END OF LOOP]

Step 5: EXIT

 We first initialize PTR with the address of HEAD. Now the PTR points to the first node of the linked list.

 A while loop is executed, and the operation is continued until PTR reaches the last node (PTR = NULL).

 Apply the process(display) to the current node.

 Move to the next node by making the value of PTR to the address of next node.

The following block of code prints all elements in a linked list in C.

struct node *ptr = head;

printf("Elements in the linked list are : ");

while (ptr != NULL)

{

printf("%d ", ptr->data);

ptr = ptr->next;

}

Linked list implementation of stack

Instead of using array, we can also use linked list to implement stack. Linked list allocates the memory

dynamically. However, time complexity in both the scenario is same for all the operations i.e. push, pop and

peek.

24

In linked list implementation of stack, the nodes are maintained non-contiguously in the memory. Each node

contains a pointer to its immediate successor node in the stack. Stack is said to be overflown if the space left

in the memory heap is not enough to create a node.

The top most node in the stack always contains null in its address field. Lets discuss the way in which, each

operation is performed in linked list implementation of stack.

Adding a node to the stack (Push operation):
Adding a node to the stack is referred to as push operation. Pushing an element to a stack in linked list

implementation is different from that of an array implementation. In order to push an element onto the

stack, the following steps are involved.

1. create a node first and allocate memory to it.

2. If the list is empty then the item is to be pushed as the start node of the list. This includes assigning value

to the data part of the node and assign null to the address part of the node.

3. If there are some nodes in the list already, then we have to add the new element in the beginning of the

list (to not violate the property of the stack). For this purpose, assign the address of the starting element

to the address field of the new node and make the new node, the starting node of the list.

Time Complexity : o(1)

25

C implementation :

1. void push ()

2. {

3. int val;

4. struct node *ptr =(struct node*)malloc(sizeof(struct node));

5. if(ptr == NULL)

6. {

7. printf("not able to push the element");

8. }

9. else

10. {

11. printf("Enter the value");

12. scanf("%d",&val);

13. if(head==NULL)

14. {

15. ptr->val = val;

16. ptr -> next = NULL;

17. head=ptr;

18. }

19. else

26

20. {

21. ptr->val = val;

22. ptr->next = head;

23. head=ptr;

24.

25. }

26. printf("Item pushed");

27.

28. }

29. }

Deleting a node from the stack (POP operation)

Deleting a node from the top of stack is referred to as pop operation. Deleting a node from the linked

list implementation of stack is different from that in the array implementation. In order to pop an

element from the stack, we need to follow the following steps :

1. Check for the underflow condition: The underflow condition occurs when we try to pop from an already

empty stack. The stack will be empty if the head pointer of the list points to null.

2. Adjust the head pointer accordingly: In stack, the elements are popped only from one end, therefore, the

value stored in the head pointer must be deleted and the node must be freed. The next node of the head node

now becomes the head node.

Time Complexity : o(n)

C implementation

1. void pop()

2. {

3. int item;

4. struct node *ptr;

5. if (head == NULL)

6. {

7. printf("Underflow");

8. }

9. else

10. {

11. item = head->val;

12. ptr = head;

13. head = head->next;

14. free(ptr);

15. printf("Item popped");

27

16.

17. }

18. }

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked list organized in the form

of stack. For this purpose, we need to follow the following steps.

 Copy the head pointer into a temporary pointer.

 Move the temporary pointer through all the nodes of the list and print the value field attached to every

node.

Time Complexity : o(n)

C Implementation

1. void display()

2. {

3. int i;

4. struct node *ptr;

5. ptr=head;

6. if(ptr == NULL)

7. {

8. printf("Stack is empty\n");

9. }

10. else

11. {

12. printf("Printing Stack elements \n");

13. while(ptr!=NULL)

14. {

15. printf("%d\n",ptr->val);

16. ptr = ptr->next;

17. }

18. }

19. }

Menu Driven program in C implementing all the stack operations using
linked list :

1. #include <stdio.h>

2. #include <stdlib.h>

3. void push();

4. void pop();

5. void display();

28

6. struct node

7. {

8. int val;

9. struct node *next;

10. };

11. struct node *head;

12.

13. void main ()

14. {

15. int choice=0;

16. printf("\n*********Stack operations using linked list*********\n");

17. printf("\n--\n");

18. while(choice != 4)

19. {

20. printf("\n\nChose one from the below options...\n");

21. printf("\n1.Push\n2.Pop\n3.Show\n4.Exit");

22. printf("\n Enter your choice \n");

23. scanf("%d",&choice);

24. switch(choice)

25. {

26. case 1:

27. {

28. push();

29. break;

30. }

31. case 2:

32. {

33. pop();

34. break;

35. }

36. case 3:

37. {

38. display();

39. break;

40. }

41. case 4:

42. {

43. printf("Exiting....");

44. break;

45. }

29

46. default:

47. {

48. printf("Please Enter valid choice ");

49. }

50. };

51. }

52. }

53. void push ()

54. {

55. int val;

56. struct node *ptr = (struct node*)malloc(sizeof(struct node));

57. if(ptr == NULL)

58. {

59. printf("not able to push the element");

60. }

61. else

62. {

63. printf("Enter the value");

64. scanf("%d",&val);

65. if(head==NULL)

66. {

67. ptr->val = val;

68. ptr -> next = NULL;

69. head=ptr;

70. }

71. else

72. {

73. ptr->val = val;

74. ptr->next = head;

75. head=ptr;

76.

77. }

78. printf("Item pushed");

79.

80. }

81. }

82.

83. void pop()

84. {

85. int item;

30

86. struct node *ptr;

87. if (head == NULL)

88. {

89. printf("Underflow");

90. }

91. else

92. {

93. item = head->val;

94. ptr = head;

95. head = head->next;

96. free(ptr);

97. printf("Item popped");

98.

99. }

100. }

101. void display()

102. {

103. int i;

104. struct node *ptr;

105. ptr=head;

106. if(ptr == NULL)

107. {

108. printf("Stack is empty\n");

109. }

110. else

111. {

112. printf("Printing Stack elements \n");

113. while(ptr!=NULL)

114. {

115. printf("%d\n",ptr->val);

116. ptr = ptr->next;

117. }

118. }

119. }

Linked List implementation of Queue

The storage requirement of linked representation of a queue with n elements is o(n) while the time

requirement for operations is o(1).

31

In a linked queue, each node of the queue consists of two parts i.e. data part and the link part. Each

element of the queue points to its immediate next element in the memory.

1. In the linked queue, there are two pointers maintained in the memory i.e. front pointer and rear pointer. The

front pointer contains the address of the starting element of the queue while the rear pointer contains the

address of the last element of the queue. rear -> next = ptr;

2. rear = ptr;

3. rear->next = NULL;

In this way, the element is inserted into the queue. The algorithm and the C implementation is given

as follows.

Algorithm

o Step 1: Allocate the space for the new node PTR

o Step 2: SET PTR -> DATA = VAL

o Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE

SET REAR -> NEXT = PTR

SET REAR = PTR

SET REAR -> NEXT = NULL

[END OF IF]

o Step 4: END

C Function
1. void insert(struct node *ptr, int item;)

2. {

3.

4.

5. ptr = (struct node *) malloc (sizeof(struct node));

6. if(ptr == NULL)

7. {

8. printf("\nOVERFLOW\n");

9. return;

10. }

11. else

12. {

13. ptr -> data = item;

14. if(front == NULL)

32

15. {

16. front = ptr;

17. rear = ptr;

18. front -> next = NULL;

19. rear -> next = NULL;

20. }

21. else

22. {

23. rear -> next = ptr;

24. rear = ptr;

25. rear->next = NULL;

26. }

27. }

28. }

Deletion

Deletion operation removes the element that is first inserted among all the queue elements. Firstly, we

need to check either the list is empty or not. The condition front == NULL becomes true if the list is empty,

in this case , we simply write underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For this purpose, copy the node

pointed by the front pointer into the pointer ptr. Now, shift the front pointer, point to its next node and

free the node pointed by the node ptr. This is done by using the following statements.

1. ptr = front;

2. front = front -> next;

3. free(ptr);

The algorithm and C function is given as follows.

Algorithm

o Step 1: IF FRONT = NULL

Write " Underflow "

Go to Step 5

[END OF IF]

o Step 2: SET PTR = FRONT

o Step 3: SET FRONT = FRONT -> NEXT

o Step 4: FREE PTR

o Step 5: END

33

C Function
1. void delete (struct node *ptr)

2. {

3. if(front == NULL)

4. {

5. printf("\nUNDERFLOW\n");

6. return;

7. }

8. else

9. {

10. ptr = front;

11. front = front -> next;

12. free(ptr);

13. }

14. }

Menu-Driven Program implementing all the operations on
Linked Queue

1. #include<stdio.h>

2. #include<stdlib.h>

3. struct node

4. {

5. int data;

6. struct node *next;

7. };

8. struct node *front;

9. struct node *rear;

10. void insert();

11. void delete();

12. void display();

13. void main ()

14. {

15. int choice;

16. while(choice != 4)

17. {

18. printf("\n*************************Main Menu*****************************\n");

19. printf("\n===

======\n");

20. printf("\n1.insert an element\n2.Delete an element\n3.Display the queue\n4.Exit\n");

21. printf("\nEnter your choice ?");

34

22. scanf("%d",& choice);

23. switch(choice)

24. {

25. case 1:

26. insert();

27. break;

28. case 2:

29. delete();

30. break;

31. case 3:

32. display();

33. break;

34. case 4:

35. exit(0);

36. break;

37. default:

38. printf("\nEnter valid choice??\n");

39. }

40. }

41. }

42. void insert()

43. {

44. struct node *ptr;

45. int item;

46.

47. ptr = (struct node *) malloc (sizeof(struct node));

48. if(ptr == NULL)

49. {

50. printf("\nOVERFLOW\n");

51. return;

52. }

53. else

54. {

55. printf("\nEnter value?\n");

56. scanf("%d",&item);

57. ptr -> data = item;

58. if(front == NULL)

59. {

60. front = ptr;

61. rear = ptr;

35

62. front -> next = NULL;

63. rear -> next = NULL;

64. }

65. else

66. {

67. rear -> next = ptr;

68. rear = ptr;

69. rear->next = NULL;

70. }

71. }

72. }

73. void delete ()

74. {

75. struct node *ptr;

76. if(front == NULL)

77. {

78. printf("\nUNDERFLOW\n");

79. return;

80. }

81. else

82. {

83. ptr = front;

84. front = front -> next;

85. free(ptr);

86. }

87. }

88. void display()

89. {

90. struct node *ptr;

91. ptr = front;

92. if(front == NULL)

93. {

94. printf("\nEmpty queue\n");

95. }

96. else

97. { printf("\nprinting values\n");

98. while(ptr != NULL)

99. {

100. printf("\n%d\n",ptr -> data);

101. ptr = ptr -> next;

36

102. }

103. }

104. }

Output:

***********Main Menu**********

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?1

Enter value?

123

***********Main Menu**********

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?1

Enter value?

90

***********Main Menu**********

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?3

printing values

123

90

***********Main Menu**********

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?2

***********Main Menu**********

37

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?3

printing values

90

***********Main Menu**********

==============================

1.insert an element

2.Delete an element

3.Display the queue

4.Exit

Enter your choice ?4

Polynomials using linked list

linked list is a data structure that stores each element as an object in a node of the list. every note contains two
parts data han and links to the next node.

Polynomial is a mathematical expression that consists of variables and coefficients. for example x^2 - 4x + 7

In the Polynomial linked list, the coefficients and exponents of the polynomial are defined as the data node of the
list.

For adding two polynomials that are stored as a linked list. We need to add the coefficients of variables with the
same power. In a linked list node contains 3 members, coefficient value link to the next node.

a linked list that is used to store Polynomial looks like −

Polynomial : 4x7 + 12x2 + 45

This is how a linked list represented polynomial looks like.

Adding two polynomials that are represented by a linked list. We check values at the exponent
value of the node. For the same values of exponent, we will add the coefficients.

38

Example,

Input :

p1= 13x8 + 7x5 + 32x2 + 54

p2= 3x12 + 17x5 + 3x3 + 98

Output : 3x12 + 13x8 + 24x5 + 3x3 + 32x2 + 152

Explanation − For all power, we will check for the coefficients of the exponents that have the
same value of exponents and add them. The return the final polynomial.

Algorithm
Input − polynomial p1 and p2 represented as a linked list.

Step 1: loop around all values of linked list and follow step 2& 3.

Step 2: if the value of a node’s exponent. is greater copy this node to result node and head towards the next

node.

Step 3: if the values of both node’s exponent is same add the coefficients and then copy the added value with

node to the result.

Step 4: Print the resultant node

Given two polynomial numbers represented by a linked list. Write a function that add
these lists means add the coefficients who have same variable powers.
Example:
Input:

 1st number = 5x2 + 4x1 + 2x0
 2nd number = -5x1 - 5x0
Output:
 5x2-1x1-3x0
Input:
 1st number = 5x3 + 4x2 + 2x0
 2nd number = 5x^1 - 5x^0
Output:
 5x3 + 4x2 + 5x1 - 3x0

39

Doubly linked list

Doubly linked list is a complex type of linked list in which a node contains a pointer to the previous as well

as the next node in the sequence. Therefore, in a doubly linked list, a node consists of three parts: node data,

pointer to the next node in sequence (next pointer) , pointer to the previous node (previous pointer). A

sample node in a doubly linked list is shown in the figure.

A doubly linked list containing three nodes having numbers from 1 to 3 in their data part, is shown in the

following image.

In C, structure of a node in doubly linked list can be given as :

1. struct node

2. {

3. struct node *prev;

4. int data;

5. struct node *next;

6. }

The prev part of the first node and the next part of the last node will always contain null indicating end in

each direction.

Operations on doubly linked list

Node Creation

1. struct node

2. {

40

3. struct node *prev;

4. int data;

5. struct node *next;

6. };

7. struct node *head;

All the remaining operations regarding doubly linked list are described in the following table.

SN Operation Description

1 Insertion at beginning Adding the node into the linked list at beginning.

2 Insertion at end Adding the node into the linked list to the end.

3 Insertion after specified

node

Adding the node into the linked list after the specified node.

4 Deletion at beginning Removing the node from beginning of the list

5 Deletion at the end Removing the node from end of the list.

6 Deletion of the node

having given data

Removing the node which is present just after the node

containing the given data.

7 Searching Comparing each node data with the item to be searched and

return the location of the item in the list if the item found else

return null.

8 Traversing Visiting each node of the list at least once in order to perform

some specific operation like searching, sorting, display, etc.

Insertion in doubly linked list at beginning

As in doubly linked list, each node of the list contain double pointers therefore we have to maintain more

number of pointers in doubly linked list as compare to singly linked list.

There are two scenarios of inserting any element into doubly linked list. Either the list is empty or it

contains at least one element. Perform the following steps to insert a node in doubly linked list at

beginning.

https://www.javatpoint.com/insertion-in-doubly-linked-list-at-beginning
https://www.javatpoint.com/insertion-in-doubly-linked-list-at-the-end
https://www.javatpoint.com/insertion-in-doubly-linked-list-after-specified-node
https://www.javatpoint.com/insertion-in-doubly-linked-list-after-specified-node
https://www.javatpoint.com/deletion-in-doubly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-doubly-linked-list-at-the-end
https://www.javatpoint.com/deletion-in-doubly-linked-list-after-the-specified-node
https://www.javatpoint.com/deletion-in-doubly-linked-list-after-the-specified-node
https://www.javatpoint.com/searching-in-doubly-linked-list
https://www.javatpoint.com/traversing-in-doubly-linked-list

41

o Allocate the space for the new node in the memory. This will be done by using the following statement.

