UNIT I

Digital Computers
Introduction

The digital computer is a digital system that performs various computational tasks. The word
digital implies that the information in the computer is represented by variables that take a limited
number of discrete values. These values are processed internally by components that can maintain a
limited number of discrete states. The decimal digits 0, 1, 2, ..., 9, for example, provide 10 discrete
values. The first electronic digital computers, developed in the late 1940s, were used primarily for
numerical computations. In this case the discrete elements are the digits. From this application the
term digital computer has emerged. In practice, digital computers function more reliably if only two
states are used. Because of the physical restriction of components, and because human logic tends
to be binary (i.e., true-or-false, yes-or-no statements), digital components that are constrained to
take discrete values are further constrained to take only two values and are said to be binary.

Digital computers use the binary number system, which has two digits: 0 and 1. A binary digit
is called a mi. Information is represented in digital computers in groups of bits. By using various
coding techniques, groups of bits can be made to represent not only binary numbers but also other
discrete symbols, such as decimal digits or letters of the alphabet.By judicious use of binary
arrangements and by using various coding techniques, the groups of bits are used to develop
complete sets of instructions for performing various types of computations.

In contrast to the common decimal numbers that employ the base 10 system, binary
numbers use a base 2 system with two digits: 0 and |. The decimal equivalent of a binary number
can be found by expanding it into a power series with a base of 2. For example, the binary number
1001011 represents a quantity that can be converted to a decimal number by multiplying eachbit by

the base 2 raised to an integer power as follows:

1X284+0X2B+0X22+1x22+0X224+1X%x2'4+1x%x2°=175

COMPUTER ARCHITECTURE AND ORGANIZATION Page 1

The seven bits 10010l represent a binary number whose decimal equivalent is 75. However,
this same group of seven bits represents the letter K when used in conjunction with a binary code
for the letters of the alphabet. It may also represent a control code for specifying some decision
logic in a particular digital computer. In other words, groups of bits in a digital computer are used to
represent many different things. This is similar to the concept that the same letters of an alphabet
are used to construct different languages, such as English and French.

A computer system is sometimes subdivided into two functional entities: hardware and
software. The hardware of the computer consists of all the electronic components and
electromechanical devices that comprise the physical entity of the device. Computer software
consists of the instructions and data that the computer manipulates to perform various data-

processing tasks.

Program

A sequence of instructions for the computer is called a program. The data that are
manipulated by the program constitute the data base. A computer system is composed of its
hardware and the system software available for its use. The system software of a computer consists
of a collection of programs whose purpose is to make more effective use of the computer.

The programs included in a systems software package are referred to as the operating
system. They are distinguished from application programs written by the user for the purpose of
solving particular problems. For example, a high-level language program written by a user to solve
particular data-processing needs is an application program, but the compiler that translates the

high-level language program to machine language is a system program.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 2

computer hardware

Fig. Block diagram of a digital computer.

Random-access memory
(RAM)

|

Central processing unit
cPU

| |

fnpot | | fnput=outputprocessor | | Ovtpat
(IOP) devices

The hardware of the computer is usually divided into three major parts, as shown in Fig. The

central processing unit (CPU) contains an arithmetic and logic unit for manipulating dala, a number

of registers for storing dala, and control circuits for fetching and executing instuctions. The memory

of a computer contains storage for instuctions and data. It is called a random access memory (RAM)

because the CPU can access any location in memory at random and retrieve the binary information

within a fixed interval of time. The input and output processor (IOP) contains electronic circuits for

communicating and controlling the transfer of information between the computer and the outside

world. The input and output devices connected to the computer include keyboards, printers,

terminals, magnetic disk drives, and other communication devices.
Computer Organization

Computer organization is concerned with the way the hardware components operate and
the way they are connected together to form the computer system. The various components are
assumed to be in place and the task is to investigate the organizational structure to verify that the

computer parts operate as intended.

COMPUTER ARCHITECTURE AND ORGANIZATION

Page 3

Computer design

Compute design is concerned with the hardware design of the computer. Once the computer
specifications are formulated, it is the task of the designer to develop hardware for the system.
Computer design is concerned with the determination of what hardware should be used and how
the parts should be connected. This aspect of computer hardware is sometimes referred to as
computer implementation.

Computer architecture

Computer architecture is concerned with the structure and behavior of the computer as
seen by the user. It includes the information formats, the instruction set and techniques for
addressing memory. The architectural design of a computer system is concerned with the
specifications of the various functional modules, such as processors and memories, and structuring
them together into a computer system.

Two basic types of computer architecture are von Neumann architecture and Harvard
architecture. Von Neumann architecture describes frame work, or structure, that a computer’s
hardware, programming, and data should follow.

Von Neumann envisioned structure of a computer system as being composed of the
following components

1) The central arithmetic unit , which today is called the arithmetic logic unit (ALU).this unit
performs the computer’s computational and logical functions.

2) Memory: more specifically the computers main or fast, memory such as random access
memory (RAM).

3) A control unit that directs other components of the computer to perform certain actions,
such as directing the fetching of data or instructions from memory to be processed by
the ALU.

4) Man machine interfaces; i.e, input output devices such as a key board for input and

display monitor for output.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 4

The instructional used to manipulate that data, should be stored together in the same
memory area of the computer and instructions are carried out sequentially, one instruction at a
time .The sequentially execution of programming imposes a sort of speed limit on program
execution, since only one instruction at a time can be handled by the computers processor. It means
that the CPU can be either reading an instruction or so reading /writing data from /to the memory.
Both cannot occur at the same time since the instructions and data use the same signal pathways
and memory.

The Harvard architecture uses the physically separate storage and signal pathways for their
instructions and data. In a computer with Harvard architecture the CPU can read both an instruction
and data from memory at the same time.

An example of computer architecture based on the von Neumann architecture is the desktop
personal computer. Micro controller based computer system and DSP (digital system processor)

based computer system are examples for Harvard architecture.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 5

REGISTER TRANSFER AND MICROOPERATIONS
v Register Transfer Language
Register Transfer
Bus And Memory Transfers

Types of Micro-operations

Logic Micro-operations

v

v

v

v" Arithmetic Micro-operations
v

v" Shift Micro-operations

v

Arithmetic Logic Shift Unit
BASIC DEFINITIONS:

» A digital system is an interconnection of digital hardware modules.

» The modules are registers, decoders, arithmetic elements, and control logic.

» The various modules are interconnected with common data and control paths to form a digital
computer system.

» Digital modules are best defined by the registers they contain and the
operations that are performed on the data stored in them.

» The operations executed on data stored in registers are called microoperations.

» A microoperation is an elementary operation performed on the information stored in one or more
registers.

» The result of the operation may replace the previous binary
information of a register or may be transferred to another register.

» Examples of microoperations are shift, count, clear, and load.

» The internal hardware organization of a digital computer is best defined
by specifying:

1. The set of registers it contains and their function.

2. The sequence of microoperations performed on the binary information
stored in the registers.
3. The control that initiates the sequence of microoperations.

REGISTER TRANSFER LANGUAGE:

» The symbolic notation used to describe the micro-operation transfer among registers is called RTL
(Register Transfer Language).

» The use of symbols instead of a narrative explanation provides an organized and concise manner
for listing the micro-operation sequences in registers and the control functions that initiate them.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 6

» Aregister transfer language is a system for expressing in symbolic form the microoperation
sequences among the registers of a digital module.

» Itis a convenient tool for describing the internal organization of digital computers in concise and
precise manner.

Registers:

» Computer registers are designated by upper case letters (and optionally followed by digits or
letters) to denote the function of the register.

» For example, the register that holds an address for the memory unit is usually called a memory
address register and is designated by the name MAR.

» Other designations for registers are PC (for program counter), IR (for instruction register, and R1
(for processor register).

» The individual flip-flops in an n-bit register are numbered in sequence from 0 through n-1, starting
from 0 in the rightmost position and increasing the numbers toward the left.

» Figure 4-1 shows the representation of registers in block diagram form.

Figure 4-1 Block diagram of register.

R1 7 6 5 4 3 2 1 0
(a) Register R (b) Showing individual bits
15) 15 8 7 O
R2 PC (H) PC (L)
(c) Numbering of bits (d) Divided into two parts

» The most common way to represent a register is by a rectangular box with the name of the
register inside, as in Fig. 4-1(a).

» The individual bits can be distinguished as in (b).

» The numbering of bits in a 16-bit register can be marked on top of the box as shown in (c).

» 16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for
low byte) and bits 8 through 15 are assigned the symbol H (for high byte).

» The name of the 16-bit register is PC. The symbol PC (0-7) or PC (L) refers to the low-order byte
and PC (8-15) or PC (H) to the high-order byte.

Register Transfer:

» Information transfer from one register to another is designated in symbolic form by means of a
replacement operator.

The statement R24 R1 denotes a transfer of the content of register R1 into register R2.

It designates a replacement of the content of R2 by the content of R1.

By definition, the content of the source register R 1 does not change after the transfer.

YV V V V

If we want the transfer to occur only under a predetermined control condition then it can be
shown by an if-then statement.
if (P=1) then R2¢- R1

COMPUTER ARCHITECTURE AND ORGANIZATION Page 7

» Pisthe control signal generated by a control section.

A\

We can separate the control variables from the register transfer operation by specifying a Control
Function.
Control function is a Boolean variable that is equal to 0 or 1.

YV VY

control function is included in the statement as
P: R2¢& R1
» Control condition is terminated by a colon implies transfer operation be executed by the
hardware only if P=1.
» Every statement written in a register transfer notation implies a hardware construction for
implementing the transfer.
» Figure 4-2 shows the block diagram that depicts the transfer from R1 to R2.

Figure 4-2 Transfer from R1 to R2 when p = 1.

Control Pr Load — R2 ﬁ______ Clock

circuit L

-

A"

[r1 |

(a) Block diagram

Clock L

Transfer occurs here ——I

(b} Timing diagram

» The n outputs of register R1 are connected to the n inputs of register R2.

» The letter n will be used to indicate any number of bits for the register. It will be replaced by an
actual number when the length of the register is known.

» Register R2 has a load input that is activated by the control variable P.

» Itis assumed that the control variable is synchronized with the same clock as the one applied to
the register.

» Asshown in the timing diagram, P is activated in the control section by the rising edge
of a clock pulse at time t.

» The next positive transition of the clock at time t + 1 finds the load input active and the data inputs
of R2 are then loaded into the register in parallel.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 8

» P may go back to 0 at time t+1; otherwise, the transfer will occur with every clock pulse transition
while P remains active.

» Even though the control condition such as P becomes active just after time t, the actual transfer
does not occur until the register is triggered by the next positive transition of the clock at time
t+1.

» The basic symbols of the register transfer notation are listed in below table

Symbol Description Examples
Letters(and numerals) Denotes a register MAR, R2
Parentheses () Denotes a part of a register R2(0-7), R2(L)
Arrow <-- Denotes transfer of information R2 <--R1

Comma, Separates two microoperations R2 <--R1, R1<--R2

» A comma is used to separate two or more operations that are executed at the same time.

» The statement
T:R24& R1,R14& R2 (exchange operation)
denotes an operation that exchanges the contents of two rgisters during one common clock pulse
provided that T=1.

Bus and Memory Transfers:

» A more efficient scheme for transferring information between registers in a multiple-register
configuration is a Common Bus System.
» A common bus consists of a set of common lines, one for each bit of a register.
» Control signals determine which register is selected by the bus during each particular register
transfer.
» Different ways of constructing a Common Bus System
v Using Multiplexers
v Using Tri-state Buffers

Common bus system is with multiplexers:

» The multiplexers select the source register whose binary information is then placed
on the bus.
» The construction of a bus system for four registers is shown in below Figure.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 9

Si

4- line
common
= bus

Sa

>

20 4x1 4x%1 =) 4% 1 4x1
& MUX 3 - MUX 2) MUX 1| 5 MUX 0
. - 10 3 1 0 s 1 0 - 2 1 0
s et o) i EES
Dy C: Bx A; Dy, C; B A Dy Cy By Ap
D, Dy Dy Ca C; GCq B; B, Bg Ay Ay Ap
3 2 - X &2 1 0 < | 0 3 2 1 0
Register D Register C Register B Register A

The bus consists of four 4 x 1 multiplexers each having four data inputs, 0 through 3, and two
selection inputs, S1 and So.

For example, output 1 of register A is connected to input 0 of MUX 1 because this input is labelled
A1

The diagram shows that the bits in the same significant position in each register are connected to
the data inputs of one multiplexer to form one line of the bus.

Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the four 1 bits of the
registers, and similarly for the other two bits.

The two selection lines Si and So are connected to the selection inputs of all four multiplexers.
The selection lines choose the four bits of one register and transfer them into the four-line
common bus.

When S1So = 00, the 0 data inputs of all four multiplexers are selected and applied to the outputs
that form the bus.

This causes the bus lines to receive the content of register A since the outputs of this register are
connected to the 0 data inputs of the multiplexers.

Similarly, register B is selected if S1So = 01, and so on.

Table 4-2 shows the register that is selected by the bus for each of the four possible binary value
of the selection lines.

St So Register selected

A

—— OO
-0 O

B
C
D

In general a bus system has
v" multiplex “k” Registers

COMPUTER ARCHITECTURE AND ORGANIZATION Page 10

each register of “n” bits
to produce “n-line bus”

ANERNERN

no. of multiplexers required =n
v’ size of each multiplexer = k x 1

» When the bus is includes in the statement, the register transfer is symbolized as follows:

BUS< C, R1< BUS

» The content of register C is placed on the bus, and the content of the bus is loaded into register R1

by activating its load control input. If the bus is known to exist in the system, it may be convenient
just to show the direct transfer.

R1< C

Three-State Bus Buffers:

YV V VYV

A\

Y

A bus system can be constructed with three-state gates instead of multiplexers.

A three-state gate is a digital circuit that exhibits three states.

Two of the states are signals equivalent to logic 1 and 0 as in a conventional gate.

The third state is a high-impedance state.

The high-impedance state behaves like an open circuit, which means that the output is
disconnected and does not have logic significance.

Because of this feature, a large number of three-state gate outputs can be connected with wires
to form a common bus line without endangering loading effects.
The graphic symbol of a three-state buffer gate is shown in Fig. 4-4.

Figure 44 Graphic symbols for three-state buffer.

< X Output Y=A4if C=1
Normal inpul A4 High?mpedance if C=0

Control input C

It is distinguished from a normal buffer by having both a normal input and a control input.

The control input determines the output state. When the control input is equal to 1, the output is
enabled and the gate behaves like any conventional buffer, with the output equal to the normal
input.

When the control input is 0, the output is disabled and the gate goes to a high-impedance state,
regardless of the value in the normal input.

The construction of a bus system with three-state buffers is shown in Fig. 4
A h Bus line for bit O

Bo o

- <]

Do

Sq

Select { > 4
= W BT ><
¢ Qecoder

Enable

| E

Ww N+~ 0

Figure 4-5 Bus line with three state-buffers.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 11

The outputs of four buffers are connected together to form a single bus line.

» The control inputs to the buffers determine which of the four normal inputs will communicate with
the bus line.

» No more than one buffer may be in the active state at any given time. The connected buffers
must be controlled so that only one three-state buffer has access to the bus line while all other
buffers are maintained in a high impedance state.

» One way to ensure that no more than one control input is active at any given time is to use a
decoder, as shown in the diagram.

» When the enable input of the decoder is 0, all of its four outputs are 0, and the bus line isin a
high-impedance state because all four buffers are disabled.

» When the enable input is active, one of the three-state buffers will be active, depending on the
binary value in the select inputs of the decoder.

Memory Transfer:

» The transfer of information from a memory word to the outside environment is called a read
operation.

» The transfer of new information to be stored into the memory is called a write operation.

» A memory word will be symbolized by the letter M.

» The particular memory word among the many available is selected by the memory address during
the transfer.

» Itis necessary to specify the address of M when writing memory transfer operations.

» This will be done by enclosing the address in square brackets following the letter M.

» Consider a memory unit that receives the address from a register, called the address register,
symbolized by AR.

» The data are transferred to another register, called the data register, symbolized by DR.

» The read operation can be stated as follows:

Read: DR<- M [AR]

» This causes a transfer of information into DR from the memory word M selected by the address in
AR.

» The write operation transfers the content of a data register to a memory word M selected by the
address. Assume that the input data are in register R1 and the address is in AR.

» The write operation can be stated as follows:

Write: M [AR] <- R1

Types of Micro-operations:

YV V VYV V

Y

Register Transfer Micro-operations: Transfer binary information from one register to another.

Arithmetic Micro-operations: Perform arithmetic operation on numeric data stored in registers.

Logical Micro-operations: Perform bit manipulation operations on data stored in registers.

Shift Micro-operations: Perform shift operations on data stored in registers.

Register Transfer Micro-operation doesn’t change the information content when the binary
information moves from source register to destination register.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 12

» Other three types of micro-operations change the information change the information content
during the transfer.

Arithmetic Micro-operations:

» The basic arithmetic micro-operations are
o Addition
o Subtraction
o Increment
o Decrement
o Shift
» The arithmetic Micro-operation defined by the statement below specifies the add micro-
operation.
R3 < R1+R2
» It states that the contents of R1 are added to contents of R2 and sum is transferred to R3.

A\

To implement this statement hardware requires 3 registers and digital component that performs
addition
Subtraction is most often implemented through complementation and addition.

