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Course Objectives: 

 To make the student understand how to resolve forces and moments in a given system 

 To demonstrate the student to determine the centroid and second moment of area 

 To impart procedure for drawing shear force and bending moment diagrams for beams. 

 To make the student able to analyze flexural stresses in beams due to different loads. 

 To enable the student to apply the concepts of strength of materials in engineering 

applications and design problems. 
Course Outcomes (CO): 

 Understand the basic concepts of forces, Draw Free body Diagrams for forces and 

determine the centroid and moment of inertia for different cross section areas 

 Understand concepts of stresses, strains, elastic moduli and strain energy and Evaluate 

relations between different moduli 

  Draw the shear force and bending moment diagrams for cantilevers, simply supported 

beams and Overhanging beams with different loads and understand the relationship 

between shear force and bending moments 

 Compute the flexural stresses for different cross sections and Design beam sections for 
flexure 

 Determine shear stresses for different shapes and analyze trusses 

UNIT-I: Introduction to Mechanics: 

Basic Concepts, system of Forces Coplanar Concurrent Forces -Components in Space Resultant - 

Moment of Forces and its Application - Couples and Resultant of Force Systems. Equilibrium of 

system of Forces: Free body diagrams, Equations of Equilibrium of Coplanar Systems and 

Spatial systems- 

Center of Gravity and moment of inertia: Introduction – Centroids of rectangular, circular, I, L 

and T sections - Centroids of built up sections. 

Area moment of Inertia: Introduction – Definition of Moment of Inertia of rectangular, circular, 

I, L and T sections - Radius of gyration. Moments of Inertia of Composite sections. 

UNIT - II :Simple Stresses and Strains: 

Types of stresses and strains – Hooke‘s law – Stress – strain diagram for mild steel – working 

stress – Factor of safety – lateral strain, Poisson‘s ratio and volumetric strain – Elastic moduli 

and the relationship between them – Bars of Varying section – Composite bars – Temperature 

stresses. Strain energy – Resilience – Gradual, Sudden, impact and shock loadings – simple 

applications. 

UNIT – III Shear Force and Bending Moment: 

Definition of beam – types of beams – Concept of Shear force and bending moment – S.F and 

B.M diagrams for cantilever, simply supported and over changing beams subjected to point 

loads, uniformly distributed load, uniformly varying loads and combination of these loads – 

point of contra flexure – Relation between S.F, B.M and rate of loading at section of a beam. 

UNIT - IV Flexural Stresses: 

Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/Y = E/R – 

Neutral axis – Determination of bending stresses – Section modulus of rectangular and circular 

sections (Solid and Hallow), I, T, Angle and Channel Sections – Design of simple beam sections. 



UNIT - V: Shear Stresses: 

Derivation of formula-Shear stress distribution across various beam sections like rectangular, 

circular, triangular, I, T and angle sections. Combined bending and shear. 

Analysis of trusses by Method of Joints & Sections. 

Textbooks: 

1. S. Timoshenko, D.H. Young and J.V. Rao, “Engineering Mechanics”, Tata McGraw- 

HillCompany. 

2. Sadhu Singh, “Strength of Materials”, 11th edition 2015, Khanna Publishers. 
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2. R. Subramanian, “Strength of Materials”, Oxford University Press. 
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York. 
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Mechanics 
 

It is defined as that branch of science, which describes and predicts the conditions of 

rest or motion of bodies under the action of forces. Engineering mechanics applies the 

principle of mechanics to design, taking into account the effects of forces. 

 

Statics 
 

Statics deal with the condition of equilibrium of bodies acted upon by forces. 

 

Rigid body 
 

A rigid body is defined as a definite quantity of matter, the parts of which are fixed in 

position relative to each other. Physical bodies are never absolutely but deform slightly 

under the action of loads. If the deformation is negligible as compared to its size, the 

body is termed as rigid. 
 
 

Force 
 

Force may be defined as any action that tends to change the state of rest or motion of a 

body to which it is applied. 

 

The three quantities required to completely define force are called its specification or 

characteristics. So the characteristics of a force are: 

1. Magnitude 

2. Point of application 

3. Direction of application 
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Concentrated force/point load 
 

 
Distributed force 

 
 

 

Line of action of force 
 

The direction of a force is the direction, along a straight line through its point of 

application in which the force tends to move a body when it is applied. This line is 

called line of action of force. 

 

Representation of force 
 

Graphically a force may be represented by the segment of a straight line. 
 

 

Composition of two forces 
 

The reduction of a given system of forces to the simplest system that will be its 

equivalent is called the problem of composition of forces. 

 

Parallelogram law 
 

If two forces represented by vectors AB and AC acting under an angle α are applied to 

a body at point A. Their action is equivalent to the action of one force, represented by 

vector AD, obtained as the diagonal of the parallelogram constructed on the vectors 

AB and AC directed as shown in the figure. 
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(P  Q)2 

P2  Q2  2PQ  Cos180∘  (P  Q)2 

  
 

 

 

Force AD is called the resultant of AB and AC and the forces are called its 

components. 
 

 
R 



Now applying triangle law 
 

P 

Sin
  

Q 

Sin
 

R 

Sin(   ) 
 

Special cases 
 

Case-I: If α = 0˚ 

R 


  P  Q 

 

P Q R 

 

R = P+Q 
 

Case- II: If α = 180˚ 

 
R  




  P  Q 

 

 

Q P R 

P2  Q2  2PQ  Cos 

P2  Q2  2PQ  Cos0∘ 

(P2  Q2  2PQ) 
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P2  Q2  2PQ  Cos90∘  P2  Q2 

Case-III: If α = 90˚ 

 
R   Q 

 

α = tan-1 (Q/P) 
 

 

P 

Resolution of a force 
 

The replacement of a single force by a several components which will be equivalent in 

action to the given force is called resolution of a force. 
 

 
Action and reaction 

 

Often bodies in equilibrium are constrained to investigate the conditions. 
 

w 

R 

  α 
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R 

Free body diagram 
 

Free body diagram is necessary to investigate the condition of equilibrium of a body or 

system. While drawing the free body diagram all the supports of the body are removed 

and replaced with the reaction forces acting on it. 

 
 

1. Draw the free body diagrams of the following figures. 

 

 

 
2. Draw the free body diagram of the body, the string CD and the ring. 
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Problem 1: 

3. Draw the free body diagram of the following figures. 
 

 

 

Equilibrium of colinear forces: 
 

Equllibrium law: Two forces can be in equilibrium only if they are equal in 

magnitude, opposite in direction and collinear in action. 
 

(tension) 

 

(compression) 
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Superposition and transmissibility 
 

Problem 1: A man of weight W = 712 N holds one end of a rope that passes over a 

pulley vertically above his head and to the other end of which is attached a weight Q = 

534 N. Find the force with which the man’s feet press against the floor. 
 

 
Problem 2: A boat is moved uniformly along a canal by two horses pulling with forces 

P = 890 N and Q = 1068 N acting under an angle α = 60˚. Determine the magnitude of 

the resultant pull on the boat and the angles β and ν. 
 

 

 
P = 890 N, α = 60˚ 

Q = 1068 N 

R  (P2  Q2  2PQ cos ) 



 1698.01N 

(8902 10682  2  890 1068 0.5) 

β 

α 
ν 
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Q 

sin 
 

P 

sin
 

R 

sin(   ) 

sin   
Q sin 

R 

 
1068sin 60∘ 

1698.01 

 33∘ 

 

sin  
P sin 

R 

 
890 sin 60∘ 

1698.01 

 27∘ 

Resolution of a force 
 

Replacement of a single force by several components which will be equivalent in 

action to the given force is called the problem of resolution of a force. 

 

By using parallelogram law, a single force R can be resolved into two components P 

and Q intersecting at a point on its line of action. 
 

 
Equilibrium of collinear forces: 

 

Equilibrium law: Two forces can be in equilibrium only if they are equal in magnitude, 

opposite in direction and collinear in action. 
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Law of superposition 
 

The action of a given system of forces on a rigid body will no way be changed if we 

add to or subtract from them another system of forces in equllibrium. 

 

Problem 3: Two spheres of weight P and Q rest inside a hollow cylinder which is 

resting on a horizontal force. Draw the free body diagram of both the spheres, together 

and separately. 
 

 

 

Problem 4: Draw the free body diagram of the figure shown below. 
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 
915 




 
610 




Problem 5: Determine the angles α and β shown in the figure. 
 

 

 

  tan1 
 762 



 

 39∘47 ' 

  tan1 
 762 



 

 51∘19' 
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Problem 6: Find the reactions R1 and R2. 
 

 

 
Problem 7: Two rollers of weight P and Q are supported by an inclined plane and 

vertical walls as shown in the figure. Draw the free body diagram of both the rollers 

separately. 
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Problem 8: Find θn and θt in the following figure. 
 

 
Problem 9: For the particular position shown in the figure, the connecting rod BA of 

an engine exert a force of P = 2225 N on the crank pin at A. Resolve this force into two 

rectangular components Ph and Pv horizontally and vertically respectively at A. 
 

 
Ph = 2081.4 N 

Pv = 786.5 N 

 
Equilibrium of concurrent forces in a plane 

 

 If a body known to be in equilibrium is acted upon by several concurrent, 

coplanar forces, then these forces or rather their free vectors, when 

geometrically added must form a closed polygon. 

 

 This system represents the condition of equilibrium for any system of 

concurrent forces in a plane. 

 

w 
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S 

Ra  w tan 

S  wsec




Lami’s theorem 

 

If three concurrent forces are acting on a body kept in an equllibrium, then each force 

is proportional to the sine of angle between the other two forces and the constant of 

proportionality is same. 

 

 

 

P 

sin 
 

Q 

sin 
 

R 

sin






W 
 

 
 

S 
 

Ra  
W 

sin 90 sin 180    sin 90   
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S = Psecα 

Problem: A ball of weight Q = 53.4N rest in a right angled trough as shown in figure. 

Determine the forces exerted on the sides of the trough at D and E if all the surfaces 

are perfectly smooth. 
 

W 
 

 

Problem: An electric light fixture of weight Q = 178 N is supported as shown in 

figure. Determine the tensile forces S1 and S2 in the wires BA and BC, if their angles 

of inclination are given. 
 

 

S1  
S2  

178 

sin135 sin150 sin 75 
 

 

 

 

S1 cos  P 
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Rb  W  S sin 

 W 
P 

cos
sin 

 W  P tan 


Problem: A right circular roller of weight W rests on a smooth horizontal plane and is 

held in position by an inclined bar AC. Find the tensions in the bar AC and vertical 

reaction Rb if there is also a horizontal force P is active. 

 

 
 

Theory of transmissiibility of a force: 
 

The point of application of a force may be transmitted along its line of action without 

changing the effect of force on any rigid body to which it may be applied. 

 

Problem: 
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 X  0 

S1 cos 30  20 sin 60  S2 sin 30 
3 

S  20 3 
 

S2 
 

2 
1 

S2 




2 2 
3 

S  10 

2 2 1 

S2  3S1  20 (1) 
 

Y  0 

S1 sin 30  S2 cos 30  Sd cos 60  20 

S1  S 
2 

2 

3 
 

20 
 20 

2 2 
S1  

3 
S  30 

 

2 2 2 

S1  3S2  60 (2) 
 

Substituting the value of S2 in Eq.2, we get 

 
S1  3  3S1  20 3   60 

S1  3S1  60  60 

4S1  0 

S1  0KN 

S2  20  34.64KN 

3 

3 

3 
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1
d 2 

1 

l 2 

 

l 2  d 2 

 
l 


Problem: A ball of weight W is suspended from a string of length l and is pulled by a 

horizontal force Q. The weight is displaced by a distance d from the vertical position 

as shown in Figure. Determine the angle α, forces Q and tension in the string S in the 

displaced position. 

 

 

 
 

W 
 

 

cos  
d

 
l 

  cos1 
 d 



 

sin2   cos2   1 
 

 sin  








(1 cos2  ) 

l 
 

Applying Lami’s theorem, 
 

S 
 

Q 
 

W 
   

sin 90 sin(90   ) sin(180   ) 
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1 
l 2  d 2 

l 2  d 2 

1 
l 2  d 2 

l 2  d 2 

W 

Q 
 

W 
  

sin(90   ) sin(180   ) 

W 
 d W cos  

l 


 Q  
   

 
sin 

l 

 Q  
Wd

 
 

 

 

S  
sin  




l 

 
Wl 

 

 

 

Problem: Two smooth circular cylinders each of weight W = 445 N and radius r = 152 

mm are connected at their centres by a string AB of length l = 406 mm and rest upon a 

horizontal plane, supporting above them a third cylinder of weight Q = 890 N and 

radius r = 152 mm. Find the forces in the string and the pressures produced on the floor 

at the point of contact. 
 

 

 

 
 

cos  
203

 
304 

   48.1∘ 

 
 

Rg Rf 

 
 

Rg 
 

Re  
Q

 

sin138.1 sin138.1 83.8 

 Rg  Re  597.86N 

 

 
 

Q 

W 
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Resolving horizontally 

 X  0 

S  Rf cos 48.1 

 597.86 cos 48.1 

 399.27N 

 
Resolving vertically 

Y  0 

Rd  W  Rf sin 48.1 

 445  597.86 sin 48.1 

 890N 
 

Re  890N 

S  399.27N 

 

 

Problem: Two identical rollers each of weight Q = 445 N are supported by an inclined 

plane and a vertical wall as shown in the figure. Assuming smooth surfaces, find the 

reactions induced at the points of support A, B and C. 

 

S 

 
 

 

Ra  
S 

 
445 

sin120 sin150 sin 90 
 

 Ra  385.38N 

 S  222.5N 
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Resolving vertically 

Y  0 

Rb cos 60  445  S sin 30 

 Rb 
3 
 445  

222.5 

2 2 

 Rb  642.302N 
 

Resolving horizontally 

 X  0 

Rc  R b sin 30  S cos 30 

 642.302 sin 30  222.5 cos 30 

 Rc  513.84N 
 

 

Problem: 

 

A weight Q is suspended from a small ring C supported by two cords AC and BC. The 

cord AC is fastened at A while cord BC passes over a frictionless pulley at B and 

carries a weight P. If P = Q and α = 50˚, find the value of β. 
 

 
 

Resolving horizontally 

 X  0 

S sin 50  Q sin 

Resolving vertically 

Y  0 

S cos 50  Q sin   Q 

 S cos 50  Q(1 cos  ) 

Putting the value of S from Eq. 1, we get 

 

 

(1) 

Rc 
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S cos 50  Q sin   Q 

 S cos 50  Q(1 cos  ) 

 Q
 sin 

sin 50 
cos 50  Q(1 cos  ) 

 cot 50  
1 cos 


sin 

 0.839 sin   1 cos 


Squaring both sides, 

0.703sin2   1 cos2   2 cos  

0.703(1 cos2  )  1 cos2   2 cos  

0.703  0.703cos2   1 cos2   2 cos 

 1.703cos2   2 cos   0.297  0 

 cos2  1.174 cos   0.297  0 

   63.13∘ 
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Method of moments 
 

Moment of a force with respect to a point: 
 
 

 

 
 Considering wrench subjected to two forces P and Q of equal magnitude. It is 

evident that force P will be more effective compared to Q, though they are of 

equal magnitude. 

 The effectiveness of the force as regards it is the tendency to produce rotation 

of a body about a fixed point is called the moment of the force with respect to 

that point. 

 Moment = Magnitude of the force × Perpendicular distance of the line of action 

of force. 

 Point O is called moment centre and the perpendicular distance (i.e. OD) is 

called moment arm. 

 Unit is N.m 

 

Theorem of Varignon: 

 

The moment of the resultant of two concurrent forces with respect to a centre in their 

plane is equal to the alzebric sum of the moments of the components with respect to 

some centre. 

 

Problem 1: 
 

A prismatic clear of AB of length l is hinged at A and supported at B. Neglecting 

friction, determine the reaction Rb produced at B owing to the weight Q of the bar. 

 

Taking moment about point A, 

R  l  Q cos. 
l
 

b 
2
 

 Rb  
Q 

cos 
2 
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Problem 2: 

 

A bar AB of weight Q and length 2l rests on a very small friction less roller at D and 

against a smooth vertical wall at A. Find the angle α that the bar must make with the 

horizontal in equilibrium. 

 

 

 
B 

 

 

 

 

 

 

 

 

 
 

Resolving vertically, 

Rd cos  Q 
 

Now taking moment about A, 

Rd .a 

cos
 Q.l cos  0 

 
Q.a  

cos2 
 Q.l cos  0 

 Q.a  Q.l cos3   0 

 cos3   
Q.a 

 
Q.l  

 

   cos1 
 

 

Problem 3: 
 

If the piston of the engine has a diameter of 101.6 mm and the gas pressure in the 

cylinder is 0.69 MPa. Calculate the turning moment M exerted on the crankshaft for 

the particular configuration. 

a 
3 

l 
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 
380 




l 

Area of cylinder 

A  
 

(0.1016)2  8.107 103 m2 
4 

 

Force exerted on connecting rod, 

 

F = Pressure × Area 

= 0.69×106 × 8.107×10-3 

= 5593.83 N 

 
 

Now   sin1 
 178  

 27.93∘ 
 



S cos  F 

 S 
F 

cos
 6331.29N 

 

Now moment entered on crankshaft, 
 

S cos  0.178  995.7N  1KN 

 

Problem 4: 
 

A rigid bar AB is supported in a vertical plane and carrying a load Q at its free end. 

Neglecting the weight of bar, find the magnitude of tensile force S in the horizontal 

string CD. 

 

Taking moment about A, 

 M A  0 

S.  cos  Q.l sin  
2 

 S  
Q.l sin 

l 
cos 

2 

 S  2Q. tan 



 



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Introduction, Definition and concept and of stress and strain. Hooke’s law, Stress-Strain 

diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars 

of circular and rectangular cross sections, Elongation due to self-weight. Saint Venant’s 

principle, Compound bars, Temperature stresses, Compound section subýected to temperature 

stresses, state of simple shear, Elastic constants and their relationship. 



 

 
1.1 Introduction 

In civil engineering structures, we frequently encounter structural elements such as tie members, 

cables, beams, columns and struts subjected to external actions called forces or loads. These 

elements have to be designed such that they have adequate strength, stiffness and stability. 

 
The strength of a structural component is its ability to withstand applied forces without failure 

and this depends upon the sectional dimensions and material characteristics. For instance a steel 

rod can resist an applied tensile force more than an aluminium rod with similar diameter. Larger 

the sectional dimensions or stronger is the material greater will be the force carrying capacity. 

 
Stiffness influences the deformation as a consequence of stretching, shortening, bending, sliding, 

buckling, twisting and warping due to applied forces as shown in the following figure. In a 

deformable body, the distance between two points changes due to the action of some kind of 

forces acting on it. 

A weight suspended by two 

cables causes stretching of the 

cables. Cables are in axial 

tension. 

 

 

 
 
 

Cantilever beam subjected to 

bending due to transverse loads 
results in shortening in the 

bottom half and stretching in 

the top half of the beam. 

Inclined members undergo 

shortening, and stretching will 

be induced in the horizontal 

member. Inclined members 

are in axial compression and 

horizontal member is in axial 

tension. 

 

 

 
 

 

 

 

 
Cantilever beam subjected to 

twisting and warping due to 

torsional moments. 

Bolt connecting the plates is subjected to 

sliding along the failure plane. Shearing 

forces are induced. 

 

 

 

 

 

 

 

 

 

 

Buckling of long compression members 

due to axial load. 



 

 
Such deformations also depend upon sectional dimensions, length and material characteristics. 

For instance a steel rod undergoes less of stretching than an aluminium rod with similar diameter 

and subjected to same tensile force. 

 
Stability refers to the ability to maintain its original configuration. This again depends upon 

sectional dimensions, length and material characteristics. A steel rod with a larger length will 

buckle under a compressive action, while the one with smaller length can remain stable even 

though the sectional dimensions and material characteristics of both the rods are same. 

 
The subject generally called Strength of Materials includes the study of the distribution of 

internal forces, the stability and deformation of various elements. It is founded both on the 

results of experiments and the application of the principles of mechanics and mathematics. The 

results obtained in the subject of strength of materials form an important part of the basis of 

scientific and engineering designs of different structural elements. Hence this is treated as subject 

of fundamental importance in design engineering. The study of this subject in the context of 

civil engineering refers to various methods of analyzing deformation behaviour of structural 

elements such as plates, rods, beams, columns, shafts etc.,. 

1.2 Concepts and definitions 

 
A load applied to a structural member will induce internal forces within the member called stress 

resultants and if computed based on unit cross sectional area then they are termed as intensity of 

stress or simply stress in the member. 

The stresses induced in the structural member will cause different types of deformation in the 

member. If such deformations are computed based on unit dimensions then they are termed as 

strain in the member. 

The stresses and strains that develop within a structural member must be calculated in order to 

assess its strength, deformations and stability. This requires a complete description of the 

geometry, constraints, applied loads and the material properties of the member. 

The calculated stresses may then be compared to some measure of the strength of the material 

established through experiments. The calculated deformations in the member may be compared 

with respect limiting criteria established based on experience. The calculated buckling load of 



 

 

 

 

the member may be compared with the applied load and the safety of the member can be 

assessed. 

It is generally accepted that analytical methods coupled with experimental observations can 

provide solutions to problems in engineering with a fair degree of accuracy. Design solutions are 

worked out by a proper analysis of deformation of bodies subjected to surface and body forces 

along with material properties established through experimental investigations. 

1.3 Simple Stress 

 
Consider the suspended bar of original length L0 and uniform cross sectional area A0 with a force 

or load P applied to its end as shown in the following figure (a).   Let us imagine that the bar is 

cut in to two parts by a section x-x and study the equilibrium of the lower portion of the bar as 

shown in figure (b). At the lower end, we have the applied force P 

 

It can be noted that, the external force applied to a body in equilibrium is reacted by internal 

forces set up within the material. If a bar is subjected to an axial tension or compression, P, then 

the internal forces set up are distributed uniformly and the bar is said to be subjected to a uniform 

direct or normal or simple stress. The stress being defined as 

𝑠𝑡𝑟𝑒𝑠𝑠 (𝜎) = 
𝐿𝑜𝑎𝑑 (𝑃)

 
𝑆𝑒𝑐𝑡i𝑜𝑛𝑎𝑙 𝐴𝑟𝑒𝑎 (𝐴) 

Note 

i. This is expressed as N/mm2 or MPa. 

ii. Stress may thus be compressive or tensile depending on the nature of the load. 

iii. In some cases the stress may vary across any given section, and in such cases the stress at any 

point is given by the limiting value of P/A as A tends to zero. 



 

 

 

 

1.4 Simple Strain 

 
If a bar is subjected to a direct load, and hence a stress, the bar will change in length. If the bar 

has an original length L and changes in length by an amount L as shown below, 

then the strain produced is defined as follows: 

𝑠𝑡𝑟𝑎i𝑛 𝗌 = 
𝑐ℎ𝑎𝑛𝑔𝑒 i𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (ð𝐿) 

𝑜𝑟i𝑔i𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ (𝐿) 

This strain is also termed as longitudinal strain as it is measured in the direction of application of 

load. 

Note: 

i. Strain is thus a measure of the deformation of the member. It is simply a ratio of two quantities 

with the same units. It is non-dimensional, i.e. it has no units. 

ii. The deformations under load are very small. Hence the strains are also expressed as strain x 10 -6. 

In such cases they are termed as microstrain (). 

iii. Strain is also expressed as a percentage strain :  (%) = (L/L)100. 

1.5 Elastic limit – Hooke’s law 

 
A structural member is said to be within elastic limit, if it returns to its original dimensions when 

load is removed. Within this load range, the deformations are proportional to the loads producing 

them. Hooke's law states that, “the force needed to extend or compress a spring by some 

distance is proportional to that distance”.  This is indicated in the following figure. 

 

Since loads are proportional to the stresses they produce and deformations are proportional to the 

strains, the Hooke‟s law also implies that, “stress is proportional to strain within elastic limit”. 

