

LECTURE NOTES

ON

Operating Systems

20A05402T

II B.TECH II SEMESTER OF CSE

(JNTUA-R20)

Mr. M Nanda Kishore

Assistant Professor

Department of Computer Science & Engineering

VEMU INSTITUTE OF TECHNOLOGY:: P.KOTHAKOTA

Chittoor-Tirupati National Highway, P.Kothakota, Near Pakala, Chittoor (Dt.), AP - 517112
(Approved by AICTE New Delhi, Permanently Affiliated to JNTUA, Ananthapuramu,

Accredited by NAAC, Recognized Under 2(F) &12(B) of UGC Act, An ISO 9001:2015 Certified Institute)

2020-21

 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR
 (Established by Govt. of A.P., ACT No.30 of 2008)
 ANANTHAPURAMU – 515 002 (A.P) INDIA
Computer Science & Engineering

Course Code OPERATING SYSTEMS 20A05402T

(Common to CSE, IT, CSE(DS), CSE (IoT), CSE

(AI), CSE (AI & ML) and AI & DS)

 L T P C

 3 0 0 3

Course Objectives:

The course is designed to

• Understand basic concepts and functions of operating systems

• Understand the processes, threads and scheduling algorithms.

• Provide good insight on various memory management techniques

• Expose the students with different techniques of handling deadlocks

• Explore the concept of file-system and its implementation issues

• Familiarize with the basics of the Linux operating system

• Implement various schemes for achieving system protection and security

Course Outcomes (CO):

After completion of the course, students will be able to

• Realize how applications interact with the operating system

• Analyze the functioning of a kernel in an Operating system.

• Summarize resource management in operating systems

• Analyze various scheduling algorithms

• Examine concurrency mechanism in Operating Systems

• Apply memory management techniques in the design of operating systems

• Understand the functionality of the file system

• Compare and contrast memory management techniques.

• Understand deadlock prevention and avoidance.

• Perform administrative tasks on Linux based systems.

UNIT - I Operating Systems Overview, System Structures 8Hrs

Operating Systems Overview: Introduction, Operating system functions, Operating

systems

operations, Computing environments, Open-Source Operating Systems

System Structures: Operating System Services, User and Operating-System Interface,

systems calls,

Types of System Calls, system programs, Operating system Design and Implementation,

Operating

system structure, Operating system debugging, System Boot.

UNIT - II Process Concept, Multithreaded Programming,Process

Scheduling, Inter-process Communication

10Hrs

Process Concept: Process scheduling, Operations on processes, Inter-process

communication,

Communication in client server systems.

Multithreaded Programming: Multithreading models, Thread libraries, Threading issues,

Examples.

Process Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple

processor

scheduling, Thread scheduling, Examples.

Inter-process Communication: Race conditions, Critical Regions, Mutual exclusion with

busy

waiting, Sleep and wakeup, Semaphores, Mutexes, Monitors, Message passing, Barriers,

Classical IPC

Problems - Dining philosophers problem, Readers and writers problem.

UNIT - III Memory-Management Strategies, Virtual Memory

Management

Lecture 8Hrs

Memory-Management Strategies: Introduction, Swapping, Contiguous memory

allocation, Paging,

Segmentation, Examples.

Virtual Memory Management: Introduction, Demand paging, Copy on-write, Page

replacement,

Frame allocation, Thrashing, Memory-mapped files, Kernel memory allocation, Examples.

UNIT - IV Deadlocks, File Systems Lecture 9Hrs

Deadlocks: Resources, Conditions for resource deadlocks, Ostrich algorithm, Deadlock

detection And

recovery, Deadlock avoidance, Deadlock prevention.

File Systems: Files, Directories, File system implementation, management and

optimization.

Secondary-Storage Structure: Overview of disk structure, and attachment, Disk scheduling,

RAID

structure, Stable storage implementation.

UNIT - V System Protection, System Security Lecture 8Hrs

System Protection: Goals of protection, Principles and domain of protection, Access

matrix, Access

control, Revocation of access rights.

System Security: Introduction, Program threats, System and network threats, Cryptography

as a

security, User authentication, implementing security defenses, firewalling to protect

systems and

networks, Computer security classification.

Case Studies: Linux, Microsoft Windows.

Textbooks:

1. Silberschatz A, Galvin P B, and Gagne G, Operating System Concepts, 9th edition,

Wiley,

2016.

2. Tanenbaum A S, Modern Operating Systems, 3rd edition, Pearson Education, 2008.

(Topics: Inter-process Communication and File systems.)

Reference Books:

1. Tanenbaum A S, Woodhull A S, Operating Systems Design and Implementation, 3rd

edition,

PHI, 2006.

2. Dhamdhere D M, Operating Systems A Concept Based Approach, 3rd edition, Tata

McGraw-

Hill, 2012.

3. Stallings W, Operating Systems -Internals and Design Principles, 6th edition, Pearson

Education, 2009

4. Nutt G, Operating Systems, 3rd edition, Pearson Education, 2004

Online Learning Resources:

https://nptel.ac.in/courses/106/106/106106144/
http://peterindia.net/OperatingSystems.html

Page 5

UNIT-1

Operating System Overview
OVER VIEW OF OPERATING SYSTEM

What is an Operating System?

A program that acts as an intermediary between a user of a computer and the computer hardware

Operating system goals:

• Execute user programs and make solving user problems easier

• Make the computer system convenient to use

• Use the computer hardware in an efficient manner

Computer System Structure

• Computer system can be divided into four components

• Hardware – provides basic computing resources

• CPU, memory, I/O devices

Operating system

Controls and coordinates use of hardware among various applications and users

Application programs – define the ways in which the system resources are used to solve the computing

problems of the usersWord processors, compilers, web browsers, database systems, video games

Users

People, machines, other computers

Four Components of a Computer System

Operating System Definition

• OS is a resource allocator

• Manages all resources

• Decides between conflicting requests for efficient and fair resource use

• OS is a control program

• Controls execution of programs to prevent errors and improper use of the computer

• No universally accepted definition

• Everything a vendor ships when you order an operating system” is good approximation

But varies wildly.

• “The one program running at all times on the computer” is the kernel. Everything else is either a

system program (ships with the operating system) or an application program

Computer Startup

• bootstrap program is loaded at power-up or reboot

• Typically stored in ROM or EPROM, generally known as firmware

• Initializes all aspects of system

• Loads operating system kernel and starts execution

Computer System Organization

• Computer-system operation

Page 6

• One or more CPUs, device controllers connect through common bus providing access to shared

memory

• Concurrent execution of CPUs and devices competing for memory cycles

Operating-System Operations

• Interrupt driven by hardware

• Software error or request creates exception ortrap

• Division by zero, request for operating system service

• Other process problems include infinite loop, processes modifying each other or the

operating system

• Dual-mode operation allows OS to protect itself and other systemcomponents

o User mode and kernelmode

o Mode bit provided byhardware

o Providesabilitytodistinguishwhensystemisrunningusercodeorkernel code

o Someinstructionsdesignatedasprivileged,onlyexecutableinkernel mode

o System call changes mode to kernel, return from call resets it to user

Transition from User to Kernel Mode

✓ Timer to prevent infinite loop / process hogging resources

• Set interrupt after specific period

• Operating system decrements counter

• When counter zero generate an interrupt

Set up before scheduling process to regain control or terminate program that exceeds allotted

Page 7

Protection and Security:

✓ Protection – any mechanism for controlling access of processes or users to resources

defined by the OS

✓ Security – defense of the system against internal and externalattacks

o Huge range, including denial-of-service, worms, viruses, identity theft, theft of

service

o Systems generally first distinguish among users, to determine who can dowhat

o User identities (user IDs, security IDs) include name and associated number, one

per user

o User ID then associated with all files, processes of that user to determine access

control

o Group identifier (group ID) allows set of users to be defined and controls

managed, then also associated with each process,file

o Privilege escalation allows user to change to effective ID with morerights

Computing Environments:

Client-Server Computing

o Dumb terminals supplanted by smart PCs

o Many systems now servers, responding to requests generated byclients

• Compute-

serverprovidesaninterfacetoclienttorequestservices(i.e.,

database)

• File-server provides interface for clients to store and retrieve files

Page 8

Peer to Peer:

✓ P2P does not distinguish clients and servers

o Instead all nodes are considered peers

o May each act as client, server orboth

o Node must join P2P network

o Registers its service with central lookup service on network, or

o Broadcast request for service and respond to requests for service via

discovery protocol

o Examples include Napster andGnutella

Web-Based Computing

✓ Web has become ubiquitous

✓ PCs most prevalent devices

✓ More devices becoming networked to allow webaccess

✓ New category of devices to manage web traffic among similar servers: load balancers

✓ Use of operating systems like Windows 95, client-side, have evolved into Linux and

Windows XP, which can be clients andservers

Open-Source Operating Systems:

✓ Operating systems made available in source-code format rather than just binary closed-

source

✓ Counter to the copy protectionand Digital Rights Management(DRM)movement

✓ Started by Free Software Foundation (FSF), which has “copyleft” GNU Public

License (GPL)

Page 9

✓ Examples include GNU/Linux and BSD UNIX(including core of Mac OS X), and many

more

Operating System Services:

✓ Operating systems provide an environment for execution of programs and services to

programs and users

✓ One set of operating-system services provides functions that are helpful to theuser:

o User interface - Almost all operating systems have a user interface(UI).