Y VY

The subtract operation is specified by the following statement
R3¢ R1+R2+ 1
instead of minus operator, we can write as

R2 is the symbol for the 1's complement of R2
Adding 1 to 1’s complement produces 2’s complement

YV VV V

Adding the contents of R1 to the 2's complement of R2 is equivalent to R1-R2.
Binary Adder:

» Digital circuit that forms the arithmetic sum of 2 bits and the previous carry is called FULL ADDER.

» Digital circuit that generates the arithmetic sum of 2 binary numbers of any lengths is called
BINARY ADDER.

» Figure 4-6 shows the interconnections of four full-adders (FA) to provide a 4-bit binary adder.

B, 5 2 A, B, Ay Bo Ao

[I | ! | |

/—/ FA }—&{ FA G FA & FA .5
] | | |

< 55 Sz S,

Figure 4-6 4-bit binary adder.

» The augends bits of A and the addend bits of B are designated by subscript numbers from
right to left, with subscript O denoting the low-order bit.

» The carries are connected in a chain through the full-adders. The input carry to the
binary adder is Co and the output carry is C4. The S outputs of the full-adders generate
the required sum bits.

» An n-bit binary adder requires n full-adders.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 13

Binary Adder — Subtractor:

» The addition and subtraction operations can be combined into one common circuit by including an
exclusive-OR gate with each full-adder.
> A 4-bit adder-subtractor circuit is shown in Fig. 4-7.

As

Ba As

T

85 A, Bo Ao

,

vy

Ea T

j =}

l—{

Cs

S3

'

Figure 4-7

s !‘f_‘ F: 1:_' T

=
= So

4-bit adder-subtracror.

o

» The mode input M controls the operation. When M = 0 the circuit is an adder and when M = 1 the
circuit becomes a subtractor.

» Each exclusive-OR gate receives input M and one of the inputs of B

» When M =0, we have B xor 0 = B. The full-adders receive the value of B, the input carry is 0, and
the circuit performs A plus B.

> When M =1, we have Bxor1=B"and Co=1.

» The Binputs are all complemented and a 1 is added through the input carry.

» The circuit performs the operation A plus the 2's complement of B.

Binary Incrementer:

» The increment microoperation adds one to a number in a register.

» For example, if a 4-bit register has a binary value 0110, it will go to 0111 after it is incremented.
» This can be accomplished by means of half-adders connected in cascade.
» The diagram of a 4-bit 'combinational circuit incrementer is shown in Fig. 4-8.
Ao Ao Ay Ao 1
l ¥ l : l l l
x v x » x b x by
HA HA HA HA
= S C S (& S < i
Ca S Sz S, So

Figure 4-8 4-bit binary incrementer.

» One of the inputs to the least significant half-adder (HA) is connected to logic-1 and the other
input is connected to the least significant bit of the number to be incremented.

» The output carry from one half-adder is connected to one of the inputs of the next-higher-order
half-adder.

» The circuit receives the four bits from Ao through As, adds one to it, and generates the
incremented output in Sp through Ss.

» The output carry C; will be 1 only after incrementing binary 1111. This also causes outputs So
through S; to go to 0.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 14

» The circuit of Fig. 4-8 can be extended to an n -bit binary incrementer by extending the diagram to

include n half-adders.

» The least significant bit must have one input connected to logic-1. The other inputs receive the
number to be incremented or the carry from the previous stage.

Arithmetic Circuit:

» The basic component of an arithmetic circuit is the parallel adder.
» By controlling the data inputs to the adder, it is possible to obtain different types of arithmetic

operations.

» The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four full-adder circuits that
constitute the 4-bit adder and four multiplexers for choosing different operations.

e s
Sy '
Xq Co |
Ag—— :
15 FA Dy
A |
0 4xI Y C,
801D0—— | MUX g
2
3
X] Cl
A,
Sy FA +—D,
So
0 4x1 Y. C:
1 D: | MUX ‘
2
3
A2 X? C""
S ‘
D
So FA Y
. 0 4x1 Y Cs
B D: | MUX : :
2 |
3
A3
\—As‘
So
B, 0 4x1
l Dc | MUX
2
3

O—LDo‘l

COMPUTER ARCHITECTURE AND ORGANIZATION

Page 15

There are two 4-bit inputs A and B and a 4-bit output D.

The four inputs from A go directly to the X inputs of the binary adder.

Each of the four inputs from B are connected to the data inputs of the multiplexers.

The multiplexers data inputs also receive the complement of B.

The other two data inputs are connected to logic-0 and logic-1.

The four multiplexers are controlled by two selection inputs S1 and So. The input carry Cin, goes to
the carry input of the FA in the least significant position. The other carries are connected from one

YV YV V VY

stage to the next.
» By controlling the value of Y with the two selection inputs S and So and making Cin equal to 0 or 1,
it is possible to generate the eight arithmetic microoperations listed in Table 44.

TABLE 4-4 Arithmetic Circuit Function Table
‘A

Select
Input Output

S A Cs Y D=A+ Y+ C, Microoperation
0 0 0 B D=A+ B Add
0 0 1 B D=A+ B+ 1 Add with carry
0 1 0 B D=A+ B Subtract with borrow
0 I 1 B D=A+ B8 +1 Subtract
| 0 0 0 D= A Transfer A
| 0 I 0 D= A+ 1 Increment A
| I 0 1 D=A-1 Decrement A
| | I I D= A Transfer A

Addition:

» When S:1So= 00, the value of B is applied to the Y inputs of the adder.
v If Cir, = 0, the output D =A+B.
v' If Cin=1, output D=A+B + 1.
» Both cases perform the add microoperation with or without adding the input carry.

Subtraction:

» When $1S0 = 01, the complement of B is applied to the Y inputs of the adder.
v' If Cin=1, then D = A + B + 1. This produces A plus the 2's complement of B, which is

equivalent to a subtraction of A -B.
v" When Ci» = 0 then D = A + B. This is equivalent to a subtract with borrow, that is,

A-B-1.
Increment:

» When 5150 = 10, the inputs from B are neglected, and instead, all 0's are inserted into the Y inputs.
The output becomes D = A + 0 + Cin. This gives D =Awhen Cr=0and D=A + 1 when Cir=1.

» In the first case we have a direct transfer from input A to output D.

» Inthe second case, the value of A is incremented by 1.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 16

Decrement:

» When S1So= 11, all I's are inserted into the Y inputs of the adder to produce the decrement
operation D = A -1 when Cir = 0.

» This is because a number with all 1's is equal to the 2's complement of 1 (the 2's complement
of binary 0001 is 1111). Adding a number A to the 2's complement of 1 produces F=A + 2's

complement of 1 = A — 1. When Ci» = 1, then D = A -1 + 1=A, which causes a direct transfer from
input A to output D.

Logic Micro-operations:

» Logic microoperations specify binary operations for strings of bits stored in registers.

» These operations consider each bit of the register separately and treat them as binary variables.

» For example, the exclusive-OR microoperation with the contents of two registers Rl and R2 is
symbolized by the statement

P: R1 « R1 @ R2

» It specifies a logic microoperation to be executed on the individual bits of the registers provided
that the control variable P = 1.

List of Logic Microoperations:

» There are 16 different logic operations that can be performed with two binary variables.
» They can be determined from all possible truth tables obtained with two binary variables as
shown in Table 4-5.

TABLE 4-5 Truth Tables for 16 Functions of Two Variables

x y|\Fo F, F, F; F, Fs Fs F;, Fz F5 Fo Fu Fp,. Fi Fu Fis

-0 O O
O =00
— OO
_O O
fe TR O)
Pk ek ek O
_0 O =

1 1 1
0 O 1
1 1 1
0 1 1

_-—0 - O
OO O
oo O
[om B e B o BN
OO =
— O -
s T S S S =Y

» The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first
column of Table 4-6.

» The 16 logic microoperations are derived from these functions by replacing variable x by the
binary content of register A and variable y by the binary content of register B.

» The logic micro-operations listed in the second column represent a relationship between the
binary content of two registers A and B.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 17

TABLE 4-6 Sixteen Logic Microoperations

Boolean function Microoperation Name
Fob=0 F<0 Clear
F, = xy F<A /B AND
F, = xy' F<AANB
Fy=x Fe<A Transfer A
Fy=1x'y F<A A\B
Fs=y F<B Transfer B
Fs=xDy F<—A®B Exclusive-OR
F=x+y F<A\VB OR
Fs=(x +y) F—A\/B NOR
Fo = (x®y) F—A®B Exclusive-NOR
Fio=y' F<B Complement B
Fu=x+y' F—A\VB
Fi.=x' F<A Complement A
F13=X'+y F<—:‘T\/B
F|4 = (xy)' F+—A AN B NAND
Fis=1 F<all I’s Set to all 1's

Hardware Implementation:

» The hardware implementation of logic microoperations requires that logic gates be inserted for
each bit or pair of bits in the registers to perform the required logic function.
» Although there are 16 logic microoperations, most computers use only four--AND, OR, XOR
(exclusive-OR), and complement from which all others can be derived.

» Figure 4-10 shows one stage of a circuit that generates the four basic logic microoperations.

» It consists of four gates and a multiplexer. Each of the four logic operations is generated through a

gate that performs the required logic.
» The outputs of the gates are applied to the data inputs of the multiplexer. The two selection
inputs S1 and So choose one of the data inputs of the multiplexer and direct its value to the output.

???Wfr

Figure 4-10 One stage of logic circuir.

4x1
MUX

Si So Output Operation
& g) mpeind | aND
0 1 E=AvB OR
1 0 E=A®B| XOR
1 1 E=A Complement

(a) Logic diagram

(b) Function table

COMPUTER ARCHITECTURE AND ORGANIZATION

Page 18

Some Applications:

» Logic micro-operations are very useful for manipulating individual bits or a portion of a word stored in a
register.

> They can be used to change bit values, delete a group of bits or insert new bits values into a register.

> The following example shows how the bits of one register (designated by A) are manipulated by logic
microoperations as a function of the bits of another register (designated by B).

» Selective set

v'The selective-set operation sets to 1 the bits in register A where there are corresponding
I's in register B. It does not affect bit positions that have 0's in B. The following numerical
example clarifies this operation:

1010 A before
1100 B (logic operand)
1110 A after

v" The OR microoperation can be used to selectively set bits of a register.
» Selective complement

v The selective-complement operation complements bits in A where there are corresponding
1'sin B. It does not affect bit positions that have 0's in B. For example:

1010 A before
1100 B (logic operand)
0110 A after

v The exclusive-OR microoperation can be used to selectively complement bits of a register.
» Selective clear
v" The selective-clear operation clears to 0 the bits in A only where there are
corresponding I's in B. For example:
1010 A before
1100 B (logic operand)
0010 A after

A=A NFE

v" The corresponding logic microoperation is
» Mask
v' The mask operation is similar to the selective-clear operation except that the bits of A are cleared
only where there are corresponding O's in B . The mask operation is an AND micro operation as
seen from the following numerical example:

0110 1010 A before
0000 1111 B (mask)
0000 1010 A after masking

» Insert
v The insert operation inserts a new value into a group of bits. This is done by first masking the bits
and then ORing them with the required value.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 19

v’ For example, suppose that an A register contains eight bits, 0110 1010. To replace the four leftmost
bits by the value 1001 we first mask the four unwanted bits:

0110 1010 A before
0000 1111 B (mask)
0000 1010 A after masking

and then insert the new value:

0000 1010 A before
1001 0000 B (insert)
1001 1010 A after insertion

v' The mask operation is an AND microoperation and the insert operation is an OR
microoperation.

» Clear
v' The clear operation compares the words in A and B and produces an all 0's result if the two
numbers are equal. This operation is achieved by an exclusive-OR microoperation as shown

by the following example

1010 A
1010 B
0000 A<—ASDB

Shift Microoperations:

» Shift microoperations are used for serial transfer of data.

The contents of a register can be shifted to the left or the right.

During a shift-left operation the serial input transfers a bit into the rightmost position.
During a shift-right operation the serial input transfers a bit into the leftmost position.
There are three types of shifts: logical, circular, and arithmetic.

The symbolic notation for the shift microoperations is shown in Table 4-7.

TABLE 4-7 Shift Microoperations

YV VYV V V

Symbolic designation Description
R<«shlR Shift-left register R
R «—shr R Shift-right register R
R«cil R Circular shift-left register R
R<cir R Circular shift-right register R
R <«ashl R Arithmetic shift-left R
R<ashr R Arithmetic shift-right R

» Logical Shift:
o Alogical shift is one that transfers 0 through the serial input.
o The symbols shl and shr for logical shift-left and shift-right microoperations.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 20

o The microoperations that specify a 1-bit shift to the left of the content of register R and a
1-bit shift to the right of the content of register R shown in table 4.7.

o The bit transferred to the end position through the serial input is assumed to be 0 during
a logical shift.

» Circular Shift:
o The circular shift (also known as a rotate operation) circulates the bits of the register
around the two ends without loss of information.
o This is accomplished by connecting the serial output of the shift register to its serial input.
o We will use the symbols cil and cir for the circular shift left and right, respectively.
» Arithmetic Shift:
o An arithmetic shift is a microoperation that shifts a signed binary number to the left or
right.
An arithmetic shift-left multiplies a signed binary number by 2.
An arithmetic shift-right divides the number by 2.
Arithmetic shifts must leave the sign bit unchanged because the sign of the number
remains the same when it is multiplied or divided by 2.

Rn 1 | Bn - e R, Ro

Figure 4-11 Arithmetic shift right.

Hardware Implementation:

Y

A combinational circuit shifter can be constructed with multiplexers as shown in Fig. 4-12.
The 4-bit shifter has four data inputs, Ao through As, and four data outputs, Ho through Hs.
There are two serial inputs, one for shift left (I.) and the other for shift right (Igr).

When the selection input S=0 the input data are shifted right (down in the diagram).
When S = 1, the input data are shifted left (up in the diagram).

The function table in Fig. 4-12 shows which input goes to each output after the shift.

A shifter with n data inputs and outputs requires n multiplexers.

YV VYV VYV

The two serial inputs can be controlled by another multiplexer to provide the three possible types
of shifts.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 21

Select

: 0 for shift right (down)
3 Serial 1 for shift left {up)
input (7g)
-
0 MUX —— Hy
1
14 D
—_— e s -
& | Function table
o MUX — H,
1 Seiect Output
Az
S f{n H; HZ H1
Aa
0 In Ao Ay Az
S
0 MUX —_"{: 1 A,y A: ."*\3][_
1
S
o MUX —H;
1
Serial
input (fg)

Figure 4-12 4-bit combinational circuit shifter.

Arithmetic Logic Shift Unit:

>

Instead of having individual registers performing the microoperations directly, computer systems
employ a number of storage registers connected to a common operational unit called an
arithmetic logic unit, abbreviated ALU.

The ALU is a combinational circuit so that the entire register transfer operation from the

source registers through the ALU and into the destination register can be performed during one
clock pulse period.

The shift microoperations are often performed in a separate unit, but sometimes the shift unit is
made part of the overall ALU.

The arithmetic, logic, and shift circuits introduced in previous sections can be combined into one
ALU with common selection variables. One stage of an arithmetic logic shift unit is shown in Fig. 4-
13.

Particular microoperation is selected with inputs S1: and So. A 4 x 1 multiplexer at the output
chooses between an arithmetic output in Di and a logic output in Ei.

The data in the multiplexer are selected with inputs Sz and S,. The other two data inputs to the
multiplexer receive inputs Ai.1 for the shift-right operation and Ai;1 for the shift-left operation.
The circuit whose one stage is specified in Fig. 4-13 provides eight arithmetic operation, four logic
operations, and two shift operations.

Each operation is selected with the five variables Ss, Sz, S1, So and Cin.

The input carry Cinis used for selecting an arithmetic operation only.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 22

A\

YV V V V

5y

Figure 4-13 One stage of arithmetic logic shife unir.

Sy

50—

D,
E,
B,
Al R
A shr
’l’o] shi

Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic operations and are

selected with S3S; = 00.

The next four are logic and are selected with S3S, = 01.

The input carry has no effect during the logic operations and is marked with don't-care x’s.

The last two operations are shift operations and are selected with S3S,= 10 and 11.
The other three selection inputs have no effect on the shift.

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Operation select

g

S$: & S

£

Operation

Function

Ll 2 == I == = I o= Bl e i e B i i

HOKMMMNMODOODOOo OO O

XX P OO Mmoo OoO0
XX HPOPRPOHMOO™ROO

XX XX XXHPHOoOrRrO—OHC

-+
ot

I + + + + +
+
—

1 1 | | I
BEEBEERRRBRED
D< >
Tmw ~wEmwws

R R

Eg
>

Transfer A
Increment A
Addition

Add with carry
Subtract with borrow
Subtraction
Decrement A
Transfer A

AND

OR

XOR

Complement A
Shift right A into F
Shift left A into F

BASIC COMPUTER ORGANIZATION AND DESIGN

CONTENTS:

v

D N N N N N N

Instruction Codes

Computer Registers

Computer Instructions

Timing And Control

Instruction Cycle

Register — Reference Instructions
Memory — Reference Instructions

Input — Output And Interrupt

1. Instruction Codes:

>

Y

The organization of the computer is defined by its internal registers, the timing and control structure,
and the set of instructions that it uses.
Internal organization of a computer is defined by the sequence of micro-operations it performs on

data stored in its registers.

Computer can be instructed about the specific sequence of operations it must perform.

User controls this process by means of a Program.

Program: set of instructions that specify the operations, operands, and the sequence by which
processing has to occur.

Instruction: a binary code that specifies a sequence of micro-operations for the computer.
The computer reads each instruction from memory and places it in a control register. The control
then interprets the binary code of the instruction and proceeds to execute it by issuing a sequence of
micro-operations. — Instruction Cycle

Instruction Code: group of bits that instruct the computer to perform specific operation.