𝑠𝑡𝑟𝑒𝑠𝑠 (𝜎)  𝖺 𝑠𝑡𝑟𝑎i𝑛(𝗌)  or   / = constant 

https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Spring_(mechanics)


 

 

 

 

This law is valid within certain limits for most ferrous metals and alloys. It can even be assumed 

to apply to other engineering materials such as concrete, timber and non-ferrous alloys with 

reasonable accuracy. 

 
 

1.6 Modulus of elasticity or Young’s modulus 

 
Within the elastic limits of materials, i.e. within the limits in which Hooke's law applies, it has 

been found that stress/strain = constant. This is termed the modulus of elasticity or Young's 

modulus. This is usually denoted by letter E and has the same units of stress. With  = P/A and 

= L/L, the following expression for E can be derived. 

𝐸 = 
𝜎 

=  
𝑃 𝐿 

  

𝗌 𝐴 ð𝐿 

Young's modulus E is generally assumed to be the same in tension or compression and for most 

engineering materials has a high numerical value. Typically, E = 200000 MPa for steel. This is 

determined by conducting tension or compression test on specimens in the laboratory. 

 

1.7 Tension test 

 
In order to compare the strengths of various materials it is necessary to carry out some standard 

form of test to establish their relative properties. One such test is the standard tensile test. In this 

test a circular bar of uniform cross-section is subjected to a gradually increasing tensile load until 

failure occurs. Measurements of the change in length of a selected gauge length of the bar are 

recorded throughout the loading operation by means of extensometers. A graph of load against 

extension or stress against strain is produced. 

The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as 

a Latin anagram. He published the solution of his anagram in 1678 as: “uttensio, sic vis” ("as the 

extension, so the force" or "the extension is proportional to the force"). 

https://en.wikipedia.org/wiki/Robert_Hooke
https://en.wikipedia.org/wiki/Latin
https://en.wikipedia.org/wiki/Latin


 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

1.8 Stress – Strain diagrams for ferrous metals 

 
The typical graph for a test on a mild (low carbon) steel bar is shown in the figure below. Other 

materials will exhibit different graphs but of a similar general form. Following salient points are 

to be noted: 

 



 

 

 

 

 
 

i. In the initial stages of loading it can be observed that Hooke's law is obeyed, i.e. the material 

behaves elastically and stress is proportional to strain. This is indicated by the straight-line 

portion in the graph up to point A. Beyond this, some nonlinear nature of the graph can be 

seen. Hence this point (A) is termed the limit of proportionality. This region is also called 

linear elastic range of the material. 

ii. For a small increment in loading beyond A, the material may still be elastic. Deformations 

are completely recovered when load is removed but Hooke's law does not apply. The limiting 

point B for this condition is termed the elastic limit. This region refers to nonlinear elastic 

range. It is often assumed that points A and B are coincident. 

iii. Beyond the elastic limit (A or B), plastic deformation occurs and strains are not totally 

recoverable. Some permanent deformation or permanent set will be there when the specimen 

is unloaded. Points C, is termed as the upper yield point, and D, as the lower yield point. It is 

often assumed that points C and D are coincident. Strength corresponding to this point is 

termed as the yield strength of the material. Typically this strength corresponds to the load 

carrying capacity. 

iv. Beyond point (C or D), strain increases rapidly without proportionate increases in load or 

stress. The graph covers a much greater portion along the strain axis than in the elastic range 

of the material. The capacity of a material to allow these large plastic deformations is a 

measure of ductility of the material. 

v. Some increase in load is required to take the strain to point E on the graph. Between D and E 

the material is said to be in the elastic-plastic state. Some of the section remaining elastic and 

hence contributing to recovery of the original dimensions if load is removed, the remainder 

being plastic. 

vi. Beyond E, the cross-sectional area of the bar begins to reduce rapidly over a relatively small 

length. This result in the formation of necking accompanied with reduction in load and 

fracture (cup and cone) of the bar eventually occurs at point F. 



 

 

 

 

vii. The nominal stress at failure, termed the maximum or ultimate tensile stress, is given by the 

load at E divided by the original cross-sectional area of the bar. This is also known as the 

ultimate tensile strength of the material. 

viii. Owing to the large reduction in area produced by the necking process the actual stress at 

fracture is often greater than the ultimate tensile strength. Since, however, designers are 

interested in maximum loads which can be carried by the complete cross-section, the stress at 

fracture is not of any practical importance. 

 
1.9 Influence of Repeated loading and unloading on yield strength 

 
If load is removed from the test specimen after the yield 

point C has been passed, e.g. to some position S, as 

shown in the adjoining figure the unloading line ST 

can, for most practical purposes, be taken to be linear. 

A second load cycle, commencing with the permanent 

elongation associated with the strain OT, would then 

follow the line TS and continue along the previous 

curve to failure at F. It can be observed, that the repeated load cycle has the effect of increasing 

the elastic range of the material, i.e. raising the effective yield point from C to S. However, it is 

important to note that the tensile strength is unaltered. The procedure could be repeated along the 

line PQ, etc., and the material is said to have been work hardened. Repeated loading and 

unloading will produce a yield point approaching the ultimate stress value but the elongation or 

strain to failure will be very much reduced. 

1.10 Non Ferrous metals 

Typical stress-strain curves resulting from tensile 

tests on other engineering materials are shown in 

the following figure. 



 

 

 

 

For certain materials, for example, high carbon steels and non-ferrous metals, it is not possible to 

detect any difference between the upper and lower yield points and in some cases yield point 

may not exist at all. In such cases a proof stress is used to indicate the onset of plastic strain. The 

0.1% proof stress, for example, is that stress which, when removed, produces a permanent strain 

of 0.1% of the original gauge length as shown in the following figure. 

 

The 0.1% proof stress can be determined from the tensile test curve as listed below. 

 
i. Mark the point P on the strain axis which is 

equivalent to 0.1% strain. 

ii. From P draw a line parallel with the initial straight 

line portion of the tensile test curve to cut the curve 

in N. 

iii. The stress corresponding to N is then the 0.1% proof 

stress. 

iv. A material is considered to satisfy its specification if 

the permanent set is no more than 0.1% after the 

proof stress has been applied for 15 seconds and 

removed. 

1.11 Allowable working stress-factor of safety 

The most suitable strength criterion for any structural element under service conditions is that 

some maximum stress must not be exceeded such that plastic deformations do not occur. This 

value is generally known as the maximum allowable working stress. Because of uncertainties of 

loading conditions, design procedures, production methods etc., it is a common practice to 

introduce a factor of safety into structural designs. This is defined as follows: 

𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑠𝑎𝑓𝑒𝑡𝑦 = 
𝑌i𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑠𝑠 (𝑜𝑟 𝑝𝑟𝑜𝑜𝑓 𝑠𝑡𝑟𝑒𝑠𝑠) 

𝐴𝑙𝑙𝑜w𝑎𝑏𝑙𝑒 w𝑜𝑘i𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠 
 

1.12 Ductile materials 

The capacity of a material to allow large extensions, i.e. the ability to be drawn out plastically, is 

termed its ductility. A quantitative value of the ductility is obtained by measurements of the 

percentage elongation or percentage reduction in area as defined below. 



 

 

 

 

 

 

 

 

Note: 

% 𝑒𝑙𝑜𝑛𝑔𝑎𝑡i𝑜𝑛 =  
i𝑛𝑐𝑟𝑒𝑎𝑠𝑒 i𝑛 𝑔𝑎𝑢𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑜 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 

× 100
 

𝑜𝑟i𝑔i𝑛𝑎𝑙 𝑔𝑎𝑢𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 

% 𝑟𝑒𝑑𝑢𝑐𝑡i𝑜𝑛 i𝑛 𝑎𝑟𝑒𝑎 = 
𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡i𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑛𝑒𝑐𝑘𝑒𝑑 𝑝𝑜𝑟𝑡i𝑜𝑛 

× 100
 

𝑜𝑟i𝑔i𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 

A property closely related to ductility is malleability, which defines a material's ability to be hammered out into thin 

sheets. Malleability thus represents the ability of a material to allow permanent extensions in all lateral directions 

under compressive loadings. 

 

1.13 Brittle materials 

A brittle material is one which exhibits relatively small extensions 

to fracture so that the partially plastic region of the tensile test 

graph is much reduced. There is little or no necking at fracture for 

brittle materials. Typical tensile test curve for a brittle material 

could well look like the one shown in the adjoining figure. 

 

1.14 Lateral strain and Poisson’s ratio 

Till now we have focused on the longitudinal strain induced in the direction of application of the 

load. It has been observed that deformations also take place in the lateral direction. Consider the 

rectangular bar shown in the figure below and subjected to a tensile load. 

 

Under the action of this load the bar will increase in length by an amount L giving a 

longitudinal strain in the bar: L = L/L. The bar will also exhibit, however, a reduction in 

dimensions laterally, i.e. its breadth and depth will both reduce. The associated lateral strains will 

both be equal, and are of opposite sense to the longitudinal strain. These are computed as : lat = 

b/b = d/d. 



 

 

 

 

It has been observed that within the elastic range the ratio of the lateral and longitudinal strains 

will always be constant. This ratio is termed Poisson's ratio (). 

𝑣 = 
𝗌𝑙𝑎𝑡 

𝗌𝐿 

The above equation can also be written as : 

𝗌𝑙𝑎𝑡 

 
= 𝑣𝗌𝐿 = 𝑣 

𝜎
 

E 
For most of the engineering materials the value of  is found to be between 0.25 and 0.33. 

 

 

Example 1 

A bar of a rectangular section of 20 mm × 30 mm and a length of 500 mm is subjected to an axial 

compressive load of 60 kN. If E = 102 kN/mm2 and v   = 0.34, determine the changes in the 

length and the sides of the bar. 

 Since the bar is subjected to compression, there will be decrease in length, increase in 

breadth and depth. These are computed as shown below 

 L = 500 mm, b = 20 mm, d = 30 mm, P = 60 x1000 = 60000 N, E = 102000 N/mm2 

 Cross-sectional area A = 20 × 30 = 600 mm2 

 Compressive stress  = P/A = 60000/600 = 100 N/mm2 

 Longitudinal strain L = /E = 100/102000 = 0.00098 

 Lateral strain lat =  L = 0.34 x 0.00098 = 0.00033 

 Decrease in length L = L L = 0.00098 x 500 = 0.49 mm 

 Increase in breadth b = lat b = 0.00033 x 20 = 0.0066 mm 

 Increase in depth d = lat d = 0.00033 x 30 = 0.0099 mm 

Example 2 

Determine the stress in each section of the bar shown in the following figure when subjected to 

an axial tensile load of 20 kN. The central section is of square cross-section; the other portions 

are of circular section. What will be the total extension of the bar? For the bar material E = 

210000MPa. 



 

 

 

 

 

 
 

 

 

 

 

 

 

The bar consists of three sections with change in diameter. Loads are applied only at the ends. The stress 

and deformation in each section of the bar are computed separately. The total extension of the bar is then 

obtained as the sum of extensions of all the three sections. These are illustrated in the following steps. 

 

The bar is in equilibrium under the action of applied forces 

Stress in each section of bar = P/A and P = 20000N 

i. Area of Bar A =  x 202/4 = 314.16 mm2 

ii. Stress in Bar A : A = 20000/ 314.16 = 63.66MPa 

iii. Area of Bar B = 30 x30 = 900 mm2 

iv. Stress in Bar B : B = 20000/ 900 = 22.22MPa 

v. Area of Bar C =  x 152/4 = 176.715 mm2 

vi. Stress in Bar C : C = 20000/ 176.715 = 113.18MPa 

Extension of each section of bar = L/E and E = 210000 MPa 

i. Extension of Bar A = 63.66 x 250 / 210000= 0.0758 mm 

ii. Extension of Bar B = 22.22 x 100 / 210000= 0.0106 mm 

iii. Extension of Bar C = 113.18 x 400 / 210000= 0.2155 mm 

Total extension of the bar = 0. 302mm 

Example 3 

 
Determine the overall change in length of the bar shown in the figure below with following data: 

E = 100000 N/mm2 

 



 

 

 

 

The bar is with varying cross-sections and subjected to forces at ends as well as at other interior 

locations. It is necessary to study the equilibrium of each portion separately and compute the change in 

length in each portion. The total change in length of the bar is then obtained as the sum of extensions of 

all the three sections as shown below. 

 
Forces acting on each portion of the bar for equilibrium 

 

Sectional Areas 

𝐴   = 𝜋×20
2 

= 314.16 𝑚𝑚2 ; 𝐴 
 

 

= 𝜋×14
2 

= 153.94 𝑚𝑚2; 𝐴 
 

 

= 𝜋×10
2   

= 78.54 𝑚𝑚2 
 

 

𝐼 4 𝐼𝐼 4 𝐼𝐼𝐼 4 

Change in length in Portion I 

Portion I of the bar is subjected to an axial compression of 30000N. This results in decrease in 

length which can be computed as 

𝛿𝐿 = 
𝑃𝐼𝐿𝐼 

= 
30000 × 100 = 0.096 𝑚𝑚 

𝐼 

 
Change in length in Portion II 

𝐴𝐼𝐸 
 

 

314.16 × 100000 

Portion II of the bar is subjected to an axial compression of 50000N ( 30000 + 20000). This 

results in decrease in length which can be computed as 

𝛿𝐿 = 
𝑃𝐼𝐼𝐿𝐼𝐼 

= 
50000 × 140 = 0.455𝑚𝑚 

𝐼 

 
Change in length in Portion III 

𝐴𝐼𝐼𝐸 
 

 

153.94 × 100000 

Portion III of the bar is subjected to an axial compression of (50000 – 34000) = 16000N. This 

results in decrease in length which can be computed as 

𝛿𝐿 = 
𝑃𝐼𝐼𝐼𝐿𝐼𝐼𝐼 

= 
16000 × 150 = 0.306𝑚𝑚 

𝐼 𝐴𝐼𝐼𝐼𝐸 
 

 

78.54 × 100000 



 

 
 

 

Since each portion of the bar results in decrease in length, they can be added without any 

algebraic signs. 

Hence Total decrease in length = 0.096 + 0.455 + 0.306 = 0.857mm 

Note: 

For equilibrium, if some portion of the bar may be subjected to tension and some other portion 

to compression resulting in increase or decrease in length in different portions of the bar. In 

such cases, the total change in length is computed as the sum of change in length of each portion 

of the bar with proper algebraic signs. Generally positive sign (+) is used for increase in length 

and negative sign (-) for decrease in length. 

1.15 Elongation of tapering bars of circular cross section 

 
Consider a circular bar uniformly tapered from diameter d1 at one end and gradually increasing 

to diameter d2 at the other end over an axial length L as shown in the figure below. 

Since the diameter of the bar is continuously changing, the elongation is first computed over an 

elementary length and then integrated over the entire length. Consider an elementary strip of 

diameter d and length dx at a distance of x from end A. 

Using the principle of similar triangles the following equation for d can be obtained 

𝑑 = 𝑑 + 
𝑑2 − 𝑑1 

𝑥 = 𝑑 + 𝑘𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑘 = 
𝑑2 − 𝑑1

 

1 𝐿 

Cross–sectional area of the bar at x : 𝐴𝑥 = 

1 𝐿 

𝜋 (𝑑1+𝑘𝑥)2 

4 

Axial stress at x:𝜎𝑥 = 
𝑃 

=
 

𝐴𝑥 

 
𝜋 (𝑑 

4𝑃 

1+𝑘𝑥)2
 

Change in length over dx :𝛿𝑑𝑥 = 𝜎𝑥 𝑑𝑥 = 4𝑃 𝑑𝑥 
2 

 

𝐸 𝜋𝐸 (𝑑1+𝑘𝑥) 



 

4𝑃 𝐿 

𝑚i𝑛 

𝑚i𝑛 

0 

1 

 
 
 

 𝐿 4𝑃 𝑑𝑥   4𝑃   
 
(𝑑 +𝑘𝑥)

−1 𝐿
 

Total change in length: 𝛿𝐿 = ∫0 
𝜋𝐸 (𝑑1+𝑘𝑥)

2
 

= 𝜋𝐸 [ 
1 

−𝑘 
] 
0 

4𝑃 
𝐴ƒ𝑡𝑒𝑟 𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔i𝑛𝑔 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑠: 𝛿𝐿 = − 

𝜋𝐸𝑘 
[
(𝑑

 

4𝑃 

1 𝐿 

+ 𝑘𝑥)
]
 

1 1 
𝑈𝑝𝑜𝑛 𝑠𝑢𝑏𝑠𝑡i𝑡𝑢𝑡i𝑛𝑔 𝑡ℎ𝑒 𝑙i𝑚i𝑡𝑠 : 𝛿𝐿 = − 

𝜋𝐸𝑘 
[
(𝑑

 + 𝑘𝐿) 
− 

𝑑1 
]
 

4𝑃 1 1 
𝐴ƒ𝑡𝑒𝑟 𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔i𝑛𝑔 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑠: 𝛿𝐿 = 

𝜋𝐸𝑘 
[
𝑑1 

− 
(𝑑

 
+ 𝑘𝐿)

]
 

𝐵𝑢𝑡 (𝑑1 + 𝑘𝐿) = 𝑑1 + 
𝑑2 − 𝑑1 

𝐿 𝐿 = 𝑑2 

4𝑃 Wi𝑡ℎ 𝑡ℎ𝑒 𝑎𝑏𝑜𝑣𝑒 𝑠𝑢𝑏𝑠𝑡i𝑡𝑢𝑡i𝑜𝑛: 𝛿𝐿 = 1 1 4𝑃 [ − ] = 
 

  [
𝑑2 − 𝑑1

]
 

 
 

𝜋𝐸𝑘 𝑑1 𝑑2 𝜋𝐸𝑘 𝑑1𝑑2 

Substituting for 𝑘 = 𝑑2−𝑑1 in the above expression, following equation for elongation of 
𝐿 

tapering bar of circular section can be obtained 

 

 
Example 4 

Total change in length: 𝛿𝐿 = 𝜋𝐸 𝑑1𝑑2
 

 

A bar uniformly tapers from diameter 20 mm at one end to diameter 10 mm at the other end 

over an axial length 300 mm. This is subjected to an axial compressive load of 7.5 kN. If E = 

100 kN/mm2, determine the maximum and minimum axial stresses in bar and the total change 

in length of the bar. 

 
P = 7500 N, E = 100000 N/mm2 , d1 = 10mm, d2 = 20mm,L = 300mm 

 Minimum compressive stress occurs at d2 = 20mm as the sectional area is maximum.

 Area at d2= 𝜋 ×20
2 

= 314.16𝑚𝑚2 
4 

 
𝜎 = 

7500 

314.16
= 23.87𝑀𝑃𝑎 

 Maximum compressive stress occurs at d1 = 10mm as the sectional area is minimum.

 Area at d1= 𝜋 ×10
2 

= 78.54𝑚𝑚2 
4 

 𝜎 = 7500 = 95.5𝑀𝑃𝑎
78.54 

 Total decrease in length: 𝛿L = 4P L
 E d1d2 

 
= 

4 ×7500 ×300 

𝜋 × 100000 ×10 ×20 

 

= 0.143mm 

1 

1 



 

 
 

 

1.16 Elongation of tapering bars of rectangular cross section 
 

Consider a bar of same thickness t throughout its length, tapering uniformly from a breadth B at 

one end to a breadth b at the other end over an axial length L. The flat is subjected to an axial 

force P as shown in the figure below. 

 

 

Since the breadth of the bar is continuously changing, the elongation is first computed over an 

elementary length and then integrated over the entire length. Consider an elementary strip of 

breadth bx and length dx at a distance of x from left end. 

Using the principle of similar triangles the following equation for bx can be obtained 

𝑏 = 𝑏 + 
𝐵 − 𝑏 

𝑥 = 𝑏 + 𝑘𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑘 = 
𝐵 − 𝑏

 
𝑥 𝐿 𝐿 

 

Cross–sectional area of the bar at x : 𝐴𝑥 = 𝑏𝑥𝑡 = (𝑏 + 𝑘𝑥)𝑡 

Axial stress at x:𝜎𝑥 = 
𝑃 

=
 

𝐴𝑥 

𝑃 

(𝑏+𝑘𝑥)𝑡 

Change in length over dx :𝛿𝑑𝑥 = 𝜎𝑥 𝑑𝑥 = 𝑃 𝑑𝑥 
 

𝐸 𝐸𝑡(𝑏+𝑘𝑥) 
Total change in length: 𝛿𝐿 = ∫

𝐿      𝑃 𝑑𝑥 =    𝑃   [𝑙𝑛(𝑏 + 𝑘𝑥)]
𝐿

 
0 𝐸𝑡(𝑏+𝑘𝑥) 𝐸𝑡𝑘 0 

𝑃 
𝑈𝑝𝑜𝑛 𝑠𝑢𝑏𝑠𝑡i𝑡𝑢𝑡i𝑛𝑔 𝑡ℎ𝑒 𝑙i𝑚i𝑡𝑠 : 𝛿𝐿 = 

𝐸𝑡𝑘 
[𝑙𝑛(𝑏 + 𝑘𝐿) − ln(𝑏)] 

𝐵𝑢𝑡 (𝑏 + 𝑘𝐿) = 𝑏 + 
𝐵 − 𝑏 

𝐿 = 𝐵 
𝐿 

𝑃 
Wi𝑡ℎ 𝑡ℎ𝑒 𝑎𝑏𝑜𝑣𝑒 𝑠𝑢𝑏𝑠𝑡i𝑡𝑢𝑡i𝑜𝑛: 𝛿𝐿 = 

𝐸𝑡𝑘
 [𝑙𝑛(𝐵) − ln(𝑏)] =   

𝑃
 

𝐸𝑡𝑘 
ln(𝐵⁄𝑏) 

Substituting for 𝑘 = 𝐵−𝑏 in the above expression, following equation for elongation of tapering 
𝐿 

bar of rectangular section can be obtained 

𝑃 𝐿 
𝛿𝐿 = 

𝐸𝑡(𝐵 − 𝑏) 
ln(𝐵⁄𝑏) 



 

𝐿  y dy 𝜌𝑦 𝐿 

 
 

 

Example 5 
 

An aluminium flat of a thickness of 8 mm and an axial length of 500 mm has a width of 15 

mm tapering to 25 mm over the total length. It is subjected to an axial compressive force P, so 

that the total change in the length of flat does not exceed 0.25 mm. What is the magnitude 

of P, if E = 67,000 N/mm2 for aluminium? 

t = 8mm, B = 25mm,b = 15mm, L = 500 mm, L = 0.25 mm, E = 67000MPa, P =? 

𝑃 = 
𝐸𝑡(𝐵 − 𝑏)𝛿𝐿 

=   
67000 × 8  × (25 − 15) × 0.25 

  

 
= 5.246𝑘𝑁 

𝑙𝑛(𝐵⁄𝑏) 𝐿 𝑙𝑛(25⁄15) × 500 
 

Note: 

 
Instead of using the formula, this problem can be solved from first principles as indicated in 

section 1.16. 

1.17 Elongation in Bar Due to Self-Weight 

 
Consider a bar of a cross-sectional area of A and a length L is 

suspended vertically with its upper end rigidly fixed as shown in the 

adjoining figure. Let the weight density of the bar is . Consider a 

section y- y at a distance y from the lower end. 

Weight of the portion of the bar below y-y =  A y 

Stress at y-y : y =  A y /A =  y 

Strain at y-y : y =  y / E 

Change in length over dy: dy =  y dy / E 
2 

Total change in length : 𝛿𝐿 = ∫0 𝐸 
= [ 

2𝐸 
]0 = 

𝜌𝐿2 

2𝐸 

This can also be written as : 𝛿𝐿 = 
(𝜌𝐴𝐿)𝐿 

=
 

2𝐴𝐸 

𝖶𝐿 
 

 

2𝐴𝐸 
W =  A L represents the total weight of the bar 

 
Note: 

The stress in the bar gradually increases linearly from zero at bottom 

to  L at top as shown below. 