4 Varies between Command-Line (CLI), Graphics User Interface (GUI),

Batch

o Program execution - The system must be able to load a program into memory

and to run that program, end execution, either normally or abnormally (indicating

error)

o I/O operations - A running program may require I/O, which may involve a file

or an I/O device

o File-system manipulation - The file system is of particular interest. Programs

need to read and write files and directories, create and delete them, search them,

list file Information, permission management.

o Communications – Processes may exchange information, on the same computer

or between computers over a network

4Communicationsmaybeviasharedmemoryorthroughmessagepassing

(packets moved by theOS)

o Error detection – OS needs to be constantly aware of possibleerrors

4MayoccurintheCPUandmemoryhardware,inI/Odevices,inuser

program

4Foreachtypeoferror,OSshouldtaketheappropriateactiontoensure

correct and consistentcomputing

4Debuggingfacilitiescangreatlyenhancetheuser’sandprogrammer’s

abilities to efficiently use thesystem

✓ Another set of OS functions exists for ensuring the efficient operation of the system itself

via resource sharing

o Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them

4Manytypesofresources-Some(suchasCPUcycles,mainmemory,and

filestorage)mayhavespecialallocationcode,others(suchasI/Odevices)

may have general request and releasecode

Page 10

o Accounting - To keep track of which users use how much and what kinds of

computer resources

o Protection and security - The owners of information stored in a multiuser or

networked computer system may want to control use of that information,

concurrent processes should not interfere with eachother

4Protectioninvolvesensuringthatallaccesstosystemresourcesis

controlled

4 Security of the system from outsiders requires user authentication,

extendstodefendingexternalI/Odevicesfrominvalidaccessattempts

4Ifasystemistobeprotectedandsecure,precautionsmustbeinstituted

throughoutit.Achainisonlyasstrongasitsweakestlink.

System Calls:

✓ Programming interface to the services provided by theOS

✓ Typically written in a high-level language (C or C++)

✓ Mostly accessed by programs via a high-level Application Program Interface

(API)rather than direct system calluse

✓ Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based

systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API

for the Java virtual machine(JVM)

✓ Why use APIs rather than systemcalls?

Page 11

(Note that the system-call names used throughout this text are generic)

Types of System Calls:

✓ Process control

o end, abort

o load, execute

o create process, terminate process

o get process attributes, set processattributes

o wait for time

o wait event, signal event

o allocate and free memory

✓ File management

o create file, delete file

o open, close file

o read, write, reposition

o get and set file attributes

✓ Device management

o request device, release device

Page 12

o read, write, reposition

o get device attributes, set device attributes

o logically attach or detach devices

✓ Information maintenance

o get time or date, set time ordate

o get system data, set systemdata

o get and set process, file, or device attributes

✓ Communications

o create, delete communication connection

o send, receive messages

o transfer status information

o attach and detach remote devices

System Programs:

✓ System programs provide a convenient environment for program development and

execution. They can be divided into:

o File manipulation

o Statusinformation

o File modification

o Programming language support

o Program loading and execution

o Communications

o Application programs

o Most users’ view of the operation system is defined by system programs, not the

actual system calls

✓ Provide a convenient environment for program development and execution

o Some of them are simply user interfaces to system calls; others are considerably

more complex

o File management - Create, delete, copy, rename, print, dump, list, and generally

manipulate files and directories

✓ Status information

o Some ask the system for info - date, time, amount of available memory, disk

space, number of users

o Others provide detailed performance, logging, and debugginginformation

Page 13

o Typically, these programs format and print the output to the terminal or other

output devices

o Some systems implement a registry - used to store and retrieve configuration

information

✓ File modification

o Text editors to create and modify files

o Special commands to search contents of files or perform transformations of the

text

o Programming-language support - Compilers, assemblers, debuggers and

interpreters sometimes provided

✓ Program loading and execution- Absolute loaders, relocatable loaders, linkage editors,

and overlay-loaders, debugging systems for higher-level and machinelanguage

✓ Communications - Provide the mechanism for creating virtual connections among

processes, users, and computersystems

o Allow users to send messages to one another’s screens, browse web pages, send

electronic-mail messages, log in remotely, transfer files from one machine to

another

Operating-System Debugging:

✓ Debuggingis finding and fixing errors, orbugs

✓ OSes generate log filescontaining errorinformation

✓ Failure of an application can generate core dumpfile capturing memory of theprocess

✓ Operating system failure can generate crash dumpfile containing kernel memory

✓ Beyond crashes, performance tuning can optimize systemperformance

✓ Kernighan’s Law: “Debugging is twice as hard as writing the code in the firstplace.

Therefore, if you write the code as cleverly as possible, you are, by definition, not smart

enough to debug it.”

✓ DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation on production

systems

o Probes fire when code is executed, capturing state data and sending it to

consumers of those probes

Operating System Generation:

✓ Operating systems are designed to run on any of a class of machines; the system must be

configured for each specific computer site

✓ SYSGEN program obtains information concerning the specific configuration of the

hardware system

Page 14

✓ Booting – starting a computer by loading the kernel

✓ Bootstrap program – code stored in ROM that is able to locate the kernel, load it into

memory, and start its execution

System Boot

✓ Operating system must be made available to hardware so hardware can startit

o Small piece of code – bootstrap loader, locates the kernel, loads it into memory,

and starts it

o Sometimes two-step process where boot block at fixed location loads bootstrap

loader

o When power initialized on system, execution starts at a fixed memorylocation

Firmware used to hold initial boot code

Page 15

UNIT-2

PROCESS THREADS, PROCESS SYNCHRONISATON,

CPUSCHEDULING
Process Concept:

✓ An operating system executes a variety ofprograms:

o Batch system –jobs

o Time-shared systems – user programs ortasks

o Textbook uses the terms job and process almostinterchangeably

✓ Process – a program in execution; process execution must progress in sequentialfashion

✓ A process includes:

o program counter

o stack

o data section

The Process:

✓ Multiple parts

o The program code, also called textsection

o Current activity including program counter, processorregisters

o Stack containing temporary data

o Function parameters, return addresses, local variables

o Data section containing global variables

o Heap containing memory dynamically allocated during runtime

✓ Program is passive entity, process isactive

o Program becomes process when executable file loaded intomemory

✓ Execution of program started via GUI mouse clicks, command line entry of its name,etc

✓ One program can be several processes

o Consider multiple users executing the same program

Page 16

Process State:

✓ As a process executes, it changesstate

o new: The process is beingcreated

o running: Instructions are being executed

o waiting: The process is waiting for some event tooccur

o ready: The process is waiting to be assigned to aprocessor

o terminated: The process has finishedexecution

Process Control Block (PCB):

Information associated with each process

Page 17

✓ Process state

✓ Program counter

✓ CPU registers

✓ CPU scheduling information

✓ Memory-management information

✓ Accounting information

✓ I/O status information

Process Scheduling:

✓ Maximize CPU use, quickly switch processes onto CPU for timesharing

✓ Process scheduler selects among available processes for next execution onCPU

✓ Maintains scheduling queues of processes

Page 18

o Job queue – set of all processes in thesystem

o Ready queue – set of all processes residing in main memory, ready and waiting to

execute

o Device queues – set of processes waiting for an I/Odevice

o Processes migrate among the various queues

Schedulers:

