VEMU INSTITUTE OF TECHNDLOGY

P Kothakota, Near Pakala, Chittoor

LECTURE NOTES

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SUBJECT NAME: FORMAL LANGUAGES AND AUTOMATA THEDRY
BRANCH: CSE
YEAR AND SEMESTER: IIf - |
COURSE: B.TECH
REGULATION: R20

After going through this chapter, you should be able to unaerstana :

o Alphabets, Strings and Languages

« Mathematical Induction

o Finite Automata

o Equivalence of NFAand DFA

o NFAwith ¢ - moves
1.1 ALPHABETS, STRINGS & LANGUAGES
Alphabet
Analphabet, denoted by £ ,is a finite and nonempty set of symbols.

Example:
. If is an alphabet containing all the 26 characters used in English language, then

y isfinite and nonempty set,and I = {a,b,c, ..., 2}.

2. X ={0]} isanalphabet
3, ¥ ={1.223,.]) isnotanalphabetbecauseitisinfinite.

4, 7 ={) isnotanalphabet because it is empty.

String

A string is a finite sequence of symbols from some alphabet.
Example :

"yyz" isastring over an alphabet I = {a,b,¢, .., 2} . Theempty stringor null string is
denoted by ¢.

FORMAL LANGUAGES AND AUTOMATA THEORY

Length of a string

The length of a string is the number of symbols in that string. If w is a string then its length
isdenoted by | w|.

Example :

L. w=abed , then length of v is | w|= 4
2. n=o010 isastring then|n|= 3
3. e isthe empty string and has length zero.

The set of strings of length K (K > 1)

Let ¥ beanalphabetand £ = {a, b}, thenall strings of length K (X = 1) isdenoted by vk,
55 ={w:wisastring of length K, K > 1}

Example:

1. Z={a,b},then
I ={a,b},
1 = {aa,ab, ba,bb},
L' = {aaa,aab,aba,abb baa, bab,bba,bbb}
|£'|= 2 = 2" (Number of strings of length one),
| Z%|= 4 = 2? (Number of strings of length two), and
|27 = 8 = 2° (Number of strings of length three)
2. §={0,1,2},then 57 = {00,01,02,11, 10,12,22,20 21} ,and | §?|= 9 = 3

Concatenation of strings

If w, and w, are two strings then concatenation of w, with w, is a string and it is denoted by
w;w, . In other words, we can say that w, is followed by w, and | w,w,| = [w| + | wy].

FORMAL LANGUAGES AND AUTOMATA THEORY

Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, ifa
string w = abe ,then a,ab ,abc are prefixesof w.

Suffix of a string

A string obtained by removing zero or more leading symbols s called suffix. For example, ifa
su'ing w = abc ,then ¢, be, abe are suffixes of .
Asstring a is a proper prefix or suffix of a string w ifandonlyif a # w.

Substrings of a string

A string obtained by removing a prefix and a suffix from string y is called substring of w . For
example, ifastring w = ahe ,then p isasubstring of . Every prefix and suffix of string is
asubstring of w , butnot every substring of isa prefix or suffix of w . Forevery string w, both
w and ¢ are prefixes, suffixes, and substrings of w.

Substring of w =w —(one prefix)-(one suffix),

Language

A Language L over 3, is a subset of 5*, i. e, it is a collection of strings over the
alphabet . ¢, and {€} are languages. The language ¢ isundefined as similar to infinityand
{¢} issimilar to an empty box i.e. a language without any string.

Example:

1. L, ={01,0011,000111 } isalanguage over alphabet {0,1}
2. L, ={e,0,00,000,..) isalanguageoveralphabet {0}
3. L, ={0"1"2" ;n > 1} isalanguage,

Kleene Closure of a Language

Let 1 bealanguage over some alphabet 3, Then Kleene closure of /, is denoted by / * and
itis also known as reflexive transitive closure, and defined as follows :

FORMAL LANGUAGES AND AUTOMATA THEORY

L* = {Set of all words over L}
= {word of length zero, words of length one, words of length two,}

-UeH=rululu..

k=0
Example:

1. ¥={a,b} andalanguage | over §.Then
*=1Lullulu...
I' = {g
[' ={a,b},
I = {aa,ab,ba,bb) and soon.
So, L*={e,a,b,aa,ab,ba,bb..}
2. §={0}, then §* = {&,0,00,000,0000 ,00000 ...}

Positive Closure

If 3 isanalphabet then positive closure of § isdenoted by 5+ and defined as follows :
3* = 1 - {g = {Set of all words over E excluding emply string €}
Example :
if £ = (0} ,then £* = {0,00,000,0000 ,00000 ,..}

1.2 MATHEMATICAL INDUCTION

Based on general observations specific truths can be identified by reasoning, This principle is
called mathematical induction. The proof by mathematical induction involves four steps.

Basis : Thisisthestarting point foran induction. Here, prove that the result s true for somen=0 or 1,
Induction Hypothesis : Here, assume that the result is true forn =k.
Induction step : Prove that the result is true for somen=k+1.

Proof of induction step : Actual proof.

FORMAL LANGUAGES AND AUTOMATA THEORY

1.3 FINITE AUTOMATA (FA)

A finite automata consists of a finite memory called input tape, a finite - nonempty set of states, an
inputalphabet, aead - only head , atransition function which defines the change of configuration,
an initial state, and a finite - non empty set of final states.

A model of finite automata is shown in figure 1.1,
¥ § fe— Input Tape
”— Reading Head
Finite Control

FIGURE 1.1 : Model of Finite Automata

The input tape is divided into cells and each cell contains one symbol from the input alphabet.
The symbol 'y is used at the leftmost cell and the symbol '$'is used at the rightmost cell to

indicate the beginning and end of the input tape. The head reads one symbol on the input tape
and finite control controls the next configuration. The head can read either from left - to- right or
right - to -left one cell ata time. The head can't write and can't move backward. So, FA can't
rememberits previous read symbols, This is the major limitation of FA.

Deterministic Finite Automata (DFA)

A deterministic finite automata M can be described by 5-tuple (Q, Z, 5, q;, F) , where

I. Qis finite, nonempty set of states,

2.y isaninput alphabet,

3. § istransition function whichmaps Qx £ - Q i. e the head reads asymbolinits present
state and moves info next state.

4. q, €Q,knownasinitial state

5. FcQ,knownassetof final states.

FORMAL LANGUAGES AND AUTOMATA THEORY

Non - deterministic Finite Automata (NFA)

A non - deterministic finite automata M can be described by 5 - tuple (Q, £, 8, q,, F), where

1 Qis finite, nonempty set of states,

2.y isaninputalphabet,

3. § istransition function whichmaps Q x £ 2° i.e., the head reads a symbol inits present
state and moves into the set of next state (s) . 22 is power setof Q,

4. q, €Q,knownasinitial state , and

5. FcQ,knownas set of final states.

The difference between a DFA and a NFA is only in transition function. In DFA, transition
function maps on at most one state and in NFA transition function maps on at least one state for
avalid input symbol.

States of the FA

FA has following states :

1. Initial state : Initial state is anunique state ; from this state the processing starts.

2. Final states : These are special states in which if execution of input string is ended then
execution is known as successful otherwise unsuccessful.

3. Non-final states : All states except final states are known as non - final states.

4, Hang-states : These are the states, which are not included into Q, and after reaching these
states FA sits in idle situation. These have no outgoing edge. These states are gencrally
denoted by ¢ . For example, consider a FA shown in figurel 2.

FIGURE 1.2 : Finite Automata

g, istheinitial state, q,, q, are final states, and ¢ is the hang state.

FORMAL LANGUAGES AND AUTOMATA THEORY

Notations used for representing FA

We represent a FA by describing all the five - terms (Q, £, §, gy, F). By using diagram to
represent FA make things much clearer and readable. We use following notations for representing
the FA:

I. Theinitial state is represented by a state within a circle and an arrow entering into circle as
shown below :
(Initial state g,)

2. Final state is represented by final state within double circles :
(Final state g,)

3. Thehang state is represented by the symbol '¢' within a circle as follows :

®

4. Other states are represented by the state name within a circle,
5. Adirectededge with label shows the transition (or move). Suppose p is the present state
and q is the next state on input - symbol 'a’, then this is represented by

6. A directed edge with more than one label shows the transitions (or moves). Suppose p s the
present state and q is the next state oninput - symbols ‘a," or 'a,’ or...or 'a," thenthisis

represented by

Transition Functions
We have two types of transition functions depending on the number of arguments.

Transition Function
Direct Indirect
(Represented by §) (Represented by ')
Direct transition Function (5)

When the input is a symbol, transition function is known as direct transition function.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example : 5(p,a) = q (Where pis present state and q is the next state),

Itis also known as one step transition,

Indirect transition function (5')

When the input is a string, then transition function is known as indirect transition function.
Example : &(p,w)=q, where p is the present state and q is the next state after | w |

transitions. It is also known as one step or more than one step transition.
Properties of Transition Functions

1. Ifé(p,a)=q,then (p, ax) = 5(q x) andif &' (p, X) =q, then &' (p, xa) =8'(q a)
2. Fortwostringsxandy ; 6(p,xy) =6(8(p,x),y),and 8'(p,xy) =8'(8'(p,x),y)
Example :1. ADFA M = ({g9,9,,9..4,}{0,1},8,9,.(q,}) isshownin figurel.3.

FIGURE 1.3 ; Deterministic finite automata

Where 5 1s defined as follows :
0 1
- g G 9
q, g G
% G G
q g G

2. ANFAM, =({g0,9,,92.9,),{0,1},6,9,.{q,}) isshownin figure] 4.

0,1

® |
(- ——0

FIGURE 1.4 : Non - deterministic finite automata

FORMAL LANGUAGES AND AUTOMATA THEORY

3. Transition sequence for the string "011011" is as follows :

One execution ends in hang state ¢ , second ends in non - final state g, , and third ends in final
state ¢, hencestring "011011" is accepted by third execution.

Difference between DFA and NFA
Strictly speaking the difference between DFA and NFA lies only in the definition of §. Using this
difference some more points can be derived and can be written as shown :

DFA NFA
1. The DFAIs 5 - tuple or quintuple The NFA is same as DFA except in the
M =(Q,XL,8,q,,F) where definition of §. Here, § is defined as follows::
Q is set of finite states §5:0x(XUe) tosubset of 20
3, isset of input alphabets
5:0xEte Q
g, istheinitial state

Fc Q issetoffinal states

2. There can be zero or one transition | There can be zero, one or more transitions
from a state on an input symbol from a state on an input symbol

3, No e- transitions exist i.e., there - transitions can exist i. ., without any input
should not be any transition or a there can be transition from one state to
transitionifexistitshould beonan | another state.

input symbol

4. Difficult to construct Easy to construct

FORMAL LANGUAGES AND AUTOMATA THEORY

The NFA accepts strings a, ab, abbb etc. by using ¢ path between g, and g, we can move
from g, state to g, without reading any input symbol. To accept ab first we are moving from g,
to g, reading aand we canjumpto g, state without reading any symbol there we accept band
weare ending with final state so it is accepted.

Equivalence of NFAwith < - Transitions and NFA without ¢ - Transitions

Theorem :Ifthe language L is accepted by an NFAwith - transitions, then the language L,
is accepted by an NFAwithout & - transitions.

Proof : Consider an NFA 'N'with - transitions where N =(0, L, §, ¢,, F)
Constructan NFA N, without ¢ - transitions N, =(Q,, £, §,, ¢, F})
where 0 =Q and

e Fu{q,} if e-closure(q,) contains a stateof F
" |F otherwise

and 8, (g,a) is § (g,a) forqinQandain 5.

Consider anon- empty string . Toshow by induction || that §,(g,, ©) = & (4,,0)
For o =&, the above statement is not true. Because
0,(90.€)=1q0} »

while 5(%,5]:5 ~closure (q,)

Basis :

Start induction with string length one

ie, |o|=]

Then wisasymbol a,and 4, (qﬂ,a}=3(qu,a) by definition of §,.
Induction : o |>1
Let o = xy forsymbolain 3.
Then 8(90,%)=8,(8,(40:%).7)

FORMAL LANGUAGES AND AUTOMATA THEORY

Calculation of « - closure :

€-closure of state (| ¢-closure (q)) defined as it is a set of all vertices p such that there is a
path from q to p labelled ¢ (including itself).

Example :
Consider the NFA with & - moves

OB ONEORE.

e - closure (g,)= {q,,9,, 9. ¢, }
€~ closure (g,)={ g,,¢,, 4, }

e - closure (¢,)= {¢,, ¢, }

e - closure (¢,)={g, }

Procedure to convert NFA with - moves to NFA without - moves

Let N = (0, £,8,4,, F) isaNFAwith & moves thenthere exists N'=(0,e,8,q,,F") without
c Moves

1. Firstfind e - closure of all states in the design.

2. Calculate extended transition function using following conversion formulae.
{i} 5 (qt x)=€- closure {ﬁ(ﬁ [q- EJ:- IJ]
@ &(q,e)=e - closure(q)

3. Fisasetofall states whose e closure contains a final state in F.,

Example 1 : Convert following NFAwith & moves to NFAwithout & moves.

RCaROSo

Solution : Transition table for given NFAis

& a b €
-4, q, 9 ¢
q, ¢ * d,

0 L} ¢

FORMAL LANGUAGES AND AUTOMATA THEORY

(i) Finding < closure :

e~ closure (g,) = {g,}
e~ closure (¢,) = {q,, 4.}
e closure (¢,) = {g,}

(i) Extended Transition function :

& a b

=>4, 91,92} ¢
¢ {9}
¢ {q:)

8 (¢, @)

8 (g4, b)

8 (g, a)

=e —closure (8 (8(q,.€),a))

= e~closure (8 (e -closure (q,) , a))
= e—closure (b (g,, a))

= e—closure (g,)

={41,92}

=€ —closure (5(5(qq.€)b))

= e~ closure(8(e closure (g,), b))
=g~ closure(d (q,, b))

=g~ closure(9)

=4

= e~ closure(5(5 (q,, €), a))

= e~ closure(d (e- closure(q,), a))
=e~ closure(d (9, q,), a))

=e— closure(d (g,, @) V(q,, @)
=e- closure (§)

=9

FORMAL LANGUAGES AND AUTOMATA THEORY

5 (g, b) = - closure (5 (5 (q,, €), b))
= €— closure (8 (€— closure(q,), b))
= €— closure (8 ((g,,q,), b))
= €~ closure (8 (g,,b) Vb (q,., b))

= €= closure (g,)

= {q,}

§ (q,,a) = e~ closure (3(8(q,, ©), a))
= €~ closure (8(&€-closure(q,), a))
=€ —closure (d(q,,a))
= €~ closure (9)
= ¢
§ (g,, b) = &~ closure (& (E‘t (q,, €), b))
= €~ closure (6 (e—closure (g,), b))
= e~ closure (8 (q,, b))
= €~ closure (q,)

={q,}

(iii) Final states are g,, ¢,, because
e — closure (g,) contains final state
€— closure (g,) contains final state

(iv) NFA without € movesis

FORMAL LANGUAGES AND AUTOMATA THEORY

21 FINITE STATE MACHINES (FSMs)

A finite state machine is similar to findte antomata having additional capability of outputs,

A model of finite state machine is shown in below figure .

Pinite control
Input reading Output
head uting head
vl | s| (v B
J
;
[nput tape Output tape

FIGURE : Model of FSM
2.1.1 Description of FSM
A finite state machine is represented by 6 - tuple (0,L,A,6,4,9,),where
[Qisfinite and non - empty set of states,

2.y, isinput alphabet,
3. A isoutputalphabet,

FORMAL LANGUAGES AND AUTOMATA THEORY Page 19

4. 3 isfransition function which maps present state and input symbol on to the next state or
0xZ-0Q,

5. 3 isthe output function, and
g, €0, is the initial state .

2.1.2 Representation of FSM

We represent a finite state machine in two ways ; one is by transition table, and another is by
transition diagram . In transition diagram , edges are labeled with Input/ cutput.

Suppose , in transition table the entry is defined by a function F, so for input 4, and state g,
F(g,, a) =(8(g,, a) , AMg,,a,)) (where § istransition function, 3, is output function.)

Example 1 : Consider a finite state machine, which changes 1's into 0's and 0'sinto T's
(1's complement) as shown in below figure .

Transition diagram :
(4]
FIGURE : Finite state machine
Transition table :
Inputs
0 1
Present Next State (NS) | Output Next State (NS) Output
State(PS)
q q 1 q 0

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 2 : Consider the finite state machine shown in below figure, which outputs the 2's
complement of input binary number reading from least significant bit (LSB).

OnmnO
| w

FIGURE : Finite State machine
Suppose, input is 10100. What is the output ?

Solution : The finite state machine reads the input from right side (LSB).

Transition sequence for input 10100 :

Inputs

DO -D DO
Outputs ——
So, the outputis 01100.

2.2 MOORE MACHINE
If the output of finite state machine is depencent on present state only, then this model of
finite state machine is known as Moore machine.
A Moore machine is represented by 6-tuple (Q, Z,A,4, 4,4,), where
@ is finite and non-empty set of states,
s isinpmalphabex,
A isoutput alphabet,
& 1s transition function which maps present state and input symbol on to the next state or
OxL—=0,
3 is the output function whichmaps 0 — A, (Present state — Qutput), and
6 g,eQ,istheinitial state .