1. ptr = (struct node *)malloc(sizeof(struct node));

o Check whether the list is empty or not. The list is empty if the condition head == NULL holds. In that case, the node

will be inserted as the only node of the list and therefore the prev and the next pointer of the node will point to

NULL and the head pointer will point to this node.

1. ptr->next = NULL;

2. ptr->prev=NULL;

3. ptr->data=item;

4. head=ptr;

o In the second scenario, the condition head == NULL become false and the node will be inserted in beginning. The

next pointer of the node will point to the existing head pointer of the node. The prev pointer of the existing head

will point to the new node being inserted.

o This will be done by using the following statements.

1. ptr->next = head;

2. head→prev=ptr;

Since, the node being inserted is the first node of the list and therefore it must contain NULL in its prev

pointer. Hence assign null to its previous part and make the head point to this node.

1. ptr→prev =NULL

2. head = ptr

Algorithm :
 Step 1: IF ptr = NULL

 Write OVERFLOW

 Go to Step 9

 [END OF IF]

 Step 2: SET NEW_NODE = ptr

 Step 3: SET ptr = ptr -> NEXT

 Step 4: SET NEW_NODE -> DATA = VAL

 Step 5: SET NEW_NODE -> PREV = NULL

 Step 6: SET NEW_NODE -> NEXT = START

 Step 7: SET head -> PREV = NEW_NODE

 Step 8: SET head = NEW_NODE

 Step 9: EXIT

42

Insertion in doubly linked list at the end

In order to insert a node in doubly linked list at the end, we must make sure whether the list is empty or it

contains any element. Use the following steps in order to insert the node in doubly linked list at the end.

o Allocate the memory for the new node. Make the pointer ptr point to the new node being inserted.

1. ptr = (struct node *) malloc(sizeof(struct node));

o Check whether the list is empty or not. The list is empty if the condition head == NULL holds. In that case, the node

will be inserted as the only node of the list and therefore the prev and the next pointer of the node will point to

NULL and the head pointer will point to this node.

1. ptr->next = NULL;

2. ptr->prev=NULL;

3. ptr->data=item;

4. head=ptr;

o In the second scenario, the condition head == NULL become false. The new node will be inserted as the last node

of the list. For this purpose, we have to traverse the whole list in order to reach the last node of the list. Initialize the

pointer temp to head and traverse the list by using this pointer.

1. Temp = head;

2. while (temp != NULL)

3. {

4. temp = temp → next;

5. }

the pointer temp point to the last node at the end of this while loop. Now, we just need to make a few

pointer adjustments to insert the new node ptr to the list. First, make the next pointer of temp point to the

new node being inserted i.e. ptr.

1. temp→next =ptr;

make the previous pointer of the node ptr point to the existing last node of the list i.e. temp.

1. ptr → prev = temp;

43

make the next pointer of the node ptr point to the null as it will be the new last node of the list.

1. ptr → next = NULL

Algorithm
 Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 11

 [END OF IF]

 Step 2: SET NEW_NODE = PTR

 Step 3: SET PTR = PTR -> NEXT

 Step 4: SET NEW_NODE -> DATA = VAL

 Step 5: SET NEW_NODE -> NEXT = NULL

 Step 6: SET TEMP = START

 Step 7: Repeat Step 8 while TEMP -> NEXT != NULL

 Step 8: SET TEMP = TEMP -> NEXT

 [END OF LOOP]

 Step 9: SET TEMP -> NEXT = NEW_NODE

 Step 10C: SET NEW_NODE -> PREV = TEMP

 Step 11: EXIT

Insertion in doubly linked list after Specified node

In order to insert a node after the specified node in the list, we need to skip the required number of nodes

in order to reach the mentioned node and then make the pointer adjustments as required.

Use the following steps for this purpose.

o Allocate the memory for the new node. Use the following statements for this.

1. ptr = (struct node *)malloc(sizeof(struct node));

o Traverse the list by using the pointer temp to skip the required number of nodes in order to reach the specified

node.

1. temp=head;

2. for(i=0;i<loc;i++)

44

3. {

4. temp = temp->next;

5. if(temp == NULL) // the temp will be //null if the list doesn't last long //up to mentioned location

6. {

7. return;

8. }

9. }

o The temp would point to the specified node at the end of the for loop. The new node needs to be inserted after

this node therefore we need to make a fer pointer adjustments here. Make the next pointer of ptr point to the

next node of temp.

1. ptr → next = temp → next;

make the prev of the new node ptr point to temp.

1. ptr → prev = temp;

make the next pointer of temp point to the new node ptr.

1. temp → next = ptr;

make the previous pointer of the next node of temp point to the new node.

1. temp → next → prev = ptr;

Algorithm

o Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 15

 [END OF IF]

o Step 2: SET NEW_NODE = PTR

o Step 3: SET PTR = PTR -> NEXT

o Step 4: SET NEW_NODE -> DATA = VAL

o Step 5: SET TEMP = START

o Step 6: SET I = 0

o Step 7: REPEAT 8 to 10 until I<="" li="">

o Step 8: SET TEMP = TEMP -> NEXT

o STEP 9: IF TEMP = NULL

o STEP 10: WRITE "LESS THAN DESIRED NO. OF ELEMENTS"

 GOTO STEP 15

 [END OF IF]

 [END OF LOOP]

45

o Step 11: SET NEW_NODE -> NEXT = TEMP -> NEXT

o Step 12: SET NEW_NODE -> PREV = TEMP

o Step 13 : SET TEMP -> NEXT = NEW_NODE

o Step 14: SET TEMP -> NEXT -> PREV = NEW_NODE

o Step 15: EXIT

Deletion at beginning

Deletion in doubly linked list at the beginning is the simplest operation. We just need to copy the head

pointer to pointer ptr and shift the head pointer to its next.

1. Ptr = head;

2. head = head → next;

now make the prev of this new head node point to NULL. This will be done by using the following

statements.

1. head → prev = NULL

Now free the pointer ptr by using the free function.

1. free(ptr)

Algorithm

o STEP 1: IF HEAD = NULL

WRITE UNDERFLOW

GOTO STEP 6

46

o STEP 2: SET PTR = HEAD

o STEP 3: SET HEAD = HEAD → NEXT

o STEP 4: SET HEAD → PREV = NULL

o STEP 5: FREE PTR

o STEP 6: EXIT

Deletion in doubly linked list at the end

Deletion of the last node in a doubly linked list needs traversing the list in order to reach the last node of

the list and then make pointer adjustments at that position.

In order to delete the last node of the list, we need to follow the following steps.

o If the list is already empty then the condition head == NULL will become true and therefore the operation

can not be carried on.

o If there is only one node in the list then the condition head → next == NULL become true. In this case, we

just need to assign the head of the list to NULL and free head in order to completely delete the list.

o Otherwise, just traverse the list to reach the last node of the list. This will be done by using the following

statements.

1. ptr = head;

2. if(ptr->next != NULL)

3. {

4. ptr = ptr -> next;

5. }

47

o The ptr would point to the last node of the ist at the end of the for loop. Just make the next pointer of the

previous node of ptr to NULL.

1. ptr → prev → next = NULL

free the pointer as this the node which is to be deleted.

1. free(ptr)

o Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 7

[END OF IF]

o Step 2: SET TEMP = HEAD

o Step 3: REPEAT STEP 4 WHILE TEMP->NEXT != NULL

o Step 4: SET TEMP = TEMP->NEXT

[END OF LOOP]

o Step 5: SET TEMP ->PREV-> NEXT = NULL

o Step 6: FREE TEMP

o Step 7: EXIT

Deletion in doubly linked list after the specified node

In order to delete the node after the specified data, we need to perform the following steps.

o Copy the head pointer into a temporary pointer temp.

48

1. temp = head

o Traverse the list until we find the desired data value.

1. while(temp -> data != val)

2. temp = temp -> next;

o Check if this is the last node of the list. If it is so then we can't perform deletion.

1. if(temp -> next == NULL)

2. {

3. return;

4. }

o Check if the node which is to be deleted, is the last node of the list, if it so then we have to make the

next pointer of this node point to null so that it can be the new last node of the list.

1. if(temp -> next -> next == NULL)

2. {

3. temp ->next = NULL;

4. }

o Otherwise, make the pointer ptr point to the node which is to be deleted. Make the next of temp

point to the next of ptr. Make the previous of next node of ptr point to temp. free the ptr.

1. ptr = temp -> next;

2. temp -> next = ptr -> next;

3. ptr -> next -> prev = temp;

4. free(ptr);

Algorithm

o Step 1: IF HEAD = NULL

 Write UNDERFLOW

 Go to Step 9

 [END OF IF]

o Step 2: SET TEMP = HEAD

o Step 3: Repeat Step 4 while TEMP -> DATA != ITEM

o Step 4: SET TEMP = TEMP -> NEXT

 [END OF LOOP]

o Step 5: SET PTR = TEMP -> NEXT

o Step 6: SET TEMP -> NEXT = PTR -> NEXT

49

o Step 7: SET PTR -> NEXT -> PREV = TEMP

o Step 8: FREE PTR

o Step 9: EXIT

Searching for a specific node in Doubly Linked List

We just need traverse the list in order to search for a specific element in the list. Perform following

operations in order to search a specific operation.

o Copy head pointer into a temporary pointer variable ptr.

1. ptr = head

o declare a local variable I and assign it to 0.

1. i=0

o Traverse the list until the pointer ptr becomes null. Keep shifting pointer to its next and increasing i by +1.

o Compare each element of the list with the item which is to be searched.

o If the item matched with any node value then the location of that value I will be returned from the function else

NULL is returned.

Algorithm

o Step 1: IF HEAD == NULL

 WRITE "UNDERFLOW"

 GOTO STEP 8

 [END OF IF]

50

o Step 2: Set PTR = HEAD

o Step 3: Set i = 0

o Step 4: Repeat step 5 to 7 while PTR != NULL

o Step 5: IF PTR → data = item

return i

[END OF IF]

o Step 6: i = i + 1

o Step 7: PTR = PTR → next

o Step 8: Exit

Traversing in doubly linked list

Traversing is the most common operation in case of each data structure. For this purpose, copy the head

pointer in any of the temporary pointer ptr.

1. Ptr = head

then, traverse through the list by using while loop. Keep shifting value of pointer variable ptr until

we find the last node. The last node contains null in its next part.

1. while(ptr != NULL)

2. {

3. printf("%d\n",ptr->data);

4. ptr=ptr->next;

5. }

Although, traversing means visiting each node of the list once to perform some specific operation. Here, we

are printing the data associated with each node of the list.

Algorithm

o Step 1: IF HEAD == NULL

 WRITE "UNDERFLOW"

 GOTO STEP 6

 [END OF IF]

o Step 2: Set PTR = HEAD

o Step 3: Repeat step 4 and 5 while PTR != NULL

o Step 4: Write PTR → data

o Step 5: PTR = PTR → next

51

o Step 6: Exit

Circular Singly Linked List

In a circular Singly linked list, the last node of the list contains a pointer to the first node of the list. We

can have circular singly linked list as well as circular doubly linked list.

We traverse a circular singly linked list until we reach the same node where we started. The circular singly

liked list has no beginning and no ending. There is no null value present in the next part of any of the

nodes.

The following image shows a circular singly linked list.

Operations on Circular Singly linked list:
Insertion

SN Operation Description

1 Insertion at beginning Adding a node into circular singly linked list at the beginning.

2 Insertion at the end Adding a node into circular singly linked list at the end.

Deletion & Traversing

SN Operation Description

1 Deletion at

beginning

Removing the node from circular singly linked list at the beginning.

2 Deletion at the

end

Removing the node from circular singly linked list at the end.

https://www.javatpoint.com/insertion-in-circular-singly-list-at-beginning
https://www.javatpoint.com/insertion-in-circular-singly-linked-list-at-end
https://www.javatpoint.com/deletion-in-circular-singly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-circular-singly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-circular-singly-linked-list-at-end
https://www.javatpoint.com/deletion-in-circular-singly-linked-list-at-end

52

3 Searching Compare each element of the node with the given item and return the location

at which the item is present in the list otherwise return null.

4 Traversing Visiting each element of the list at least once in order to perform some specific

operation.

Insertion into circular singly linked list at beginning

There are two scenario in which a node can be inserted in circular singly linked list at beginning.

Either the node will be inserted in an empty list or the node is to be inserted in an already filled list.

Firstly, allocate the memory space for the new node by using the malloc method of C language.

1. struct node *ptr = (struct node *)malloc(sizeof(struct node));

In the first scenario, the condition head == NULL will be true. Since, the list in which, we are

inserting the node is a circular singly linked list, therefore the only node of the list (which is just

inserted into the list) will point to itself only. We also need to make the head pointer point to this

node. This will be done by using the following statements.

1. if(head == NULL)

2. {

3. head = ptr;

4. ptr -> next = head;

5. }

In the second scenario, the condition head == NULL will become false which means that the list

contains at least one node. In this case, we need to traverse the list in order to reach the last node

of the list. This will be done by using the following statement.

1. temp = head;

2. while(temp->next != head)

3. temp = temp->next;

At the end of the loop, the pointer temp would point to the last node of the list. Since, in a circular

singly linked list, the last node of the list contains a pointer to the first node of the list. Therefore,

we need to make the next pointer of the last node point to the head node of the list and the new

node which is being inserted into the list will be the new head node of the list therefore the next

pointer of temp will point to the new node ptr.

This will be done by using the following statements.

1. temp -> next = ptr;

the next pointer of temp will point to the existing head node of the list.

https://www.javatpoint.com/searching-in-circular-singly-linked-list
https://www.javatpoint.com/traversing-in-circular-singly-linked-list

53

1. ptr->next = head;

Now, make the new node ptr, the new head node of the circular singly linked list.

1. head = ptr;

in this way, the node ptr has been inserted into the circular singly linked list at beginning.

Algorithm
o Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 11

 [END OF IF]

o Step 2: SET NEW_NODE = PTR

o Step 3: SET PTR = PTR -> NEXT

o Step 4: SET NEW_NODE -> DATA = VAL

o Step 5: SET TEMP = HEAD

o Step 6: Repeat Step 8 while TEMP -> NEXT != HEAD

o Step 7: SET TEMP = TEMP -> NEXT

[END OF LOOP]

o Step 8: SET NEW_NODE -> NEXT = HEAD

o Step 9: SET TEMP → NEXT = NEW_NODE

o Step 10: SET HEAD = NEW_NODE

o Step 11: EXIT

54

Insertion into circular singly linked list at the end

There are two scenario in which a node can be inserted in circular singly linked list at beginning. Either the

node will be inserted in an empty list or the node is to be inserted in an already filled list.

 Firstly, allocate the memory space for the new node by using the malloc method of C language.

1. struct node *ptr = (struct node *)malloc(sizeof(struct node));

In the first scenario, the condition head == NULL will be true. Since, the list in which, we are inserting

the node is a circular singly linked list, therefore the only node of the list (which is just inserted into the

list) will point to itself only. We also need to make the head pointer point to this node. This will be done by

using the following statements.

1. if(head == NULL)

2. {

3. head = ptr;

4. ptr -> next = head;

5. }

In the second scenario, the condition head == NULL will become false which means that the list contains

at least one node. In this case, we need to traverse the list in order to reach the last node of the list. This

will be done by using the following statement.