✓ Long-term scheduler(or job scheduler) – selects which processes should be brought into

the ready queue

✓ Short-term scheduler(or CPU scheduler) – selects which process should be executed

next and allocates CPU

o Sometimes the only scheduler in a system

✓ Short-term scheduler is invoked very frequently (milliseconds)  (must be fast)

✓ Long-term scheduler is invoked very infrequently (seconds, minutes)  (may beslow)

✓ The long-term scheduler controls the degree ofmultiprogramming

✓ Processes can be described aseither:

o I/O-bound process– spends more time doing I/O than computations, many short

CPU bursts

o CPU-bound process– spends more time doing computations; few very long CPU

bursts

Page 19

Threads

✓ Threads run within application

✓ Multiple tasks with the application can be implemented by separatethreads

o Update display

o Fetch data

o Spell checking

o Answer a network request

✓ Process creation is heavy-weight while thread creation islight-weight

✓ Can simplify code, increase efficiency

✓ Kernels are generally multithreaded

Multithreaded Server Architecture:

Page 20

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

User Threads:

 Thread management done by user-level threads library

 Three primary thread libraries:

o POSIX Pthreads

o Win32 threads

o Java threads

Kernel Threads:

 Supported by the Kernel

 Examples

o Windows XP/2000

o Solaris

o Linux

o Tru64 UNIX

o Mac OS X

Multithreading Models:

Page 21

 Many-to-One

 One-to-One

 Many-to-Many

Many-to-One

 Many user-level threads mapped to single kernel thread

 Examples:

o Solaris Green Threads

o GNU Portable Threads

One-to-One:

 Each user-level thread maps to kernel thread

 Examples

o Windows NT/XP/2000

o Linux

o Solaris 9 and later

Page 22

Many-to-Many Model:

 Allows many user level threads to be mapped to many kernelthreads

 Allows the operating system to create a sufficient number of kernelthreads

 Solaris prior to version 9

 Windows NT/2000 with the ThreadFiberpackage

Thread Libraries:

 Thread library provides programmer with API for creating and managingthreads

 Two primary ways of implementing

o Library entirely in user space

o Kernel-level library supported by the OS

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation andsynchronization

 API specifies behavior of the thread library, implementation is up to development of the

library

 Common in UNIX operating systems (Solaris, Linux, Mac OSX)

Page 23

Java Threads:

 Java threads are managed by the JVM

 Typically implemented using the threads model provided by underlyingOS

 Java threads may be created by:

o Extending Thread class

o Implementing the Runnable interface

Threading Issues:

 Semantics of fork() and exec() systemcalls

Page 24

 Thread cancellation of targetthread

o Asynchronous or deferred

o Signalhandling

o Synchronous and asynchronous

 Thread pools

 Thread-specific data

n Create Facility needed for data private to thread

 Scheduler activations

Thread Cancellation:

 Terminating a thread before it has finished

 Two general approaches:

o Asynchronous cancellation terminates the target thread immediately.

o Deferred cancellation allows the target thread to periodically check if it should be

cancelled.

Thread Pools:

 Create a number of threads in a pool where they await work

 Advantages:

o Usually slightly faster to service a request with an existing thread than create a

new thread

o Allows the number of threads in the application(s) to be bound to the size of the

pool

Scheduler Activations:

 Both M:M and Two-level models require communication to maintain the appropriate

number of kernel threads allocated to the application

 Scheduler activations provide upcalls - a communication mechanism from the kernel to

the thread library

 This communication allows an application to maintain the correct number kernelthreads

Lightweight Processes

Page 25

Critical Section Problem:

 Consider system of n processes {p0, p1, …pn-1}

 Each process has critical section segment ofcode

o Process may be changing common variables, updating table, writing file,etc

o When one process in critical section, no other may be in its criticalsection

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in entry section, may follow

critical section with exit section, then remaindersection

 Especially challenging with preemptive kernels

General structure of process piis

Solution to Critical-Section Problem:

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can

be executing in their critical sections

Page 26

2. Progress - If no process is executing in its critical section and there exist some processes that

wish to enter their critical section, then the selection of the processes that will enter the critical

section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other processes are

allowed to enter their critical sections after a process has made a request to enter its critical

section and before that request is granted

ó Assume that each process executes at a nonzerospeed

ó No assumption concerning relative speed of the nprocesses

Peterson’s Solution:

 Two process solution

 Assume that the LOAD and STORE instructions are atomic; that is, cannot beinterrupted

 The two processes share two variables:

o intturn;

o Booleanflag[2]

o The variable turn indicates whose turn it is to enter the criticalsection

 The flag array is used to indicate if a process is ready to enter the critical section.flag[i]

= true implies that process Piis ready!

Algorithm for Process Pi

do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

 Provable that

1. Mutual exclusion is preserved

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Synchronization Hardware:

 Many systems provide hardware support for critical sectioncode

Page 27

 Uniprocessors – could disableinterrupts

o Currently running code would execute without preemption

o Generally too inefficient on multiprocessor systems

4Operating systems using this not broadly scalable

4 Modern machines provide special atomic hardware instructions

4 Atomic = non-interruptable

o Either test memory word and set value

o Or swap contents of two memorywords

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

Semaphore:

 Synchronization tool that does not require busy waiting

 Semaphore S – integervariable

 Two standard operations modify S: wait() and signal()

o Originally called P() andV()

 Less complicated

 Can only be accessed via two indivisible (atomic) operations

wait (S) {

while S <= 0 ; // no-op

S--; }

signal (S) {

S++;

}

Semaphore as General Synchronization Tool

 Counting semaphore – integer value can range over an unrestricteddomain

Page 28

 Binary semaphore – integer value can range only between 0

and 1; can be simpler to implement

l Also known as mutexlocks

 Can implement a counting semaphore S as a binarysemaphore

 Provides mutual exclusion

Semaphore mutex; // initialized to 1

do {

wait (mutex);

// Critical Section

signal (mutex);

// remainder section

} while (TRUE);

Semaphore Implementation

 Must guarantee that no two processes can execute wait () and signal () on the same

semaphore at the same time

 Thus, implementation becomes the critical section problem where the wait and signal

code are placed in the crtical section

o Could now have busy waiting in critical section implementation

4 But implementation code is short

4 Little busy waiting if critical section rarely occupied

4Notethatapplicationsmayspendlotsoftimeincriticalsectionsand

therefore this is not a goodsolution

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that can be

caused by only one of the waitingprocesses

 Let S and Q be two semaphores initialized to1

P0P1

wait(S); wait (Q);

wait(Q); wait (S);

. .

Page 29

. .

signal(S); signal (Q);

signal(Q); signal (S);

 Starvation – indefinite blocking

o A process may never be removed from the semaphore queue in which it is

suspended

 Priority Inversion – Scheduling problem when lower-priority process holds a lock

needed by higher-priority process

o Solved via priority-inheritance protocol

Classical Problems ofSynchronization:

 Classical problems used to test newly-proposed synchronization schemes

o Bounded-Buffer Problem

o Readers and Writers Problem

o Dining-Philosophers Problem

Bounded-Buffer Problem

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N

 The structure of the producer process

do {

// produce an item in

nextpwait (empty);

wait(mutex);

// add the item to the buffer

signal (mutex);

signal (full);

} while (TRUE);

Page 26

 The structure of the consumer process

do {

wait (full);

wait (mutex);

signal (mutex);

signal (empty);

// remove an item from buffer to nextc

// consume the item in nextc

} while (TRUE);

Readers-Writers Problem:

 A data set is shared among a number of concurrentprocesses

o Readers – only read the data set; they do not perform anyupdates

o Writers – can both read and write

 Problem – allow multiple readers to read at the same time

o Only one single writer can access the shared data at the sametime

o Several variations of how readers and writers are treated – all involvepriorities

 Shared Data

o Data set

o Semaphore mutex initialized to 1

o Semaphore wrt initialized to 1

o Integer readcount initialized to 0

 The structure of a writer process

do {

wait (wrt) ;

// writing is performed

signal (wrt) ;

} while (TRUE);

 The structure of a reader process

Page 27

wait (mutex)

;readcount ++

;

if (readcount == 1)

signal (mutex)

wait (wrt) ;

// reading is performed

wait (mutex) ;

readcount - -;

if (readcount == 0)

signal (wrt) ;

signal (mutex) ;

} while (TRUE);

Dining-Philosophers Problem

 Philosophers spend their lives thinking and eating

 Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a

time) to eat from bowl

o Need both to eat, then release both when done

 In the case of 5 philosophers

o Shared data

4Bowlofrice(dataset)