If Z (1), q () are output and present state respectively at time f then

Z(r)=n(g ().

Forinput ¢ (nullstring), Z (1) = A (initial statc)

B Ld B e

L

FORMAL LANGUAGES AND AUTOMATA THEORY

Consider three LSBs of Input Output

L0000 (X) C
001 (X C
010 (X) c
.01 (X) C
100 (X) s
.01 A
110 B
A (X) C
Transition diagram :

101/4 @

0 10/B @

xjc 0

FIGURE : Moore Machine

2.4 EQUIVALENCE OF MOORE AND MEALY MACHINES

We can construct equivalent Mealy machine for a Moore machine and vice-versa. Let A, and
M, beequivalent Moore and Mealy machines respectively. The two outputs T, (w) and T, (w)
are produced by the machines M, and M, respectively for input string w . Then the length of
T, (w) is one greater than the length of 7,(w), ie.

HMOIBAUIES

The additional length is due to the output produced by initial state of Moore machine. Let output
symbol x is the additional output produced by the initial state of Moore machine, then
T|[W] = ITI(“’) .

FORMAL LANGUAGES AND AUTOMATA THEORY

It means that if we neglect the one initial output produced by the initial state of Moore machine,
then outputs produced by both machines are equivalent. The additional output is produced by
the initial state of (for input &) Moore machine without reading the input.

Conversion of Moore Machine to Mealy Machine
Theorem :If A, =(0,Z,A,8,4,4,) isaMoore machine then there exists a Mealy machine
M, equivalentto M,.
Proof : We will discuss proof in two steps.
Step 1 : Construction of equivalent Mealy machine M, , and
Step 2 : Outputs produced by both machines are equivalent.
Step 1(Construction of equivalent Mealy machine M,)
Let M, =(0,%,A,8,4',q,) whereall terms 0, T, A, 8, g, are same as for Moore machine and
3 is defined as following :
A (g,a) = h(8(g,a) forallg e Qand 4 ¢ T

The first output produced by initial state of Moore machine is neglected and transition
sequences remain unchanged.
Step 2 : If x is the output symbol produced by initial state of Moore machine M, , and
T,(w), T, (w) are outputs produced by Moore machine M, and equivalent Mealy machine 3,
respectively for input string w, then

T (w)=xT,(w)
Or Output of Moore machine = x| | Output of Mealy machine
(The notation | | represents concatenation).

If we delete the output symbol x from 7; (w) and supposeitis 7y’ (w) which s equivalent to

the output of Mealy machine. So we have,
T, (w) = T(w)
Hence, Mooremachine M, and Mealy machine M, are equivalent.

Example 1: Constructa Mealy machine equivalent to Moore machine A, givenin following
fransition table.

FORMAL LANGUAGES AND AUTOMATA THEORY

3. A remainsunchanged,
4.) isdefined as follows :
8 ([g,b],a) = [8(q,a), A (g,a)], where § and 3, are transition function and output
function of Mealy machine.
5.) isthe output function of equivalent Moore machine which is dependent on present state
only and defined as follows :
M ([q,0) = b
6. 4, istheinitial state and defined as [g,, 5], where ¢, isthe initial state of Mealy machine and
b, is any arbitrary symbol selected from output alphabet A .
Step 2 : Outputs of Mealy and Moore Machines
Suppose, Mealy machine M, enters states ¢, ,,¢,,...4, On input a,a,, a;,....a, and
produces outputs b, by, by, ... b,, then M, entersthestates [go, 5,1, (¢, &1, (42,).+ [0 8]
and produces outputs by, b,, b,, ... b, asdiscussed in Step 1. Hence, outputs produced by both
machines are equivalent.
Therefore, Mealy machine A, and Moore machine A, are equivalent.

Example 1 : Consider the Mealy machine shown in below figure. Construct an equivalent
Moore machine.

FIGURE : Mealy Machine
Solution : Let M,=(0,L,A4,4.9,) is a given Mealy machine and
M,=(0'2,A8"4"q,") betheequivalent Moore machine,
where

. Oc {[9¢-n].[90, ¥1.[9y.n]. (4, ¥).[92. 1) (92, Y1} (Since, 0" < O x A)
2. Z={01

FORMAL LANGUAGES AND AUTOMATA THEORY

3. A={myh
4. g,'=[g: 51> mq,mﬂ]nuuu&lmﬂemﬂymmeamnmnholomelymadame,
5. § isdefinedas following:

For initial state[q,,] :
&'(194,71,0) = [8(g0.,0),4(20.0)] = [gy,7]
8'([g0s yI1) =[8(g0 1) A(ge)] = [42,7]
For state [g,,n] :
&' ([g;, 71, 0) = [3 (91, 0), 2 (91, 0] = [, Y]
8'([g1,n)1) = [3(q Mg DI=[42.]
For state [g,, 1]
8" (3,11, 0) = [3(q2, 02 (42, 0)] = [1,71]
8 (g, b 1) =[8 (92, 1), A (g2, 1)) = [420 Y]
For state [g,, ¥]
8" ([gy, 71, 0) = [8 (g1, 06 A (g3, O] = [91, 7]
8 (Igy, ¥1, 1) = [8 (@), 1) A (91, D] = [42 1]
For state [g,, ¥]
8 ([42,¥),0) = [8 (g2, 0), 4 (¢2,0)] = [@y,]
8 ([g2 7)) = [8 (g2, DA (g2, D) = [,)]

(Note : We have considered only those states, which are reachable from initial state)

6. 3 isdefined as follows:
Algo¥1=y
Mlg,n]=n
M lgpn] = n
Mgyl =y
Algy, ¥l =

FORMAL LANGUAGES AND AUTOMATA THEORY

2.5 EQUIVALENCE OF FSMs

Two finite machines are said to be equivalent if and only if every input sequence yields identical
output sequence.

Example :
Consider the FSM M, shown in figure (2) and FSM M, shown in figure (b).

“ &>

OlP=0 QIP=0

Figure (a)

Are these two FSMs equivalent ?

Solution :

We check this. Consider the input strings and corresponding outputs as given following :
Input string * Output by », Output by M,
(1) 01 00 00
) 010 001 001
(3)0101 0011 0011
(4) 1000 0111 0111
(5) 10001 01111 01111

Now, we come to this conclusion that for each input sequence, outputs produced by both machines
are identical. So, these machines are equivalent. In other words, both machines do the same

task. But, M, hastwo statesand M, has four states. So, some states of M, are doing the same

FORMAL LANGUAGES AND AUTOMATA THEORY

task i. &., producing identical outputs on certain input. Such states are known as equivalent states
and require extra resources when implemented.
Thm,uwgoalismﬁndmnsimpleﬂmﬂaqﬁwlemFSMuﬁthmhﬂmmmnnhﬁnfm

251 FSM Minimization

We minimize a FSM using the following method, which finds the equivalent states, and merges
these into one state and finally construct the equivalent FSM by minimizing the number of states.

Method ; Initially we assume that all pairs (g,,q,) over states are non - equivalent states

Step 1 : Construct the transition table.

Step 2 : Repeat for each pair of non - equivalent states (gy,,) *

(a)
(b)
()

Do g, and g, produce same output ?

Do g, and g, reach the same states for eachinput a €27

If answers of (a) and (b) are YES, then ¢, and g, are equivalent states and
merge these two states into one state [g,,g,] and replace the all occurrences of
g, and g, by [g,,q,] and mark these equivalent states.

Step 3: Check the all - present states, if any redundancy is found, remove that.

Step 4 : Exit.
Example 1 : Consider the following transition table for FSM. Construct minimum state FSM.
Inputs
: 0 1
Present Next State Next State
State(PS) (NS) (NS) Output
q g, q, 0
g, g 4 1
q, d, ' 1
g, q, 4, 1

FORMAL LANGUAGES AND AUTOMATA THEORY

After going through this chapter, you should be able to understand :

Regular sefs and Regular Expressions :
Identity Rules Unit-11
Constructing FAfor a given REs
Conversion of FAtoREs

Pumping Lemma of Regular sets

Closure properties of Regular sets

3.1 REGULAR SETS

A special class of sets of words over S, called regular sets, is defined recursively as follows,
(Kleene proves that any set recognized by an FSM is regular. Conversely, every regular set can
berecognized by some FSM)

1. Everyfinite setof words over 3 (including ¢, theempty set) is aregular set.

2. 1t Aand B are regular sets over S, then 41, p and AB are also regular.

3, IfSisaregularsetover S, then sois ts closure S¥.
4. Nosetisregularuness itis obtained bya finite number of applications of definitions (1) o (3).

18, the class of regular sets over S is the smallest class containing all finite sets of words over §
and closed under union, concatenation and star operation.

Examples:

) Let £={a,b}then the set of strings that contam both odd number of a's and b's is &
regular set.

m) Let £ ={0,1} then the setof sirings {0110 } isaregular sef.

FORMAL LANGUAGES AND AUTOMATA THEORY

3.2 REGULAR EXPRESSIONS

The languages accepted by FA are regular languages and these languages are easily described
by simple expressions called regular expressions. We have some algebraic notations to represent
the regular expressions.

Regular expressions are means to represent ceriain sets of strings in some algebraic
manner and regular expressions describe the language accepled by FA.

If 5 isanalphabet then regular expression(s) over this can be described by following rules,
. Any symbol from e and ¢ are regular expressions.
If », and », are two regular expressions then union of these represented as r, W r, 01
K + r, isalso aregular expression
If #, and r, are two regular expressions then concatenation of these represented as ryr, is
also aregular expression.
. The Kleene closure of a regular expression r isdenoted by » * isalsoaregular expression.
If 7 is aregular expression then {r) isalso aregular expression.

The regular expressions obtained by applying rules 1 to 5 once or more than once are also
regular expressions.

Examples :

(1) If £ = {a,b},then

(a) aisaregular expression {Usingrule 1)
(b} bisarcgular expression (Usingrule 1)
(€) @ + b isaregular expression (Using rule 2}
(d) »+ isaregularexpression (Using rule 4)
(€) @b isaregular expression (Usingrule 3)
() ab + b+ isaregular expression (Using rule 6)
{2) Find regular expression for the following

(a) A language consists of all the words over {a, b} endingin .

(b) A language consists of all the words over {a, b} ending in pp.

(¢) A language consists of all the words over {a, b} starting with gand ending in b.

(d) A language consists of all the words over {a, b} having pj as asubstring.

(e) A language consists ofall the words over {a, b} ending in aab.

Solution :Let E={a,b}, and

Allthe wordsover £ = {€ a, b, aa, bb, ab,ba, aaa,.....} = L *or(a + b) * or (a W B} *

FORMAL LANGUAGES AND AUTOMATA THEORY

=({g a,b, aa,bb,...})*

= le a,b, aa, bb, ab, ba, aaa, bbb, abb, baa, aabb, ...}
= {All the words over {a, 5} }

=(a+h)?

So, (2 * +h*)* = (a + b) *
3.3 IDENTITIES FOR REs

The two regular expressions P and are equivalent denoted as P = Q) if and only if P
represents the same set of strings as Q does, For showing this equivalence of regular expressions
we need to show some identities of regular expressions.

Let P, Q and R are regular expressions then the identity rules are as given below
L eR=Re=R

€' =¢ e isnull string

(#) =€ ¢ is empty siring.

oR=Rp=1

$+=R=R

R+R=R

RR*=R*R=F'

(Ry=F

c+RR =K'

(P+(0)R=PR+OR

(P+Q) =(P'Q)=(P+0Y

R'(e+R)={e +R)R' =R’

%
3,
4,
5.
6.
7
8.
9,
10.

(R+e) =R’
etk =R
(PQ)" P=P(QPY
RR+R=R'R

3.3.1 Equivalence of two REs

Let us see one important theorem named Arden's Theorem which helps in checking the
equivalence of two regular expressions.

FORMAL LANGUAGES AND AUTOMATA THEORY

Arden's Theorem : Let P and Q be the two regular expressions over the input set 3, . The
regular expression R is given as

R=0+RP
Which has a unique solutionas & = OP"

Proof : Let, P and () are two regular expressions over the input string 3. .
IfP does not contain e then there exists R such that
R=Q+RP 0 b

We will replace R by QP* in equation 1.
Consider R. H. S. of equation 1.

=0+0P'P

=((e +P"P)

-or v e+ R'R=R"
Ths R=0P"
is proved, To prove that R = QP"is a unique solution, we will now replace L.H.5. of equation 1
by Q + RP. Then it becomes

Q+RP

But again R can be replaced by Q + RP.
- Q+RP=Q+(Q+RP)P

=0+ 0P+ RF
Againreplace R by Q +RP.

=0+ 0P +(Q+RP)}F’

=0 +0QP+0P + RP’
Thus if we go on replacing R by Q + RP then we get,

O+RP=0+0P+0P'+....+0P + RP"

=e+P+ PP+ P+ RP

From equation 1,
R=0(s+P+ P+

Where i=0
Consider equation 2,

R=0(e+P+ P ¢ ..t PIy+ RE"
o

4 R=0P +RP"
Let wbe astring of lengthi.

FORMAL LANGUAGES AND AUTOMATA THEORY

={e,0,00,1,11,111,01,10,.......
= { e, any combination of 0's, any combination of 1's, any combination of
Oand1 }
Hence, L.H. S.=R. H.S. s proved.

3.4 RELATIONSHIP BETWEEN FA AND RE

There is aclose relationship between a finite automata and the regular expression we can show
this relation in below figure.

Canbe _ Regular Canbe
Converted expression converted to

NFA without
£ moves

FIGURE : Relationship between FA and regular expression
The above figure shows that it is convenient to convert the regular expression to NFAwith ¢
moves, Let us see the theorem based on this conversion.

3.5 CONSTRUCTING FA FOR AGIVEN REs
Theorem :If r bearegular expression then there exists a NFAWIth e - moves, which accepts L(r).
Proof: First we will discuss the construction of NFA. j7 with & -moves for regular expression
r and then we prove that L(M) = L(r).

Let » be the regular expression over the alphabet 3 .

Construction of NFA with ¢ - moves
Case1:

M r=2¢

FORMAL LANGUAGES AND AUTOMATA THEORY

NFA M = (Is, /1, { 18,5 {f}) as shownin Figurel (a)
{No path from initial state s o
reach the final state)
Figure 1 (a)

) r=¢

NFA M = (s}, { 1,8, s, {s}) as shownin Figure | (b)

() (The initial state 5 is the final state)

Figure 1 (b)
(i) » = g,foralla eX,
NEA M = ({s, /1, 5,8, 5 {f})
(One path is there from initial state s

to reach the final state fwith label a.)
Figure 1 (c)

Case2: |[r|=z1

Let » and r, be the two regular expressions over ¥, £, and N, and N, are two NFA for
r, and r, respectively as shown in Figure 2 (a).

Figure 2 (a) NFA for regular expression » and r,

FORMAL LANGUAGES AND AUTOMATA THEORY

Now let us compute for final state, which denotes the regular expression.
r} will be computed, because there are total 2 states and final state is ¢, whose start stateis g,..
= N 2 o)
=eMe=)+0
=0+0
r! = which isa final regular expression.

3.6.1 Arden's Method for Converting DFA to RE

As we have seen the Arden's theorem is useful for checking the equivalence of two regular
expressions, we will also see its use in conversion of DFA to RE.

Following algorithm is used to build the t ¢. from given DFA.

. Let g, bethe initial state.
. Thereareq,, g,.qs:4s--, numberof states. The final state may besome g, where j<n
. Let o, represents the transition from ¢, fo g,.
. Calculate g, such that
g, =04,
If g isastart state

I:L - "‘xjj"q;-’- €

5. Similarly compute the final state which ultimately gives the regular expression .

Example 1 : Construct RE for the given DFA.

Solution :

Since there is only one state in the finite automata let us solve for g, only.
o =90+ golt e
qo =G0+ 1)+e

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3 : Construct RE for the DFA given in below figure

Solution : Letus see the equations
Go =@+, 0+€
g4y =40
4z =4,]
g =q,0+ ;1 +4,(0+1)

Letus solve g, first,
go = g1 +g,0+€
q¢=qﬂﬂl+qﬂlﬂ+e
go = qp(01+10)+ € *R=0Q+RP
go =€ (01+10)* — OP* where
g, =(01+10)* R=g,,0=e,P=(01+10)

Thus the regular expression will be
F=(01+10)*

Since g, is a final state, we are interested in g, only.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 8 ; Showthat the language L ={a' b"|i>0} Is not reguiar.

Solution : The set of strings accepted by language L s,
L = {abb, aabbbb, aaabbbbbb, agaabbbbbbbb...}
Applying Pumping lemna for any of the strings above.
Take the string abb.
It is of the form www.
Where, |wv [<i|v =]
To find i such that ww'we L
Take i =2 here, then
w'w = al(bb)b
= abbb
Hence uv'w=abbb &£ L

Since abbb is not present in the strings of L.
». Lis not regular.

Example 9 : Show that L = {0°|n is a perfect square } is not regular.

Solution :
Step 1 : Let Lis regular by Pumping lemma. Let n be number of states of FA accepting L.
Step2: Let:=o¢" then|zf=nz2.
Therefore, we can write z=uvw ; Where [wisn)viz1.
Take any string of the language L= { 00, 0000, 000000..... }
Take 0000 as string, hereu=0,v=0, w=00to findi such that w'we L.
Take i =2 here, then
wv'w= 0(0)* 00
= 00000

This string 00000 is not present in strings of language L. 50 wv'we L.
-, Itisacontradiction.