 

 

 

 

 

 

Example 6 

A stepped steel bar is suspended vertically. The diameter in 

the upper half portion is 10 mm, while the diameter in the 

lower half portion is 6 mm. What are the stresses due to 

self-weight in sections B and A as shown in the figure. E = 

200 kN/mm2. Weight density,  = 0.7644x10-3 N/mm3. 

What is the change in its length if E = 200000 MPa? 

 

Stress at B will be due to weight of portion of the bar BC 

Sectional area of BC: A2 =  x 62/4 = 28.27 mm2 

Weight of portion BC: W2 =  A2 L2 = 0.7644x 10-3 x 28.27 x 1000 = 21.61N 

Stress at B: B = W2/A2 = 21.61/28.27 = 0.764 MPa 

 
Stress at A will be due to weight of portion of the bar BC + AB 

Sectional area of AB: A1=  x 102/4 = 78.54 mm2 

Weight of portion AB: W1 =  A1 L1 = 0.7644x 10-3 x 78.54 x 1000 = 60.04N 

Stress at A: c = (W1+W2)/A1 = (60.04+ 21.61) / 78.54 = 1.04 MPa 

 
Change in Length in portion BC 

This is caused due to weight of BC and is computed as: 

𝛿𝐿𝐵𝐶   = 
𝖶2𝐿2 = 

21.61×1000 = 0.00191mm 
2𝐴2𝐸 2×28.27×200000 

 

Change in Length in portion AB 

This is caused due to weight of AB and due to weight of BC acting as a concentrated load at B 

and is computed as: 

𝛿𝐿𝐴𝐵  = 
𝖶1𝐿1 + 

𝖶2𝐿1  = 
60.04×1000 

+ 
21.61×1000 = 0.0033mm 

2𝐴1𝐸 𝐸 𝐴1 2×78.54×200000 200000 × 78.54 
 

Total change in length = 0.00191+ 0.0033 = 0.00521mm 

1.18 Saint Venant’s principle 

In 1855, the French Elasticity theorist Adhemar Jean Claude Barre de Saint-Venant stated that 

the difference between the effects of two different but statically equivalent loads becomes very 

small at sufficiently large distances from the load. The stresses and strains in a body at points 

that are sufficiently remote from points of application of load depend only on the static resultant  

of the loads and not on the distribution of loads. 



 

 
Stress concentration is the increase in stress along the cross-section that maybe caused by a point 

load or by any another discontinuity such as a hole which brings about an abrupt change in the 

cross sectional area. 

 
In St.Venant‟s Principle experiment, we fix two strain gages, one near the central portion of the 

specimen and one near the grips of the Universal Testing Machine‟s (UTM) upper (stationary) 

holding chuck.. The respective strain values obtained from both the gages are measured and then 

plotted with respect to time. Since stress is proportional to strain, as per St.Venant‟s principle, 

the stress will be concentrated near the point of application of load. Although the average stress 

along the uniform cross section remains constant, at the point of application of load, the stress is 

distributed as shown in figure below with stress being concentrated at the load point. The further 

the distance from the point of application of load, the more uniform the stress is distributed 

across the cross section. 

 

1.19 Compound or composite bars 
 

A composite bar can be made of two bars of different materials rigidly fixed together so that both 

bars strain together under external load. As the strains in the two bars are same, the stresses in 

the two bars will be different and depend on their respective modulus of elasticity. A stiffer bar 

will share major part of external load. 

 
In a composite system the two bars of different materials may act as suspenders to a third rigid 

bar subjected to loading. As the change in length of both bars is the same, different stresses are 

produced in two bars. 



 

𝐸 

 

 

 

 

1.19.1 Stresses in a Composite Bar 

Let us consider a composite bar consisting of a solid bar, of diameter d completely encased in a 

hollow tube of outer diameter D and inner diameter d, subjected to a tensile force P as shown 

in the following figure. 

 

Let the extension of composite bar of length L be δL. Let ES and EH be the modulus of elasticity 

of solid bar and hollow tube respectively. Let S and H be the stresses developed in the solid bar 

and hollow tube respectively. 

Since change in length of solid bar is equal to the change in length of hollow tube, we can 

establish the relation between the stresses in solid bar and hollow tube as shown below : 

𝜎𝑆 𝐿 
= 

𝜎𝐻 𝐿 

𝐸𝑆 𝐸𝐻 
or 𝜎𝑆  = 𝜎𝐻 

𝐸𝑆 

𝐸𝐻 

Area of cross section of the hollow tube : 𝐴𝐻 = 
𝜋(𝐷2− 𝑑2) 

4 

Area of cross section of the solid bar : 𝐴𝑆 = 
𝜋𝑑2 

4 
 

Load carried by the hollow tube : 𝑃𝐻 = 𝜎𝐻𝐴𝐻 and Load carried by the solid bar : 𝑃𝑆 = 𝜎𝑆𝐴𝑆 

 
But P = PS + PH = S AS + H AH 

 
With 𝜎𝑆 = 𝜎𝐻  𝐸𝑆 , the following equation can be written 

𝐻 

𝑃 = 𝜎𝐻 𝐸𝑆 𝐴𝑠 + 𝜎𝐻 𝐴𝐻 = 𝜎𝐻 (𝐴𝐻 + 
𝐸𝑆 𝐴𝑠) 

𝐸𝐻 𝐸𝐻 

 

ES/EH is called modular ratio. Using the above equation stress in the hollow tube can be 

calculated. Next, the stress in the solid bar can be calculated using the equation P = S AS + H 

AH. 

https://www.safaribooksonline.com/library/view/strength-of-materials/9789332503519/xhtml/chapter002.xhtml#img-c02f001


 

 

 

 

Example 7 

 
A flat bar of steel of 24 mm wide and 6 mm thick is placed between two aluminium alloy flats 24 

mm × 9 mm each. The three flats are fastened together at their ends. An axial tensile load of 20 

kN is applied to the composite bar. What are the stresses developed in steel and aluminium 

alloy? Assume ES = 210000 MPa and EA = 70000MPa. 

 

 

Area of Steel flat: AS = 24 x 6 = 144 mm2 

Area of Aluminium alloy flats: AA = 2 x 24 x 9 = 432 mm2 

 
Since all the flats elongate by the same extent, we have the condition that 

𝜎𝑆 𝐿 
= 𝜎𝐴 𝐿. 

𝐸𝑆 𝐸𝐴 

 

The relationship between the stresses in steel and aluminum flats can be established as: 

𝜎 = 𝜎   
𝐸𝑆 

= 3 𝜎 
𝑆 𝐴 𝐸𝐴 

𝐴 

Since P = PS + PA = S AS + A AA . This can be written as 

𝑃 = 3𝜎𝐴 𝐴𝑠 + 𝜎𝐴 𝐴𝐴 = 𝜎𝐴 (3𝐴𝑠 + 𝐴𝐴) 

 

From which stress in aluminium alloy flat can be computed as: 
 
 

 
𝜎𝐴 = 

𝑃 

(3𝐴𝑠 + 𝐴𝐴) 
= 

20 × 1000 

(3 × 144 + 432) 

 

= 23. 15𝑀𝑃𝑎 

 

Stress in steel flat can be computed as: 

𝜎𝑆 = 3 × 23.15 = 69. 45𝑀𝑃𝑎 



 

 
 
 

 

Example 8 

 
A short post is made by welding steel plates into a 

square section and then filling inside with concrete. The 

side of square is 200 mm and the thickness t = 10 mm 

as shown in the figure. The steel has an allowable stress 

of 140 N/mm2 and the concrete has an allowable stress 

of 12 N/mm2. Determine the allowable safe 

compressive load on the post. EC = 20 GPa, Es = 200 

GPa. 

 
Since the composite post is subjected to compressive load, both concrete and steel tube will 

shorten by the same extent. Using this condition following relation between stresses in concrete 

and steel can be established. 

𝜎𝐶 𝐿 
= 

𝜎𝑆 𝐿 
or 𝜎

 = 𝜎 
𝐸𝑆 = 10 𝜎 

𝐸𝐶 𝐸𝑆 
𝑆 𝐶  𝐸𝐶 

𝐶 

 
 

Assume that load is such that s = 140 N/mm2. Using the above relationship, the stress in 

concrete corresponding to this load can be calculated as follows: 

140 = 10 𝜎𝐶 𝑜𝑟 𝜎𝐶 = 14 𝑁/𝑚𝑚2 > 12 N/mm2 

Hence the assumed load is not a safe load. 

 
 

Instead assume that load is such that c = 12 N/mm2. The stress in steel corresponding to this 

load can be calculated as follows: 

𝜎𝑠 = 12 × 10 𝑜𝑟 𝜎𝑠 = 120 𝑁/𝑚𝑚2 < 140 N/mm2 

Hence the assumed load is a safe load which is calculated as shown below. 

Area of concrete section Ac = 180 x180 = 32400mm2. 

Area of steel tube As = 200 x 200 – 32400 = 7600 mm2. 

𝑃 = 𝜎𝐶𝐴𝐶 + 𝜎𝑠𝐴𝑠 = 12 × 32400 + 120 × 7600 = 1300. 8𝑘𝑁 



 

 
 

 

Example 9 

 
A rigid bar is suspended from two wires, one of steel and other of copper, length of the wire is 

1.2 m and diameter of each is 2.5 mm. A load of 500 N is suspended on the rigid bar such that 

the rigid bar remains horizontal. If the distance between the wires is 150 mm, determine the 

location of line of application of load. What are the stresses in each wire and by how much 

distance the rigid bar comes down? Given Es = 3Ecu= 201000 N/mm2. 

 

i. Area of copper wire (Acu) = Area of steel wire(As) =  x 2.52/4 = 4.91 mm2 

 
 

ii. For the rigid bar to be horizontal, elongation of both the wires must be same. This condition 

leads to the following relationship between stresses in steel and copper wires as: 

𝜎𝑠 = 
𝐸𝑠 

𝐸𝑐𝑢 
𝜎𝑐𝑢 = 3𝜎𝑐𝑢 

 

iii. Using force equilibrium, the stress in copper and steel wire can be calculated as: 

P = Ps + Pcu = s As + cu Acu = 3 cu As + cu Acu = cu (3As + Acu) 

𝜎𝑐𝑢 = 
𝑃 

(𝐴𝑐𝑢 + 3𝐴𝑆) 
= 

500 

(4.91 + 3 × 4.91) 
= 25.46 𝑀𝑃𝑎 

𝜎𝑠 = 3 × 25.46 = 76.37 𝑀𝑃𝑎 

 
iv. Downward movement of rigid bar = elongation of wires 

𝛿𝐿 = 
𝜎𝑠 

𝐿 = 
76.37 × 1200 = 0.456 𝑚𝑚 

𝑠 𝐸𝑠
 

 
 

201000 



 

 
 
 

 
v. Position of load on the rigid bar is computed by equating moments of forces carried by steel and 

copper wires about the point of application of load on the rigid bar. 

 
𝑃𝑠 𝑥 = 𝑃𝑐 (150 − 𝑥) 

(76.37 × 4.91)𝑥 = (25.46 × 4.91) (150 − 𝑥) 
𝑥 

150 − 𝑥 
= 0.333 

 

𝑥 = 37. 47𝑚𝑚 ƒ𝑟𝑜𝑚 𝑠𝑡𝑒𝑒𝑙 𝑤i𝑟𝑒 

Note: 

If the load is suspended at the centre of rigid bar, then both steel and copper wire carry the same 

load. Hence the stress in the wires is also same. As the moduli of elasticity of wires are different, 

strains in the wires will be different. This results in unequal elongation of wires causing the rigid 

bar to rotate by some magnitude. This can be prevented by offsetting the load or with wires 

having different length or with different diameter such that elongation of wires will be same. 

 

Example 10 

 
A load of 2MN is applied on a column 500mm x 500mm. The column is reinforced with four 

steel bars of 12mm dia, one in each corner. Find the stresses in concrete and steel bar. Es = 2.1 

x105 N/mm2 and Ec = 1.4 x 104 N/mm2. 

 
i. Area of steel bars: As= 4 x ( x 122/4) = 452.4 mm2 

 
ii. Area of concrete: Ac = 500 x500 – 452.4 = 249547.6 mm2 

 

iii. Relation between stress in steel and concrete : 𝜎 = 𝐸𝑆 𝜎 = 
2.1×105 

𝜎
 

 
 

= 15𝜎 
𝑠 𝐸𝑐   

𝑐 1.4×104      𝑐 𝑐 
 

iv. P = Ps + Pc = s As + c Ac = 15 c As + c Ac = c (15As + Ac) 
 

v. 𝑆𝑡𝑟𝑒𝑠𝑠 i𝑛 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝜎𝑐 = 
𝑃 

(𝐴𝑐+ 15𝐴𝑆) 
= 

2×106 

( 249547.6+ 15×452.4) 
= 7. 8 𝑀𝑃𝑎 

 

vi. 𝑆𝑡𝑟𝑒𝑠𝑠 i𝑛 𝑠𝑡𝑒𝑒𝑙 𝜎𝑠 = 15𝜎𝑐 = 15 × 7.8 = 117𝑀𝑃𝑎 



 

 
 

 

1.20 Temperature stresses in a single bar 

 
If a bar is held between two unyielding (rigid) supports and its temperature is raised, then a 

compressive stress is developed in the bar as its free thermal expansion is prevented by the rigid 

supports. Similarly, if its temperature is reduced, then a tensile stress is developed in the bar as 

its free thermal contraction is prevented by the rigid supports. Let us consider a bar of 

diameter d and length L rigidly held between two supports as shown in the following figure. Let 

α be the coefficient of linear expansion of the bar and its temperature is raised by ∆T (°C) 

 
 

 

 Free thermal expansion in the bar = α ∆T L.

 Since the supports are rigid, the final length of the bar does not change. The fixed ends 

exert compressive force on the bar so as to cause shortening of the bar by α ∆T L.

 Hence the compressive strain in the bar = α ∆T L / L = α ∆T

 Compressive stress = α ∆T E

 Hence the thermal stresses introduced in the bar = α ∆T E 

Note:

The bar can buckle due to large compressive forces generated in the bar due to temperature 

increase or may fracture due to large tensile forces generated due to temperature decrease. 

 

Example 11 

 

A rail line is laid at an ambient temperature of 30°C. The rails are 30 m long and there is a 

clearance of 5 mm between the rails. If the temperature of the rail rises to 60°C, what is the stress 

developed in the rails?. Assume α = 11.5 × 10−6/°C, E = 2,10,000 N/mm2 

https://www.safaribooksonline.com/library/view/strength-of-materials/9789332503519/xhtml/chapter002.xhtml#img-c02f008


 

1 

2 

 
 L = 30,000 mm, α = 11.5 × 10−6/°C, Temperature rise ∆T = 60-30 = 30oC

 Free expansion of rails = α ∆T L = 11.5 × 10−6 × 30 × 30000 = 10.35mm

 Thermal expansion prevented by rails = Free expansion – clearance = 10.35 – 5 = 5.35mm

 Strain in the rails  = 5.35/30000 = 0.000178

 Compressive stress in the rails =  x E = 0.000178 x 210000 =37.45N/mm
2.

 

 

1.21 Temperature Stresses in a Composite Bar 

 
A composite bar is made up of two bars of different materials perfectly joined together so that 

during temperature change both the bars expand or contract by the same amount. Since the 

coefficient of expansion of the two bars is different thermal stresses are developed in both the 

bars. Consider a composite bar of different materials with coefficients of expansion and modulus 

of elasticity, as α1, E1 and α2, E2, respectively, as shown in the following figure. Let the 

temperature of the bar is raised by ∆T and α1 > α2 

Free expansion in bar 1 = α1 ∆T L and Free expansion in bar 2 = α2 ∆T L. Since both the bars 

expand by ∆L together we have the following conditions: 

 Bar 1: ∆L < α1 ∆T L. The bar gets compressed resulting in compressive stress

 Bar 2: ∆L > α2∆T L. The bar gets stretched resulting in tensile stress.

Compressive strain in Bar 1 : s = 𝛼1∆𝑇𝐿− ∆𝐿 
𝐿 

Tensile strain in Bar 2 : s = ∆𝐿− 𝛼2∆𝑇𝐿  
𝐿 

 
s + s = 

𝛼1∆𝑇𝐿 − ∆𝐿 
+ 

∆𝐿 − 𝛼2∆𝑇𝐿  
= (𝛼 

 
− 𝛼 

 
)∆𝑇 

1 2 𝐿 𝐿 1 2 

Let 1 and 2 be the temperature stresses in bars. The above equation can be written as: 
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𝜎1 

+ 
𝜎2 

= (𝛼  − 𝛼 
 
)∆𝑇 

𝐸1 𝐸2 
1 2 

In the absence of external forces, for equilibrium, compressive force in Bar 1 = Tensile force in 

Bar 2. This condition leads to the following relation 

𝜎1 𝐴1 = 𝜎2 𝐴2 

Using the above two equations, temperature stresses in both the bars can be computed. This is 

illustrated in the following example. 

Note: 

If the temperature of the composite bar is reduced, then a tensile stress will be developed in bar 

1 and a compressive stress will be developed in bar 2 , since α1 > α2. 

Example 12 

 
A steel flat of 20 mm × 10 mm is fixed with aluminium flat of 20 mm × 10 mm so as to make a 

square section of 20 mm × 20 mm. The two bars are fastened together at their ends at a 

temperature of 26°C. Now the temperature of whole assembly is raised to 55°C. Find the stress 

in each bar. Es = 200 GPa, Ea = 70 GPa, αs = 11.6 × 10−6/°C, αa = 23.2 × 10−6/°C. 

 
 Net temperature rise, ∆T = 55 − 26 = 29°C.

 Area of Steel flat (As) = Area of Aluminium flat (Aa) = 20 x10 =200 mm2

 For equilibrium, 𝜎s As = 𝜎a Aa ; 𝜎s = 𝜎a will be one of the conditions to be 

satisfied by the composite assembly.

 𝐵𝑢𝑡 𝜎𝑎 + 𝜎𝑠 = (𝛼𝑎 − 𝛼𝑠)∆𝑇 = (23.2 − 11.6) × 29 × 10−6 = 0.000336
𝐸𝑎 𝐸𝑠 

     𝜎𝑠 +   𝜎𝑎   = 0.000336
200000 70000 

 270000 𝜎𝑠 = 4709600 ;

 𝜎𝑠(𝑡𝑒𝑛𝑠i𝑙𝑒) = 𝜎𝑎(𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠i𝑣𝑒) = 17.44𝑀𝑃𝑎 as αa > αs

 

Example 13 

A flat steel bar of 20 mm × 8 mm is placed between two copper bars of 20 mm × 6 mm each so 

as to form a composite bar of section of 20 mm × 20 mm. The three bars are fastened together at 

their ends when the temperature of each is 30°C. Now the temperature of the whole assembly is 



 

 
raised by 30°C. Determine the temperature stress in the steel and copper bars. Es = 2Ecu= 210 

kN/mm2, αs = 11 × 10−6/°C, αcu = 18 × 10−6/°C. 

 Net temperature rise, ∆T = 30°C.

 Area of Steel flat (As) =  20 x 8 = 160 mm2

 Area of Copper flats (Acu) = 2 x 20 x 6 =240 mm2

 For equilibrium, 𝜎s As = 𝜎cu Acu ; 𝜎s = 1.5 𝜎cu will be one of the conditions to be 

satisfied by the composite assembly.

 𝐵𝑢𝑡 𝜎𝑐u + 𝜎𝑠 = (𝛼𝑐𝑢 − 𝛼𝑠)∆𝑇 = (18 − 11) × 30 × 10−6 = 0.00021
𝐸𝑐u 𝐸𝑠 

    𝜎𝑐u   + 1.5𝜎𝑐u = 0.00021
105000 210000 

 cu = 12.6MPa (compressive) and s = 18.9MPa (tensile) as αcu > αs

1.22 Simple Shear stress and Shear Strain 

 
Consider a rectangular block which is fixed at the bottom and a force F is applied on the top 

surface as shown in the figure (a) below. 

 

 

Equal and opposite reaction F develops on the bottom plane and constitutes a couple, tending to 

rotate the body in a clockwise direction. This type of shear force is a positive shear force and the 

shear force per unit surface area on which it acts is called positive shear stress (). If force is 

applied in the opposite direction as shown in Figure (b), then they are termed as negative shear 

force and shear stress. 

The Shear Strain () = AA‟/AD = tan. Since  is a very small quantity, tan  . Within the 

elastic limit,    or  = G 

The constant of proportionality G is called rigidity modulus or shear modulus. 



 

 
Note: 

Normal stress is computed based on area perpendicular to the surface on which the force is 

acting, while, the shear stress is computed based on the surface area on which the force is 

acting. Hence shear stress is also called tangential stress. 

1.23 Complementary Shear Stresses 

 
Consider an element ABCD subjected to shear stress () as shown in figure (a). We cannot have 

equilibrium with merely equal and opposite tangential forces on the faces AB and CD as these 

forces constitute a couple and induce a turning moment. The statical equilibrium demands that 

there must be tangential components (‟) along AD and CB such that that can balance the 

turning moment. These tangential stresse (‟) is termed as complimentary shear stress. 

Let t be the thickness of the block. Turning moment due to  will be ( x t x LAB ) LBC and 

Turning moment due to ’ will be (‟ x t x LBC ) LAB. Since these moments have to be equal for 

equilibrium we have: 

( x t x LAB ) LBC = (‟ x t x LBC ) LAB. 

From which it follows that  = ‟ , that is, intensities of shearing stresses across two mutually 

perpendicular planes are equal. 

1.24 Volumetric strain 

 
This refers to the slight change in the volume of the body resulting from three mutually 

perpendicular and equal direct stresses as in the case of a body immersed in a liquid under 

pressure. This is defined as the ratio of change in volume to the original volume of the body. 



 

 
Consider a cube of side „a‟ strained so that each side becomes „a  a’. 

 Hence the linear strain = a/a.

 Change in volume = (a  a)3 –a3 =  3a2a. (ignoring small higher order terms)

 Volumetric strain v =  3a2 a/a3 =  3 a/a

 The volumetric strain is three times the linear strain

 

 
1.25 Bulk Modulus 

This is defined as the ratio of the normal stresses (p) to the volumetric strain (v) and denoted by 

‘K’. Hence K = p/v . This is also an elastic constant of the material in addition to E, G and . 

1.26 Relation between elastic constants 

 
1.26.1 Relation between E,G and 


Consider a cube of material of side „a' subjected to the action of the shear and complementary 

shear stresses and producing the deformed shape as shown in the figure below. 

 
 

 

 Since, within elastic limits, the strains are small and the angle ACB may be taken as 450.

 Since angle between OA and OB is very small hence OA  OB. BC, is the change in the 

length of the diagonal OA

 Strain on the diagonal OA = Change in length / original length = BC/OA

= AC cos45/ (a/sin45) = AC/ 2a = a  / 2 a =  / 2 

 It is found that strain along the diagonal is numerically half the amount of shear stain.

 But from definition of rigidity modulus we have, G =  /

 Hence, Strain on the diagonal OA =  / 2G



 

𝐸 

𝐾 

Relation between E,K and  can be expressed as : 𝐸 = 3𝐾(1 − 2𝑣) 

 

 

 

The shear stress system is equivalent or can be replaced by a system of direct stresses at 450 as 

shown below. One set will be compressive, the other tensile, and both will be equal in value to 

the applied shear stress. 

 

 

 

 

 
 
 

Strain in diagonal OA due to direct stresses = 
𝜎1 −    

𝜎2 = 
𝑐 

+     
𝑐 

= 
𝑐 

(1 +    ) 
𝐸 

Equating the strain in diagonal OA we have 
𝑐

 
2𝐺 

𝐸 𝐸 

= 
𝑐 

(1 +   ) 
𝐸 

𝐸 𝐸 

 
 

 
 

1.26.2 Relation between E,K and 


Consider a cube subjected to three equal stresses a shown in the figure below. 