Instruction code is usually divided into two parts: Opcode and address(operand)
15 12 11 0
Opcode Address

Instruction format

Operation Code (opcode):
v’ group of bits that define the operation

v' Eg:add, subtract, multiply, shift, complement.
v" No. of bits required for opcode depends on no. of operations available in computer.
v" n bit opcode >=2" (or less) operations

Address (operand):

v specifies the location of operands (registers or memory words)
v" Memory words are specified by their address

coMPUTER A€EitFPEEHIRPANBSRYANEIA R binary code Page 24

v k-bit address >= 2* registers

Stored Program Organization:

>

>

Y V V

The ability to store and execute instructions is the most important property of a general-purpose
computer. That type of stored program concept is called stored program organization.

The simplest way to organize a computer is to have one processor register and

an instruction code format with two parts. The first part specifies the operation

to be performed and the second specifies an address.

The below figure shows the stored program organization

Figure 5-1 Stored program organization.

Memory
4096 x 16

-/—_,.,.-

Opcode Address

Instructions
(program)

Instruction format

Operands
(data)

/'\..-J

Binary operand

Processor register
(accumulator or AC)

Instructions are stored in one section of memory and data in another.

For a memory unit with 4096 words we need 12 bits to specify an address since 212 = 4096.

If we store each instruction code in one 16-bit memory word, we have available four bits for the
operation code (abbreviated opcode) to specify one out of 16 possible operations, and 12 bits to
specify the address of an operand.

Accumulator (AC):
v" Computers that have a single-processor register usually assign to it the name accumulator
and label it AC.

v' The operation is performed with the memory operand and the content of AC.

Addressing of Operand:

>

>

Y

Sv v

Sometimes convenient to use the address bits of an instruction code not as an address but as the
actual operand.

When the second part of an instruction code specifies an operand, the instruction is said to have an
immediate operand.

When the second part specifies the address of an operand, the instruction is said to have a direct
address.

When second part of the instruction designate an address of a memory word in which the address of
the operand is found such instruction have indirect address.

One bit of the instruction code can be used to distinguish between a direct and an indirect address.

The instruction code format shown in Fig. 5-2(a). It consists of a 3-bit operation code, a 12-bit
MPUTER ARCHITECTURE AND ORGANIZATION Page 25

address, and an indirect address mode bit designated by |. The mode bit is O for a direct address and
1 for an indirect address.

» A direct address instruction is shown in Fig. 5-2(b).

» Itis placed in address 22 in memory. The | bit is 0, so the instruction is recognized as a direct address
instruction. The opcode specifies an ADD instruction, and the address part is the binary equivalent of
457.

» The control finds the operand in memory at address 457 and adds it to the content of AC.

» The instruction in address 35 shown in Fig. 5-2(c) has a mode bit | = 1.

» Therefore, it is recognized as an indirect address instruction.

» The address part is the binary equivalent of 300. The control goes to address 300 to find the address
of the operand. The address of the operand in this case is 1350.

» The operand found in address 1350 is then added to the content of AC.

» The effective address to be the address of the operand in a computation-type instruction or the
target address in a branch-type instruction.

» Thus the effective address in the instruction of Fig. 5-2(b) is 457 and in the instruction of Fig 5-2(c) is
1350.

2. Computer Registers:

» What is the need for computer registers?

v" The need of the registers in computer for

= |nstruction sequencing needs a counter to calculate the address of the next instruction
after execution of the current instruction is completed (PC).

= Necessary to provide a register in the control unit for storing the instruction code after
it is read from memory (IR).

= Needs processor registers for manipulating data (AC and TR) and a register for holding
a memory address (AR).

» The above requirements dictate the register configuration shown in Fig. 5-3.

» The registers are also listed in Table 5.1 together with a brief description of their function and the
number of bits that they contain.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 26

TABLE 5-1 List of Registers for the Basic Computer

Register Number

symbol of bits Register name Function
DR 16 Data register Holds memory operand
AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register
IR 16 Instruction register Holds instruction code
PC 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INPR 8 Input register Holds input character
OUTR 8 Output register Holds output character
11 0
| PC |
11 0
| 4% |
Memory
i 4096 words
13 0 16 bits per word
I I® |
15 0 15 0
| R | l DR |
7 O 7 0 15 0
| ourr | | mer | [AC |

Figure 5-3 Basic computer registers and memory.

» The data register (DR) holds the operand read from memory.
» The accumulator (AC) register is a general purpose processing register.
» The instruction read from memory is placed in the instruction register (IR).
» The temporary register (TR) is used for holding temporary data during the processing.
» The memory address register (AR) has 12 bits since this is the width of a memory address.
» The program counter (PC) also has 12 bits and it holds the address of the next instruction to be read
from memory after the current instruction is executed.
» Two registers are used for input and output.
= The input register (INPR) receives an 8-bit character from an input device.
= The output register (OUTR) holds an 8-bit character for an output device.

Common Bus System:

» The basic computer has eight registers, a memory unit, and a control unit

» Paths must be provided to transfer information from one register to another and between memory
and registers.

» A more efficient scheme for transferring information in a system with many registers is to use a
common bus.

» The connection of the registers and memory of the basic computer to a common bus system is
shown in Fig. 5-4.

» The outputs of seven registers and memory are connected to the common bus.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 27

Figure 5-4 Basic computer registers connected to a common bus.

» The specific output that is selected for the bus lines at any given time is determined from the binary
value of the selection variables S;, S1, and So.

» The number along each output shows the decimal equivalent of the required binary selection.

For example, the number along the output of DR is 3. The 16-bit outputs of DR are placed on the bus

lines when S25:1S0 = 011.

» The lines from the common bus are connected to the inputs of each register and the data inputs of
the memory.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 28

Y

The particular register whose LD (load) input is enabled receives the data from the bus during
the next clock pulse transition.
The memory receives the contents of the bus when its write input is activated.
The memory places its 16-bit output onto the bus when the read input is activated and $,S1S0 = 111.
Two registers, AR and PC, have 12 bits each since they hold a memory address.
When the contents of AR or PC are applied to the 16-bit common bus, the four most significant bits
are setto0's.
When AR or PC receives information from the bus, only the 12 least significant bits are transferred
into the register.
The input register INPR and the output register OUTR have 8 bits each.
They communicate with the eight least significant bits in the bus.
INPR is connected to provide information to the bus but OUTR can only receive information from the
bus.
This is because INPR receives a character from an input device which is then transferred to AC.
OUTR receives a character from AC and delivers it to an output device.
Five registers have three control inputs: LD (load), INR (increment), and CLR (clear).
This type of register is equivalent to a binary counter with parallel load and synchronous clear.
Two registers have only a LD input.
The input data and output data of the memory are connected to the common bus, but the memory
address is connected to AR.
Therefore, AR must always be used to specify a memory address.
The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets of inputs.
o One set of 16-bit inputs come from the outputs of AC.
o Another set of 16-bit inputs come from the data register DR.
o The result of an addition is transferred to AC and the end carry-out of the addition is
transferred to flip-flop E (extended AC bit).
o Athird set of 8-bit inputs come from the input register INPR.
» The content of any register can be applied onto the bus and an operation can be performed in the
adder and logic circuit during the same clock cycle.
» For example, the two microoperations DR€AC and AC < DR can be executed at the same time.
» This can be done by placing the content of AC on the bus (with $,51So = 100), enabling the LD (load)
input of DR, transferring the content of DR through the adder and logic circuit into AC, and
enabling the LD (load) input of AC, all during the same clock cycle.

Y V V Y YV VY

YV VVYVYYVYVY

Y V

3. Computer Instructions:

» The basic computer has three instruction code formats, as shown in Fig. 5-5. Each format has 16 bits.

Figure 5-5 Basic computer instruction formats.

15 14 122 ER 0]
[) } J Opcode I Address I (Opcode = 000 through 110)

(a) Memory — reference instruction

TS 1225l (0]
[0 1 1 1 l Register operation I (Opcode =111, I=0)

(b) Register — reference instruction

15 12 11 0
| T SR ¥/0 operation | (Opcode =111, I=1)

(c) Input — output instruction

COMPUTER ARCHITECTURE AND ORGANIZATION Page 29

» The operation code (opcode) part of the instruction contains three bits and the meaning of the
remaining 13 bits depends on the operation code encountered.

» A memory-reference instruction uses 12 bits to specify an address and one bit to specify the
addressing mode |.

» |lis equal to O for direct address and to 1 for indirect address.

» The register-reference instructions are recognized by the operation code 1.11 with a 0 in the leftmost
bit (bit 15) of the instruction.

» Aregister-reference instruction specifies an operation on the AC register. So an operand from
memory is not needed. Therefore, the other 12 bits are used to specify the operation to be executed.

» An input—output instruction does not need a reference to memory and is recognized by the
operation code 111 with a 1 in the leftmost bit of the instruction.

» The remaining 12 bits are used to specify the type of input—output operation.

» The instructions for the computer are listed in Table 5-2.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 30

TABLE 5-2 Basic Computer Instructions

Hexadecimal code

Symbol I=0 1I=1 Description

AND Oxxx Bxxx AND memory word to AC
ADD 1xxx Oxxx Add memory word to AC

LDA 2XxXX Axxx Load memory word to AC

STA 3xxx Bxxx Store content of AC in memory
BUN 4xxx Cxxx Branch unconditionally

BSA Sxxx Dxxx Branch and save return address
1SZ 6xxx Exxx Increment and skip if zero
CLA 7800 Clear AC

CLE d 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if £ is 0
HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION FO80 Interrupt on

IOF F040 Interrupt off

» The symbol designation is a three-letter word and represents an abbreviation intended for

programmers and users.
» The hexadecimal code is equal to the equivalent hexadecimal number of the binary code used for the

instruction.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 31

Instruction Set Completeness:

>

>

A computer should have a set of instructions so that the user can construct machine language
programs to evaluate any function.
The set of instructions are said to be complete if the computer includes a sufficient number of
instructions in each of the following categories:
o Arithmetic, logical, and shift instructions
o Data Instructions (for moving information to and from memory and processor registers)
o Program control or Brach
o Input and output instructions
There is one arithmetic instruction, ADD, and two related instructions, complement AC(CMA) and
increment AC(INC). With these three instructions we can add and subtract binary numbers when
negative numbers are in signed-2's complement representation.
The circulate instructions, CIR and CIL; can be used for arithmetic shifts as well as any other
type of shifts desired.
There are three logic operations: AND, complement AC (CMA), and clear AC(CLA). The AND and
complement provide a NAND operation.
Moving information from memory to AC is accomplished with the load AC (LDA) instruction. Storing
information from AC into memory is done with the store AC (STA) instruction.
The branch instructions BUN, BSA, and ISZ, together with the four skip instructions, provide
capabilities for program control and checking of status conditions.
The input (INP} and output (OUT) instructions cause information to be transferred between the
computer and external devices.

4.Timing and Control:

>
>

The timing for all registers in the basic computer is controlled by a master clock generator.
The clock pulses are applied to all flip-flops and registers in the system, including the flip-flops and
registers in the control unit.
The clock pulses do not change the state of a register unless the register is enabled by a control
signal.
The control signals are generated in the control unit and provide control inputs for the multiplexers
in the common bus, control inputs in processor registers, and microoperations for the accumulator.
There are two major types of control organization:

o Hardwired control

o Microprogrammed control
The differences between hardwired and microprogrammed control are

Hardwired control Microprogrammed control

v The control logic is implemented with gates, | v The control information is stored in a
flip-flops, decoders, and other digital control memory. The control memory is
circuits. programmed to initiate the required

sequence of microoperations.

v The advantage that it can be optimized to v' Compared with the hardwired control
produce a fast mode of operation. operation is slow.

v’ Requires changes in the wiring among the v’ Required changes or modifications can be
various components if the design has to be done by updating the microprogram in
modified or changed. control memory.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 32

The block diagram of the hardwired control unit is shown in Fig. 5-6.

It consists of two decoders, a sequence counter, and a number of control logic gates.

An instruction read from memory is placed in the instruction register (IR). It is divided into three
parts: The | bit, the operation code, and bits 0 through 11.

» The operation code in bits 12 through 14 are decoded with a 3 x 8 decoder. The eight outputs of
the decoder are designated by the symbols Do through D-.

Bit 15 of the instruction is transferred to a flip-flop designated by the symbol I.

Bits 0 through 11 are applied to the control logic gates.

The 4-bit sequence counter can count in binary from 0 through 15.

YV V V

Y V V

Instruction register (/R)

Other inputs

l

Dy

Control

outputs

——
75
7o

————— Increment (INR)
l<————— Clear (CLR)

|—~t——— Clock

- Figure 5-6 Control unit of basic computer.

The outputs of the counter are decoded into 16 timing signals To through Tis.

The sequence counter SC can be incremented or cleared synchronously.

The counter is incremented to provide the sequence of timing signals out of the 4 x 16 decoder.

As an example, consider the case where SC is incremented to provide timing signals To, T1, T2, T3 and
T4 in sequence. At time T4, SC is cleared to O if decoder output D3 is active.

This is expressed symbolically by the statement

YV VY

Y

D3T,: SC<0

» The timing diagram of Fig. 5-7 shows the time relationship of the control signals.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 33

YVVVYVYYVYY VvV VY

Y

The sequence counter SC responds to the positive transition of the clock.

Initially, the CLR input of SC is active. The first positive transition of the clock clears SCto 0, which in
turn activates the timing signal To out of the decoder. Ty is active during one clock cycle.

SCis incremented with every positive clock transition, unless its CLR input is active.

This produces the sequence of timing signals To, T1, T2, T3, Taand so on, as shown in the diagram.
The last three waveforms in Fig.5-7 show how SC is cleared when D3T4 = 1.

Output D3 from the operation decoder becomes active at the end of timing signal T».

When timing signal T4 becomes active, the output of the AND gate that implements the control
function DsT4 becomes active.

This signal is applied to the CLR input of SC. On the next positive clock transition (the one

marked T4 in the diagram) the counter is cleared to 0.
This causes the timing signal To to become active instead of Ts that would have been active if SC were
incremented mstead of cIeared

ARV e

TD Tl TI T‘ T‘

eypr i T
s) | l%
RS

e s
n | e ol
I

l_'_|°"

B
| |
| |

|

Figure 5-7 Example of control timing signals.

5. Instruction Cycle:

>

A program residing in the memory unit of the computer consists of a sequence of instructions.
The program is executed in the computer by going through a cycle for each instruction.
Each instruction cycle in turn is subdivided into a sequence of sub cycles or phases.
In the basic computer each instruction cycle consists of the following phases:
1. Fetch an instruction from memory.
2. Decode the instruction.
3. Read the effective address from memory if the instruction has an indirect address.
4. Execute the instruction.
Upon the completion of step 4, the control goes back to step 1 to fetch, decode,
and execute the next instruction.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 34

Fetch and Decode:

A\

Initially, the program counter PC is loaded with the address of the first instruction in the program.

» The sequence counter SCis cleared to 0, providing a decoded timing signal To.
» The microoperations for the fetch and decode phases can be specified by the following register
transfer statements.

To: AR« PC
Ty: IR «<MJ[AR], PC+PC +1
T D, ..., Dy«Decode IR(12-14), AR «<IR(0-11), I<«IR(15)

T! S:

Address

Memory unit

Read

AR

oz

N

PC

IR

|
S
=
O
-

_:DL—*
e
SRS N

LD

Clock

Common bus

Figure 5-8 Register transfers for the ferch phase.

» Figure 5-8 shows how the first two register transfer statements are implemented in the bus system.

» To provide the data path for the transfer of PC to AR we must apply timing signal To to achieve the
following connection:

o Place the content of PC onto the bus by making the bus selection inputs S, S1, So equal to 010.

o Transfer the content of the bus to AR by enabling the LD input of AR.
» Inorder to implement the second statement it is necessary to use timing signal T1 to provide the
following connections in the bus system.
o Enable the read input of memory.
o Place the content of memory onto the bus by making S>S1S0=111.
o Transfer the content of the bus to IR by enabling the LD input of IR.
o Increment PC by enabling the INR input of PC.
» Multiple input OR gates are included in the diagram because there are other control functions that
will initiate similar operations.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 35

Determine the Type of Instruction:

» The timing signal that is active after the decoding is Ts.

» During time Ts, the control unit determine the type of instruction that was read from the memory.
» The flowchart of fig.5-9 shows the initial configurations for the instruction cycle and also how the

control determines the instruction cycle type after the decoding.

Decoder output D7 is equal to 1 if the operation code is equal to binary 111.

If D;=1, the instruction must be a register-reference or input-output type.

If D7 =0, the operation code must be one of the other seven values 000 through 110, specifying a
memory-reference instruction.

Y V V

Control then inspects the value of the first bit of the instruction, which is now available in flip-flop I.
If D7 =0and | =1, indicates a memory-reference instruction with an indirect address. So it is then
necessary to read the effective address from memory.

If D7 =0and | =0, indicates a memory-reference instruction with a direct address.

If D7=1and | =0, indicates a register-reference instruction.

If D7 =01and | =1, indicates an input-output instruction.

The three instruction types are subdivided into four separate paths.

The selected operation is activated with the clock transition associated with timing signal Ts.

