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Course Objectives:

e To introduce students to the basic idea of signal and system analysis and its characterization in time and frequency domains.

e To present Fourier tools through the analogy between vectors and signals

e Toteach concept of sampling and reconstruction of signals.

o Toanalyze characteristics of linear systems in time and frequency domains.

e Tounderstand Laplace and z-transforms as mathematical tool to analyze continuous and discrete-time signals and systems.

Course Outcomes (CO): After completion of the course, the student can able to

CO-1: Explain the mathematical description & representation of continuous time & Discrete time Signals and Systems. Perform the
mathematical operations on Signals and Systems

CO-2: Represent the periodic signals using Fourier Series and Analyze the spectral characteristics & Sampling theorem for
continuous time signals using Fourier Transform.

CO-3: Analyze the spectral characteristics of continuous time signals using Laplace Transform (LT) and Apply same to continuous
time systems for finding the response & Analyzing Stability.

CO-4: Analyze the filter characteristics and Physical realization of LTI System and also explain about PSD & ESD

CO-5: Apply Z-Transform (ZT) & Discrete Time Fourier Transform (DTFT) to analyze the spectral characteristics of discrete time
signals. Find the response and Analyze the stability of discrete time system by applying Z-Transform (ZT).

Unit—1: | Signals and Systems

Signals & Systems: Basic definitions and classification of Signals and Systems (Continuous time and discrete time), operations on
signals, Concepts of Convolution and Correlation of signals, Analogy between vectors and signals-Orthogonality, mean square
error

Unit—I1: | Fourier Series and Fourier Transform

Fourier series: Trigonometric & Exponential, Properties of Fourier series, concept of discrete spectrum, Illustrative Problems.
Continuous Time Fourier Transform: Definition, Computation and properties of Fourier transform for different types of signals
and systems, Inverse Fourier transform. Statement and proof of sampling theorem of low pass signals, lllustrative Problems.

Unit—I1: | Fourier Series and Fourier Transform

Fourier series: Trigonometric & Exponential, Properties of Fourier series, concept of discrete spectrum, lllustrative Problems.
Continuous Time Fourier Transform: Definition, Computation and properties of Fourier transform for different types of signals
and systems, Inverse Fourier transform. Statement and proof of sampling theorem of low pass signals, lllustrative Problems.

Unit—1V: [ Signal Transmission through LTI systems

Signal Transmission through Linear Systems: Linear system, impulse response, Response of a linear system for different input
signals, linear time-invariant (LTI) system, linear time variant (LTV) system, Transfer function of a LTI system. Filter
characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, System bandwidth, Ideal LPF,
HPF and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between bandwidth and
rise time, Energy and Power spectral densities, Illustrative Problems

Unit—-V: [ DTFT & Z-Transform

Discrete Time Fourier Transform: Definition, Computation and properties of Discrete Time Fourier transform for different types
of signals and systems.

Z-Transform: Definition, ROC, Properties, Poles and Zeros in Z-plane, The inverse Z-Transform, System analysis, Transfer
function, BIBO stability, System Response to standard signals, Solution of difference equations with initial conditions. Illustrative
Problems.

Textbooks:
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SIGNALS & SYSTEMS




UNIT-1

SIGNALS & SYSTEMS

Signal :A signal describes a time varying physical phenomenon which is intended to convey
information. (or) Signal is a function of time or any other variable of interest. (or) Signal is a
function of one or more independent variables, which contain some information.
Example: voice signal, video signal, signals on telephone wires, EEG, ECG etc.

Signals may be of continuous time or discrete time signals.

System :System is a device or combination of devices, which can operate on signals and
produces corresponding response. Input to a system is called as excitation and output from it is
called as response. (or) System is a combination of sub units which will interact with each other
to achieve a common interest.

For one or more inputs, the system can have one or more outputs.

Example: Communication System

Input  «——  »  OQutput
Or <+—— System — or
Excitation ] — > Response

Elementary Signals or Basic Signals:
Unit Step Function

Unit step function is denoted by u(t). It is defined as u(t) = 1 when t > 0 and
Owhent<0

L)

1

e Itisused as best testsignal.
¢ Area under unit step function isunity.




Unit Impulse Function
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Impulsefunctionisdenotedbyd(t).anditisdefinedasd(t)={0; %: 013

INOITE.

o0

/ " 8(t)dt = u(t)

Dirac delia fmetion

Bit) = lijP(f] This finction i theoret cally
o i undefined, 1 zoes to mfinity
. - for am instand, but # does
Ara j Bf)dt = | .

Area=1

%

t

RN

(@

The Derivative of an Unit Step Function
\ u(t)

. L um]="2 8w

> unit impulse
U(t)=0 t<1 function
u(t)=1 t>1 oo A O(t)

- +0
0 t<O / o(t)dt =_/ S(t)dt
S(t) = { g -0

= delta function

o t=0
0 t>0 T >t







Ramp Signal

[t t=0
Ramp signal is denoted by r(t), and it is defined as r(t) :l 0 ¢t<0

/u(t):/lzt:r(t)

dr(t)
dt

. (t)

1 2 u(t)
Area under unit ramp is unity.

Parabolic Signal

{ﬁ/z t>0
Parabolic signal can be defined as x(t)= 0 t<0

. X(1)




t2
// u(t)dt = /r(t)dt = /tdt = parabolicsignal

d?xz(t)
dt?
dx(t)
dt

saea() =

=eplf) —

Signum Function

1 *
o] t
Signum function is denoted as sgn(t). It is defined as sgn(t) = —1 ¢

A sgnit)

sgn(t) =2u(t) - 1
Exponential Signal
Exponentialsignalisin theformof x(t) =€
.The shape of exponential can be defined by o

Casei:if o= 0—x(t) =€°=1




Caseii:if o< Oi.e.-vethenx(t) =™

. The shape is called decaying exponential.

 X(1)

Caseiii:if o> Oi.e.+vethen x(t)=€*

. The shape is called raising exponential.

Rectangular Signal

Let it be denoted as x(t) and it is defined as

x(t) = A rect [%]

A X(t)

ex: 4 rect [

A Xt)

4
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Triangular Signal

Let it be denoted as x(t)

x[r]:A[l—%

X(t)
A

Sinusoidal Signal

Sinusoidalsignalisin theformof x(t)=Acos(WoxQ)orAsin(Wex )

AX(t)

Where To = 2z/wo

Classification of Signals:
Signals are classified into the following categories:

Continuous Time and Discrete TimeSignals
Deterministic and Non-deterministicSignals
Even and Odd Signals

Periodic and AperiodicSignals

Energy and PowerSignals

Real and Imaginary Signals




Continuous Time and Discrete Time Signals

A signal is said to be continuous when it is defined for all instants of time.

Amplitude

A signal is said to be discrete when it is defined at only discrete instants of time/

M

>

discrete time

Deterministic and Non-deterministic Signals
A signal is said to be deterministic if there is no uncertainty with respect to its value at

any instant of time. Or, signals which can be defined exactly by a mathematical formula are
known as deterministicsignals.

x(t)




A signal is said to be non-deterministic if there is uncertainty with respect to its value at
some instant of time. Non-deterministic signals are random in nature hence they are called
random signals. Random signals cannot be described by a mathematical equation. They are
modelled in probabilistic terms.

voltage
Fi

Even and Odd Signals
A signal is said to be even when it satisfies the condition x(t) = x(-t)

Example 1: t?, t*... cost etc.

Let x(t) = t?

X(-t) = (-1)? = t? =x(t)

.". t?%is evenfunction

Example 2: As shown in the following diagram, rectangle function x(t) = x(-t) so it is also even
function.




-T/2 T/2

A signal is said to be odd when it satisfies the condition x(t) = -x(-t)
Example: t, t3... And sin t

Let x(t) =sint

X(-t) = sin(-t) = -sin t = -x(t)

". sintis odd function.

Any function f(t) can be expressed as the sum of its even function fe(t) and odd function fo(t).

f@t) = fe(t) + fo(t)

where

fe(t) = f(t) +/(-1)]
Periodic and Aperiodic Signals
A signal is said to be periodic if it satisfies the condition x(t) = x(t + T) or x(n) = x(n + N).
Where

T = fundamental time period,

1/T = f = fundamentalfrequency.




The above signal will repeat for every time interval To hence it is periodic with period To.

Energy and Power Signals

A signal is said to be energy signal when it has finite energy.

o0
Energy E = / xz? (t)dt
—o0

A signal is said to be power signal when it has finite power.

T—o0

1 o &
Power P = lim — / x? (t)dt
oT J_,

NOTE:A signal cannot be both, energy and power simultaneously. Also, a signal may be neither
energy nor power signal.

Power of energy signal = 0
Energy of power signal = o«

Real and Imaginary Signals

A signal is said to be real when it satisfies the condition x(t) = x*(t)
A signal is said to be odd when it satisfies the condition x(t) = -x*(t)
Example:
If x(t)= 3 then x*(t)=3*=3 here x(t) is a real signal.
If x(t)= 3j then x*(t)=3j* = -3j = -x(t) hence x(t) is a odd signal.
Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal, real
part should be zero.




Basic operations on Signals:

There are two variable parameters in general:

1. Amplitude
2. Time

(1) The following operation can be performed withamplitude:
Amplitude Scaling
C x(t) is a amplitude scaled version of x(t) whose amplitude is scaled by a factor C.

a2 x(t)

()

Addition

Addition of two signals is nothing but addition of their corresponding amplitudes. This

can be best explained by using the following example:
X1 (t)

As seen from the previous diagram,
-10 <t < -3 amplitude of z(t) = x1(t) + Xo(t) =0+2=2
-3 <t< 3 amplitude of z(t) = xa(t) + X2(t) =1+2=3

3 <t <10 amplitude of z(t) = xa(t) + x2(t) =0+2 =2




Subtraction

subtraction of two signals is nothing but subtraction of their corresponding amplitudes.
This can be best explained by the following example:

X1 (t)
A

As seen from the diagram above,
-10 <t < -3 amplitude of z (t) = xa(t) - x2(t) =0-2=-2
-3 <t<3amplitude of z (t) = x1(t) - x2(t) =1-2=-1

3 <t <10 amplitude of z (t) = xu(t) - x2(t) =0-2=-2

Multiplication

Multiplication of two signals is nothing but multiplication of their corresponding
amplitudes. This can be best explained by the following example:




As seen from the diagram above,
-10 <t < -3 amplitude of z (t) = xa(t) xx2(t) =0x2=0

-3 <t < 3 amplitude of z (t) = xa(t) - xo(t) =1 x2=2
3 <t <10 amplitude of z (t) = xa(t) - x2(t) =0%x2=0

(2) The following operations can be performed withtime:

Time Shifting

X(t Xto) is time shifted version of the signal x(t).
X (t + to) —negative shift
X (t - to) —positive shift

x(t) | x(t -tg) |

/\

Time Scaling

X(At) is time scaled version of the signal x(t). where A is always positive.




|A| > 1 — Compression of the signal

|A| < 1 — Expansion of the signal

xt) | x(2t) 1

2 4

Note: u(at) = u(t) time scaling is not applicable for unit step function.