 

 

𝜎 𝜎 𝜎 𝜎 

Strain in any one direction = 
𝐸 

−    
𝐸 

−     
𝐸 

= 
𝐸 

( 1 − 2 ) 

Since the volumetric strain is three times the linear strain: s𝑣 = 3 
𝜎
 ( 1 − 2 ) 

From definition of bulk modulus : s𝑣 = 
𝜎

 

 
3 

𝜎 
( 1 − 2 ) = 

𝜎
 

𝐸 𝐾 
 

 

Note: Theoretically  < 0.5 as E cannot be zero 

Relation between E,G and  can be expressed as : 𝐸 = 2𝐺(1 + 𝑣) 



 

Relation between E,G and K can be expressed as: E = 
(3𝐾+𝐺)

 
9𝐺𝐾 

 

 

 

1.26.3 Relation between E, G and K 

 
We have E = 2G(1+) from which  = (E - 2G) / 2G 

We have E = 3K(1-2) from which  = (3K -E) / 6K 

 
(E - 2G) / 2G = (3K -E) / 6K or (6EK - 12GK) = (6GK - 2EG) or 6EK+2EG = (6GK +12GK) 

 

 

1.27 Exercise problems 

 
1. A steel bar of a diameter of 20 mm and a length of 400 mm is subjected to a tensile force of 

40 kN. Determine (a) the tensile stress and (b) the axial strain developed in the bar if the 

Young‟s modulus of steel E = 200 kN/mm2 

Answer: (a) Tensile stress = 127.23MPa, (b) Axial strain = 0.00064 

 
2. A 100 mm long bar is subjected to a compressive force such that the stress developed in the 

bar is 50 MPa. (a) If the diameter of the bar is 15 mm, what is the axial compressive force? 

(b) If E for bar is 105 kN/mm2, what is the axial strain in the bar? 

Answer: (a) Compressive force = 8.835 kN, (b) Axial strain = 0.00048 

 
3. A steel bar of square section 30 × 30 mm and a length of 600 mm is subjected to an axial 

tensile force of 135 kN. Determine the changes in dimensions of the bar. E = 200 

kN/mm2, v = 0.3. 

Answer: Increase in length δl = 0.45 mm, Decrease in breadth δb = 6.75 × 10−3 mm, 

 
4. A stepped circular steel bar of a length of 150 mm with diameters 20, 15 and 10 mm along 

lengths 40, 50 and 65 mm, respectively, subjected to various forces is shown in figure below. 

If E = 200 kN/mm2, determine the total change in its length. 

 

Answer : Total decrease in length = 0.022mm 



 

 

 

 

5. A stepped bar is subjected to axial loads as shown in the figure below. If E = 200 GPa, 

calculate the stresses in each portion AB, BC and CD. What is the total change in length of 

the bar? 

Answer: Total increase in length = 0.35mm 

6. A 400-mm-long aluminium bar uniformly tapers from a diameter of 25 mm to a diameter of 

15 mm. It is subjected to an axial tensile load such that stress at middle section is 60 MPa. 

What is the load applied and what is the total change in the length of the bar if E = 67,000 

MPa? (Hint: At the middle diameter = (25+15)/2 = 20 mm). 

Answer: Load = 18.85kN, Increase in length = 0.382 mm 

 
7. A short concrete column of 250 mm × 250 mm in section strengthened by four steel bars near 

the corners of the cross-section. The diameter of each steel bar is 30 mm. The column is 

subjected to an axial compressive load of 250 kN. Find the stresses in the steel and the 

concrete. Es = 15 Ec = 210 GPa. If the stress in the concrete is not to exceed 2.1 N/mm2, 

what area of the steel bar is required in order that the column may support a load of 350 kN? 

Answer: Stress in concrete = 2.45N/mm2, Stress in steel = 36.75N/mm2, Area of steel = 7440 mm2 

 
8. Two aluminium strips are rigidly fixed to a steel strip of section 25 mm × 8 mm and 1 m 

long. The aluminium strips are 0.5 m long each with section 25 mm × 5 mm. The composite 

bar is subjected to a tensile force of 10 kN as shown in the figure below. Determine the 

deformation of point B. Es = 3EA = 210 kN/mm2. Answer: 0.203mm 

(Hint: Portion CB is a single bar, Portion AC is a composite bar. Compute elongation 

separately for both the portions and add) 

 

 
 

https://www.safaribooksonline.com/library/view/strength-of-materials/9789332503519/xhtml/chapter002.xhtml#img-c02f010
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BENDING MOMENT AND SHEAR FORCES 

INTRODUCTIO N 

Beam is a structural member which has negligible cross- section compared to its 

length. It carries load perpendicular to the axis in the plane of the beam. Due to the 

loading on the beam, the beam deforms and is called as deflection in the direction 

of loading. This deflection is due to bending moment and shear force generated as 

resistance to the bending. Bending Moment is defined as the internal resistance 

moment to counteract the external moment due to the loads and mathematically it is 

equal to algebraic sum of moments of the loads acting on one side of the section. It 

can also be defined as the unbalanced moment on the beam at that section. 

Shear force is the internal resistance developed to   counteract the shearing action 

due to external load and mathematically it is equal to algebraic sum of vertical 

loads on one side of the section and this act tangential to cross section. These two 

are shown in Fig 3.01 (a). 

 

 

 

b 

 
Cross-section 

 

Member before 
 

 
 

Unbalanced Moment = Bending Moment 

(M) & Unbalanced Force = Shear Force 

Fig. 3.01 (a) 

M 

x V 

/unit length 

x 
Span= 

Longitudinal section 



 

 

 

 

 
 

For shear force Left side Upward force to the section is Positive (LUP) and Right 

side Upward force to the section is Negative (RUN) as shown in Fig. 3.01 (b). 

For Bending Moment, Moment producing sagging action to the beam or clockwise 

moment to the left of the section and anti- clockwise moment to the right of the 

section is treated as positive and Moment producing hogging action to the beam or 

anti- clockwise moment to the left of the section and clockwise moment to the right 

of the section is treated as Negative as shown in Fig. 3.01(b). 

Sign Convention 
 

  
LUP-Leftside Upward 

Positive 

RUN-Rightside 

Upward Negative 

Shear Force 
 

 

 

  
 

 

 

 
Elastic Curve 

Sagging Hogging 

Bending Moment 

Fig. 3.01 (b) 

Generally the beam is represented by a line and the beam bends after the loading. The 

depiction of the bent portion of the beam is known as elastic curve. 

The shape of the elastic curve is the best way to find the sign of the Bending Moment as 

shown in the Fig. 3.02 

 

Overhang Overhang 
 

 
Hogging Elastic curve 

 
Sagging Hogging 

Fig. 3.02 Elastic Curve 
 

Support Reactions: 

The various structural members are connected to the surroundings by various types 

of supports .The structural members exert forces on supports known as action. 

Similarly supports exert forces on structural members known as reaction. 

A beam is a horizontal member, which is generally placed on supports. 



 

 

 

 

 

The beam is subjected to the vertical forces known as action. Supports exe rt forces 

on beam known as reaction. 

Types of supports: 

1) Simple supports 

2) Roller supports 

3) Hinged or pinned supports 

4) Fixed supports 

1) Simple supports: 
 

Fig. 3.03 

Simple   supports are those supports, which exert reactions perpendicular to 

the plane of support. It restricts the translation of body in one direction only, but 

not rotation. 

2) Roller supports: 
 

Fig. 3.04 

Roller supports are the supports consisting of rollers which exert reactions 

perpendicular to the plane of the support. They restrict translation along one 

direction and no rotation. 

3) Hinged or Pinned supports: 
 

Fig. 3.05 

Hinged supports are the supports which exert reactions in any direction but 

for our convenient point of view it is resolved in to two components. Therefore 

hinged supports restrict translation in both directions. But rotation is possible. 

4) Fixed supports: 

Fixed supports are those supports  which restricts both translation and rotation of 

the body. Fixed supports develop an internal moment known as restraint moment to 

prevent the rotation of the body. 



 

 

 

 

 

 

 

 

 
 

Fig. 3.06 

Types of Beams:- 

1) Simply supported Beam: 
 

Fig. 3.07 

It is a beam which consists of simple supports. Such a beam can resist forces 

normal to the axis of the beam. 

2) Continuous Beam: 
 

Fig. 3.08 

It is a beam which consists of three or more supports. 

 
 

3) Cantilever beam: 
 

Fig. 3.09 

It is a beam whose one end is fixed and the other end is free. 

3) Propped cantilever Beam: 

It is a beam whose one end is fixed and other end is simply supported. 
 

Fig. 3.10 

4) Overhanging Beam: 

It is a beam whose one end is exceeded beyond the support. 
 

Fig.3.11 



 

 

 

 

 

Types of loads: 

1) Concentrated load: A load which is concentrated at a point in a beam is known 

as concentrated load. 

Fig. 3.12 

2) Uniformly Distributed load: A load which is distributed uniformly along the 

entire length of the beam is known as Uniformly Distributed Load. 

Fig. 3.13 

Convert the U.D.L. into point load which is acting at the centre of particular span 

Magnitude of point load=20KN/mx3m=60kN 

 
3) Uniformly Varying load: A load which varies with the length of the beam is 

known as Uniformly Varying load 

Fig. 3.14 

Magnitude of point load=Area of triangle and which is acting at the C.G.  of 

triangle. 



 
 

 

 
 

Problems on Equilibrium  of coplanar non concurrent force system. 

Tips to find the support reactions: 

1) In coplanar concurrent force system, three conditions of equilibrium can be 

applied namely 

Fx =0, Fy =0 and ΣM=0 

2) Draw the free body diagram of the given beam by showing all the forces and 

reactions acting on the beam 

3) Apply the three conditions of equilibrium to calculate the unknown reactions at 

the supports. Determinate structures are those which can be solved with the 

fundamental equations of equilibrium. i.e. the 3 unknown reactions can be solved 

with the three equations of equilibrium. 

Relationship between Uniformly distributed load (udl), Shear force and Bending 

Moment. 

Consider a simply supported beam subjected to distributed load  which is a function of x 

as shown in Fig. 3.15(a). Consider section  at a distance x from left support and another 

section  at a small distance dx from section . The free body diagram of the element is 

as shown in Fig. 3.15(b). To the left of the section  the internal force V and the moment 

M acts in the +ve direction. To the right of the section  the internal force and the 

moment are assumed to increase by a small amount and are respectively V+dV and M+dM 

acting in the +ve direction. 

 
For the equilibrium of the system, the algebraic sum of all the vertical forces must be zero. 



 2 



1 



 

 

 

 

 veV  0; 

V  dx  V  dV   0 

dx  dV  0 

  
dV

 
dx 

 

 

 
 

 

 

...(01) 

Eq. 01 the udl at any section is given by the negative slope of shear force with respect to 

distance x or negative udl is given by the rate of change of shear force with respect to 

distance x. 

Within a limit of distributed force 1 and 2 over a distance of a, shear force is written as 

V   
2  dx 

For the equilibrium of the system, the algebraic sum Moments of all the forces must be 

zero. Taking moment about section 

M  0; 

M  Vdx  (dx) 
 dx  

 M  dM   0 
 

Ignoring the higher order derivatives, we get 

Vdx  dM  0 

or V  
dM 

02 
dx 

Eq. 02 shows the shear force at any section is given by rate of change in bending moment 

with respect to distance x. 

Within a limit of distributed force 1 and 2 and shear force V1 and V2 over a distance of 

a, we can write bending moment as 
 

M     V2 Vdx 
V1 



 

 
Uniformly Varying Load 

Loading Diagram 

 

 

 

 

 

Point of contra flexure or point of inflection. 

These are the points where the sign of the bending moment changes, either from positive 

to negative or from negative to positive. The bending moment at these points will be zero. 

Overhang Overhang 

 
Fig. 3.16 Bending Moment Diagram 

 

Procedure to draw Shear Force and Bending Moment Dia gram 

 Determine the reactions including reactive moments if any using the conditions of 

equilibrium viz. H = 0; V = 0; M = 0 

Shear Force Diagram (SFD) 

 Draw a horizontal line to represent the beam equal to the length of the beam to some 

scale as zero shear line. 

 The shear line is vertical under vertical load, inclined under the portion of uniformly 

distributed load and parabolic under the portion of uniformly varying load. The shear 

line will be horizontal under no load portion. Remember that the shear force diagram is 

only concerned with vertical loads only and not with horizontal force or moments. 

 Start from the left extreme edge of the horizontal line (For a cantilever from the fixed 

end), draw the shear line as per the above described 

method. Continue until all the loads are completed and 

the check is that the shear line should terminate at the 

horizontal line. 

 The portion above the horizontal line is positive shear 

force and below the line is negative shear force. 

 To join the shear line under the portion of uniformly 

varying load, which is a parabola, it is to be Fig. 3.17 Shear Force Diagram 

remembered that the parabola should be tangential to the horizontal if the 

Hogging Sagging Hogging 

x' 
🞧 

x' 

Points of Contra flexure 



 

 

 

 

 

corresponding load at the loading diagram is lesser and will be tangential to vertical if 

the corresponding load at the loading diagram is greater. 

 
 

/unit 
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BM line joins 

+ 

- 

BM line joins 

normal to axis BM line starts 
normal to axis 

Fig. 3.18 SFD, BMD and Loading Diagrams 

Bending Moment Diagram (BMD) 

 Draw a horizontal line to represent the beam equal to the length of zero shear line 

under the SFD. 

 The Bending Moment line is vertical under the applied moment, inclined or horizontal 

under the no load portion, parabolic under the portion of uniformly distributed load 

and cubic parabola under the portion of uniformly varying load. 

 Compute the Bending Moment values as per the procedure at the salient points. 

 Bending Moment should be computed just to the left and just to the right under section 

where applied moment is acting. i.e. MAL and MAR. Once the applied moment is to be 

ignored and next the moment is to be considered as per the sign convention. 

 Draw these values   as   vertical ordinates   above   or   below the horizontal line 

corresponding to positive or negative values. 
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Fig. 3.19 Cantilever 

SFD 

Loading Diagram 

 

 

 

 

 

 Start the Bending Moment line from the left extreme edge of the horizontal line, draw 

as per the above described method under prescribed loading conditions. Continue until 

the end of the beam and the check is that the line should terminate at the horizontal 

line. 

 The portion above the horizontal line is positive Bending Moment and below the line 

is negative Bending Moment. 

 Locate the point of Maximum Bending Moment. It occurs at the section where Shear 

Force is zero. 

 Locate the Point of Contra flexure where the Bending Moment line crosses the 

horizontal line. i.e. the sign of Bending Moment line changes its sign. 

 

To join the Bending Moment line under the portion of uniformly distributed load which is 

a parabola, it is to be remembered that the parabola should be tangential to the horizontal 

if the corresponding shear force value at the loading diagram is lesser and will be 

tangential to vertical if the corresponding shear force line at the shear force diagram is 

greater as shown in Fig. 3.17. 

In case of the beam being a Cantilever, start the Shear force from the fixed end. i.e. 

arrange the cantilever such that the fixed end is towards left end. 
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 a a 
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Problems W 

S TANDARD PROBLEMS a 

Eccentric Concentrated Load 

Consider a simply supported beam of span l with 

an eccentric point load W acting at a distance a 

from support as shown in Fig. 3.20 

The reactions can be obtained from the equations 

of equilibrium 

(Write the Upward acting forces on one side and 

downward acting forces on the other side of the 

equation to avoid confusion among sign 

convention). 

VA = 0; RA + RB = W 

Taking moments about A, 

MA = 0; 

A B 

RA RB 

 
RA 

 
RB 

 

 

 
BM 

Fig. 3.20 SS with Point load 

(01) 

(Write the clockwise moments on one side and anti-clockwise moments on the other side 

of the equation to avoid confusion among sign convention). 

(RB)(l) = (W)(a) 

R  
Wa 

B l 
 

Similarly Taking moments about B, 

MB = 0; 

(RA)(l) = (W)(l—a) 

W l  a
RA  

l
 

Check 

To check the computations, substitute in Eq. 01, we have 

Wa W l  a  a  l  a 
RA  RB     

l   
 

l
  W 

 l 
 
 W and hence OK. 

Shear Force Values 

VA = 0 + RA  
W l  a 

l 

 
VC = 

W l  a  
l 

W 



W l  a  a 

 
 

 

 
 

VC = 

 
VB = 

W l  a 
W   

Wa 

l l 
 

 
Wa 

l 

VB =  
Wa 

 
Wa 

 0 
l l 

Bending Moment Values 

Note: The Bending Moment will always will be zero at the end of the beam unless there is 

an applied moment at the end. 

MA = 0 

MB = 0 
 

MC = RA   a   a  W l  a  also 
l l 

 
MC = RB l  a   

 Wa 
 l  a   W l  a  

a
  l  l 

 

Uniformly Distributed Load 
A 

Consider a simply supported beam of span l with 

an uniformly distributed load /m acting over the 
RA

 

entire span as shown in Fig. 3.35 RA 

The reactions can be obtained from the conditions 

of equilibrium. 

As the loading is symmetrical 

RA = RB and hence 

 VA = 0 ; RA + RB =2 RA =2 RB = xl 

l 

/unit 

C B 

l RB
 

 

 
 

RB 

 

 

 

 
BM 

RA  RB   
2

 Fig. 3.21 SS with UDL 

Shear Force Values 

VA = R   
 l 

A 
2

 

V    
l 

 l   



B 2 2 

Shear Force at Midsection will be 

V  
l 

 
l 

 0 
C 2 2 

Bending Moment Values 

MA = 0 

 
 

SFD 
 

l 2 

8 
(01) 



C 

 

 

 

 

 

MB = 0 
 

M = 
l
 

 
 

l     l 


 

l 2 
 

C RA  
2 
 

 2 

  2  
   

4
 

 

 

Uniformly Varying Load 

Consider a simply supported beam of span l with an uniformly varying load /m acting 

over the entire span as shown in Fig. 3.24 

 
The reactions can be obtained from the conditions of equilibrium. 

VA = 0; 

 
R  R  

  l  
(01) 

A B  
2 
 /unit 

 
x 

Taking moments about A, A B 

MA = 0; RA 

  l  l 


 

 l 2 RA 
 

RB  l  
2  3  

   
6 

   

R  
 l RB 

B 
6

 

Taking moments about B, 

MB = 0; 

  l  2l   l 2 BMD 
RA  l   2  3  

   
3 Fig. 3.22 SS with UVL 

  

R  
 l 

A 
3

 

Check 

To check the computations, substitute in Eq. 01, we have 

R  R  
  l  

 
  l  

 
 l 

 
   A B  6     3  2 

     

Hence O.K. 

Shear Force Values 

VA = R 
 l 

A 3 

V    
l 

 
l 

  
l 

B 3 2 6 
and VB   

l 
 
l 

 0 
6 6 

Location of Zero Shear Force 

Consider a section at a distance x from left support and load intensity at that 

 9    3 
 
  l 2  

SFD 

x 

l 

    





 l 

       

 

 

 

 
 

section x is given byx  
 x 




 

and Shear Force at that section is given by 

1  x 2     l  l 
Vx  

2 
x  x  RB  

 2l  
  

6 
  0 or x 

     

Bending Moment Values 

MA = 0 

MB = 0 

Bending Moment will be maximum at Zero Shear Force and 
 

 1   x    l   x 3 

M c   RB  x  

 2 

x   x  3 
    6  

 x   
6 l 



 l   l      l  
3
 

 
 6  

    
3 
   

6 l 
    

3 


       

 
  l 2   1    l 2 
 
6 3 

 1 
3 
   

9   3 



     

Cantilever with Point Load 

The reactions can be obtained from the conditions of 

equilibrium. 

VA = 0; RA  W 

Taking moments about A, 

M A  W l  a 

Shear Force Values 

VB = 0 

VC = 0 

VC = 0  W = W 

VA = W 

VA = W + W = 0 

Bending Moment Values 

MB = 0 

MC = 0 

M A  W l  a

Cantilever with Uniformly Distributed Load (UDL) 

The reactions can be obtained from the conditions of equilibrium. 

3 





MA 
A /m 

l 

 l 2 

2 BMD 

SFD 

l 
VA 

/m 

MA x 

 l 

2 

 l 2 

6 BMD 

SFD 

x 
l 

A 

VA 

A  2 

A  2 

 l 

R   

 
 

 

 
 

VA = 0; RA  l B 

Taking moments about A, 

M     l 
 l  

 

  

l 2 
 

 

2 

Shear Force Values 

VB = 0 

VA = —l 

VA = — l + l = 0 

Bending Moment Values 

MB = 0 

 

 

 

 

 
Fig. 3.34 Cantilever with UDL 

M     l 
 l  

 

  

l 2 
 

 

2 

Cantilever with Uniformly Varying Load (UVL) 

Case (i) 

The reactions can be obtained from the conditions 

of equilibrium. 

VA = 0; 
l  

A 
2 

B 

Taking moments about A, 

 l     l  l 2 
M A   

2 
 

3 
   

6
 

    

Shear Force Values 

VB = 0 

V 
 l 

A 
2

 

V    
l 

 
l 

 0 
A 2 2 

Fig. 3.35 Cantilever with UVL 

Bending Moment Values 

MB = 0 

 l     l  l 2 
M A   

2 
 

3 
   

6
 

     

Consider a section at a distance x from free end and load intensity at that section x is 

given by 

  
 x 


x  



 l 









Shear Force at that section is given by 
 

1  x 2 

Vx  
2 
x  x   2l 

 

Bending Moment at that section is given by 
 

 1   x   x 3 M x   

 2 

x  x  3 
   6l 


      

Case (ii) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; R   
 l 

A 
2
 

/m 
Taking moments about A, 




    2 MA 
x 

B
 

M    

 l 


  2l  

 
l  

A   2    3  3 

    

Shear Force Values  l 

VB = 0 2 

l  
VA  

2
 

l  
VA  

2
  

l 
 0 

2 

 l 2 

6 BMD 

Fig. 3.36 Cantilever with UVL 

Bending Moment Values 

MB = 0 

 l     2l  l 2 
M A   2 

  3  
   

3 

    

Consider a section at a distance x from free end and load intensity at that section x is 

given by 

  
 x 


x  

Shear Force at that section is given by 

1  l   x 2 
Vx  RA  

2 
x  x   2 

  
 2 l 

     

Bending Moment at that section is given by 

 1   x   l   x 3     l 2 M x  RA  x  

 2 

x  x  3 
  M A   2 

 x  
 6l  

 
   3   

             

Cantilever with Partial Uniformly Distributed Load (UDL) 

The reactions can be obtained from the conditions  of equilibrium. 

SFD 

l 

x 

A 

VA 



C  2 

 

 

 
 
 

VA = 0; RA  b Taking moments about A, 
 

M   b 
 

a  
b 
A  2 

 

Shear Force Values 

VB = 0 

VD = 0 

VC = — b 

VA = — b 

VA = — b + b = 0 

Bending Moment Values 

MB = 0 

MD = 0 

B 

 

 

 

 

 

 

 

 
Fig. 3.37 Cantilever with Partial 

M   b 
 b  

 

 

b 2 
 

 

2 
 

M   b 
 

a  
b 
A  2 

 

3.01. Draw the Shear Force and Bending Moment Diagram for a Cantilever beam 

subjected to concentrated loads as shown in Fig. 3.38. 

From the conditions of equilibrium 

V = 0; RA = 10 + 20 + 30 = 60 kN () 

M = 10 x 6 + 20 x 3 + 30 x 2 = 180 kN-m. 