This can be symbolized as follows:

Y V

YVVVYVYYVYY

COMPUTER ARCHITECTURE AND ORGANIZATION Page 36

D;IT;: AR «<M[AR]
D7I'T;: Nothing .
D;I'T;: Execute a register-reference instructio
D;IT5: Execute an input-output instruction

Start
SC« 0

AR « PC

Y T|

IR —MI[AR], PC« PC +1

] T
Decode operation code in /R (12 - 14)
AR « IR (0—11), I « IR (15)
(Register or [/0) =1 =0 (Mcmory-refgrcncc)

N

(/o) =1 /l\=0 (register) (indirect) =1 =0 (direct)

} T; | T3 & T3 ‘L T3
Execute Execute AR «— M[AR] Nothing
input-output register-reference
instruction instruction
SC«0 SC«0 | -
Execute
memory-reference
instruction
SC«0

¢ : }

Figure 5-9 Elowchart for instruction cycle (initial configuration).

Register-Reference Instructions:

Register-reference instructions are recognized by the control when D7 = 1 and |=0.

These instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions.
These 12 bits are available in IR (0-11).

The control functions and microoperations for the register-reference instructions are listed in Table
5-3.

These instructions are executed with the clock transition associated with timing variable Ts.

Control function needs the Boolean relation D;I'Ts, which we designate for convenience by the
symbol r.

By RV e AHEIPRYE BRI ARG GRAR P ctions can be simply denoted by r5; Page 37

YV VY

Y VvV

>
>

TABLE 5-3 Execution of Register-Reference Instructions

D-I'Ts = r (common to all register-reference instruction§)
IR(i) = B, [bit in IR(0-11) that specifies the operation}

r:: SC<«0 Clear SC
CLA rBy: AC<0 Clear AC
CLE 7By E<«0 ___ Clear E
CMA rBy: AC<AC Complement AC
CME rBy; E<E Complement E

CIR rB;: AC<shr AC, AC(15)<E, E«AC(0) Circulate right
CIL rBs: AC<shl AC, AC(0)«E, E<AC(15) Circulate left
INC rBs: AC<«AC +1 Increment _AC
SPA By If (AC(15) = 0) then (PC«PC + 1) Skip if positive
SNA rBs: If (AC(15) = 1) then (PC+PC + 1) Skip if negative

SZA rB,: If (AC = 0) then PC«PC + 1) Skip '!f AC zero
SZE rB,: If (E =0) then (PC<PC + 1) Skip if E zero
HLT rB,: S <0 (S is a start-stop flip-flop) Halt computer

For example, the instruction CLA has the hexadecimal code 7800, which gives the binary equivalent
0111 1000 0000 0000. The first bit is a zero and is equivalent to I".

The next three bits constitute the operation code and are recognized from decoder output D5.

Bit 11 in IR is 1 and is recognized from B11. The control function that initiates the microoperation for
this instruction is D7I'T3 B11 = rB11.
The execution of a register-reference instruction is completed at time Ts.
The sequence counter SC is cleared to 0 and the control goes back to fetch the next instruction with
timing signal To.
The first seven register-reference instructions perform clear, complement, circular shift, and
increment microoperations on the AC or E registers.
The next four instructions cause a skip of the next instruction in sequence when
a stated condition is satisfied. The skipping of the instruction is achieved by
incrementing PC once again.

The condition control statements must be recognized as part of the control conditions.
The AC is positive when the sign bit in AC(15) = 0; it is negative when AC(15) = 1. The content of AC is
zero (AC = 0) if all the flip-flops of the register are zero.

The HLT instruction clears a start-stop flip-flop S and stops the sequence counter from counting.

6. Memory-Reference Instructions:

>
>

Y VYV

Table 5-4 lists the seven memory-reference instructions.

The decoded output D;fori=0, 1, 2, 3,4, 5, and 6 from the operation decoder that belongs to each
instruction is included in the table.

The effective address of the instruction is in the address register AR and was placed there during
timing signal T, when 1= 0, or during timing signal Ts when | = 1.

The execution of the memory-reference instructions starts with timing signal Ta.

The symbolic description of each instruction is specified in the table in terms of register transfer
notation.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 38

TABLE 5-4 Memory-Reference Instructions

Operation

Symbol decoder Symbolic description
AND D, AC<—AC N M[AR]
ADD D, AC<AC + M[AR], E<«C,
LDA D, AC «—M[AR)] 3
STA D; M[AR]<—AC
BUN D, PC< AR
;BSSA Ds M[AR]<PC, PC<« AR +1

Z Ds M[AR] < M[AR] + 1

If M[AR] + 1= 0 then PC—PC + 1

AND to AC:

» This is an instruction that performs the AND logic operation on pairs of bits in AC and the memory

word specified by the effective address.
» The result of the operation is transferred to AC.
» The microoperations that execute this instruction are:

DqTy: DR «—MJ[AR]
DaTs.' AC « AC AN DR, SC<«0

ADD to AC:

» This instruction adds the content of the memory word specified by the effective address to the value

of AC.
» The sum is transferred into AC and the output carry Cou: is transferred to the E (extended

accumulator) flip-flop.
» The microoperations needed to execute this instruction are

D,T: DR « M[AR]
Di\Ts: AC « AC+ DR, E <« C,, SC « 0
LDA: Load to AC

» This instruction transfers the memory word specified by the effective address to AC.
» The microoperations needed to execute this instruction are

D:Ti: DR « MI[AR]
D.Ts: AC « DR, SC « 0

COMPUTER ARCHITECTURE AND ORGANIZATION Page 39

STA: Store AC

» This instruction stores the content of AC into the memory word specified by the effective address.

» Since the output of AC is applied to the bus and the data input of memory is connected to the bus,
we can execute this instruction with one microoperation.

DsTy: M[AR] « AC, SC <« 0
BUN: Branch Unconditionally

» This instruction transfers the program to the instruction specified by the effective address.
» The BUN instruction allows the programmer to specify an instruction out of sequence and we say
that the program branches (or jumps) unconditionally.
» The instruction is executed with one microoperation:
DyTgg PC «— AR, SC « 0

BSA: Branch and Save Return Address

» This instruction is useful for branching to a portion of the program called a subroutine or procedure.

» When executed, the BSA instruction stores the address of the next instruction in sequence (which is
available in PC) into a memory location specified by the effective address.

» The effective address plus one is then transferred to PC to serve as the address of the first
instruction in the subroutine.

» This operation was specified with the following register transfer:

M[AR] « PC, PC « AR +1
» A numerical example that demonstrates how this instruction is used with a subroutine is shown in

Fig. 5-10.

Figure 5-10 Example of BSA instruction execution.

Memory Memory
20 0 BSA 135 20 0 BSA 135
PC=2] Next instruction 21 Next instruction
AR =135 135 21
136 Subroutine PC =136 Subroutine
1 BUN 135 1 BUN 135
(a) Memory, PC, and AR at time T (b) Memory and PC after execution

COMPUTER ARCHITECTURE AND ORGANIZATION Page 40

The BSA instruction is assumed to be in memory at address 20.
The | bit is 0 and the address part of the instruction has the binary equivalent of 135.
After the fetch and decode phases, PC contains 21, which is the address of the next instruction in the
program (referred to as the return address). AR holds the effective address 135.
» This is shown in part (a) of the figure.
» The BSA instruction performs the following numerical operation:
M[135] « 21, PC < 135+ 1= 136
» The result of this operation is shown in part (b) of the figure.
» The return address21 is stored in memory location 135 and control continues with the subroutine
program starting from address 136.
» The return to the original program (at address 21) is accomplished by means of an indirect BUN
instruction placed at the end of the subroutine.

YV V V

» When this instruction is executed, control goes to the indirect phase to read the effective address at
location 135, where it finds the previously saved address 21.
» When the BUN instruction is executed, the effective address 21 is transferred to PC.
» The next instruction cycle finds PC with the value 21, so control continues to execute the instruction
at the return address.
» The BSA instruction must be executed with a sequence of two microoperations:
D:Ty M[AR] « PC, AR « AR +1
DsTs: PC «— AR, SC «< 0

ISZ: Increment and Skip if Zero

» This instruction increment the word specified by the effective address, and if the incremented value
is equal to 0, PC is incremented by 1 to skip the next instruction in the program.
» Since it is not possible to increment a word inside the memory, it is necessary to read the word into
DR, increment DR, and store the word back into memory.
» This is done with the following sequence of microoperations:
DT DR « MI[AR]
D¢Ts: DR «<— DR + 1
DiTs: M[AR] <« DR, i (DR =0)then(PC « PC+ 1), SC « 0

Control Flowchart:

» A flowchart showing all microoperations for the execution of the seven memory-reference
instructions is shown in Fig. 5.11.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 41

Memory — reference instruction

AND ADD LDA STA
Y Dur.- Y D]T.,g Y D:T,; Y D3T4
DR «— M[AR) | I DR «— M |[MAR) j l DR «— M |[AR] M |AR] < AC
SC«0
4 DoTs Y D\Ts Y D75
AC «~ ACN DR AC « AC + DR AC « DR
E - Cqy
SC«0 SC «0 SC «0
BUN BSA ISZ
Y DT, DsT, Y Dr,TA
PC «— AR M [AR] « PC DR « M [AR]
SC+0 AR— AR+ 1
A | D5T5 Y DT
PC «— AR DR« DR~+1
SC « 0
Y DgTy
M [AR] « DR
IF(DR =Q)
then (PC « PC 4+ 1)
SC«0
Figure 5-11 Flowchart for memory-reference instructions,

7.Input-Output and Interrupt:

» Instructions and data stored in memory must come from some input device.

» Computational results must be transmitted to the user through some output device.

» To demonstrate the most basic requirements for input and output communication, we will use as an
illustration a terminal unit with a keyboard and printer.

Input-Output Configuration:

VVVVYYVYVY

COMPUTER ARCHITECTURE AND ORGANIZATION

The terminal sends and receives serial information.

Each quantity of information has eight bits of an alphanumeric code.
The serial information from the keyboard is shifted into the input register INPR.
The serial information for the printer is stored in the output register OUTR.
These two registers communicate with a communication interface serially and with the AC in parallel.
The input—output configuration is shown in Fig. 5-12.

Page 42

Y V V

Y V V

Figure 5-12 Input-output configuration.

Input — output Serial Computer
terminal communication registers and
interface flip-flops
FGO

! Receiver
P - 7
e interface OUTR

Transmitter
Kevboard — interface "—-—INPR

The input register INPR consists of eight bits and holds alphanumeric input information.

The 1-bit input flag FGI is a control flip-flop.

The flag bit is set to 1 when new information is available in the input device and is cleared

to 0 when the information is accepted by the computer.

The output register OUTR works similarly but the direction of information flow is reversed.

Initially, the output flag FGO is set to 1.

The computer checks the flag bit; if it is 1, the information from AC is transferred in parallel to OUTR
and FGO is cleared to 0.

The output device accepts the coded information, prints the corresponding character, and when the
operation is completed, it sets FGO to 1.

Input-Output Instructions:

>

Input and output instructions are needed for transferring information to and from AC register, for
checking the flag bits, and for controlling the interrupt facility.

Input-output instructions have an operation code 1111 and are recognized by the control when D7 =
landl|=1.

The remaining bits of the instruction specify the particular operation.

The control functions and microoperations for the input-output instructions are listed in Table 5-5.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 43

TABLE 5-5 Input-Output Instructions

D5IT; = p (common to all input—output instructions)
IR(i) = B; [bit in IR(6-11) that specifies the instruction]

' p: SC«0 Clear SC
INP pBu: AC(0-7) < INPR, FGI«0 Input character
OUT pBw: OUTR<«AC(0-7), FGO «0 Output character

SKI pBo: If (FGI = 1) then (PC«PC + 1) Skip on input flag

SKO pBs: If (FGO = 1) then (PC« PC + 1) Skip on output flag
ION pBz. IEN «1 Interrupt enable on
IOF pPBs: IEN <0 Interrupt enable off

These instructions are executed with the clock transition associated with timing signal Ts.
Each control function needs a Boolean relation D7ITs, which we designate for convenience by
thesymbol p.

The control function is distinguished by one of the bits in IR (6-11).

By assigning the symbol B; to bit j of IR, all control functions can be denoted by pBi fori=6
thoughll.

The sequence counter SC is cleared to 0 when p = D7IT3 = 1.

The last two instructions set and clear an interrupt enable flip-flop IEN.

Program Interrupt:

Y

YV VVY

The computer keeps checking the flag bit, and when it finds it set, it initiates an information transfer
The difference of information flow rate between the computer and that of the input—output
devicemakes this type of transfer inefficient.
An alternative to the programmed controlled procedure is to let the external device inform
thecomputer when it is ready for the transfer.
In the meantime the computer can be busy with other tasks. This type of transfer uses the
interruptfacility.
While the computer is running a program, it does not check the flags.
When a flag is set, the computer is momentarily interrupted from the current program.
The computer deviates momentarily from what it is doing to perform of the input or output transfer
It then returns to the current program to continue what it was doing before the interrupt.
The interrupt enable flip-flop IEN can be set and cleared with two instructions.

o When IEN is cleared to O (with the IOF instruction), the flags cannot interrupt the computer.

o When IEN is set to (with the ION instruction), the computer can be interrupted.
The way that the interrupt is handled by the computer can be explained by means of the flowchart
ofFig. 5-13.
An interrupt flip-flop R is included in the computer. When R = 0, the computer goes through
aninstruction cycle.
During the execute phase of the instruction cycle IEN is checked by the control.
Ifitis O, it indicates that the programmer does not want to use the interrupt,so control
continueswith the next instruction cycle.
If IEN is 1, control checks the flag bits. If both flags are 0, it indicates that neither the input nor
theoutput registers are ready for transfer of information. In this case, control continues
with the next instruction cycle.
If either flag is set to 1 while 1EN =1, flip-flop R is set to 1. At the end of the execute phase,
controlchecks the value of R, and if it is equal to 1, it goes to an interrupt cycle instead of an
instruction cycle.

COMPUTER ARCHITECTURE AND ORGANIZATION Page 44

Instruction cycle =0 = =1 Interrupt cycle
[\/

Fetch and decode

instruction Store retum address
in location O
M [0] « PC

Execute J

instruction

Branch to location 1
PC « 1

Figure 5-13 Flowcharrt for interrupt cycle.

Interrupt cycle:

The interrupt cycle is a hardware implementation of a branch and save return address operation.
The return address available in PC is stored in a specific location.

This location may be a processor register, a memory stack, or a specific memory location.

An example that shows what happens during the interrupt cycle is shown in Fig. 5-14.

YV VYV

Figure 5-14 Demonstration of the interrupt cycle.

Memory Memory
0 0 256
1|0 BUN 1120 PC=1| 0 BUN 1120
'15§ 3
> i e Main
5
e prh:gall':m iy program
1120
1120
/O /o
program program
1 BUN 0 1 BUN 0

{(a) Before interrupt (b) After interrupt cycle

COMPUTER ARCHITECTURE AND ORGANIZATION Page 45

COMPUTER ARCHITECTURE AND ORGANIZATION

When an interrupt occurs and R is set to 1 while the control is executing the instruction at
address255.

At this time, the returns address 256 is in PC.

The programmer has previously placed an input—output service program in memory starting
fromaddress 1120 and a BUN 1120 instruction at address 1. This is shown in Fig. 5.14(a).
When control reaches timing signal Toand finds that R = 1, it proceeds with the interrupt cycle.
The content of PC (256) is stored in memory location 0, PCis set to 1, and R is cleared to 0.
The branch instruction at address 1 causes the program to transfer to the input—output
serviceprogram at address 1120.

This program checks the flags, determines which flag is set, and then transfers the required
inputor output information.

Once this is done, the instruction ION is executed to set IEN to 1 (to enable further interrupts),
andthe program returns to the location where it was interrupted.

This is shown in Fig. 5-14(b).

Page 46

UNIT-II
MICRO PROGRAMMED CONTROL

SYLLABUS:

MICRO PROGRAMMED CONTROL: Control Memory, Address Sequencing, Micro
program Example, Design of Control Unit.

Central Processing Unit: General Register Organization, Instruction Formats,

Addressing modes, Data Transfer and Manipulation, Program Control.

CONTROL MEMORY:

>

>

>

>

The function of the control unit in a digital computer is to initiate sequence of micro
operation.

When the control signals are generated by hardware using conventional logic design
techniques, the control unit is said to be “Hardwired”.

A control unit whose binary control variables (1’s and 0’s) are stored in memory is called a
“Micro programmed control unit”. Each word in control memory contains within it a
micro instruction.

The micro instruction specifies one or more micro operations for the system. A sequence of
micro instructions constitutes a micro program.

A computer that employs a micro programmed control unit will have two separate
memories. A main memory and control memory.

The main memory is available to the user for storing the programs. The contents of main
memory may alter when the data are manipulated and every time that the program is
changed. The user’s program in main memory consists of machine instructions and data.
The control memory holds a fixed micro program that cannot alter by the occasional user.
The micro program consists of micro instruction that specify various internal control signals
for execution of register micro operations.

Each machine instruction imitates a series of micro instruction in control memory. These
micro instructions generate the micro operation to fetch the instruction from main
memory, to evaluate the effective address, to execute the operation specified by the
instruction and to return control to the fetch phase in order to repeat the cycle for the

next instruction.

Figure 7-1 Microprogrammed control organization.

EE,‘[;EHI* SE;:;‘; Control Control Control ___C:nu:ré}]
generator [7| ndd_ress =i MCMOTY e d{ita
(sequencer) Tegster (ROM) register

Next-address information

> In the figure, the control memory is assumed to be ROM, within which all control
information is permanently stored.

» The control memory address register specifies the address of the micro instruction.

» The control data register (“pipeline register”) holds the micro instruction and read from
memory.

» The micro instruction contains a control word that specifies one or more micro operations
for the data processor. Once these operations are executed, the control must determine the
next address.