Time Reversal

X(-t) is the time reversal of the signal x(t).

x{t)

Classification of Systems:

Systems are classified into the following categories:

¢ Liner and Non-linerSystems
e Time Variant and Time InvariantSystems
Liner Time variant and Liner Time invariantsystems
Static and DynamicSystems
Causal and Non-causalSystems
Invertible and Non-InvertibleSystems

Stable and UnstableSystems




Linear and Non-linear Systems

A system is said to be linear when it satisfies superposition and homogenate principles.
Consider two systems with inputs as xi(t), Xo(t), and outputs as yi(t), y=(t) respectively. Then,
according to the superposition and homogenate principles,

T [a1 xa(t) + a2 X2(t)] = a1 T[xw(t)] + a2 T[x2(t)]

Lo T [an xa(t) + a2 xo(t)] = awya(t) + a2 ya(t)

From the above expression, is clear that response of overall system is equal to response of
individual system.

Example:
y() =x(t)
Solution:
y1 (1) = Txu(®)] = X4(0)
y2 (t) = T[x2(t)] = X4(t)
T [ar xa(t) + a2 Xo()] = [ a1 xa(t) + a2 X(1)]2

Which is not equal to aryi(t) + a2 y2(t). Hence the system is said to be non linear.

Time Variant and Time Invariant Systems

A system is said to be time variant if its input and output characteristics vary with time.
Otherwise, the system is considered as time invariant.

The condition for time invariant system is:

y(n,t)=y(n-t)

The condition for time variant system is:

y (n, t) # y(n-t)
Where y (n, t) = T[x(n-t)] = inputchange

y (n-t) = output change




Example:
y(n) = x(-n)
y(n, t) = T[x(n-t)] = x(-n-t)

y(n-t) =x(-(n-1)) = x(-n + 1)

.. y(n, t) # y(n-t). Hence, the system is time variant.
Liner Time variant (LTV) and Liner Time Invariant (LT1) Systems
If a system is both liner and time variant, then it is called liner time variant (LTV) system.

If a system is both liner and time Invariant then that system is called liner time invariant (LTI)
system.

Static and Dynamic Systems

Static system is memory-less whereas dynamic system is a memory system.
Example 1: y(t) = 2 x(t)

For present value t=0, the system output is y(0) = 2x(0). Here, the output is only dependent upon
present input. Hence the system is memory less or static.

Example 2: y(t) = 2 x(t) + 3 x(t-3)
For present value t=0, the system output is y(0) = 2x(0) + 3x(-3).

Here x(-3) is past value for the present input for which the system requires memory to get this
output. Hence, the system is a dynamic system.

Causal and Non-Causal Systems

A system is said to be causal if its output depends upon present and past inputs, and does not
depend upon future input.

For non causal system, the output depends upon future inputs also.
Example 1: y(n) = 2 x(t) + 3 x(t-3)
For present value t=1, the system output is y(1) = 2x(1) + 3x(-2).

Here, the system output only depends upon present and past inputs. Hence, the system is causal.




Example 2: y(n) = 2 x(t) + 3 x(t-3) + 6x(t + 3)

For present value t=1, the system output is y(1) = 2x(1) + 3x(-2) + 6x(4) Here, the system output
depends upon future input. Hence the system is non-causal system.

Invertible and Non-Invertible systems

A system is said to invertible if the input of the system appears at the output.

X(t) y(t) = x(t)

. hz(t)
hi(t) Invertible System 5

Y(S) = X(S) H1(S) H2(S)
= X(S) H1(S) - L(H1(S))

Since H2(S) = 1/( H1(S))

L Y(S) = X(9)
— y(t) = x(t)
Hence, the system is invertible.

If y(t) # X(t), then the system is said to be non-invertible.

Stable and Unstable Systems

The system is said to be stable only when the output is bounded for bounded input. For a
bounded input, if the output is unbounded in the system then it is said to be unstable.

Note: For a bounded signal, amplitude is finite.
Example 1: y (t) = x3(t)

Let the input is u(t) (unit step bounded input) then the output y(t) = u2(t) = u(t) = bounded
output.

Hence, the system is stable.




Example 2: y (t) = x(t)dt

Let the input is u (t) (unit step bounded input) then the output y(t) = Ju(t)dt= ramp signal
(unbounded because amplitude of ramp is not finite it goes to infinite when t — infinite).

Hence, the system is unstable.

Analogy Between Vectors and Signals:

There is a perfect analogy between vectors and signals.

Vector

A vector contains magnitude and direction. The name of the vector is denoted by bold
face type and their magnitude is denoted by light face type.

Example: V is a vector with magnitude V. Consider two vectors Vi and V- as shown in the
following diagram. Let the component of V1 along with V2is given by C12V>. The component of
a vector Vialong with the vector V2 can obtained by taking a perpendicular from the end of V1 to
the vector V> as shown indiagram:

W1

b

Ci2Vz f"u"e

The vector Vican be expressed in terms of vector V2
V1= C12V2 + Ve
Where Ve is the error vector.

But this is not the only way of expressing vector V1 in terms of V2. The alternate possibilities
are:

V1=C1V2+Ve1




V2=C2V2+Ve

The error signal is minimum for large component value. If C1,=0, then two signals are said to be
orthogonal.

Dot Product of Two Vectors
V1. V2=V1.Vacos0

0 = Angle between V1 and V2

V1. Vz :Vz.V1

From the diagram, components of Via long V2 = C 12 V>

Vi. Vo

Vo = C12V,
Vi. Vs
Vs

:‘,:-6‘12:




Signal

The concept of orthogonality can be applied to signals. Let us consider two signals f1(t) and f(t).
Similar to vectors, you can approximate fi(t) in terms of f2(t) as

f1(t) = Cy2 fo(t) + fe(t) for (i<t <tp)

= fo(t) = f1(t) — Co2 (1)

One possible way of minimizing the error is integrating over the interval t; to t.

1 (5
— / [£.(8)]at

/t f2(8) — Crafa(t)]dt

1
by —

However, this step also does not reduce the error to appreciable extent. This can be corrected by
taking the square of error function.

B zgitl ftf [fe(t)]*dt

a to_tl f [fe(t) — Chrafo)?dt

Where ¢ is the mean square value of error signal. The value of C12 which minimizes the error,
you need to calculate de/dC12=0

= d(f*l12 [ﬁ leg [f1(t) — Ci2fa(t)]?dt] = 0

et b (e 12 () — -2 () Crafa(t) + 35 F3(£)CPldt = 0

Derivative of the terms which do not have C12 term are zero.

= jf —2f1(t) fo(t)dt + 2C19 J;z [f5(t)]dt

[2 fi)f,(t)d
If Cia = szf—(z)d component is zero, then two signals are said to be orthogonal.
t)dt
‘l 2

Put C12 = 0 to get condition for orthogonality.




o= Jot HOL®
Jr:li Fi(t)dt

t2

fi1(t) f2(t)dt = 0
b
Orthogonal Vector Space

A complete set of orthogonal vectors is referred to as orthogonal vector space. Consider a three
dimensional vector space as shown below:

Zz

Consider a vector A at a point (X1, Y1, Z1). Consider three unit vectors (Vx, Vy, Vz) in the
direction of X, Y, Z axis respectively. Since these unit vectors are mutually orthogonal, it satisfies
that

V. Vx =W. W =Vz. V=1
V. Vo =W . Vz=Vz2.Vx =0

We can write above conditions as




1 a=~>b
0 a#*b

The vector A can be represented in terms of its components and unit vectors as

A= X1VX + HVY + ZIVE

Any vectors in this three dimensional space can be represented in terms of these three unit
vectors only.

If you consider n dimensional space, then any vector A in that space can be represented as

A=XVx+YIW +Z1Vz+...+N1Vy..... (2)

As the magnitude of unit vectors is unity for any vector A

The component of A along x axis =A.Vx
ThecomponentofAalongYaxis=A.Vy The
component of A along Z axis =A.Vz

Similarly, for n dimensional space, the component of A along some G axis

Substitute equation 2 in equation 3.

= CG= (X1 Vx +Y1IW + Z1Vz+...+G1 Vg...+N1VN) Ve
=X VxVe +Y1IW Ve + Z1VzVe+...+G1 Ve V... + N1 VN Ve
=G, sinceVgVg =1

IfVaVg #1ieVgVg =k

AV =G1VgVe = G1 K

AV,
G, = 4%




Orthogonal Signal Space

Let us consider a set of n mutually orthogonal functions xi(t), Xo(t)... xn(t) over the
interval t; to t>. As these functions are orthogonal to each other, any two signals x;(t), x(t) have
to satisfy the orthogonality condition.i.e.

ta
/ zj(t)zr(t)dt = 0 wherej # k

ty

Lo
Let/ x2 (t)dt = ky

4

Let a function f(t), it can be approximated with this orthogonal signal space by adding the
components along mutually orthogonal signals i.e.

f(t) = Ci21 (t) + Ch o (t)+ .. +Cn£13.n(t) + fe(t)
= E:;.l;l C,.:l:,-(t)

f(t) =Ff(@) — B2 _,Crz.(t)

Mean sqaure error € = i;iz f (fe(t)]?dt

oy /
to — 1o Jy

The component which minimizes the mean square error can be found by

de _dE _dE _ 0
dc, dC, ~~  dCp

. de _
Let us consider o = 0




d 1 | ;
“‘n 5 dt:
Bl L\ Cra (0] = 0

All terms that do not contain Ck is zero. i.e. in summation, r=k term remains and all other terms
are zero.

to to
/ ——2f(t):13k(t)dt + 2Ck / [Ilji(t)]dt = 0
t ty

Ltn f
zntt; :Bk(t)dt

= U=

lp
= f(t):ck(t)dt = CkKk

t
Mean Square Error:

The average of square of error function fe(t) is called as mean square error. It is denoted by €
(epsilon).

e = i [ [fe(t)]2dt

= Lo [P 1fet) - =, Cran(t) Pt

bih

= ! [ftfz[ff(t)]dHE;;lC,? K :c;%a)dt—zz:;'»:lcrﬁ 2, (1) f(¢)dt

to—ty

You know that C? [;* a2 (t)dt = C, [,” z,(t) f(d)dt = C?K,

e = L_[[2[f2(t)ldt + =_, C}K, — 25" C2K,]

t2 —tl

= 1 U;f?[fQ(t)]dt—E;}: {C2K}]

t—t

— j; f2 dt+(02K1+C2K2+ +C7$ n)]

ts —tl




The above equation is used to evaluate the mean square error.