Shear Force Values at Salient Points 

VD = 0 – 10 = -10 kN 

VC = -10 – 20 = -30 kN 

VB = -30 – 30 = -60 kN 

VA = -60 + 60 = 0kN 

Bending Moment Values at Salient Points 

MD = 0 kN-m 

MC = -10 x 3 = -30 kN-m 

MB = -10 x 4 – 20 x 1 = - 60 kN-m 

MA = -10 x 6 – 20 x 3 – 30 x 2 = - 180 kN-m 

MA  A C 
/m 

D 

a 

 l 2 

2 BMD 

SFD 

l 
b 



 2 

-10kN 

-30kN 


SFD -60kN 

 

 

 

 

 

10kN 20kN 30kN 

3m 
1m 

2m 

D C B A MA
 

Loading Diagram RA 
 

 

0kNm  
-30kN-m 

-60kN-m 
 

 

 

 
BMD 

 

-180kN-m 

Fig.3.38 Cantilever 

 

3.02. A cantilever beam is subjected to loads as shown in Fig. 3.39. Draw SFD and BMD. 

From the conditions of equilibrium 

VA = 0; RA = 10 + 30 + 20 x 5 = 140 kN () 
 

MA = 30 x 2 + 10 x 3 + (20 x 5) 
 5 



   

Shear Force Values at Salient Points 

VD = 0 kN 

VC = 0 – 20 x 2 = –40 kN 

VC = –40 – 10 = –50 kN 

VB = –50 – 20 x 1 = –70 kN 

VB = –70 – 30 = –100 kN 

VA = –100 – 20 x 2 = –140 kN 

VA = –140 + 140 = 0kN 

+ 40 = 380 kN-m. 

Bending Moment Values at Salient Points 

As there is applied moment at section D, there will be two moments at that section and 

hence 

MDR = 0 

MDL = 0 – 40 = –40kN-m 



30kN 10kN 
20kN/m 

MA 
A B C 

40kNm 

D 
2m 1m 2m 

VA 

140kN 

Loading Diagram 

100kN 

70kN 
50kNm 

40kN 

Shear Force Diagram 

-80kNm 
-40kNm 

-140kNm 

-360kNm 

 

 

 

 

 

MC = –20 x 2 x 1 – 40 = –80 kN-m 

MB = –20 x 3 x 1.5 – 10 x 1 – 40 = – 140 kN-m 

MA = –20 x 5 x 2.5 – 10 x 3 – 20 x 2– 40 = – 360 kN-m 
 

 

Bending Moment Diagram 

Fig. 3.39 BMD & SFD - Cantilever 



 2 

 2 

30kN 
20kN/m 

MA 
100kN 

A 
2m 

B 
1m 

C 
2m 

D 

VA Loading Diagram 

50kN 

20kN 20kN 

Shear Force Diagram 

63.33kNm 

-13.33kNm 

-33.33kNm -33.33kNm 

 

 

 

 

 

3.03. Draw BMD and SFD for the cantilever beam shown in Fig. 3.40. 

Locate the point of contra flexure if any, 

Bending Moment Diagram 

Fig. 3.40 BMD & SFD - Cantilever 
From the conditions of equilibrium 

VA = 0; RA = 30 + 
 1 



   



x 20 x 2 = 50 kN () 

 

MA = 30 x 2 + 
 1  

(20 x 2) 
 

3  
2 



 

– 100 = 33.33 kN-m. 
 2   3 
     



Shear Force Values at Salient Points 

VD = 0 kN 

VC = 0 – 
 1 



   

VB =–20 kN 

 

(20 x 2) = –20 kN 



a 

F F 

F 
a 

F 

 2   3 

 

 

 

 

 

VB = –20 – 30 = –50 kN 

VA = –50 kN 

VA = –50 + 50 = 0kN 

Bending Moment Values at Salient Points 

As there is applied moment at section B, there will be two moments at that section and 

hence 

MD = 0 kN 

MC = – 
 1 



   

(20 x 2) 
 2 



   



= –13.33 kN-m 

 

MBR = – 
 1  

(20 x 2) 

1  

2 



 

= –33.33 kN-m 
 2   3 
     

MBL = –33.33 + 100 = + 66.67kN-m 

MA = – 
 1  

(20 x 2) 
 

3  
2 



 


– 30 x 2 + 100 = –33.33 kN-m 

 2   3 
     

Points of contraflexure: 

    x    
 
2  x 

or x  0.67m 
33.33 66.67 

It lies at 0.67m and 2m right of the left support. 

Bracket Connections 

There can be following types of bracket connections which can be converted to load 
 

F 

F 
beam 

F F 

a 

L-bracket 

beam 
 

 
and moment. 

Fig.3.41 Bracket Connections 

The types of brackets are vertical and L bracket as shown in Fig. 3.41. Apply two 

equal, opposite and collinear forces at the joint where the load gets transferred to the 

beam. The two forces (F) acting equal and opposite separated by a distance will form a 

couple equal to the product of Force and the distance between the forces along with the 

remaining Force. 

F 
a 

bracket 

 

Fxa 

F 
Fxa 



 2 

 2   

2 

 2 



 

 

 

 

 

3.04. An overhanging beam ABC is loaded as shown in Fig. 3.42. Draw the shear 

force and bending moment diagrams. Also locate point of contraflexure. 

Determine maximum +ve and —ve bending moments. (Jan- 06) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RA  RB  26  2 14kN 

Taking moments about A, 

 
M A  0; 4RB  2  6

 6  
 2  6 or R 

    B 

 

 
48 

 12kN 
4 

Similarly taking moments about B, 

 
M B  0; 4RB  2  2  2  2

 2  
 2  4

 4  
or R 

        A 

 

 
8 
 2kN 

4 

Check 

Substituting in Eq. 01, we have RA + RB = 2 + 12 =14 kN (O.K.) 

Zero Shear Force 

Consider a section at a distance x where Shear Force is zero as shown in Fig.3,42, 

From similar triangles, we have 

2 6 

x 4  x

x  1m 

Bending Moment Values 

MA = 0 

M  2  2  2  2 
 2  

 8kN 
B  



(Negative because Sagging) 

MC = 0 

Bending Moment at zero Shear Force will be either Maximum or Minimum. 

2 x 2 2 
 

M x  2x  
2 

 2x  x  1kNm 

Maximum positive BM is 1kNm at 1 m to right of left support and negative BM is 

8kNm at right support. 

Point of Contraflexure: Bending Moment equation at section y is 

2 y 2 2 
 

M y  2 y  
2 

 2 y  y  0 or y  2m 



— 

1kNm 

 

 

 

 

 

 
2 kN/m 

2 kN 

A B C 
 

4m 
2 kN/m 

A B 

 

2m 2 kN 

C 

 

 

 

 

 

 

 

 

 

2 kN 
 

 

 

 

 
 

 

 
 
 

 

 

y 
 
 

 

 

BFD 
—

 

Fig. 3.42 

 

3.05. Draw the Shear Force and Bending Moment Diagram for the loaded beam shown in 

Fig. 3.43. Find the Maximum bending moment. 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RA  RB  404 160kN 

Taking moment about A, 

(01) 

M  0;8R   40 4

1  

4  
or R   

480 
 60kN A B  2  

B 
8 

 

SFD 

RB 

6  
2m 

kN 

Zero Shear Force 

4m 

Loading Diagram 

2 kN 

x 

RA 



3m 4m 











40kN/m 

A C D B 
 

RA    1m RB 

 

100k 
 

 

 

 

 

 
 

 

 
225kNm 

—60kN 

SFD 

—60kN 

 

 

 

 

100kNm 180kNm 
 

 

 

 

BMD Fig. 3.43 
The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RA  RB  404 160kN 

Taking moment about A, 

 

 

(01) 

M  0;8R   40 4

1  

4  
or R   

480 
 60kN A B  2  

B 
8 

 

Similarly taking moment about B, 

M  0; 8R   40  4
 

3  
4  

or R  
800 

 100kN B A  2  
A 

8 

 

Check 

Substituting in Eq. 01, we have RA + RB = 100 + 60 =160 kN (O.K.) 

Zero Shear Force 

Consider a section at a distance x where Shear Force is zero as shown in Fig. 3.43 

From similar triangles, we have 

100 



x 

60 
or x  2.5m 

4  x

Vo = 1 + 2.5 = 3.5m from right support. 

N 

x 



 2 

 

 

 

 

 

Bending Moment Values 

MB = 0 

MD   603  180kN 

M  60  7  40  4
 4  

 100kN 
C  

MA = 0 

Bending Moment at zero Shear Force will be either Maximum or Minimum. 

40  x 2
 2 

 M x   1001 x   1001 x  20 x 
2 

 225kNm 

3.06. Draw the Shear Force and Bending Moment Diagram for the loaded beam shown in 

Fig. 3.44. Also locate the Point of Contraflexure. Find and locate the Maximum +ve 

and —ve Bending Moments. 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RC  RD  40  20  60kN 

Taking moment about C, 

(01) 

M    0;4R    2 40  20 6 or R    
40 

 10kN 
 

C D D 
4

 

Similarly taking moments about D, 

M  0; 4R  20 2  40 6 or R    
200 

 50kN 
 

D C C 
4

 

Check 

Substituting in Eq. 01, we have RC + RD = 50 + 10 = 60 kN (O.K.) 

Zero Shear Force is at right support 

Bending Moment Values 

MB = 0 

MD   202  40kN-m 

MC  402  80kNm 

MA = 0 

Maximum Moments: Maximum negative BM is 80 kNm at the left support. 



40kN 20kN 

A C D B 
2m 4m 2m 

20kN 20kN 
 

10kN 

—40kN 
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— 
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SFD 
—40kN 

 2 

 2 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.44 
3.07. Draw BMD and SFD for the loaded beam shown in Fig. 3.45. Also locate the Point 

of contraflexure and Maximum +ve and —ve Bending Moment 

The reactions can be obtained from the conditions of equilibrium. 

Taking moment about A, 

VA = 0; RA  RB  3 5  26  20kN (01) 
 

M A  0;6RB  3 2  2  6
 6  

 5 8 or R 

    B 
 

70 
 11.67kN 

6 

Similarly taking moment about B, 

 
M B  0; 6RA  5 2  2  6

 6  
 3 8 or R 

    A 

 

 
50 

 8.33kN 
6 

Check: Substituting in Eq. 01, we have RA + RB = 11.67 + 8.33 =20 kN (O.K.) 



 

 

 

 

 

 

 

3kN  

2kN/m 
5kN 

 

C A 
2m 

5.33kN 

B 
6m 2m 

5kN 
20kN 

D 

 
5kN 

 
 

 

 

 

 

—3kN —3kN 
 

 
 

— 
 

 

y 
 

 

 

—6kNm 

 

BM 

Fig. 3.45 — 

Check: Substituting in Eq. 01, we have RA + RB = 11.67 + 8.33 =20 kN (O.K.) 

Zero Shear Force 

Consider a section at a distance x where Shear Force is zero as shown in Fig. 3.45. 

From similar triangles, we have 

5.33 



x 

6.67   
or x  2.67m 

6  x


Bending Moment Values 

MD = 0 

MB  52  10kN 

MA   32  6kN 

MC = 0 

Bending Moment at zero Shear Force will be either Maximum or Minimum. 

2 x 2 2 x 2 
M x  8.33 x  32  x   8.33 x  32  x   1.11kNm 

2 2 

— 
SFD 



C 

L 

C 

 

 

 

 

 

Points of Contraflexure: 

Bending moment at section y from the left support is given by 

2 y 2 2 
 M y  8.33y  32  y 

2 
or y  5.33y  6  0 and y  1.61m and 3.72m 

Hence the points at 1.61m and 3.72m to right of left support. 

3.08. Draw the BMD and SFD for the loaded beam shown in Fig. 3.46. 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RA  RB  20kN 

Taking moment about A, 

M A  0;3RB  20  4 10 

R   
90 

 30kN 
B 

3
 

Similarly taking moments about B, 

M B  0; 3RA 10  201  0 

R   
30 

 10kN 
A 

3
 

Check 

Substituting in Eq. 01, we have RA + RB = —10 + 30 = 20 kN (O.K.) 

Bending Moment Values 

MD = 0 

MB  201  20kNm 

M  20 2  301  10kNm 
R 

(Negative because Sagging) 

MC   10 10  20kNm or (By considering right side forces) 
 

M  10 2  20kNm 
L 

 

MA = 0 

(By considering left side forces) 



 2 

 

 

 
 

 

 
A 10kNm C 

20kN 

B D 
 

 

  
 

 

 

 

20kN 
 

 

 

 

 

—10kN 

SFD 
 

—10kNm 
 

—20kNm 

BM 

Fig. 3.46 

 
—20kNm 

An overhang beam ABC is loaded as shown in Fig. 3.47. Draw BMD and SFD. 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RA  RB  4312  24kN 

Taking moment about A, 

M  0;6R  12  9  4  3
 
3  

3  
or R  

162 
 27kN A B  2  

B 
6 

 

Similarly taking moments about B, 

M B  0; 6RA 12  3  4  3
 3  

or R 

    A 

  
18 

 3kN 
6 

Check 

Substituting in Eq. 01, we have RA + RB = —3 + 27 = 24 kN (O.K.) 

Bending Moment Values 

MD = 0 

MB  123  36kNm 

MC  33  6kNm 

M A  0 

(Negative because Sagging) 

1m 2m 

 
—10kN 

 
1m 

20kN 



 2 

 

 

 

 

 

 
20kN/m 

 

 

40kN 
 

120kNm 

B 
 

 
 

 
 
 

 

 

 

 

-15kN 
 

 

 

-55kN 
 

 
SFD 

 

-55kN 

82.5kNm 

45kNm 
 

 

 

 

 

 

x 

 
 

BMD 

Fig. 3.48 

 

 
 

-37.5kNm 

3.09. Draw SFD and BMD for the beam shown in Fig. 3.48. Determine the 

maximum BM and its location. Locate the points of contraflexure. (July 02) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RA  RB  203 40 100kN 

Taking moment about A, 

 
M A  0;6RB  20  3

 3  
 40 3 120 or R 

    B 

 

 
330 

 55kN 
6 

Similarly taking moments about B, 

M  0; 6R   40  3  20  3
 
3  

3  
120 or R   

270 
 45kN B A  2  

A 
6 

 

Check 

Substituting in Eq. 01, we have RA + RB =45 + 55 = 100 kN (O.K.) 

45kN 

3m 

A 
1.5m 

C D 
1.5m 



D 

D 

 2 

 

 

 

 

 

Bending Moment Values 

MB = 0 

M  551.5  82.5kNm 
R 

 

M  82.5 120  37.5kNm 
L 

 

 

 

 

(By considering right side forces) 

M  45 4.5  20  3

1.5  

3  
 40 1.5  37.5kNm 

 
 

 
(By left side forces) 

DL  2 
 



MC  553120  45kNm 

 
(By considering right side forces) 

M  45 3  20  3
 3  

 45kNm 
C  



(By left side forces) 

MA = 0 

Points of Contraflexure 

Consider a section at a distance x where BM is changing its sign as shown in Fig. 

3.49. From similar triangles, we have 

45 



x 

37.5 

1.5  x

x  0.818m 

The Points of contraflexure are located at 3.818m and 4.5m from the left support. 

 
 

3.10. A beam ABCDE is 12m long simply supported at points B and D. Spans 

AB=DE=2m is overhanging. BC=CD=4m. The beam supports a udl of 10kN/m over 

AB and 20kN/m over CD. In addition it also supports concentrated load of 10kN at 

E and a clockwise moment of 16kNm at point C. Sketch BMD and SFD. (Aug 05) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RB  RD 10 2  204 10 110kN 

Taking moment about B, 

(01) 

M  0;8R   10  2
 2  

 10 10  20  4
 

4  
4  

16 or R   
576 

 72kN B D  2   2  
D 

8 

     

Similarly taking moment about D, 

M   0; 8R 10  2 16  10  2

8  

2  
 20  4 

 4  
or R 

 
  

 
304 

 38kN 
 

 D B  2   2  
B 

8 

Check 

     

Substituting in Eq. 01, we have RB + RD = 38 + 72 =110 kN (O.K.) 

Zero Shear Force 



 2 

C 

 2 

y 

 

 

 

 

 

Consider a section at a distance x where Shear Force is zero as shown in Fig. 3.50. 

From similar triangles, we have 

12 



x 

68 
or x  0.6m 

4  x

Bending Moment Values 

ME = 0 

MD  102  20kN 

 
M CR

 
 72  4 10  6  20  4

 4  
 68kNm 

 

M  68 16  52kNm 
L 

(From right side forces) 

 
10kN 

10kN/m 
A B 

20kN/m 
C D E 

 

 
 
 

10kN 
 
 

20kN 

 

 

 

68kN 

 
—68kN 

SFD 

75.2k 

 

52kN 
 

 

 

 

 

 

 

— — 
BM 

Fig. 3.49 
M  38 4  10  2

 
4  

2  
 52kNm 

 
 

(From left side forces) 
CL  2 

 


M  10  2
 2  

 20kNm 
B   

MA = 0 

Bending Moment at zero Shear Force will be either Maximum or Minimum. 

2m 

N 

 
— 

z 

   

 
4m 

kN 
10kN 

 

 
 

12 

kNm 

4m 

16  

2m 

12kN 



 

 2 

 

 

 
 

 

M x  724  x 102  4  x 
204  x

2
 

 

2 

 724  0.6 102  4  0.6 104  0.6
2 
 75.2kNm 

Point of Contraflexures 

Consider a section at a distance z where Bending Moment is zero as shown in Fig. 

3.49. From similar triangles, we have 

20 



z 

52 
and z  1.1m 

4  z 

Bending Moment at Section y from point D is zero and can be written as 

20  y 2 
M y  72  y 10 2  y    0 

2 

 72  y 102  y  10  y 2  62 y 10 y 2  20  0 and y  0.341m 

3.11. Draw the Shear Force and Bending Moment Diagrams for the beam shown in Fig. 

3.50. Locate the point of contraflexure if any. (Feb 04) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RA  RD  105  80  80  16 2.5  250kN 

Taking moment about A, 

M   0;12.5R   10  5
 5  

 80  5  80  7.5  16 2.5

12.5  

2.5 
A D  2   2 

     

R  
1675 

 134kN 
D 12.5 

Similarly taking moments about B, 

M  0;12.5R  16  2.5
 2.5  

 10  5
 

7.5  
5  

 80  7.5  80  5 D A  2   2 

R  
1450 

 116kN 
A 12.5 

   

Check 

Substituting in Eq. 01, we have RA + RB = 116 + 134 = 250 kN (O.K.) 

Bending Moment Values 

ME = 0 
M  16  2.5

 2.5  
 50kNm D  2 

 

M   134  5  16  2.5
 

5  
2.5  

 425kNm C  2 

 

M  116  5  10  5
 5  

 455kNm 
B   

MA = 0 



 

 

 
 

 

 

90k 

 

Point of Contraflexure 

Consider a section at a distance y from the right support where Bending Moment is 

zero as shown in Fig. From similar triangles, we have 

50 



y 

425 
and z  0.526m 

5  y 

A B 

  20k 

C 

20k 

6 

40kN — 

3m 

40kN 

A B 

N 

D 

Load intensity diagram 

90-(-40)=130kN 
264.75kNm 

20-(-70)=90kN 

BMD —40 kNm 

—120 kNm 
Fig. 3.50 

20k 

2m 
70kN 

C 

 SFD 

8m 

 x 
6.5



 2 

20x 2 










3.12. From the given shear force diagram shown in the Fig. 3.50, develop the load 

intensity diagram and draw the corresponding bending moment diagram indicating 

the salient features. (Jan 08) 

The vertical lines in Shear force diagram represent vertical load, horizontal lines 

indicate generally no load portion, inclined line represents udl and parabola indicates 

uniformly varying load. 

To generate load intensity diagram, the computations are shown in Fig. 3.50. The 

vertical line from the horizontal line below the line indicates negative value and vice 

versa. To check whether the applied moments are there in the loading diagram, we 

can take algebraic sum of moments of all the loads about any point and if there is a 

residue from the equation it indicates the applied moment in the opposite rotation to 

be applied anywhere on the beam. 

Check 

Taking Moments about B, we have 

 
M B  0; 40  3  90  8  20 10  20  8

 8  
 0 

 

Note: Hence there is no applied moment or couple and if there is any residue from 

the equation like +M kNm then there is an applied moment of M kNm clockwise and 

vice versa. 

Bending Moment Values 

MD = 0 

MC = -20 x 2 = -40 kNm (Negative due to hogging moment) 

MB = -40 x 3 = -120 kNm (Negative due to hogging moment) 

MA = 0 

Maximum Bending Moment occurs at zero shear force which is located at a distance 

x from the left support as shown in Fig. From similar triangles, we have 

90 



x 

70 
or x  4.5m 

8  x


Maximum Bending Moment at the section x is 

2 

M x  130x  403  x   130x  403  x  x 
2 

 130  4.5  403  4.5  4.52  264.75kNm 



90k 

 

 
 

-63.64kN 

6m 

 

 

 
-90kN 

 

 

 

 
 

3.13. A beam 6m long rests on two supports with equal overhangs on either side and 

carries a uniformly distributed load of 30kN/m over the entire length of the beam as 

shown in Fig. 3.51. Calculate the overhangs if the maximum positive and negative 

bending moments are to be same. Draw the SFD and BMD and locate the salient 

points. (Jan 07) 

The reactions can be obtained from the conditions of equilibrium. 

As the loading is symmetrical RA = RB and hence 

VA = 0; RB + RC = 2 RB = 2RC = 30 x (6+2a) 

 
RB  RC 

 

 
30 6 

 90kN 
2 

Bending Moment at any section x from the left end is given by 

30x 2
 2 

 M x  90  x  a 
2 or 90 x  a 15x 01 

From the given problem, maximum positive and negative bending moments are to 

be same, which occurs at zero shear force sections. From the above loading diagram, 

it can be seen that the zero shear force occurs at support and at centre (as the loading 

A B 
30kN/m 

C D
 

 

 
 

 

 

 
 

 

 

 

 
-23.176kNm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
BMD 

Fig. 3.51 

 

 
 

 

 

 

 

 

 

 

 

 

 
-23.176kNm 

a a 

 

 

 

SFD 

23.176kNm 

63.64kN 



E 

 
2 


 2         

2  3 

 

 

 
 
 

is symmetrical). Hence substituting x = a and 3, we get maximum +ve and —ve 

Bending Moment. 

M B  15a 2 

M     903 a 153
2 
 903 a135 

Equating the absolute values of above two equations, we have 

15a 2  903  a 135 or a 2  6a  9  0 and a  1.243m 

Bending Moment Values 

MD = 0 

 
M C  


M B  

MA = 0 

 

301.2432 

2 
 

301.2432 
 

 

2 

 
 23.176kNm 

 

 23.176kNm 

 

 

301.2432 

M E  903 1.243    23.176kNm 
2 

Points of Contraflexure: 

M x  90 x 1.243 15x 2  6 x 1.243  x 2  0 or x  1.76m and 4.24m 

The points of contraflexure are at 1.76m and 4.24m from left end. 

3.14. Draw the Shear Force and Bending Moment Diagram for a simply supported beam 

subjected to uniformly varying load shown in Fig. 3.52. 

The trapezoidal load can be split into udl and uvl (triangular load) as shown in Fig. 

3.43. 

VA = 0; R A  RB  15 6  
 1 

10  6  120kN 01 
 

Taking moment about A, 

M  0;6R   15 6
 6  

 
 1 

10  6
 2 

 6 
 

or R   
390 

 65kN A B  2     2   3  D 
6 

           

Similarly taking moments about B, 

M B  0;6RA  15 6
 6  

 
 1 

10  6
 6  

 80  7.5  80  5 or R 
              A 

 
330 

 55kN 
6 

Check 

Substituting in Eq. 01, we have RA + RB = 55 + 65 = 120 kN (O.K.) 



15kN/m 
A 

25kN/m 
B 

6m 

uvl 10kN/m 

15kN/m 
A 

15kN/m 
B 

6m 

udl 

 

 
3m 

 

m 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 


(udl)15kN/ 

(uvl)10kN/ 

A B 

x 
6 

2m 
45kN 

 

 

 

SFD 

90.156kN 

 

-55kN 

 

 

 
 

 

BM 
Fig. 

Shear Force Equation at any section x from left support 

Consider a section x at a distance x from the left support as shown. 