» The location of the next micro instruction may be the one next in sequence, on it may be
located somewhere else in the control memory

» The next address generated is sometimes called an micro program sequencer, as it
determines the address sequence that is read from control memory.

» The function of a micro program sequencer are

% Loading an initial address to start the operations.
¢+ Incrementing the control address register by one.
¢ Loading into the control address register an address from control memory.

¢+ Transferring an external address

ADDRESS SEQUENCING:

» Micro instruction are stored in control memory in groups, with each group specifies a

“routine”. Each computer instruction has its own micro program routine in control memory

to generate the micro operations that execute the instruction.

» Once the required routine is reached, the micro instruction that execute the instruction may

be sequence by incrementing the control address register.

» When the execution of the instruction is completed, control must return to the fetch

routine.
Instruction code
Y
Mapping
logic
Y ' ¥ vlr
Status Branch MUX]
bits —™ logic ~eloct Multiplexers
1+ Subroutine
register
(SBR)
\ A
Clock — Control address register
(CAR)
Incrementer
&
Y

Control memory

Select a starus

bit

Branch address

Microoperations

Figure 7-Z Selection of address for control memory.

» The micro instruction in control memory contains a set of bits to initiate micro operation in
computer registers and other bits to specify the method by which the next address is
obtained.

The address sequence capabilities required in a control memory are:

1. A mapping process from the bits of the instruction to an address for control memory.
2. Incrementing of the control address Register

3. Unconditional branch or conditional branch, depending on states bit conditions.

4. A facility for subroutine call and return.

» The diagram shows 4 different paths from which the control address register (CAR) receives
the address.

1. A mapping procedure is a rule that transforms the instruction code into a control
memory address.

2. The incrementer increments the contents of the control address register by one to
select the next micro instruction in sequence.

3. Branching is achieved by specifying the branch address in one of the fields of the
micro instruction.

4. Micro program that use subroutines must have a provision for storing the return
address in a SBR during a subroutine call and restoring the address during a

subroutine return.

» The status conditions are special bits in the system that provides parameter information such
as the carry out of an adder, the sign bit of a number, the mode bits of an instruction, and
input or output status conditions.

» The branch logic hardware may be implemented in a variety of ways. The simplest way is to
test the specified condition and branch to the indicated address if the condition is met;
otherwise the address register is incremented. This can be implemented with a multiplexer.

» A 1output in the multiplexer generates a control signal to transfer the branch address from
the micro instruction into the CAR.

» A 0 output in the multiplexer causes the address register to be incremented.

Mapping of instruction:

» The transformation from the instruction code bits to an address in control memory where the
routine is located is referred to as a mapping process.

» The figure has an operation code of 4 bits which can specify up to 16 distinct instructions.
Assume further that the control memory has 128 words, requiring an address of 7 bits. For
each operation code these exists a micro program routine in control memory that executes
the instruction.

» One simple mapping process that converts the 4 bit operation code to a 7 bit address for
control memory. The mapping consists of placing a 0 in the MSB of the address, transferring
the 4 opcode bits, and clearing the two LSB of the CAR.

Figure 7-3 Mapping from instruction code o microinstruction address.

Opcode
Computer instruction: 1 01 1 address
Mapping bits: Of= = x =[O0 O

Microinstruction address: o101 100

MICROPROGRAM EXAMPLE:
» Once the configuration of computer and its micro programmed control unit is established,

the designers task is to generate the micro code for the control memory.

=

6 0

10 0
10 0
6 0

Control unit

Figure 7-4 Computer hardware configuration.

COMPUTER CONFIGURATION:

» The diagram consists of two memory units, a main memory for storing instructions and data,
and a control memory for storing the micro program.

> Four registers are associated with the processor unit and two with the control unit. The
processor registers are PC, AR, DR, and AC. The control unit has CAR and SBR.

» The transfer of information among the registers in the processors is done through
multiplexers rather than a common bus.

% DR can receive information from AC, PC or memory.
% AR can receive information from PC or DR.
% PC can receive information from only AR.

» The arithmetic, logic, and shift unit performs micro operations with data from AC and DR
and places the result m AC. Memory receives its address from AR. Input data written to
memory come from DR, data read from memory can go only to DR.

» The instruction format consists of three fields.

> l-indirect address, opcode-operation code.

Figure 7-5 Computer instructions.

15 14 11 10 0
I Opcode Address

(a) Instruction format

Symbol Opcode Description
ADD 0000 AC «— AC + M [EA]
BRANCH 0001 If (AC < 0) then (PC « EA)
STORE 0010 M [EA] «— AC
EXCHANGE 0011 AC «— M[EA], M[EA] «— AC

EA is the effective address

(b) Four computer instructions

» The ADD instruction adds the content of the operand found in the effective address to the
content of AC.

» The BRANCH instruction causes a branch to the effective address, if the operand in AC is
negative. The program proceeds with the next consecutive instruction if AC is not negative

» The STORE instruction transfers the content of AC into the memory word specified by the
effective address.

» The EXCHANGE instruction swaps the data between AC and memory word specified by
the effective address.

MICRO INSTRUCTION FORMAT:

3 3 3 2 2 0
F1 F2 F3 CD BR AD

Fl. F2, F3: Microoperation fields
CD: Condition for branching
BR: Branch field

AD: Address field
Figure 7-6 Microinstruction code formar (20 bits).

> The address field is 7 bits wide since the control memory has 128 =27 words.

» The micro operations are sub divided into three fields of three bits each. The three bits in
each field are encoded to specify 7 distinct micro operations. This gives total of 21 micro
operations.

» No more than 3 micro operations can be chosen for microinstruction, one from each field. If
fewer than three micro operations are used, one or more of the fields will use the binary code
000 for no operation.

» A micro instruction can specify two simultaneous micro operations from f2 and f3 and none

from f1.

DR €« M [AR] with f2=100
PC < PC+1 with f3=101
The nine bits of the micro operation fields will then be 000 100 101.

TABLE 7-1 Symbols and Binary Code for Microinstruction Fields

F1 Microoperation Symbol
000 None NOP
001 AC«—AC + DR ADD
010 AC <0 CLRAC
011 AC«—AC + 1 INCAC
100 AC<—DR DRTAC
101 AR «— DR(0-10) DRTAR
110 AR «—PC PCTAR
111 M[AR]« DR WRITE
F2 Microoperation Symbol
000 MNone NOP

001 AC«—AC — DR sSUB
010 AC«—AC s DR OR
011 AC+—AC N DR AND

100 DR «— M[AR] READ
101 DR «— AC ACTDR
110 DR«—DR + 1 INCDR

111 DR(0-10) « PC PCTDR

F3 Microoperation Symbol
000 None NOP
001 AC «—ACD DR XOR
010 AC<AC COM
011 AC +—shl AC SHL
100 AC «+—shr AC SHR
'+ 101 PC«—PC + 1 INCPC

110 PC«—AR ARTPC

111 Reserved

> It is important to realize that two or more conflicting micro operations cannot be specified
simultaneously.

Ex: a micro operation field 010 001 000 has no meaning, because it specifies the operation
to clear AC to 0 and subtract DR from AC at the same time.

Note: all transfer type micro operation symbol uses 5 letters. The first two letters designates the
source register, the third letter is always a T, and the last 2 letter designates the designation
of the register.

Ex: The micro operation that specifies the transfer AC < DR (F1=100) has the symbol
DRTAC, which stands for a transfer from DR to AC.

CONDITION FIELD: It consists of two bits which are encoded to specify four status bit

conditions.

» The first condition is always 1, so that a reference to CD=00 (or the symbol U) will always
find the condition to be true. When this condition is used in conjunction with BR field it
provides an unconditional branch operation.

» The indirect bit I is available from bit 15 of DR after an instruction is read from memory.

» The sign bit S of AC provides the next status bit.

» The zero value, symbolized by Z, is a binary variable whose value equal to 1 if all bits in
AC are equal to zero.

» We will use the symbols U, I, S, Z for the four status bits when we write micro program

in symbolic form.

CD Condition Symbol Comments

00 Always =1 U Unconditional branch
01 DR(15) I Indirect address bit
10 AC(15) S Sign bit of AC

11 AC=10 Z Zero value in AC

BRANCH FIELD: it is used in conjunction with the address field AD, to choose the address

of the next micro instruction.

» When BR=00, the control program jump (jmp) operation (which is similar to branch) and
when BR=01, it performs a call to sub routine (call) operation.

» The two operations are identical except that a call micro instruction stores the return address
in the sub routine register SBR.

» The jump and call operations depends on the value of CD field. If the status bit conditions
specified the CD field is equal to 1, the next address in the AD field is transferred to control
address register CAR. Otherwise, CAR is incremented by 1.

» The return from sub routine is accomplished with a BR field equal to 10. This causes the
transfer of the return address from SBR to CAR.

» The mapping from the operation code bits of the instruction to an address for CAR is
accomplished when the BR field is equal to 11.

BR Symbol Function

00 IMP CAR «— AD if condition = 1
CAR «—CAR + 1 if condition = 0

01 CALL CAR «—AD_ SBR « CAR + 1 if condition = 1
CAR «CAR + 1 if condition = 0

10 RET CAR «SBR (Return from subroutine)

11 MAP CAR(2-5)« DR(11-14), CAR(0,1,6) «0

Symbolic micro instructions:

=>» Each line of the assembly language micro program defines a symbolic micro instruction.
Each symbolic micro instruction is divided into five fields. Label, micro operations, CD, BR
and AD.

1. Label: The Label field may be empty or it may specify a symbolic address. A Label is
terminated with a colon ().

2. Micro operations: This field consists of one, two, or three symbols, separated by commas.
There may be no more than one symbol from each F field. The NOP is used when the micro
instruction has no micro operations. This will be translated by the assembler to nine zeros.

3. CD: The CD field has one of the letters U, I, S or Z.

4. BR: The BR field contains one of the 4 symbols (JMP, CALL, RET, MAP).

5. AD: The AD field specifies a value for the address field of the micro instruction in one of
three possible ways.

(@) With a symbolic address, which must also appear as a label.

(b) With the symbol NEXT to designate the next address in sequence.

(c) When the BR field contains a RET or MAP symbol, the AD field is left empty and is

converted to seven zeros by the assembler.
ORG: ORG defines the origin, or first address of a micro program routine.

The symbol ORG 64 informs the assembler to place the next micro instruction in control
memory at decimal address 64, which is equivalent binary address 1000000.

Fetch Routine:

->The control memory has 128 words, and each word contains 20 bits. To micro program the
control memory, it is necessary to determine the bit values of each of the 128 words. The
first 64 words (address 0 to 63) are to be occupied by the routines for the 16 instructions.
The last 64 words may be used for any other purpose. A convenient starting location for the

fetch routine is address 64.

The micro instructions needed for the fetch routine are

AR «PC
DR «<~MI[AR], PC«PC +1
AR < DR(0-10), CAR(2-5)< DR(11-14), CAR(0,1,6)<0

The address of the instruction is transferred from PC to AR and the instruction is then read
from memory into DR. since no instruction register is available, the instruction code remains in
DR .The address part is transferred to AR and then control is transferred to one of 16 routines
by mapping the operation code part of the instruction from DR into CAR. The fetch routine

needs three micro instructions, which are placed in control memory at addresses 64, 65, 66.

ORG B4
FETCH: PCTAR U JMP NEXT
READ, INCPC U JMP NEXT
DRTAR U MAP
The translation of the symbolic micro program to binary produces the following binary micro
program.
Binary

Address F1 F2

F3
1000000 110 000 000

00 00 1000001
1000001 000 100 101 00 00 1000010
1000010 101 000 000 00 11 0000000

Symbolic micro program:

—>If the instruction is an ADD instruction whose operation code is 0000, the MAP micro
instruction will transfer to CAR the address 0000000, which is the start address for the ADD
routine in control memory.

—>The first address for the BRANCH and STORE routines are 0 000100 (Decimal 4) and 0
0010 00 (Decimal 8), respectively. The first address for the other 13 routines are at address

values 12, 16, 20.......... 60. This gives four words in control memory for each routine.

->The first micro instruction in the ADD routine calls subroutine INDRCT, Conditioned on
states bit I. If I=1, a branch to INDRCT occurs and the return address is stored in SBR. The
INDRCT has two micro instructions.

INDRCT:

Indirect Address:

It considers the address part of the instruction as the address is stored rather than the address
of the operand. The memory has to be accessed to get the effective address, which is then
transferred to AR. The problem from subroutine (RET) transfers the address from SBR to
CAR, thus returning to the second micro instruction of the ADD routine.

TABLE 7-2 Symbolic Microprogram (Parrial)

READ U
DRTAR U

JHP
RET

NEXT

Label Microoperations CD BR AD

ORG O

ADD: NOP I CALL INDRCT
READ [9) IMP NEXT
ADD [9) JIMP FETCH
ORG 4

BRANCH: NOP S IMP OVER
NOP u IMP FETCH

OVER: NOP I CALL INDRCT
ARTPC u IMP FETCH
ORG 8

STORE: MNOP I CALL INDRCT
ACTDR u IMP NEXT
WRITE u IMP FETCH
ORG 12

EXCHANGE.: MNOP I CALL INDRCT
READ u IMP NEXT
ACTDR, DRTAC u IMP NEXT
WRITE u IMP FETCH
ORG o4

FETCH: PCTAR u JMP NEXT
READ, INCPC U JIMP NEXT
DRTAR L8] MAF

INDRCT: READ o IMP NEXT
DRTAR U RET

ADD: The execution of the ADD instruction is carried out by the micro instruction at the
addresses 1 and 2. The first micro instruction reads the operand from memory into DR. The
second micro instruction performs an ADD micro operation with the content of DR and AC and

then jumps back to the beginning of the fetch routine.

BRANCH: The branch instruction should cause a branch to the effective address if AC<0. The
AC will be less than zero if its sign is negative, which is detected from status bit S being a 1.

> Ifsis equal to 1, the first JIMP micro instruction transfers control to location OVER. The
micro instruction at this location calls the INDRCT subroutine if I=1.

» The effective address is then transferred from AR to PC and the micro program jumps
back to the fetch routine.

STORE: The store routine again uses the INDRCT subroutine if 1=1. The content of AC is
transferred into DR. A memory write operation is initiated to store the content of DR in a
location specified by the effective address.

EXCHANGE: The exchange routine reads the operand from the effective address and places it
in DR. The contents of DR and AC are interchanged in the third micro instruction. The

original content of AC that is now in DR is stored back in the memory.

Note: Address 3 is not used. We have to specify all 0’s in the word. Since, this location will
never be used. The control will be jump to address which is the beginning of the fetch

routine.

TABLE 7-3 Binary Microprogram for Control Memory (Partial)

Address Binary Microinstruction

Micro
Routine Decimal Binary F1 FZ2 F3 CD BR AD

ADD 0 0000000 Q00 000 OO0 01 01 1000011
1 0000001 000 100 000 00 00 0O00CD1D

2 0000010 Q01 000 000 00O 0O 100000

3 0000011 000 000 000 00 00 1000000

BRANCH 4 0000100 000 000 000 10 00 0000110
5 0000101 000 000 000 00 00 1000000

6 0000110 000 000 000 01 01 1000011

7 0000111 000 000 110 00 00 1000000

STORE 8 0001000 000 000 000 01 01 1000011
9 0001001 000 101 000 00 00 0001010

10 0001010 111 000 ©000 00 QO 1000000

11 0001011 000 000 000 OO0 OO 1000000

EXCHANGE 12 0001100 000 000 000 01 01 1000011
13 0001101 001 OO0 000 OO 00O 0001110

14 0001110 100 101 000 00 00 OOO1111

15 0001111 111 000 000 00 00 1000000

FETCH 64 1000000 110 000 000 0D 0O 1000001
65 1000001 000 100 101 00 00 1000010

66 1000010 101 000 000 00 11 (000000

INDRCT 67 1000011 000 100 00O 00 00 1000100
68 1000100 101 000 000 00 10 00OOOOOD

DESIGN OF CONTROL UNIT:

» The bits of the micro instruction are usually divided into fields, with each field defining a
distinct, separate function. Each field requires a decoder produces the corresponding control
signals.

» This method reduces the size of the micro instruction bits but requires additional hardware
external to the control memory.

> It also increases the delay time of the control signals because they must propagate through
the decoding circuits.

» The nine bits of the micro operation field are divided into three subfields of three bits each.
The control memory output of each subfield must be decoded to provide the distinct micro
operations. The outputs of the decoders are connected to the appropriate inputs in the
processor unit.

» Each of the three fields of the micro instruction presently available in the output of control
memory are decoded with a 3X8 decoder to provide 8 outputs.

» When F1=101, the next clock pulse transition transfers the content of DR (0-11) to AR
(DRTAR). Similarly, when F1=110, there is a transfer from PC to AR (PCTAR).

» The outputs 5 and 6 of decoder F1 are connected to the load input of AR so that when either
one of these outputs is active, information from the multipliers is transferred to AR.

» The multiplexers select the information from DR when the output 5 is active and from PC
when output 5 is inactive. The transfer into AR occurs with a clock pulse transition only
when output 5 or output 6 of the decoder is active.

» The other outputs of the decoders that initiate transfers between registers must be connected
in a similar fashion.

» The outputs of the decoders are connected to the arithmetic logic shift unit in order to
perform the AND, ADD and DRTAC operations.

» The other outputs of the decoders that are associated with an AC operation must also be

connected to the arithmetic logic shift unit in a similar fashion.

L

3 x B decoder

—gf— Ln
—g—
s I
] 3
il =

+ Clock

Figure 7-7 Decoding of microoperation fields.