3.9 PROPERTIES OF REGULAR SETS

Regular sets are closed under following properties.
1. Union
2. Concatenation

FORMAL LANGUAGES AND AUTOMATA THEORY

Kleene Closure
Complementation
Transpose
Intersection

Union : If R and R, are two regular sets, then union of these denoted by R, + R, or

R, R, isalso aregular set.

Proof : Let R and R, be recognized by NFA ~, and ¥, respectively as shown in
Figurel{a)and Figurel(b).

FIGURE 1(b) NFA for regular set &,
We construct a new NFA N based on union of N, and N, asshown in Figure 1 (¢)

FIGURE 1(c) NFAfor N, + N,
Mow,
I{N) = € L(N,) € + € L{N,) €
= Rje + eR,e
=R +R,
Since, Nis FA, hence L(N) isaregular set(language). Therefore, R, + R, isaregularset.

FORMAL LANGUAGES AND AUTOMATA THEORY

2. Concatenation : If R and R, are two regular sets, then concatenation of these denoted

by RR, isalso aregular set.
Proof : Let & and R, be recognized by NFA N, and N, respectively as shown in
Figure 2{a) and Figure 2(b).

FIGURE 2{b) NFA for regular set R,
We construct a new NFA N based on concatenation of ¥, and N, as shown in Figure2(c).

FIGURE 2(c) NFA for regular set &R,

Now,
L(N) = Regular setaccepted by N, followed by regular setaccepted by N, = RR,
Since, L(N) isaregular set, hence R R, is alsoaregular set.

Kleene Closure : If Risaregular set, then Kleene closure of this denoted by R*isalso
aregular set.

Proof: Let R isaccepted by NFA n shown in Figure 3(a).

FIGURE 3(a) NFA for regular set R

FORMAL LANGUAGES AND AUTOMATA THEORY

We construct a new NFA based on NFA N as shown in Figure 3(b).

FIGURE 3{b) NFA for regular expression for &'
MNow,

ILiN)={e,R . RR.RRER..}
=L

Since, L{N) is aregular set, therefore R" is aregular set.

Complement : If g is a regular set on some alphabet 3, then complement of g is
denotedby X' — R or % is also a regular set.

Proof : Let p be accepted by NFA N = (0,X,8,5,F). It means, L(N)=R.
N is shown in Figure 4(a).

FIGURE 4(a) NFA for regular set R
We construct anew NFA n'based on p asfollows:
(a) Change all final states to non-final states.

(b) Change all non-final states to final states.
N ' is shown in Figure 4(b)

FIGURE 4 (b) NFA

FORMAL LANGUAGES AND AUTOMATA THEORY

MNow,

L(N")= {All the words which are not accepted by NFA N}

= { All the rejected words by NFA N}

=% -R

Since, L{N") isaregular set, therefore (Z° — R) isaregularset.

Transpose :If Ris aregular set, then the transpose denoted by g7, is also aregular set,
Proof : Let g beaccepted by NFA N = (Q.Z.8,5,F) asshown in Figure 5(a).

FIGURE 5 (a) NFA N for regular set R

If wisawordin g, then transpose (reverse)isdenoted by 7 .
Let w = a,a;...a,

Then w' =a,a,.;..a

R =1

We construct anew p¢ based on x using following rules:
(a) Change the all final states into non-final states and merge all these into one state and make it
(b) Change initial state to final state.

(c) Reverse the direction of all edges.
A is shown in Figure5 (b)

FIGURE 5(b) NFA N'for regular set T

FORMAL LANGUAGES AND AUTOMATA THEORY

Let w = aja,...a, beawordin g, then itis recognized by j and

w!l = a,a,_,..a; srecognizedby a» asshown in Figure5 (b)

In general, we say that ifaword inR is accepted by p,andthen yv accepts 7.
Since, L(\") is aregular set containingall ,,* ; it means, LN = RT.
Thus, R isaregular set,

Intersection : if B and R, are two regular sets over ¥, then intersection of these
denoted by R, ~ R, isalsoaregularset,

Proof : By De Morgan's law for two sets 4 and B over R,
ANB=R*~((R*~-4)u (R*-BY)

SO, R, MR, =% _((L# “Ry)YWE*-R,)

Let Ry = (Z*-R,) and R, =(Z*-R,)

So, R, and R, are regular sets as these are complement of R and R,.

Let R, =R, U R,

So, B; isaregular set because it is the union of two regular sets R, and R,
Let Ry =Z*-R,

So, R, isaregular set because it is the complement of regular set R..
Therefore, intersection of two regular sets is also regular set.

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

REGULAR GRAMMARS

After going through this chapter, you should be able to understand :

o Regular Grammar
» Ecuivalence between Regular Grammar and FA
o Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, T.P, S) is said to be regular grammar iff the grunmar is
right lincar or lef lincar.
A gramumar G is said to be right linear if all the productions are of the form
A—wB and/or A -»w where A, BcV and vy 7.

Agrammar G is said to be left linear if all the productions are of the form
A—Bw and/or A->w where 4, BeV and c7°.

Example 1: The grammar

S - aaB [bbA | ¢

A - aAib

B - bBla]e
isaright linear grammar. Note that ¢ and string of terminals can appear on RHS of any production
and ifnon - terminal is present on R. H. S of any production, only one non - terminal should be
present and it has to be the right most symbol on R. H. S.
Example 2 :

The grammar
S - Baa|Abb | &
A - Aaib
B > Bblale
isaleft linear grammear. Note that & and string of terminals can appear on RHS of eny production

and ifnon - terminal is present on L. H. S of any production, only one non - terminal should be
present and it has to be the left mostsymbolonL. H. S.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3:
Consider the grammar
5 - aA
A wp aB|b
B - Abja

In this grammar, each production is either left linear or right linear. But, the grammar isnot cither
Jeft linear or right linear. Such type of grammar is called linear grammat. So, a gramumar which has
at most one non terminal on the right side of any production without restriction on the position of
this non - terminal { note the non - terminal can be leftmost or right most) is called linear
{TAITITIAL

Note that the language generated from the regulur grammar is called regular language. So, there
should be some relation between the regular grammar and the FA, since, the language accepted
by FAis also reguler language. So, we can constructa finite automaton given arcgular graminar.

4.2 FAFROMREGULAR GRAMMAR

Theorem : LetG = (V. T, P, §)be aright linear grammar, Then thera exists & language L{G)
which is accepted by a FA. 1. e., the language generated from the reguiar grammar
is regular language.

Proof :1et ¥ =(g,, @...) bethe variables and the sart state § =g, Let ihe productions in
the grammar be
4y =¥ K4
ql —¥ I! q:

g; —* X4,

Ga > Xnln

Assume that the language L(G) generated from these productions is w. Corresponding to each
production in the gramumar we can have a equivalent transitions in the FA to accept the string w.
After accepting the string w, the FAwill be in the final state. The procedure to obtain FA from
these productions is given below :

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 1: g, whichis the start symbol in the grammar is the start state of FA.

Step 2: For each production of the form
g, = wg,
the corresponding transition defined will be
6 (g,wi=q,;
Step 3: For each production of the form g, —» w
the comesponding transition defined will be 8 (g,, w) =q, where g, 1sthe final state,

As the string w & L{C) is also accepted by FA, by applying the transitions obtained from
stepl through stepd, the language is regular. So, the theorem is proved,

Example 1 : Construct a DFA 1o aceept the language generated by the following grammar

=+ 014

A - 108
B = 04|11

Solution :

Note that for each production of the form A - wB, the corresponding transition will be
of 4, w)= B.Also , for each pt’udut,.‘ti(m A =3 w , we can introduce the ransition E{A,w} =dq,

where ¢, isthe final state. Thetransitions obtained from grammear G is shown using the following
table :

Productions

] -» 01A
A b 10B
B — 0A
B - 1

The FA corresponding to the transitions obtained is shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

So,meDFA M =(0, I, §,4q,, A) where
Q=848 9,9, 940} , L={0}}
g =5, A={a,}
& i3as obtuined from the above table.
The additional vertices inroduced are ¢,.4,. 9,

Example 2 : Construct a DFAlo accept the language generaied by the following grammar .
5) ah |

A — IM bR =
B =) bB| =
Solution

Note that for each production of the form 4 —» wi , the corresponding transition will be

B(A,w) = B.Also, for each production 4 - w , Wecan introduce the transition (A, w) =g,

where ¢, isthe final state. The transitions obtained from grammax G is shown using the following
fable:

Productions Transitions
5 e B(S,a)=A
§ is the final state
S(d,a)= A
5(4,5) = B
A is the final state
(B b)=8
B is the final state.

FORMAL LANGUAGES AND AUTOMATA THEORY

Note : For cach transition of the form 4 —» ¢, make A a5 the final state.
The FA comresponding to the transitions obtained is shown below :

So,the DFA M =(0.%, B, g,, A) where
Q= {S, 4,8} , T={a,b)
g~ , A={S, 4, B)
f iz ng obtained from the above table.

4.2 REGULAR GRAMMAR FROM FA

Theorem : Let ¥ =(Q2,%,5,q,,4) boafinite sutomaton. If L is the regular language acceped
by FA, than there exists a right linaar grammar G={ V. T, P, §) so thal L = L{G).

Proof : Let M =(0,2,8,0,,4) beafinite automata accepting L where
O = 9051024}

Areguler grammar G=(V, T, P, §) can be constructed where
¥F={qgu,q q,}
T=E

A= L'
The productions P from the transitions can be obtained as shown below :
Step 1 : For each transition of the form 8(g,, @) =¢,

the corresponding production defined will be g, — ag,
Step 2: If g € 4 i.e,,ifq is the final state in FA, then introduce the production
g —»e

Asthese productions are obiained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar.

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

REGULAR GRAMMARS

After going through this chapter, you should be able to understand :

+ Regular Grammar
« Equivalence between Regular Grammar and FA
o Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G = (V, T, P, S) is said to be regular grammar iff the grammar is
right linear or left linear:
A grammar G s said to be right linear if all the productions are of the form
A—>wB and/or A —»w where 4, BeV and < 7*.

Agrammar G is said to be left linear if all the productions are of the form
A—Bw and/or A—w where 4, BeV and 7.

Example 1 : The grammar

S - aaB | bbA | ¢

A o aAlb

B - bBlaje
is aright linear grammar. Note that ¢ and string of terminals can appear on RHS of any production
and ifnon - terminal is present on R, H. S of any production, only one non - terminal should be
present and it has fo be the right most symbol onR. H. S,
Example 2 :

The grammar

S - Baa|Abb| ¢

A - Aalb

B - Bbla]e
isaleft linear grammar. Note that and string of terminals can appear on RHS of any production
and ifnon - terminal is present on L. H. § of any production, only one non - terminal should be
present and it has to be the left most symbolonL. H. S.

FORMAL LANGUAGES AND AUTOMATA THEORY

Note : For cach transition of the form 4 ¢, make A as the final state.
The FA corresponding to the transitions obtained is shown below :

So, the DFA M =(Q.%, 8, q,, 4) where
Q={8,4,B} ,Z={a,b}
go=85 =18, 4.5
& is as obtained from the above table

4.3 REGULAR GRAMMAR FROM FA

Theorem: Let M =(0,%,8,q,,4) beafinite automaton. If L is the regular language accepted
by FA, then there exists a right linear grammar G=(V, T, P, S) so that L = L(G).

Proof : Let M =(0,%,8,9,,4) beafinite automata accepting L where

Q = {’Qt}) !""Qn}

= {a“ﬂz,""ﬂ'm}
Aregular grammar G=(V, T, P, §) can be constructed where

V = { q{:!' "Ip ""Qn }

=X

S=q,
The productions P from the transitions can be obtained as shown below :
Step 1: For each transition of the form (g, @) =¢,

the corresponding production defined will be ¢, = ag,

Step 2: If g € 4 i.e., if qis the final state in FA, then introduce the production
g—re

As these productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

FORMAL LANGUAGES AND AUTOMATA THEORY

CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLs

- & & & @& & & @

5.1 CONTEXT FREE GRAMMARS

Agrammar G = (¥, T, P, §) issaid to be a CFG if the productions of G are of the form ;
A= a whereael uT)*

The right hand side of a CFG is not restricted and it may be null or a combination of variables and

terminzls. The possible length of right hand sentential form ranges from 0to @ ie, 0 < |« | 5=,

As we know that a CFG has no context neither left nor right. This is why, it is known as
CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG's.

Example 1 : Considerthe grammar G = (V, T, P, §) having productions :
& — aSa | bSh| €. Check the productions and find the language generated.

Solution :
Let B : 5 — aSa (RHSisterminal variable terminal)
P : § - bSh (RHSisterminal variable terminal)
P: 85 - e (RHSisnull string)
Sinee, all productions are of the form 4 —» &, where & e(V w T) * ,hence ¢ isaCFG

FORMAL LANGUAGES AND AUTOMATA THEORY

S0, the final grammar to generate the language L= { w|n (w)=n, (w)} 8G=(V,T,P,5)
where
V={8} ,T={ab}
P= { S>¢
§—» aSh
§ = bSa
S 58
} 8 isthe start symbol

5.2 LEFTMOST AND RIGHTMOST DERIVATIONS

Leftmost derivation :

fG=(V,T, P,8) isaCFGand w e L(G) then a derivation S 2w is called leftmost
derivation if and only if all steps involved in derivation have lefimost variable replacement only.

Rightmost derivation :

fG=(V,T,P,S) isaCFGand w € L{G), thenaderivation § 2w is called rightmaost

derivation if and only ifall steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar § — § + §] § * 5| a| b. Find leftmost and rightmost
derivations forstring w = g *a + b.
Solution :
Leftmost derivation for w = g* 54 b
§S=>8*8 (Using s — §*5)
o *§ (The first left hand symbol isa, sousing § — a)
- (Using § —» & + §,inordertoget 4 + 5)
'—;I”"”*S (Second symbol from the leftisa, sousing § — a)

=a*a+b (The last symbol from the leflis b, sousing § — b))

FORMAL LANGUAGES AND AUTOMATA THEORY

Rightmost derivation for w = g* g+ &
dexd 18 (Using s — §*§)
= §*5+8 (Since,inthe above sentential form second symbol from the right is * so,
we can not use § — alb. Therefore, weuse § — S+ 5)
?S‘S-rb (Using § — 5)
28§%*a+b (Usings -» a)

Tatatd (Usings - a)
Example 2 : ConsideraCFG 5 — bd|aB, 4 — aS|addja. B - bS|aBBlb.Find
lefimost and rightmost derivations for w = gaabbabbba -
Solution :
Leftmost derivation for w - gaabbabbba :
5 = ab (Using § — aB to generate first symbol of w)
= aaBB (Since, second symbol is o , 50 weuse B —» aBB)
= aaaBRE (Since, third symbol is o, soweuse 8 — aB8)
aaabBB (Since fourth symbol is b, soweuse § — b}
aaahbB (Since, fifth symbolisb,soweuse B —» b)
aaabbaBR {Since, sixthsymbol isa, sowe use 8 - aBR)
aaabbahB (Since, seventh symbolis b, soweuse g — b)
aaabbabb’ (Since, eighth symbolis b soweuse B — 5hS)
= aaabbabbbA (Since, ninth symbol is b, soweuse § — hd)
= gaabbabbba (Since, the tenth symbol isa, sousing 4 — a)
Rightmost derivation for w = ggabbabbba
§ = aB (Using § —» o8 to generate first symbol of w)
= aalB({We need aas the rightmost symbol and second symbol from the left side, so we
use B —» aBB)

aaBhS (We need a as rightmost symbol and this is obtained from A only, weuse 8 — 55)
aaBbbA (Using § — bd)

aaBbba (Using 4 — a)

aaaBBbba {We need b as the fourth symbol from the right)

aaaBbbba (Using B - b)

aaabShbba (Using B — b5)

=5
—
=5
—
(—J
—

FORMAL LANGUAGES AND AUTOMATA THEORY

Figure (c) Parse tree for w = ab Figure (d) Parse tree for w = ab
So, the given grammar is ambiguous,

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form 10 another accepting the same language. 1fa grammar
has lefi recursive property, it is undesirable and left recursion should be eliminated. The lefi
recursion is defined as follows,

Definition :A grammar G is said to be left recursive if there is some non terminal A such that
A =" Ae.Inotherwords, inthe derivation process starting from any non - terminal A, ifa sentential
form starts with the same non - terminal A, then we say that the grammar is having left recursion.

Elimination of Left Recursion

The left recursion in a grammar G can be eliminated as shown below. Consider the A - production
of the form A —sda|daglday...Ada BB | By o By

where f,'s do not start with A. Then the A productions can be replaced by

A2 B A B A 1BA e By A
A oo A g d ey i)] 2, A | €

Note that &,'s do not start with 4!,

Example 1 : Eliminale left recursion from the foliowing grammar
E=» E+T|T
T=T*F|F
F-»(E) |id

FORMAL LANGUAGES AND AUTOMATA THEORY

5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are nol always optimized. That means grammar may consists of some extra symbols
{ non - terminals), Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Each variable (i. e. non - terminal) and each terminal of G appears in the derivation of some
word in L.