Closed and Complete Set of Orthogonal Functions:

Let us consider a set of n mutually orthogonal functions xa(t), X2(t)...xa(t) over the interval
tito to. This is called as closed and complete set when there exist no function f(t) satisfying the
condition

ft"’f )i (t)dt = 0

If this function is satisfying the equation

ftfg f(t)z(t)dt =0

For k=1,2,.. then f(t) is said to be orthogonal to each and every function of orthogonal set.
This set is incomplete without f(t). It becomes closed and complete set when f(t) is included.

f(t) can be approximated with this orthogonal set by adding the components along mutually
orthogonal signals i.e.

f(t) = (11 (t) b Coxo (t) ... C'n:r_rn(t) } fe(f)

If the infinite series C1 2 (t) + Caza(t)+. .. +Cprz,(t) converges to ft then mean square error is
zero.

Orthogonality in Complex Functions:

If f1(t) and f2(t) are two complex functions, then fi(t) can be expressed in terms of fx(t) as

f1(t)=Cufy(t).. withnegligible error

[2 £(©)f3 (8)dt
2 5 (0)F dt

Where Cio =

Where f, (t) is the complex conjugate of f £t)

If f1(t) and f2(t) are orthogonal then C12 =0




f,t" f1(t) f3(t)dt
flfz ‘.(t)fzdt

ty

= f1(t)f3(dt) =0

ty

The above equation represents orthogonality condition in complex functions.
Fourier series:

To represent any periodic signal x(t), Fourier developed an expression called Fourier
series. This is in terms of an infinite sum of sines and cosines or exponentials. Fourier series uses
orthoganality condition.

Jean Baptiste Joseph Fourier,aFrench mathematician and a physicist; was born in
Auxerre, France. He initialized Fourier series, Fourier transforms and their applications to

problems of heat transfer and vibrations. The Fourier series, Fourier transforms and Fourier's
Law are named in hishonour.

Fourier Series Representation of Continuous Time Periodic Signals
A signal is said to be periodic if it satisfies the condition x (t) = x (t + T) or x (n) = x (n + N).
Where T = fundamental time period,

o= fundamental frequency = 2/T

There are two basic periodic signals:
X(t)=coswot(sinusoidal)

&X(t)=ejwot(complex exponential)

These two signals are periodic with period T=27/wo

. A set of harmonically related complex exponentials can be represented as {(pk(t)}

Pr(t) = {eFnt} = {e’l‘ Ywherek =04+ 1,42..7n

All these signals are periodic with period T




According to orthogonal signal space approximation of a function x (t) with n, mutually
orthogonal functions is given by

o(t)= )  ape™.....(2)
k=—o0

o0

— Z ay, kejkw(,t

k=—00

Where ax= Fourier coefficient = coefficient of approximation.

This signal x(t) is also periodic with period T.

Equation 2 represents Fourier series representation of periodic signal x(t).

The term k = 0 is constant.

The term k=%1 having fundamental frequency wo , is called as 1st harmonics.

The term k=22 having fundamental frequency 2o , is called as 2nd harmonics, and so

on... The term k=£n having fundamental frequency nwo, is called as nth harmonics.

Deriving Fourier Coefficient

We know that

2(t) =22 aet, ... (1)

N = (X)

Multiply€"ctonbothsides. Then

o0
$(t)€_jnw0t — § ' akejkwot : e—jnwgt
k=—o0

Consider integral on both sides.




T T
/ :z:(t)eik“’“tdt:/ Z ay ekt emImwot gy
0 0

k=—o0

T oo
/ Z ake]k n)wot dt

k=—o0

T

T 00
/ s hdle— % wy | dEREGY ... (2)
0 0

k——no

by Euler's formula,

P is 7
/ d(k”)“’“tdt.:/ cos(k—n)w()dt+j/ sin(k — n)wyt dt

0 0 0

7
/ e7'(k—n)w0t dt. = {T k=n
0 0 k#n

Hence in equation 2, the integral is zero for all values of k except at k =n. Put k=nin
equation 2.

:>/ x(t)e 7"t dt = a, T

a, = T/ _anotdt

Replace n by k




T T .
b=l [
0

o) = Z ay el (F—m)wot
k=—00

L ..
whereaq;, = T / eIkt gt
0

Properties of Fourier series:

Linearity Property

fourier series coefficient fourier series coefficient
If 2(t) ¢ » fon &Y(t) 4 - fim

then linearity property states that

s ( t) i by ( t) . fourier series coe fficient} . fm i fyn

Time Shifting Property

3 fourier series coefficient

I (B(t) A ? .fmn

then time shifting property states that

fourier series coefficient .
iIJ(t - t()) ¢ y g et f n




Frequency Shifting Property

fourier series coefficient
~ . 5
‘ f rn

If () <

then frequency shifting property states that

Tt fourier series coe fficient
eIty LB(t) ¢ N f:l:('n.—n(,)

Time Reversal Property

fourier series coefficient
Vi \
Y f n

If 2(t) <

then time reversal property states that

fourier series coefficient
4 f —In

If 2(—t)

Time Scaling Property

fourier series coe fficient
v s N
¢ f n

If 2(t) <

then time scaling property states that

fourier series coefficient 1
ke f rn

If z(at) 4

Time scaling property changes frequency components from wy to awy.

Differentiation and Integration Properties

fourier series coefficient
Vi \
5 f n

If 2(t) 4




then differentiation property states that

dz(t)  fourier series coefficient .
ST Jnwo. fan

& integration property states that

fourier series coefficient fon

If [x(t)dt <

gy

Multiplication and Convolution Properties

) fourier series coefficient % fourier series coefficient 4

fiE(t) < > fan &y(t) 3 ¢ fyn

‘hen multiplication property states that

fourier series coe fficient
L’(t). y(t) ¢ ’ Tf;vn, * fyn

& convolution property states that

5 fourier series coefficient

B(t) * y(t) » ’ Tfmn' fyn

Conjugate and Conjugate Symmetry Properties

3 fourier series coefficient

If 2(t) <« > fen

Then conjugate property states that

,fourier series coefficient

z * () 4 > f *gn

Conjugate symmetry property for real valued time signal states that

f ¥pn = f—rn.

& Conjugate symmetry property for imaginary valued time signal states that

f ¥pn = _f—a:n




Trigonometric Fourier Series (TFS)

sinnwotand sinmawot are orthogonal over the interval (to,to+27wo). SO Sinwot,sin2wetforms
an orthogonal set. This set is not complete without {cosnwot } because this cosine set is also
orthogonal to sine set. So to complete this set we must include both cosine and sine terms. Now
the complete orthogonal set contains all cosine and sine terms i.e. {Sinnwot,cosnwot} where n=0,
1,2..

.". Any function xt in the interval (g, ty + %.IF) can be represented as

z(t) = ag cos Owpt + a; cos 1wyt + as cos 2wot+. . . +a, cosnwyt+. ..
+by sin Owgt + by sin lwgt+-. . . +b, sin nwgt+-. . .
= ag + aj cos lwpt + as cos 2wyt+. . . +a, cosnwot+. ..

+by sin lwgt+. . . +b, sin nwot+-. ..
x(t) = ag Z(ﬂ-n cos nwnt + b oi=-
The above equation represents trigonometric Fourier series representation of x(t).
to+T _ +
j;_n' z(t) - 1dt 1 g+ T

Where ag = — _ — . x(t)dt
j;t'ﬂ— 12dt T )

o

t") —T
l‘ﬁ
to+T

L)

z(t) - cos nwyt dt

cos? nwot dt

j;;“*T z(t) - sin nwot dt
b = z| g
0

l‘ﬁ

sin? nwqt dt

tﬂ+T ; tﬁ+T . T
Here / cos? nwot dt = / sin? nwot dt = =

7 g o

t+T
LQp = / z(t) - cos nwotdt
l(:

2
T

2 to+T
B, = o / x(t) - sin nwyt dt

l(l




Exponential Fourier Series (EFS):

: _ _ et L (n = 0,41, +2...
Consider a set of complex exponential functions { } ( T )
which is orthogonal over the interval (to,to+T). Where T=2z/w0 . This is a complete set so it is
possible to represent any function f(t) as shown below

f(t) = _.Fh + Flejwui + Fgﬁjgw”t—{—. . +E£ejnw”£+. -
F_]_E_jw”t _I_ F_ gﬁ_jgw”t—l—. . +F_RE_J-”W“£—|—‘ 3

S f@) = Z F, et (g <t<ty+T)

n=—00

Equation 1 represents exponential Fourier series representation of a signal f(t) over the interval
(to, to+T). The Fourier coefficient is given as

j;fo +T F(t) (ej"‘w"t )*dt

j;‘tlo +T ejnw[,t (ejnw“t )* dt

F, =

j;tﬂ r f(t)e r--j-nw[,t.dt

0

Lt" T 1 e“ j'"'w“t ej’u.b"|t dt

‘1)

ty+T — Jruw,t
L0 f(t)eImtdt

i /‘tu +T )
- = — f(t)e ™t dt
= udt T Ji,

0




Relation Between Trigonometric and Exponential Fourier Series:
Consider a periodic signal x(t), the TFS & EFS representations are given below respectively
x(t) = ag + X°° , (ay, cosnuwyt + b, sin nwt)
@ (t) = B _ oo F et
= Fy + Fiet + Fyel?“t | +F, et
F et + F e P2ty +F ety

= Fy + Fi(coswyt + jsinwyt) + Fy(cos2wyt + jsin 2wyt)+. .. +F, (cos nwyt + jsin nwyt)+.

.+F_1(coswyt — jsinwgt) + F_o(cos 2wyt — jsin 2wyt)+. .. +F_, (cosnwyt — jsin nwyt)+. ..

= Fy + (Fy + F_1) coswyt + (Fy + F_5) cos 2wyt+. .. +j(Fy — F_1)sinwgt + j(F5 — F_5) sh* 2wot+-. ..

Lz(t) = Fy + 222, ((Fr + F-p) cosnwpt + j(F, — F_p) sin nwyt)

Compare equation 1 and 2.

Similarly,




Problems

1. Acontinuous-timesignalx(t)isshowninthefollowingfigure.Sketchandlabeleach of the
following signals.

(1)

1 L1 | - L

-2-1 01 2 3 45 !

(a)x(t-2);  (b)x(2t); (o)x(t2); (d)x(-1)




2. Determine whether the following signals are energy signals, power signals,or
neither.

(a) x(t)=e “u(t), a>0 (b) x(t)=Acos(wyt + 8)
(¢) x(t)=rtult) (d) x[n]=(-0.5)"u[n]
(e) x[n)=uln) (f) x[n]=2e"

x - . » ]
£=f|unrm;fe~“m=;;<m
- % 0 -

Thus, x(r) 1s an energy signal.
The sinusoidal signal x(r) is periodic with T, =2w/w, Then by the result from
Prob. 1.18, the average power of x(t) is

1 .1, . )
P= — x(t)| dt=
J, x(0] ~

To 2wy

Y /7
) LW/ g

A’ cos’(wyt + 0) dt

A’wy 12w/, ] A
- — O (2 +2 o - 0D
o ) 2[1 + cos(2wyt + 20)] dt =

-

Thus, x(7) i1s a power signal. Note that periodic signals are, in general, power signals.