1. temp = head;

2. while(temp->next != head)

3. temp = temp->next;

At the end of the loop, the pointer temp would point to the last node of the list. Since, the new node which

is being inserted into the list will be the new last node of the list. Therefore the existing last node

i.e. temp must point to the new node ptr. This is done by using the following statement.

1. temp -> next = ptr;

The new last node of the list i.e. ptr will point to the head node of the list.

1. ptr -> next = head;

In this way, a new node will be inserted in a circular singly linked list at the beginning.

Algorithm
o Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 1

 [END OF IF]

55

o Step 2: SET NEW_NODE = PTR

o Step 3: SET PTR = PTR -> NEXT

o Step 4: SET NEW_NODE -> DATA = VAL

o Step 5: SET NEW_NODE -> NEXT = HEAD

o Step 6: SET TEMP = HEAD

o Step 7: Repeat Step 8 while TEMP -> NEXT != HEAD

o Step 8: SET TEMP = TEMP -> NEXT

[END OF LOOP]

o Step 9: SET TEMP -> NEXT = NEW_NODE

o Step 10: EXIT

Deletion in circular singly linked list at beginning

In order to delete a node in circular singly linked list, we need to make a few pointer adjustments.

There are three scenarios of deleting a node from circular singly linked list at beginning.

Scenario 1: (The list is Empty)

If the list is empty then the condition head == NULL will become true, in this case, we just need to

print underflow on the screen and make exit.

1. if(head == NULL)

2. {

3. printf("\nUNDERFLOW");

4. return;

56

5. }

Scenario 2: (The list contains single node)

If the list contains single node then, the condition head → next == head will become true. In this case, we

need to delete the entire list and make the head pointer free. This will be done by using the following

statements.

 if(head->next == head)

1. {

2. head = NULL;

3. free(head);

4. }

Scenario 3: (The list contains more than one node)

If the list contains more than one node then, in that case, we need to traverse the list by using the

pointer ptr to reach the last node of the list. This will be done by using the following statements.

1. ptr = head;

2. while(ptr -> next != head)

3. ptr = ptr -> next;

At the end of the loop, the pointer ptr point to the last node of the list. Since, the last node of the list points

to the head node of the list. Therefore this will be changed as now, the last node of the list will point to the

next of the head node.

1. ptr->next = head->next;

Now, free the head pointer by using the free() method in C language.

1. free(head);

Make the node pointed by the next of the last node, the new head of the list.

1. head = ptr->next;

In this way, the node will be deleted from the circular singly linked list from the beginning.

Algorithm

o Step 1: IF HEAD = NULL

Write UNDERFLOW

 Go to Step 8

 [END OF IF]

57

o Step 2: SET PTR = HEAD

o Step 3: Repeat Step 4 while PTR → NEXT != HEAD

o Step 4: SET PTR = PTR → next

[END OF LOOP]

o Step 5: SET PTR → NEXT = HEAD → NEXT

o Step 6: FREE HEAD

o Step 7: SET HEAD = PTR → NEXT

o Step 8: EXIT

Deletion in Circular singly linked list at the end

There are three scenarios of deleting a node in circular singly linked list at the end.

Scenario 1 (the list is empty)

If the list is empty then the condition head == NULL will become true, in this case, we just need to

print underflow on the screen and make exit.

1. if(head == NULL)

2. {

3. printf("\nUNDERFLOW");

4. return;

5. }

58

Scenario 2(the list contains single element)

If the list contains single node then, the condition head → next == head will become true. In this

case, we need to delete the entire list and make the head pointer free. This will be done by using

the following statements.

1. if(head->next == head)

2. {

3. head = NULL;

4. free(head);

5. }

Scenario 3(the list contains more than one element)

If the list contains more than one element, then in order to delete the last element, we need to

reach the last node. We also need to keep track of the second last node of the list. For this purpose,

the two pointers ptr and preptr are defined. The following sequence of code is used for this

purpose.

1. while(ptr ->next != head)

2. {

3. preptr=ptr;

4. ptr = ptr->next;

5. }

now, we need to make just one more pointer adjustment. We need to make the next pointer of

preptr point to the next of ptr (i.e. head) and then make pointer ptr free.

1. preptr->next = ptr -> next;

2. free(ptr);

Algorithm

o Step 1: IF HEAD = NULL

 Write UNDERFLOW

 Go to Step 8

 [END OF IF]

o Step 2: SET PTR = HEAD

o Step 3: Repeat Steps 4 and 5 while PTR -> NEXT != HEAD

o Step 4: SET PREPTR = PTR

o Step 5: SET PTR = PTR -> NEXT

[END OF LOOP]

59

o Step 6: SET PREPTR -> NEXT = HEAD

o Step 7: FREE PTR

o Step 8: EXIT

Searching in circular singly linked list

Searching in circular singly linked list needs traversing across the list. The item which is to be searched in

the list is matched with each node data of the list once and if the match found then the location of that

item is returned otherwise -1 is returned.

The algorithm and its implementation in C is given as follows.

Algorithm

o Step 1: SET PTR = HEAD

o Step 2: Set I = 0

o STEP 3: IF PTR = NULL

WRITE "EMPTY LIST"

GOTO STEP 8

END OF IF

o STEP 4: IF HEAD → DATA = ITEM

WRITE i+1 RETURN [END OF IF]

o STEP 5: REPEAT STEP 5 TO 7 UNTIL PTR->next != head

o STEP 6: if ptr → data = item

60

write i+1

RETURN

End of IF

o STEP 7: I = I + 1

o STEP 8: PTR = PTR → NEXT

[END OF LOOP]

o STEP 9: EXIT

Traversing in Circular Singly linked list

Traversing in circular singly linked list can be done through a loop. Initialize the temporary pointer

variable temp to head pointer and run the while loop until the next pointer of temp becomes head. The

algorithm and the c function implementing the algorithm is described as follows.

Algorithm

o STEP 1: SET PTR = HEAD

o STEP 2: IF PTR = NULL

WRITE "EMPTY LIST"

GOTO STEP 8

END OF IF

o STEP 4: REPEAT STEP 5 AND 6 UNTIL PTR → NEXT != HEAD

o STEP 5: PRINT PTR → DATA

o STEP 6: PTR = PTR → NEXT

[END OF LOOP]

o STEP 7: PRINT PTR→ DATA

o STEP 8: EXIT

Circular Doubly Linked List
o Circular doubly linked list is a more complexed type of data structure in which a node contain pointers to

its previous node as well as the next node. Circular doubly linked list doesn't contain NULL in any of the

node. The last node of the list contains the address of the first node of the list. The first node of the list

also contain address of the last node in its previous pointer.

o A circular doubly linked list is shown in the following figure.

61

Operations on circular doubly linked list :

There are various operations which can be performed on circular doubly linked list. The node structure of

a circular doubly linked list is similar to doubly linked list. However, the operations on circular doubly linked

list is described in the following table.

SN Operation Description

1 Insertion at beginning Adding a node in circular doubly linked list at the beginning.

2 Insertion at end Adding a node in circular doubly linked list at the end.

3 Deletion at beginning Removing a node in circular doubly linked list from beginning.

4 Deletion at end Removing a node in circular doubly linked list at the end.

Traversing and searching in circular doubly linked list is similar to that in the circular singly linked list.

https://www.javatpoint.com/insertion-in-circular-doubly-linked-list-at-beginning
https://www.javatpoint.com/insertion-in-circular-doubly-linked-list-at-end
https://www.javatpoint.com/deletion-in-circular-doubly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-circular-doubly-linked-list-at-end

UNIT-5

1

UNIT-V

Tree Data Structure

 Tree is also one of the data structures that represent hierarchical data. Suppose we want to show the employees and

their positions in the hierarchical form then it can be represented as shown below:

The above tree shows the organization hierarchy of some company. In the above structure, john is the CEO of the

company, and John has two direct reports named as Steve and Rohan. Steve has three direct reports named Lee, Bob,

Ella where Steve is a manager. Bob has two direct reports named Sal and Emma. Emma has two direct reports

named Tom and Raj. Tom has one direct report named Bill. This particular logical structure is known as a Tree. Its

structure is similar to the real tree, so it is named a Tree. In this structure, the root is at the top, and its branches are

moving in a downward direction. Therefore, we can say that the Tree data structure is an efficient way of storing the

data in a hierarchical way.

Let's understand some key points of the Tree data structure.

o A tree data structure is defined as a collection of objects or entities known as nodes that are linked together to represent

or simulate hierarchy.

o A tree data structure is a non-linear data structure because it does not store in a sequential manner. It is a hierarchical

structure as elements in a Tree are arranged in multiple levels.

o In the Tree data structure, the topmost node is known as a root node. Each node contains some data, and data can be of

any type. In the above tree structure, the node contains the name of the employee, so the type of data would be a string.

o Each node contains some data and the link or reference of other nodes that can be called children.

Some basic terms used in Tree data structure

Let's consider the tree structure, which is shown below:

2

In the above structure, each node is labeled with some number. Each arrow shown in the above figure is known as

a link between the two nodes.

o Root: The root node is the topmost node in the tree hierarchy. In other words, the root node is the one that doesn't have

any parent. In the above structure, node numbered 1 is the root node of the tree. If a node is directly linked to some

other node, it would be called a parent-child relationship.

o Child node: If the node is a descendant of any node, then the node is known as a child node.

o Parent: If the node contains any sub-node, then that node is said to be the parent of that sub-node.

o Sibling: The nodes that have the same parent are known as siblings.

o Leaf Node:- The node of the tree, which doesn't have any child node, is called a leaf node. A leaf node is the bottom-

most node of the tree. There can be any number of leaf nodes present in a general tree. Leaf nodes can also be called

external nodes.

o Internal nodes: A node has atleast one child node known as an internal

o Ancestor node:- An ancestor of a node is any predecessor node on a path from the root to that node. The root node

doesn't have any ancestors. In the tree shown in the above image, nodes 1, 2, and 5 are the ancestors of node 10.

o Descendant: The immediate successor of the given node is known as a descendant of a node. In the above figure, 10

is the descendant of node 5.

o Number of edges: If there are n nodes, then there would n-1 edges. Each arrow in the structure represents the link or

path. Each node, except the root node, will have atleast one incoming link known as an edge. There would be one link

for the parent-child relationship.

o Depth of node x: The depth of node x can be defined as the length of the path from the root to the node x. One edge

contributes one-unit length in the path. So, the depth of node x can also be defined as the number of edges between the

root node and the node x. The root node has 0 depth.

o Height of node x: The height of node x can be defined as the longest path from the node x to the leaf node.

3

Based on the properties of the Tree data structure, trees are classified into various categories.

Implementation of Tree

The tree data structure can be created by creating the nodes dynamically with the help of the pointers. The tree in the

memory can be represented as shown below:

The above figure shows the representation of the tree data structure in the memory. In the above structure, the node

contains three fields. The second field stores the data; the first field stores the address of the left child, and the third

field stores the address of the right child.

In programming, the structure of a node can be defined as:

1. struct node

2. {

3. int data;

4. struct node *left;

5. struct node *right;

6. } ;

The above structure can only be defined for the binary trees because the binary tree can have utmost two children, and

generic trees can have more than two children. The structure of the node for generic trees would be different as

compared to the binary tree.

Applications of trees

The following are the applications of trees:

o Storing naturally hierarchical data: Trees are used to store the data in the hierarchical structure. For example, the

file system. The file system stored on the disc drive, the file and folder are in the form of the naturally hierarchical data

and stored in the form of trees.

o Organize data: It is used to organize data for efficient insertion, deletion and searching. For example, a binary tree has

a logN time for searching an element.

4

o Trie: It is a special kind of tree that is used to store the dictionary. It is a fast and efficient way for dynamic spell

checking.

o Heap: It is also a tree data structure implemented using arrays. It is used to implement priority queues.

o B-Tree and B+Tree: B-Tree and B+Tree are the tree data structures used to implement indexing in databases.

o Routing table: The tree data structure is also used to store the data in routing tables in the routers.

Types of Tree data structure

The following are the types of a tree data structure:

o General tree: The general tree is one of the types of tree data structure. In the general tree, a node can have either 0

or maximum n number of nodes. There is no restriction imposed on the degree of the node (the number of nodes that

a node can contain). The topmost node in a general tree is known as a root node. The children of the parent node are

known as subtrees.

There can be n number of subtrees in a general tree. In the general tree, the subtrees are unordered as the nodes in the

subtree cannot be ordered.

Every non-empty tree has a downward edge, and these edges are connected to the nodes known as child nodes. The

root node is labeled with level 0. The nodes that have the same parent are known as siblings.

o Binary tree: Here, binary name itself suggests two numbers, i.e., 0 and 1. In a binary tree, each node in a tree can

have utmost two child nodes. Here, utmost means whether the node has 0 nodes, 1 node or 2 nodes.

https://www.javatpoint.com/binary-tree

5

o Binary Search tree:

Binary search tree is a non-linear data structure in which one node is connected to n number of nodes. It is a node-

based data structure. A node can be represented in a binary search tree with three fields, i.e., data part, left-child, and

right-child. A node can be connected to the utmost two child nodes in a binary search tree, so the node contains two

pointers (left child and right child pointer).

Every node in the left subtree must contain a value less than the value of the root node, and the value of each node in

the right subtree must be bigger than the value of the root node.

A node can be created with the help of a user-defined data type known as struct, as shown below:

1.struct node

2.{

3. int data;

4. struct node *left;

5.struct node *right;

6.}

The above is the node structure with three fields: data field, the second field is the left pointer of the node type, and the

third field is the right pointer of the node type.

AVL tree

It is one of the types of the binary tree, or we can say that it is a variant of the binary search tree. AVL tree satisfies the

property of the binary tree as well as of the binary search tree. It is a self-balancing binary search tree that was invented

by Adelson Velsky Lindas. Here, self-balancing means that balancing the heights of left subtree and right subtree. This

balancing is measured in terms of the balancing factor.

Balance Factor (k) = height (left(k)) - height (right(k))

https://www.javatpoint.com/binary-search-tree
https://www.javatpoint.com/avl-tree

6

We can consider a tree as an AVL tree if the tree obeys the binary search tree as well as a balancing factor. The

balancing factor can be defined as the difference between the height of the left subtree and the height of the right

subtree. The balancing factor's value must be either 0, -1, or 1; therefore, each node in the AVL tree should have the

value of the balancing factor either as 0, -1, or 1.

o Red-Black Tree

The red-Black tree is the binary search tree. The prerequisite of the Red-Black tree is that we should know about the

binary search tree. In a binary search tree, the value of the left-subtree should be less than the value of that node, and

the value of the right-subtree should be greater than the value of that node. As we know that the time complexity of

binary search in the average case is log2n, the best case is O(1), and the worst case is O(n).

When any operation is performed on the tree, we want our tree to be balanced so that all the operations like searching,

insertion, deletion, etc., take less time, and all these operations will have the time complexity of log2n.

The red-black tree is a self-balancing binary search tree. AVL tree is also a height balancing binary search tree

then why do we require a Red-Black tree. In the AVL tree, we do not know how many rotations would be required

to balance the tree, but in the Red-black tree, a maximum of 2 rotations are required to balance the tree. It contains one

extra bit that represents either the red or black color of a node to ensure the balancing of the tree.

o Splay tree

The splay tree data structure is also binary search tree in which recently accessed element is placed at the root position

of tree by performing some rotation operations. Here, splaying means the recently accessed node. It is a self-

balancing binary search tree having no explicit balance condition like AVL tree.