2. There should not be any productionas ¥ — ¥ where X and Y are non - terminals.

3. If ¢ isnotin the language L then there need not be the production ¥ —»e.

We see the reduction of grammar as shown below :

Reduced grammar ‘

Removal of Elimination of
useless symbols e productions

551 Removal of useless symbols

Definition : A symbol X is useful if there is a derivation of the form
S='aff='w
Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of

terminals and all these symbols must be reachable from the start symbol 8, Those symbols and
productions whichare not at all used in the derivation are useless.

Theorem 5.5.1 :letG=(V, T, P, 5) be a CFG We can find an equivalent grammar
G, = (V.1 ,F,,5) such that foreachAin (VW T)) there exists o and A in (FT))® and x in
T forwhich § =" a1 =" x.

FORMAL LANGUAGES AND AUTOMATA THEORY

Py T

8 5 a|BblAa ab
A= aB ab

B+ alAa i ab

Theresulting grammar G, =(V,, 7,,F,.S) where
¥ = {S,A,B}
¥, = {ab}

r {

5 - a|BbjaA
A - aB
B - alAa
} S isthe start symbol
such that each symbol X in (¥, I) hasaderivationofthe form §=" axp =" w.

5.5.2 Eliminating - - productions

Aproduction of the form 4 —» e isundesirable in a CFG, unless an empty string is derived from
the start symbol. Suppose, the language generated from a grammar G does not derive any
empty string and the grammar consists of <- productions. Such e - productions can be removed.
An e - production is defined as follows ;

Definition1: Let G =(V,T, P, S)bea CFG A production in P of the form

A= e

is calledan ¢ - production or NULL production. After applying the production the variable Ais
erased. For each A in V, if there is a derivation of the form

A="¢
then A is a nullable variable.
Example : Consider the grammar
. ABCa|bD

5
A — BC|b
B -+ b|e

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2 : Construction of productions 7, . Addanon e- productionin Pto p, . Takeall the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productionsto P, .

Productions Resulting productions (P,)

= BAARB 5 -» BAAB|AAB |BAB|BAA|
- AB|BB|BA|AA|A|B
- D0A2 A - 0AZ2]02
= 2A0 : A 240(20
> AB B, AB|B|A k|
- 1B B 1B|1 _]

A
A

B

.I:_B
We can delete the productions of the form A —» A. In p, , the production g -3 B can be
deleted and the final grammar obtained after eliminating « -productions is shown below.
The grammar 7, = (V,, T, A ,5) where
¥, = {S$,A,B,C,D}
T - {a,boed}
P = {S —» BAAB|AAB|BAB |BAA|AB|BB |BA|AA|A|B
A 5 0A2|02]|2A0)20
B AB|A|IB|1
} 8§ isthe start symbol

5.5.3 Eliminating unit productions
Consider the production 4 —» #. The left hand side of the production and right hand side of the
production contains only one variable. Such productions are called unit productions. Formally,a
unit production is defined as follows.
Definition : LetG = (V, T, P, $)beaCFG Any production in G of the form

A= R
where A, g ey isaunit production.

In any grammiar, the unit productions are undesirable. This is because one variable is simply
replaced by another variable.

FORMAL LANGUAGES AND AUTOMATA THEORY

In a CFG. there is no restriction on the right hand side of a production. The restrictions are
imposed on the right hand side of productions ina CFG resulting in normal forms. The different
normal forms are :

1. Chomsky Normal Form (CNF)
2. Gireiback Normal Form (GNF)

5.6.1 Chomsky Mormal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal —» Non - terminal Non - terminal]
Mot - terminal - terminal —J

The given CFG should be converted in the above format then we can say that the grammar is in
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all the useless symbols, « productions and unit productions from it. Thus this reduced
grammar can be then converted to CNF.

Definition :
LetG= (V, T,P,S)beaCFG The grammar G is said to be in CNF if all productions are
of the form
A BC

A a
where A,Band CeV and aeT.
Note that if a grammar is in CNF, the right hand side of the production should contain two
symbols or one symbol. If there are two symbols on the right hand side those two symbols must
be non - terminals and if there is only one symbol, that symbol must be a terminal.

Theorem 5.6.1 : Let G=(V, T, P, 8) be a CFG which generates context free language
without ¢, We can find an equivalent context free grammar G, =(V,,T,F} ,5) in CNF such that
L(G)=L(G,) i.e., all productions in G, are of the form

A - BC

or
A ¥

FORMAL LANGUAGES AND AUTOMATA THEORY

Thus, from (7), (8) and (9), the resultant grammar becomes ;
8-V, §|V¥Y, alb
R
¥, =]
¥V, = SV,
Ve = SV,
V=1
V.=]
Now, in the resultant grammar (C), following is the production which is not in the form of CNF:
S2KKF,
We can write this production as :
SV ¥, v 100)
V= VW w11}
Thus, from (10) and (11), the resultant grammar becomes :
8 > V,SW,V,|ab
-
|
WV, =V,
¥, > 8¥,
V, - SV,
¥, = 1
F,=]

Thus, the resultant grammar (D) is in the form of CNF, which is the required solution.
5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows |

| Non - terminal — mtem@-ﬁn?nmbﬂbf@:_ﬂ@

Example :
S ad isin GNF
Sa is in GNF

FORMAL LANGUAGES AND AUTOMATA THEORY

From the subtree shown in figure (b) , we get 5:., aaSe WS fut 5 81, and considering

the subtree shown in figure(c), weget §—g Of 5 2

The subtree shown in figure (b) can be added as many times as we like in the parse tree
shown in figure (a). S0, §— ' g 2! = ry 20y

Therefore, string z can be writtenas uzyz;z,y for some uand y substrings of . The substrings
z, and z, can be pumped as many times as we like. Replacing z,, z; and z, by v, w and x

respectively, we get z=uvwxy and _q,_;m--w,-}. forsomei=0, 1,2, wsumismmsaa
Hence , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CFL. We proceed as we have
seen in application of pumping lemma for regular sets and get contradiction. The result of this
lemma is always negative.

Procedure for Proving Language is not Context - free

The following steps are considered to show a given language is not context - free,

Step1:

Supposethat £ iscontext - free. Let 1 be the natural number obtained by using pumping lemma.
Step 2 :

Chooseastring xe L suchthat x| 21 using pumping lemma principle write z =uvwxy.

Step 3 :

Find suitable i so that w'we 'ye & . Thisisacontradiction. S0 £ isnot context - free.

FORMAL LANGUAGES AND AUTOMATA THEORY

Case 2:

veg* and ..t Let ,__r and pg=n!. Pumping v and x, (g+1) times, we pet :
2= Tty

Inz', no. of a's will be n-p+n+p=nten,

No.of b's in 2 will remain n! + n. Hence, no. of 8's = no., of b's in 2',

Similarly, in other cases, we can arrive at strings not as per specification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs

The closure properties that hold for regular languages do notalways hold for context free languages,
Consider those operations which preserve CFL.

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.
Union
Concatenation and
Kleene Closure (Context-free languages may or may not close under following properties)
Intersection
Complementation
Theorem §.8.1 :1f 1, and L; are two CFLs, then union of £; and L, denatedby I; + L;
or [j v Ly isalsoa CFL.
Proof :
Let CFG G, = (¥,,1;,P,S) generates [y and CFG G, = (¥,,T,,P,S) generates Ly
and G =(V,T, P,5) generates [= [; + Ly.

We construct (& as follows :

Step 1 : Rename the variables of CFG G,

IfVl - {S1Ar3r"'r Xl ,Iimth:m-m:dvmiab]esare {Si' .r‘li. EJ,..X|}.ﬂli3ﬂlodiﬁmﬁm
should be reflected in productions also.

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2 : Rename the variables of CFG G,

If ¥, ={5,4,B,.X}, then the renamed variables are {5, 4, B,...X}. This
modification should be reflected in production also.

Step 3 : We get of the productions of G; and G, to get productions of & as follows:

§ —» 8§ | 83, where §, and §; are starting symbols of grammars G; and G, respectively and
5; - productions and §, - productions remain unchanged.

r=TwvT,,
V ={(8, 4,8, X} wi{f 4,.B,. X}

Since, all productions of G, and G, including § - §; | §; are in context-free form, so
GisaCFG

Language generated by G :
L(G) = Language generated from (8}, or S3)
= Language generated from 5 orlanguage generated from 53
= L(Gy) or L(G5) (Since, S and 5, are starting symbols of G, and G, respectively.)
= L or Ly (Since, G| produces L, and G, produces L, .}
=L+ Ia

Hence, statement of the theorem is proved.

Example : Considerthe CFGs § — aSh|ab and § — cSdd | edd , which generate
languages I; and L, respectively. Construct grammar for L = Ly + L.

Solution :

Let Gy generates [; and G, generates [, and G = (¥, T, P.5) generates L = Iy + Ip.
Renaming the variables of G, and G, , weget

¥,=1{8,} and ¥, ={§,}, where § - productions are § —» aSyb | ab, and
§; -productions are §; — cSydd | edd

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

PUSH DOWN AUTOMATA

After going through this chapter, you should be able to understand :

Push down automata

Acceptance by final state and by empty stack
Equivalence of CFL and PDA

Interconversion

Introduction to DCFL and DFDA

6.1 INTRODUCTION

A PDA is an enhancement of finite automata (FA). Finite antomata with a stack memory can be
viewed as pushdown automata. Addition of stack memory enhances the capability of Pushdown
automata as compared to finite automata. The stack memory is potentially infinite and itis adata
structure. Its operation is based on last - in - first - out (LIFO). It means, the last object pushed
on the stack is popped first for operation. We assume a stack is long enough and linearly arranged.
We add or remove objects at the left end.

6.1.1 Model of Pushdown Automata (PDA)

A model of pushdown automata is shown in below figure. It consists of a finite tape, a reading
head, which reads from the tape, a stack memory operating in LIFQ fashion,

le—— Input Tape

Finite State Control

FIGURE : Model of Pushdown Automata

FORMAL LANGUAGES AND AUTOMATA THEORY

There are two alphabets ; one for input tape and another for stack. The stack alphabet is denoted
by r and input alphabet is denoted by 1 . PDA reads from both the alphabets ; one symbol
from the input and one symbol from the stack.

6.1.2 Mathematical Description of PDA
A pushdown automata is described by 7 - tuple (Q.£.1,8, g¢.Z4.F) » Where
1. @ isfinite and nonempty set of states,
2. ¥ isinput alphabet,
3. r isfinite and nonempty set of pushdown symbols,
4, 5 isthe transition function which maps
From @ = (E v {&}) ¥ I to(finite subsetof) O = I'*,
g, & (1, isthe starting state,
6. Z, €T ,isthe starting (fop most or initial) stack symbol, and
7. F ¢ @,isthe setoffinal states.

8.1.3 Moves of PDA
The move of PDA means that what are the options to proceed further after reading inputs in

some state and writing some string on the stack. As we have discussed earlier that PDA is

nondeterministic device having some finite number of choices of moves in each situation.
The move will be of two types :

1. Tnthe first type of move, an input symbol is read from the tape, it means, the head is advanced
and depending upon the topmost symbol on the stack and present state, PDA has number of
choices to proceed further.

In the second type of move, the input symbol is not read from the tape, it means, head is not
advanced and the topmost symbol of stack is used. The topmost of stack is modified without
reading the input symbol. Itis also known asan ¢ - move.

Mathematically first type of move is defined as follows.

(q.a,2) = {(pra W Prs@s - Pos,)) , where for 1 <7 < n,q, p, are states in

gack Zel,and ael’*.
PDA reads an input symbol a and one stack symbol Zin present state g and for any value(s) of

i, enters state p, , replaces stack symbol £ by string &, el * , and head is advanced one cell on
the tape. Now, the leftmost symbol of string o is assumed as the topmost symbol on the stack.
Mathematically second type of move is defined as follows.
5(g.€,2) = {(pray W Psa@®s)i (Prs)} , where for 1 < { < n, g, p, are states in
O,ael, Zel,ond @, eT *.

FORMAL LANGUAGES AND AUTOMATA THEORY

PDA does not read input symbol but it reads stack symbol Z in present state ¢ and for any
value(s) of i, enters state p, , replaces stack symbol Z by string &, e ' * , and head is not
advanced on the tape. Now, the leftmost symbol of string «, is assumed as the topmost symbel
on the stack.
The string «, be any one of the following :
1. @, =e inthiscase the topmost stack symbol Z,,, iserased and second topmost symbol
becomes the topmost symbol in the next move. It is shown in figure (a).

|++-

=)

FIGURE(a): Move of FDA
2. @, =c,ce [,inthiscase the topmost stack symbol Z,,, is replaced by symbol c. Itis

shown in figure(b)

o

=
.
*

FIGURE(b): Move of PDA
3. a,=e¢@,..c, ,inthiscase the topmost stack symbol Z,,, isreplaced by string ¢ic,. .. ¢, -
Itis shown in figure(c).

FORMAL LANGUAGES AND AUTOMATA THEORY

FIGURE(c): Move of PDA

6.1.4 Instantaneous Description (ID) of PDA

LetPDA M = (0,218, 44, Zy.F) » thenits configuration at a given instant can be defined by
instantaneous description (ID). An ID includes state, remaining input string, and remaining stack
string (symbols). So, anID is (g,x,¢) , where ge Q,xe E*, a el ¥.

The relation between two consecutive IDs is represented by the sign [—— .
We say (g,ax,Zf) |w{(p.*.aB) if § (g, a, Z) contains (p,a), where Z,f,ael*,a
maybenullora €%, p, g ¢ Q for M

The reflexive and transitive closure of the relation |5 is denoted by iﬁ.
Properties :
1. If(q.x.ﬂ)lf;{p,E,H],wherc ael*xel*,and p,g €@, thenforall y €L *.

(g.,a)iﬁ(p,y.rr) '

2. If (q.xy.ﬂ)lM;(P*}',a) , where ael*x,yeL*, and pg e, then
(g.x.c }!ﬁ(ﬂ.&ﬂ] , and
3.1 (g.xa)ITL pe. By, where a, fel*xef*, and pge@,. then

(g. 52 P)}ipe. Br). where y T *

FORMAL LANGUAGES AND AUTOMATA THEORY

6.1.5 Acceptance by PDA

Let Mbe a PDA, the accepted language is represented by N{M). We defined the acceptance by
PDA in two ways.

. Let M =(QEIT.5, q,.2,,F),then N(M) is accepted by final state such that

NtM}=iw1{qu,w,2'ui|%{q,,e,ﬂ}. where ¢ € ¢, weE*Z,, fel*, and

q; €F}

It is similar to the acceptance by FA discussed earlier. We define some final states and
the accepted language Ny} is the set of all input strings for which some choice of moves
leads to some final state.

Let M = (D2 ,8.9,.Z,.4),then NfM) is accepted by empty stack or null stack such
that N (M) = {wigyw.Zo)|z p.ce) where p € O, w e Z*)

The language Ny is the set of all input strings for which some sequence of moves

causes the PDA to empty its stack.

Note : Ifacceptance is defined by empty stack then there is no meaning of final state and it is
represented by § .

Example : consider a PDA M =({g,,4,,9:):(a,¢},1a,2,1,8,90,Z0:(g,}) shown in
below figure. Check the acceptability of string aacaa.

a, Ly, aly a,d, €

a, a, aa

FIGURE ;: PDA accepting {a"ca”:n=z1)

Note : Edges are labeled with Input symbol, stack symbol, written symbol on the stack.

FORMAL LANGUAGES AND AUTOMATA THEORY

Solution :

The transition function § isdefined as follows :
Slgua,20) = {(g, 0700} »
Sgg.a,a) ={(gy,a0a)},
dlgp.c.a)={{g,.a)} s
5(q,,a,a) ={(q,,€)}, and

B(q,.8.25) = (92, Z4)}
Following moves are carried out in order to check acceptability of string aacaa

(g, cretcaer :zoﬂ‘{‘fnr”‘:"ﬂ saly)
1—{qn,am,mzu}

H(q,,aa,aaZ ;)

|_{q“a-ﬂzﬂ-:‘

[41.€.24)
l—{‘?i €,2Z,)

Hence, (g, .aacaa .2,]1&(4': Eig),
Therefore, the string ancan is accepted by py.

6.2 CONSTRUCTION OF PDA

In this section, we shall see how PDA's can be constructed.

Example 1: Obtain a PDA to accept the language L{M) = | wOw"| we(a+b)*} where
R isreversa of W.
Solution:

Ttisclear from the language L Af) = { wCw"} thatif = abb

then reverse of w denoted by g willbe # - pp, and the language L willbe 0"
i.e., abbChbba which is a siring of palindrome.

FORMAL LANGUAGES AND AUTOMATA THEORY

To accept the string :
The sequence of moves made by the PDA for the string aabCbaa is shown below.
Initial ID
{gy, aabChaa, Z,) (g9, abChaa, aZ,)
(gq, BChaa, aaZy)
(g, Chaa, baaZy)
(g, baa baaZ,)
(g,.aa.aaZ;)}
(g.0.a%,)
(g1:8:.24)
(4:, & L)
(Final Configuration)
Since g, is the final state and input string is < in the final configuration, the string aabChbaa
is accepted by the PDA .

To reject the string :
The sequence of moves made by the PDA for the string aabChbab is shown below .
Initial [T
(gy. aabChab, Z;) (gy, abChab, aZ,)
(gy, bBChab, aaZ,)
(o, Chab, baaly)
{q,, bab, baaZy)
(g, ab, aaZy)
= g, b oaly)
(Final Configuration)
Since the transition 8(g;, b, a) isnot defined, the string aabChab is not a palindrome and
the machine halts and the string is rejected by the PDA.