The intensity of uvl at x is given by 

  
 10  x  

 1.67x kN/m x  6 

 


Vx  55 15x 



1.67x 2 

2 

 
 55 15x  

5 
x 2 kN 

6 

At x = 2m, V  55 15 2  
5 
 22  21.67kN 

 

2 6 
 

At x = 3m, V  55 15 3  
5 
 32  2.5kN 

 

3 6 

At x = 5m, V  55 15 5  
5 
 52  40.83kN 

 

5 
 

 

Zero Shear Force = Vo 

6 

 

 55 15 x  
5 
 x 2  0solving we get, x  3.124m 

6 



 
18 



 

 

 

 

 

Bending Moment Values 

Bending Moment Equation at any section x from left support 

Consider a section x at a distance x from the left support as shown. 
 

  
15x 2 

 
 1.67x 2  x  

 



  

2 
 

5  3 kNm 
M x 55x 2  2  3  55x 7.5x x 18 

   

M  55 7.5x 2   
5 

x 3 
x 18 

MB = 0 

MA = 0 

Maximum Bending Moment occurs at SF = 0, i.e. x = 3.124m 

M  55 3.124  7.5 3.1242  
 5 

 3.1243  90.156kNm 
x  

3.15. A beam ABCD 20m long is loaded as shown in Fig. 3.53. The beam is supported at 

B and C with a overhang of 2m to the left of B and a overhang of am to the right of 

support C. Determine the value of a if the midpoint of the beam is point of inflexion 

and for this alignment plot BM and SF diagrams indicating the important values. 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RB  RC   5   20  25 kN (01) 

Taking moment about B, 

   22     20  2
2 

M B  0;18  a  RC  5  2  
  

  


 2      2 


18  a R 

 
C  150 or RC 

 


 150   

18  a

Similarly taking moment about C, 

 a 2 


  20  a

2 
MC  0;18  a RB  

  
 5 20  a   

 2     2 


18  a RB  300  25a or RB 


Check 

 

 300  25a

18  a

Substituting in Eq. 01, we have 

R  R 
 150 

 
 300  25a 

 25 (O.K.) 
B C 18  a 18  a




x 



       













Point of contraflexure 

Consider a section at a distance x from left support as shown in Fig. 3.53. Bending 

moment at this section is given by 

x 2  300  25a  x 2 
M x  RB  x  2  5  x      x  2  5  x 

2  18  a  2 

From the given data, this is zero at x = 10m. Hence 

 300  25a  
2 

 x  2  5  x   0 
 

 

 18  a  2 

300  25a   10 2 8  510   0 
 

 

  18  a  2 

300  25a  
 12.5

 


 18  a 

300  25a  225 12.5a or a  6m 

RB 
 300  25a

18  a

 300  25 6
 18  6

 12.5

R 
 150 


 150 

 12.5


C 
18  a  18  6

Zero Shear Force 

Consider a section at a distance y where Shear Force is zero as shown in Fig. 3.53. 

From similar triangles, we have 

5.5 



y 

6.5 
or y  5.5m 

12  y 

Bending Moment Values 

MD = 0 

62 

MC     
2

  18

22 

M B  5  2    
2 
 12

MA = 0 

 5.5  2
2

 

M E  12.5  5.5  5 5.5  2    3.125 
2 

Another point of contraflexure is 

 300  25 6 M x   6   2 5 6 

 

 
62  

 
 

 18  6  2 





10 10 

a 
x 

5
/ 

 2 

 

 

 

 

 

5 
/m 

A B C D 

 
22m 

 

 
5.5 

x 

10m 
y 

 
a 

10m 

 

 

 

 

 

-—5
—7 

SFD 

 

 

3.125








-12
BMD 

Fig. 3.53 

 

-18

3.16 For the beam AC shown in Fig. 3.54, determine the magnitude of the load P acting 

at C such that the reaction at supports A and B are equal and hence draw the Shear 

force and Bending moment diagram. Locate points of contraflexure. (July 08) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RA  RB  454  P 01 

From the given data, RA = RB and substituting in Eq. 01, 2RA  2RB 180  P 

Taking moment about A, 

M A  0;6RB  7P  45 4
 4  

 30 or 6R 

    B 
 7P  390 

Substituting from Eq. 01, 

3180  P  7P  390 or P  37.5kN 

Check 

Similarly taking moments about B, 
M   0; 6R   P 1 30  45 4

 
2  

4 
B A  2 

 

6RA  690  P 

Substituting from Eq. 01, 3180  P  690  P or P  37.5kN 

Hence O.K. 





D 

 2 

D 

4m 

108.75kN 

 

 

 
 
 

2RA = 2RB = 180 + 37.5 = 217.5kN 

RA = RB = 108.75kN 

Zero Shear Force 

Consider a section at a distance x where Shear Force is zero as shown in Fig. 3.54. 

From similar triangles, we have 

108.75 



x 

71.25 
or x  2.417m 

4  x

Bending Moment Values 

MC = 0 

MB  37.51  37.5kNm 

M  108.75 2  37.5 3  105kNm 
R 

 

 
 

(Negative because Sagging) 

M DL
 
 108.75 4  45 4

 4  
 75kNm 

 
(From left side forces) 

M  105  30  75kNm 
L 

MA = 0 

(From Right side forces) 

Maximum Bending moment occurs at zero shear force. i.e. at x = 2.417 

 
M x   108.75 x 

45 x 2 

2 

 
 108.75 2.417 

45 2.4172 

2 

 
 131.41kNm 

 

 

45kN/m 

A 

 

30kNm 

 

P=? 

 

C 

 
 

 

 

37.5kN 
 

 

 

 

-71.25kN 

131.41kN 

 

SFD 

105kN 

 

-71.25kN 

 

75kN 
 

 

 

 
 

BMD 

Fig. 3.54 

-37.5kNm 

D B 

1m 

37.5kN 

3m 





 

 

 
 

 

3.16. Draw the bending moment and shear force diagrams for a prismatic simply 

supported beam of length L, subjected to a clockwise moment M at the centre of the 

beam and a uniformly distributed load of intensity q per unit length acting over the 

entire span. (Jan 09) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RA  RB  q L kN (01) 

Taking moment about A, 

 
M A  0; RB  L  M 

q  L2 
 

 

2 

R    
q  L 

 
M 

  

B 2 L 

Similarly taking moment about B, 

 
M B  0; RA  L 

q  L2 
M 

2 

R    
q  L 

 
M 

  

A 2 L 

Check 

Substituting in Eq. 01, we have q/unit 

R    R   
 q  L 


 M 


 q  L 


 M 

 q L (O.K.) 
A 

M C 
B

 
A B 

2
 L 2 L R 

x 
L R 

A 

Zero Shear Force 

Consider a section at a distance x where Shear RA 

Force is zero as shown in Fig. 3.55. From 

similar triangles, we have 

 q L 
 

M   q L 
 

M 

y 
B 

 
 
 

RB 

SFD 

2 L   

 2 

 
 

L 
 or x  

 L 


 M 


x L  x 
 

2 q L 



  
 qL2 M M 2  

 
qL2 

 
M 

  
M 2 

  


   

8   
  

2  
 

2 q L2 

8 2 2 q L2 

Bending Moment Values 

MB = 0 

MA = 0 

BM 

Fig. 3.55 SS with UDL & 

Bending Moment at zero Shear Force will be either Maximum or Minimum. 
 

 q  L M  q 
 

 q  L M   L M  q    L M  
2
 

M x      x     x 2                

   2 L  2    2 L   2 q L  2    2 q L 

qL2 M M 2 
M max  8   

 
2 
 

2 q L2 







D E 

x 2 3 

x 2 3 

 
 

 

 
 

3.17. For the loaded beam shown in Fig. 3.56, Draw the Shear Force and Bending 

Moment Diagram. Find and locate the Maximum +ve and —ve Bending Moments. 

Also locate the Point of Contraflexures. Detail the procedure to draw the SFD and 

BMD. (July 09) 

It can be seen the loading is symmetrical and the Reactions are equal. From the 

conditions of equilibrium 

VA = 0; 

R  R  2R  2R  2 
 

20  
1 
10  2

  
 20 2 or R  R 

 
 

 
 50kN 

A B A B  2  A B 

 

Bending Moment Values 

MF = MC = 0 

MA  MB  202  40kNm 

 
M  M  50  2  20  4  

 1 
10  2 

 2  2  
 6.67kNm 

 
  DL ER  2    3   

  

M  M  6.67 10  3.33kNm 
R L 

 

Maximum Bending Moment and Points of Contraflexure 

Maxumum Bending Moment 

Bending Moment at any section x in the region DE is given by 
 

 1 
 

 2   x  2
2
 

M  50x  20  x  2    10 2  x     20 
   2 

10 

The Maximum bending moment occurs at zero shear force. 

i.e. x = (5-2) = 3 m 
  1 

 
 2  3  2

2
 

M  50  3  203  2    10  2  3     20 
   2 

10  6.67kNm 

 

 

Shear Force Diagram 

1. Draw a horizontal line C1F2 equal to the length of the beam 10m to some scale, 

under the beam CF as shown. 

2. Start the Shear force line from left extreme edge C1. Draw C1C2 under the 

vertical load 20kN acting at C downward equal to some scale. To start with, the 

shear force at C1=0 and at C2, the Shear force = 0 – 20 (-ve as it is acting 

downward) = -20 kN. 

3. There is no load in the region CA and hence under this region, the shear force 

line C2A1 will be a horizontal line parallel to beam axis. 



 

 

 

 

 

4. At A, there is a reaction RA which is treated as vertical load = 50kN and hence 

the shear force line A1A2 = 50kN to some scale and the shear force at A2 = -20 + 

50 (+ as it is upward) = +30 kN. 

5. There is a uvl in the region AD and the shear force line will be a parabola in this 

region. The parabola will be tangential to vertical at A2 as there is relatively 

higher load intensity at A and will be parallel to horizontal at D1 as the load 

intensity is lesser at D. Hence the curve is sagging. The vertical distance from A2 

to D1 is equal to the total load equivalent to uvl, i.e. ½ x 10 x 2 = 10kN and the 

shear force at D1 = 30 - 10 (- as it is downward) = +20 kN. 

6. There is an udl in the region DE and hence the shear force line is inclined from 

D1 to E1. The vertical distance from D1 to E1 is equal to the total load equivalent 

to udl, i.e. 20 x 2 = 40kN and the shear force at E1 = 20 - 40 (- as it is downward) 

= -20 kN. 

7. There is a uvl in the region EB and the shear force line will be a parabola in this 

region. The parabola will be tangential to horizontal at E1 as there is relatively 

lower load intensity at E and will be parallel to vertical at B1 as the load intensity 

is higher at B. Hence the curve is hogging. The vertical distance from E1 to B1 is 

 

 

20kN 
10kN/m  

D 20kN/m 

10kN/m 
20kN 

C A 
10kNm 

E 
B F 

G 10kNm 
2m 2m 2m 

x 
2m 2m 

30kN 
A2 

C1 
 

C2 A1 

20kN 
     D1 

 

 
E1 

20kN B2 
F1 

20kN 

F2 

—20kN —20kN —20kN 

SFD 

B1 
—30kN 

6.67kNm 6.67kNm 
6.67kNm

 

C3 

D3 
G3 

E
 

F3 
D4 -3.370kNm E3 

 

A3 
—40kNm 

 
BMD 

Fig. 3.56 

B3 
—40kNm 

4 



 

 

 
 

 

equal to the total load equivalent to uvl, i.e. ½ x 10 x 2 = 10kN and the shear 

force at B1 = -20 - 10 (- as it is downward) = -30 kN. 

8. At B, there is a reaction RB which is treated as vertical load = 50kN and hence 

the shear force line B1B2 = 50kN to same scale and the shear force at B2 = -30 + 

50 (+ as it is upward) = +20 kN. 

9. There is no load in the region BF and hence under this region, the shear force 

line B2F1 will be a horizontal line parallel to beam axis. 

10. Draw F1F2 under the vertical load 20kN acting at F downward equal to same 

scale. The shear force at F2 = 20 – 20 = 0 (-ve as it is acting downward). Note 

that for the Shear Force Diagram to be precise, the shear force line must finally 

join the horizontal axis. If there is any shortage or surplus, the shear force 

diagram must be redrawn. 

11. The portion of the shear force diagram above the horizontal axis is +ve and the 

one below the horizontal axis is –ve. 

Bending Moment Diagram 

1. The Bending Moment is zero at the extreme edges of the beam unless there is an 

applied moment or couple acting at the edges, Hence the Moment at C = MC = 0 

i.e. at C3. 

2. The Bending moment at A is -40 kNm and hence the bending moment line is 

inclined under the no load portion CA (it can be either horizontal or inclined 

depending on the moments at the corresponding ends of the portion in the 

region). 

3. The region AD has a uvl and hence the bending moment line will be a cubic 

parabola (the index of BM is always one more than SF at any section and hence 

bending moment line is inclined under horizontal shear force line, parabola 

under inclined shear force line and cubic parabola under parabolic shear force 

line). The parabola joins the bending moment values at A3 is -40kNm and at D3 

is +6.67kNm (Bending moment to the left of D). The cubic parabola will be 

parallel to vertical at A3 and parallel to horizontal at D3 as the absolute value of 

shear force at A2 = 30kN (more) compared to that at D1 = 20kN. 

4. The bending moment line is always a vertical line under the applied moment or 

couple. There is an clockwise applied moment of 10kNm acting at D and hence 

it is hogging. The vertical line D3D4 is downward and equal to the applied 



 

 

 

 

 

moment to the same scale = 10kNm. The Bending moment value at D4 = -3.37 

kNm 

5. The region DG is acted upon by udl, the shear force line is inclined and the 

bending moment line will be a parabola from D4 to G3. The parabola is joining 

Bending moment at D4 = -3.37 to that at G3 = 6.67kNm. The bending moment 

line will be tangential to vertical at D4 and tangential to horizontal at G3 as the 

shear force at D1 = 20kN which is relatively higher than at G which is 0. 

6. The region GE is acted upon by udl, the shear force line is inclined and the 

bending moment line will be a parabola from G3 to E3. The parabola is joining 

Bending moment at G3 = 6.67 to that at E3 = -3.37kNm. The bending moment 

line will be tangential to horizontal at G3 and tangential to vertical at E3 as the 

absolute shear force at G = 0kN which is relatively lesser than at E3 =3.37kNm. 

7. There is an anti-clockwise applied moment of 10kNm acting at E and hence it is 

sagging. The vertical line E3E4 is upward and equal to the applied moment to the 

same scale = 10kNm. The Bending moment value at E4 = 6.67 kNm 

8. The region EB has a uvl and hence the bending moment line will be a cubic 

parabola. The parabola joins the bending moment values at E4 is 6.67kNm 

(Bending moment to the right of E) and at B3 is -40kNm. The cubic parabola will 

be tangential to horizontal at E4 and parallel to vertical at B3 as the absolute value 

of shear force at E1 = 20kN (less) compared to that at B1 = 30kN. 

9. The Bending moment at B is -40 kNm and hence the bending moment line is 

inclined under the no load portion BF to join the horizontal axis at F3 where the 

bending moment is zero. 



 2 

   
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3.19 Draw the shear force and bending moment diagrams for a overhanging beam shown 

in Fig. 3.57. Find and locate the points of contraflexure. (July 09) 

 
The reactions can be obtained from the conditions of equilibrium. 

VA = 0; R 

 

B  RD  10  2  40  
1 
 20  2  20  100kN 

2 

 

(01) 

Taking moment about B, 

M  0; 4R   10  2
  2  

 40  2  
 1 

 20  2 
  

2  
2  2  

 20  6 
B D  2   2  3   

      

R  
246.67 

 61.67kN 
D 

4
 

Similarly taking moment about D, 

M  0; 4R  20  2  10  2
 

4  
2  

 40  2  
 1 

 20  2 
 2 1 


D B  2   2   3   

R    
153.33 

 38.33kN 
B 

4
 

    

Check 

Substituting in Eq. 01, we have RB + RD = 38.33 + 61.67 =100 kN (O.K.) 

Bending Moment Values 

ME = 0 

MD  20 2  40kN 

M    61.67  2  20  4  
 1 

 20  2 
 2  2  

 16.67kNm C  2    3   

  

M  10  2
 2  

 20kNm 
B   

MA = 0 

Points of Contraflexures 

Bending moment at any section x from the left support 

For region CD 


M x  38.33x  10  2 x  1  40  x  2  


 20 


 x  2
2  2 

    x   2 
   2 2  3 

 

For Point of contraflexure, Mx = 0, solving, we get x = 2.713m 

For region BC M x  38.33x  10  2x 1

For Point of contraflexure, Mx = 0, solving, we get x = 1.09m 

1 



 2 

 

 

 

 

 

 

 

From second method, consider the similar triangles between BC, 

x 
 

2  x 
 
or x  1.09m 

20 16.67 

 

 

 
A 

 

 

10kN/m 

 
 

40kN 

 
20kN/ 

20kN
 

B C D 
2m 2m 2m 

x 
20kN 

18.33k 

E 

 

20kN 

 

 
 

N -21.67kN 
 
 

SFD 

16.67kNm 

x y 
 

 

-20kNm 
 

BMD 

Fig. 3.57 

 
 

-40kNm 

3.20 For the beam shown in Fig.3.58, draw the shear force and bending moment diagram 

and locate the Point of contraflexure if any. (Jan 09) 

The reactions can be obtained from the conditions of equilibrium. 

VA = 0; RB  RD 10 2  30  40  20 4 170kN 

Taking moment about B, 

(01) 

M  0; 6R    10  2
 2  

 30  2  40  4  20  4
 

4  
4  

or R    
720 

 120kN B D  2   2  D 6 

     

Similarly taking moment about D, 

M    0; 6R    10  2
 

4  
2  

 30  4  40  2 or R    
300 

 50kN D B  2  B 6 

 

Check 

Substituting in Eq. 01, we have RB + RD = 50 + 120 =170 kN (O.K.) 

Bending Moment Values 

ME = 0 

M   20  2
 2  

 40kN 
D   







-41.67kN 




-20k 

18.33k 

2m 



 2 

 2 

   

D E 











M   120  2  20  4
  4  

 80kNm 
C   

M  50  2  10  2
 2  

 80kNm 
B   

MA = 0 

Points of Contraflexures 

Bending moment at any section x from the left support 

For region CD 


M x  38.33x  10  2 x  1  40  x  2  


 20 


 x  2
2  2 

    x   2 
   2 2  3 

 

For Point of contraflexure, Mx = 0, solving, we get x = 2.713m 

For region BC M x  38.33x  10  2x 1

For Point of contraflexure, Mx = 0, solving, we get x = 1.09m 

From second method, consider the similar triangles between BC, 

x 
 

2  x or x  1.09m 
20 16.67 
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BMD 

Fig. 3.58 
—40kNm 

3.21 For the beam shown in Fig. 3.59, obtain SFD and BMD. Locate Points of 

contraflexure, if any. (July 09) 

The reactions can be obtained from the conditions of equilibrium. 

D SF 

 

 

 
-80kN 

x 

80kNm 

-40kN 

2m 

1 



 2 

4 
D 

 

 

 

 

 

VA = 0; RB  RD  58  50  90kN 

Taking moment about B, 

 

(01) 

 
M B  0;16RD  120  5  8

 8  
 50 12 160 or R 

    D 

 

 
800 

 50kN 
16 

Similarly taking moment about D, 

M     0;16R    160  5  8

8  

8  
 50  4  120 or R 

 
 

 
640 

 40kN 
 

 D B  2 
D 

16
 

 

Check 

Substituting in Eq. 01, we have RB + RD = 40 + 50 =90 kN (O.K.) 

Bending Moment Values 

MDR = 0 

M AL  160kNm 

MC  50 4 160  40kNm 

MB  508  50 4 160  40kNm 

M AR  120kNm 

MAL = 0 
 

120kN 

A 
x
 

 
40k 

5kN/ 
B

 

8m 

10 

50k 
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160kN 
 

 

 

 

 
 

 
40kNm 

 

SFD 
-50kN 

y 
40kNm 

-50kN 

 

 

 

-120kNm 

 

Points of Contraflexures 

BMD 

Fig. 3.59 

 
-160kNm 

Bending moment at any section x from the left support 

For region AB 

 5x 2 
M x  40x   2    

120  0 or x  4m 
 

4 



10kN/m 

2m 
B

 4m 
C 

2m 

   2 


   2 


   2 












Point of contraflexure is x = 4m from the left  support. 

For region CD M y  50y 160  0 or y  3.2m 

For Point of contraflexure is y = 3.2m from the right support. 

From second method, consider the similar triangles between CD 

y  
4  y 

or y  3.2m 

160 40 

A beam ABCD, 8m long has supports at A and at C which is 6m from point A. The beam 

carries a UDL of 10kN/m between A and C. At point B a 30kN concentrated load acts 2m 

from the support A and a point load of 15kN acts at the free end D. Draw the SFD and 

BMD giving salient values. Also locate the point of contra-flexure if any. (14)(July 2015) 

 

30kN 15kN 

 

A D 
 

 

From the conditions of equilibrium, we have algebraic sum of vertical forces to be zero. 

 V  0; RA  RC  30 15 106 105 kN 
Algebraic sum of moments about any point is zero. Taking moments about A, we get 

 

M A  0; 6RC  302  158  106 
 6  

 360 kN 
 

RC  60 kN
Taking moments about C, we get 

 

M C  0; 6RA  152  304  106 
 6  

 270 kN 
 

RA  45 kN
Check: RA  RC  45  60  105 kN 
Shear Force Diagram can be directly drawn. 

Bending Moment values: 

Unless there are end moments of the beam, the Moments are zero at ends of the beam. 
 

M A  0 and M D  0 

M  452  102 
 2  

 70kNm 
B  

M C  152  30kNm 



 
2 


 
 

 

 
 

To locate the point of contra-flexure where the bending moment changes its sign, consider 

the section to be at a distance x towards left of the right support as shown. The bending 

moment at the section is given by 

M  60x  152  x  10 x
 x  

 0 
x  

45x  30  5x 2  0 

Solving, x  0.725m and 8.275m 

Hence the point of contra-flexure is at 0.725m to left of right support. 
 

 

 

 

 

45k 
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kN 
 

 

 

 

 

 

 

 

 

 
 

 

 

Draw the Shear force and bending moment diagrams for the Fig. shown (10) July 2016 
 

 
15kN/m 

A 
D 

2m 

40kN 

 
E F 

 
10kN/m 

4m 
B 

2m 
C

 
1m 1m 

From the conditions of equilibrium, we have algebraic sum of vertical forces to be zero. 

 

 V  0; RA  RB  152  40 102  90 kN 
Algebraic sum of moments about any point is zero. Taking moments about A, we get 

 

M  0; 8R  152 

1 

2  
 401 2 1  102


8  

2  
 400 kN A B    2 

    2 


   

RB  50 kN
Taking moments about B, we get 

30kN 15kN 

10kN/m x 

A 

N 
2m 

B 
4m 

C 

60kN 
2m 

D 

Loading Diagram 

N 

 25kN 
15kN 



15 

SFD 

x 

Point of contra-flexure 

BMD 



30kNm 

 
5kN 



5kN 





   2 


   2 


 

 

 
 

 

 
 

M  0; 8R  102
 2  

 404  152
 

4 1 
2  

 340 kN B A   2 
   2 



RA  40 kN
   

Check: RA  RB  40  50  90 kN 
Shear Force Diagram can be directly drawn. 

Bending Moment values: 

Unless there are end moments of the beam, the Moments are zero at ends of the beam. 

 

M A  0 and MC  0 

M D  401  40kNm 

M  403  152 
 2  

 90kNm 
E  

M  404  152 

1 

2  
 100kNm F    2 



 

M   102 
 2  

 20kNm 
B  




15kN/m 

A 
D 

2m 

40kN 

 
E F 

 
10kN/m 

4m 
B 

2m 
C

 

40kN 
1m 1m 

Loading Diagram 
50kN 

 

40kN 
40kN 




10kN 

 

 
10kN 

 
20kN 



5kN 

kN 

 

kN 

SFD 
90kNm 100kN 

 

40kNm 


x 

Point of contra-flexure 

BMD 20kNm 

 

To locate the point of contra-flexure where the bending moment changes its sign, consider 

the section to be at a distance x towards left of the right support as shown. Bending 



   2 


80kN 
20kN/m 

A B 

4m 
C 

2m 
D 

2m 

 

 

 

 

 

moment inclined line is crossing zero line as a straight line forming two alternate triangles 

which are similar.  Hence using similar triangle properties 

 

4  x 
 

100 

x 20 

Solving, x  0.67m 

Hence the point of contra-flexure is at 0.67m to left of right support. 