It might be a possibility that height of the splay tree is not balanced, i.e., height of both left and right subtrees may

differ, but the operations in splay tree takes order of logN time where n is the number of nodes.

Splay tree is a balanced tree but it cannot be considered as a height balanced tree because after each operation, rotation

is performed which leads to a balanced tree.

Binary Tree

The Binary tree means that the node can have maximum two children. Here, binary name itself suggests that 'two';

therefore, each node can have either 0, 1 or 2 children.

https://www.javatpoint.com/red-black-tree

7

Let's understand the binary tree through an example.

The above tree is a binary tree because each node contains the utmost two children. The logical representation of the

above tree is given below:

In the above tree, node 1 contains two pointers, i.e., left and a right pointer pointing to the left and right node

respectively. The node 2 contains both the nodes (left and right node); therefore, it has two pointers (left and right).

The nodes 3, 5 and 6 are the leaf nodes, so all these nodes contain NULL pointer on both left and right parts.

Properties of Binary Tree

o At each level of i, the maximum number of nodes is 2i.

o The height of the tree is defined as the longest path from the root node to the leaf node. The tree which is shown above

has a height equal to 3. Therefore, the maximum number of nodes at height 3 is equal to (1+2+4+8) = 15. In general,

the maximum number of nodes possible at height h is (20 + 21 + 22+….2h) = 2h+1 -1.

o The minimum number of nodes possible at height h is equal to h+1.

o If the number of nodes is minimum, then the height of the tree would be maximum. Conversely, if the number of nodes

is maximum, then the height of the tree would be minimum.

8

Types of Binary Tree

There are four types of Binary tree:

o Full/ proper/ strict Binary tree

o Complete Binary tree

o Perfect Binary tree

o Degenerate Binary tree

o Balanced Binary tree

1. Full/ proper/ strict Binary tree

The full binary tree is also known as a strict binary tree. The tree can only be considered as the full binary tree if each

node must contain either 0 or 2 children. The full binary tree can also be defined as the tree in which each node must

contain 2 children except the leaf nodes.

Let's look at the simple example of the Full Binary tree.

In the above tree, we can observe that each node is either containing zero or two children; therefore, it is a Full Binary

tree.

Properties of Full Binary Tree

o The number of leaf nodes is equal to the number of internal nodes plus 1. In the above example, the number of internal

nodes is 5; therefore, the number of leaf nodes is equal to 6.

o The maximum number of nodes is the same as the number of nodes in the binary tree, i.e., 2h+1 -1.

o The minimum number of nodes in the full binary tree is 2*h-1.

o The minimum height of the full binary tree is log2(n+1) - 1.

Complete Binary Tree

The complete binary tree is a tree in which all the nodes are completely filled except the last level. In the last level, all

the nodes must be as left as possible. In a complete binary tree, the nodes should be added from the left.

Let's create a complete binary tree.

9

The above tree is a complete binary tree because all the nodes are completely filled, and all the nodes in the last level

are added at the left first.

Properties of Complete Binary Tree:

o The maximum number of nodes in complete binary tree is 2h+1 - 1.

o The minimum number of nodes in complete binary tree is 2h.

o The minimum height of a complete binary tree is log2(n+1) - 1.

o The maximum height of a complete binary tree is

Perfect Binary Tree

A tree is a perfect binary tree if all the internal nodes have 2 children, and all the leaf nodes are at the same level.

Let's look at a simple example of a perfect binary tree.

The below tree is not a perfect binary tree because all the leaf nodes are not at the same level.

10

Note: All the perfect binary trees are the complete binary trees as well as the full binary tree, but vice versa is not

true, i.e., all complete binary trees and full binary trees are the perfect binary trees.

Degenerate Binary Tree

The degenerate binary tree is a tree in which all the internal nodes have only one children.

Let's understand the Degenerate binary tree through examples.

The above tree is a degenerate binary tree because all the nodes have only one child. It is also known as a right-skewed

tree as all the nodes have a right child only.

The above tree is also a degenerate binary tree because all the nodes have only one child. It is also known as a left-

skewed tree as all the nodes have a left child only.

Balanced Binary Tree:

The balanced binary tree is a tree in which both the left and right trees differ by atmost 1. For example, AVL and Red-

Black trees are balanced binary tree.

Let's understand the balanced binary tree through examples.

11

The above tree is a balanced binary tree because the difference between the left subtree and right subtree is 0.

The above tree is not a balanced binary tree because the difference between the left subtree and the right subtree is

greater than 1.

Binary Tree Implementation

A Binary tree is implemented with the help of pointers. The first node in the tree is represented by the root pointer.

Each node in the tree consists of three parts, i.e., data, left pointer and right pointer. To create a binary tree, we first

need to create the node. We will create the node of user-defined as shown below:

1. struct node

2. {

3. int data,

4. struct node *left, *right;

5. }

In the above structure, data is the value, left pointer contains the address of the left node, and right pointer contains

the address of the right node.

Binary Tree program in C

1. #include<stdio.h>

2. struct node

3. {

4. int data;

5. struct node *left, *right;

6. }

7. void main()

8. {

9. struct node *root;

10. root = create();

11. }

12. struct node *create()

13. {

14. struct node *temp;

12

15. int data;

16. temp = (struct node *)malloc(sizeof(struct node));

17. printf("Press 0 to exit");

18. printf("\nPress 1 for new node");

19. printf("Enter your choice : ");

20. scanf("%d", &choice);

21. if(choice==0)

22. {

23. return 0;

24. }

25. else

26. {

27. printf("Enter the data:");

28. scanf("%d", &data);

29. temp->data = data;

30. printf("Enter the left child of %d", data);

31. temp->left = create();

32. printf("Enter the right child of %d", data);

33. temp->right = create();

34. return temp;

35. }

36. }

The above code is calling the create() function recursively and creating new node on each recursive call. When all the

nodes are created, then it forms a binary tree structure. The process of visiting the nodes is known as tree traversal.

There are three types traversals used to visit a node:

o Inorder traversal

o Preorder traversal

o Postorder traversal

Binary Tree Traversal - inorder, preorder and postorder

Traversing a tree means visiting every node in the tree. You might, for instance, want to add all the values in the tree

or find the largest one. For all these operations, you will need to visit each node of the tree.

Linear data structures like arrays, stacks, queues, and linked list have only one way to read the data. But a

hierarchical data structure like a tree can be traversed in different ways.

https://www.programiz.com/data-structures/stack
https://www.programiz.com/data-structures/queue
https://www.programiz.com/data-structures/linked-list
https://www.programiz.com/data-structures/trees

13

Starting from top, Left to right

1 -> 12 -> 5 -> 6 -> 9

Starting from bottom, Left to right

5 -> 6 -> 12 -> 9 -> 1

Although this process is somewhat easy, it doesn't respect the hierarchy of the tree, only the depth of the nodes.

Instead, we use traversal methods that take into account the basic structure of a tree i.e.

struct node {

 int data;

 struct node* left;

 struct node* right;

}

The struct node pointed to by left and right might have other left and right children so we should think of them as

sub-trees instead of sub-nodes.

According to this structure, every tree is a combination of

 A node carrying data

 Two subtrees

14

Left and Right Subtree

Remember that our goal is to visit each node, so we need to visit all the nodes in the subtree, visit the root node and

visit all the nodes in the right subtree as well.

Depending on the order in which we do this, there can be three types of traversal

Inorder traversal:

1. First, visit all the nodes in the left subtree

2. Then the root node

3. Visit all the nodes in the right subtree

inorder(root->left)

display(root->data)

inorder(root->right)

Preorder traversal

1. Visit root node

2. Visit all the nodes in the left subtree

3. Visit all the nodes in the right subtree

display(root->data)

preorder(root->left)

preorder(root->right)

Postorder traversal

1. Visit all the nodes in the left subtree

2. Visit all the nodes in the right subtree

3. Visit the root node

postorder(root->left)

postorder(root->right)

display(root->data)

15

/ Tree traversal in C

#include <stdio.h>

#include <stdlib.h>

struct node {

 int item;

 struct node* left;

 struct node* right;

};

// Inorder traversal

void inorderTraversal(struct node* root) {

 if (root == NULL) return;

 inorderTraversal(root->left);

 printf("%d ->", root->item);

 inorderTraversal(root->right);

}

// preorderTraversal traversal

void preorderTraversal(struct node* root) {

 if (root == NULL) return;

 printf("%d ->", root->item);

 preorderTraversal(root->left);

 preorderTraversal(root->right);

}

16

// postorderTraversal traversal

void postorderTraversal(struct node* root) {

 if (root == NULL) return;

 postorderTraversal(root->left);

 postorderTraversal(root->right);

 printf("%d ->", root->item);

}

// Create a new Node

struct node* createNode(value) {

 struct node* newNode = malloc(sizeof(struct node));

 newNode->item = value;

 newNode->left = NULL;

 newNode->right = NULL;

 return newNode;

}

// Insert on the left of the node

struct node* insertLeft(struct node* root, int value) {

 root->left = createNode(value);

 return root->left;

}

// Insert on the right of the node

struct node* insertRight(struct node* root, int value) {

 root->right = createNode(value);

 return root->right;

}

int main() {

 struct node* root = createNode(1);

 insertLeft(root, 12);

 insertRight(root, 9);

 insertLeft(root->left, 5);

 insertRight(root->left, 6);

 printf("Inorder traversal \n");

 inorderTraversal(root);

 printf("\nPreorder traversal \n");

 preorderTraversal(root);

 printf("\nPostorder traversal \n");

 postorderTraversal(root);

}

17

Graph

A graph can be defined as group of vertices and edges that are used to connect these vertices. A graph can

be seen as a cyclic tree, where the vertices (Nodes) maintain any complex relationship among them instead

of having parent child relationship.

Definition

A graph G can be defined as an ordered set G(V, E) where V(G) represents the set of vertices and E(G)

represents the set of edges which are used to connect these vertices.

A Graph G(V, E) with 5 vertices (A, B, C, D, E) and six edges ((A,B), (B,C), (C,E), (E,D), (D,B), (D,A)) is shown in

the following figure.

Directed and Undirected Graph

A graph can be directed or undirected. However, in an undirected graph, edges are not associated with the

directions with them. An undirected graph is shown in the above figure since its edges are not attached

with any of the directions. If an edge exists between vertex A and B then the vertices can be traversed from

B to A as well as A to B.

In a directed graph, edges form an ordered pair. Edges represent a specific path from some vertex A to

another vertex B. Node A is called initial node while node B is called terminal node.

A directed graph is shown in the following figure.

18

Graph Terminology
Path

A path can be defined as the sequence of nodes that are followed in order to reach some terminal node V

from the initial node U.

Closed Path

A path will be called as closed path if the initial node is same as terminal node. A path will be closed path if

V0=VN.

Simple Path

If all the nodes of the graph are distinct with an exception V0=VN, then such path P is called as closed simple

path.

Cycle

A cycle can be defined as the path which has no repeated edges or vertices except the first and last vertices.

Connected Graph

A connected graph is the one in which some path exists between every two vertices (u, v) in V. There are no

isolated nodes in connected graph.

Complete Graph

A complete graph is the one in which every node is connected with all other nodes. A complete graph

contain n(n-1)/2 edges where n is the number of nodes in the graph.

19

Weighted Graph

In a weighted graph, each edge is assigned with some data such as length or weight. The weight of an edge

e can be given as w(e) which must be a positive (+) value indicating the cost of traversing the edge.

Digraph

A digraph is a directed graph in which each edge of the graph is associated with some direction and the

traversing can be done only in the specified direction.

Loop

An edge that is associated with the similar end points can be called as Loop.

Adjacent Nodes

If two nodes u and v are connected via an edge e, then the nodes u and v are called as neighbours or

adjacent nodes.

Degree of the Node

A degree of a node is the number of edges that are connected with that node. A node with degree 0 is

called as isolated node.

Graph representation

In this article, we will discuss the ways to represent the graph. By Graph representation, we simply mean the

technique to be used to store some graph into the computer's memory.

A graph is a data structure that consist a sets of vertices (called nodes) and edges. There are two ways to

store Graphs into the computer's memory:

o Sequential representation (or, Adjacency matrix representation)

o Linked list representation (or, Adjacency list representation)

In sequential representation, an adjacency matrix is used to store the graph. Whereas in linked list

representation, there is a use of an adjacency list to store the graph.

In this tutorial, we will discuss each one of them in detail.

ow, let's start discussing the ways of representing a graph in the data structure.

Sequential representation

20

In sequential representation, there is a use of an adjacency matrix to represent the mapping between

vertices and edges of the graph. We can use an adjacency matrix to represent the undirected graph, directed

graph, weighted directed graph, and weighted undirected graph.

If adj[i][j] = w, it means that there is an edge exists from vertex i to vertex j with weight w.

An entry Aij in the adjacency matrix representation of an undirected graph G will be 1 if an edge exists

between Vi and Vj. If an Undirected Graph G consists of n vertices, then the adjacency matrix for that graph

is n x n, and the matrix A = [aij] can be defined as -

aij = 1 {if there is a path exists from Vi to Vj}

aij = 0 {Otherwise}

It means that, in an adjacency matrix, 0 represents that there is no association exists between the nodes,

whereas 1 represents the existence of a path between two edges.

If there is no self-loop present in the graph, it means that the diagonal entries of the adjacency matrix will

be 0

Now, let's see the adjacency matrix representation of an undirected graph.

In the above figure, an image shows the mapping among the vertices (A, B, C, D, E), and this mapping is

represented by using the adjacency matrix.

There exist different adjacency matrices for the directed and undirected graph. In a directed graph, an entry

Aij will be 1 only when there is an edge directed from Vi to Vj.

Adjacency matrix for a directed graph

In a directed graph, edges represent a specific path from one vertex to another vertex. Suppose a path exists

from vertex A to another vertex B; it means that node A is the initial node, while node B is the terminal node.

Consider the below-directed graph and try to construct the adjacency matrix of it.

21

In the above graph, we can see there is no self-loop, so the diagonal entries of the adjacent matrix are 0.

Adjacency matrix for a weighted directed graph

It is similar to an adjacency matrix representation of a directed graph except that instead of using the '1' for

the existence of a path, here we have to use the weight associated with the edge. The weights on the graph

edges will be represented as the entries of the adjacency matrix. We can understand it with the help of an

example. Consider the below graph and its adjacency matrix representation. In the representation, we can

see that the weight associated with the edges is represented as the entries in the adjacency matrix.

 n the above

image, we can see that the adjacency matrix representation of the weighted directed graph is different from

other representations. It is because, in this representation, the non-zero values are replaced by the actual

weight assigned to the edges.

Adjacency matrix is easier to implement and follow. An adjacency matrix can be used when the graph is

dense and a number of edges are large.

Though, it is advantageous to use an adjacency matrix, but it consumes more space. Even if the graph is

sparse, the matrix still consumes the same space.

22

Linked list representation

An adjacency list is used in the linked representation to store the Graph in the computer's memory. It is

efficient in terms of storage as we only have to store the values for edges.

Let's see the adjacency list representation of an undirected graph.

In the above figure, we can see that there is a linked list or adjacency list for every node of the graph. From

vertex A, there are paths to vertex B and vertex D. These nodes are linked to nodes A in the given adjacency

list.

An adjacency list is maintained for each node present in the graph, which stores the node value and a

pointer to the next adjacent node to the respective node. If all the adjacent nodes are traversed, then store

the NULL in the pointer field of the last node of the list.

The sum of the lengths of adjacency lists is equal to twice the number of edges present in an undirected

graph.