Example 2 : Obtain a PDA to accept the language L « { a” 5" nz |} by a final state.

Solution :

The machine should accept n number of a's followed by n number of b's.

FORMAL LANGUAGES AND AUTOMATA THEORY

6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss about the deterministic and nondeterministic behavior of pushdown
automata.

6.3.1 Nondeterministic PDA (NPDA)

Like NFA, nondeterministic PDA (NPDA) has finite number of choices for its inputs. As we
have discussed in the mathematical description that transition function § which maps from
0 % (£ w {e}) % T to(finite subset of) 0 = T *. Anondeterministic PDA accepts an input if
asequence of choices leads o some final state or causes PD A to empty its stack. Since, sometimes
it has more than one choice to move further on a particular input ; it means, PDA guesses the
right choice always, otherwise it will fail and will be in hang state.

Example : consider a nondeterministic PDA M =({q,}.{a,b).{a,b,Z}.6.4,.Z #), for the
language 1 = {a"p" : n = 1} ,where 5 is defined as follows :

8(gy. 8 Z)={(gq, ab), (gy,a2b)} (Two possiblemoves forinput e on the tape and Zon the stack),

&(gs:a,3) = {(g,€)} ,and & (gy,b,8) ={(g4,€)}
Check whether string w = aabb is accepted or not 7
Solution : Initial configuration is (g,,aakb, Z) . Following moves are possible :

(gg,aabb ab) —= (g,.0bb,b)—= t
'[?u,ﬂﬂbﬁ'_zl{
(g, aabb,aZb) —w (g4,abb,Zh)

(g abb,abb}) {gqsabb,aZbb)

(gy, b, bE) (qa,bb, Zbb)

|

(s, B)
(g, bb,abbb) (gq,bb,aZbbb)
(g0:8,€)
h [
Hence, w = aabb is accepted by empty stack.

FORMAL LANGUAGES AND AUTOMATA THEORY

One thing is noticeable here that only one move sequence leads to empty store and other don't.
In other words, we say that some move sequence(s) leads to accepting configuration and other
lead to hang state.

6.3.2 Deterministic PDA (DPDA)

Deterministic PDA (DPDA) is just like DFA, which has af most one choice 1o move for certain

input. APDA M =(0,X,1',8,q,,2,, F) isdeterministic if it satisfies both the conditions given

as follows :

1. Foranyg e 0, a e(Zu [E}}r,&lld Z &I, 6 (g, a, Z) hasat most one choice of move.

2, Forany ge 0,and 7 &1, if 8(g.e, 2) is defined i.c. 5(q, 5 2Z) # ¢, then
(g @, Z) =g forall g ¢ £

Example : Consider a DPDA M =({g,,9,).{a,¢),{a,Z,}, .95, Z,.¢) accepling the

language {a"ca" :n =1}, where § is defined as follows :

F(gg. . Z9) = {(qy, 22,)}

8 (gq.a,a) = {(gy,aa)},

&(gy.c.a)={(g,.a)},

8 (gy.a.a) = {(g,,€)}, and 5(q,.€,Z,) = {(g,,€)}

Check whether the string w = aacaa is accepted by empty stack or not 7
Solution :

We see that in each transition DPDA has at most one move. [nitial configuration is
(qs, 0acaa, Z,) . Following are the possible moves.
(o, aacaa, Zy) = (qy,acaa,aZ) = (§g.coa,a8aZ,) = (q,,a4,a0Z)
-
(9),5.8) « (g,.6,. 2,) + (g, a.aZ)
Hence, the string w = @acan is accepted by empty stack.

As we have discussed in earlier chapters that DFA and NFA are equivalent with respect fo
the language acceptance, but the same is not true for the PDA.

For example, language I ={ww ":w € (aw b)*} isaccepted by nondeterministic PDA,
can not by any deterministic PDA. A nondetenministic PDA can not be converted into equivalent
deterministic PDA, but all DCFLs which are accepted by DPDA, are also accepted by NPDA.

So, we say that deterministic PDA is a proper subset of nondeterministic PDA. Hence, the
power of nondeterministic PDA is more as compared to deterministic PDA.

FORMAL LANGUAGES AND AUTOMATA THEORY

6.4 ACCEPTANCE OF LANGUAGE BY PDA
The language can be accepted by a Push Down Automata using two approaches,

1. Acceptance by Final State : The PDA accepts its input by consuming it and then it enters
inthe final state.

Acceptance by empty stack : On reading the input string from initial configuration for
some PDA, the stack of PDA gets empty.

6.4.1 Equivalence of Empty Store and Final state acceptance

Theorem:
If M, =(0Q,%2,1,,8,,p,,Z,,8) isaPDA accepting CFL L by empty store then there
exists PDA Alz = (Q‘-.E.l';.ts,.P;.zg,{q/}) “’hichamptsl.byﬁnﬂ'm‘c-

Proof :
First we construct PDA A, based on PDA M, and then we prove that both accept L.

Step 1: Construction of PDA A, based on given PDA M,

z issame for both PDAs. We add a new initial state and a new final state with given PDA .

So, @, =0,V {p,vq,}

The stack alphabet T, of PDA 1y, contains one additional symbol Z, with I', .

So, I'; =T, v {Z,}
The transition function &, containsall the transitions of given PDA. 1, and two additional transitions
(R and Ry) asdefined as follows:

Ry :6,(paie,23)={(p1,2,2,)},

R, :d,(q,a,2)=6,(q,a,Z) forall (¢,¢,Z) in Q, x (Eu {e}) x I,

(the original transitions of a1,),and
Ry:6,(9,€,2,)=1{(g,.€))} forall g € Q,

Bythe R, », moves fromitsinitial ID (p,,c, Z,) tothe initial IDof u, By R,, A, usesall the
transitions of u, after reaching the initial IDof », and by using Ry A, reaches the final state g 7.

FORMAL LANGUAGES AND AUTOMATA THEORY

The block diagram is shown in below figure.

& 23,2124
__@ 114

FIGURE : Block diagram of PDA a1,
Step 2 : The language accepted by PDA M, and PDA M,

The behaviors of M, and Af, are same exceptthe two by e - movesdefinedby B and R;.
Let string w ¢ [and accepted by M, then
(P1w.2))|5-(g.€,€) where g € 0, (Result 1)
For M, ,the initial IDis (p,,w,Z,) and it can be written as (p,,eweZ,). So,
(pr-ewe,Zy) b (P w.212,) (Thisinitial Dof M)

|- (@:€.25) (by R, and Result 1)

i (9,.5.a) gel; (By By)
Thus, if M, accepts w, then M, also acceptsit.

Ttmeans L{M,)c L(M,) {Result 2)
Letstring w e L and accepted by PDA M, , then

(preweZ,) |?z (pw,2,2,) (By &) (Result 3)

|- (a.€,22) (By B,) (Result4)

| .

]F,':QI'E:“) ael; (ByR;)
Note : The Result 3 is the initial ID of A/, . The Result 4 shows the empty store for M, if
symbol Z, isnot there.

FORMAL LANGUAGES AND AUTOMATA THEORY

For M,,theinitial IDis (p,, w,2,)
So, (pi.w.Z,) [~ (g.€,€), where ¢ & @, (ByResult3 and Result 4) Thus, if M, accepts

w,then M, also accepts it.
[tmeans, L(M,)c L(M,) (Result 5)
Therefore, L= LiM,)= L(M,) (FromResult2 and Result 5)
Hence, the statement of theorem is proved.

Example: Consider a nondeterministic PDA A7, = ({q,}, {a,b}, {a.b,53. &.q4.8,4) which
accepts the language L = {a"p" : n = 1} by empty store, where § is defined as follows :
&(gq,%.5) = {{gg,ab), (g,,a56)} (Two possible moves),
&i{go.a.a) ={(g,.@)} , and F(g,.b,8) = {(g,.2)}
Construct an equivalent PDA M, which accepts L in final state and check whether string
w = aahb isaccepted or not 7

Solution : Following moves are carried out by PDA A4, in order to accept w = aabb :

(99, 2abb,S)|— (q,,aabb,aSh)
| (qy.abb,Sb)
—(go,abb,abb)
|—(gq.bb,bb)

|—{qn,b.bJ

I_ {‘?D ,E,E)

Hence, (g,,aabb,5) ‘-l-'. (90,5,)

Therefore, w = aabb isaccepted by M,.

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine

Design of TM

Computable functions

Recursively Enumerable languages
Church's Hypothesis & Countar machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages (generated from regular grammar), context free languages (generated from
context free grammar) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar, Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine mode! is shown in below figure . It is a finite automaton connected to read -
write head with the following components :

. Tape

. Read - write head

. Control unit

mrar

Limit

FIGURE : Turing machine model

FORMAL LANGUAGES AND AUTOMATA THEORY

Tape: Itisatemporary storage and is divided into cells. Each cell can store the information of
only one symbol. The string to be scanned will be stored from the left most position on the tape.
The string to be scanned should end with infinite numnber of blanks.

Read -write head : The read - wrile head can read a symbol from where itis pointing toand
it can write into the tape to where fhe read - write head points to.

Control Unit: The reading / writing from / to the tape is determined by the control unit, The
different moves performed by the machine depends on the current scan ned symbol and the
current siate, The read - write head can move either towards left or right i.¢., movement can be
on both {he directions. The various moves performed by the machine are :

1. Change of state from one stade to another state
2. The symbol pointing Lo by the read - write head can be replaced by another symbol.
3. The read - write head may move either towards left or towards right.

The Turing machine can be represented using various notations such as
. Transition table
. Instantaneous description
& Transition diagram

7.2.1 Transition Table

The table below shows the transition table for some Turing machine. Latersections describe how
{0 obtain the transition table.

Tape Symbols ()

Y

lq'u Y, E"

. (95 ¥, R)

(42, ¥, L)

{gs. ¥, R}

FORMAL LANGUAGES AND AUTOMATA THEORY

Note that for each state g, there can be a corresponding entry for the symbol in . Inthis table
the symbols & and b are inpit symbols and can be denoted by the symbol 3. Thus E¢ T
excluding the symbol B, The symbol B indicates a blank character and usually the string ends
with infinite number of B's 1. e., blank characters. The undefined entries indicate that there sre no
- transitions defined or there can be a transition to dead state. When there is a transition to the
dead state, the machine halts and the input string is rejected by the machine. it is clear from the
table that
F:@xTr(@=xTx{LK})

where O= (g @itz aqal; Z={a b}

Fr={e s X, ¥V, 8]}

gy is the initial state; B isa special symbol indicating blank character

F ={g,} which isthe final state,
Thus , a Taring Machine M can be defined as follows.
Definition : The Turing Machine M =((,2,1",8,q,,8,F) whera

(Qis setof finite states

t is set of input alphabets

I is set of tape symbeols

& is transition function @ «Cro (@ =<I={L,R})

gy 15 the initial state

B is a special symbol indicating blank charscter

F @ issetof final states.

7.2.2 Instantaneous description (ID)

Unlike the ID described in PDA, in Turing machine (TM), the ID is defined on the whole string
{ noton the string to be scanned) and the current state of the machine.

Definition :

AnIDof TM is astring in e g , where q is the current state, o & is the string made from tape

symbols denoted by i.e., & and § e I'*. The read - write head poits to the first character of
the substring 4. The initial [T is denoted by gezfi Where q is the start state and the read - wrile
head points to the first symbol of & from lefl. The final ID is denoied by gk where g = F is
the final state and the read - write head pointsto the hlank character denoted by B.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example : Consider the snapshot of a Turing maching
Tape

menmrmammem

Read-write Head

Control
Unit

Tn this machine, each o, & T" {i.e, each «, belongs o the tape symbaol). In this snapshot, the
symbol a,is under read - write head and the symbol towards left of 4, 1. €., ¢, isthe current
state, Note that, in the Turing machine, the symbol immediately towards left of the read - write
head will be the current statz of the machine and the symbol immediately towards right of the
state will be the next symbol to be scanned. So, in this case an 1 is denoted by

By 5Ty i sl Ty

where the substring ma-asa, towards left of the state g, is the left sequence, the
substring a,a,0,a, towards right of the state g; 15 the right sequence and 4; 15 the current state
ofthe maching. The symbol a isthe next symbol to be scanned.

Assume that the current ID of the Turing machine is a,a;0,8.4, 23,6+, ... 48 shown in
snapshot of example.

Suppose, there is a transition &z, ag) = (gs. by, R)

It means that if the machine is in state g, and the next symbol to be scanned is &, then the
machine enters into state g, replacing the symbol a, by b and R indicates that the read - write
head is moved one symbol towards right. The new configuration obtained is

iyl B g1 0000 .

This can be represented by a move a8 0,006, ¢,0,0,0, ... | —a33@5, by gty @il

Similarly if the corrent [D of the Turing machine is @,a,a,0, 9,008,085
and there is a transition

d(qy,as)=(q,,0:,L)
means that if the machine is in siaie ¢, and the next symbol to be scanned is @, then the machine
enters inlo state g, replacing the symbol a; by ¢, and L indicates that the read - write head is
moved one svmbol towards left. The new configuration obtained is

@430 A Cy Ty Oy

FORMAL LANGUAGES AND AUTOMATA THEORY

This can be representod by a move 88 6,0,a,, 40000y = G038,§,8,0,0,0 s
This configuration indicates that the new state is g, , the next input symbel o be scanned
is a,. The actions performed by TM depends on
1. The current state.
2. The whole siring to be scanned
3. The current position of the read - write head
The action performed by the machine consists of
1. Changingthe states from one state to another
. Replacing the symbol pointed to by the read - write head
3. Movement of the read - write head towards left or right.
7.2.3 The move of Turing Machine M can be defined as follows

Definition : Let M =(QXIT.4,4,.8F) be a TM. Let the ID of M be

)8y @ ren By Gy Ty o, WhETE @, €T fOr 15 jSn-1, g €2 is the current state and 4, as

the next symbol to scarmed. I there is a transition 8g. a) =(p, b, R)

then the move of machine M will be o205 0ty Gl oy | =288 500 85 B934y,
Ifthere isa transition &g, a.) =(p, b, L)

then (he move of machine M will be

Byl Qg dp g GO T g el | = O @30y ey 3 PPy,

7.2.4 Acceptance of a language by TM
The language accepted by TM is defined as follows.

Definition :

Let M = (Q,5.,I",8.q,.8,F) be a TM. The language L{M) accepted by M is defined as
L(M) = {wiqw- *a, p ey where weE% pe F and o, o, e T*}
i.e,, set ofall those words w in 3+ which causes M to move from start state g, to the final
state p. The language accepted by TM is called recursively enumerable language.

The string w which is the string to be scanned, should end with infinite number of blanks.
Initially, the machine will be in the start state ¢, with read - wrile head pointing to the first symbol
of w from left. Afler some sequence ofmoves, if the Turing machine enters into the final state and
halts, then we say (hat the siring w is accepted by Turing machine.

FORMAL LANGUAGES AND AUTOMATA THEORY

7.2.5 Differences between TM and PDA
Push Down Automa :

l. A PDA isanondeterministic finite mutomaton coupled with a stack that can be used to store
a string of arbitracy length.,

2. The stack can be read and modified only at itz top.

3. A PDA chooses its next move based on its current state, the next input symbol and the
symbol at the top of'the stack.
There are two ways in which the PDA may be allowed to signal acceptance. One is by
eniering an accepting state, the other by emptying its stack.
T comsisting of the state, remaining input and stack contents 1o describe the "current condition”
ofaPDA.
The languages accepted by PDA's either by final state or by empty stack, are exactly the
conlext - free languages.,

7. A PDA lanpuages lie srictly between regular languages and CSL's.

Turing Machines :

1. TheT™ is an abstract computing machine with the power of both real computers and of
other mathematical definitions of what can be computed.
T™ consists of a finite - state control and an infinite tape divided into cells.

. TM makes moves based on its current state and the tape symbol at the cell scanned by the

tape head.
The blank isone of tape symbols but not input symbel,
TM accepts its input if it ever enters an accepting state,
The languages accepted by TM's are called Recursively Enumerable (RE) languages.
Instanianeous description of T M describes cument configurtion ofa TV by finite- lengfh siring,
Storage in the fnite conirol helpsto designa T™ for a particular language.
A TM can simulate the stormge and control of a real computer by using one tape to store all
the locations and their cortents.

7.3 CONSTRUCTION OF TURING MACHINE (TM)

In this section, we shall see how TMs can be consiructed.
Example 1: Obtaina Turing machine to accept the language L= {0 "1" |n=21}.

Solution : Note that n number of s should be followed by nnumber of 1's. For this letus
take an example of the string 1 = 000011 11. The string w should be accepted as it has four zeroes
followed by equal mamber of 1's.

FORMAL LANGUAGES AND AUTOMATA THEORY

General Procedure :

Let g, be the start state and let the read - write head points to the first symbol of the string to be

scanned. The general procedure to design TM for this case is shown below :

1. Replace the left most0 by X eand change the state to g, and then move the read - write head
towards right. This is because, aftera zero ia replaced, we have to replace the comesponding
1 5o that number of zeroes maiches withnamber of 1's.

2. Search for the leftmost | and replace it by the symbol Y and move fowards lefi (so asto
obtain the leftmost 0 again). Steps 1 and 2 can be repeated.