(1/72)°
— = 0

) . /2
(c) E= Illy.ltlf

2 > T/2 4 -
InM%whmftﬁwhm
17,2 I wxdy =

7 ®

| 12 : L 72, 1 (172)°
P= lim — x(Ofdi= lim = [ dt= lim o ——— =
["l.nv ,'/ ,/:l r( )l Tl—lolnx ’1‘ 0 ]’lﬂu 7 ] ‘

Thus, x(t) is neither an energy signal nor a power signal.
(d) we know that energy of a signalis

oo

E= Y |x[n]]

n= -

And by using

we obtain

=

E= Y |x[n))

n= —x

Thus, x [ n] is a power signal.




(e) By the definition of power ofsignal

Thus, x[n] is a power signal.

(f) Since |x[n]l=2e/*"| = 2|e/3"| = 2.
N

1 A )
P= lim Y Ix[n])" =

I
N-= 2N+ 1 =y

1
= |im : 4(2N+ 1) =4 <>
N-x 2N+ 1

Thus, x[n)] is a power signal.

3. Determine whether or not each of the following signals is periodic. If a signalis
periodic, determine its fundamental period.

27T

! ™
(a) x(r) cos'l-&-:) x(l)=sinTl

™ . -
(c) x(r) cns?t'fsm I’ x{(t)=cost +siny2t

(e) x(1)=sin’t x(2) =N/ ER=0)

(g) x[n)=et /%" x[n] = cos in
T T

(i) xIn)=cos —n + sin —n (j) x[n)=cos? —
i x[n]l=c 311 s 41 x[n) 8n




T T
.r(l)—-cos‘l + 7 =cos(wul+ 3 ' —w, = |

x(1) i1s periodic with fundamental period 7, = 27 /w, = 27.
2w P2 ;

(1) =sin — —w,= —
30Ty

x(1) is periodic with fundamental period 7, = 27 /0w, = 3.
1 w
x(t) = cos it sin i x,(0) +x,(1)

where x (1) = coslm/3)r =cos w,t is periodic with T,=2m/w, =6 and x,(1)=
sin(/4)t = sin w1 is periodic with T,=2x/w,=8. Since T,/T,=3=17 is a rational
number, x(¢) is periodic with fundamental period T, = 47, = 3T, = 24,

x(t) = cost+ sinV2 1 =x (1) +x,(1)

where x (1) = cost = cos w,t is periodic with T, =27 /w, = 27 and x,(1) =siny2t=
sin w,1 is periodic with T, = 27 /w, = V2. Since T,/T, =2 is an irrational number,
x(1) is nonperiodic.

Using the trigonometric identity sin® 6 = (1 — cos 28), we can write

x(t)=sin®r=13%~ Jcos2t=x,(1) +x,(t)

where x (1) = { is a dc signal with an arbitrary period and x,(1) = ~ $c0s2f = — ] cos w,!
is periodic with T, = 27 /w, = . Thus, x(¢) is periodic with fundamental period 7, = 7.




w
(f) x(1) = eMT/N=Nm g=leAT/N m g ~Igi%! —s wpy = —

x(1) 1s periodic with fundamental period T, = 27 /w, = 4.
™
(g) x[n)=ef"/Maeiln () = %

Since 2,/2m = § is a rational number, x[n) is periodic, and by Eq. (1.55) the fundamen-
tal period 1s N, = 8.
x[n]=cos in = cos Ngn — N, = |

Since ,/27 = 1/8 is not a rational number, x[n] is nonperiodic.

T W
x[n] = cos Fnsin o =x,[n] +x,(n)

where

™
x,[n] = cos k =cos {ln (), = -

T
len] =5in :i"l =COSQ:I! —°‘)‘\-‘ Z

Since 2,/2m = ; (= rational number), x,[n] is periodic with fundamental period N, = 6,
and since 2,/2m = ; (=rational number), x,{n] is periodic with fundamental period
N, = 8. Thus, from the result of Prob. 1.15, x{n] is periodic and its fundamental period is
given by the least common multiple of 6 and 8, that is, N, = 24.

Using the trigonometric identity cos’ @ = }(1 + cos 28), we can write

A ]
x[n)] = cos "= 3

1 g
+ 3 cos —n =x,[n] +x,[n)

where x[n]={=3(1)" is periodic with fundamental period N, =1 and x,[n]=
3 cos(m/4)n = 5 cos Nyn — ), =m/4. Since ,/2m = ; (= rational number), x,[(n] is
periodic with fundamental period N, = 8. Thus, x[n] is periodic with fundamental period
N, = 8 (the least common multiple of N, and N,).

1. Determine the even and odd components of the followingsignals:




x(t)=ult)

, T
x(t) =sin| wyt + T

[n] = X/

x[n]=8[n]

x (1) =3,x,(t)=;sgnt

1
x (1) = —=cos wyt, x (1) = —=sin w,!

2 2

x[n]=jcos Qyn, x [n]= —sinQyn
x In]=28[nlx [n]=0
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CONTINUOUS TIME
FOURIER TRANSFORM




UNIT - 11
CONTINUOUS TIME FOURIER TRANSFORM

INTRODUCTION:

The main drawback of Fourier series is, it is only applicable to periodic signals. There
aresome naturally produced signals such as nonperiodic or aperiodic, which we cannot represent
using Fourier series. To overcome this shortcoming, Fourier developed a mathematical model to

transform signals between time (or spatial) domain to frequency domain & vice versa, which is
called 'Fouriertransform'.

Fourier transform has many applications in physics and engineering such as analysis of
LTI systems, RADAR, astronomy, signal processing etc.

Deriving Fourier transform from Fourier series:

Consider a periodic signal f(t) with period T. The complex Fourier series representation
of f(t) is given as

&) = Y g™
k=—o00

Let 1— = Af,then equation 1 becomes
0

f(t) =D 5 o are”

but you know that

_1_ t(] +T

Ak = Ty Jty

f(t)e Irotdt




Substitute in equation 2.

T
[ 2 f()e AR df] At A f

In the limit as T—oo,Af approaches differential df, kAf becomes a continuous variable f, and

summation becomes integration

[/3 f(£)e 2RO gy eijkAﬁ.Af}

f(t) = limTw)oo {
= [ st agerag

f(t) = /_oo Flw]e!*t dw

Where Flw] = [[°.  f(t)e 7277t dt]

Fourier transform of asignal

f0) = Flol = [ [ f®)ea

Inverse Fourier Transformis

FUE) = /_00 Flw]e!dw




Fourier Transform of Basic Functions:
Let us go through Fourier Transform of basic functions:

FT of GATE Function
X (t)
\
A

-T/2 T/2

Flw| = ATS&(%)

FT of Impulse Function:

FT[w(t)] = [J=,, 6(t)e ]

e |4=0

=

So(w) =1

FT of Unit Step Function:

U(w) = m(w) + 1/jw
FT of Exponentials:

E.T
e %u(t) «— 1/(a + jw)

E.T
e “u(t) +— 1/(a + jw)




FT of SignumFunction :
BT
sgn(t) < 2
Conditions for Existence of Fourier Transform:

Any function f(t) can be represented by using Fourier transform only when the function
satisfies Dirichlet’s conditions. i.e.
o The function f(t) has finite number of maxima andminima.
e There must be finite number of discontinuities in the signal f(t),in the given interval of
time.

e It must be absolutely integrablein the given interval of timei.e.

Joo 1 f(®)]dt < oo

Properties of Fourier Transform:

Here are the properties of Fourier Transform:

If () = X(w)

& y(t) «— Y(w)

Then linearity property states that

az(t) + by(t) ¢ aX(w) + bY (w)




Time Shifting Property:

’.[fa:(t) P X(w)

Then Time shifting property states that

F.T .
z(t — ty) +— e X(w)

Fr n hifting Property:
If 2(t) 6o X(w)

Then frequency shifting property states that
, P.T
et x(t) +— X(w— wp)

If z(t) &5 X(w)

Then Time reversal property states that

p(—t) ¢ X(—w)

P.T
If z(t) +— X(w)
Then Time scaling property states that

m(at)i)f%

| a

Differentiation and Integration Properties:




If 2(t) s X(w)

Then Differentiation property states that

=(¢) F.T .
Ztﬂ — jw. X(w)

d*z(t) F.T o N
T2 s (jw)". X(w)

and integration property states that

[a(t)dt <~ L X(w)

F.T

[If... [z(t) dt +— 2+ X(w)

(jw)
If 2(f) ¢ — X(w)

& y(t) ¢ Y(w)

Then multiplication property states that

2(t). y(t) = X(w) * Y(w)

and convolution property states that

() =p(t) + - L X(w). ¥(w)

2

Sampling Theorem and its Importance:




Statement of Sampling Theorem:

A band limited signal can be reconstructed exactly if it is sampled at a rate atleast twice
the maximum frequency component in it."

The following figure shows a signal g(t) that is bandlimited.

Gim)

—{()
—= [

Figure1: Spectrum of band limited signal g(t)

The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly from its
samples it has to be sampled at a rate fs > 2fm.

The minimum required sampling rate fs = 2fm is called ‘“Nyquist rate”.

Let g(t) be a bandlimited signal whose bandwidth is fm (om =2nfm).

a(t)

(a)
Figure 2: (a) Original signal g(t) (b) SpectrumG(w)

dr(t) is the sampling signal with fs = 1/T > 2fn.




a(t) S D)y

gl
il

a) sampling signal ér (¢) (b) Spectrum dr(w)

Figure 3: {

Let gs(t) be the sampled signal. Its Fourier Transform Gs(w) is given by
F(gs(t)) F [g(t)or(t)]

+0C
F |:g({) Z ot — NT)]

n=——oC

| I (. ey,
27 lc;( ') *;‘;") Z ()(“’. = ”\4}”)}

n=——0C

1 +0<
= Z G(w) * 0(w — nwy)

n=——~o0
F [g(t) + 29(t) cos(wot) + 2g(t) cos(2wpt) + - - -]

+0C

% Z G(w — nwy)

n=—oC

& (L)
i

Figure 4: (a) sampled signal gs(¢) (b) Spectrum Gs(w)

If wg = 2wy, i.e., T = 1/2f,,. Therefore, G;(w) is given by




Gw) =2 Y Glw—nwn)

N—=—0>oC
To recover the original signal G(w):

1. Filter with a Gate function, Ha,, (w) of width 2w,,.

2. Scale it by T'.
(-_"(“") = 7’(—_"5(“})]{2.‘.’,” (.&)

Figure 5: Recovery of signal by filtering with a filter of width 2w,

liasing:
Aliasing is a phenomenon where the high frequency components of the sampled signal
interfere with each other because of inadequate sampling ws<wm

Interference of high frequency componen)s

Figure 6: Aliasing due to inadequate sampling
Aliasing leads to distortion in recovered signal. This is the reason why sampling
frequency should be atleast twice the bandwidth of the signal.