Semaphorechopstick[5]initializedto1

Page 28

 The structure of Philosopheri:

Page 28

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

Monitors

 A high-level abstraction that provides a convenient and effective mechanism for process

synchronization

 Abstract data type, internal variables only accessible by code within theprocedure

 Only one process may be active within the monitor at atime

 But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedurePn (…) {……}

Initialization code (…) { … }

}

}

Schematic view of a Monitor

Monitor with Condition Variables

Page 29

Scheduling Criteria:

 CPU utilization – keep the CPU as busy aspossible

 Throughput – # of processes that complete their execution per time unit

 Turnaround time – amount of time to execute a particularprocess

 Waiting time – amount of time a process has been waiting in the readyqueue

 Response time – amount of time it takes from when a request was submitted until the

first response is produced, not output (for time-sharingenvironment)

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

First-Come, First-Served (FCFS) Scheduling

Process BurstTime

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1,P2, P3

The Gantt Chart for the schedule is:

P

1

P

2

P

0 24 27 30

CSE

Waiting time for P1= 0; P2= 24; P3= 27

 Average waiting time: (0 + 24 + 27)/3 = 17

 Suppose that the processes arrive in the order:

P2,P3, P1

 The Gantt chart for the schedule is:

P

2

P

3

P

1

0 3 6 30

 Waitingtime forP1=6;P2= 0;P3=3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect - short process behind longprocess

o Consider one CPU-bound and many I/O-boundprocesses

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPUburst

o Use these lengths to schedule the process with the shortesttime

 SJF is optimal – gives minimum average waiting time for a given set ofprocesses

o The difficulty is knowing the length of the next CPUrequest

o Could ask the userProcessArrival

Time BurstTime

P1 0.0 6

P2 2.0 8

P3
 4.0 7

P4
 5.0 3

SJF scheduling chart

Page 30

Page 31

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Priority Scheduling

 A priority number (integer) is associated with eachprocess

 TheCPUisallocatedtotheprocesswiththehighestpriority(smallestintegerhighest

priority)

o Preemptive

o Nonpreemptive

o SJF is priority scheduling where priority is the inverse of predicted next CPU

burst time

 Problem Starvation– low priority processes may never execute

 SolutionAging– as time progresses increase the priority of the

processProcessBurst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Priority scheduling Gantt Chart

P
2

0 13 6

169

181

192

Average waiting time = 8.2 msec

P

2

P

4
P

5
P

1

P

1

P

3
P

3

P

4

Page 32

UNIT-3

Virtual Memory, Main Memory, Deadlocks

 Program must be brought (from disk) into memory and placed within a process for it to

be run

 Main memory and registers are only storage CPU can accessdirectly

 Memory unit only sees a stream of addresses + read requests, or address + data and write

requests

 Register access in one CPU clock (orless)

 Main memory can take many cycles

 Cache sits between main memory and CPUregisters

 Protection of memory required to ensure correct operation

Base and Limit Registers

 A pair of base and limit registers define the logical addressspace

Hardware Address Protection with Base and Limit Registers

Page 33

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate physical addressspace

is central to proper memory management

o Logical address – generated by the CPU; also referred to as virtual address

o Physical address – address seen by the memoryunit

o Logical and physical addresses are the same in compile-time and load-time

address-binding schemes; logical (virtual) and physical addresses differ in

execution-time address-binding scheme

 Logical address space is the set of all logical addresses generated by aprogram

 Physical address space is the set of all physical addresses generated by aprogram

Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physicaladdress

 Many methods possible, covered in the rest of this chapter

 To start, consider simple scheme where the value in the relocation register is added to

every address generated by a user process at the time it is sent tomemory

o Base register now called relocationregister

o MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the real physicaladdresses

o Execution-time binding occurs when reference is made to location inmemory

o Logical address bound to physicaladdresses

Dynamic relocation using relocation register

Page 34

Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never loaded

 All routines kept on disk in relocatable load format

 Useful when large amounts of code are needed to handle infrequently occurringcases

 No special support from the operating system isrequired

o Implemented through programdesign

o OS can help by providing libraries to implement dynamicloading

Dynamic Linking

 Static linking – system libraries and program code combined by the loader into the binary

program image

 Dynamic linking –linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate memory-resident libraryroutine

 Stub replaces itself with the address of the routine, and executes theroutine

 Operating system checks if routine is in processes’ memoryaddress

o If not in address space, add to addressspace

 Dynamic linking is particularly useful for libraries

 System also known as sharedlibraries

 Consider applicability to patching system libraries

o Versioning may be needed

Swapping

 A process can be swapped temporarily out of memory to a backing store, and then

brought back into memory for continued execution

o Total physical memory space of processes can exceed physicalmemory

 Backing store – fast disk large enough to accommodate copies of all memory images for

all users; must provide direct access to these memoryimages

 Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-

priority process is swapped out so higher-priority process can be loaded andexecuted

 Major part of swap time is transfer time; total transfer time is directly proportional to the

amount of memory swapped

Page 35

 System maintains a ready queue of ready-to-run processes which have memory images

on disk

 Does the swapped out process need to swap back in to same physicaladdresses?

 Depends on address binding method

o Plus consider pending I/O to / from process memoryspace

 Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and

Windows)

o Swapping normally disabled

o Started if more than threshold amount of memory allocated

o Disabled again once memory demand reduced below threshold

Contiguous Allocation

 Main memory usually into two partitions:

o Resident operating system, usually held in low memory with interruptvector

o User processes then held in highmemory

o Each process contained in single contiguous section ofmemory

 Relocation registers used to protect user processes from each other, and fromchanging

operating-system code and data

o Base register contains value of smallest physical address

o Limit register contains range of logical addresses – each logical address must be

less than the limit register

o MMU maps logical addressdynamically

Page 36

o Can then allow actions such as kernel code being transient and kernel changing

size

Hardware Support for Relocation and Limit Registers

 Multiple-partition allocation

o Degree of multiprogramming limited by number of partitions

o Hole – block of available memory; holes of various size are scattered throughout

memory

o When a process arrives, it is allocated memory from a hole large enough to

accommodate it

o Process exiting frees its partition, adjacent free partitionscombined

o Operating system maintains information about:

a) allocatedpartitionsb) free partitions (hole)

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is bigenough

 Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless

ordered by size

o Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entirelist

o Produces the largest leftover hole

Fragmentation

 External Fragmentation – total memory space exists to satisfy a request, but it is not

contiguous

 Internal Fragmentation – allocated memory may be slightly larger than requested

memory; this size difference is memory internal to a partition, but not beingused

Page 37

 First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost tofragmentation

o 1/3 may be unusable ->50-percentrule

Paging

 Physical address space of a process can be noncontiguous; process is allocated physical

memory whenever the latter is available

 Divide physical memory into fixed-sized blocks calledframes

o Size is power of 2, between 512 bytes and 16Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and loadprogram

 Set up a page table to translate logical to physicaladdresses

 Backing store likewise split into pages

 Still have Internal fragmentation

 Address generated by CPU is dividedinto:

o Page number (p) – used as an index into a page table which contains base

address of each page in physical memory

o Page offset (d) – combined with base address to define the physical memory

address that is sent to the memoryunit

Paging Hardware

Page 38

Paging Model of Logical and Physical Memory

Free Frames

Paging Hardware With TLB

Page 39

Valid (v) or Invalid (i) Bit In A Page Table

Page 40

Shared Pages Example

Structure of the Page Table

 Memory structures for paging can get huge using straight-forward methods

o Consider a 32-bit logical address space as on moderncomputers

o Page size of 4 KB(212)

o Page table would have 1 million entries (232 /212)

o If each entry is 4 bytes -> 4 MB of physical address space / memory for page

table alone

4 That amount of memory used to cost a lot

4 Don’t want to allocate that contiguously in main memory

 Hierarchical Paging

 Hashed PageTables

 Inverted Page Tables

Hierarchical Page Tables

Page 41

 Break up the logical address space into multiple pagetables

 A simple technique is a two-level page table

 We then page the page table

Hashed Page Tables

 Common in address spaces > 32bits

 The virtual page number is hashed into a page table

o This page table contains a chain of elements hashing to the same location

o Each element contains (1) the virtual page number (2) the value of the mapped

page frame (3) a pointer to the next element

 Virtual page numbers are compared in this chain searching for a match

o If a match is found, the corresponding physical frame isextracted

Page 42

Inverted Page Table

 Rather than each process having a page table and keeping track of all possible logical

pages, track all physical pages

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real memory location, with

information about the process that owns thatpage

 Decreases memory needed to store each page table, but increases time needed to search

the table when a page reference occurs

 Use hash table to limit the search to one — or at most a few — page-tableentries

o TLB can accelerate access

 But how to implement sharedmemory?