Consider the situation

XX00YY11

To
where first two 0's are replaced by Xs and first two 1'sure replaced by Y's. In this sitnation, the
reqd - write head points to the left most zero and the machine is in state g, . With this as the
configuration , now let us design the TM.
Step1: Instate g, replace 0 by X, change the state to 4, and move the pointer towards
right. The transition for this can be of the form
5[4?}_.. 0) = (g4, X, R)
The resulting configuration is shown below .
OYY 1
!'i‘-
Step 2 : In stale g, , we have to obtain the left - most 1 and replace ithy Y. For this, let us move
the poinler to point to lefimost one. When the pointer is moved owerds 1, the symbols encountered
may he 0 and Y, krrespective what symbol is encountered, replace 0 by 0, Y by Y, remain in state
g, and move the pointer towards right. The transitions for this can be ofthe form
5(g,.0)=(g,,0,K}
gV ¥=(g,.F . &)

When these transitions are repeatedly applied, the following configuration is obtained.

XXXOYY1L

-

i

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 3 : Instale g, ,ifthe input symbol to be scanned ise 1, then replace 1 by Y, change the
state 1o g, and move the pointer towards lefi. The transition for this can be of the form
Fiq,l)l={q A
and the following configuration is obtained.
XXXOYYY1
T
L
Note that the pointer is moved towards left. This is because, a zero is replaced by X and the
corresponding 1 is replaced by Y. Now, we have to scan for the left most 0 again and so, the
pointer was move lowards left.
Step 4 : Note that to obtain leftmost zere, we need to obtain right most X first. So, we scan for
the right most X. During ihis process we may encounter ¥'s and 0's. Replace Y by ¥, 0 by 0,
remain in state ¢, only and move the pointer towards lefit. The transitions for this can be of the
oo &(a2,¥)=(g2.¥ L)
J(g:,0)=(q ;nou-{-}
The following configuration is obtained
0YYY1
d
Step 5: Now, we have obtained the right most X. To get lefimost 0, replace X by X, change
the state o g, and move the pointer towards right. The transition for this can be of the form
] L.‘?_l &X }Z{QD"Y ’ R}
and the following configuration is obtained
XXX0YYY]
T.
4o
Now, repeating the steps 1 through 5, we get the configuration shown below :
OOEYYYY
T
T
Step 6 : Instate g, , if the scanned symbol is Y, it means that there are nomore ('s. Tf there are
1o zeroes we should see that there are no 1's, For this we change the state to g, , replace YhyY
and move the pointer fowards right. The transition for this can be of the form

FORMAL LANGUAGES AND AUTOMATA THEORY

&(qq.Y)=(g,,Y.R)
and the following configuration is obiained
OXYYYY
T2
Instate g,, we should see that there are only Ys and no more 1's. So, as we canreplace Yby Y
and remainin g, only. The transition for this can be of the form
d(gs. T J=lg,;.T.R}
Repeatedly applying this ransition, the following configuration is obtained .
XXYYYYB
T.
K
Node (hat the string ends with infinite number of blanks snd so, instate g, if we encounter the
symbol B, means that end of string is encountered and there exists n number of 0's ending withn
number of 1's. So, in state g, , on input symbol B, change the state to ¢, , replace I by D and
move the pointer towards right and the string is accepted, The transition for this can be of the
fonm d(q;«B:.:{‘fi!Bsﬂj

The following configuration is ohteined
XXXXYYYYBB

T
9

So, the Turing maching to accept the language L ={s" "|n21}

is given by M ={0 E 8q,8.F)
when:

O={gnq: g s E={01}; T={01X7F B}

gy €O isthe start stateof machine; P e[isthe blank symbol.
F ={q,} isthe final state.
& 18 shown below,

dlgy,) = (g, X, R)

5(g9:.0)=(g,,0,R)

FORMAL LANGUAGES AND AUTOMATA THEORY

80q,,¥)=(q,.Y.R)
F{qy.1)=(g2,7,L)
(g, F)=(q,,Y,L)
F5(q;,0)=(g2.0.L)
E{g2.X) =(q0. X ,R)
5(qe.Y)=(g5.¥.R)
d(gs,Y)=(g:.F.R)

F(q,,8Y=(q4.8.R)
The transitions can also be represented using tabular form as shown below.

Tape Symbols (1)
0 1 by

(&, X, R) = (@1 Y. R)

(41,0,R) @ - G Y. R
& | @0l | - (@ ¥, D)

= | = (g1, Ry |

A ' ' "

The transition table shown above can be represented as transition diagram as shown below

da

YIYR YIYL
Q0K

To accept the string :

The sequence of moves or computations (IDs) flor the string 0011 made by the Turing machine
are shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

Initial ID
#0011 |- Xg,011
- Mg, 0K

e, OF1
XiTqy i
X XYY
Xi¥g, ¥
AXTYBq,
{ Finul IY)

Example 2 : Obtain a Turing maching to accept the language L (M) = {0" 172" {22 1)

Solution : Note thar n number of (s are followed by nnumber of 1's which in tum are followed
by n number of 2's. In simple terms. the solution to this problem can be stated as follows :

Replace first n number of /s by X's, nextn number of 1's by Y's and next n number of 2's by
7's. Consider the situation where in first two 0's are replaced by X's , next immediate two Vs are
replaced by Y's and next two 2's are replaced by s as shown in figure 1a).

KXO0Y V112222 XXX0YYHZzz2 AXXOYY11Z22

T 1 4

o 9 g
(a) (h) {c)

FIGURE 1 : Various Configurations
Now, with figure 1(a). a as the current configuration, let us design the Turing machine. In
state g, ,if the next scanned symbol is 0 replace it by X, change the state to g, and move the
poinier towards right and the sitaation shown in figure 1(b) is oblained . The transition for this can
be of the form
8(gy.0)=(g;, X ,R)

Instate g,, wehave to search for the leftmost 1. It is clear from figure | (b) that, when we
are searching for the symbol 1, we may encounter the symbols 0 or Y. So, replace O by 0, Y by
Y and move the pointer towards right and remain in state g, only. The transitions for this can be
of the form §(g,,0)=(g,.0,R)

&(g,.¥)=lq,,¥ .R)

FORMAL LANGUAGES AND AUTOMATA THEORY

The configuration shown in figure 1(c} is obtained. In state g,,on encountering 1 change the
state to ¢_ , replace 1 by Y and move the pointer towards right. The transition for this canbe of
the form

§(qyd)=(q;.V.H)
and the configuration shown in figure 2(a) is obtained

HHHOYYY1Z2422 XXOYYY1/2722 KEXOYYY 12442
T + t
4z 9 dy

(@ (b) (c)
FIGURE 2 : Various Configurations

In state g,, we have to search for the leftmost 2. 1t is clear from figure 2(a) that, when we
are searching for the symbol 2, we may encounter the symbols 1 or Z. So, replace 1 by 1, Z by
Z and move the pointer towards right and remain in state g, only and the configuration shownin
figure 2(b) is obtained. The transitions for this can be of the form

d(qq,1)=(g2,1,R)
5(g,.2)=(g;.2,R)

Instate g, , on encountering 2, change the state 10 4. . replace 2 by Z and move the pointer
towards lefl. The fransition for this can be of the form

F(g2.2)=0gy. 2 . L)
and the configuration shown in figure 2(c) is obtained. Once the TMisinstate 4., it means that
equal number of 0's, 1's and 2's are replaced by equal number of X's, Y's and Z's respectively.
At this point. next we have to search for the rightmost X to get leftmost 0, During this process, it
is clear from figure 2(c) that the symbols such as Z's, 1,5, Y's, 0's and X are scanned respeetively
one after the other. So, replace Z by Z,1by 1, Y by Y, 0 by 0, move the pointertowards left and
stay in state g, only. The transitions for this can be of the fonmn

§1(g5,2)=14+,Z,L)

5{‘?1-:)={'§:11-L3

gy,)=(g5.F L)

8(q:,0)=(4:,0,L)

Only on encountering X, replace X by X, change the state to g, and move the pointer
towards right to get leftmost 0. The transition for this can be of the form

Flgy, X y=iga. X . R)

FORMAL LANGUAGES AND AUTOMATA THEORY

All the steps shown above are repeated till the following configuration is obtained.
XXXXYYYYZZZZ
T
L]

In state g, , if the input symbol is Y, it means that there are no 0's If there are no 0's we
should see that there arenio 1's also. For thisto happen change the state to ¢, replace Y by Y
and move the pointer towards right. The transition for this can be of the form

GGy f)=(g:.F . R)

Instate g, search for only Y's, replace Y by Y, retnain in state ¢, only and move the pointer
towards right. The transition for this can be of the form

dlg,.F)=(g,.F.R)

In state g, ,ifmmmmuz.itnmns&m&mmmnol'smdmwﬂnmd zee that there
are no 's and only Z's should be present. So, on scanning the first Z, change the state (o g, .
replace 7 by Z and move the pointer towards right. The transition for this can be of {he form

(4422)=(g5.2.R)

But, instate g, only Z's should be there and no more 2s. S0, us long as the scanned symbol
is Z, remain in siate g, , replace Zby Z and move the pointer towards right. But, once blank
symbol B is encountered change the state to g, , replace B by B and move the pointer towards
right and say that the input string is accepted by the machioe. The transitions for this can be of the
form 5(9:.2)={g:,2 .R)

8(qs,8)=(qs.8.R)
where g, is the final stae.
So, the TM to recognize the language L={0"1"2"{r 21} is given by
M ={Q,L,I.,5.q,,8,F)
where
[JECE T - PO - B PRY- PR % I E={0 12}
C={0, 12X, ¥, Z Bjj; g, istheinitial state
B is blank character ; F={ g, }isthc final stute
4 i shown below using the transition table.

FORMAL LANGUAGES AND AUTOMATA THEORY

0
g, 14.,%R
g | 9.0R

4,

. b i if, .-l:}'i-"

4 g 1 (9. B. R}

N T — L. -
The transition diagram for this can be of the form

Yy LR
MR ik ogL

Example 3 : Obtaina TMtoaccept the language L = {w | w ={0+1)%) containing the substring 001.

Solution : The DFA which accepis the language consisting of strings of0's and 1's having a sub
string 001 is shown below :

The wransition table for the DFA is showsn below :

FORMAL LANGUAGES AND AUTOMATA THEORY

-

de

4

&y q, 4

We bave scen thatany language which is accepied by a DA is negular. As the DFA processes
fhe inpist string from lefi to right in only one direction, TM also processes the input string in only
ane direction { unlike the previous examples, where the read - write header was moving inboth
the directions). For each scanned input symbol { either 0 or 1), in whichever state the DFA was
in. TM also enters into the same states on same input symbols, replacing 0 by G and 1 by 1and
the read - write head moves towards right, So, the transition table for DEA and TM rermiins
same (the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of 0's and I's with a substring 001 is shown
bedow :

0 1

g0, R g LR
g0 R
g, LR

The TMisgivenby

M =(0,E,I,6,4,,8,F)
where

O={gy §,:8::70 7.} } E=10,1}
I"={0,1}; §- isdefined already

q, istheinitial state ; B blank character
F={ g, }isthe final state

The transition diagram for this is shown below.

FORMAL LANGUAGES AND AUTOMATA THEORY

I/1,R

S

(0, o 00, i /1,

| iy
/LR

Example 4 : Obiaina Turing machine to accept the langnage containing strings of (s
and 1's ending with 011,

Solution : The DFA which accepts the language consisting of strings of 0's and 1's ending
with the string 001 is shown below :

0

ql

g,

4
q]

We have seen thatany language which is accepted by a DFA is regular, As the DFA processes
the input string from left to right inonly one direction, TM also processes the input string in only
one direction. For each scanned input symbol (either 0 or 1), in whichever state the DFA was
in, T™ also entars info the same states on same input symbols, replacing 0 by O and 1 by | and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same (the format may be different. Tt is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of 0's and 1's ending with a substring 001 is
shown below

FORMAL LANGUAGES AND AUTOMATA THEORY

g, 0, R
4,0,R
7,0, R
I

The TMisgivenby M =(0.L,T.5.9,.8.F)
where

=14, 4,44, } 5 I=101} ; T={0.1)
& — isdefined already
g, istheinitial state ; B does not appear

F={ g, }is the final state
The transition diagram for this is shown below

I/IL,R OOR

Example 5: Obtain a Turing machine to aceept the language
L={wwis evenand £E= {a. b} }
Solution :

The DFA to accept the language consisting of even number of characters is shown below.

FORMAL LANGUAGES AND AUTOMATA THEORY

The transition table for the DEA is shown below :

a b
2 g, g, |

7 % | 4

We have seen that any language which is accepted by a DFAis regular. As the DFA processes
the input string from left toright in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol (either a or b), in whichever state the DFA was in,
"TM also enters into the same states on same input symbols, replacing a by a and by band the
read - write head moves towards right. So, the transition table for DFA and TM remains same
(the format may be different). So, the transition table for TM to recognize the language consisting
of a's and b's having even number of symbols is shown below :

m b =

Q‘,,ﬂ.R g!,b,u

42 R _i %’b‘R

The TM is givenby

M =(Q.E,I.6.9,,8.F)
where

Q={ 955 4, % E={a b} ; I={a B}

§ — isdefined already : ¢, istheinitial stale

B does not appear ; F={ g:}is:hcﬁmlstme
The wransition dingram of TM is given by

a/a,R
bib,R

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 6 : Obtsin a Turing machine to accept a pakindrome consisting of a's and b's of any lengih.
Solution : Letus assume that the first symbol on the tape is blank character B and is followed
by the string which in turn ends with blank character B. Now, we have to design a Turing maching
which accepts the string, provided the string is 2 palindrome, For the string to be a palindrome,
the first and the last character should be same. The second character and last but one chamcter
in the string should bz same and so on. The procedure 1o accept only string of palindromes is
shown below. Let g0 be the start state of Turing machine.
Step 1: Move the read - write head to point to the first chamcter of the string. The transition
for this can be of the form Flgy.8)=(q,,8,R)
Step 2! Instate g, ,ifthe first charocter is the symbol &, replaceit by B and change the siate
to ¢, and move the pointer towards right. The transition for this can be of the form
F(gy,9)=(q:,8.R)
Now , we maove the read - write head to point to the last symbof of the string and the last

symbol should be a. The symbols scanned during this process area's , b's and B, Replace aby
a, bby b and move the pointer towards right. The transitions defined for this can be of the form

F{gz.a)=(q,,a,R)
F{ga.b)=(g2.b.8)
But, once the symbol B is encountered, change the state 1o g, , replace Bby B and move the
pointer towards left. The transition defined for this can be of the form
6(g3.8)=(9,,B,L)
In state g, , the read - write head points to the last character of the string. If the last character

is a, then change the statc to g, , replace a by B and move the pointer towards lefi. The transitions
defined for this can be of the form

5{93 »id)={g(!3!£’}
At this point, we know that the first character is aand last character is also a. Now, reset the
read - write head to point to the first non blank character as shown in step5.

In state g, , ifthe last character is B (blank character), it means that the given string is an odd
palindrome. So, replace B by B change the state to g, and move the pointer towards right. The

transition for this can be of the form
(g, B)=(q,.,B.R)
Step 3 : [fthe first character is the symbol b, replace it by B and change the state from ¢, 10 ¢,
and move the pointer towards right. The transition for this can be of the form
§(qy,b)=(q:, 8.8}

FORMAL LANGUAGES AND AUTOMATA THEORY

Now, we move the read - write head to point to the last symbol of the siring and the last
symbo! should beb. The symbols scanned during this process are 2's, b's and B. Replaceaby a,
b by band move the pointer towards right. The transitions defined for this can of the form

8(g5,a)=(45:2,R)
F(g5.b)=(g,,8,R)

But, once the symbol B is encountered, change the state to g, , seplace Bby B and move

the pointer towards left. The transition defined for this can be of the form
‘5{?3!3}=(95-BJ’}

Tn state g, , the read - write head points to the last character of the siring. Ifthe last character
is b, then change the state to 4, replace b by Band move the pointer towards left. The transitions
defined for this can be of the form

6(qs,b)=(q¢B.L)
mt'n,ismint,wcknmwhatﬂwﬁtslc}mmmﬂisbmdhstctmm&isalsob.ﬂfm,mthe
read - wrile head to point to the first non blank characler as shown in step 3.

n stale g, , If the last character is B (blank character }, it means that the given sfring is an
odd palindrome. So, replace B by B, change the state to g, and move the pointer towards right,
The transition for this can be of the form

d(gs.8)=0(q.8.R)
Stop4: In state g,, ifthe first symbol isblank character (), the given string is even palindrome
and sochange the state 10 g, , replace Bby B and move the read - write head towards right. The
transition for this can be of the form

(g, B)=(g,.8,.R)

Step 5: Resetthe read - write head to point to the first non blank character This can be done
us shown below:

[fthe first symbol of the string is a, step 2 is performed and if the first symbol of the string is
b, step 3 is;mrfmmﬂﬁﬂercom;ﬂeﬁmufstep 2ar step 3, itis clear that the first symbol and the
last symbol matchand the machine is currently in state g, . Now, we haveto reset the read - write
heag to point to the first nonblank character in the string by repeatedly moving the head towards
left and remainin state g, . During this process, the symbols encountered may be aorbor B
(blank character). Replace a by a, b by band move the pointer towards left. The transitions
defined for this can be of the form 8(q.0a)=(g,,a.L)

Flqab)=(g4.b.L)

FORMAL LANGUAGES AND AUTOMATA THEORY

But, if the symbol B is encountered , change the state to g,. replace B by B and move the pointer
towards right. the transition defined for this can be of the form
8(‘]4’8-|“"(ql'BvR)

Alfter resetting the read - write head to the first non - blank character, repeat through step 1.
So, the TM to accept strings of palindromes over { a,b } is given by A¢ =(Q, ¥, 5, ¢,,B,F)
where Q= {9,,9,4,.9..9.. 9,92} 5 E={a,b} : T={ah B}; g, isthe initial state

Bisthe blank character: F={ ¢, } ; 4 is shown below using the transition table

b B

G, r e - 7B, R
9 | 2,.B.R | 4.B,R
9: 2 “‘ln 59 R 7‘7‘],9 Bvr

g - ¢2,-B,R

C2 ¢,sb L 7,,B.R

& | 4, a,.b.R 4B, L
9. r 4.,B,L @B, R

9. .. “
The transition diagram to accept palindromes over { a, b }is given by

The reader can trace the moves made by the machine for the strings abba, aba and aabaand is
left as an exercise.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 7 : Construct 8 Turing machine which accepts tha language of aba over Z={a,b} .