Oversampling:

In practice signal are oversampled, where fs is signi_cantly higher than Nyquist rate to
avoid aliasing.

Figure 7: Oversampled signal-avoids aliasing

Problems

1 Find the Fourier transform of the rectangular pulse signal x(t) definedby

1 It| < a
0 [t| > a

x(1)=p,(t)=

Sol: By definition of Fourier transform

X w) =f

x

p,(t)e " dt =




1 SIn wa
- T_(t,/ma = e"'[wa) p— 2
Jw w

Hence we obtain

Sin wa Sin wa
p,(t) 2 = 2a
w wa
The following figure shows the Fourier transform of the given signal x(t)

X(w)

2a

Figure: Fourier transform of the given signal

2 Find the Fourier transform of the following signalx(t)
x(t)=e" a>0

Sol: Signal x(t) can be rewritten as

s —at
x(t)=e "= : t>0
' e t <0

]

X(w) =f_n e“e ™" dt + j;] e e dt

=f”

— X

ac
e[a—_ﬂ'm]fdr+f e I‘::;+_.l"-rh'!ﬂ|l‘r
1]




Hence, we get

2a

E —ﬂlfl H e ——
a’ + w’

The Fourier transform X(w) of x(t) is shown in the following figures

x(n X(w)
! 2a
' 0
(b)

0
(a)
Fig: (a) Signal x(t) (b) Fourier transform X(w) of x(t)

4. Find the Fourier transform of the periodic impulsetrain

(1)

Fig: Train of impulses
Sol: Given signal can be written as

dr(t)= X 8(1—kT,)
k= —o0




the complex exponential Fourier series of 5.,-”(1) is given by

] - 2
6r(t) = 7_ Z e/ov Wy ™= ==

O ke - I(l

2

Flor(0)] =

z 8(t - kT,) «— w, Z Nw—kw,)
£

x k= —o

Thus, the Fourier transform of a unit impulse train is also a similar impulse train. The following
figure shows the Fourier transform of a unit impulse train

0 w, 2w,

Figure: Fourier transform of the given signal

5.Find the Fourier transform of the signumfunction

Sol: Signum function is definedas

sen() = { _|

The signum function, sgn(t), can be expressed as
Sgn(t)= 2u(t)-1




We know that

d , —_
—sgn(1) =28(1)

Fig: Signum function

sgn(t) «— X(w)
Then applying the differentiation property , we have

2
joX(w)=F[28(1)]=2—>X(w)=—

Jiw

sgn(t) e —
jw

Note that sgn(t) is an odd function, and therefore its Fourier transform is a pure imaginary
function of w




Properties of Fourier Transform:

Aperiodic signal

Fourier transform

Linearity

Time Shifting
Frequency Shifting
Conjugation

Time Reversal

Time and Frequency
Scaling
Convolution

Multiplication

Differentiation in Time

Integration

Differentiation in
Frequency

Conjugate Symmetry
for Real Signals

Symmetry for Real and
Even Signals

Symmetry for Real and
Odd Signals

Even-Odd Decompo-
sition for Real Sig-

x(t)

ax(®) + by(r)
X(I - I())
e/’ x(£)
X0

x(—1)

x{at)
x(t) * y(1)
x(2)y(8)

dit x(t)

f r x(Hdt

tx(¢)

x(r) real

x(t) real and even

x(¢) real and odd

x.(t) = &v{x(®)} [x(¢) real]
x,(t) = Od{x(t)} [x() real]

Parseval’s Relation for Aperiodic Signals

fw |x()|*dt =

1 (™
[ KGoyrde

X(jo)

aX(jw) + bY(jw)
e X (jw)
X(j(w — wq))
X' (- jo)

X(— jw)

1 y(iw
la| "\ a
X(jw)Y(jo)

2%,[+306)Y0(w —§)do

joX(jo)

1 )
FO_X(J“’) + 7X(0)o(w)
. d )
J%X(Jw)

[ X(jw) = X*(— jw)
Re{X(jo)t = Re{X(— jw)}

{ In{X(jo)} = —Im{X(— jw)}
X(jw) = [X(— jo)

| X (jw) = —LX(~— jw)

X(jw) real and even

X(jw) purely imaginary and odd

Re{X(jow)}
JIm{X(jw)}




Fourier Transform of Basic Functions:

Signal

Fourier series coefficients
Fourier transform (if periodic)

+m
E ake]kmor

k=—o

+o0

2 Z ad(w — kwo)

k=—cw

et

a|=1

2mé(w —
mow — wo) a; = 0, otherwise

€OS wot

_ 1
a =4a1 =5

7[8(w — wp) + (@ + w)] a, = 0, otherwise

sin wyf

_ 1
a|=—a_1——2—j

T
7[5(0) ~@0) = 3@ + wo)l a; = 0, otherwise

x(t) =1

a=1 a =0 k#0
27 d(w) this is the Fourier series reptesentation for
any choice of T > 0

Periodic square wave
L <1
x() =[0’ T, < < g
and
x(t+T)= x(£)

+o

. . T
Z 2 sin konl 8((0 _ kw()) w:TT1 R (kw;T])= sin kl.l)(] 1

k ki

k=—w

i 8(t — nT)

n=—%

2 <= 2wk
T2 5("’ - T)

= -

1 <T
x(t){ o <Ty
0, |f>T

2sinwT;
@

sin Wt
mt

X(jw) = [ .

>

o)

1

u(t)

,i + 7 d(w)
jo

8(t — 1)

e i@

e u(t), Rela} >0

1
a+ jo

te “u(t), Refa} > 0

1
(a+ jw)

o
oo e ul),

Refa} >0

1




DISCRETE TIME FOURIER TRANSFORM
Discrete Time Fourier Transforms (DTFT

Here we take the exponential signals to be {e""}where is a real number.The
representation is motivated by the Harmonic analysis, but instead of following the historical
development of the representation we give directly the defining equation.Let be

[+ al
Tjn|| < oo
discretéfime signal such that n:z—ml ) that is sequence is absoifitely summable.
Thesequence "I can be represented by a Fourier integral of theform.

N
Iln]=2?f}f[ej"')£}“dm

]

()= T

Equation (1) and (2) give the Fourier representation of the signal. Equation (1) is referred
as synthesis equation or the inverse discrete time Fourier transform (IDTFT) and equation (2)is
Fourier transform in the analysis equation. Fourier transform of a signal in general is a complex
valued function, we can write

X(e")= Xa(e™)41X1(e")

whergX{e™)]is magnitude and <X (e™)is the phase of. We also use the term Fourier
spectrumorsimply,thespectrumtoreferto. Thus| X (e*“)iscalledthemagnitudespectrumand <X (¢™)is
called the phase spectrum. From equation (2) we can see that X(e™)is a periodic function
with period i.e.. We can interpret (1) as Fourier coefficients in the representation of a
periodic function. In the Fourier series analysis our attention is on the periodic function, here we
are concerned with the representation of the signal. So the roles of the two equation are
interchanged compared to the Fourier series analysis of periodicsignals.

Now we show that if we put equation (2) in equation (1) we indeed get the signal.
Let

_i-In] =2i'.'rj. ( Z I[m]e—jwm) pHiwm g

where we have substituted X(e™)from (2) into equation (1) and called the result as.
Since we have used n as index on the left hand side we have used m as the index variable forthe




sum defining the Fourier transform. Under ourassumptionthat {*Mi sequence isabsolutely
summable we can interchange the order of integration and summation.Thus

== ?I'

Z z|m) EL*— f gtiw(n—m) g ,

i
mM=—00 —_r

Example: Let

{z[n]} = {a™u[n]}

Fourier transform of this sequence will exist if it is absolutely summable. We have

Z lz[n]| = Z Cl

n=—oo

o

= —n 1
X(e”)= Y anle™ = aulnle”™ = (ae7®)" = ——.
-jo
n=0

n=—oo n=—u 1—ae

The magnitude and phase for this example are show 1n the figure below. where a >0 and a < 0

are shown 1n (a) and (b).




Example: x[n]= al", la| <1.

X(e™) = Ta ulnle” Zﬂf e "“’+Zﬂ e™

n ——33 n={

Let m = —n in the first summation. we obtain
s al [= &

X(e™) = Tn lu[nle Ta’"e*’“’“' +> a"e”

n——33 M—D

1—a’

.
lacos@w +a”

1-+ap11 —a)

...,ﬂnll” |||hm,...

Example: Consider the rectangular pulse

H[n]

_"‘ 0 M n

Y(jw) = ,}_ g _ sinm(N, +1/2)

-

‘ sinfw/2)

This function is the discrete counterpart of the sic
function, which appears in the Fourier transform of |

the contimious-time pulse. 2 '“\J‘ 0 "'\f VA
(I

The difference between these two functions is that
the discrete one is periodic (see figure) with period of 2w . whereas the sine function 15 aperiodic.




Eourier transform of Periodic Signal

For a periodic discrete-time signal,

Jihgm

in]=e

its Fourier transform of this signal is periodic in w with period 2[] , and is given

X(e’) = _ZZEé(m—mg —2nl).
I=—x

Now consider a periodic sequence x[n] with period N and with the Fourier series representation

k(2 | Nn
x[n]= Zn' e’ :
k=N

The Fourier transform is

X(e®)= Y 2 5(m——‘ﬁf}

k=—m

Example: The Fourier transform of the periodic signal

1 JDgn l —Jjgn ‘,7[
AT[?I]:COS(')GHZ:Q i .with @, =—.

~ L S

is given as

X(e’) =7r5|" (0—2—”‘|+n5]‘. [0} +2_7r I
\ 3 ) \ 3 )

P 1

—2m
(—27—wg) (—27+wp) (2 —wg) (2w +uwyg)

Discrete-time Fourier transform of x[n] = €0S wyn.




Example: The periodic impulse train
+x
xn]= > 8[n—kN].
E=—x
The Fourier series coefficients for this signal can be calculated

n=<N =

Choosing the interval of summationas 0<n = N -1, we have

a, =—.

N

The Fourier transform is

| 2
N
b)

(

(a) Discrete-time periodic impulse train; (b) its Fourier transform.