o One mapping of a virtual address to the shared physicaladdress

Page 43

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

 A segment is a logical unit such as:

main program, procedure ,function, method, object, local variables, global

variables, common block, stack, symbol table, arrays

Segmentation Architecture

 Logical address consists of a twotuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each table entryhas:

o base – contains the starting physical address where the segments reside in

memory

o limit – specifies the length of thesegment

o Segment-table base register (STBR) points to the segment table’s location in

memory

 Segment-table length register (STLR) indicates number of segments used by a

program;

segment number s is legal if s<STLR

Page 44

Virtual memory – separation of user logical memory from physical memory

o Only part of the program needs to be in memory for execution

o Logical address space can therefore be much larger than physical addressspace

o Allows address spaces to be shared by severalprocesses

o Allows for more efficient processcreation

o More programs running concurrently

o Less I/O needed to load or swapprocesses

 Virtual memory can be implemented via:

o Demand paging

o Demand segmentation

Page 45

Demand Paging

 Could bring entire process into memory at loadtime

 Or bring a page into memory only when it isneeded

o Less I/O needed, no unnecessary I/O

o Less memory needed

o Faster response

o More users

 Page is needed  reference toit

o invalid reference abort

o not-in-memory  bring tomemory

 Lazy swapper – never swaps a page into memory unless page will beneeded

o Swapper that deals with pages is apager

Page 46

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated

(v in-memory – memory resident, inot-in-memory)

 Initially valid–invalid bit is set toion all entries

Page Fault

 If there is a reference to a page, first reference to that page will trap to operatingsystem:

Page 47

page fault

1. Operating system looks at another table to decide:

o Invalid reference abort

o Just not in memory

2. Get empty frame

3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory

Set validation bit = v

5. Restart the instruction that caused the page fault

6. Extreme case – start process with no pages in memory

o OS sets instruction pointer to first instruction of process, non-memory-resident -

>page fault

o And for every other process pages on firstaccess

o Pure demand paging

7. Actually, a given instruction could access multiple pages -> multiple pagefaults

o Pain decreased because of locality ofreference

8. Hardware support needed for demand paging

o Page table with valid / invalidbit

o Secondary memory (swap device with swapspace)

o Instruction restart

Page 48

Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine to include

page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are

written to disk

 Page replacement completes separation between logical memory and physical memory –

large virtual memory can be provided on a smaller physical memory

Need For Page Replacement

Page 49

Page and Frame Replacement Algorithms

 Frame-allocation algorithmdetermines

o How many frames to give eachprocess

o Which frames to replace

 Page-replacement algorithm

o Want lowest page-fault rate on both first access andre-access

 Evaluate algorithm by running it on a particular string of memory references (reference

string) and computing the number of page faults on that string

o String is just page numbers, not fulladdresses

o Repeated access to the same page does not cause a pagefault

 In all our examples, the reference string is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

First-In-First-Out (FIFO) Algorithm:

 Reference string:7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time perprocess)

Page 50

15 page faults

Optimal Algorithm:

 Replace page that will not be used for longest period of time

No of page faults: 9

Least Recently Used (LRU) Algorithm:

 Use past knowledge rather than future

 Replace page that has not been used in the most amount of time

 Associate time of last use with eachpage

Page faults:12

LRU Approximation Algorithms

 LRU needs special hardware and still slow

 Reference bit

Page 51

o With each page associate a bit, initially = 0

o When page is referenced bit set to 1

o Replace any with reference bit = 0 (if one exists)

4 We do not know the order, however

 Second-chance algorithm

o Generally FIFO, plus hardware-provided reference bit

o Clock replacement

o If page to be replaced has

4 Reference bit = 0 -> replace it

4 reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

Counting Algorithms

Page 52

 Keep a counter of the number of references that have been made to each page

l Not common

 LFU Algorithm: replaces page with smallestcount

 MFU Algorithm: based on the argument that the page with the smallest count was

probably just brought in and has yet to beused

Applications and Page Replacement

 All of these algorithms have OS guessing about future pageaccess

 Some applications have better knowledge – i.e.databases

 Memory intensive applications can cause double buffering

l OS keeps copy of page in memory as I/Obuffer

l Application keeps page in memory for its own work

 Operating system can given direct access to the disk, getting out of the way of the

applications

l Raw diskmode

 Bypasses buffering, locking, etc

Allocation of Frames

 Each process needs minimum number offrames

 Example: IBM 370 – 6 pages to handle SS MOVEinstruction:

o instruction is 6 bytes, might span 2 pages

o 2 pages to handlefrom

o 2 pages to handleto

 Maximum of course is total frames in thesystem

 Two major allocation schemes

o fixed allocation

o priority allocation

 Many variations

Fixed Allocation

 Equal allocation – For example, if there are 100 frames (after allocating frames for the

OS) and 5 processes, give each process 20frames

o Keep some as free frame buffer pool

Page 53

 Proportional allocation – Allocate according to the size ofprocess

o Dynamic as degree of multiprogramming, process sizeschange

si size of

processpiS si

m totalnumberofframes

m 64

s1 10

s2 127

a
10

 64 5
1

137

Priority Allocation

ai allocation forpi

sim a
S

2

127
 64  59

137

 Use a proportional allocation scheme using priorities rather thansize

 If process Pigenerates a pagefault,

o select for replacement one of its frames

o select for replacement a frame from a process with lower prioritynumber

Global vs. Local Allocation

 Global replacement – process selects a replacement frame from the set of all frames;

one process can take a frame from another

o But then process execution time can vary greatly

o But greater throughput so more common

 Local replacement – each process selects from only its own set of allocatedframes

o More consistent per-process performance

o But possibly underutilized memory

Thrashing

 If a process does not have “enough” pages, the page-fault rate is veryhigh

o Page fault to get page

o Replace existingframe

o But quickly need replaced frame back

o This leads to:

4 Low CPU utilization

4Operatingsystemthinkingthatitneedstoincreasethedegreeof

multiprogramming

4 Another process added to the system

Page 54

 Thrashing a processis busy swapping pages in and out

Allocating Kernel Memory

 Treated differently from user memory

 Often allocated from a free-memory pool

o Kernel requests memory for structures of varyingsizes

o Some kernel memory needs to be contiguous

4 I.e. for device I/O

Buddy System

 Allocates memory from fixed-size segment consisting of physically-contiguouspages

 Memory allocated using power-of-2allocator

o Satisfies requests in units sized as power of2

o Request rounded up to next highest power of 2

o When smaller allocation needed than is available, current chunk split into two

buddies of next-lower power of 2

4Continue until appropriate sized chunk available

 For example, assume 256KB chunk available, kernel requests21KB

o Split into ALandAr of 128KBeach

4 One further divided into BL and BR of 64KB

– One further into CL and CR of 32KB each – one used to satisfy

request

 Advantage – quickly coalesce unused chunks into largerchunk

Page 55

 Disadvantage -fragmentation

Slab Allocator

 Alternate strategy

 Slab is one or more physically contiguouspages

 Cache consists of one or moreslabs

 Single cache for each unique kernel data structure

o Each cache filled with objects – instantiations of the datastructure

o When cache created, filled with objects marked asfree

 When structures stored, objects marked asused

 If slab is full of used objects, next object allocated from emptyslab

o If no empty slabs, new slab allocated

o Benefits include no fragmentation, fast memory request satisfaction

Page 56

The Deadlock Problem

 A set of blocked processes each holding a resource and waiting to acquire a resource held

by another process in the set

 Example

o System has 2 diskdrives

o P1 and P2 each hold one disk drive and each needs anotherone

o Example

o semaphores A and B, initialized to 1 P0P1

wait(A); wait(B) wait (B); wait(A)

System Model

 Resource types R1, R2, . . .,

RmCPU cycles, memory space,

I/Odevices

 Each resource type Ri has Wiinstances.

 Each process utilizes a resource asfollows:

Page 57

o request

Page 58

o use

o release

DeadlockCharacterization

Deadlock can arise if four conditions hold simultaneously.