Solution ; This TM is only for L= { aba }
W will ussume that on the input tape the string "aba’ is placed like this

lalo Jo [[8]

-

The tape head will read out the sequence upto the B character if'aba’ is readout the TM will

halt after reading BB,
@ {naR) ° {bbR) {up.m_ o
(B,8,5)
1

The triplet along the edge written is { input read, output to be printed, direction)
Let us take the transition belween starl stateand g, is{ a.a, R)that is the current symbol

read from the tape is a then as a output a only has to be printed on the tape and then move the
tape head to the right. The tape will look like this

T-
Again the transition between ¢, and g, is (b, b, R). That means read b, print b and move
right. Note that as tape head is moving ahead the states are getting changed.

The Th will accept the language when it reaches to halt state. Halt state iz always a accepl
state for any T, Hence the transition between ¢, and halt is{ B, B, 8). Thismeans read B, print
B and stay there or there is no move left or right. Eventhough wewrite (B, B, Ljor (B, B,R)
it is equally correct, Because afier all the complete input is already recognized and now we
simply want to enter info a accept state or final state. Note that for invalid inputs such asabbor
ah or bab there is cither no path reaching to final state and for such inputs the TM gels
stucked in between. This indicates that these all invalid inputs can not be recognized by our THM.

The same TM can be represented by another method of transition table

FORMAL LANGUAGES AND AUTOMATA THEORY

(g,.a,R) '
8 = L {gnb) ’
, (g, 1) -

o, " (I‘LQ.LT. B, Q]
HALT

Inthe given transition table, we write the triplet in cach row as :
{Next state, output to be printed, direction)
Thus T can be represented by any of these methods.

Example 8 : Designa TM that recognizes the set L= {071 |n 2 0} .

Solution : [Tere the T checks for each one whether two (Fs are present inthe left side. Ifit
match then only it halts and aceept the siring,

The transition graph ofthe TM s,

FIGURE : Turing Machine for the given language L= {07 1"|nz 0}

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 11 : What does the Turing Machine described by the § - tuples,
(G900 gL R (7. X0 0 0G0 Boas By £,

{g..0.9,.0, K}, (g,L,4.,1. R) and (q,,B.q,,B,R} Do when given a bit string
as input 7

Solufion : The transition diagram of'the TMis,

FIGURE : Transition Diagram for the given T
‘The TM here reads an input and starts inverting ('s to 1'sand 1'sto O's till the first 1.
Afler it has inverted the first 1, it read the input symbol and keeps itasitis tillthe next 1,
After encountering the 1 it starts repeating the cycle by inverting the symbol till next L. Tt halts
when it encounters a blank symbol,

7.4 COMPUTABLE FUNCTIONS

A Turing machine is a language scoeplor which checks whether a string x is accepted bya
language L. In addition to that it may be viewed as compuier which performs computations of
fimections from integers to integers. In traditional approach an integer is represented in unary, an
integes ;= () is represented by the sinng ' .

Example 1: 2is represented as g2 . If a function has k arguments, &, fis.oeedy s then these

integers are initially placed on the tape separated by 1's,85 0°10% 1. 10" .

T the TM haits { whether in or not in an sccepting state) with a tape consisting of (s for some m,
ihenwe say that £if, iys..eiy) = m, Where {is the function of k arguments computed by this
Turing machine,

FORMAL LANGUAGES AND AUTOMATA THEORY Page 100

Hegg, 1} = (g4, B, L)

#{g4,0) = (g,, 0, L)

0(2,.0) = (gs. 0, R)
Ifinstate g, a B is encountered before a 0, we have simation (i) deseribed above. Enler state
g, and move left, changing all 1'sto B's until encountering a 'B'. This B is changed back toa 0,
state g, isenfered, and M halts.
6. gy, 1) = (g4, B, R)

(7,00 =(g,, By R)

Figs1) = (gs, B, R}

#(g5,8) = (g6, B, R)
Ifin state g, a 1 is encountered instead of a 0, the first block of 0's has been exhausted, as in
situation (if) above, M enters state ¢, to crase the rest of the tape, then enters g, and halts.

Example 4 : Design a TM which computes the addition of two positive inlegers.

Solution : Let TM M =((, {0, 1, #}, ,5) compuies the addition of two positive integers m
and n. It means, the computed fanction £(m, n) defined as follows :
_|m+ n(lf mnazl)
I{n:‘n}—{u -
1 un the tape separates both the numbers m and n, Following values are possible for m andn.
1. m=p={ E#}#,...,..i&ulci]]put].
. m=0ad pe 0 { @00t oo 15 the input),

2
3 mz0andn=0 { #1°1 .- 13 the input), and
4

. mz0and n=0 { 807107 # ... is the input)
Several technignes are possible for designing of M, some are as follows :
{a} Mappends (writes) m after n and erases the m from the lefi end.

(b} M writes 0in place of 1 and erases one zero from the right or left end . This is possible in
caseof 20 or g 20 only. 'm=0orn=0then 1 is replaced by #.

TWe use techniques (b) given above. M is shown in below figure.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 101

Bince, 1 s replaced b 0 im
wdvnRos, 0o sease one ik =

FIGURE : TM for addition of two positive integers

7.5 RECURSIVELY ENUMERABLE LANGUAGES
Alanguage Loverthealphabet 7 iscalled recursively crumncrable ifhereisa TM Matacceptevery word
inLandeither rejects{ crashes) or loops for every word in lmguage L' the complement of L.

Accept(M) =L

Reject (M) + Loop (M) =L’
Whien TM M is still running on some input { of recursively enumersble languages) we can never
tell whedher M will eventually accept if we let it run for long time or M will run forever (in loop).

Example : Consider & language(a+b)*bb(atb) ™

T™ for this language is , b, b, R} (o, Y

(b, b,)

(2,8,R)

FIGURE : Turing Machine for (a+b}*bb(a+b)"

Here the inputs are of three fypes.

1. All words with bb = accepts (M) as soon as TM sees two consecutive b'sit halts.

2, Allstrings without bb butending in b =rejects (M). When TM sces a single b, it cnters
state2. If the string is ending with b, TM will halt at state 2 which is not accepling state.
Hence it is rejected.

All strings without bb ending in 'a’ or blank 'B'= loop (M) here when the TM sces lastait
enters state 1, In this state on blank symbol it loops forever.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 102

Recursive Language

A language L over the alphabet T is called recursive if there is a TM M that accepts every word
in Land rejecis every word in L' i e.,

accept (M) =L
reject (M) =L'
loop (M) = 4.

Example :Consideralanguage b (a+h)* . Itis represented by TM as :

@ {b. b, B) @

FIGURE : Turing Machine forb(a+b)"

This TM accepts all words beginning with ' because it enters halt state and it rejects all words
beginning with a because it remains in start state which is not accepting state.

A langunage accepted by a TM is said to be recursively enumerable languages. The subclass of
recursively enumberable sets (1. ¢) are those languages of this class are said to be recursive sets
or recursive language.

7.6 CHURCH'S HYPOTHESIS

According o church’s hypothesis, all the fimetions which can be defined by human beings can be
computed by Turing machine. The Turing machine is believed to be ultimate computing machine,

Thes church's original stateraent wos slightly different bocause he gave his thesis before machines
were actually developed. He said that any maching that can do certein list of operations will be
able to perform all algorithms. TM can perform what church asked, so they are possibly the
machines which church described.

Church tied both recursive finctions and computable fimetions together. Every partial recursive
fimction is computable on TM. Computer models such as RAM also pive rise to partial recursive
funclions. So they can be simulated on TM which confirms the validity of churches hypothbesis.

Important of church's hypothesis is as follows ,

FORMAL LANGUAGES AND AUTOMATA THEORY Page 103

Firstwe will prove certain problems which cannot be solved using TM.

If churches thesis is true this implies that problems cannot be solved by any computer orany
programming languages we might every develop.

Thus in studying the capabilities and limitations of Turing machines we are indeed studying
the fundamental capabilities and limitations of any computational device wemight even
CONSICT,

It provides a general principle for algorithmic compuiation and, while not provable, gives strong
evidence that no more powerful models can be found.

7.7 COUNTER MACHINE

Counter machine has the same structre as the multistack maching, but in place of each stack is

acounter, Counters hold any non negative integer, but we can only distinguish between zeto and
MO ZET0 COUNtCTs.

Counter machines are off - line Turing machines whose storage tapes are semi - infinite, and
whose tape alphabets contain only two symbols, Z and B blank). Furthermore the symbol Z,
which serves as a bottom of stack marker, appears initially on the cell scanned by the tape head
and may never appear on any other cell. An infeger i can be stored by moving the tape headi
cells to the right of Z. A stored number cim be incremented or decremented by moving the tape
head right or left. We can test whether anumber is zero by checking whether Z is scanned by the
head, but we cannot directly test whether two numbers are equal.

Le | mossonty moue | |

Finie
Contral

BOOREN000E

BODE0DDE

FIGURE : Counter Machine

FORMAL LANGUAGES AND AUTOMATA THEORY Page 104

¢ and § are customarily used for end markers on the input. Here Z is the non blank symbol on
each tape. An instantaneous description of a counter machine can be described by the state, the
input tape contents, the position of the input head, and the distance of the storage heads from the
symbol Z (shown here as 4, and 4,). We call these distances the counts on the tapes, The
counter machine can only store a count an each tape and tell if that count is zero.

Power of Counter Machines

Every languape accepted by a counter Maching is recursively enumersble.
- Everylanguage accepted by o one - counter machine is a CFL so aone - counter machine
is a special case of one - stack machine i. 2., a PDA

7.8 TYPES OF TURING MACHINES

Various types of Turing Machines are ;

i With multiple tapes.

i ‘With one tape but multiple heads.

iil. With two dimensional tapes.

iv. Nondeterministic Tunng machines,
Itis observed that computationally all these Turing Machines are equally powerful. That means
one type can compute the same that other can. However, the efficiency of computation may
vary.
1. Turing machine with Two - Way Infinite Tape :
This is a TM that have one finite control and onc tape which extends infinitely in both directions.

[TIITTIITIITI

apa

FIGURE : TMwith infinite Tape

Tt turms out that this type of Turing machines are as powerful s one tape Turing machines whose
tape has a left end.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 105

. Multiple Turing Machines :

Tnpart

e ¢ L
wo2 [T 11T

wpen, T LY 1 1)
FIGURE : Multiple Turing Machines

Amuhiple Turing machine consists of a finite control with k tape heads and k tapes, each lape is
infinite in both directions. On a single move depending on the state of the finite control and the
symbol scanmed by each of the tape heads, the machine can

1. Change siate.

2. Print a new symbol on each ofthe cells scanned by its tape heads.

3. Move cach ofits tape heads, independently, one cell to the lefi orright or keep it stationary.

Initially, the input appears on the first tape and the other tapes are blank.
3. Nondeterministic Turing Machines :

A nondeterministic Turing machine is o device with a finite control and a single, one way infinite
tape. For a given state and tape symbol scanned by the tape head, the machine has a finite
number of choices for the next move. Each choice consists of a new stute, a tape symbol to prin,
and a direction of head motion, Note that the non deterministic TM is not permitted to make a
miave in witich the next state is selected from one choice, and the symbol printed and / or dizection
ofhead motion are selected from other choices. The non detemministic TM accepls its inpuat if any
sequence of choices of moves leads lo anaccepling stote,

As with the finite automaton, the addition of nondeterminism to the Turing machine does not
allow the device to accept new languages.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 106

4. Multidimensional Turing Machines :

y

A-dimensional T™M

FIGURE : Multidimensional Turing Machine

The multidimensional Turing machine has the usual fnite control, but the tape consists of a
k - dimensional array of cells infinite in all 2k directions,
symbol scanned, the device changes state, prints a new symbol,
directions, either positively or negatively, along one of thek axes. Initially, the input is along one axis, and
the head is at the left end of the input At any time, only a finite number of rows in any dimension
contains nonblank symbols, and these rows cach have only a finite number of nonblank symbols
5. Multihead Turing Machines :

mpd | e [ACceRtRSES
control

r""‘" ML——‘],zw"
TTTITIEELE L]

wpe

FIGURE : Multihead Turing Machine

A k - head Turing machine has some fixed numbser, k, of heads. The heads are numbered 1 through
k. and a move of the TM depends on the state and on the symbol scanned by each head. In one
move, the heads may each move independently lefi, right or remain stationary.
6. Off - Line Turing Machines : oo

Comtrol

el 1
=4

EIGURE : Off - line Turing Machine

FORMAL LANGUAGES AND AUTOMATA THEORY P
age 107

COMPUTABILITY THEORY

After going through this chapter, you should be able to understand :

. Chomsky nierarchy of Languages
Linear Bounded Automata and CSLs
LR (0) Grammar
Decidatslity of problems
UTM and PCP
P and NP problams

8.1 CHOMSKY HIERARCHY OF LANGUAGES

Chomsky has classified all grammars in four categories (type 0 to type 3) based on the right
hand side forms of the productions.

(a) Type O

These types of grammars are also known as phrase structured grammars, and RHS of these are
fiee from any restriction. All grammears are type 0 grammars.

Example : productions of types 45 — af, SB — Sb.5 —¢ are type () production.

{b) Type 1

We apply some restrictions on type 0 granunars and these restricted grammars are known as
type 1 or context - sensitive grammars (CSGs). Suppose atype0 production pod —» yfid
and the production & -» §§ is restricted such that jo|<|fland fJwe. Then these type of
productions isknownas type | production. ifall productions of a grammar are oftype 1 production,

{hen grammar is known as type 1 grammar. The language generated by a context - sensitive
grammar is called context - sensitive language {CSL).

FORMAL LANGUAGES AND AUTOMATA THEORY Page 108

In CSG, there is left context or right context or both. For example, consider the production
ced B+ ceaff . In this, ¢ isleft contextand 7 isright context of Aand Als the variable which is
replaced.

The production of type § -» « isallowed intype 1 if ¢isinL(G), but 8 should not appear on
right hend side of any production.

Example : productions § — AB,S - &,4 — ¢ aretype | productions, but the production
oftype A -» Sc isnotallowed . Almost every language can be thought as CSL.

Note : Iflefi or right context is missing then we assume that & is the comtext.
(c) Type 2

We apply some more restrictions on RHS of type 1 productions and these productions are
known us type 2 or context - free productions. A production of the form - 2, where
@, fe(¥ UE)* is known as type 2 production. A grammar whose productions are type 2
production is known as type 2 or comtex! - free grammar (CFG) and the languages generated by
this type of gramumars is called context - free languages (CFL).

Example : §—+85+5,5>5*5, §—id are type 2 productions.
(d) Type 3

This is the most restricted type. Productions of types 4 — g o A —» aB|Ba where 4, B¢V,

and a € £ are known as type 3 or regular grammar productions. A production of type § — ¢ is
also allowed, if’ & is in generated language.

Example : productions 5 -» a8, § g aretype 3 productions.

Left - linear production : A production oftype 4 —» Ba iscalled left - linear production,

Right - linear production : Aproductionoftype 4 — a8 is called right - linear production.
Alefi-linear or right - linear grammar is called regular gramma. The language generated by a
reguler grammar s known as regular language.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 109

8.2 LINEAR BOUNDED AUTOMATA

The Linear Bounded Automata (LBA) isa model which was originally developed asa model for
actnal computers rather than model for computational process. Alinear bounded automaton isa
restricted form of anon detenministic Turing machine.

A Finear bounded automaton is a nultitrack Turing machine which has only one tape and this tape
is exactly of same length as that of input.

The linear bounded automaton (LBA) acoepts the string in the similar manner as that of Turing
machine does. For LBA halting means accepting. In LBA computation is restricted to an area
bounded by length of the impurt. This s very much similar to programming envirenment where size
of varigble is bounded by its data type.

;b.h'ﬂ-

T |
rﬁ:ﬂ:
| control |

FIGURE : Linear bounded automaton

The LBA is powerful than NPDA but less powerful than Turing machine. The inputis placed on
the input tape with beginning and end markers. In the above figure the input is bounded
by < and >.