15kN/m 
A 

D 
2m 

40kN 

E F 

10kN/m 

4m 
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2m 
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40kN 
1m 1m 

Loading Diagram 
50kN 

40kN 
40kN 

 
10

 
kN 

10kN
 

 
20kN 



5kN 


kN 
kN 

SFD 

90kNm 100kN 

 

40kNm 


x 

Point of contra-flexure 



BMD 20kNm 

 

Draw Shear force and Bending moment Diagram for the beam shown in Fig. 
 

 

Fromthe conditions of equilibrium, we have algebraic sum of vertical forces to be zero. 

  V  0; RA  RB  204  80  160 kN 

M A  0; 8RB  204 
 4  

 804  2  640 kN 
 

RB  80 kN





160kN 

FD 

   2 


   2 












Algebraic sum of moments about any point is zero. Taking moments about A, we get 
 

M A  0; 8RB  204 
 4  

 804  2  640 kN 
 

RB  80 kN 

Taking moments about B, we get 

M  0; 8R  204 
 

4  
4  

 802  640 kN B A    2 


 

RA  80 kN

Check: RA  RB  80  80  160 kN 


Shear Force Diagram can be directly drawn. 

Bending Moment values: 

Unless there are end moments of the beam, the Moments are zero at ends of the beam. 

 

M A  0 and M B  0 

M  804  204 
 4  

 160kNm 
C  

MD  802  160kNm 

20kN/m 

A 
4m 

 

 

C 
2m 

 

80kN 

B 
D 

2m 

80kN  

 
80kN 



Loading Diagram 
80kN 

 

 
S kN 

160kN 
 








BMD 





kN 



 

 
 

5.2 Bending Stress 

a. Simplifying assumptions 

 The stresses caused by the bending moment are known as 

bending stress, or flexure stresses. The relationship between 

these stresses and the bending moment is called the flexure 

formula.

 In deriving the 

flexure formula, 

make the following 

assumptions:

 The beam has an 

axial plane of 

symmetry, which we 

take to be the xy- 

plane (see Fig. 5.1). 

Figure 5.1 Symmetrical beam with loads 

lying in the plane of symmetry. 
  

 

 

 

 

 

 

 



 

 

 
 

 The applied loads (such as F1,F2 and F3 in Fig.5.1) lie in the 

plane of the symmetry and are perpendicular to the axis of the 

beam (the x-axis).The axis of the beam bends but does not 

stretch ( the axis lies some where in the plane of symmetry; its 

location will be determined later). 

 Plane sections of 

the beam remain 

plane (do not warp 

) and perpendicular 

to the deformed 

axis of the beam. 

Change in the 

cross-sectional 

dimensions of the 

beam are 

negligible. 
Figure 5.1 Symmetrical beam 

 
 

 

 

 

 

 

 



 

 

 

 Because the shear stresses caused by the vertical shear force will 

distort (warp) an originally plane section, we are limiting our 

discussion here to the deformations caused by the bending 

moment alone.

 the deformations due to the vertical shear force are negligible in 

the slender beams compared to the deformations caused by 

bending .
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 



 

 

 

 The above assumptions lead us to the following conclusion: 

Each cross section of the beam rotates as a rigid entity about a 

line called the neutral axis of the cross section.

 The neutral axis passes through the axis of the beam and is 

perpendicular to the plane of symmetry, as shown in Fig. 5.1. 

The xz-plane that contains the neutral axes of all the cross 

sections is known as the neutral surface of the beam.
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 



 

 

 

b. Compatibility 

 The neutral surface becomes curved upon deformation, as 

indicated in Fig.5.2.

 The longitudinal fibers lying on the neutral surface are 

undeformed, whereas the fibers above the surface are compressed 

and the fibers below are stretched.
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5.2 Deformation of an infinitesimal beam segment. 
 

 

 

 

 

 

 

 



 

 

 

 

 The fiber form are arc a' b' of radius (-y) , subtended by the

angle dθ, its deformed length is 

 The original length of this fiber is 

strain  of the fiber

a ' b ' 

ab 

 

dx 

y d

d . 

 

The normal 

 

 
 
 

 

 

 

 

 

 

 

 

  
a'b'  ab 

 
  yd  d 

 
 y 

ab d 



 

  E   
E 

y 


 

 

 

 Assuming that the stress is less than the proportional limit of the 

material we can obtain the normal stress in the fiber ab from 

Hook＇s law:

 

Equation (5.1) shown that 

 

the normal stress of a longitudinal 

(5.1) 

fiber is proportional to the distance y of the fiber from the neutral 

surface. 

 The negative sign indicates that 

positive bending moment causes 

compressive stress when y is 

positive (fiber above the neutral 

surface) and tensile stress when y 

is negative (fiber below the neutral 

surface).
 

 
 

 

 

 

 

 

 

 



 

E 

 

 

c. Equilibrium 

 Figure 5.3 shows the normal 

force acting on the 
infinitesimal area dA of the 

cross section is dP =  dA. 

Substituting  = - (E/  )y,
 

dP   

 ydA (a) 

Where y is the distance of dA 

from the neutral axis (NA). 

 The resultant of the normal 

stress distribution over the 

cross section must be equal to 

the bending moment M acting 

about the neutral axis (z-axis).

 
Figure 5.3 Calculating the 

resultant of the Normal 

stress acting on the cross 

section. Resultant is a 

couple Equal to the internal 

bending moment of M. 
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In other work, 

where the integral is taken over 

the entire cross-sectional area A 

the resultant axial force and the 

resultant bending moment about 

the y-axis must be zero; that is, 

and 

These three equilibrium equations 

are developed in detail below. 

Resultant Axial Force Must Vanish The condition for zero 

axial force is 

A 
dp   


A  

ydA  0 

 

 
 

 

 

 

 

 

 

 

 

 dP  0 
A  zdP  0 

A 

 A  
ydp  M 



 

 

 

 Because E /  ≠ 0, this equation can be satisfied only if  
 

(b) 
 

The integral in Eq.(b) is the first moment of the cross-sectional 

area about the neutral axis. It can be zero only if the neutral axis 

passes through centroid C of the cross-sectional area. 
 

 

Resultant Moment About y-Axis Must Vanish 

This condition is 
 

 

 

 

(c) 

The integral in Eq.(b) is the 

product of inertia of the cross- 

sectional area. 
 

 

 

 

 

 

 

 

 

 zdP   
E 
 zydA  0 

A  A 

A  
ydA  0 



 

A 

2 y dA  I 

 A 
ydp  M  ydp 

E 

A 
y dA  M 2 

A 

 

 
 

Resultant Moment About the Neutral Axis Must Equal M 

Equating the resultant moment about the z-axis to M 
 

Recognizing that is the moment of inertia of the cross- 

sectional area about the neutral axis ( the z-axis), we obtain the 

moment curvature relationship 

(5.2a) 

 
A convenient form of this equation is 

 

(5.2b) 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

M  
EI 





1 
 

M 

EI 



 

   
My

 
I 

max 
 
M max c 

I 

 

d. Flexure formula; section modulus 

 Substituting the expression for 1/ from Eq.(5.2) into Eq. (5.1), 

we get the flexure formula :
 

(5.3) 

Note that a positive bending moment M causes negative 

(compressive) stress above the neutral axis and positive ( tensile) 

stress below the neutral axis 

 The maximum value of bending 

stress without regard to its sign is 

given by 
 

 

(5.4a) 

where c is the distance from the 

neutral axis to the outermost point 

of the cross section.  
 

 

 

 

 

 

 



 

max 

 M max 
S 

 

 

Equation (5.4a) is frequently written in the form 

(5.4b) 
 

where S = I / c is called the section modulus of the beam. The 

dimension of S is [L3], so that its units are in.3, mm3, and so on. 

The formulas for the section moduli of common cross sections are 

given in Fig. 5.4. 
 

 
 

Figure 5.4 

Section moduli 

of simple cross 

sectional 

shapes. 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



 

 

 The section 
moduli of 
standard 
structural 
shapes are 
listed in 
various 
handbooks; an 
abbreviated list 
is given in 
Appendix B. 

 

Figure 5.4 Section 
moduli of 
simple cross 
sectional 
shapes. 

 

 

 

 

 

 

 

 

 



 

 

 

 

e. Procedures for determining bending stresses 

Stress at a Given Point 

• Use the method of sections to determine the bending moment M 

at the cross section containing the given point. 

• Determine the location of the neutral axis. 

• Compute the moment of inertia I of the cross- sectional area 

about the neutral axis. ( If the beam is standard structural shape, 

its cross- sectional properties are listed in Appendix B. P501) 

• Determine the y-coordinate of the given point. Note that y is 

positive if the point lies above the neutral axis and negative if it 

lies below the neutral axis. 

• Compute the bending stress from σ = -My / I. If correct sign 

are used for M and y, the stress will also have the correct sign 

(tension positive compression negative). 
 

 

 

 

 

 

 

 



 

 

 
 

Maximum Bending Stress: Symmetric Cross Section 

If the neutral axis is an axis of symmetric of the cross section, the 

maximum tensile and compression bending stresses are equal in 

magnitude and occur at the section of the largest bending 

moment. The following procedure is recommended for 

determining the maximum bending stress in a prismatic beam: 

• Draw the bending moment diagram by one of the methods 
described in Chapter 4. Identify the bending moment Mmax that 

has the largest magnitude (disregard the sign) 

• Compute the moment of inertia I of the cross- sectional area 

about the neutral axis. ( If the beam is a standard structural shape, 

its cross- sectional properties are listed in Appendix B.) 

• Calculate the maximum bending stress from σmax = [Mmax]c / I, 

where c is the distance from the neutral axis to the top or bottom 
of the cross section . 

 
 

 

 

 

 

 

 



 

 

 

Maximum Tensile and Compressive Bending Stresses: 

Unsymmetrical Cross Section 

If the neutral axis is not an axis of symmetry of the cross 

section, the maximum tensile and compressive bending 

stresses may occur at different sections. 

• Draw the bending moment diagram. Identify the largest 

positive and negative bending moments. 

• Determine the location of the neutral axis and record the 

distances ctop and cbot from the neutral axis to the top and 

bottom of the cross section. 

• Compute the moment of inertia I of the cross section about 

the neutral axis. 
 

 

 

 
 

 

 

 

 

 

 

 

 



 

 

 

• Calculate the bending stresses at the top and bottom of the 
cross section where the largest positive bending moment 

occurs from σ = -My / I. 

 At the top of the cross section, where y = ctop,we obtain σtop = 

-Mctop/ I. 

 At the bottom of the cross section, we have y = - cbot, so that 

σbot = Mcbop/ I. 

• Repeat the calculations for the cross section that carries the 
largest negative bending moment. 

• Inspect the four stresses thus computed to determine the 
largest tensile (positive) and compressive (negative) bending 
stresses in the beam. 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 



 

 

 
 

Note on Units 

the units of terms in the flexure formula σ = -My / I. 

 In the U.S. Customary system, M is often measured in pound-feet 

and the cross sectional properties in inches, It is recommended 

that you convert M into lb·in. and compute σ in lb/in.2 (psi). 

Thus, the units in the flexure formula become

 lb / in.2 
M lb  in.yin.

I in.4 
 In SI system, M is usually expressed in N · m, whereas the cross- 

sectional dimensions are in mm. To obtain σ in N/m2 (Pa), he 

cross sectional properties must be converted to meters, so that the 

units in the flexure equation are

 N / m 2  M N  mym 
I m 4 




















 




Sample Problem 5.1 

The simply supported beam in Fig. (a) has a rectangular cross 
section 120 mm wide and 200 mm high. (1) Compute the 
maximum bending stress in the beam. (2) Sketch the bending 
stress distribution over the cross section on which the maximum 
bending stress occurs. (3) Compute the bending stress at a point 
on section B that is 25 mm below the top of the beam. 

 
 

 

 
 

 

 

 

 

 

 

 



 

 

Solution 

Preliminary Calculations 

The shear force and bending moment 

diagrams. M max = +16 kN·m, 

occurring at D. The neutral axis (NA) 

is an axis of symmetry of the cross 

section as shown in Fig. (a). The 

moment of inertia of the cross section 

about the neutral axis is 

bh3 
I 

12 

0.120.23
 

12 
 800 10 

6 m 4 

and the distance c 
between the neutral axis 
and the top (or bottom) 
of the cross section is c 
= 100 mm = 0.1 m. 

 

 
 

 

 

 

 

 

 



 

 

 

Part 1 

The maximum bending stress in the beam on the cross section that 

carries the largest bending moment, which is the section at D. 

 max 
 
Mmax c 

I 
 
16103 0.1

80.0106 

 

 20.0 

 

106 Pa 


20.0 MPa 

 

Answer 

Part 2 

The stress distribution on the cross section at D is shown in Fig. (d) 

(i) The bending stress varies linearly with distance from the neutral 

axis; 

(ii) Because M max is positive, the top half of the cross section is in 

compression and the bottom half is in tension. 

(iii) Due to symmetry of the cross section about the neutral axis, the 

maximum tensile and compressive stresses are equal in 

magnitude. 
 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

Part 3 

From Fig. (c) we see that the bending moment at section B is M = + 

9.28 kN·m. The y-coordinate of the point that lies 25 mm below the 

top of the beam is y = 100 -25 = 75 mm = 0.075 m. 

   
My 

  
9.281030.075 

 





  6   Answer 

I 80.0106 
8.70 10 Pa 8.70MPa 

The negative sign indicates that this bending stress is compressive, 

which is expected because the bending moment is positive and the 

point of interest lie above the neutral axis. 
 



 

 

 

Sample Problem 5.2 

The simply supported beam in Fig. (a) has the T-shaped cross 

section shown. Determine the values and locations of the maximum 

tensile and compressive bending stresses. 
 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Solution 

Preliminary Calculations 

Find the largest positive 

and negative bending 

moment. The results are 

shown in Fig. (a)-(c). From 

Fig.(c), the largest positive 

and negative bending 

moment are 3200 lb·ft and 

4000 lb·ft respectively. 
 

 

 

 

 

 

 

 

 



 

i i 

 

 

As shown in Fig.(d), the cross section to be composed of the two 

rectangles with areas A1 = 0.8(8) = 6.4 in.2 and A2 = 0.8 (6) = 4.8 

in.2 . The centroidal coordinates of the areas are y1  4in. and y2  8.4in., 

, measured from the bottom of the cross section. The coordinate y 

of the centroid C of the cross section is 
 

 

y  
A1 y1  A2 y2 

 
6.44  4.88.4


 5.886in. 

A1  A2 6.4  4.8 

Compute the moment of inertia I of the cross-sectional a


rea about 

 
  

 

2 




the neutral axis. Using the parallel-axis theorem, I = Ii   A y  y ,
where 

 
 

I  b h3 /12 is the moment of inertia of a rectangle about its 
i i i 

own centroidal axis Thus, 

0.883 
 
 

 

 2 
 60.83 
 
 

 

 2  4
 

I   
12

 
 6.4 4  5.886    

12
  4.8 8.4  5.886   87.49in. 

   





















 




Maximum Bending stresses 

The distances from the neutral axis to the top and the bottom of 

the cross section are ctop  8.8  y  8.8  5886  2.914in. and c
bot 

 

 

 y  5.886in., 

as shown in Fig.(c). Because these distances are different, we 

must investigate stresses at two locations: at x = 4 ft (where the 

largest positive bending moment occurs) and at x = 10 ft (where 

the largest negative bending moment occurs). 

Stresses at x = 4 ft The bending moment at this section is M = 

+3200 lb．ft causing compression above the neutral axis and 

tension below the axis. The resulting bending stresses at the top 

and bottom of the cross section are 

 

 
top 

  
Mctop 

I 
  

3200 122.914 



87.49 

 
1279 psi 

 bot 
  

Mcbot 

I 
 
3200 12 5.886

87.49 

 
 2580 psi 

 

  
 

 

 

 

 

 

 



 

 

 

 

Stresses at x = 10 ft The bending moment at this section is M = - 

4000lb．ft, resulting in tension the neutral axis and compression 

below the neutral axis. The corresponding bending stresses at the 

extremities of the cross section are 

 top 
  

Mctop 

I 
 
 4000 122.914

87.49 

 

 1599 psi 

 bot   
Mcbot 

I 
 
 4000 12  5.886

87.49 

 
 3230 psi 

Inspecting the above results, we conclude that the maximum tensile 

and compressive stresses in the beam are 

( σT )max = 2580 psi ( bottom of the section at x = 4 ft ) 

( σc )max = 3230 psi ( bottom of the section at x = 10 ft ) 

 

 

 
 

 

 

 

 

 

 

 



 

 

 

 

Sample Problem 5.3 

The cantilever beam in 

Fig. (a) is composed of 

two segments with 

rectangular cross 

sections. The width of 

the each section is 2 in., 

but the depths are 

different, as shown in the 

figure. Determine the 

maximum bending stress 

in the beam. 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



 

 

 
 

Solution 

Because the cross section 

of the beam is not 

constant, the maximum 

stress occurs either at the 

section just to the left of B 

(MB = - 8000 lb．ft) or at 

the section at D (MD = - 

16000 lb．ft). the section 

moduli of the two 

segments are 

 
S AB 

 
bh 2 AB 

6 

242
 

6 

 
5.333in.3 

 

S BD 
 

bh 2 BD 

6 

262
 

6 

 

12 .0in.3 
 

 




 

 

 

 

 

 

 

 



 

 

 

 

From Eq. (5.4b) the maximum bending stresses on the two cross 

sections of the interest are 

 B 

 

 
max 

 
M B  



SAB 

8000 12 

5.333 
 18000 psi 

 D 

 

 
 

max 
 
M D 
SBD 

 
16000 12 

12.0 

 
 16000 psi 

 

Comparing the above values, we find that the maximum bending 

stress in the beam is 

σmax = 18000 psi (on the cross section just to the left of B) 

Answer 

This is an example where the maximum bending stress occurs 

on a cross section at the bending moment is not maximum. 
 

 

 
 

 

 

 

 

 

 

 

 







 

M max 

 

Sample Problem 5.4 

The wide- flange section W 14×30 is use as a cantilever beam, as 

shown in Fig.(a). Find the maximum bending stress in the beam. 

Solution 

The largest bending moment is 

∣Mmax∣= 15000 lb · ft acting 

just to the left of section B. 

From the tables in Appendix B, 

we find that the section 

modulus of a W14×30 (P520) 

section is S = 42.0 in.3. 

Therefore, the maximum 

bending stress in the beam is 
 

 max  
S

  
15000 12 

42.0 
 4290 psi 

 
 

 

 

 

 

 

 



 

 

 
 

5.3 Economic Sections 

 The portions of a located near the neutral surface are 

understressed compared with at the top or bottom. Therefore, 

beams with certain cross- sectional shape ( including a 

rectangle and circle) utilize the material inefficiently because 

much of the cross section contributes little to resisting the 

bending moment. 

 Consider, for example, in Fig. 5.5(a) The 
section modulus has increased to S = bh2/6 = 

2(6)2/6 = 12 in.3. If working stress is σw = 

18 ksi, the maximum safe bending moment 

for the beam is M =σw · S =18 (12) = 216 

kip·in. 

Figure 5.5 Different ways to distribute the 12-in.2 cross- 
sectional area in (a) without changing the depth. 

 
 

 

 

 

 

 

 

 



 

 

 In Fig. 5.5(b), we have rearranged the area of the cross section but 
kept the same overall depth. It can be shown that the section that 
the section modulus has increased to S = 25.3 in.3（the parallel- 

axis theorem）. Thus, the new maximum allowable moment is M
= 18 (25.3) = 455 kip·in., which is more than twice the allowable 
moment for the rectangular section of the same area. 

 The section in Fig. 5.5(b) is not practical because its two parts, 
called the flanges. As in Fig. 5.5(c). The vertical connecting piece 
is known as the web of the beam. The web functions as the main 
shear-carrying component of the beam.

 

 
 

 

 

 

 

 

 

 



 

 

 

a. Standard structural shapes 

 Figure 5.5 (c) is similar to a wide-flange beam, referred to as a 

W-shape. Another “slimmer”version of the shape is the I-beam 

(referred to as an S-shape) shown in Fig. 5.5(d). The I-beam 

preceded the wide- flange beam, but because it is not as 

efficient, it has largely been replaced by the wide- flange beam. 
 

 

 

 
 

 

 

 

 

 

 

 

 



 

 

 
 

 Properties of W-and S-shapes are given in Appendix B.

 in SI units, the designation W610×140 indicates a wide-flange 
beam with a nominal depth of 610mm and a nominal mass per 
unit length of 140 kg/m. The tables in Appendix B indicates the 
actual depth of the beam is 617 mm and the actual mass is 140.1 
kg/m. 

 In U.S. Customary units, a W36×300 is a wide-flange beam with 
a nominal depth 36 in. that weighs 300 lb/ft. The actual depth of 
this section is 36.74 in. 

 Referring to Appendix B, in addition to listing the dimensions, 
tables of structural shapes give properties of the cross-sectional 
area, such as moment of inertia (I), section modulus (S), and 
radius of gyration (r)4 for each principal axis of the area. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



 

M max 



 

 

 

When a structural section is selected to be used as a beam. The 

section modulus must be equal to or greater than section 

modulus determined by the flexure equation; that is, 
 
 

S  (5.5) 

w 

the section modulus of the selected beam must be equal to or 

greater than the ratio of the bending moment to the working 

stress. 

  If a beam is very slender (large L/r), it may fail by lateral 

bucking before the working stress is reached. I-beams are 

particularly vulnerable to lateral bucking because of their low 

torsional rigidity and small moment of inertia about the axis 

parallel to the web. 
 

 

 
 

 

 

 

 

 

 

 



 

 
 

b. Procedure for selecting standard shapes 

A design engineer is often required to select the lightest 
standard structural shape ( such as a W-shape) that can carry a 
given loading in addition to the weight of the beam. Following 
is an outline of the selection process; 

．Neglecting the weight of the beam, draw the bending moment 
diagram to find the largest bending moment Mmax.. 

．Determine the minimum allowable section modulus from Smin = 

｜Mmax.︱/σw, is the working stress. 

．Choose the lightest shape from the list of structural shapes (such 
as a Appendix B) for which S≥Smin and note its weight. 

．Calculate the maximum bending stress σmax in the selected 
beam caused by the prescribed loading plus the weight of the 
beam. Ifσmax≤σw, the selection is finished. Otherwise, the 

second-lightest shape with S≥Smin must be considered and the 
maximum bending stress recalculated. The process must be 
repeated unit a satisfactory shape is found. 

 
 

 

 

 

 

 

 



 

 

Sample Problem 5.5 

What is the lightest W-shape beam that will support the 45-kN 

load shown in Fig. (a) without exceeding a bending stress of 120 

MPa？Determine the actual bending stress in the beam. 

 
Solution 

Finding the reactions 

shown in Fig.(a), and 

sketch the shear force 

and bending moment 

diagrams in Figs. (b) 

and (c). 
 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 



 

 

 

The minimum bending acceptable section modulus that can carry 

this moment is 
 

S min 
w 

 
60 

120 

 10 3 

 10 6 
 500  10 6 m 3  500  10 3 mm 3 

 

Referring to the table of Properties of W-shape (Appendix B SI 

Unit) and find that the following are the lightest beams in each size 

group that satisfy the requirement S≥Smin: (P508) 
 

Section S(mm3) Mass(kg/m) 
 

W200×52 512×103 52.3 

W250×45 534×103 44.9 

W310×39 549×103 38.7 

Our first choice is the W310×39 

section with S = 549×10-6 m3. 

The reason is that although 

the lightest beam is the 

cheapest on the basis of the 

weight alone, headroom 

clearances frequently require 

a beam with less depth than 

the lightest one. 