 Mutual exclusion: only one process at a time can use aresource

 Hold and wait: a process holding at least one resource is waiting to acquire additional

resources held by other processes

 No preemption: a resource can be released only voluntarily by the process holding it,

after that process has completed itstask

 Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such that P0is

waiting for a resource that is held by P1, P1 is waiting for a resource that is heldby

P2, …,Pn–1 is waiting for a resource that is held by Pn, and Pn is waiting for a resource

that is held by P0.

Resource-Allocation Graph

A set of vertices V and a set of edges E.

 V is partitioned into two types:

o P = {P1, P2, …, Pn}, the set consisting of all the processes in thesystem

o R = {R1, R2, …, Rm}, the set consisting of all resource types in thesystem

o request edge – directed edge PiRj

 assignment edge – directed edgeRjPi

Resource Allocation Graph With A Deadlock

Page 59

Graph With A Cycle But No Deadlock

 If graph contains no cycles  nodeadlock

 If graph contains a cycle

o if only one instance per resource type, then deadlock

o if several instances per resource type, possibility of deadlock

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlockstate

 Allow the system to enter a deadlock state and thenrecover

 Ignore the problem and pretend that deadlocks never occur in the system; used by most

operating systems, including UNIX

Deadlock Prevention

Restrain the ways request can be made

Page 60

 Mutual Exclusion – not required for sharable resources; must hold fornonsharable

resources

 Hold and Wait – must guarantee that whenever a process requests a resource, it does not

hold any other resources

o Require process to request and be allocated all its resources before it begins

execution, or allow process to request resources only when the process hasnone

o Low resource utilization; starvation possible

 No Preemption–

o If a process that is holding some resources requests another resource that cannot

be immediately allocated to it, then all resources currently being held arereleased

o Preempted resources are added to the list of resources for which the process is

waiting

o Process will be restarted only when it can regain its old resources, as well as the

new ones that it is requesting

 Circular Wait – impose a total ordering of all resource types, and require that each

process requests resources in an increasing order ofenumeration

Deadlock Avoidance

Requires that the system has some additional a priori informationavailable

 Simplest and most useful model requires that each process declare the maximumnumber

of resources of each type that it may need

 The deadlock-avoidance algorithm dynamically examines the resource-allocation state to

ensure that there can never be a circular-wait condition

 Resource-allocation state is defined by the number of available and allocated resources,

and the maximum demands of the processes

Safe State

 When a process requests an available resource, system must decide if immediate

allocation leaves the system in a safestate

 System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes

in the systems such that for each Pi, the resources that Pi can still request can besatisfied

by currently available resources + resources held by all the Pj, with j<I

 That is:

o If Pi resource needs are not immediately available, then Pican wait until all

Pjhave finished

o When Pjis finished, Pican obtain needed resources, execute, return allocated

resources, and terminate

Page 61

o When Piterminates, Pi+1 can obtain its needed resources, and soon

 If a system is in safe state  nodeadlocks

 If a system is in unsafe state  possibility ofdeadlock

Avoidance  ensure that a system will never enter an unsafe state

Avoidance algorithms

 Single instance of a resource type

o Use a resource-allocation graph

 Multiple instances of a resource type

o Use the banker’s algorithm

Resource-Allocation Graph Scheme

 Claim edgePiRjindicated that process Pjmay request resource Rj; represented by a

dashed line

 Claim edge converts to request edge when a process requests aresource

 Request edge converted to an assignment edge when the resource is allocated to the

process

 When a resource is released by a process, assignment edge reconverts to a claimedge

 Resources must be claimed a priori in thesystem

Page 62

Unsafe State In Resource-Allocation Graph

Banker’s Algorithm

 Multiple instances

 Each process must a priori claim maximum use

 When a process requests a resource it may have towait

 When a process gets all its resources it must return them in a finite amount of time

Let n = number of processes, and m = number of resourcestypes.

 Available: Vector of length m. If available [j] = k, there are k instances of resourcetype

Rjavailable

 Max: n x m matrix. If Max [i,j] = k, then process Pimay request at most k instances of

resource typeRj

 Allocation: n x m matrix. If Allocation[i,j] = k then Piis currently allocated k instances

ofRj

 Need: n x m matrix. If Need[i,j] = k, then Pimay need k more instances of Rjto complete

its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Page 63

SafetyAlgorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false fori = 0, 1, …,n- 1

2. Find an isuch that both:

(a) Finish [i] =false

(b) NeediWork

If no such iexists, go to step 4

3. Work = Work +

AllocationiFinish[i] =true

go to step 2

4. IfFinish [i] == true for all i, then the system is in a safestate

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti[j] = k then process Piwants k instances of

resource typeRj

1. If RequestiNeedigo to step 2. Otherwise, raise error condition, since process has

exceeded its maximum claim

2. If RequestiAvailable, go to step 3. Otherwise Pimust wait, since resources are not

available

3. Pretend to allocate requested resources to Piby modifying the state as follows:

Available = Available – Request;

Allocationi= Allocationi+ Requesti;

Needi=Needi– Requesti;

o If safe the resources are allocated toPi

o If unsafe Pi must wait, and the old resource-allocation state isrestored

Example of Banker’s Algorithm

 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

Snapshot at timeT0:

Page 64

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

 The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

 The system is in a safe state since the sequence <P1, P3, P4, P2, P0> satisfies safety

criteria

P1 Request (1,0,2)

 Check that Request  Available (that is, (1,0,2)  (3,3,2) true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 30 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety

requirement

Page 65

 Can request for (3,3,0) by P4 begranted?

 Can request for (0,2,0) by P0 begranted?

Deadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

Single Instance of Each Resource Type

 Maintain wait-for graph

l Nodes are processes

l PiPjifPiis waitingforPj

 Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle,

there exists a deadlock

 An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is

the number of vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-AllocationGraph Corresponding wait-for graph

Several Instances of a Resource Type

 Available: A vector of length m indicates the number of available resources of each

type.

 Allocation: An n x m matrix defines the number of resources of each type currently

allocated to each process.

 Request: An n x m matrix indicates the current request of each process. If Request[i][j]

= k, then process Piis requesting k more instances of resource type.Rj.

Detection Algorithm

Let Work and Finish be vectors of length m and n, respectively Initialize:

Page 66

(a) Work =Available

(b) For i = 1,2, …, n, if Allocationi 0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index isuch that both:

(a) Finish[i] == false

(b) RequestiWork

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] =true

go to step 2

4. If Finish[i] == false, for some i, 1 in, then the system is in deadlock state. Moreover,if

Finish[i] == false, then Piis deadlocked

Recovery from Deadlock:

Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle iseliminated

 In which order should we choose to abort?

o Priority of the process

o How long process has computed, and how much longer tocompletion

o Resources the process has used

o Resources process needs to complete

o How many processes will need to beterminated

o Is process interactive or batch?

Resource Preemption

 Selecting a victim – minimizecost

 Rollback – return to some safe state, restart process for thatstate

 Starvation – same process may always be picked as victim, include number of rollback

in cost factor

Page 67

UNIT-4

Secondary-Storage Systems, File-System Interface and Implementation

Overview of Secondary Storage Structure

 Magnetic disks provide bulk of secondary storage of moderncomputers

o Drives rotate at 60 to 250 times per second

o Transfer rate is rate at which data flow between drive and computer

o Positioning time (random-access time) is time to move disk arm to desired

cylinder (seek time) and time for desired sector to rotate under the disk head

(rotational latency)

o Head crash results from disk head making contact with the disksurface

4 That’s bad

 Disks can be removable

 Drive attached to computer via I/O bus

o Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI,SAS,

Firewire

o Host controller in computer uses bus to talk to disk controller built into drive or

storage array

Magnetic Disks

 Platters range from .85” to 14” (historically)

o Commonly 3.5”, 2.5”, and 1.8”