Now, consider the directed graph, and let's see the adjacency list representation of that graph.

 For a directed graph, the sum of the lengths of adjacency lists is equal to the number of edges present in

the graph.

Now, consider the weighted directed graph, and let's see the adjacency list representation of that graph.

23

In the case of a weighted directed graph, each node contains an extra field that is called the weight of the

node.

In an adjacency list, it is easy to add a vertex. Because of using the linked list, it also saves space.

Implementation of adjacency matrix representation of Graph

Now, let's see the implementation of adjacency matrix representation of graph in C.

In this program, there is an adjacency matrix representation of an undirected graph. It means that if there

is an edge exists from vertex A to vertex B, there will also an edge exists from vertex B to vertex A.

Here, there are four vertices and five edges in the graph that are non-directed.

1. /* Adjacency Matrix representation of an undirected graph in C */

2.

3. #include <stdio.h>

4. #define V 4 /* number of vertices in the graph */

5.

6. /* function to initialize the matrix to zero */

7. void init(int arr[][V]) {

8. int i, j;

9. for (i = 0; i < V; i++)

10. for (j = 0; j < V; j++)

11. arr[i][j] = 0;

12. }

13.

14. /* function to add edges to the graph */

15. void insertEdge(int arr[][V], int i, int j) {

16. arr[i][j] = 1;

17. arr[j][i] = 1;

24

18. }

19.

20. /* function to print the matrix elements */

21. void printAdjMatrix(int arr[][V]) {

22. int i, j;

23. for (i = 0; i < V; i++) {

24. printf("%d: ", i);

25. for (j = 0; j < V; j++) {

26. printf("%d ", arr[i][j]);

27. }

28. printf("\n");

29. }

30. }

31.

32. int main() {

33. int adjMatrix[V][V];

34.

35. init(adjMatrix);

36. insertEdge(adjMatrix, 0, 1);

37. insertEdge(adjMatrix, 0, 2);

38. insertEdge(adjMatrix, 1, 2);

39. insertEdge(adjMatrix, 2, 0);

40. insertEdge(adjMatrix, 2, 3);

41.

42. printAdjMatrix(adjMatrix);

43.

44. return 0;

45. }

Output:

After the execution of the above code, the output will be -

25

Implementation of adjacency list representation of Graph

Now, let's see the implementation of adjacency list representation of graph in C.

In this program, there is an adjacency list representation of an undirected graph. It means that if there is an

edge exists from vertex A to vertex B, there will also an edge exists from vertex B to vertex A.

1. /* Adjacency list representation of a graph in C */

2. #include <stdio.h>

3. #include <stdlib.h>

4.

5. /* structure to represent a node of adjacency list */

6. struct AdjNode {

7. int dest;

8. struct AdjNode* next;

9. };

10.

11. /* structure to represent an adjacency list */

12. struct AdjList {

13. struct AdjNode* head;

14. };

15.

16. /* structure to represent the graph */

17. struct Graph {

18. int V; /*number of vertices in the graph*/

19. struct AdjList* array;

20. };

21.

22.

23. struct AdjNode* newAdjNode(int dest)

24. {

25. struct AdjNode* newNode = (struct AdjNode*)malloc(sizeof(struct AdjNode));

26. newNode->dest = dest;

27. newNode->next = NULL;

28. return newNode;

29. }

30.

31. struct Graph* createGraph(int V)

26

32. {

33. struct Graph* graph = (struct Graph*)malloc(sizeof(struct Graph));

34. graph->V = V;

35. graph->array = (struct AdjList*)malloc(V * sizeof(struct AdjList));

36.

37. /* Initialize each adjacency list as empty by making head as NULL */

38. int i;

39. for (i = 0; i < V; ++i)

40. graph->array[i].head = NULL;

41. return graph;

42. }

43.

44. /* function to add an edge to an undirected graph */

45. void addEdge(struct Graph* graph, int src, int dest)

46. {

47. /* Add an edge from src to dest. The node is added at the beginning */

48. struct AdjNode* check = NULL;

49. struct AdjNode* newNode = newAdjNode(dest);

50.

51. if (graph->array[src].head == NULL) {

52. newNode->next = graph->array[src].head;

53. graph->array[src].head = newNode;

54. }

55. else {

56.

57. check = graph->array[src].head;

58. while (check->next != NULL) {

59. check = check->next;

60. }

61. // graph->array[src].head = newNode;

62. check->next = newNode;

63. }

64.

65. /* Since graph is undirected, add an edge from dest to src also */

66. newNode = newAdjNode(src);

67. if (graph->array[dest].head == NULL) {

68. newNode->next = graph->array[dest].head;

69. graph->array[dest].head = newNode;

70. }

27

71. else {

72. check = graph->array[dest].head;

73. while (check->next != NULL) {

74. check = check->next;

75. }

76. check->next = newNode;

77. }

78. }

79. /* function to print the adjacency list representation of graph*/

80. void print(struct Graph* graph)

81. {

82. int v;

83. for (v = 0; v < graph->V; ++v) {

84. struct AdjNode* pCrawl = graph->array[v].head;

85. printf("\n The Adjacency list of vertex %d is: \n head ", v);

86. while (pCrawl) {

87. printf("-> %d", pCrawl->dest);

88. pCrawl = pCrawl->next;

89. }

90. printf("\n");

91. }

92. }

93.

94. int main()

95. {

96.

97. int V = 4;

98. struct Graph* g = createGraph(V);

99. addEdge(g, 0, 1);

100. addEdge(g, 0, 3);

101. addEdge(g, 1, 2);

102. addEdge(g, 1, 3);

103. addEdge(g, 2, 4);

104. addEdge(g, 2, 3);

105. addEdge(g, 3, 4);

106. print(g);

107. return 0;

108. }

Output:

28

In the output, we will see the adjacency list representation of all the vertices of the graph. After the execution

of the above code, the output will be -

Graph Traversals:

Graph can be traversal by using two algorithms. They are:

 1. BFS algorithm

 2. DFS algorithm

BFS algorithm

In this article, we will discuss the BFS algorithm in the data structure. Breadth-first search is a graph traversal

algorithm that starts traversing the graph from the root node and explores all the neighboring nodes. Then,

it selects the nearest node and explores all the unexplored nodes. While using BFS for traversal, any node

in the graph can be considered as the root node.

There are many ways to traverse the graph, but among them, BFS is the most commonly used approach. It

is a recursive algorithm to search all the vertices of a tree or graph data structure. BFS puts every vertex of

the graph into two categories - visited and non-visited. It selects a single node in a graph and, after that,

visits all the nodes adjacent to the selected node.

Applications of BFS algorithm

The applications of breadth-first-algorithm are given as follows -

o BFS can be used to find the neighboring locations from a given source location.

o In a peer-to-peer network, BFS algorithm can be used as a traversal method to find all the neighboring nodes. Most

torrent clients, such as BitTorrent, uTorrent, etc. employ this process to find "seeds" and "peers" in the network.

29

o BFS can be used in web crawlers to create web page indexes. It is one of the main algorithms that can be used to

index web pages. It starts traversing from the source page and follows the links associated with the page. Here, every

web page is considered as a node in the graph.

o BFS is used to determine the shortest path and minimum spanning tree.

o BFS is also used in Cheney's technique to duplicate the garbage collection.

o It can be used in ford-Fulkerson method to compute the maximum flow in a flow network.

Algorithm

The steps involved in the BFS algorithm to explore a graph are given as follows -

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until QUEUE is empty

Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed state).

Step 5: Enqueue all the neighbours of N that are in the ready state (whose STATUS = 1) and set

their STATUS = 2

(waiting state)

[END OF LOOP]

Example of BFS algorithm

Now, let's understand the working of BFS algorithm by using an example. In the example given below, there

is a directed graph having 7 vertices.

In the above graph, minimum path 'P' can be found by using the BFS that will start from Node A and end

at Node E. The algorithm uses two queues, namely QUEUE1 and QUEUE2. QUEUE1 holds all the nodes that

are to be processed, while QUEUE2 holds all the nodes that are processed and deleted from QUEUE1.

30

Now, let's start examining the graph starting from Node A.

Step 1 - First, add A to queue1 and NULL to queue2.

1. QUEUE1 = {A}

2. QUEUE2 = {NULL}

Step 2 - Now, delete node A from queue1 and add it into queue2. Insert all neighbors of node A to queue1.

1. QUEUE1 = {B, D}

2. QUEUE2 = {A}

Step 3 - Now, delete node B from queue1 and add it into queue2. Insert all neighbors of node B to queue1.

1. QUEUE1 = {D, C, F}

2. QUEUE2 = {A, B}

Step 4 - Now, delete node D from queue1 and add it into queue2. Insert all neighbors of node D to queue1.

The only neighbor of Node D is F since it is already inserted, so it will not be inserted again.

1. QUEUE1 = {C, F}

2. QUEUE2 = {A, B, D}

Step 5 - Delete node C from queue1 and add it into queue2. Insert all neighbors of node C to queue1.

1. QUEUE1 = {F, E, G}

2. QUEUE2 = {A, B, D, C}

Step 5 - Delete node F from queue1 and add it into queue2. Insert all neighbors of node F to queue1. Since

all the neighbors of node F are already present, we will not insert them again.

1. QUEUE1 = {E, G}

2. QUEUE2 = {A, B, D, C, F}

Step 6 - Delete node E from queue1. Since all of its neighbors have already been added, so we will not

insert them again. Now, all the nodes are visited, and the target node E is encountered into queue2.

1. QUEUE1 = {G}

2. QUEUE2 = {A, B, D, C, F, E}

Complexity of BFS algorithm

Time complexity of BFS depends upon the data structure used to represent the graph. The time complexity

of BFS algorithm is O(V+E), since in the worst case, BFS algorithm explores every node and edge. In a graph,

the number of vertices is O(V), whereas the number of edges is O(E).

The space complexity of BFS can be expressed as O(V), where V is the number of vertices.

31

Implementation of BFS algorithm

Now, let's see the implementation of BFS algorithm in java.

In this code, we are using the adjacency list to represent our graph. Implementing the Breadth-First Search

algorithm in Java makes it much easier to deal with the adjacency list since we only have to travel through

the list of nodes attached to each node once the node is dequeued from the head (or start) of the queue.

In this example, the graph that we are using to demonstrate the code is given as follows -

1. import java.io.*;

2. import java.util.*;

3. public class BFSTraversal

4. {

5. private int vertex; /* total number number of vertices in the graph */

6. private LinkedList<Integer> adj[]; /* adjacency list */

7. private Queue<Integer> que; /* maintaining a queue */

8. BFSTraversal(int v)

9. {

10. vertex = v;

11. adj = new LinkedList[vertex];

12. for (int i=0; i<v; i++)

13. {

14. adj[i] = new LinkedList<>();

15. }

16. que = new LinkedList<Integer>();

17. }

18. void insertEdge(int v,int w)

19. {

20. adj[v].add(w); /* adding an edge to the adjacency list (edges are bidirectional in this example) */

32

21. }

22. void BFS(int n)

23. {

24. boolean nodes[] = new boolean[vertex]; /* initialize boolean array for holding the data */

25. int a = 0;

26. nodes[n]=true;

27. que.add(n); /* root node is added to the top of the queue */

28. while (que.size() != 0)

29. {

30. n = que.poll(); /* remove the top element of the queue */

31. System.out.print(n+" "); /* print the top element of the queue */

32. for (int i = 0; i < adj[n].size(); i++) /* iterate through the linked list and push all neighbors into queue */

33. {

34. a = adj[n].get(i);

35. if (!nodes[a]) /* only insert nodes into queue if they have not been explored already */

36. {

37. nodes[a] = true;

38. que.add(a);

39. }

40. }

41. }

42. }

43. public static void main(String args[])

44. {

45. BFSTraversal graph = new BFSTraversal(10);

46. graph.insertEdge(0, 1);

47. graph.insertEdge(0, 2);

48. graph.insertEdge(0, 3);

49. graph.insertEdge(1, 3);

50. graph.insertEdge(2, 4);

51. graph.insertEdge(3, 5);

52. graph.insertEdge(3, 6);

53. graph.insertEdge(4, 7);

54. graph.insertEdge(4, 5);

55. graph.insertEdge(5, 2);

56. graph.insertEdge(6, 5);

57. graph.insertEdge(7, 5);

58. graph.insertEdge(7, 8);

59. System.out.println("Breadth First Traversal for the graph is:");

33

60. graph.BFS(2);

61. }

62. }

Output

DFS (Depth First Search) algorithm

In this article, we will discuss the DFS algorithm in the data structure. It is a recursive algorithm to search all

the vertices of a tree data structure or a graph. The depth-first search (DFS) algorithm starts with the initial

node of graph G and goes deeper until we find the goal node or the node with no children.

Because of the recursive nature, stack data structure can be used to implement the DFS algorithm. The

process of implementing the DFS is similar to the BFS algorithm.

The step by step process to implement the DFS traversal is given as follows -

1. First, create a stack with the total number of vertices in the graph.

2. Now, choose any vertex as the starting point of traversal, and push that vertex into the stack.

3. After that, push a non-visited vertex (adjacent to the vertex on the top of the stack) to the top of the stack.

4. Now, repeat steps 3 and 4 until no vertices are left to visit from the vertex on the stack's top.

5. If no vertex is left, go back and pop a vertex from the stack.

6. Repeat steps 2, 3, and 4 until the stack is empty.

Applications of DFS algorithm

The applications of using the DFS algorithm are given as follows -

o DFS algorithm can be used to implement the topological sorting.

o It can be used to find the paths between two vertices.

o It can also be used to detect cycles in the graph.

o DFS algorithm is also used for one solution puzzles.

o DFS is used to determine if a graph is bipartite or not.

34

Algorithm

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbors of N that are in the ready state (whose STATUS = 1) and set

their STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

Example of DFS algorithm

Now, let's understand the working of the DFS algorithm by using an example. In the example given below,

there is a directed graph having 7 vertices.

Now, let's start examining the graph starting from Node H.

Step 1 - First, push H onto the stack.

1. STACK: H

Step 2 - POP the top element from the stack, i.e., H, and print it. Now, PUSH all the neighbors of H onto the

stack that are in ready state.

1. Print: H

2. STACK: A

Step 3 - POP the top element from the stack, i.e., A, and print it. Now, PUSH all the neighbors of A onto the

stack that are in ready state.

1. Print: A

2. STACK: B, D

35

Step 4 - POP the top element from the stack, i.e., D, and print it. Now, PUSH all the neighbors of D onto the

stack that are in ready state.

1. Print: D

2. STACK: B, F

Step 5 - POP the top element from the stack, i.e., F, and print it. Now, PUSH all the neighbors of F onto the

stack that are in ready state.

1. Print: F

2. STACK: B

Step 6 - POP the top element from the stack, i.e., B, and print it. Now, PUSH all the neighbors of B onto the

stack that are in ready state.

1. Print: B

2. STACK: C

Step 7 - POP the top element from the stack, i.e., C, and print it. Now, PUSH all the neighbors of C onto the

stack that are in ready state.

1. Print: C

2. STACK: E, G

Step 8 - POP the top element from the stack, i.e., G and PUSH all the neighbors of G onto the stack that are

in ready state.

1. Print: G

2. STACK: E

Step 9 - POP the top element from the stack, i.e., E and PUSH all the neighbors of E onto the stack that are

in ready state.

1. Print: E

2. STACK:

Now, all the graph nodes have been traversed, and the stack is empty.

Complexity of Depth-first search algorithm

The time complexity of the DFS algorithm is O(V+E), where V is the number of vertices and E is the number

of edges in the graph.