M max 



 
 

 

 

 

 

 

 



 

M max 

 

 

The weight of the beam for the W310×39 section is 

wo = (38.7 kg/m)×(9.81 m/s2) = 380 N/m = 0.380 kN/m 

From (d) shows the beam supporting both the 45-kN load and 

the weight of the beam. The maximum bending moment is 

found to be Mmax = 61.52 kN·m, again occurring under the 

concentrated load. 

Therefore, the maximum 

bending stress in the 

selected beam is 
 

 max  
S
  

61.52 103 

549 106 

 

 112.1106 pa 

 

 112.1MPa 

Because this stress is less than the allowable stress of 120 MPa, 

the lightest W-shape that can safely support the 45-kN load is 

W310×39 (with σmax = 112.1MPa) Answer  
 

 

 

 

 

 

 



 

 

5.4 Shear Stress in Beams 

a. Analysis of flexure action 

 In Fig. 5.6, The separate layers would slide past one another, and 

the total bending strength of the beam would be the sum of the 

strength of the individual layers. Such a built-up beam would be 

considerably weaker than a solid beam of equivalent dimensions.

 From the above observation, we conclude that the horizontal 

layers in a solid beam are prevented from sliding by shear stresses 

that act between the layers.

Figure 5.6 Bending of a layered beam with no adhesive 

between the layers. 
 

 

 

 

 

 

 

 



 

 

 

 

 

 In Fig. 5.7. We isolate the shaded portion of the beam by 

using two cutting planes: a vertical cut along section 1 

and horizontal cut located at the distance y’ above the 

neutral axis. 
 
 

 

Figure 5.7 Equilibrium of the shaded portion of the beam 

requires a longitudinal shear force F = P, where 

P is the resultant of the normal stress acting on 

area A’ of section (1). 
 

 

 

 

 

 

 

 

 



 

 

 

 Calculate P using Fig. 5.8. The axial force acting on the area 

element dA of the cross section is dP = σdA. 

  If M is the bending moment acting at section 1 of the beam, 

the bending stress is given by Eq. (5.3): σ= - My/I, where y is 

the distance of the element from the neutral axis, and I is the 

moment of inertia of the entire cross-sectional area of the 

beam about the neutral axis. 
 

Figure 5.8 

Calculating the 

resultant force 

of the normal 

stress over a 

portion of the 

cross-sectional 

area. 
 

 

 

 

 

 

 

 

 



 

 

 

 
dP   

My 
dA Integrating over the area A’, we get 

I 

Where 

P  A` 
dp   

M
 

I 
A` 

ydA  
MQ 

I 
(5.6) 

 
 

(5.7a) 
 

is the first moment of area A’ about the neutral axis. The negative 

sign in Eq. (5.6) indicates that positive M results in forces P and F 

that are directed opposite to those shown in Fig. 5.7. 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

Q  A` 
ydA 



 


y 

 

 

 

 

 Denoting the distance between the neutral axis and centroid 

C` of the area A’ by , we can write Eq. (5.7) as 


Q  A`y (5.7b). 

 
 

 In Eqs. (5.7b), Q represents the first 

moment of the cross-sectional area 

that lies above y’. Because the first 

moment of the total cross-sectional 

area about the neutral axis is zero, 

that first moment of the area below 

y’ is - Q. Therefore, the magnitude 

of Q can be computed by using the 

area either above or below y’, 

whichever is more convenient. 
 

 
 

 

 

 

 

 

 

 


 y  



 

 

 

 

 

 The maximum value of Q occurs at the neutral axis where 

y’ = 0. It follows that horizontal shear force F is largest on 

the neutral surface. The variation of Q with y’ for a 

rectangular cross section is illustrated in Fig. 5.9. 
 

 
 

Figure 5.9 Variation of the first moment Q of area A’ about 

the neutral axis for a rectangular cross section. 
 

 
 

 

 

 

 

 

 

 



 



P  M 
Q

 
I 



 

 

b. Horizontal shear stress 

Consider Fig. 5.10. A horizontal plane located a distance y’ above 

the neutral axis of the cross section. If the bending moment at 

section1 of the beam is M, the resultant force acting on face 1 of the 

body is given by Eq. (5.6): 
 

 

 

Figure 5.10 Determining the longitudinal shear stress from the 

free-body diagram of a beam element. 
 

 

 

 

 

 

 

 



 

(a) 


 

 

The bending moment acting at section 2 is M+dM, where dM is 

the infinitesimal change in M over the distance dx. Therefore, 

the resultant normal force acting on face 2 of the body is 

p  dP  M  dM Q
I 

P  M 
Q

 
I 

 

P  dP P  M  dM
Q 


 M 

Q 


  
 I 

 dM 
Q

 
I 

 Equilibrium can exist only if there is an equal and opposite shear 

force dF acting on the horizontal surface. If we letτbe the 

average shear stress acting on the horizontal surface, its 

resultant is dF = τbdx. Where b is the width of the cross section 

at y = y`, as shown in Fig. 5.10. The equilibrium requirement for 

the horizontal forces is 

ΣF = 0 : (P +dP)－P +τb dx = 0 



I 

 
 

 

 

 

 

 

 



 

  
VQ 

Ib 

 

 

 Substituting for(P+dP) - P from Eq. (a), we get 

 dM 
Q 

 bdx  0 
I 

  
dM Q 

dx Ib 
(b) 

Recalling the relationship V = dM/dx between the shear force and 

the bending moment we obtain for the average horizontal shear 

stress τ 
 

(5.8) 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



 

 

 

 
 Eq. (5.8) 


 

VQ 

Ib 

c. Vertical shear stress 

( a plane parallel to the neutral surface ). A 

shear stress is always accompanied by a complementary shear 

stress of equal magnitude, the two stresses acting on mutually 

perpendicular plane. 
 

Figure 5.11 The vertical stress τ’ acting at a point on a cross 

section equals the longitudinal shear stress τ acting at 
the same point.  

 

 

 

 

 

 

 



 



 

 

 In a beam, the complementary stress τ’ is a vertical shear stress 

that acts on the cross section of the beam, as illustrated in Fig. 

5.11 (a). Because τ=τ’, Eq.(5.8) can be used to compute the 

vertical as well as the horizontal shear stress at a point in a 

beam. 

 The resultant of the vertical shear stress on 

the cross-sectional area A of the beam is,of 

course, the shear force V;. V  dA 
A 

 

 To prove that τ=τ`, consider Fig. 5.11(b). 

The horizontal and vertical forces are τdxdz 

and τ’dydz, respectively. These forces from 

two couples of opposite sense. For rotational 
equilibrium, the magnitudes of the couples 

must be equal; that is, (τdxdz) dy = 

(τ`dydz) dx, which yields τ= τ’. 
 

 

 

 

 

 

 

 



 

 

 

 

 

d. Discussion and limitations of the shear stress formula 

• The shear stress formula τ= VQ/(Ib) predicts that the largest 

shear stress in a prismatic beam occurs at the cross section 

that carries the largest vertical shear force V. 

• The location ( the value of y’ ) of the maximum shear stress 

within that section is determined by the ratio Q/b. Because Q 

is always maximum at y’ = 0, the neutral axis is usually a 

candidate for the location of the maximum shear stress. 

• However, If the width b at the neutral axis is larger than at 

other parts of the cross section, it is necessary to compute τ 
at two or more values of y’ before its maximum value can be 

determined. 
 

 

 

 

 
 

 

 

 

 

 

 

 



 

  
VQ 

Ib 

 

 

 When deriving the shear stress formula, Eq. (5.8),   
VQ  

Ib 

τ should be considered at the average shear stress. This 

restriction is necessary because the variation of the shear 

stress across the width b the cross section is often unknown. 

 Equation (5.8) is sufficiently accurate for rectangular cross 

sections and for cross sections that are composed of 

rectangles, such as W and S-shapes. 
 

 Let us consider as an example the 

circular cross section in Fig. 5.12. 

Figure 5.12 Shear stress 

distribution along a 

horizontal line of a 

circular cross section. 
 
 

 

 

 

 

 

 

 

 



 

 

 

 For other cross- sectional shapes, however, the formula for τ 
must be applied with caution. Let us consider as an example 

the circular cross section in Fig. 5.12. 
 

 It can be shown that the shear 

stress at the periphery of the 

section must be tangent to the 

boundary, as shown in the figure. 

 The direction of shear stresses at 

interior points is unknown, except 

at the centerline, where the stress is 

vertical due to symmetry. To 

obtain an estimate of the maximum 

shear stress, the stresses are 

assumed to be directed toward a 

common center B, as shown. 

Figure 5.12 Shear stress 

distribution along a 

horizontal line of a 

circular cross section. 

  
 

 

 

 

 

 

 



 

 

 

 

 The vertical components of these shear stresses are assumed 

to be uniform across the width of the section and are 

computed from Eq. (5.8). Under this assumption, the shear 

stress at the neutral axis is 1.333V/ (πr2 ). (4/3)(V/ πr2 ) 

  A more elaborate analysis shows that the shear stress actually 

varies from 1.23 V/ (πr2 ) at the edges to 1.38 V/ (πr2 ) at the 

center. 

 Shear stress, like normal stress, exhibits stress concentrations 

near shape corners, fillets and holes in the cross section. The 

junction between the web and the flange of a W-shape is also 

an area of stress concentration. 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 



 



 

 

e. Rectangular and wide-flange sections 

Determine the shear stress as a function of y for a rectangular cross 

section of base b and height h. From Fig. 5.13, the shaded area is 

A’ = b [(h/2)-y], its centroidal coordinate being y` h / 2  y/ 2. 
 

  h 
 

 

 1  h  b  h 2 
2 

Q  A`y`b 
2 
 y    y     y 

   2  2  2  4 




Figure 5.13  Shear stress distribution on a rectangular cross 

section. 
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

max 
 

3 V 
 

3 V 

2 bh 2 A 

 

 

 

 

(c) 

The shear stress is distributed parabolically across the depth of 

the section, as shown in Fig.5.13. The maximum shear stress 

occurs at the neutral axis. If we substitute y = 0 and I =bh3/12, 

Eq. (c) reduces to 

(5.9) 

where A is the cross –sectional area. 

The shear stress in 

rectangular section is 50% 

greater than the average 

shear stress on the cross 

section. 
 

 

 

 
 

 

 

 

 

 

 

 

 

  
VQ 

 
V 

 
h2 

Ib 2I  4 
 y 

2 







 



 
 

 In wide-flange sections (W-shapes), most of the bending 

moment is carried by the flanges, whereas the web resists the 

bulk of the vertical shear force. Figure 5.14. Q is contributed 

mainly by the flanges of the beam. Consequently, Q does not 

vary with y, so that the shear stress in the web is almost 

constant. 

 In fact τmax = V/Aweb can be used as an approximation to the 

maximum shear stress in most cases, where Aweb is the cross- 

sectional area of the web. 
 
 

 

 

Figure 5.14 Shear 

Stress distribution 

on the web of a 

wide-flange beam. 
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a. Procedure for analysis of shear stress: 

．Use equilibrium analysis to determine the vertical shear force 

V acting on the cross section containing the specified point ( 

the construction of a shear force diagram is usually a good 

idea). 

．Locate the neutral axis and compute the moment of inertia I 

of the cross- sectional area about the neutral axis (If the 

beam is a standard structural shape, its cross- sectional 

properties are listed in Appendix B.) 

．Compute the first moment Q of the cross- sectional area that 

lies above (or below)the specified point. 

．Calculate the shear stress from τ = VQ/(Ib), where b is the 

width of the cross section at the specified point. 
 

 
 

 

 

 

 

 

 

 



 

 

 

 

 The maximum shear stressτmax on a given cross section 

occurs where Q/b is largest. 

 If the width b is constant, then τmax occurs at the neutral 

axis because that is where Q has its maxmum value. 

 If b is not constant, it is necessary to compute the shear stress 

at more than one point in order to determine its maximum 

value. 
 

 

In the U.S. Customary system,  lb / in 2 .
V lbQin.3 

 
I in.4 bin.


In the SI system,  N / m2 

V N Qm3 


I m4 bm





















 





Sample Problem 5.6 

The simply supported wood beam in Fig.(a) is fabricated by gluing 

together three 160-mm by 80-mm plans as shown. Calculate the 

maximum shear stress in (1) the glue; and (2) the wood. 
 

 

 

 

 

 
 

 

 

 

 

 

 

 



 

 

Solution 

From the shear force diagram in Fig. (b), the maximum shear force 

in the beam is Vmax = 24 kN, occurring at the supports. The moment 

of inertia of the cross-sectional area of the beam about the neutral 

axis is 

 

 
Part 1 

bh3 
I 

12 

1602403
 

12 
 184.32 106 mm 4  184.32 106 m 4 

The shear stress is the glue corresponds to 

the horizontal shear stress. Its maximum 

value can be computed from Eq. (5.8): 

τmax = Vmax Q/(Ib), where Q is the first 

moment of the area A’ shown in Fig.(c); 

that is, 
 
 

Q  A`y`160  8080  1.024 106  1.024 103 m3 
 

 
 

 

 

 

 

 

 

 





 

  max     

 

 

 

Therefore, the shear stress in the glue, which occurs over either 

support, is 
  

V
 Q 

 
24103 1.024103 

max 
Ib

 184.32106 0.160





Part 2 

 8.33103 Pa  8.33kPa 
Answer 

 

Because the cross section is 

rectangular, the maximum shear 

stress in the wood can be calculated 

from Eq. (5.9): 

  
3 Vmax  

3 
 

 

24 103  






  3 

max 
2 A

 
2 0.1600.240

938 10 Pa 938kPa 

 
 

 

 

 

 

 

 

 



 

  max     

 

 
 

The same result can be obtained 

from Eq. (5.8), where now A’ is 

the area above the neutral axis, 

as indicated in Fig. (d). The first 

moment of this area about the 

neutral axis is 

Q  A`y`160 12060  1.152 106 mm3  1.152 103 m3 
 

 

Equation (5.8)this becomes 

  
V

 Q 
 
24103 1.152103 

max 
Ib

 184.32106 0.160

 938 103 Pa  938kPa 
 

which agrees with the previous result. 
 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

Sample Problem 5.7 

The W12×40 section in Fig.(a) is used as a beam. If the vertical 

shear acting at a certain section of the beam is 16 kips, determine 

the following at that section: (1) the minimum shear stress in the 

web;(2) the maximum shear stress in the web; and (3)the percentage 

of the shear force that is carried by the web. 
 



 

 

 

Solution 

The W12×40 section is shown in Fig.(b), where the dimensions 

were obtained from the tables in Appendix B (P521). The drawing 

approximates the web and the flanges by rectangles, thereby 

ignoring the small fillets and rounded corners present in the actual 

section. The tables also list the moment of inertia of the section 

about the neutral axis as I = 310 in.4. 

Part 1 

The minimum shear stress in the web 

occurs at the junction with the flange, 

where Q/b is smallest (note that b = 0.295 

in. is constant within the web). Q is the 

first moment of the area A’1 shown in 

Fig.(b) about the neutral axis: 
 

Q  A`1 y` 8.005 0.515
11.94  0.515

 
2 

 23.55in.3 
 

 

 

 

 

 

 

 



 

 

 

The minimum shear stress in thus becomes 

 min 
 

VQ 

Ib 

16 10 3 23.55
 

3100.295 




4120 

 
psi 

 

Answer 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part 2 

The maximum shear stress is located at the neutral axis, where 

Q/b is largest. Hence, Q is the first moment of the area above (or 

below) the neutral axis. 
 

 

 

 

 

 

 

 



 

2 



 

 

The moment of A’1 was calculated in part 1. The moment of A’2 

about the neutral axis is where 

A 1̀ y` 8.005 0.515
11.94 0.515 

 23.55in.3 
2 

 23.55in.3 
 

A`  
11.94 







   1.6092in.2 

2  
2
 

0.515


0.295 

 

y` 


1 11.94 
 0.515




 

 2.7275in. 
2 



Q  A`1 

2 

y`1 


A`2 




y`2 



23.55 

 
 1.6092 

 
2.7275  


27 .94in.3 

The maximum shear stress in the web becomes 

  
VQ   

 16  10 
3 27 .94  


 Answer 

max 
Ib

 310 0 .295 
4890 psi 

 

  
 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Part 3 

The distribution of the shear stress in the web is shown in Fig.(c). 

The shear force carried by the web is 

Vweb = (cross section area of web ) × ( area of shear diagram) 

The shear stress distribution is parabolic. Recalling that the area 

of a parabola is (2/3) (base × height). 

Vweb 
 10.91 0.2954120 



2 
4890 

3 
 4120


 14910lb 

 
 

 

 

 

 

 

 



 

 

 

Therefore the percentage of the shear force carried by the web is 
 

Vweb 

V 
100%  

14910 
100% 

16000 
 93.2% 

 

Answer. 

The result confirms that the flanges are ineffective in resisting the 

vertical shear 

It was mentioned in Art. 5.5 that we can use τmax = V/Aweb as a 

rough approximation for the maximum shear stress. 
 
 

V 

Aweb 

 
16 10 3 




10.910.295
4970 psi 

 

 

which differs fromτmax = 4890 psi 

computed in Part 2 by less than 2%. 
 
 

 

 
 

 

 

 

 

 

 

 

 



 

 

 
 

Sample Problem 5.8 

The figure shows the cross section of a beam that carries a 

vertical shear force V = 12 kips. The distance from the bottom 

of the section to the neutral axis is d = 8.90 in., and the moment 

of inertia of the cross –sectional area about the neutral axis is I 

= 547 in.4. Determine the maximum shear stress on this cross 

section. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



 

 

Solution 

The maximum shear stress may occur of the neutral axis (where 

Q is largest) or at level a-a in the lower fin (where the width of 

the cross section is smaller than at the neutral axis). 

Shear Stress at Neutral Axis Take Q to be the first moment of 

the rectangular area above the neutral axis (the area below the 

neutral axis could also be used). 

Q  A`y`2  7.30 
7.30

 
2 

 53.29in.3 

and the shear stress at the neutral axis is 

  
VQ 

Ib 

12 103 53.29
 

5472


 58.5 psi 

 

 

 

 
 

 

 

 

 

 

 

 

 



 

3 

2 

 

 

Shear Stress at a-a It is easier to compute Q by using the area 

below the line a-a rather than the area above the line. The 

dimensions of this area are b =1.2 in. and h =7.5 in. Consequently, 

Q  A`y`1.2  7.58.90 7.5  

46.35in. 

 
 

and the shear stress becomes 

  
VQ 

Ib 

12 103 46.35
 

5471.2



 847 psi 

Shear Stress at Neutral Axis 

  
VQ 

Ib 

12 103 53.29
 

5472



 58.5 psi 

 

The maximum shear stress is the largest of the two value; 

τmax = 847 psi (occurring at a-a) Answer 
 

 

 

 

 

 

 

 

 



 

Trusses 
Truss: is a structure composed of slender members 

(two-force members) joined together at their end points 
to support stationary or moving load. 
 Each member of a truss is usually of uniform cross 
section along its length. 

Calculation are usually based on following assumption: 

 The loads and reactions act only at the joint.
 Weight of the individual members can be neglected.

 Members are either under tension or compression.

Lecture 7 

 

Joints: are usually formed by bolting or welding the members to a common plate, called a 

gusset plate, or simply passing a large bolt through each member. 
 Joints are modeled by smooth pin connections.

 

 

1 

 
Member 

(Wooden Strut) 

 

 

 
Joint-Welded 

(Gusset Plate) 



 

Internal equilibrium 

Analysis of Trusses Lecture 7 

 

 
 
 
 

 

   External equilibrium  
 

 

 

 

   To find the reaction forces  

  

External Equilibrium: to find the 

reaction forces, follow the below steps: 

1. Draw the FBD for the entire truss 

system. 

2. Determine the reactions. Using the 

equations of (2 D) which states: 

 
    B 

 

 
2 m 

 

A 
45o 

Ax 

 
500 N 

 

 

 

 
 

C 

 

Ay 
2 m Cy

 

2 

Method of sections Method of joints 

Truss Analysis 

Fx   0 , Fy   0 , Mo   0 

To find the force in each member 



 

Fx   0 , Fy   0 , Mo   0 

Fx   0 , Fy   0 

Analysis of Trusses 
Method of Joints: to find the forces in any member, 

choose a joint, to which that member is connected, 

and follow the below steps: 

1. Draw the FBD for the entire truss system. 

2. Determine   the    reactions.    Using    the 

equations of (2 D) which states: 
 

3. Choose the joint, and draw FBD of a joint 

with at least one known force and at most 

two unknown forces. 

4. Using the equation of (2 D) which states: 
 

5. The internal forces are determined. 

6. Choose another joint. 

Lecture 7 
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Fx   0 , Fy   0 , Mo   0 

Fx   0 , Fy   0 , Mo   0 

Analysis of Trusses 
Method of section (Internal equilibrium):   to find 

the forces in any member, choose a section, to which 

that member is appeared as an internal force, and 

follow the below steps: 

1. Draw the FBD for the entire truss system. 

2. Determine   the    reactions.    Using    the 

equations of (2 D) which states: 
 

3. Choose the section, and draw FBD of that 

section, shows how the forces replace the 

sectioned members. 

4. Using the equation of (2 D) which states: 
 

5. The internal forces are determined. 

6. Choose another section or joint. 

Lecture 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 



 

Analysis of Trusses 
Analysis of trusses (Zero-force members): 

Lecture 7 

Analysis of trusses system is simplified if one can identify those members that support no 
loads. We call these zero-force members. 

Examples to follow: 

1. If two members form a truss joint and there is no 

external load or support reaction at that joint then 

those members are zero-force members. 

Joints D and A in the following figure are the joints 

with no external load or support reaction, so: 

FAF = FAB = FDE = FDC = 0. 
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Analysis of Trusses 
Analysis of trusses (Zero-force members): 

Examples to follow: 

2. If three members form a truss joint and there is no 

external load or support reaction at that joint and two 

of those members are collinear then the third member 

is a zero-force member. 

In the following figure, AC and AD are zero-force 

members, because Joints D and A in the following figure 

are the joints with three members, there is no external load 

or support reaction, so: 

FCA = FDA = 0 

Lecture 7 
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EXAMPLES of Trusses: Lecture 7 
Example 1: Determine the support reactions in the joints of 

the following truss. Calculate the force in member (BA & 

BC.) 

Solution  

1. Draw FBD of entire truss and solve for support reactions: 
 

2. Draw FBD of a joint with at least one known force and at 

most two unknown forces. We choose joint B. 

 Assume BC is in compression. 
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F 2 m 

6 m 

C D E O 

EXAMPLES of Trusses: Lecture 7 
Example 2: In the following Bowstring Truss, 

find the force in member (CF). 

Solution  
draw the FBD and find the support reactions which are 

shown below 

 MA = 0 

RE * 16 – 5 * 8 – 3 * 12 = 0 

RE = 4.75 kN 

 Fy = 0 

RE + RA – 5– 3 = 0 

RA = 3.25 kN 
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4 m 4 m X 
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EXAMPLES of Trusses: Lecture 7 
Example 3: In the following truss, find the force in 

member (EB). 

Solution  

Notice that no single cut will provide the answer. Hence, 

it is best to consider section (a-a and b-b). 

 MA = 0 

RC * 8 – 1000 * 6 – 1000 * 4 – 3000 * 2 = 0 

RC = 2000 N 

 Fy = 0 

RA + RC – 1000 – 1000 – 3000 - 1000 = 0 

RA = 4000 N 

Taking the moment about joint (B), to find (FED), as 
shown in below figure: 

MB = 0 

1000 * 4 + 3000 * 2 – 4000 * 4 + FED * sin30o * 4 = 0 

FED   = 3000 N (compression) 
9 



 

 
Continue Example 3: 

From joint (E) to find (FEB), as shown in below 

figure: 

 Fx = 0 

FEF . cos30o– 3000 cos30o = 0 

FEF = 3000 N (compression) 

 Fy = 0 

FEF . Sin30o + 3000 . sin30o - 1000 - FEB = 0 

FEF = 2000 N (Tension) 

Lecture 7 
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