Fl F2
3 » 8 decoder 3 x 8 decoder
76543210 765 43210 T 6
AND
S
ADD -
DRTAC Arithmetic
- logic shift
unit
o [+ 4
5 = From From l
o PC DR (D- 10
a () Load
l l - AC <
0 1
Select
- Multiplexers
Load l
AR

= =

MICRO PROGRAM SEQUENCER:

» The basic components of a micro programmed control unit are the control memory and the
circuits that select the next address. The address sequencer part is called micro program
sequencer.

» The purpose of a micro program sequencer is to present an address to the memory so that a
micro instruction may be read and executed.

» The Next-address logic of the sequencer determines the specific address to be loaded into
the control address register.

» The control memory is included in the diagram to show the interaction between sequencer
and the memory attached to it. There are two multiplexers in the circuit.

» The first multiplexer mux1 selects an address from one of four sources and routine it into a
control address register CAR.

» The second multiplexer mux2 tests the values selected status bit and the result of the test is
applied to an input logic.

» The output from CAR provides the address for the control memory. The CAR is
incremented and applied to one of the multiplexer inputs and the SBR (subroutine register).

» The other three inputs to multiplexer number 1 come from the address field of the present
micro instruction, from output of SBR, and from an external source that maps the
instruction.

» The CD (condition) field of the micro instruction selects one of the status bits in the second
multiplexer. If the bit selected is equal to 1, the T (test) variable is equal to 1, otherwise it is
equal to 0.

» The T value together with the two bits from the BR field goes to an input logic circuit. The
input logic in a particular sequencer will determine the type of operations that are available
in the unit.

> Typical sequencer operations are: increment, branch or jump, call and return from
subroutine, load an external address, push or pop the stack, and other address sequencing
operations.

> The input logic circuit has three inputs, lo, 11, and T and three outputs S, S, and L.
Variables So and S; select one of the source address for CAR, Variable L enables the load
input in SBR.

Figure 7-8 Microprogram sequencer for a control memory.

» The binary values of the two selection variables determine the path in the multiplexer. For
example: with S1So =10, multiplexer input number2 is selected and establishes a transfer
path from SBR to CAR. Each of the four inputs as well as the output of MUX1 contains a
7 -bit address.

» The inputs 11 and lo are identical to the bit values in the BR field. The bit values for S; and
Soare determined from the stated function and the path in the multiplexer that establishes
the required transfer.

» The SBR is load with the incremented value of CAR during a call micro instruction
(BR=01) provided that the status bit condition is satisfied (T=1).
» The truth table can be used to obtain the simplified Boolean functions for the input logic
circuit.
Si1=h
So=lilo+I1T
L=1110T

TABLE 7-4 Inpur Logic Truth Table for Microprogram Sequencer

BR Input MUX 1 Load SBR
Field L I, T S Se L
0 0 0 00O 0 0 0
0 0 0 01 0 1 0
0 1 010 0 0 0
01 0 X 3 01 |
1 0 1 0 x 1 0 0
3 8 1 1 x 1 1 0

COMPARISON BETWEEN HARDWIRED CONTROL AND MICRO PROGRAMMED
CONTROL UNIT

Hardwired Control Unit:

> Gates, Flip-Flops, decoders, and other digital circuits are used to implement the control
logic.

> Design modifications are done among different components by making changes in wiring.

» Most of the RISC’s architecture use hardwired.

» A hardwired is organized by using multiple wires.

Micro Programmed Control Unit:

» To implement the control logic, a sequence of micro operations is initiated by programming

the control memory which contains control information.

» Modifications are done among various components by updating control memory with a

micro program.

» Most of the RISC architecture does not make use of micro programmed control.

» A micro program is organized by using sequence of micro instructions.

ATTRIBUTE HARDWIRED CONTROL | MICRO PROGRAMMED
CONTROL
Speed Fast Slow

Control functions

Implemented in hardware

Implemented in software

Flexibility

Not flexible, to accommodate
new system specifications or

new instructions.

More flexible, to
accommodate new
specification or new

instructions redesign is

required.
Ability to handle large / Somewhat difficult Easier
complex instruction sets
Ability to support operating | Difficult Easy

systems and diagnostic

features

Design process

Somewhat complicated

Orderly systematic

Applications

Many RISC processors

Mainframes, some

microprocessors.

Instruction set size

Usually under 100 instructions

Usually over 100instructions

ROM size

20 — 400 bit micro instructions

Chip area efficiency

Uses least area

Uses more area

Central Processing Unit — Introduction

e The part of the computer that performs the bulk of data-processing operations is called the
central processing unit and is referred to as the CPU.

. The CPU is made up of three major parts, as shown in Fig. 1. The register set stores
intermediate data used during the execution of the instructions. The arithmetic logic unit (ALU)
performs the required microoperations for executing the instructions. The control unit supervises
the transfer of information among the registers and instructs the ALU as to which operation to
perform. The CPU performs a variety of functions dictated by the type of instructions that are
incorporated in the computer.

Computer architecture is sometimes defined as the computer structure and behaviour as
seen by the programmer that uses machine language instructions. This includes the instruction
formats, addressing modes, the instruction set, and the generalorganization of the CPU registers.

One boundary where the computer designer and the computer programmer see the same
machine is the part of the CPU associated with the instruction set. From the designer's point of

view, the computer instruction set provides the specifications for thedesign of the CPU.

L e

Arithmetic
logic unit
(ALL)

Y

Figure 1 Major components of CPU.

The design of a CPU is a task that in large part involves choosing the hardware for
implementing the machine instructions. The user who programs the computer in machine or
assembly language must be aware of the register set, the memory structure, the type of data

supported by the instructions, and the function that each instruction performs.

General Register Organization

«Memory locations are needed for storing pointers, counters, return addresses, temporary
results, and partial products during multiplication. Having to refer to memorylocations for such
applications is time consuming because memory access is the most time-consuming, operation
in a computer. It is more convenient and more efficient to store these intermediate values in
processor registers.

«When a large number of registers are included in the CPU, it is most efficient to connect
them through a common bus system. The registers communicate with each other not only for
direct data transfers, but also while performing various microoperations. Henceit is necessary to
provide a common unit that can perform all the arithmetic, logic, andshift microoperations in the
processor.

«A bus organization for seven CPU registers is shown in Fig. 2. The output of each
register is connected to two multiplexers (MUX) to form the two buses A and B. The selection
lines in each multiplexer select one register or the input data for the particularbus. The A and B
buses form the inputs to a common arithmetic logic unit (ALU).The operation selected in the
ALU determines the arithmetic or logic micro-operation that is to be performed. The result of the
microoperation is available for output data and alsogoes into the inputs of all the registers.

«The register that receives the information from the output bus is selected by a decoder.
The decoder activates one of the register load inputs, thus providing a transfer path between the

data in the output bus and the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information flow
through the registers and ALU by selecting the various components in the system. For
example, to perform the operation R1 « R2 + R3

the control must provide binary selection variables to the following selector inputs:

MUX A selector (SELA): to place the content of R2 into bus A.
MUX B selector (SELB): to place the content o f R 3 into bus B.

ALU operation selector (OPR): to provide the arithmetic addition A + B.
Decoder destination selector (SELD): to transfer the content of the output bus
into R1.

AL NbE

e The four control selection variables are generated in the control unit and must be
available at the beginning of a clock cycle.The data from the two source registers
propagate through the gates in the multiplexers and the ALU, to the output bus, and
into the inputs of the destination register, all during the clock cycle interval. Then, when
the next clock transition occurs, the binary information from the output bus is
transferred into R1.To achieve a fast response time, the ALU is constructed with high-
speed circuits.

Control Word:

There are 14 binary selection inputs in the unit, and their combined value specifies a
control word. The 14-bit control word is defined in Fig. 2(b).

o It consists of four fields. Three fields contain three bits each, and one field has five
bits.

e The three bits of SELA select a source register for the A input of the ALU. The three
bits of SELB select a register for the B input of the ALU.

e The three bits of SELD select a destination register using the decoder and its seven
load outputs.

e The five bits of OPR select one of the operations in the ALU.

e The 14-bit control word when applied to the selection inputs specify a particular
microoperation.

e The encoding of the register selections is specified in Table 1.

TABLE 1 Encoding of Register Selection Fields

Binary
Code SELA SELB SELD
000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6

111 R7 R7 R7

The 3-bit binary code listed in the first column of the table specifies the binary code
for each of the three fields. The register selected by fields SELA, SELB, and SELD
isthe one whose decimal number is equivalent to the binary number in the code. When
SELA or SELB is 000, the corresponding multiplexer selects the external input data.

When SELD = 000, no destination register is selected but the contents of the
output bus are available in the external output. The ALU provides arithmetic and logic
operations. In addition, the CPU must provide shift operations. The shifter may be
placed in the input of the ALU to provide a preshift capability, or at the output of the
ALU to provide post shifting capability. In some cases, the shift operations are
includedwith the ALU.

The function table for this ALU is listed in Table 8. The encoding of the ALU
operations for the CPU is specified in Table 2. The OPR field has five bits and each
operation is designated with a symbolic name.

TABLE 2 Encoding of ALU Operations

OFR

Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A+ B ADD
00101 Subtract A — B SUB
0110 Decrement A DECA
01000 AND A4 and B AND
01010 OR A and B OR
01100 XOR Aand B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Examples of Microoperations

A control word of 14 bits is needed to specify a microoperation in the CPU. The
control word for a given microoperation can be derived from the selection variables.

For example, the subtract rnicrooperation given by the statement R1 < R2 - R3
specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1 for the
destination register, and an ALU operation to subtract A - B. Thus the control word is

specified by the four fields and the corresponding binary value for each field is obtained

from the encoding listed in Tables 1 and 2.The binary control word for the subtract
rnicrooperation is 010 011 001 00101 and is obtained as follows:

Field: SELA SELB SELD OPR
Symbol: R2 R3 R1 SUB
Control word: 010 011 001 00101

o The control word for this rnicrooperation and a few others are listed in Table 3.

e The increment and transfer microoperations do not use the B input of the ALU.For
these cases, the B field is marked with a dash. We assign 000 to any unused field when
formulating the binary control word, although any other binary number may be used.

e To place the content of a register into the output terminals we place the content of the
register into the A input of the ALU, but none of the registers are selected to accept the
data.The ALU operation TSFA places the data from the register, through the ALU,
into the output terminals. The direct transfer from input to output is accomplished witha
control word of all 0's (making the B field 000).

TABLE 3 Examples of Microoperations for the CPU

Symbolic Designation

Microoperation SEL A SELB SELD OPR Control Word
Rl1<«—R2 — R3 R2 R3 K1 sSUB 010 011 001 00101
R4« R4 v R5 R4 RS R4 OR 100 101 100 01010
R6<«—R6 + 1 R6&6 —_ R6 INCA 110 000 110 00001
R7<«—R1 R1 _— R7 TSFA 001 000 111 00000
Output «<— R2 R2 —_ MNone TSFA 010 000 000 00000
Output «— Input Input —_— MNone TSFA 000 000 000 00000
R4 -=——shl R4 R4 e R4 SHIL. A 100 OO 100 11000
RS =0 RS RS RS XOR 101 101 101 01100

o Aregister can be cleared to 0 with an exclusive-OR operation. This is because X @ x
=0

e It is apparent from these examples that many other micro operations can be
generatedin the CPU. The most efficient way to generate control words with a large
number of bits is to store them in a memory unit. A memory unit that stores control
words is referred to as a control memory.

e By reading consecutive control words from memory, it is possible to initiate the
desired sequence of micro operations for the CPU. This type of control is referred to
as micro programmed control.

1. Instruction Formats:

> The format of an instruction is usually depicted in a rectangular box symbolizing the bits of the
instruction asthey appear in memory words or in a control register.
> The bits of the instruction are divided into groups called fields.
» The most common fields found in instruction formats are:
1. An operation code field that specifies the operation to be perform
2. An address field that designates a memory address or a processor register.
3. A mode field that specifies the way the operand or the effective address is determined.
» Computers may have instructions of several different lengths containing varying number of addresses.
» The number of address fields in the instruct format of a computer depends on the internal
organization of itsregisters.

» Most computers fall into one of three types of CPU organizations:
1. Single accumulator organization.
2. General register organization.
3. Stack organization.

Single Accumulator Organization:

v In an accumulator type organization all the operations are performed with an implied accumulatof
register.
v The instruction format in this type of computer uses one address field.
v For example, the instruction that specifies an arithmetic addition defined by an assembly
language instruction as
e ADDX
v Where X is the address of the operand. The ADD instruction in this case results in the operation AC []
AC
+M[X]. AC is the accumulator register and M[X] symbolizes the memory word located at address X.

General register organization:

v’ The instruction format in this type of computer needs three register address fields.
v’ Thus the instruction for an arithmetic addition may be written in an assembly language as
ADD R1, R2, R3
to denote the operation R1[1R2 + R3. The number of address fields in the instruction can be
reduced from three to two if the destination register is the same as one of the source registers.
Thus the instruction ADD R1, R2 would denote the operation R1l ' R1 + R2. Only register addresses for
Rland R2 need be specified in this instruction.
General register-type computers employ two or three address fields in their instruction format.
Each address field may specify a processor register or a memory word.
An instruction symbolized by ADD R1, X would specify the operation R1[1 R1 + M[X].
It has two address fields, one for register R1 and the other for the memory address X.

AN

AN NI NN

Stack organization:

The stack-organized CPU has PUSH and POP instructions which require an address field.

Thus the instruction PUSH X will push the word at address X to the top of the stack.

The stack pointer is updated automatically.

Operation-type instructions do not need an address field in stack-organized computers.

This is because the operation is performed on the two items that are on top of the stack.

The instruction ADD in a stack computer consists of an operation code only with no address field.

This operation has the effect of popping the two top numbers from the stack, adding the numbers, and
pushing the sum into the stack.

There is no need to specify operands with an address field since all operands are implied to be in the stack.

LA

\

» Most computers fall into one of the three types of organizations.
» Some computers combine features from more than one organizational structure.

» The influence of the number of addresses on computer programs, we will evaluate the arithmetic statement

X= (A+B) * (C+D)

» Using zero, one, two, or three address instructions and using the symbols ADD, SUB, MUL and DIV for
four arithmetic operations; MOV for the transfer type operations; and LOAD and STORE for transfer to and
frommemory and AC register.

» Assuming that the operands are in memory addresses A, B, C, and D and the result must be stored in memory ar
address X and also the CPU has general purpose registers R1, R2, R3 and R4.

Three Address Instructions:

v Three-address instruction formats can use each address field to specify either a processor register or a
memory operand.

v The program assembly language that evaluates X = (A+B) * (C+D) is shown below, together
withcomments that explain the register transfer operation of each instruction.

ADD R1, A, B RL«M[A] + M[B]
ADD R2,C,D R2<M[C] + M[D]
MUL X, RL, R2 M[X]<R1L*R2

The symbol M [A] denotes the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short programs when evaluating
arithmetic expressions.

v The disadvantage is that the binary-coded instructions require too many bits to specify three addresses.

v
v

Two Address Instructions:

v" Two-address instructions formats use each address field can specify either a processor register or

memory word.
v The program to evaluate X = (A+B) * (C+D) is as follows
MOV R1L, A RL<M[A]
ADD R1L, B RL<R1 + M[B]
MOV R2, C R2 —M[C]
ADD R2, D R2 < R2 + M[D]
MUL R1L,R2 RL < R1=RZ
MOV X, RL M[X] <—R1

v' The MOV instruction moves or transfers the operands to and from memory and processor registers.
v’ The first symbol listed in an instruction is assumed be both a source and the destination where the
result of the operation transferred.

One Address Instructions:

v" One-address instructions use an implied accumulator (AC) register for all data manipulation.

v For multiplication and division there is a need for a second register. But for the basic discussion we will
neglect the second register and assume that the AC contains the result of all operations.

v The program to evaluate X=(A+B) * (C+D) is

LOAD A AC<—M[A]
ADD B AC < AC + M[B]
STORE) M[T]<AC
LOAD C AC<—M[C]
ADD D AC<«AC + M[D]
MUL T BC<AC=M[T]
STORE X M[X]<AC

v All operations are done between the AC register and a memory operand.
v T is the address of a temporary memory location required for storing the intermediate result.

Zero Address Instructions:

v A stack-organized computer does not use an address field for the instructions ADD and MUL.

v" The PUSH and POP instructions, however, need an address field to specify the operand that
communicates with the stack.

v The following program shows how X = (A+B) * (C+D) will be written for a stack-organized computer.

(TOS stands for top of stack).

PUSH A TOS <A
PUSH B TOS —B

ADD TOS < (A + B)

PUSH c TOS <—C

PUSH D TOS <D

ADD TOS <« (C + D)

MUL TOS<«— (C + D)= (A + B)
POP X M[X] < TOS

v To evaluate arithmetic expressions in a stack computer, it is necessary to convert the expression into

reverse Polish notation.
v The name "zero-address” is given to this type of computer because of the absence of an address field in

the computational instructions.

RISC Instructions:

v The instruction set of a typical RISC processor is use only load and store instructions for communicating
between memory and CPU.

All other instructions are executed within the registers of CPU without referring to memory.

LOAD and STORE instructions that have one memory and one register address, and computational type
instructions that have three addresses with all three specifying processor registers.

v The following is a program to evaluate X=(A+B)*(C+D)

v
v

LOAD RL, A R1L < M[A]
LOAD R2, B R2 <—M[B]
LOAD R3, C RI<—M[C]
LOAD R4, D R4 < M[D]
ADD Bl, Rl, R RL<—R1 + R2
ADD R3, R3, R2 R3I <R3 + R4
MUL Rl Ri, R3 RL < R1*R3
STORE X ‘R M[X] <R1

v The load instructions transfer the operands from memory to CPU register.
v The add and multiply operations are executed with data in the register without accessing memory.
v The result of the computations is then stored memory with a store in instruction.