The space complexity of the DFS algorithm is O(V).

36

Implementation of DFS algorithm

Now, let's see the implementation of DFS algorithm in Java.

In this example, the graph that we are using to demonstrate the code is given as follows -

1. /*A sample java program to implement the DFS algorithm*/

2.

3. import java.util.*;

4.

5. class DFSTraversal {

6. private LinkedList<Integer> adj[]; /*adjacency list representation*/

7. private boolean visited[];

8.

9. /* Creation of the graph */

10. DFSTraversal(int V) /*'V' is the number of vertices in the graph*/

11. {

12. adj = new LinkedList[V];

13. visited = new boolean[V];

14.

15. for (int i = 0; i < V; i++)

16. adj[i] = new LinkedList<Integer>();

17. }

18.

19. /* Adding an edge to the graph */

20. void insertEdge(int src, int dest) {

21. adj[src].add(dest);

22. }

23.

24. void DFS(int vertex) {

25. visited[vertex] = true; /*Mark the current node as visited*/

26. System.out.print(vertex + " ");

27.

28. Iterator<Integer> it = adj[vertex].listIterator();

37

29. while (it.hasNext()) {

30. int n = it.next();

31. if (!visited[n])

32. DFS(n);

33. }

34. }

35.

36. public static void main(String args[]) {

37. DFSTraversal graph = new DFSTraversal(8);

38.

39. graph.insertEdge(0, 1);

40. graph.insertEdge(0, 2);

41. graph.insertEdge(0, 3);

42. graph.insertEdge(1, 3);

43. graph.insertEdge(2, 4);

44. graph.insertEdge(3, 5);

45. graph.insertEdge(3, 6);

46. graph.insertEdge(4, 7);

47. graph.insertEdge(4, 5);

48. graph.insertEdge(5, 2);

49.

50. System.out.println("Depth First Traversal for the graph is:");

51. graph.DFS(0);

52. }

53. }

Output

Connected Components

o Connectivity is a basic concept of graph theory. It defines whether a graph is connected or disconnected. Without

connectivity, it is not possible to traverse a graph from one vertex to another vertex.

o A graph is said to be connected graph if there is a path between every pair of vertex. From every vertex to any

other vertex there must be some path to traverse. This is called the connectivity of a graph.

o A graph is said to be disconnected, if there exists multiple disconnected vertices and edges.

38

o Graph connectivity theories are essential in network applications, routing transportation networks, network tolerance

etc.

Example

In the above example, it is possible to travel from one vertex to another vertex. Here, we can traverse from

vertex B to H using the path B -> A -> D -> F -> E -> H. Hence it is a connected graph.

Example

In the above example, it is not possible to traverse from vertex B to H because there is no path between

them directly or indirectly. Hence, it is a disconnected graph.

Let's see some basic concepts of Connectivity.

1. Cut Vertex

A single vertex whose removal disconnects a graph is called a cut-vertex.

Let G be a connected graph. A vertex v of G is called a cut vertex of G, if G-v (Remove v from G) results a

disconnected graph.

When we remove a vertex from a graph then graph will break into two or more graphs. This vertex is called

a cut vertex.

Note: Let G be a graph with n vertices:

o A connected graph G may have maximum (n-2) cut vertices.

o Removing a cut vertex may leave a graph disconnected.

o Removing a vertex may increase the number of components in a graph by at least one.

o Every non-pendant vertex of a tree is a cut vertex.

39

Example 1

Example 2

In the above graph, vertex 'e' is a cut-vertex. After removing vertex 'e' from the above graph the graph will

become a disconnected graph.

2. Cut Edge (Bridge)

A cut- Edge or bridge is a single edge whose removal disconnects a graph.

Let G be a connected graph. An edge e of G is called a cut edge of G, if G-e (Remove e from G) results a

disconnected graph.

When we remove an edge from a graph then graph will break into two or more graphs. This removal edge

is called a cut edge or bridge.

40

Note: Let G be a graph with n vertices:

o A connected graph G may have at most (n-1) cut edges.

o Removing a cut edge may leave a graph disconnected.

o Removal of an edge may increase the number of components in a graph by at most one.

o A cut edge 'e' must not be the part of any cycle in G.

o If a cut edge exists, then a cut vertex must also exist because at least one vertex of a cut edge is a cut vertex.

o If a cut vertex exists, then the existence of any cut edge is not necessary.

Example 1

In the above graph, edge (c, e) is a cut-edge. After removing this edge from the above graph the graph will

become a disconnected graph.

Example 2

41

In the above graph, edge (c, e) is a cut-edge. After removing this edge from the above graph the graph will

become a disconnected graph.

3. Cut Set

In a connected graph G, a cut set is a set S of edges with the following properties:

o The removal of all the edges in S disconnects G.

o The removal of some of edges (but not all) in S does not disconnect G.

Example 1

To disconnect the above graph G, we have to remove the three edges. i.e. bd, be and ce. We cannot

disconnect it by removing just two of three edges. Hence, {bd, be, ce} is a cut set.

After removing the cut set from the above graph, it would look like as follows:

4. Edge Connectivity

The edge connectivity of a connected graph G is the minimum number of edges whose removal makes G

disconnected. It is denoted by λ(G).

When λ(G) ≥ k, then graph G is said to be k-edge-connected.

Example

Let's see an example,

42

From the above graph, by removing two minimum edges, the connected graph becomes disconnected

graph. Hence, its edge connectivity is 2. Therefore the above graph is a 2-edge-connected graph.

Here are the following four ways to disconnect the graph by removing two edges:

5. Vertex Connectivity

The connectivity (or vertex connectivity) of a connected graph G is the minimum number of vertices whose

removal makes G disconnects or reduces to a trivial graph. It is denoted by K(G).

The graph is said to be k- connected or k-vertex connected when K(G) ≥ k. To remove a vertex we must also

remove the edges incident to it.

Example

Let's see an example:

The above graph G can be disconnected by removal of the single vertex either 'c' or 'd'. Hence, its vertex

connectivity is 1. Therefore, it is a 1-connected graph.

What is a spanning tree?

A spanning tree can be defined as the subgraph of an undirected connected graph. It includes all the vertices

along with the least possible number of edges. If any vertex is missed, it is not a spanning tree. A spanning

tree is a subset of the graph that does not have cycles, and it also cannot be disconnected.

A spanning tree consists of (n-1) edges, where 'n' is the number of vertices (or nodes). Edges of the spanning

tree may or may not have weights assigned to them. All the possible spanning trees created from the given

43

graph G would have the same number of vertices, but the number of edges in the spanning tree would be

equal to the number of vertices in the given graph minus 1.

A complete undirected graph can have nn-2 number of spanning trees where n is the number of vertices in

the graph. Suppose, if n = 5, the number of maximum possible spanning trees would be 55-2 = 125.

Applications of the spanning tree

Basically, a spanning tree is used to find a minimum path to connect all nodes of the graph. Some of the

common applications of the spanning tree are listed as follows -

o Cluster Analysis

o Civil network planning

o Computer network routing protocol

Now, let's understand the spanning tree with the help of an example.

Example of Spanning tree

Suppose the graph be -

As discussed above, a spanning tree contains the same number of vertices as the graph, the number of

vertices in the above graph is 5; therefore, the spanning tree will contain 5 vertices. The edges in the

spanning tree will be equal to the number of vertices in the graph minus 1. So, there will be 4 edges in the

spanning tree.

Some of the possible spanning trees that will be created from the above graph are given as follows -

44

Properties of spanning-tree

Some of the properties of the spanning tree are given as follows -

o There can be more than one spanning tree of a connected graph G.

o A spanning tree does not have any cycles or loop.

o A spanning tree is minimally connected, so removing one edge from the tree will make the graph disconnected.

o A spanning tree is maximally acyclic, so adding one edge to the tree will create a loop.

o There can be a maximum nn-2 number of spanning trees that can be created from a complete graph.

o A spanning tree has n-1 edges, where 'n' is the number of nodes.

o If the graph is a complete graph, then the spanning tree can be constructed by removing maximum (e-n+1) edges,

where 'e' is the number of edges and 'n' is the number of vertices.

So, a spanning tree is a subset of connected graph G, and there is no spanning tree of a disconnected graph.

Minimum Spanning tree

A minimum spanning tree can be defined as the spanning tree in which the sum of the weights of the edge

is minimum. The weight of the spanning tree is the sum of the weights given to the edges of the spanning

tree. In the real world, this weight can be considered as the distance, traffic load, congestion, or any random

value.

Example of minimum spanning tree

Let's understand the minimum spanning tree with the help of an example.

45

The sum of the edges of the above graph is 16. Now, some of the possible spanning trees created from the

above graph are -

So, the minimum spanning tree that is selected from the above spanning trees for the given weighted graph

is -

46

Applications of minimum spanning tree

The applications of the minimum spanning tree are given as follows -

o Minimum spanning tree can be used to design water-supply networks, telecommunication networks, and electrical

grids.

o It can be used to find paths in the map.

Algorithms for Minimum spanning tree

A minimum spanning tree can be found from a weighted graph by using the algorithms given below -

o Prim's Algorithm

o Kruskal's Algorithm

Let's see a brief description of both of the algorithms listed above.

Prim's algorithm - It is a greedy algorithm that starts with an empty spanning tree. It is used to find the

minimum spanning tree from the graph. This algorithm finds the subset of edges that includes every vertex

of the graph such that the sum of the weights of the edges can be minimized.

Kruskal's algorithm - This algorithm is also used to find the minimum spanning tree for a connected

weighted graph. Kruskal's algorithm also follows greedy approach, which finds an optimum solution at every

stage instead of focusing on a global optimum.

Linear Search Algorithm

Searching is the process of finding some particular element in the list. If the element is present in the list,

then the process is called successful, and the process returns the location of that element; otherwise, the

search is called unsuccessful.

Two popular search methods are Linear Search and Binary Search. So, here we will discuss the popular

searching technique, i.e., Linear Search Algorithm.

Linear search is also called as sequential search algorithm. It is the simplest searching algorithm. In Linear

search, we simply traverse the list completely and match each element of the list with the item whose location

is to be found. If the match is found, then the location of the item is returned; otherwise, the algorithm

returns NULL.

It is widely used to search an element from the unordered list, i.e., the list in which items are not sorted. The

worst-case time complexity of linear search is O(n).

The steps used in the implementation of Linear Search are listed as follows -

o First, we have to traverse the array elements using a for loop.

o In each iteration of for loop, compare the search element with the current array element, and -

47

o If the element matches, then return the index of the corresponding array element.

o If the element does not match, then move to the next element.

o If there is no match or the search element is not present in the given array, return -1.

Now, let's see the algorithm of linear search.

Algorithm

Linear_Search(a, n, val) // 'a' is the given array, 'n' is the size of given array, 'val' is the value to search

Step 1: set pos = -1

Step 2: set i = 1

Step 3: repeat step 4 while i <= n

Step 4: if a[i] == val

 Set pos = i

 print pos

 go to step 6

 [end of if]

 Set i = i + 1

 [end of loop]

Step 5: if pos = -1

 print "value is not present in the array "

 [end of if]

Step 6: exit

Working of Linear search:

Now, let's see the working of the linear search Algorithm.

To understand the working of linear search algorithm, let's take an unsorted array. It will be easy to

understand the working of linear search with an example.

Let the elements of array are -

Let the element to be searched is K = 41

Now, start from the first element and compare K with each element of the array.

48

The value of K, i.e., 41, is not matched with the first element of the array. So, move to the next element. And

follow the same process until the respective element is found.

Now, the element to be searched is found. So algorithm will return the index of the element matched.

Linear Search complexity

Now, let's see the time complexity of linear search in the best case, average case, and worst case. We will

also see the space complexity of linear search.

49

1. Time Complexity

Case Time Complexity

Best Case O(1)

Average Case O(n)

Worst Case O(n)

o Best Case Complexity - In Linear search, best case occurs when the element we are finding is at the first position

of the array. The best-case time complexity of linear search is O(1).

o Average Case Complexity - The average case time complexity of linear search is O(n).

o Worst Case Complexity - In Linear search, the worst case occurs when the element we are looking is present at

the end of the array. The worst-case in linear search could be when the target element is not present in the given

array, and we have to traverse the entire array. The worst-case time complexity of linear search is O(n).

The time complexity of linear search is O(n) because every element in the array is compared only

once.

2. Space Complexity

Space Complexity O(1)

o The space complexity of linear search is O(1).

Implementation of Linear Search

Now, let's see the programs of linear search in different programming languages.

Program: Write a program to implement linear search in C language.

1. #include <stdio.h>

2. int linearSearch(int a[], int n, int val) {

3. // Going through array sequencially

4. for (int i = 0; i < n; i++)

5. {

6. if (a[i] == val)

7. return i+1;

8. }

9. return -1;

10. }

11. int main() {

50

12. int a[] = {70, 40, 30, 11, 57, 41, 25, 14, 52}; // given array

13. int val = 41; // value to be searched

14. int n = sizeof(a) / sizeof(a[0]); // size of array

15. int res = linearSearch(a, n, val); // Store result

16. printf("The elements of the array are - ");

17. for (int i = 0; i < n; i++)

18. printf("%d ", a[i]);

19. printf("\nElement to be searched is - %d", val);

20. if (res == -1)

21. printf("\nElement is not present in the array");

22. else

23. printf("\nElement is present at %d position of array", res);

24. return 0;

25. }

Output

Binary Search Algorithm:

Linear Search and Binary Search are the two popular searching techniques. Here we will discuss the

Binary Search Algorithm.

Binary search is the search technique that works efficiently on sorted lists. Hence, to search an

element into some list using the binary search technique, we must ensure that the list is sorted.

Binary search follows the divide and conquer approach in which the list is divided into two halves,

and the item is compared with the middle element of the list. If the match is found then, the location

of the middle element is returned. Otherwise, we search into either of the halves depending upon

the result produced through the match.

NOTE: Binary search can be implemented on sorted array elements. If the list elements are not
arranged in a sorted manner, we have first to sort them.

Now, let's see the algorithm of Binary Search.

Algorithm
1. Binary_Search(a, lower_bound, upper_bound, val) // 'a' is the given array, 'lower_bound' is the index of the fi

rst array element, 'upper_bound' is the index of the last array element, 'val' is the value to search

2. Step 1: set beg = lower_bound, end = upper_bound, pos = - 1

3. Step 2: repeat steps 3 and 4 while beg <=end

51

4. Step 3: set mid = (beg + end)/2

5. Step 4: if a[mid] = val

6. set pos = mid

7. print pos

8. go to step 6

9. else if a[mid] > val

10. set end = mid - 1

11. else

12. set beg = mid + 1

13. [end of if]

14. [end of loop]

15. Step 5: if pos = -1

16. print "value is not present in the array"

17. [end of if]

18. Step 6: exit

Working of Binary search

Now, let's see the working of the Binary Search Algorithm.

To understand the working of the Binary search algorithm, let's take a sorted array. It will be easy to

understand the working of Binary search with an example.

Let the elements of array are -

Let the element to search is, K = 56

We have to use the below formula to calculate the mid of the array -

1. mid = (beg + end)/2

So, in the given array -

beg = 0

end = 8

mid = (0 + 8)/2 = 4. So, 4 is the mid of the array.

52

Now, the element to search is found. So algorithm will return the index of the element matched.

Binary Search complexity

Now, let's see the time complexity of Binary search in the best case, average case, and worst case. We will

also see the space complexity of Binary search.