 Range from 30GB to 3TB per drive

 Performance

o Transfer Rate – theoretical – 6Gb/sec

o Effective Transfer Rate – real –1Gb/sec

o Seek time from 3ms to 12ms – 9ms common for desktop drives

o Average seek time measured or calculated based on 1/3 of tracks

o Latency based on spindle speed

4 1/(RPM * 60)

o Average latency = ½ latency

Page 68

Magnetic Tape

 Was early secondary-storage medium

o Evolved from open spools to cartridges

 Relatively permanent and holds large quantities of data

 Access time slow

 Random access ~1000 times slower thandisk

 Mainly used for backup, storage of infrequently-used data, transfer medium

between systems

 Kept in spool and wound or rewound past read-write head

 Once data under head, transfer rates comparable to disk

o 140MB/sec and greater

 200GB to 1.5TB typical storage

 Common technologies are LTO-{3,4,5} and T10000

Disk Structure

 Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the

logical block is the smallest unit of transfer

 The 1-dimensional array of logical blocks is mapped into the sectors of the disk

sequentially

o Sector 0 is the first sector of the first track on the outermostcylinder

o Mapping proceeds in order through that track, then the rest of the tracks in that

cylinder, and then through the rest of the cylinders from outermost toinnermost

o Logical to physical address should be easy

Page 69

Disk Attachment

4 Except for bad sectors

4 Non-constant # of sectors per track via constant angular velocity

 Host-attached storage accessed through I/O ports talking to I/Obusses

 SCSI itself is a bus, up to 16 devices on one cable, SCSI initiator requests operationand

SCSI targets perform tasks

o Each target can have up to 8 logical units (disks attached to device controller)

o FC is high-speed serial architecture

o Can be switched fabric with 24-bit address space – the basis ofstoragearea

networks (SANs) in which many hosts attach to many storageunits

 I/O directed to bus ID, device ID, logical unit(LUN)

Storage Area Network

 Common in large storage environments

 Multiple hosts attached to multiple storage arrays – flexible

 SAN is one or more storage arrays

o Connected to one or more Fibre Channelswitches

 Hosts also attach to theswitches

 Storage made available via LUN Masking from specific arrays to specificservers

 Easy to add or remove storage, add new host and allocate it storage

o Over low-latency Fibre Channel fabric

o Why have separate storage networks and communications networks?

o Consider iSCSI, FCOE

Page 70

Network-Attached Storage

 Network-attached storage (NAS) is storage made available over a network rather than

over a local connection (such as a bus)

o Remotely attaching to file systems

 NFS and CIFS are common protocols

 Implemented via remote procedure calls (RPCs) between host and storage over typically

TCP or UDP on IP network

 iSCSI protocol uses IP network to carry the SCSIprotocol

o Remotely attaching to devices (blocks)

Disk Scheduling

 The operating system is responsible for using hardware efficiently — for the disk drives,

this means having a fast access time and diskbandwidth

 Minimize seek time

 Seek time  seekdistance

 Disk bandwidth is the total number of bytes transferred, divided by the total time

between the first request for service and the completion of the lasttransfer

 There are many sources of disk I/O request

 OS

 System processes

 Users processes

 I/O request includes input or output mode, disk address, memory address, number of

sectors to transfer

 OS maintains queue of requests, per disk or device

 Idle disk can immediately work on I/O request, busy disk means work mustqueue

Page 71

 Optimization algorithms only make sense when a queueexists

 Note that drive controllers have small buffers and can manage a queue of I/O requests (of

varying “depth”)

 Several algorithms exist to schedule the servicing of disk I/Orequests

 The analysis is true for one or many platters

 We illustrate scheduling algorithms with a request queue (0-199)



98, 183, 37, 122, 14, 124, 65, 67

 Head pointer 53

SSTF

 Shortest Seek Time First selects the request with the minimum seek time from the current

head position

 SSTF scheduling is a form of SJF scheduling; may cause starvation of somerequests

 Illustration shows total head movement of 236cylinders

Page 72

SCAN

 The disk arm starts at one end of the disk, and moves toward the other end, servicing

requests until it gets to the other end of the disk, where the head movement is reversed

and servicing continues.

 SCAN algorithm Sometimes called the elevatoralgorithm

 Illustration shows total head movement of 208cylinders

 But note that if requests are uniformly dense, largest density at other end of disk and

those wait the longest

C-SCAN

Page 73

 Provides a more uniform wait time thanSCAN

 The head moves from one end of the disk to the other, servicing requests as itgoes

o When it reaches the other end, however, it immediately returns to the beginning

of the disk, without servicing any requests on the returntrip

o Treats the cylinders as a circular list that wraps around from the last cylinder to

the first one

 Total number of cylinders?

C-LOOK

 LOOK a version of SCAN, C-LOOK a version ofC-SCAN

 Arm only goes as far as the last request in each direction, then reverses direction

immediately, without first going all the way to the end of thedisk

Page 74

Disk Management

 Low-level formatting, or physical formatting — Dividing a disk into sectors that the

disk controller can read and write

o Each sector can hold header information, plus data, plus error correction code

(ECC)

o Usually 512 bytes of data but can be selectable

o To use a disk to hold files, the operating system still needs to record its own data

structures on the disk

o Partition the disk into one or more groups of cylinders, each treated as a logical

disk

o Logical formatting or “making a filesystem”

o To increase efficiency most file systems group blocks intoclusters

4DiskI/Odoneinblocks

4FileI/Odoneinclusters

4 Boot block initializes system

o The bootstrap is stored in ROM

o Bootstrap loader program stored in boot blocks of bootpartition

o Methods such as sector sparing used to handle bad blocks

Swap-Space Management

 Swap-space — Virtual memory uses disk space as an extension of mainmemory

o Less common now due to memory capacity increases

 Swap-space can be carved out of the normal file system, or, more commonly, it can be in

a separate disk partition(raw)

 Swap-space management

o 4.3BSD allocates swap space when process starts; holds text segment (the

program) and data segment

o Kernel uses swap maps to track swap-spaceuse

o Solaris 2 allocates swap space only when a dirty page is forced out of physical

memory, not when the virtual memory page is firstcreated

4 File data written to swap space until write to file system requested

4Other dirty pages go to swap space due to no other home

4 Text segment pages thrown out and reread from the file system as needed

Page 75

RAID Structure

 RAID – multiple disk drives provides reliability viaredundancy

 Increases the mean time tofailure

 Frequently combined with NVRAM to improve writeperformance

 RAID is arranged into six different levels

 Several improvements in disk-use techniques involve the use of multiple disks working

cooperatively

 Disk striping uses a group of disks as one storageunit

 RAID schemes improve performance and improve the reliability of the storage system by

storing redundant data

n Mirroring or shadowing (RAID 1) keeps duplicate of eachdisk

n Striped mirrors (RAID 1+0) or mirrored stripes (RAID 0+1) provides high

performance and high reliability

n Block interleaved parity (RAID 4, 5, 6) uses much lessredundancy

 RAID within a storage array can still fail if the array fails, so automatic replication of

the data between arrays is common

 Frequently, a small number of hot-spare disks are left unallocated, automatically

replacing a failed disk and having data rebuilt onto them

Page 76

File-System Interface

File Concept

 Contiguous logical address space

 Types:

o Data

o numeric

o character

o binary

o Program

File Structure

 None - sequence of words,bytes

 Simple record structure

o Lines

o Fixed length

o Variable length

 Complex Structures

o Formatted document

o Relocatable load file

Page 77

 Can simulate last two with first method by inserting appropriate controlcharacters

 Who decides:

o Operating system

o Program

File Attributes

 Name – only information kept in human-readableform

 Identifier – unique tag (number) identifies file within filesystem

 Type – needed for systems that support differenttypes

 Location – pointer to file location on device

 Size – current filesize

 Protection – controls who can do reading, writing,executing

 Time, date, and user identification – data for protection, security, and usagemonitoring

 Information about files are kept in the directory structure, which is maintained on thedisk

File Operations

 File is an abstract datatype

 Create

 Write

 Read

 Reposition within file

 Delete

 Truncate

 Open(Fi) – search the directory structure on disk for entry Fi, and move the content of

entry to memory

 Close (Fi) – move the content of entry Fiin memory to directory structure ondisk

File Types – Name, Extension

Page 78

Access Methods

 Sequential Access

read next

write next

reset

no read after last write

(rewrite)

 DirectAccess

readnwr

iten

position to n

read next

write next

rewriten

n = relative block number

Sequential-access File

Page 79

Simulation of Sequential Access on Direct-access File

Example of Index and Relative Files

Page 80

Directory Structure

 A collection of nodes containing information about all files

 Disk can be subdivided intopartitions

 Disks or partitions can be RAID protected againstfailure

 Disk or partition can be used raw – without a file system, or formatted with a filesystem