Properties of the Discrete Time Fourier Transform:

Let **IMiand {w[n]tbe two signal, then their DTFT is denoted by X (e“Jand. Thenotation

{zln]} < X(e™)

is used to say that left hand side is the signal x[n] whose DTFT is X (e™“)is given at right hand
side.
1. Periodicity of theDTFT:

The discrete-time Fourier transform is always periodic in @ with period 2w, 1e.,

_i'l:.e"':”':":' ‘_| = X[.é!'” ]

2. Linearity of theDTFT:
If x, [H]{L}f(] ('), and .1':[n]<L}JL': (e™7,

then

ax,[n]+bx, [H]{L}ﬂ}{l (') + DX, (e’

3. Time Shifting and FrequencyShifting:
If xn]e5—s X(e"™).

then

x[n—n,J«LE—>e ™ X (™)

and

gjmnrrl_[”] F ‘r(ev{[m—mu ])




4. Conjugation and Conjugate Symmetry:

If xn]e—t— X(a"™).

then

x ¥ [n]«Z X *(e”)

If x{w] is real valued, its transform Y&’ is conjugate symmetric. That is

X(e”)= X *(e)

From this, it follows that Re*X(e jw)*is an even function of w and Im*X(e jw)*is
an odd function of w . Similarly, the magnitude of X(e j») is an even function and the
phase angle is

an odd function. Furthermore,

Eﬁ'{x[n]};:-Re{X{e‘” }
and
0d {{n]}«— jIm{¥ (e }.
5. Differencing andAccumulation
If .1'[:1](% X[_e’fm ).

then

x[n]—x[n—1] @(’l —e )X(E“"m )|

For signal

] = i;\[ m],

m=—%

its Fourier transform is given as




Z ] @% X (/) + X (&%) ZS (@ —27k)|

M=—0 l-e

M=

The impulse train on the right-hand side reflects the dc or average value that can result from
summation.

For example, the Fourier transform of the unit step x[n] ® u[n] can be obtained by using
the accumulation property.

We know g[n]=8[n]«——>G(e™)=1.so

a[n]= i g[m]<«= i :,_jm )G(ej“’ )+ G(e’) ZxS(m — 2rtk) =ﬁ +7 i O (w —27k) .

m=—0 k=—x k==

6. TimeReversal
If An]«f—sX(e™).

then

r[-n]<«E— X (—e’?)|

7. Time Expansion

For continuous-time signal, we have

J‘{Hr‘){;‘_}i ’[E]

o\ a

For discrete-time signals, however, a should be an integer. Let us define a signal with k a
positive integer,

[ x[n/k). if nis a multiple of k
x..[n]= :
) 0, if nis not a multiple of k




X, [n] is obtained from afn] by placing k —1 zeros between successive values of the original
signal.

The Fourier transform of x,,[#n] is given by

+a0

X (E?jm]' = Z«T(m [”}?_Jm" = ZI{H [}"iﬁ']ﬁ?_ﬂmr = Z 3'[3'}?_';(&&}'- = X{Eﬁm) -

That is.

X [1] =X (™))

For k »A 1, the signal is spread out and slowed down in time, while its Fourier transform is
compressed.

Example: Consider the sequence x[n] displayed in the figure (a) below. This sequence can be
related to the simpler sequence y[n] as shown in (b).

x[n]= y(:}[n] + -_“-_1-‘(1}[31' —1].

where

{y[n,—“ 2]. if nis even
ya[n]=

0, if nis odd

The signals y.,[n] and 2y, [n—1] are depicted in (c) and (d).

As can be seen from the figure below, y[n] is a rectangular pulse with 2 1N @ , its Fourier
transform is given by

Y(e™) = e SO /2)
sin(@m / 2)

yiz(n]




Using the time-expansion property, we then obtain

p ., ]tz i sin(5a)
- sin(®)
sin( 5a0)
sin(@)

2y [n— 1]« 27

Combining the two. we have

X(e)y=e7*(1+2e7" ){

sin(im}}

sinf @)

8. Differentiation inFrequency

If a{n]<——— X(e’™).

=

Differentiate both sides of the analysis equation X(e’®)= Z x[nle

m=—0C

— Jtim

_,jft? +00 _
dX(;? ) _ > — jnxnle™™ |

The right-hand side of the above equation is the Fourier transform of I jnx[n] .Therefore,
multiplying both sides by j , we see that

j
}?:}:[n] {L}j @
dw

9. Parseval’sRelation

If x{n]«—— X (e’ ). then we have

+oo

x 7] :_ b X (e’ zd(u
2 J2m

H=—00




Properties of the Discrete Time Fourier Transform:

Property

Aperiodic Signal

Fourier Transform

Linearity

Time Shifting
Frequency Shifting
Conjugation

Time Reversal

Time Expansion
Convolution

Multiplication

Differencing in Time

Accumulation

Differentiation in Frequency

Conjugate Symmetry for
Real Signals

Symmetry for Real, Even
Signals

Symmetry for Real, Odd
Signals

Even-odd Decomposition
of Real Signals

x(n)

yln]

ax(n] + by[n)
x(n = m)

e’ x[n]

x[n/k], if n = multiple of k
if n # multiple of k

x[n] * y[n]

x[n]y[n]

x[n] = x[n—1]

n

> xlk]

k==

x|n] real an even
x[n] real and odd

x.[n] = &{x[n]} [x[n] real]
x,[n] = Od{x[n]} [x[n] real]

Parseval’s Relation for Aperiodic Signals

S Iefnlf

= lI IX(e’) dw

2

X(e’*)| penodic with
Y(e/ )] period 27
aX(e’™) + bY(e’*)

e X (e')
X(ejlw—wl,))

X'(e ')

X(e ™)

X(e™*™)

X(e™)Y(e)
1

—[ X(e®)Y(e/*)d8
2‘" 2

(1 - e )X(e™)
1—e-;~x("“)

400
+7X(e) Z 3w — 2mk)
k= -

dX(e®)
dw

[ X(e™) = X"(e )
Re{X(e!)} = Re{X(e )}
Im{X(e*)} = ~Im{X(e )}
[X(e™)| = |X(e™)

| <X(e) = -4X(e7*)

X(e/*) real and even

X(e/*) purely imaginary and
odd
Re{X(e)}

jIm{X(e)}




Basic Discrete Time Fourier Transform Pairs:

Signal Fourier Transform

; = 27k
jk@2n/N)n — -
E age 21 E ad (m ~ )

k=(N) k=—o

e
edwon 27 > 8w — wy — 27l)

f=—w

o
Cos woyhn T z {0(w — wg — 27l) + 8(w + wy — 27l)}

I=—x

.
sinwon g S (8w — wo — 27l) — 8w + wo — 27D}
[= o

+os
x[n] =1 27 Z &(w — 2l)

Periedic square wave

1, |nl = N,
x[nl =
0, N <|n = N2

and
x[n + N] = x|n]

i 8[n — kN]

fm—

a’uln|, |a| <1 m

1, |n| = N, sinfw(Ny + })]
x[n] R
0, |n| >N sin(w/2)

0=<|w =W

0, W<lwl =n
X(w) periodic with period 27

smWn _ W _._ . (Wn —
e = o sinc (7) X(w) =

O0< W<

Alnl 1

1 =
T t >, T8 —2mh)

k= —w

uln]

8ln — ngl e Jom

1

(n+ Da"uln], |a] <1 m

(n+r—11 , P 1
nl(r — 1)! aulnl, lal <1 (1 —ae o)y
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THROUGH LINEAR SYSTEMS




UNIT — 111

IGNAL TRANSMISSION THR HLINEAR SYSTEM

Linear Systems:

A system is said to be linear when it satisfies superposition and homogenate principles.
Consider two systems with inputs as xi(t), Xo(t), and outputs as yi(t), y2(t) respectively. Then,
according to the superposition and homogenate principles,

T [az xa(t) + a2 x2(t)] = ar T[xa(t)] + a2 T[x2(t)]

LT [an xa(t) + a2 xo(t)] = awya(t) + a2 ya(t)

From the above expression, is clear that response of overall system is equal to response of
individual system.

Example:
y(t) = 2x(t)
Solution:
y1 (1) = TRxa(®)] = 2xa(t)
y2 (t) = T[x2(t)] = 2x(t)
T [a1 xa(t) + a2 Xo(t)] = 2[ & Xa(t) + a2 Xa(t)]

Which is equal to aiyi(t) + a2 y2(t). Hence the system is said to be linear.

Impulse Response:

The impulse response of a system is its response to the input o(t) when the system is
initially at rest. The impulse response is usually denoted h(t). In other words, if the input to an
initially at rest system is 6(t) then the output is named h(t).

8(t) ht)

—




Liner Time variant (LTV) and Liner Time Invariant (LTI) Systems
If a system is both liner and time variant, then it is called liner time variant (LTV) system.

If a system is both liner and time Invariant then that system is called liner time invariant (LTI)
system.
R nse of ntin -time L T1 m and the convolution integral

(i) Impulse Response:
The impulse response h(t) of a continuous-time LTI system (represented by T) is defined to
be the response of the system when the input is &(t), that is,

h(t)=T{s(t)}
(if) Response to an Arbitrarylnput:

The input x(t) can be expressed as
x(1) =f x(r)d(t—7)dr

Since the system is linear, the response y(t of the system to an arbitrary input x( t) can be
expressed as

y(t) =T{x(1)) = T{f:x{ﬂa{_: ~1) dT}

- f.:x{T]T{S[r —7))dr

Since the system is time-invariant, we have
h(t —7)=T{s(1t — 7))

Substituting Eq. (4) into Eqg. (3), we obtain

v(t) = [ x(r)h(t—1)dr

—

Equation (5) indicates that a continuous-time LTI system is completely characterized by its impulse
response h( t).
(iif) ConvolutionlIntegral:

Equation (5) defines the convolution of two continuous-time signals x (t) and h(t) denoted
by

o

y(t)=x(t)*h(t) —f x(

ax




Equation (6) is commonly called the convolution integral. Thus, we have the fundamental
result that the output of any continuous-time LTI system is the convolution of the input x ( t) with
the impulse response h(t) of the system. The following figure illustrates the definition of the impulse
response h(t) and the relationship of Eq.(6).

8(1) LTI
B e
system

x(1)

(1) = x(1) = h(1)

Fig.: Continuous-time LTI system.

(iv) Properties of the Convolution Integral:
The convolution integral has the following properties.

1. Commutative:
x(t)yxh(t)=h(t)*x(t)

2. Associative:

(x()* hy(1))* hy(t) =x(t)*{h,(1)* hy(1))

3. Distributive:
x(t)={h (1)) +hy(t)) =x(t)*h (1) +x(t)*h,y(r)
(v) StepResponse:

The step response s(t) of a continuous-time LTI system (represented by T) is defined to
be the response of the system when the input is u(t); that is,

S(0)= T{u(t)}

In many applications, the step response s(t) is also a useful characterization of the system.

The step response s(t) can be easily determined by,

s(1) =h(t)*u(1) =f h(r)u(r—fr}dr=f h(7)dr

— —
Thus, the step response s(t) can be obtained by integrating the impulse response h(t).
Differentiating the above equation with respect to t, we get

a‘.
h(1) =s'(1) = :f:’

Thus, the impulse response h(t) can be determined by differentiating the step response s(t).