1. Time Complexity

Case Time Complexity

Best Case O(1)

Average Case O(logn)

Worst Case O(logn)

53

o Best Case Complexity - In Binary search, best case occurs when the element to search is found in first comparison,

i.e., when the first middle element itself is the element to be searched. The best-case time complexity of Binary

search is O(1).

o Average Case Complexity - The average case time complexity of Binary search is O(logn).

o Worst Case Complexity - In Binary search, the worst case occurs, when we have to keep reducing the search

space till it has only one element. The worst-case time complexity of Binary search is O(logn).

2. Space Complexity

Space Complexity O(1)

o The space complexity of binary search is O(1).

Implementation of Binary Search:

Now, let's see the programs of Binary search in different programming languages.

Program: Write a program to implement Binary search in C language.

1. #include <stdio.h>

2. int binarySearch(int a[], int beg, int end, int val)

3. {

4. int mid;

5. if(end >= beg)

6. { mid = (beg + end)/2;

7. /* if the item to be searched is present at middle */

8. if(a[mid] == val)

9. {

10. return mid+1;

11. }

12. /* if the item to be searched is smaller than middle, then it can only be in left subarray */

13. else if(a[mid] < val)

14. {

15. return binarySearch(a, mid+1, end, val);

16. }

17. /* if the item to be searched is greater than middle, then it can only be in right subarray */

18. else

19. {

20. return binarySearch(a, beg, mid-1, val);

21. }

22. }

54

23. return -1;

24. }

25. int main() {

26. int a[] = {11, 14, 25, 30, 40, 41, 52, 57, 70}; // given array

27. int val = 40; // value to be searched

28. int n = sizeof(a) / sizeof(a[0]); // size of array

29. int res = binarySearch(a, 0, n-1, val); // Store result

30. printf("The elements of the array are - ");

31. for (int i = 0; i < n; i++)

32. printf("%d ", a[i]);

33. printf("\nElement to be searched is - %d", val);

34. if (res == -1)

35. printf("\nElement is not present in the array");

36. else

37. printf("\nElement is present at %d position of array", res);

38. return 0;

39. }

Output

 Bubble sort Algorithm

Bubble sort works on the repeatedly swapping of adjacent elements until they are not in the intended order.

It is called bubble sort because the movement of array elements is just like the movement of air bubbles in

the water. Bubbles in water rise up to the surface; similarly, the array elements in bubble sort move to the

end in each iteration.

Although it is simple to use, it is primarily used as an educational tool because the performance of bubble

sort is poor in the real world. It is not suitable for large data sets. The average and worst-case complexity of

Bubble sort is O(n2), where n is a number of items.

Bubble short is majorly used where -

o complexity does not matter

o simple and shortcode is preferred

Algorithm

In the algorithm given below, suppose arr is an array of n elements. The assumed swap function in the

algorithm will swap the values of given array elements.

55

1. begin BubbleSort(arr)

2. for all array elements

3. if arr[i] > arr[i+1]

4. swap(arr[i], arr[i+1])

5. end if

6. end for

7. return arr

8. end BubbleSort

Working of Bubble sort Algorithm

Now, let's see the working of Bubble sort Algorithm.

To understand the working of bubble sort algorithm, let's take an unsorted array. We are taking a short and

accurate array, as we know the complexity of bubble sort is O(n2).

Let the elements of array are -

First Pass

Sorting will start from the initial two elements. Let compare them to check which is greater.

Here, 32 is greater than 13 (32 > 13), so it is already sorted. Now, compare 32 with 26.

Here, 26 is smaller than 36. So, swapping is required. After swapping new array will look like -

Now, compare 32 and 35.

Here, 35 is greater than 32. So, there is no swapping required as they are already sorted.

56

Now, the comparison will be in between 35 and 10.

Here, 10 is smaller than 35 that are not sorted. So, swapping is required. Now, we reach at the end of the

array. After first pass, the array will be -

Now, move to the second iteration.

Second Pass

The same process will be followed for second iteration.

Here, 10 is smaller than 32. So, swapping is required. After swapping, the array will be -

Now, move to the third iteration.

Third Pass

The same process will be followed for third iteration.

Here, 10 is smaller than 26. So, swapping is required. After swapping, the array will be -

57

Now, move to the fourth iteration.

Fourth pass

Similarly, after the fourth iteration, the array will be -

Hence, there is no swapping required, so the array is completely sorted.

Bubble sort complexity

Now, let's see the time complexity of bubble sort in the best case, average case, and worst case. We will also

see the space complexity of bubble sort.

1. Time Complexity

Case Time Complexity

Best Case O(n)

Average Case O(n2)

Worst Case O(n2)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already sorted. The best-

case time complexity of bubble sort is O(n).

o Average Case Complexity - It occurs when the array elements are in jumbled order that is not properly

ascending and not properly descending. The average case time complexity of bubble sort is O(n2).

o Worst Case Complexity - It occurs when the array elements are required to be sorted in reverse order. That

means suppose you have to sort the array elements in ascending order, but its elements are in descending

order. The worst-case time complexity of bubble sort is O(n2).

58

2. Space Complexity

Space Complexity O(1)

Stable YES

o The space complexity of bubble sort is O(1). It is because, in bubble sort, an extra variable is required for

swapping.

o The space complexity of optimized bubble sort is O(2). It is because two extra variables are required in

optimized bubble sort.

Now, let's discuss the optimized bubble sort algorithm.

Optimized Bubble sort Algorithm:

In the bubble sort algorithm, comparisons are made even when the array is already sorted. Because

of that, the execution time increases.

To solve it, we can use an extra variable swapped. It is set to true if swapping requires; otherwise,

it is set to false.

It will be helpful, as suppose after an iteration, if there is no swapping required, the value of

variable swapped will be false. It means that the elements are already sorted, and no further

iterations are required.

This method will reduce the execution time and also optimizes the bubble sort.

Algorithm for optimized bubble sort
The basic bubble sort algorithm can be explained as follows:

1. bubbleSort(array)

2. for i <- 1 to indexOfLastUnsortedElement-1

3. if leftElement > rightElement

4. swap leftElement and rightElement

5. end bubbleSort

59

Implementation of Bubble sort

Now, let's see the programs of Bubble sort in different programming languages.

Program: Write a program to implement bubble sort in C language.

1. #include<stdio.h>

2. void print(int a[], int n) //function to print array elements

3. {

4. int i;

5. for(i = 0; i < n; i++)

6. {

7. printf("%d ",a[i]);

8. }

9. }

10. void bubble(int a[], int n) // function to implement bubble sort

11. {

12. int i, j, temp;

13. for(i = 0; i < n; i++)

14. {

15. for(j = i+1; j < n; j++)

16. {

17. if(a[j] < a[i])

18. {

19. temp = a[i];

20. a[i] = a[j];

21. a[j] = temp;

22. }

23. }

24. }

25. }

26. void main ()

27. {

28. int i, j,temp;

29. int a[5] = { 10, 35, 32, 13, 26};

30. int n = sizeof(a)/sizeof(a[0]);

31. printf("Before sorting array elements are - \n");

32. print(a, n);

60

33. bubble(a, n);

34. printf("\nAfter sorting array elements are - \n");

35. print(a, n);

36. }

Output

Selection Sort Algorithm

In selection sort, the smallest value among the unsorted elements of the array is selected in every

pass and inserted to its appropriate position into the array. It is also the simplest algorithm. It is an

in-place comparison sorting algorithm. In this algorithm, the array is divided into two parts, first is

sorted part, and another one is the unsorted part. Initially, the sorted part of the array is empty, and

unsorted part is the given array. Sorted part is placed at the left, while the unsorted part is placed

at the right.

In selection sort, the first smallest element is selected from the unsorted array and placed at the first

position. After that second smallest element is selected and placed in the second position. The

process continues until the array is entirely sorted.

The average and worst-case complexity of selection sort is O(n2), where n is the number of items.

Due to this, it is not suitable for large data sets.

Selection sort is generally used when -

o A small array is to be sorted

o Swapping cost doesn't matter

o It is compulsory to check all elements

Now, let's see the algorithm of selection sort.

Algorithm
1. SELECTION SORT(arr, n)

2.

3. Step 1: Repeat Steps 2 and 3 for i = 0 to n-1

4. Step 2: CALL SMALLEST(arr, i, n, pos)

5. Step 3: SWAP arr[i] with arr[pos]

6. [END OF LOOP]

7. Step 4: EXIT

8.

61

9. SMALLEST (arr, i, n, pos)

10. Step 1: [INITIALIZE] SET SMALL = arr[i]

11. Step 2: [INITIALIZE] SET pos = i

12. Step 3: Repeat for j = i+1 to n

13. if (SMALL > arr[j])

14. SET SMALL = arr[j]

15. SET pos = j

16. [END OF if]

17. [END OF LOOP]

18. Step 4: RETURN pos

Working of Selection sort Algorithm

Now, let's see the working of the Selection sort Algorithm.

To understand the working of the Selection sort algorithm, let's take an unsorted array. It will be easier to

understand the Selection sort via an example.

Let the elements of array are -

Now, for the first position in the sorted array, the entire array is to be scanned sequentially.

At present, 12 is stored at the first position, after searching the entire array, it is found that 8 is the smallest

value.

So, swap 12 with 8. After the first iteration, 8 will appear at the first position in the sorted array.

For the second position, where 29 is stored presently, we again sequentially scan the rest of the items of

unsorted array. After scanning, we find that 12 is the second lowest element in the array that should be

appeared at second position.

Now, swap 29 with 12. After the second iteration, 12 will appear at the second position in the sorted array.

So, after two iterations, the two smallest values are placed at the beginning in a sorted way.

62

The same process is applied to the rest of the array elements. Now, we are showing a pictorial

representation of the entire sorting process.

Now, the array is completely sorted.

Selection sort complexity

Now, let's see the time complexity of selection sort in best case, average case, and in worst case. We will

also see the space complexity of the selection sort.

1. Time Complexity
Case Time Complexity

Best Case O(n2)

Average Case O(n2)

Worst Case O(n2)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already sorted. The best-case

time complexity of selection sort is O(n2).

63

o Average Case Complexity - It occurs when the array elements are in jumbled order that is not properly

ascending and not properly descending. The average case time complexity of selection sort is O(n2).

o Worst Case Complexity - It occurs when the array elements are required to be sorted in reverse order. That

means suppose you have to sort the array elements in ascending order, but its elements are in descending

order. The worst-case time complexity of selection sort is O(n2).

2. Space Complexity

Space Complexity O(1)

Stable YES

o The space complexity of selection sort is O(1). It is because, in selection sort, an extra variable is

required for swapping.

Implementation of selection sort

Now, let's see the programs of selection sort in different programming languages.

Program: Write a program to implement selection sort in C language.

1. #include <stdio.h>

2.

3. void selection(int arr[], int n)

4. {

5. int i, j, small;

6.

7. for (i = 0; i < n-1; i++) // One by one move boundary of unsorted subarray

8. {

9. small = i; //minimum element in unsorted array

10.

11. for (j = i+1; j < n; j++)

12. if (arr[j] < arr[small])

13. small = j;

14. // Swap the minimum element with the first element

15. int temp = arr[small];

16. arr[small] = arr[i];

17. arr[i] = temp;

18. }

19. }

20.

21. void printArr(int a[], int n) /* function to print the array */

64

22. {

23. int i;

24. for (i = 0; i < n; i++)

25. printf("%d ", a[i]);

26. }

27.

28. int main()

29. {

30. int a[] = { 12, 31, 25, 8, 32, 17 };

31. int n = sizeof(a) / sizeof(a[0]);

32. printf("Before sorting array elements are - \n");

33. printArr(a, n);

34. selection(a, n);

35. printf("\nAfter sorting array elements are - \n");

36. printArr(a, n);

37. return 0;

38. }

Output:

After the execution of above code, the output will be -

Insertion Sort Algorithm

Insertion sort works similar to the sorting of playing cards in hands. It is assumed that the first card is

already sorted in the card game, and then we select an unsorted card. If the selected unsorted card is

greater than the first card, it will be placed at the right side; otherwise, it will be placed at the left side.

Similarly, all unsorted cards are taken and put in their exact place.

The same approach is applied in insertion sort. The idea behind the insertion sort is that first take one

element, iterate it through the sorted array. Although it is simple to use, it is not appropriate for large data

sets as the time complexity of insertion sort in the average case and worst case is O(n2), where n is the

number of items. Insertion sort is less efficient than the other sorting algorithms like heap sort, quick sort,

merge sort, etc.

Insertion sort has various advantages such as -HTML Tutorial

o Simple implementation

o Efficient for small data sets

o Adaptive, i.e., it is appropriate for data sets that are already substantially sorted.

65

Now, let's see the algorithm of insertion sort.

Algorithm

The simple steps of achieving the insertion sort are listed as follows -

Step 1 - If the element is the first element, assume that it is already sorted. Return 1.

Step2 - Pick the next element, and store it separately in a key.

Step3 - Now, compare the key with all elements in the sorted array.

Step 4 - If the element in the sorted array is smaller than the current element, then move to the

next element. Else, shift greater elements in the array towards the right.

Step 5 - Insert the value.

Step 6 - Repeat until the array is sorted.

Working of Insertion sort Algorithm

Now, let's see the working of the insertion sort Algorithm.

To understand the working of the insertion sort algorithm, let's take an unsorted array. It will be

easier to understand the insertion sort via an example.

Let the elements of array are -

Initially, the first two elements are compared in insertion sort.

Here, 31 is greater than 12. That means both elements are already in ascending order. So, for now,

12 is stored in a sorted sub-array.

Now, move to the next two elements and compare them.

66

Here, 25 is smaller than 31. So, 31 is not at correct position. Now, swap 31 with 25. Along with

swapping, insertion sort will also check it with all elements in the sorted array.

For now, the sorted array has only one element, i.e. 12. So, 25 is greater than 12. Hence, the sorted

array remains sorted after swapping.

Now, two elements in the sorted array are 12 and 25. Move forward to the next elements that are

31 and 8.

Both 31 and 8 are not sorted. So, swap them.

After swapping, elements 25 and 8 are unsorted.

So, swap them.

Now, elements 12 and 8 are unsorted.

So, swap them too.

67

Now, the sorted array has three items that are 8, 12 and 25. Move to the next items that are 31 and

32.

Hence, they are already sorted. Now, the sorted array includes 8, 12, 25 and 31.

Move to the next elements that are 32 and 17.

Pause

Unmute

17 is smaller than 32. So, swap them.

Swapping makes 31 and 17 unsorted. So, swap them too.

Now, swapping makes 25 and 17 unsorted. So, perform swapping again.

Now, the array is completely sorted.

Insertion sort complexity

Now, let's see the time complexity of insertion sort in best case, average case, and in worst case. We

will also see the space complexity of insertion sort.

68

1. Time Complexity
Case Time Complexity

Best Case O(n)

Average Case O(n2)

Worst Case O(n2)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already sorted.

The best-case time complexity of insertion sort is O(n).

o Average Case Complexity - It occurs when the array elements are in jumbled order that is not

properly ascending and not properly descending. The average case time complexity of insertion sort

is O(n2).

o Worst Case Complexity - It occurs when the array elements are required to be sorted in reverse

order. That means suppose you have to sort the array elements in ascending order, but its elements

are in descending order. The worst-case time complexity of insertion sort is O(n2).

2. Space Complexity

Space Complexity O(1)

Stable YES

o The space complexity of insertion sort is O(1). It is because, in insertion sort, an extra variable is

required for swapping.