8. Addressing Modes

| The way the operands are chosen during program execution is dependent on the addressing mode of the

instruction.
| Computers use addressing mode techniques for the purpose of accommodating one or both of the following
provisions:
0 To give programming versatility to the user by providing such facilities as pointers to memory, counters
for loop control, indexing of data, and program relocation.
0 To reduce the number of bits in the addressing field of the instruction
Most addressing modes modify the address field of the instruction; there are two modes that need no address

field at all. These are implied and immediate modes.

Implied Mode:

v In this mode the operands are specified implicitly in the definition of the instruction.

v' For example, the instruction "complement accumulator" is an implied-mode instruction because the
operand in the accumulator register is implied in the definition of the instruction.

v All register reference instructions that use an accumulator are implied mode instructions.

v/ Zero address in a stack organization computer is implied mode instructions.

Immediate Mode:

v"In this mode the operand is specified in the instruction itself.
v"In other words an immediate-mode instruction has an operand rather than an address field.
v" Immediate-mode instructions are useful for initializing registers to a constant value.

[J The address field of an instruction may specify either a memory word or a processor register.

[J When the address specifies a processor register, the instruction is said to be in the register mode.

Register Mode:
v"In this mode the operands are in registers that reside within the CPU.

v" The particular register is selected from a register field in the instruction.

Register Indirect Mode:

v In this mode the instruction specifies a register in CPU whose contents give the address of the operand

in memory.
v"In other words, the selected register contains the address of the operand rather than the operand itself.

v The advantage of a register indirect mode instruction is that the address field of the instruction uses few
bits to select a register than would have been required to specify a memory address directly.

Auto-increment or Auto-Decrement Mode:

v’ This is similar to the register indirect mode except that the register is incremented or decremented after (or
before) its value is used to access memory.

» The address field of an instruction is used by the control unit in the CPU to obtain the operand from memory.
» Sometimes the value given in the address field is the address of the operand, but sometimes it is just an

address from which the address of the operand is calculated.
» The basic two mode of addressing used in CPU are direct and indirect address mode.

Direct Address Mode:

v In this mode the effective address is equal to the address part of the instruction.
v The operand resides in memory and its address is given directly by the address field of the instruction.
v"Ina branch-type instruction the address field specifies the actual branch address.

Indirect Address Mode:

v In this mode the address field of the instruction gives the address where the effective address is storedin

memory.
v Control fetches the instruction from memory and uses its address part to access memory again to read

the effective address.

A few addressing modes require that the address field of the instruction be added to the content of a specific

register in the CPU.
| The effective address in these modes is obtained from the following computation:

Effective address =address part of instruction + content of CPU register
| The CPU register used in the computation may be the program counter, an index register, or a base register.
We have a different addressing mode which is used for a different application.

Relative Address Mode:

v In this mode the content of the program counter is added to the address part of the instruction in orderto
obtain the effective address.

Indexed Addressing Mode:

v In this mode the content of an index register is added to the address part of the instruction to obtainthe

effective address.
v"Anindex register is a special CPU register that contains an index value.

Base Register Addressing Mode:

v"In this mode the content of a base register is added to the address part of the instruction to obtain the

effective address.
v This is similar to the indexed addressing mode except that the register is now called a base register

instead of an index register.

Numerical Example:

.1 To show the differences between the various modes, we will show the effect of the addressing modes on the
instruction defined in Fig. 8-7.

Address Memory
| PC =200 l 200 Ioad to AC | Mode
201 Address = 500
I R1 = 400] 202 Next instruction
[XR = 100 I
399 450
I AC I 400 700
500 S00
600 900
702 325
S00 300
Figure 8-7 Numerical example for addressing modes.

| The two-word instruction at address 200 and 201 is a "load to AC" instruction with an address field equal to
500.

| The first word of the instruction specifies the operation code and mode, and the second word specifies the
address part.

| PC has the value 200 for fetching this instruction. The content of processor register R1 is 400, and the content of
an index register XR is 100.

| AC receives the operand after the instruction is executed.

I In the direct address mode the effective address is the address part of the instruction 500 and the operand tobe
loaded into AC is 500.

I In the immediate mode the second word of the instruction is taken as the operand rather than an address, so
500 is loaded into AC.

I In the indirect mode the effective address is stored in memory at address 500. Therefore, the effective addressis
800 and the operand is 300.

I In the relative mode the effective address is 500 + 202 =702 and the operand is 325. (the value in PC after the
fetch phase and during the execute phase is 202.)

I In the index mode the effective address is XR+ 500 = 100 + 500 = 600 and the operand is 900.

| In the register mode the operand is in R1 and 400 is loaded into AC.

| In the register indirect mode the effective address is 400, equal to the content of R1 and the operand loaded
into AC is 700.

| The auto-increment mode is the same as the register indirect mode except that R1 is incremented to 401 after
the execution of the instruction.

| The auto-decrement mode decrements R1 to 399 prior to the execution of the instruction. The operand loaded
into AC is now 450.

| Table 8-4 lists the values of the effective address and the operand loaded into AC for the nine addressing
modes.

TABLE 8-4 Tabular List of Numerical Example

Addressing Effective Content
Mode Address of AC
Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Register — 400
Register indirect 400 700
Autoincrement 400 700

Autodecrement 399 450

4. Data Transfer and Manipulation:

U
U
U
U
U
0

I A

_1 Most computer instructions can be classified into three categories:

1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

Data Transfer Instructions:

Data transfer instructions move data from one place in the computer to another without changing the data

content.
The most common transfers are between memory and processor registers, between processor registers and

input or output, and between the processor registers themselves.
Table 8-5 gives a list of eight data transfer instructions used in many computers.
TABLE 8-5 Typical Data Transfer

Instructions

Name Mnemonic
Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output ouT
Push PUSH
Pop POP

The load instruction has been used mostly to designate a transfer from memory to a processor register, usuallyan
accumulator.

The store instruction designates a transfer from a processor register into memory.

The move instruction has been used in computers with multiple CPU registers to designate a transfer from one
register to another and also between CPU registers and memory or between two memory words.

The exchange instruction swaps information between two registers or a register and a memory word.

The input and output instructions transfer data among processor registers and input or output terminals.

The push and pop instructions transfer data between processor registers and a memory stack.

Different computers use different mnemonics symbols for differentiate the addressing modes.

As an example, consider the load to accumulator instruction when used with eight different addressing modes.
Table 8-6 shows the recommended assembly language convention and actual transfer accomplished in each

case

TABLE 8-6 Eight Addressing Modes for the Load Instruction

Assembly

Mode Convention Register Transfer
Direct address LD ADR AC «—— M[ADR]
Indirect address LD @ADR AC «— M[M[ADR]
Relative address LD SADR AC «— M[PC 4 ADR]
Immediate operand LD FNBR AC «— NBR
Index addressing LD ADR(X) AC «~— M[ADR + XR]
Register LD R1 AC «— R1
Register indirect LD (R1) AC «— M[R1]
Autoincrement LD (R1)}+ AC «— M[R1], R1 «— R1 4+ 1

R1 is a processor register.
AC is the accumulator register.

ADR stands for an address.

NBA a number or operand.

X is an index register.

The @ character symbolizes an indirect addressing.
The $ character before an address makes the address relative to the program counter PC.
The # character precedes the operand in an immediate-mode instruction.

An indexed mode instruction is recognized by a register that placed in parentheses after the symbolic address.
The register mode is symbolized by giving the name of a processor register.

In the register indirect mode, the name of the register that holds the memory address is enclosed in
parentheses.

The auto-increment mode is distinguished from the register indirect mode by placing a plus after the
parenthesized register. The auto-decrement mode would use a minus instead.

Data Manipulation Instructions:

0

0

Data manipulation instructions perform operations on data and provide the computational capabilities for the
computer.

The data manipulation instructions in a typical computer are usually divided into three basic types:

1. Arithmetic instructions
2. Logical and bit manipulation instructions
3. Shift instructions

1. Arithmetic instructions

ANRNERN

<

ANANENENENEN

\

The four basic arithmetic operations are addition, subtraction, multiplication and division.

Most computers provide instructions for all four operations.

Some small computers have only addition and possibly subtraction instructions. The multiplication and division
must then be generated by mean software subroutines.

A list of typical arithmetic instructions is given in Table 8-7.

TABLE 8-7 Typical Arithmetic Instructions

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB
Negate (2’s complement) NEG

The increment instruction adds 1 to the value stored in a register or memory word.
A number with all 1's, when incremented, produces a number with all 0's.
The decrement instruction subtracts 1 from a value stored in a register or memory word.
A number with all 0's, when decremented, produces number with all 1's.
The add, subtract, multiply, and divide instructions may be use different types of data.
The data type assumed to be in processor register during the execution of these arithmetic operations is definedby
an operation code.
An arithmetic instruction may specify fixed-point or floating-point data, binary or decimal data, single-precision
or double-precision data.
The mnemonics for three add instructions that specify different data types are shown below.
ADDI Add two binary integer numbers
ADDF Add two floating-point numbers
ADDD Add two decimal numbers in
BCD
A special carry flip-flop is used to store the carry from an operation.
The instruction "add carry" performs the addition on two operands plus the value of the carry the previous
computation.
Similarly, the "subtract with borrow" instruction subtracts two words and borrow which may have resulted froma
previous subtract operation.
The negate instruction forms the 2's complement number, effectively reversing the sign of an integer when
represented it signed-2's complement form.

2. Logical and bit manipulation instructions

DN NN

<

Logical instructions perform binary operations on strings of bits store, registers.
They are useful for manipulating individual bits or a group of that represent binary-coded information.
The logical instructions consider each bit of the operand separately and treat it as a Boolean variable.
By proper application of the logical instructions it is possible to change bit values, to clear a group of bits, or to
insert new bit values into operands stored in register memory words.
Some typical logical and bit manipulation instructions are listed in Table 8-8.
TABLE 8-8 Typical Logical and Bit

Manipulation Instructions

ANRANIAN

AN

Name Mnemonic
Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR. XOR
Clear carry CERTC
Set carry SETC
Complement carry COMC
Enable interrupt El
Disable interrupt DI

The clear instruction causes the specified operand to be replaced by 0’s.
The complement instruction produces the 1's complement by inverting all bits of the operand.
The AND, OR, and XOR instructions produce the corresponding logical operations on individual bits of
theoperands.
The logical instructions can also be used to performing bit manipulation operations.
There are three bit manipulation operations possible: a selected bit can cleared to 0, or can be set to 1, or canbe
complemented.

o The AND instruction is used to clear a bit or a selected group of bits of an operand.

o The OR instruction is used to set a bit or a selected group of bits of an operand.

o Similarly, the XOR instruction is used to selectively complement bits of an operand.
Other bit manipulations instructions are included in above table perform the operations on individual bits suchas
a carry can be cleared, set, or complemented.
Another example is a flip-flop that controls the interrupt facility and is either enabled or disabled by means of
bit manipulation instructions.

3. Shift Instructions:

Shifts are operations in which the bits of a word are moved to the left or right.

The bit shifted in at the end of the word determines the type of shift used.

Shift instructions may specify logical shifts, arithmetic shifts, or rotate-type operations.
In either case the shift may be to the right or to the left.

Table 8-9 lists four types of shift instructions.

TABLE 8-9 Typical Shift Instrucrions

SNANENENEN

Name Mnemonic
Logical shift right SHR
I.ogical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHILA
Rotate right ROR
Rotate left ROL
Rotate right through carry RORC
R otate left through carry ROLC

The logical shift inset to the end bit position.

The end position is the leftmost bit position for shift rights the rightmost bit position for the shift left.
Arithmetic shifts usually conform to the rules for signed-2's complement numbers.

The arithmetic shift-right instruction must preserve the sign bit in the leftmost position.

The sign bit is shifted to the right together with the rest of the number, but the sign bit itself remains
unchanged.

This is a shift-right operation with the end bit remaining the same.

The arithmetic shift-left instruction inserts O to the end position and is identical to the logical shift-instruction.

ANANENENAN

AN

v" The rotate instructions produce a circular shift. Bits shifted out at one of the word are not lost as in a logical
shift but are circulated back into the other end.

v" The rotate through carry instruction treats a carry bit as an extension of the register whose word is being
rotated.

v" Thus a rotate-left through carry instruction transfers the carry bit into the rightmost bit position of the register,
transfers the leftmost bit position into the carry, and at the same time, shift the entire register to theleft.

5. Program Control:

1 Program control instructions specify conditions for altering the content of the program counter.
_I The change in value of the program counter as a result of the execution of a program control instruction causesa
break in the sequence of instruction execution.
[This instruction provides control over the flow of program execution and a capability for branching to different
program segments.
[1 Some typical program control instructions are listed in Table 8.10.
TABLE 8-10 Typical Program Control Instrucrions

Name Mnemonic
Branch BR
Jump JMP
Skip SKP
Call CALL
Return RET
Compare (by subtraction) CMP

Test (by ANDing) TST

Branch and jump instructions may be conditional or unconditional.

An unconditional branch instruction causes a branch to the specified address without any conditions.

The conditional branch instruction specifies a condition such as branch if positive or branch if zero.

The skip instruction does not need an address field and is therefore a zero-address instruction.

A conditional skip instruction will skip the next instruction if the condition is met. This is accomplished

byincrementing program counter.

| The call and return instructions are used in conjunction with subroutines.

| The compare instruction forms a subtraction between two operands, but the result of the operation not
retained. However, certain status bit conditions are set as a result of operation.

| Similarly, the test instruction performs the logical AND of two operands and updates certain status bits without
retaining the result or changing the operands.

Status Bit Conditions:

(1 The ALU circuit in the CPU have status register for storing the status bit conditions.
[1 Status bits are also called condition-code bits or flag bits.
[0 Figure 8-8 shows block diagram of an 8-bit ALU with a 4-bit status register.

A B

is is
7 T
U]-bit ALU
R I <
1% Y S

; | Fy— F,
‘r T - ;—Fo

Check for zero output

8
|

Output &

Figure 8-8 Starus register bits.

(1 The four status bits are symbolized by C, S, Z, and V. The bits are set or cleared as a result of
anoperation performed in the ALU.
0 Bit C (carry) is set to 1 if the end carry Cg is 1. It is cleared to O if the carry is 0.
0 S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to O if the bit is 0.
0 Bit Z (zero) is set to 1 if the output of the ALU contains all 0's. It is clear to 0 otherwise. In other
words, Z = 1 if the output is zero and Z =0 if the output is not zero.
0 Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries equal to 1, and cleared to
Ootherwise.
[1 The above status bits are used in conditional jump and branch instructions.

Subroutine Call and Return:

(1 Asubroutine is self contained sequence of instructions that performs a given computational task.

(1 The most common names used are call subroutine, jump to subroutine, branch to subroutine, or
branch and save return address.

[1 A subroutine is executed by performing two operations
(1) The address of the next instruction available in the program counter (the return address) is storedin

a temporary location so the subroutine knows where to return

(2) Control is transferred to the beginning of the subroutine.

(1 The last instruction of every subroutine, commonly called return from subroutine, transfers the return
address from the temporary location in the program counter.

(1 Different computers use a different temporary location for storing the return address.

(1 The most efficient way is to store the return address in a memory stack.

(1 The advantage of using a stack for the return address is that when a succession of subroutines is
called, the sequential return addresses can be pushed into the stack.

(1 Assubroutine call is implemented with the following microoperations:

SP <SP =1 Decrement stack pointer
M[SP] «PC Push content of PC onto the stack

PC <« effective address Transfer control to the subroutine

| The instruction that returns from the last subroutine is implemented by the microoperations:

PC < M]|SP] Pop stack and transfer to PC

SP<SP +1 Increment stack pointer

Program Interrupt:

| Program interrupt refers to the transfer of program control from a currently running program to another service
program as a result of an external or internal generated request.
1 The interrupt procedure is similar to a subroutine call except for three variations:
0 The interrupt is initiated by an internal or external signal.
0 Address of the interrupt service program is determined by the hardware.
0 Aninterrupt procedure usually stores all the information rather than storing only PC content.

Types of interrupts:

v" There are three major types of interrupts that cause a break in the normal execution of a program.
v' They can be classified as
o External interrupts:
e These come from input—output (1/0) devices, from a timing device, from a circuit
monitoringthe power supply, or from any other external source.

e Ex: 1/0 device requesting transfer of data, 1/0 device finished transfer of data, elapsed time of
anevent, or power failure.
o Internal interrupts:
e These arise from illegal or erroneous use of an instruction or data.
e Internal interrupts are also called traps.
e EX: interrupts caused by internal error conditions are register overflow, attempt to divide by zero,
aninvalid operation code, stack overflow, and protection violation.
v" Internal and external interrupts are initiated form signals that occur in hardware of CPU.
o Software interrupts
e A software interrupt is initiated by executing an instruction.
e Software interrupt is a special call instruction that behaves like an interrupt rather than a
subroutinecall.

1IN THIS CHAPTER

3.1 Data Types

3.2 Complements

33 Fixed-Point Reprezensstion
34 Floacing-Point Representation
3-5 Other Binary Codes

3.6 Emor Detection Codes

3.1 Data Types

Binary information in digital computers is stored in memory or processor
registers. Registers contain either data or control information, Control informa-
ton is a bit or a group of bits used to specify the sequence of command signals
needed for manipulation of the data in other registers. Data are numbers and
other binary-coded information that are operated on to achieve required com-
putational resuits, In this chapter we present the most common types of data
found in digital computers and show how the vatious data types are repre-
sented in binary-coded form in computer segisters.