Distortion less transmission through a system:

Transmission is said to be distortion-less if the input and output have identical wave
shapes. i.e., in distortion-less transmission, the input x(t) and output y(t) satisfy the condition:

y (1) = KX(t - tq)
Where tq = delay time and
k = constant.
Take Fourier transform on both sides
FT[y (t)] = FT[KX(t -tg)]
= K FT[Xx(t -tq)]

According to time shifting property,

Y(w) = KX(w)e

Thus, distortion less transmission of a signal x(t) through a system with impulse response h(t) is
achieved when

H(w)|=K and (amplitude response)

’<I>(w) = —wtqy = —2nfty phaseresponse

! III(\\') s P(w)

-t
Amplitude response Phase response




A physical transmission system may have amplitude and phase responses as shown below:

* H(w) s Dlw)
FILTERING

One of the most basic operations in any signal processing system is filtering. Filtering is
the process by which the relative amplitudes of the frequency components in a signal are
changed or perhaps some frequency components are suppressed. As we saw in the preceding
section, for continuous-time LTI systems, the spectrum of the output is that of the input
multiplied by the frequency response of the system. Therefore, an LTI system acts as a filter on
the input signal. Here the word "filter" is used to denote a system that exhibits some sort of
frequency-selectivebehavior.

A. Ideal Frequency-Selective Filters:

An ideal frequency-selective filter is one that exactly passes signals at one set of
frequencies and completely rejects the rest. The band of frequencies passed by the filter is
referred to as the pass band, and the band of frequencies rejected by the filter is called the stop
band.

The most common types of ideal frequency-selective filters are the following.

1. Ideal Low-PassFilter:
An ideal low-pass filter (LPF) is specified by

Il lew| < @
|H(w)|= 1

H‘ 0 lw| > w,
The frequency wcis called the cutoff frequency.

2. Ideal High-PassFilter:
An ideal high-pass filter (HPF) is specified by

| {D ol <w,
_[1 lw|> w,

H(w)




3. Ideal BandpassFilter:
An ideal bandpass filter (BPF) is specified by

w, < lw| < w,

.
|H(w)l l”

otherwise

4. ldeal BandstopFilter:
An ideal bandstop filter (BSF) is specified by

w ! — B | N () N

The following figures shows the magnitude responses of ideal filters

IH(w)l IH(w)l

1H(w)l 1H{w)

-
e
w

(c) (d)

Fig: Magnitude responses of ideal filters (a) Ideal Low-Pass Filter (b)ldeal High-Pass Filter

© Ideal Bandpass Filter (d) Ideal Bandstop Filter
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UNIT - IV
LAPLACE TRANSFORM

THE LAPLACE TRANSFORM:

we know that for a continuous-time LTI system with impulse response h(t), the output y (t) of the
system to the complex exponential input of the form eis

= T(e") = H(s)e"

H(s) = [_x h(1)e™ di

A. Definition:

The function H(s) is referred to as the Laplace transform of h(t). For a general continuous-time
signal x(t), the Laplace transform X(s) is defined as

-}

X(s}=f x(1)e " d

The variable s is generally complex-valued and is expressed as
s=c+jw
lation | | | : f _
Laplace transform of x(t)

X(8) = [°2. zm(tle 2 dt

Substitute s= 0 + jw in above equation.
= X(o+ jw) = [ z(t)e (o+ )t it

= [ [z(t)e t]e *dt




. X(S) = F. T[z(t)e ]

X(S) = X(w) for s = jw

Inverse Laplace Transform:
We know that

X(S) = F.T[z(t)e ]

> 2(t)e = F.T '[X(S)] = F.T ![X(o + jw)]

= Lr [* X(o+ jw)ettdw

‘L(t) eatjﬁ jjxcx X(o+ jw)ejwtdzu
L [ X(o+ jw)el )t du.

Here,o + jw = s

jdw = ds — dw = ds/j

- z2(t) = ==

2w
Conditions for Existence of Laplace Transform:

Dirichlet's conditions are used to define the existence of Laplace transform. i.e.
i The function f has finite number of maxima and minima.
i There must be finite number of discontinuities in the signal f ,in the given interval of
time.
i It must be absolutely integrable in the given interval of time. i.e.

[ | f(t)|dt < oo

o0




Initial and Final Value Theorems
If the Laplace transform of an unknown function x(t) is known, then it is possible to determine
the initial and the final values of that unknown signal i.e. x(t) at t=0" and t=co.

Initial Value Theorem

Statement: If x(t) and its 1st derivative is Laplace transformable, then the initial value of x(t) is
given by

z(0") = li;”nvSX(S)

Final Value Theorem
Statement: If x(t) and its 1st derivative is Laplace transformable, then the final value of x(t) is
given by

z(oo) = lim SX(S5)
Properties of Laplace transform: e

The properties of Laplace transform are:

Linearity Property
L.T
If z(t) «— X(s)

& y(t) €= Y(s)

Then linearity property states that

L.T
az(t) + by(t) «— aX(s) + bY(s)
Time Shifting Property
L. T
If z(t) «+—— X(s)
Then time shifting property states that

L.T
x(t —ty) +—— e 0 X(s)




Frequency Shifting Property

L.T
If z(t) «— X(s)
Then frequency shifting property states that

L.T
et z(t) +— X(s— sp)

Time Reversal Property
L.T
If z(t) +— X(s)

Then time reversal property states that

z(—t) ~:L—T}r X(—s)

Time Scaling Property

iF 2(t) —s X(s)

Then time scaling property states that

2(at) €0 LX(2)

|a
Differentiation and Integration Properties

if 2(t) &5 X(s)

Then differentiation property states that




The integration property states that

[x(t)dt <= 1X(s)

[If... [=(t)dt <= L X(s)

Multiplication and Convolution Properties

If 2(t) £ X(s)

L.T
and y(t) +— Y(s)

Then multiplication property states that

2(t). y(t) <= 3 X(s) * ¥(s)

2m
The convolution property states that
L.T
z(t) * y(t) «— X(s). Y(s)
Region of convergence.
The range variation of o for which the Laplace transform converges is called region of
convergence.

Properties of ROC of Laplace Transform
i ROC contains strip lines parallel to jo axis in s-plane.

Strip Line J,(«D S-plane

>
S,

[Py
[




i If x(t) is absolutely integral and it is of finite duration, then ROC is entire s-plane.
i IT x(t) is a right sided sequence then ROC : Re{s} >co.

i IT X(t) is a left sided sequence then ROC : Re{s} <oo.

i If x(t) is a two sided sequence then ROC is the combination of two regions.

ROC can be explained by making use of examples given below:

Example 1: Find the Laplace transform and ROC of x(t)=e— at u(t)x(t)=e™?u(t)

L.T[a(t)] = L. Tle —* u(t)] = g

Re > —a
ROC : Res >> —a

N

Example 2: Find the Laplace transform and ROC of x(t)=¢e at u(—t)x(t)=e*'u(—t)

L. T(a(t)] = L. T[e*u(t)] = 5
Res < a
|ROC’ : Res < a




Example 3: Find the Laplace transform and ROC of x(t)=e —at u(t)+e at u(—t)
X(t)=e ?u(t)+e?u(-t)

L.T[z(t)] = L. T[e~®u(t) + e®u(—t)] = Sia e

For ﬁRe{s} > —a

For S+aRe{s} <a

Referring to the above diagram, combination region lies from —a to a. Hence,

ROC: —a<Res<a




Causality and Stability
i For a system to be causal, all poles of its transfer function must be right half of s-plane.

jw
A

poles

KA
o

i A system is said to be stable when all poles of its transfer function lay on the left half of
s-plane.

jw
A

poles

KX

i A system is said to be unstable when at least one pole of its transfer function is shifted to
the right half of s-plane.

jw
AN




e Asystem is said to be marginally stable when at least one pole of its transferfunction
lies on the joaxis ofs-plane

jw
A

X

HK—XK

LAPLACE TRANSFORMS OF SOME COMMON SIGNALS

A. Unit Impulse Function J( t):

Z[8(1)] —-fx S(t)e *'dt =1

B. Unit Step Function u(t):

%0 x

Zu(r)] =/ u(l)e"“d!=/ e ' dt

3 0t

Re(s) >0

where 07 = lim, _ (0 + ¢).




Some Laplace Transforms Pairs:

x(t)

ROC

5(t)

u(t)

—u(—1)
tu(t)

thult)

e "ulr)

—e u(—1)
te " "u(t)
—te='u(~1)
cos wqtu(r)
sin wtu(t)
e cos wytu(r)

e %" sin wytut)

52+wf,
st+a

2 2
(s +a) +w;

Wy

(s+a)’ +w}

All s

Re(s) >0

Re(s) <0

Re(s) >0

Re(s)> 0

Re(s) > —Rela)

Re(s) < —Rela)

Re(s) > —Rela)

Re(s) < —Re(a)

Re(s) >0

Re(s)>0

Re(s) > —Rela)

Re(s) > —Rela)




UNIT -V

Z - TRANSFORM




UNIT -V

Z-Transform

Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful
mathematical tool to convert differential equations into algebraic equations.

The bilateral (two sided) z-transform of a discrete time signal x(n) is given as
Z.Tz(n)] = X(2) = B2 -wz(n)z™
The unilateral (one sided) z-transform of a discrete time signal x(n) is given as

Z.Tz(n)) = X(2) =X

n:()fL'(")Z n

Z-transform may exist for some signals for which Discrete Time Fourier Transform (DTFT) does
not exist.

Concept of Z-Transform and Inverse Z-Transform

Z-transform of a discrete time signal x(n) can be represented with X(Z), and it is defined as

If Z = re™ then equation 1 becomes
X(re!) = B2 _ox(n)[re/] ™

=30 #n)r e

X(re™) = X(Z) = F.T[z(n)r "

The above equation represents the relation between Fourier transform and Z-transform

X(2)|,_... = F.Tz(n)].

Z'Z‘—GJ‘“'




Inverse Z-transform:
X(re®) = F.T[z(n)r "]
zin)r—"=P. T X{re]

z(n) = F. T X(re")]
=1"— [ X(relw)e™" dw
= on [ X(relw)[re™]"dw

Substitute el = z.

dz = jre™dw = jzdw

dw = %z_ldz

Substitute in equation 3.

3 — x(n) = %J‘X(Z)zn%z_lfsﬂz = %fX(z)z”_ldz




Z-Transform Properties:

Z-Transform has following properties:

Linearity Property:

If 2(n) <£> X(2)

Z.T
and y(n) +— Y(2)

Then linearity property states that

ax(n)+by(n) 2 aX(Z2)+bY(2)

Time Shifting Property:
Z.T
If z(n) +— X(Z2)

Then Time shifting property states that

x(n —m) &L, mX(Z)

Multiplication by Exponential Sequence Property

if z(n) 4= X(2)

Then multiplication by an exponential sequence property states that

Z.T
a® .xz(n) +— X(Z/a)
Time Reversal Property

2T
If z(n) «+— X(Z2)
Then time reversal property states that

x(—n) ﬂ X(1/2)




Differentiation in Z-Domain OR Multiplication by n Property
Z.T
If z(n) +— X(2)
Then multiplication by n or differentiation in z-domain property states that

Z.T k x
kx(n) +— [—l]kz"'—d )

n :
dz¥

Convolution Property
Z.T
If z(n) +— X(2)

Z.T
and y(n) +— Y(2)

Then convolution property states that
Z.T
z(n)xy(n) +— X(2).Y(2)
Correlation Property
Z.T
If z(n) +— X(2)

and y(n) ALy Y(Z)

Then correlation property states that

z(n) @ y(n) <£> X(2).Y(Z71)

Initial Value and Final VValue Theorems

Initial value and final value theorems of z-transform are defined for causal signal.
Initial Value Theorem

For a causal signal x(n), the initial value theorem states that
z(0) = lim, , X(2)

This is used to find the initial value of the signal without taking inverse z-transform




Final Value Theorem
For a causal signal x(n), the final value theorem states that

2(00) = lim, [z — 1]X(2)
This is used to find the final value of the signal without taking inverse z-transform
Region of Convergence (ROC) of Z-Transform

The range of variation of z for which z-transform converges is called region of convergence of z-
transform.