Implementation of insertion sort

Now, let's see the programs of insertion sort in different programming languages.

Program: Write a program to implement insertion sort in C language.

1. #include <stdio.h>

2.

3. void insert(int a[], int n) /* function to sort an aay with insertion sort */

4. {

5. int i, j, temp;

6. for (i = 1; i < n; i++) {

7. temp = a[i];

8. j = i - 1;

9.

10. while(j>=0 && temp <= a[j]) /* Move the elements greater than temp to one position ahead from th

eir current position*/

69

11. {

12. a[j+1] = a[j];

13. j = j-1;

14. }

15. a[j+1] = temp;

16. }

17. }

18.

19. void printArr(int a[], int n) /* function to print the array */

20. {

21. int i;

22. for (i = 0; i < n; i++)

23. printf("%d ", a[i]);

24. }

25.

26. int main()

27. {

28. int a[] = { 12, 31, 25, 8, 32, 17 };

29. int n = sizeof(a) / sizeof(a[0]);

30. printf("Before sorting array elements are - \n");

31. printArr(a, n);

32. insert(a, n);

33. printf("\nAfter sorting array elements are - \n");

34. printArr(a, n);

35.

36. return 0;

37. }

Output:

Program: Write a program to implement insertion sort in python.

1. def insertionSort(a): # Function to implement insertion sort

2. for i in range(1, len(a)):

3. temp = a[i]

70

4. # Move the elements greater than temp to one position

5. #ahead from their current position

6. j = i-1

7. while j >= 0 and temp < a[j] :

8. a[j + 1] = a[j]

9. j = j-1

10. a[j + 1] = temp

11.

12. def printArr(a): # function to print the array

13.

14. for i in range(len(a)):

15. print (a[i], end = " ")

16.

17. a = [70, 15, 2, 51, 60]

18. print("Before sorting array elements are - ")

19. printArr(a)

20. insertionSort(a)

21. print("\nAfter sorting array elements are - ")

22. printArr(a)

Output:

	d508fd1c9136e0e51d87341a61cf6be5e23d3bb0d1fe22bbc16ca00038ef756a.pdf
	d4e6992475e0ea8f0504d985e9aaea26e3d95df16b01fe393fb07d475ee5e379.pdf
	8b9ff51939514d468dae33b25b6f706432641a6c2f571413dfe17cb08ad41a4f.pdf
	UNIT-I
	What is a Computer?
	Definition : Computer is an advanced electronic device that takes raw data as an input from the user and processes it under the control of a set of instructions (called program), produces a result (output), and saves it for future use
	Functionalities of a Computer:
	Block Diagram of a computer:
	Input Unit:
	CPU (Central Processing Unit):
	Arithmetic Logic Unit (ALU):
	Control Unit:
	Functions of Control Unit

	Memory Unit:
	Output Unit:

	Structure of C Program
	Basic Structure of the C Program:
	Example: Write a program to calculate our age.
	Output

	Different sections of the above code
	Documentation
	Link
	Definition
	Global Declaration
	Main() Function
	Subprograms

	Conclusion

	Elements of C Programming Language
	Character Set in C Language
	32 keywords in C language
	Every data type in C language has Storage Size and Value Ranges.
	There are two major categories of a constant:
	Constants are classified into two types they are:
	1. Primary Constant
	2. Secondary Constant
	Algorithm 1: Add two numbers entered by the user
	Algorithm 2: Find the largest number among three numbers
	Algorithm 3: Find Roots of a Quadratic Equation ax2 + bx + c = 0
	Algorithm 4: Find the factorial of a number
	Algorithm 5: Check whether a number is prime or not

	Flowchart Symbols:
	Guidelines for Developing Flowcharts:

	C – Variables
	Variable Definition in C:
	Variable Declaration in C:
	Example:
	Integer Types:
	Character Types
	Floating-Point Types
	Double Types:
	Void Data types:

	Arithmetic Operators:
	Example 1: Arithmetic Operators

	Increment and Decrement Operators:
	Example 2: Increment and Decrement Operators

	Assignment Operators:
	Example 3: Assignment Operators
	Relational Operators
	Example 4: Relational Operators
	Logical Operators
	Example 5: Logical Operators
	Bitwise Operators:
	Special Operators:
	Comma Operator:
	The sizeof operator:
	Example 6: sizeof Operator

	2.The If… Else Statement:
	3.The else If Ladder:

	4.nested if statement:
	5.The Switch Statements:

	Looping Statements:
	Syntax:

	do...while loop in C:
	for loop:
	A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times.
	Loop Control Statements

	break statement:
	Syntax
	Flow Diagram
	Example

	continue statement:
	Syntax
	Flow Diagram
	Example

	goto statement:
	Syntax
	Flow Diagram

	C Array
	Properties of Array:
	Advantage of C Array:
	Disadvantage of C Array:
	Types of Arrays:
	Arrays can be classified into types:
	1.One dimensional array
	2.Two dimensional array
	One dimensional array:
	The one-dimensional array can be defined as a sequential collection of elements. The 1D array is also called as linear array.
	Declaration of C Array
	Initialization of Array
	Declaration with Initialization

	Two Dimensional Array:
	Declaration of two dimensional Array :
	Two-dimensional array example in C

	d4e6992475e0ea8f0504d985e9aaea26e3d95df16b01fe393fb07d475ee5e379.pdf
	5a52f3bce57e882a2c7a02fc21bc1bb474ef83ff11e6e2274c6c117f179657fb.pdf
	Functions
	Advantage of functions in C
	Function Aspects
	There are three aspects of a C function.
	Types of Functions
	Return Value
	Different aspects of function calling/Types of user defined functions:
	Example for Function without argument and return value
	Example for Function without argument and with return value
	Example for Function with argument and without return value
	Example for Function with argument and with return value

	Library Functions

	Call by value and Call by reference in C
	Call by value in C:
	Output
	Call by Value Example: Swapping the values of the two variables
	Output (1)

	Call by reference in C
	Output
	Call by reference Example: Swapping the values of the two variables
	Output (1)

	Difference between call by value and call by reference in c

	Recursion in C
	Output
	Example of recursion in C
	Output

	Memory allocation of Recursive method:

	Storage Classes in C
	Automatic
	Example 1
	Example 2

	Static
	Example 1
	Example 2

	Register
	Example 1
	Example 2

	External
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Pointers:
	Declaring a pointer:
	Pointer Example

	Advantage of pointer
	Usage of pointer
	Address Of (&) Operator:
	Memory Allocation in C Programs

	Dynamic memory allocation in C:
	malloc() function in C:
	calloc() function in C:
	realloc() function in C:
	free() function in C:
	Reading complex pointers:

	C Function Pointer:
	Declaration of a function pointer:
	Note: Declaration of a function is necessary before assigning the address of a function to the function pointer.

	Calling a function through a function pointer:
	Structures
	Defining a Structure:
	Accessing Structure Members:
	Defining a Union:
	Accessing Union Members:

	C Strings
	Difference between char array and string literal:
	String Example in C:
	Traversing String:
	Using the length of string:
	Using the null character:

	Accepting string as the input:
	gets() function:
	Reading string using gets()
	Output

	puts() function:
	Output:

	String Functions:
	String Length: strlen() function:
	Copy String: strcpy():
	String Concatenation: strcat():
	Compare String: strcmp():
	Reverse String: strrev():
	String Lowercase: strlwr():
	String Uppercase: strupr():
	String strstr():
	String strstr() parameters:
	String strstr() example:

	d4e6992475e0ea8f0504d985e9aaea26e3d95df16b01fe393fb07d475ee5e379.pdf

	9afe3baaaffa22ffb07f3cc4f8e3ed2e0b7cf630757b3b168ad2844fa7c86eb2.pdf
	UNIT-III
	What are Data Structures?
	Basic Terminology
	Need for Data Structures
	Advantages of Data Structures
	Types of Data Structures
	Linear Data Structures

	What is a Stack?
	Some key points related to stack
	Working of Stack
	Standard Stack Operations
	PUSH operation
	Applications of Stack

	Array implementation of Stack
	Adding an element onto the stack (push operation):
	implementation of push algorithm in C language
	Deletion of an element from a stack (Pop operation)
	Implementation of POP algorithm using C language
	Visiting each element of the stack (Peek operation)
	Implementation of Peek algorithm in C language

	Arithmetic Expression Evaluation:
	Evaluation of postfix expression
	Algorithm

	Output:

	Convert Infix to Postfix Expression
	Algorithm to convert Infix To Postfix
	Advantage of Postfix Expression over Infix Expression
	C Program to Convert Infix to Postfix using Stack
	Output Test Case 1:
	Output Test Case 2:
	Output Test Case 3:

	Queue
	Applications of Queue
	Types of Queue
	Simple Queue or Linear Queue
	Circular Queue
	Priority Queue
	Deque (or, Double Ended Queue)

	Operations performed on queue:
	Basic Operations
	peek()
	isfull()
	isempty()

	Enqueue Operation
	Dequeue Operation

	Array representation of Queue:
	Algorithm to insert any element in a queue(Dequeue)
	Algorithm
	C implementation:
	Algorithm to delete an element from the queue(Dequeue):
	Algorithm (1)
	C implementation
	Program to implement queue using array:

	d508fd1c9136e0e51d87341a61cf6be5e23d3bb0d1fe22bbc16ca00038ef756a.pdf
	5868bb52aae937597ac1ac4e66fb4147830ba192eee981d9fc7222c534772c49.pdf
	UNIT-IV
	Linked List
	Uses of Linked List
	Why use linked list over array?
	Singly linked list or One way chain
	Complexity
	Operations on Singly Linked List
	Node Creation
	Insertion:
	Deletion and Traversing:

	Inserting Elements to a Linked List
	Insert a Node at the beginning of a Linked list:
	Algorithm: InsertAtBeginning

	Insert a Node at the end of a Linked list:
	Algorithm: InsertAtEnd

	Insert a Node after a given Node in a Linked list:
	Algorithm: InsertAfterAnElement

	Deleting Elements from a Linked List
	Delete a Node from the beginning of a Linked list:
	Algorithm: DeleteFromBeginning

	Delete last Node from a Linked list:
	Algorithm: DeleteFromEnd

	Delete the Node after a given Node in a Linked list:
	Algorithm: DeleteAfterANode
	Algorithm: Search

	Linked List in C: Menu Driven Program
	Traverse a Linked List
	Algorithm: Traverse

	Linked list implementation of stack
	Adding a node to the stack (Push operation):

	Adding a node to the stack is referred to as push operation. Pushing an element to a stack in linked list implementation is different from that of an array implementation. In order to push an element onto the stack, the following steps are involved.
	C implementation :
	Deleting a node from the stack (POP operation)
	C implementation

	Display the nodes (Traversing)
	C Implementation
	Menu Driven program in C implementing all the stack operations using linked list :

	Linked List implementation of Queue
	Algorithm
	C Function
	Deletion
	Algorithm (1)
	C Function (1)
	Menu-Driven Program implementing all the operations on Linked Queue
	Algorithm (2)

	Doubly linked list
	Insertion in doubly linked list at beginning
	Algorithm :

	Insertion in doubly linked list at the end
	Algorithm

	Insertion in doubly linked list after Specified node
	Algorithm

	Deletion at beginning
	Algorithm

	Deletion in doubly linked list at the end
	Deletion in doubly linked list after the specified node
	Algorithm

	Searching for a specific node in Doubly Linked List
	Algorithm

	Traversing in doubly linked list
	Algorithm

	Circular Singly Linked List
	Operations on Circular Singly linked list:
	Insertion
	Deletion & Traversing

	Insertion into circular singly linked list at beginning
	Algorithm

	Insertion into circular singly linked list at the end
	Algorithm

	Deletion in circular singly linked list at beginning
	Scenario 1: (The list is Empty)
	Scenario 2: (The list contains single node)
	Scenario 3: (The list contains more than one node)
	Algorithm

	Deletion in Circular singly linked list at the end
	Scenario 1 (the list is empty)
	Scenario 2(the list contains single element)
	Scenario 3(the list contains more than one element)
	Algorithm

	Searching in circular singly linked list
	Algorithm

	Traversing in Circular Singly linked list
	Algorithm

	Circular Doubly Linked List
	Operations on circular doubly linked list :

	d508fd1c9136e0e51d87341a61cf6be5e23d3bb0d1fe22bbc16ca00038ef756a.pdf
	8669452f67f69c8270c05c09b2be36ca5227e88d3d3fd438c89e18c964f5b492.pdf
	UNIT-V
	Tree Data Structure
	Implementation of Tree
	Applications of trees
	Types of Tree data structure
	Balance Factor (k) = height (left(k)) - height (right(k))

	Binary Tree
	Properties of Binary Tree
	Types of Binary Tree
	Note: All the perfect binary trees are the complete binary trees as well as the full binary tree, but vice versa is not true, i.e., all complete binary trees and full binary trees are the perfect binary trees.

	Degenerate Binary Tree
	Binary Tree Implementation
	Inorder traversal:
	Preorder traversal
	Postorder traversal

	Graph
	Definition
	Directed and Undirected Graph
	Graph Terminology
	Path
	Closed Path
	Simple Path
	Cycle
	Connected Graph
	Complete Graph
	Weighted Graph
	Digraph
	Loop
	Adjacent Nodes
	Degree of the Node

	Graph representation
	Adjacency matrix for a directed graph
	Linked list representation
	Implementation of adjacency matrix representation of Graph
	Implementation of adjacency list representation of Graph

	Graph Traversals:
	Graph can be traversal by using two algorithms. They are:
	1. BFS algorithm
	2. DFS algorithm
	BFS algorithm
	Applications of BFS algorithm
	Algorithm
	Example of BFS algorithm
	Complexity of BFS algorithm
	Implementation of BFS algorithm

	DFS (Depth First Search) algorithm
	Applications of DFS algorithm
	Algorithm
	Complexity of Depth-first search algorithm
	Implementation of DFS algorithm

	Connected Components
	Example
	Example (1)
	1. Cut Vertex
	Note: Let G be a graph with n vertices:
	Example 1
	Example 2

	2. Cut Edge (Bridge)
	Note: Let G be a graph with n vertices:
	Example 1

	3. Cut Set
	Example 1

	4. Edge Connectivity
	Example

	5. Vertex Connectivity
	Example
	Applications of the spanning tree
	Example of Spanning tree

	Properties of spanning-tree
	Minimum Spanning tree
	Example of minimum spanning tree
	Applications of minimum spanning tree
	Algorithms for Minimum spanning tree

	Linear Search Algorithm
	Algorithm
	Working of Linear search:
	Linear Search complexity
	1. Time Complexity
	2. Space Complexity

	Implementation of Linear Search

	Binary Search Algorithm:
	Algorithm
	Working of Binary search
	Binary Search complexity
	1. Time Complexity
	2. Space Complexity

	Implementation of Binary Search:

	Bubble sort Algorithm
	Algorithm
	Working of Bubble sort Algorithm
	First Pass
	Second Pass
	Third Pass
	Fourth pass

	Bubble sort complexity
	1. Time Complexity
	2. Space Complexity

	Optimized Bubble sort Algorithm:
	Algorithm for optimized bubble sort

	Implementation of Bubble sort

	Selection Sort Algorithm
	Algorithm
	Working of Selection sort Algorithm
	Selection sort complexity
	1. Time Complexity
	2. Space Complexity

	Implementation of selection sort

	Insertion Sort Algorithm
	Algorithm
	Working of Insertion sort Algorithm
	Insertion sort complexity
	1. Time Complexity
	2. Space Complexity

	Implementation of insertion sort