A linear bounded automata can be formally defined as :

LBA is 7 - tuple an deterministic Turing machine with
‘LI - {{.Jl- S"- ri 5! ql." 'I?cm:lﬁ' e @)@-ﬁ.‘} ha\’iﬁg
Twwo extra symbols of left end marker and right end marker which are not elementsof 1.
. The input lics between these end markers.
. The TM cannot replace < or > with anything else nor move the tape head left of < or
rightof >.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 110

8.3 CONTEXT SENSITIVE LANGUAGES (C5Ls)

The context sensitive languages are the languages which are accepied by linesr bounded sufomata,
‘These tvpe of languages are defined by context sensitive grammar. In this grammar more than
one termingl or pon terminal symbol may appear on the left hand side of the production rule,
Along with it, the context sensitive grammar follows following rules :

i Thenumber of symbols on the left hand side must not exceed number of symbals on the
right hand side.

i. Therleofithe form 4 e isnot aflowed unless A is a start symbol. Itdoes not occur
on the right hand side of any rule.

The classic example of context sensitive languageis L = {a" 5" ¢ | n = 1}. Thecontext sensitive
grammar can be writlen as :

5

5
CA
BA
CB
aA
aB
bB
bC
el

abhC
SABC
AC
AR
BC

aa

ab

bh

be

eC

I
-

TR EEER

i
-

Now to derive the string aabbee we will stant fiom start symbol
S m}.ﬂ: S — SAB‘C
SABC mleS — aBC
aBCABC mleCA —» AC
aBACBC rale CB — BC
aBARBCC nule BA - AR

aABBCC ruleaA —» ea
aaBBCC mizaB -» ab
aabBCC mlebB -» bb
aabbCC mlebC — be
aabbeC ruleclC — oo
aahbece

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 111

Nofe : The language &” p* ¢ where 3 1 isrepresented by context sensitive grammar but it
can not be represented by context free grammar.

Every context sensifive language can be represented by LBA.

8.4 LR (k) GRAMMARS

Before going to the topic of LR (k) grammar, let us discuss about some concepts which will be
helpful understanding it.

In the unit of context free grammars vou have seen that to check whether a particular string is
aceepted by a particular grammar or not we try to derive that sentence using rightmost derivation
or lefimost derivation. Ifthat string is derived we say fhat it is a valid siring.

Example :

E—E+T|T
T->T*F| F
F—id | (E)

Suppose we want to check validity of a string id +id * id . s rightmost derivation is
E = E+T
E+T*F
E+T%d
E+ F*id
E +id*id
F+id *id
F+idsid
el & il ¥ id

s iy

=
e,
==

FIGURE(a) : Rightmost Derivation of id + id * id

Since this sentence is derivable using the given prammar. i is a valid string. Here we have checked
the validity of string using process known as derivation.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 112

Tn reduction process we have seen that we repeat the process of substitution until we get starting
state. Bul soime times several choices may be available for replacement. In this case we have to
backirack and try some other substring . For certain grammars it is possible to carry out the
process in deterministic. { i. e., having only one choice at each time). LR grammars form one
such subclass of context free grammurs, Depending on the number of ook ahead symbolized to
determine whether a substring must be replaced by a non terminal or not, they are classified as
LR{0), LR(1).... and in peneral LR(K) grammars.

LR(k) stands for left to right scanning of input string using rightmast derivation in reverse
order { we say reverse order because we use reduction which is reverse of derivalion) using
look ahead of k symbols,

8.4.1 LR(0) Grammar

LE(0) stands for left to right scanning of input string using rightmost derivation in reverse order
using) ook ahead symbols.

Before defining LR(0) grammars, let us know about few terms.
Prefix Property : A language L is said (o have prefix property if whenever w in L, no proper

prefix of w s in L. By introducing marker symbol we can convert any DCFL to DCFL with prefix
property. Hence L$ = { w$|w & L } is a DCFL with prefix property whenever w is inL.

Example : Consider a language L= { cat, cart, bat, art, car } . Here, we can see that sentence
cart isin L and its one of the prefixes car is alsois in L. Hence, it is not satisfying property. But
I$ ={cac$,cart$, bat §, art §, car$ }

Hiere, cart $ is in L$ but its prefix cart or car arenot present in LS. Similarly no proper prefix is
present in L$, Hence, it is satisfying prefix property.

Note : LR(0) grammar gencrates DCFL and every DCFL with prefix property has a LR(0)
grammar.

LR ltems

An item for aCFG s a production with dot any where in right side inchuding beginuing or end. In
case of ¢ production, suppose 4— < 4 -+, isanitem.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 113

Computing Valid Item Sets

The main ideahere is to construct froma given grammear a deterministic finite attomata to recognize
viable prefixes. We proup items together into sets which give to states of DFA. The items may be
viewed as states of NFA and grouped items may be viewed as states of DFA oblained using
subset construction algoritlon.

o compute valid sct of items we use two operations goto s_u.miclusm.
Closure Operation

It 1is a set of items for a grammear G; then closure (1} is the set of items constructed from I by two
rules,
1. Initially, every item 1 is added to closure (T).

2. If 4 @B isinclosure (T)and g § is production thenadd item 5 — & to L, ifitis
notalready there. We apply this rule until no more new iterns can be added to closure(T).

Example : Forthe grammar,

g = £
S - ecdd
A = a

If & — & issciofoneitem instate I then closure of [is,
Li: § = .7

8 = .cdD

The first item is added using rule 1 and § = .cAd is added using rulc 2. Because ' . " is

followed by nontermingl S we add items having Sin LHS.In § — .edd '." is followed by
ferminal 50 no new item is added.

Goto Function : Itis writtenas goto(I, X) where [is set of iterns and X is grammar symbol.

If A—» e X is insomeitem sei] then goto (LX) will be closure of set of all item 4 - & X .03,

FORMAL LANGUAGES AND AUTOMATA THEORY Page 114

FIGURE(a) : DFA whose States are the Sets of Valid ltems

Definition of LR{0) Grammar : We say G is an LR.{0) grammar if,

1. Ttsstart symbol docs not appear on the right hand side of any productionand

2. For every viable prefix r of (L whenever 4 - a is a complete item valid for y , then no
uiher complete item nor any item with terminal to the right ofthe dot is valid for 7.

Condition 1 : For a grammar to be LR(0) it should satisfy both the conditions. The first

condition can be made to satisfy by all grammars by introduction of anew production §'— S is

known augmented grammar.

Condition 2 : For the DFA shown in Figure(a), the second condition is also satisfied because

inthetem sets 7, I, and 1, each containing a complete item, there are no other complete items

nor any other conflict.

FIGURE(b) : DFA for the given Grammar

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 115

Each problem Pis a pair consisting of a setand a question, where the question can be applied to
euch element in the set. The set is called the domain of the problem, and its clements are called
the instances of the problem.

Example :

Domain = { All regular languages over some alphabet £ § .
Instance : L={w:wisawordover T endinginubb},
Question : 1s union of two regular languages regulur 7

8.5.1 Decidable and Undecidable Problems

A problem is said to be deciduble if
1. Its language is recursive, or
2. Tthas solution

Other problems which do not satisty the above are undecidable. We restrictthe answer of
decidable problemsto " YES" or "NO" . If thers is some algorithm exists for the problem, then
outcome of the algorithm is either "YES" or "NO" but not both. Restricting the answers o only
"YES" ar "NO" we mav not be able to cover the whole problems, still we cancover a lotof
problems. One question here. Why we are restricling our answers 10 only "YES" or "NO"?The
answer 15 very simple ; we want the answers as simple as possible.

Now, we say " If for 2 problem, there exists an algorithm which tells that the answer is either
"YES" or "NO” then problem is decidable.”

I for a problem both the answers are possible : some times "YES” and sometimes "NO®,
then problem is undecidable.

8.5.2 Decidable Problems for FA, Regular Grammars and Regular Languages
Some deciduble probiems are mentioned below ;

1. Does FAaccept regular language 7
3. Isthe power of NFA and DFA same 7

A I,and L,mtwcreg}lim'languugmmﬂmclﬂwdunﬂ:rfpllmﬁng:
{&) Union
() Concatenation
ic) Intersection

(@) Complement

FORMAL LANGUAGES AND AUTOMATA THEORY Page 116

6. Wehave following co - theorem based an above discussion for recursive enumerable and

LetLand T aretwo languages, where T the complement of L, then one of the following
istrue:

(a) Both Land 7 are recursive languages,

(b) Neither Lnor | isrecursive languages,

(¢) IfL is recursive ennmerable but not recursive, then T is not recursive enumerable and
vice versa,

Undecidable Problems about Turing Machines

In this section, we will first diseuss about halting problem in general and then sbout TM.
Halting Problem (HP)

The halting problem is & decision problem which is informally stated as follows:

"(ivena description of an algorithm and a description of its initial arguments, determine whather
the algorithm, when executed with these arguments, ever halts. The alternative is thata given
algorithm rins forever without halting."

Alan Turing proved in 1936 that there is no general method or algorithm which can solve the
halting problem for all possible inputs. An algorithm may contain loops which may be infinite or
finite in length depending on the input and behaviour of the algorithm.. The amount of work done
in an algorithm usually depends on the input size, Algorithms may consist of various number of
loops, nested or in sequence. The HP asks the question

Givena program and an input to the program, determine if the program will eventually stop when
it is given that input 7

One thing we can do here 10 find the solution of HP. Let the program run with the given input and
if the program stops and we conclude that problem is solved, But, if the program doeso't stop in
areasonable amount of time, we can not conclude that if won't stop. The questionis : " howleng
we can wait ... 7. The waiting time may be long enough to exhaust whole life. So, we can not
take it as ensier as it seems to be. We want specific answer, either "YES" or "NO", and hence
some algorithm 1o decide the answer.

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 117

Now, we analyse the following :
1. IfH outputs "YES" and says that Q halts then Q itsclf would loop (that's how we
constracted it).
2. IfH outputs "NO" and says that Q Joops then Q outputs "YES" and will halts.
Since , meither case H gives the wrong answer for Q. Therefore, H cannot work inall cases
and hence can't answer right for all the inputs. This contradicts our assumption made earlier for
HP. Hence, HP isundecidable.

Theorem : HP of TM is undecidable.
Proof : HP of I'M means to decide whether ornota TM halts for some input w. We can prove
this following the sinilar steps discussed in above theorem.

8.6 UNIVERSAL TURING MACHINE

The Church - Turing thesis conjectured that anything that can be done on any existing digital
computer can also be done by a TM. To prove this conjecture. A. M. Turing wasable 1o consruct
asingle T™M which is the theoretical analogue of a general purpose digital computer. This machine
is called a Universal Turing Machine (U'TM). He showed that the UTM is capable of initiating
the aperation of any other TM, that is, it is a reprogrammable TM. We can definethis maching in
mare formal way as follows :

Definition : A Universal Turing Machine (denoted as 1'TM) is a TM thaf can take as input an
arbitmry TM 7, with anarbitrary input for T, and then perform the exccution of T, onitsinput.

What Turing thus showed that a single TM can acts fike & general purpose computer that stores
a program and its data in memory and then executes the program. We can describe UTMasa3

- lape TM where the description of TM, 7, and itsinput string x e A" are stored initially on the
firsttape, ¢, . The second tape, 1, used to hold the simulated tapeof T, , using the same format
as used for describing the TM, T, . The third tape , £, holds the state of T,

]
I Ta I E I'-'

i of Ty vtk s gl X

T 1

Taps rormiad Ta

nI 5 I T

FORMAL LANGUAGES AND AUTOMATA THEORY Page 118

MNow, suppose that a Turing machine, T, . is consisting of a finite number of configurations,
denoted by, Gg, €14 Gaenn €, and let &, & &,vs €, 1epresent the encoding of them, Then, we
can defing the encoding of T, as follows:

TEEE BEH.HE
Here, * and # are used only as separators, and cannot appear elsewhere. We use n pairof *'s 1o
enclose the encoding of each configuration of T™, T, .

The case where 8(s,a) is undefined can be encoded as follows :

X008 d
where thesymbols # , @ and j stand for the encoding of symbols, s . a and B { Blank character),
respectively.

Waorking of UTM

Giiven a description of a TM, T, and its inputs representation on the UTM tape, ¢, and the
starling symbol on tape , ., the UTM starts executing the quintuples of the encoded TM as
folkows:
1. Thel'TM gets the current state from tape, ¢, and the cumrent input symbel from tape ¢,
2. then, it matches the current state - symbol pait 1o lhe state symbol pairsin the program listed
ONTAPE, ¢, .
if no match oceurs, the UTM halts, otherwise it copies the next state into the current state
cell of 1ape, r,, and perform the corresponding write and move operations on tape, f,.
if the current state on tape, 7, is the halt state, then the UTM halts, otherwise the UTM goes
back to step 2.

8.7 POST'S CORRESPONDENCE PROBLEM (PCF)

Post's correspondence problem is a combinatorial problem formulated by Emil Post in 1946.
This problem has many applications in the field theory of formal languages.

Definition :

A correspondence system P is a finite set of ordered pairs of nonempty strings over some alphabet.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 119

Here, uy =b, uy =a, w =abs, yy=oa, t»=ab, yy=e.
We have a solution W=y by =Ly 0y =abed .

8.8 TURING REDUCIBILITY

Reduction is atechnique in which if a problem A is reduced to problem B thenany solution of B
solves A, In general, if we have an algorithm to conver some instance of problem A to some
instance of problem B that have the same answer then it is called A reduces to B.

FIGURE: Reduction

Definition : Let Aand B be the two scts such that 4, B © & of natural numbers. Then Ais
Turing reducible toB and denoledus 4<,. B,

Tf there is an oracle machine that computes the characteristic function of A when it is executed
with oracle machine for B.

This is also called as Ais B - recursive and B - computable. The oracle machine is an abstract
machine used to study decision problem. It is also called as Turing machine with black box.
We say that A is Turing equivalentto Band wrile 4 =, Bif A<, Band B=; A,

Properties :

1. Every selis Turing equivalent toits complement.

2. Everycomputshle set is Turing equivalent to every other computable set.
3, Ifd=, Band B Cthen 4<. 8.

8.9 DEFINITICN OF P AND NP PROBLEMS

A problem is said to be solvable if it has an algorithm to solve it. Problemns can be categorizad
into two groups depending on time (aken for their execulion.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 120

I. The problems whose solution times are bounded by polynomials of small degree.
Example: bubble sort algorithm obtains n numbers in sorted order in polynomial time

Pin) =n* —2n+1 where nis the length of input. Hence, it comes under this group.

. Second group is made up of problems whose best known algorithm are non polynomial
example, travelling salesman problem has complexity of O n* 2") which s exponential.
Henee, it comes under this group.

A problem can be solved if there is an algorifhm to solve the given problem and time reguired is
expressed s a polynomial p(n) , n being lengthof input string. The problems of fist group are of
this kind.

The problems of second group require large ameunt of time 1o cxeoule and even require moderate
size so these problens are difficult to solve. Hence, problems of first kind are tractable or easy
and problems of second kind are intractable or hard.

8.9.1 P-Problem

P stands for deterministic polynomial fime. A deterministic machine at euch time exceutes an
instruction. Depending on instruction, it then goes to next state which is unique,

Hence, time complexity of deterministic ™M is the maximum number of moves madebyMis
processing any input string of lengthn, taken over all inputs of length n

Definition : Alanguage L is said tobe in class P if there exists a(deterministic) T™MM such
that M isof time complexity P(n)} for some polynomial P and M accepts L.

Class P consists of those problem that are solveble in polynomial time by DTM.

8.9.2 NP -Problem

NP stends for nondeterministic polynomial time.

The class NP consists of those problems that arc verifiable in polynomial time. What we mean
here is that if we are given certificate of a solution then we can verify that the certificate is correct
in polynomial time in size of input problem.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 121

8.10 NP - COMPLETE AND NP - HARD PROBLEMS

A problem § is said to be NP- Complete problem if it satisfies the following two conditions.
1. SeNP,and

2. For every other problems 5, « NP for some i =1,2,n, there is polynomial - time
transformation from 5, ro S i.e. every problem inNP class polynomial -time reducible to S,
We eonclude one thing here thatif 8, is NP - complete then 8 is also NP - Complete.

As aconsequence, if we could find a polynomial time algorithm for S, then we can solve all NP
problems in polynomial time, because all problems in NP class are polynomial - time reducible to
each other,

"A problem P is said to be NP - Hard i it satisfies the second condition as NP - Complete, but
not pecessarily the first condition.",

The notion of NP - hardness plays an important role in the discussion about the relationship
between the complexity classes P and NP, It is also often used to define the complexity class NP
- Complete which is the intersection of NP and NP - Hard. Consequently, the class NP - Huard
can be understood us the class of problems that are NP - complete or harder.

Example : AnNP-Hand problem is the decision problem SUBSET - SUM which is as follows.

* Given aset of integers, do any non empty subset of them add up to zero? This is a yes /no
question, and happens to be NP - completa "

There arealso decision problems that are NP - Hard but not NP - Complete , for example, the
halting problem of Turing machine. It is easy to prove that the halting problem is NP - Hard but
not NP - Complete. It is also easy to see that halting problem is not in NP since all problems in
NP are decidable but the halting problem is not (voilating the condition first given for NP -
complete languages).

In Complexity theory, the NP - complete problems are the hardest problems in NP class, in the
sense tha they are the ones most likely net 1o be in P class. The reason is that if we could find a
way to solve any NP - complete problem quickly, then you could use that algorithm to solve all
NP problems quickly.

Atpresent time, all known algorithms for NP - complete problems require time which is exponential
in the input size, It is unknown whether there are any faster algorithms for these are not.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 122