Properties of ROC of Z-Transforms
ROC of z-transform is indicated with circle in z-plane.
ROC does not contain anypoles.

If x(n) is a finite duration causal sequence or right sided sequence, then the ROC isentire
z-plane except at z =0.

If x(n) is a finite duration anti-causal sequence or left sided sequence, then the ROCis
entire z-plane except at z =co.

If x(n) is a infinite duration causal sequence, ROC is exterior of the circle with radiusa.
Le. |z| > a

If x(n) is a infinite duration anti-causal sequence, ROC is interior of the circle withradius
a. e |z|<a

If x(n) is a finite duration two sided sequence, then the ROC is entire z-plane except atz
=0&z=on.

The concept of ROC can be explained by the following example:

Example 1: Find z-transform and ROC of a "u[n]+a ~"u[-n—1] a"u[n]+a "u[-n—1]

Z.Ta"u[n]] + Z.T[a "u[-n — 1]] = Zi + Zi

1
ROC: |z > a ROC:|E|{E

The plot of ROC has two conditionsasa > 1 and a < 1, as we do not know a.




unit circle unit circle

In this case, there is no combination ROC.

unit circle 4

unit circle

Here, the combination of ROC is from a<|z|<1/a
Hence for this problem, z-transform is possible when a < 1.
Causality and Stability
Causality condition for discrete time LTI systems is as follows:
A discrete time LTI system is causal when

¢ ROC is outside the outermostpole.

¢ In The transfer function H[Z], the order of numerator cannot be grater than the order of
denominator.




Stability Condition for Discrete Time LTI Systems
A discrete time LTI system is stable when

e its system function H[Z] include unit circle|z|=1.

¢ all poles of the transfer function lay inside the unit circle|z|=1.
Z-Transform of Basic Signals

x[n] X(z) ROC

8(n] All z

uln) —_— [z[> 1

—u[-n~1] P |zl <1
dln —m] All z except 0if (m > 0) or = if (m < 0)

a"u(n] - |2] > |al

—a"u[-n-1) |z <|al

na"uln) |z| > |al

(1 —az“’)z’(z—a)z

az”™! az

(1 —az")‘“(z—a)2

|
(n+ a"uln) 0 1)2’[Zza] |z > lal
- az =

22— (cos ) z
22— (2c0s )z + 1
(sin )z
(sin Qyn)uln) S : |z|> 1

22— (2cos )z + 1
22— (rcos )z
22— (2rcos )z +r?

—na"u[-n—-1] Iz) <|al

(cos Qon)u[n] lz]> 1

(r" cos Qyn)uln] lz[>r

(rsin)y)z

(r" sin Qyn)uln] l2|>

22— (2rcos )z +r?

{a" 0<n<N-1 L=aE™

: >
0 otherwise 1-az™! Iz|>0




me Properti f the Z- Transform:

Property Sequence Transform

x[n] X(2)
x,[n] X(z)
x,[n) X,y (2)
Linearity a,x,(nl+a,x,[n] a,X(2)+a,X5(2) R'DR,NR,
Time shifting x[n =n,) z7"X(2) R'DRN{0<|z] <=}
Multiplication by zj zgx[n] X( zi) R' =|zy|R
0/

Multiplication by e/®" e/M"x(n) X(e Moz)

R’:
R‘:

(11
Time reversal x[—n] X( — )
Z )

dXx(z)

Multiplication by n nx[n) == R' =
z

n

Accumulation Y x[n] l
k=~ e

Convolution x,[n]* x,[n] X(2)X,(2) R'DOR,NR,

X(z) R'ORN{lz|> 1)

=1

Inverse Z transform:

Three different methods are:
1. Partial fractionmethod
2. Power seriesmethod
3. Long divisionmethod

Partial fraction method:
e In case of L] systems, commonly encountered form of z-transform is

B2
/\f ——
\2) A(z)

bo+ bz~ + A..-I-I)Mz“”

an + n]z*l S R J_n.-'z"N

X(2) =

Usually M < N

e If M > N then use long division method and express X(z) in the form

X(z) = Agu firz "+ T(z)




n—w

where B(z) now has the order one less than the denominator polyno-

mial and use partial fraction method to find ztransform

e The inverse z-transform of the terms in the summation are obtained

from the transform pair and time shift property

z

1 «—— J[n]

il T o[ — ny)

e If X(z) is expressed as ratio of polynomials in z instead of z—! then

convert into the polynomial of z !

e Convert the denominator into product of first-order terms

M

b+ bz L ..+ bypz

e‘m]‘]f;l(l — diz 1)

X(z) =
where dy are the poles of X(z)

For distinct poles

e For all distinct poles, the X(z) can be written as

N Apg

X(z) = TR A
(2) I\gl (1—diz 1)

e Depending on ROC, the inverse z-transform associated with each term
is then determined by using the appropriate transform pair

e We get
z Ak

1 — (.'/,QZ 17

Ag(dy)"uln]

with ROC 2z = d; OR

z Ax
1 — ('/kZ

with ROC 2z < d;

—Ax(dg) ' u[—n — 1] %




e For each term the relationship between the ROC associated with X/(2)
and each pole determines whether the right-sided or left sided inverse
transform is selected

For Repeated poles
e If pole d; is repeated r times. then there are r terms in the partial-
fraction expansion associated with that pole
Ail A,’z
1 —diz 1" (1 —diz1)2

e Here also. the ROC of X(z) determines whether the right or left sided

inverse transform is chosen.

(n+1)...(n+m—1) A ) L
A (m—1)! (di)"uln] / (1 —diz 1)y’ with ROC|z| = 4,

e [f the ROC is of the form |z < d,, the left-sided inverse ztransform is

chosen, ie.

z A

4(_n—i—l')...(n—+—m— 1
) (1 —dz 1)ym

) 1
(m— 1)1 (dy)"u[—n—1]

with ROC|z| < d,

Deciding ROC

e The ROC of X(z) is the intersection of the ROCs associated with the

individual terms in the partial fraction expansion.

In order to chose the correct inverse z-transform, we must infer the

ROC of each term from the ROC of X(2).
By comparing the location of each pole with the ROC of X(2).

Chose the right sided inverse transform: if the ROC of X(z) has the

radius greater than that of the pole associated with the given term

Chose the left sided inverse transform: if the ROC of X(z) has the

radius less than that of the pole associated with the given term

Partial fraction method

e [t can be applied to complex valued poles

L J Generally the expansion CC)(?fﬁCiEl'l(S are C()l]]l)lE‘X valued




e If the coefficients in X(z) are real valued, then the expansion coeffi-
cients corresponding to complex conjugate poles will be complex con-

jugate of each other

e Here we use information other than ROC to get unique inverse trans-

form

o We can use causality, stability and existence of DTFT

o If the signal is known to be causal then right sided inverse transform is

chosen

e If the signal is stable, then t is absolutely summable and has DTFT

Stability is equivalent to existence of DTFT, the ROC includes the unit

circle in the z-plane, ie. 2] = 1

The inverse z-transform is determined by comparing the poles and the

unit circle

[f the pole is inside the unit circle then the right-sided inverse ztransform

is chosen

[fthe pole is outside the unit circle then the left-sided inverse z-transform

is chosen

Power series expansion method

e Express X(z) as a power series in z~! or zas given in z-transform equa-

rion
e The values of the signal x{n] are then given by coefficient associated

with z—7

e Main disadvantage: limited to one sided signals




Signals with ROCs of the form |z > aor |z < a

1

If the ROC is |z| > a. then express X(z) as a power series in z * and

we get right sided signal

If the ROC is |zl < a. then express X(z) as a power series in zand we

get left sided signal

Long division method:

e Find the ztransform of

24z ,
X(2) = =7 with ROC |2 > -

_1.~1
lzz

e Solution is: use long division method to write X(z) as a power series

in z !, since ROC indicates that x{n| is right sided sequence

o We get

X(2)=2+4272 92 Z*EZ Bops

e Compare with ztransform

\nj = 25{11} & 26{11— 1: T 5[” — 2
1

+=8[n—3]+...

o If we change the ROC to |2| < % then expand X(z) as a power series

in z using long division method
e We get
X(z2) =—2—8z—162—322+...




e We can write x{n| as
x[n) = —28[n] —88[n+ 1] — 168[n+ 2]

—328[n+3] +...

e Find the zitransform of
X(z) = & ,with ROC all z except |z] = o=

e Solution is: use power series expansion for e and is given by

e We can write X(Zz) as

e We can write x{s1] as

. 0] n>=0 or nis odd
x{n] = ,

= otherwise

T
(=

Example: A finite sequence x [ n ] is defined as

x[n] =1{5,3,-2,0,4,- 3

]

Find X(z) and its ROC.

Sol: We know that

® 3

X(z)= Y x[n]z7"= Y} x[n]z""

= =20 n= -.2




=x[-2)2%+x[ - 1]z +x[0] +x[1)2 "' +x[2]z 2 +x[3])z°
=5z +3z~-24+4z"%~-3z"3
For z not equal to zero or infinity, each term in X(z) will be finite and consequently X(z) will
converge. Note that X (z) includes both positive powers of z and negative powers of z. Thus,
from the result we conclude that the ROC of X (z) is 0 <lzl< m.

Example: Consider the sequence

x[”]={a” O=sn=<=N-1,a>0
] otherwise

Find X (z) and plot the poles and zeros of X (z) .

Sol:

N —1 N—=1 n
X(z)= Y a"z7"= ) (az7') =
n=0

n=10

]—[az"}” zN — gV
1 - LN=1

1l —az" z—a

From the above equation we see that there is a pole of ( N- 1)"orderatz=0andapoleatz=a.
Since x[n] is a finite sequence and is zero for n < 0, the ROC is 1zI>0. The N roots of the
numerator polynomial are at

z, = ae’@mk/N k=0,1,...,N—1

The root at k = 0 cancels the pole at z = a. The remaining zeros of X (z) are at

z, = ae/2Tk/N) k=1,...,N-1

The pole-zero plot is shown in the following figure with N=8
Imi(z)

z-plane

(N - 1)th
order pole . ~ Pole-zero cancel
, \
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