The data types found in the registers of digital computeis may be dassi-
fied as being one of the following categories; (1) numbers used in arithmetic
computations, (2)letters of the alphabet used in data processing, and (3) other
discrete symbols used for spedific purposes. All types of data, except binary
numbers, are represented in computer registers in binary coded form. Thisis
because registers are made up of flip-flops and flip-Aops are two-state devices
that can store only 1's and 0’s. The binary number systemis the mostnatural
system to use in a digjtal computer. But sometimes it is convenient to employ
diffevent number systems, especially the decimal number syssem, since it is
used by people to pefoam aritunetic computations.

67

68 CHAPTER THREE Data Representation

decimal

binary

octal
hexademical

conversion

Number Systems

A number system of base, or radix, r is a system that uses distinct symbols for
r digits. Numbers are represented by a string of digit symbols. To determine
the quantity that the number represents, it is necessary to multiply each digit
by an integer power of r and then form the sum of all weighted digits. For
example, the decimal number system in everyday use employs the radix 10
system. The 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The string of digits
7245 is interpreted to represent the quantity

7x10+2x10'+4 x10°+ 5 x 107!

that is, 7 hundreds, plus 2 tens, plus 4 units, plus 5 tenths. Every decimal
number can be similarly interpreted to find the quantity it represents.

The binary number system uses the radix 2. The two digit symbols used
are 0 and 1. Thestring of digits 101101 is interpreted to represent the quantity

1Xx25+0x22+1x2+1x22+0x2'+1x2°=45

To distinguish between different radix numbers, the digits will be enclosed in
parentheses and the radix of the number inserted as a subscript. For example,
to show the equality between decimal and binary forty-five we will write
(101101), = (45)s0.

Besides the decimal and binary number systems, the octal (radix 8) and
hexadecimal (radix 16) are important in digital computer work. The eight sym-
bols of the octal system are 0, 1, 2, 3, 4, 5, 6, and 7. The 16 symbols of the
hexadecimal system are 0, 1,2, 3,4,5,6,7,8,9, A, B,C,D, E, and F. The last
six symbols are, unfortunately, identical to the letters of the alphabet and can
cause confusion at times. However, this is the convention that has been
adopted. When used to represent hexadecimal digits, the symbols A, B, C, D,
E, F correspond to the decimal numbers 10, 11, 12, 13, 14, 15, respectively.

A number in radix r can be converted to the familiar decimal system by
forming the sum of the weighted digits. For example, octal 736.4 is converted
to decimal as follows:

(7364)y =7 x 8 +3 x 8 +6x 8 +4 x 87!
=7x64+3%x8+6x1+48=(478.5)0

The equivalent decimal number of hexadecimal F3 is obtained from the follow-
ing calculation:

(F3js=F x 16 + 3 =15 x 16 + 3 = (243)y

Conversion from decimal to its equivalent representation in the radix r system
is carried out by separating the number into its integer and fraction parts and

SECTION 3.1 Data Types 69

converting each part separately. The conversion of a decimal integer into a base
r representation is done by successive divisions by r and accumulation of the
remainders. The conversion of a decimal fraction to radix r representation is
accomplished by successive multiplications by r and accumulation of the in-
teger digits so obtained. Figure 3-1 demonstrates these procedures.

The conversion of decimal 41.6875 into binary is done by first separating
the number into its integer part 41 and fraction part .6875. The integer part is
converted by dividing 41 by r = 2 to give an integer quotient of 20 and a
remainder of 1. The quotient is again divided by 2 to give a new quotient and
remainder. This process is repeated until the integer quotient becomes 0. The
coefficients of the binary number are obtained from the remainders with the
first remainder giving the low-order bit of the converted binary number.

The fraction part is converted by multiplying itby r = 2 to give an integer
and a fraction. The new fraction (without the integer) is multiplied again by 2
to give a new integer and a new fraction. This process is repeated until the
fraction part becomes zero or until the number of digits obtained gives the
required accuracy. The coefficients of the binary fraction are obtained from
the integer digits with the first integer computed being the digit to be placed
next to the binary point. Finally, the two parts are combined to give the total
required conversion.

Octal and Hexadecimal Numbers

The conversion from and to binary, octal, and hexadecimal representation
plays an important part in digital computers. Since 2° = 8 and 2* = 16, each
octal digit corresponds to three binary digits and each hexadecimal digit cor-
responds to four binary digits. The conversion from binary to octal is easily
accomplished by partitioning the binary number into groups of three bits each.
The corresponding octal digit is then assigned to each group of bits and the
string of digits so obtained gives the octal equivalent of the binary number.
Consider, for example, a 16-bit register. Physically, one may think of the

Figure 3-1 Conversion of decimal 41.6875 into binary.

Integer = 41 Fraction = 0.6875

41 0.6875
20 |1 2
10 |0 1.3750
510 x 2
21 0.7500
1]0 x 2
01 1.5000
x 2
1.0000

(41),0 =(101001), (0.6875),0 = (0.1011),

(41.6875),5 = (101001.1011),

70

CHAPTER THREE Data Representation

1 2 7 5 4 3 Octal
N p— S N N —
101011110110001 1 Binary

A F 6 3 Hexadecimal

Figure 3-2 Binary, octal, and hexadecimal conversion.

register as composed of 16 binary storage cells, with each cell capable of
holding eithera1ora 0. Suppose that the bit configuration stored in the register
is as shown in Fig. 3-2. Since a binary number consists of a string of 1's and
0's, the 16-bit register can be used to store any binary number from 0 to 2'¢ — 1.
For the particular example shown, the binary number stored in the register is
the equivalent of decimal 44899. Starting from the low-order bit, we partition
the register into groups of three bits each (the sixteenth bit remains in a group
by itself). Each group of three bits is assigned its octal equivalent and placed
on top of the register. The string of octal digits so obtained represents the octal
equivalent of the binary number.

Conversion from binary to hexadecimal is similar except that the bits are
divided into groups of four. The corresponding hexadecimal digit for each
group of four bits is written as shown below the register of Fig. 3-2. The string
of hexadecimal digits so obtained represents the hexadecimal equivalent of the
binary number. The corresponding octal digit for each group of three bits is
easily remembered after studying the first eight entries listed in Table 3-1. The
correspondence between a hexadecimal digit and its equivalent 4-bit code can
be found in the first 16 entries of Table 3-2.

TABLE 3-1 Binary-Coded Octal Numbers

Octal Binary-coded Decimal

number octal equivalent

0 000 0 T
1 001 1
2 010 2 Code
3 011 3 for one
4 100 4 octal
5 101 5 digit
6 110 6
7 m 7 l
10 001 000 8

11 001 001 9

12 001 010 10

24 010 100 20

62 110 010 50

143 001 100 011 %9

370 011 111 000 248

SECTION 3.1 Data Types 71

Table 3-1 lists a few octal numbers and their representation in registers
in binary-coded form. The binary code is obtained by the procedure explained
above. Each octal digit is assigned a 3-bit code as specified by the entries of the
first eight digits in the table. Similarly, Table 3-2 lists a few hexadecimal
numbers and their representation in registers in binary-coded form. Here the
binary code is obtained by assigning to each hexadecimal digit the 4-bit code
listed in the first 16 entries of the table.

Comparing the binary-coded octal and hexadecimal numbers with their
binary number equivalent we find that the bit combination in all three repre-
sentations is exactly the same. For example, decimal 99, when converted to
binary, becomes 1100011. The binary-coded octal equivalent of decimal 99 is
001 100 011 and the binary-coded hexadecimal of decimal 99 is 0110 0011. If
we neglect the leading zeros in these three binary representations, we find that
their bit combination is identical. This should be so because of the straightfor-
ward conversion that exists between binary numbers and octal or hexadecimal.
The point of all this is that a string of 1’s and 0’s stored in a register could
represent a binary number, but this same string of bits may be interpreted as
holding an octal number in binary-coded form (if we divide the bits in groups
of three) or as holding a hexadecimal number in binary-coded form (if we
divide the bits in groups of four).

TABLE 3-2 Binary-Coded Hexadecimal Numbers

Hexadecimal ~ Binary-coded Decimal
number hexadecimal equivalent

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
S 0101 S
6 0110 6 Code
7 0111 7 for one
8 1000 8 hexadecimal
9 1001 9 digit
A 1010 10
B 1011 1
C 1100 12
D 1101 13
E 1110 14
F 1111 15
14 0001 0100 20
32 0011 0010 50
63 0110 0011 99

F8 1111 1000 248

72 CHAPTER THREE Data Representation

binary code

BCD

The registers in a digital computer contain many bits. Specifying the
content of registers by their binary values will require a long string of binary
digits. It is more convenient to specify content of registers by their octal or
hexadecimal equivalent. The number of digits is reduced by one-third in the
octal designation and by one-fourth in the hexadecimal designation. For exam-
ple, the binary number 1111 1111 1111 has 12 digits. It can be expressed in
octals as 7777 (four digits) or in hexadecimal as FFF (three digits). Computer
manuals invariably choose either the octal or the hexadecimal designation for
specifying contents of registers.

Decimal Representation

The binary number system is the most natural system for a computer, but
people are accustomed to the decimal system. One way to solve this conflict
is to convert all input decimal numbers into binary numbers, let the computer
perform allarithmetic operations in binary and then convert the binary results
back to decimal for the human user to understand. However, it is also possible
for the computer to perform arithmetic operations directly with decimal num-
bers provided they are placed in registers in a coded form. Decimal numbers
enter the computer usually as binary-coded alphanumeric characters. These
codes, introduced later, may contain from six to eight bits for each decimal
digit. When decimal numbers are used for internal arithmetic computations,
they are converted to a binary code with four bits per digit.

A binary code is a group of n bits that assume up to 2" distinct combina-
tions of 1’s and 0’s with each combination representing one element of the set
that is being coded. For example, a set of four elements can be coded by a 2-bit
code with each element assigned one of the following bit combinations; 00, 01,
10, or 11. A set of eight elements requires a 3-bit code, a set of 16 elements
requires a 4-bit code, and so on. A binary code will have some unassigned bit
combinations if the number of elements in the set is not a multiple power of
2. The 10 decimal digits form such a set. A binary code that distinguishes
among 10 elements must contain at least four bits, but six combinations will
remain unassigned. Numerous different codes can be obtained by arranging
four bits in 10 distinct combinations. The bit assignment most commonly used
for the decimal digits is the straight binary assigninent listed in the first 10
entries of Table 3-3. This particular code is called binary-coded decimal and is
commonly referred to by its abbreviation BCD. Other decimal codes are some-
times used and a few of them are given in Sec. 3-5.

It is very important to understand the difference between the conversion
of decimal numbers into binary and the binary coding of decimal numbers. For
example, when converted to a binary number, the decimal number 99 is repre-
sented by the string of bits 1100011, but when represented in BCD, it becomes
1001 1001. The only difference between a decimal number represented by the
familiar digit symbols 0, 1, 2, . .., 9 and the BCD symbols 0001, 0010, ..., 1001
isin the symbols used to represent the digits—the number itself is exactly the

character

Ascl

SECTION 3.1 Data Types 73

TABLE 3-3 Binary-Coded Decimal (BCD) Numbers

Decimal Binary-coded decimal

number (BCD) number
0 0000
1 0001
2 0010
3 0011 Code
4 0100 for one
5 0101 decimal
6 0110 digit
7 0111
8 1000 J
9 1001
10 0001 0000
20 0010 0000
50 0101 0000
99 1001 1001
248 0010 0100 1000

same. A few decimal numbers and their representation in BCD are listed in
Table 3-3.

Alphanumeric Representation

Many applications of digital computers require the handling of data that
consist not only of numbers, but also of the letters of the alphabet and certain
special characters. An alphanumeric character set is a set of elements that includes
the 10 decimal digits, the 26 letters of the alphabet and a number of special
characters, suchas $, +, and =. Such a set contains between 32 and 64 elements
(if only uppercase letters are included) or between 64 and 128 (if both uppercase
and lowercase letters are included). In the first case, the binary code will require
six bits and in the second case, seven bits. The standard alphanumeric binary
code is the ASCII (American Standard Code for Information Interchange),
which uses seven bits to code 128 characters. The binary code for the uppercase
letters, the decimal digits, and a few special characters is listed in Table 3-4.
Note that the decimal digits in ASCII can be converted to BCD by removing
the three high-order bits, 011. A complete list of ASCII characters is provided
in Table 11-1.

Binary codes play an important part in digital computer operations. The
codes must be in binary because registers can only hold binary information.
One must realize that binary codes merely change the symbols, not the mean-
ing of the discrete elements they represent. The operations specified for digital

74

CHAPTER THREE Data Representation

TABLE 3-4 American Standard Code for Information Interchange (ASCII)

Binary Binary
Character code Character code

A 100 0001 0 011 0000
B 100 0010 1 011 0001
C 100 0011 2 011 0010
D 100 0100 3 011 0011
E 100 0101 4 011 0100
F 100 0110 5 011 0101
G 100 0111 6 011 0110
H 100 1000 7 011 0111
1 100 1001 8 011 1000
J 100 1010 9 011 1001
K 100 1011
L 100 1100
M 100 1101 space 010 0000
N 100 1110 . 010 1110
o 100 1111 (010 1000
P 101 0000 + 010 1011
Q 101 0001 $ 010 0100
R 101 0010 * 010 1010
S 101 0011) 010 1001
T 101 0100 - 010 1101
8) 101 0101 / 010 1111
\% 101 0110 s 010 1100
w 101 0111 = 011 1101
X 101 1000
Y 101 1001
z 101 1010

computers must take into consideration the meaning of the bits stored in
registers so that operations are performed on operands of the same type. In
inspecting the bits of a computer register at random, one is likely to find that
it represents some type of coded information rather than a binary number.

Binary codes can be formulated for any set of discrete elements such as
the musical notes and chess pieces and their positions on the chessboard.
Binary codes are also used to formulateinstructions that specify control infor-
mation for the computer. This chapter is concerned with data representation.
Instruction codes are discussed in Chap. 5.

3-2 Complements

Complements are used in digital computers for simplifying the subtraction
operation and for logical manipulation. There are two types of complements
for each base r system: the r’s complement and the (r — 1)’s complement.

9’s complement

1’s complement

10’s complement

2's complement

SECTION 3.2 Complements 75

When the value of the base r is substituted in the name, the two types are
referred to as the 2’s and 1’s complement for binary numbers and the 10’s and
9’s complement for decimal numbers.

(r — 1)’s Complement
Given a number N in base r having n digits, the (r — 1)’'s complement of N is
defined as (** — 1) — N. For decimal numbersr = 10 andr — 1 = 9, so the 9’s
complement of N is (10" — 1) — N. Now, 10"represents a number that consists
of a single 1 followed by n 0’s. 10" — 1 is a number represented by n 9’s. For
example, with n = 4 we have 10* = 10000 and 10* — 1 = 9999. It follows that
the 9’s complement of a decimal number is obtained by subtracting each digit
from 9. For example, the 9’s complement of 546700 is 999999 — 546700 =
453299 and the 9’s complement of 12389 is 99999 — 12389 = 87610.

For binary numbers, r = 2andr — 1 = 1, sothe 1’s complement of N is
(2" — 1) — N. Again, 2" is represented by a binary number that consists of a 1
followed by n 0’s. 2" — 1is a binary number represented by n 1’s. For example,
with n = 4, we have 2* = (10000), and 2* — 1 = (1111),. Thus the 1’s comple-
ment of abinary number is obtained by subtracting each digit from 1. However,
the subtraction of a binary digit from 1 causes the bit to change from 0 to 1 or
from 1 to 0. Therefore, the 1's complement of a binary number is formed by
changing 1’s into 0’s and 0’s into 1’s. For example, the 1's complement of
1011001 is 0100110 and the 1’s complement of 0001111 is 1110000.

The (r — 1)’s complement of octal or hexadecimal numbers are obtained
by subtracting each digit from 7 or F (decimal 15) respectively.

(r’s) Complement

The r’s complement of an n-digit number N in base r is defined as r" — N for
N # 0and 0 for N = 0. Comparing with the (r — 1)’s complement, we note
that the r’s complement is obtained by adding 1 to the (r — 1)’s complement
since r" — N = [(r" — 1) = N] + 1. Thus the 10’s complement of the decimal
2389 is 7610 + 1 = 7611 and is obtained by adding 1 to the 9's complement
value. The 2’s complement of binary 101100 is 010011 + 1 = 010100 and is
obtained by adding 1 to the 1's complement value.

Since 10" is a number represented by a 1 followed by n 0’s, then 10" — N,
which is the 10’s complement of N, can be formed also be leaving all least
significant 0’s unchanged, subtracting the first nonzero least significant digit
from 10, and then subtracting all higher significant digits from 9. The 10’s
complement of 246700 is 753300 and is obtained by leaving the two zeros
unchanged, subtracting 7 from 10, and subtracting the other three digits from
9. Similarly, the 2’s complement can be formed by leaving all least significant
0’s and the first 1 unchanged, and then replacing 1's by 0’s and 0’s by 1’s in
all other higher significant bits. The 2’s complement of 1101100 is 0010100 and
is obtained by leaving the two low-order 0’s and the first 1 unchanged, and then
replacing 1’s by 0’s and 0’s by 1’s in the other four most significant bits.

76 CHAPTER THREE Data Representation

subtraction

end carry

In the definitions above it was assumed that the numbers do not have a
radix point. If the or