 Partitions also known as minidisks, slices

 Entity containing file system known as avolume

 Each volume containing file system also tracks that file system’s info in device directory

or volume table of contents

 As well as general-purpose file systems there are many special-purpose file systems,

frequently all within the same operating system orcomputer

Page 81

Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

Single-Level Directory

 A single directory for all users

Two-Level Directory

 Separate directory for each user

Page 82

 Path name

 Can have the same file name for different user

 Efficient searching

 No grouping capability

Tree-Structured Directories

 Efficient searching

 Grouping Capability

 Current directory (working directory)

o cd /spell/mail/prog

o type list

Page 83

Acyclic-Graph Directories

 Two different names (aliasing)

 If dictdeletes list danglingpointer

Solutions:

o Backpointers, so we can delete all pointers

Variable size records a problem

o Backpointers using a daisy chain organization

o Entry-hold-count solution

o New directory entrytype

o Link – another name (pointer) to an existingfile

o Resolve the link – follow pointer to locate thefile

General Graph Directory

Page 84

File System Mounting

 A file system must be mounted before it can beaccessed

 A unmounted file system (i.e., Fig. 11-11(b)) is mounted at a mountpoint

(a) Existing (b) Unmounted Partition

File Sharing

 Sharing of files on multi-user systems isdesirable

 Sharing may be done through a protectionscheme

 On distributed systems, files may be shared across anetwork

 Network File System (NFS) is a common distributed file-sharingmethod

File Sharing – Multiple Users

 User IDs identify users, allowing permissions and protections to beper-user

 Group IDs allow users to be in groups, permitting group accessrights

Page 85

Remote File Systems

 Uses networking to allow file system access betweensystems

o Manually via programs like FTP

o Automatically, seamlessly using distributed filesystems

o Semi automatically via the world wideweb

 Client-server model allows clients to mount remote file systems fromservers

o Server can serve multiple clients

o Client and user-on-client identification is insecure or complicated

o NFS is standard UNIX client-server file sharingprotocol

o CIFS is standard Windowsprotocol

o Standard operating system file calls are translated into remotecalls

 Distributed Information Systems (distributed naming services) such as LDAP, DNS,

NIS, Active Directory implement unified access to information needed for remote

computing

Failure Modes

 Remote file systems add new failure modes, due to network failure, serverfailure

 Recovery from failure can involve state information about status of each remoterequest

 Stateless protocols such as NFS include all information in each request, allowing easy

recovery but less security

Consistency Semantics

Consistency semantics specify how multiple users are to access a shared file simultaneously

 Similar to Ch 7 process synchronization algorithms

4TendtobelesscomplexduetodiskI/Oandnetworklatency(forremote

filesystems

 Andrew File System (AFS) implemented complex remote file sharingsemantics

 Unix file system (UFS) implements:

4Writestoanopenfilevisibleimmediatelytootherusersofthesameopen file

4 Sharing file pointer to allow multiple users to read and write concurrently

 AFS has session semantics

4 Writes only visible to sessions starting after the file is closed

File System Implementation\

Page 86

File-System Structure

 File structure

o Logical storage unit

o Collection of related information

 File system resides on secondary storage(disks)

o Provided user interface to storage, mapping logical to physical

o Provides efficient and convenient access to disk by allowing data to be stored,

located retrieved easily

 Disk provides in-place rewrite and randomaccess

o I/O transfers performed in blocks of sectors (usually 512bytes)

 File control block – storage structure consisting of information about afile

 Device driver controls the physicaldevice

 File system organized into layers

Layered File System

File-System Implementation

 We have system calls at the API level, but how do we implement theirfunctions?

o On-disk and in-memory structures

 Boot control block contains info needed by system to boot OS from thatvolume

o Needed if volume contains OS, usually first block ofvolume

 Volume control block (superblock, master file table) contains volumedetails

o Total # of blocks, # of free blocks, block size, free block pointers or array

 Directory structure organizes the files

Page 87

o Names and inode numbers, master file table

 Per-file File Control Block (FCB) contains many details about thefile

o Inode number, permissions, size, dates

o NFTS stores into in master file table using relational DBstructures

A Typical File Control Block

In-Memory File System Structures

 Mount table storing file system mounts, mount points, file systemtypes

 The following figure illustrates the necessary file system structures provided by the

operating systems

 Figure 12-3(a) refers to opening a file

 Figure 12-3(b) refers to reading a file

 Plus buffers hold data blocks from secondary storage

 Open returns a file handle for subsequent use

 Data from read eventually copied to specified user process memoryaddress

Page 88

Virtual File Systems

 Virtual File Systems (VFS) on Unix provide an object-oriented way of implementing file

systems

 VFS allows the same system call interface (the API) to be used for different types of file

systems

o Separates file-system generic operations from implementation details

o Implementation can be one of many file systems types, or network filesystem

4 Implements vnodes which hold inodes or network file details

o Then dispatches operation to appropriate file system implementationroutines

 The API is to the VFS interface, rather than any specific type of filesystem

Page 89

Directory Implementation

 Linear list of file names with pointer to the data blocks

o Simple to program

o Time-consuming to execute

4 Linear search time

4 Could keep ordered alphabetically via linked list or use B+ tree

 Hash Table – linear list with hash datastructure

o Decreases directory search time

o Collisions – situations where two file names hash to the samelocation

o Only good if entries are fixed size, or use chained-overflow method

Allocation Methods – Contiguous

 An allocation method refers to how disk blocks are allocated for files:

 Contiguous allocation – each file occupies set of contiguousblocks

o Best performance in most cases

o Simple – only starting location (block #) and length (number of blocks) are

required

o Problems include finding space for file, knowing file size, external fragmentation,

need for compaction off-line (downtime) oron-line

Page 90

Linked

 Linked allocation – each file a linked list of blocks

o File ends at nil pointer

o No external fragmentation

o Each block contains pointer to next block

o No compaction, external fragmentation

o Free space management system called when new blockneeded

o Improve efficiency by clustering blocks into groups but increases internal

fragmentation

o Reliability can be a problem

o Locating a block can take many I/Os and diskseeks

 FAT (File Allocation Table) variation

o Beginning of volume has table, indexed by block number

o Much like a linked list, but faster on disk and cacheable

o New block allocation simple

Page 91

File-Allocation Table

Indexed

 Indexed allocation

o Each file has its own index block(s) of pointers to its datablocks

Free-Space Management

 File system maintains free-space list to track availableblocks/clusters

 Linked list (free list)

o Cannot get contiguous space easily

o No waste of space

o No need to traverse the entire list (if # free blocksrecorded)

Linked Free Space List on Disk

Page 92

Grouping

 Modify linked list to store address of next n-1 free blocks in first free block, plus a

pointer to next block that contains free-block-pointers (like thisone).

Counting

 Because space is frequently contiguously used and freed, with contiguous-allocation

allocation, extents, or clustering.

 Keep address of first free block and count of following freeblocks.

 Free space list then has entries containing addresses andcounts.

Page 93

I/O Hardware

UNIT-5

I/O Systems, Protection, Security

 Incredible variety of I/O devices

o Storage

o Transmission

o Human-interface

 Common concepts – signals from I/O devices interface withcomputer

o Port – connection point fordevice

o Bus - daisy chain or shared directaccess

o Controller (host adapter) – electronics that operate port, bus,device

4 Sometimes integrated

4Sometimes separate circuit board (host adapter)

4 Contains processor, microcode, private memory, bus controller, etc

– Some talk to per-device controller with bus controller, microcode,

memory, etc

A Typical PC Bus Structure

 I/O instructions control devices

Page 94

 Devices usually have registers where device driver places commands, addresses, and data

to write, or read data from registers after command execution

l Data-in register, data-out register, status register, control register

l Typically 1-4 bytes, or FIFObuffer

 Devices have addresses, used by

l Direct I/Oinstructions

l Memory-mappedI/O

4 Device data and command registers mapped to processor address space

4Especially for large address spaces (graphics)

Polling

 For each byte ofI/O

1. Read busy bit from status register until0

2. Host sets read or write bit and if write copies data into data-outregister

3. Host sets command-readybit

4. Controller sets busy bit, executestransfer

5. Controller clears busy bit, error bit, command-ready bit when transferdone

6. Step 1 is busy-wait cycle to wait for I/O fromdevice

7. Reasonable if device is fast

8. But inefficient if deviceslow

9. CPU switches to othertasks?

4 But if miss a cycle data overwritten / lost

Interrupts

 Polling can happen in 3 instructioncycles

o Read status, logical-and to extract status bit, branch if notzero

o How to be more efficient if non-zeroinfrequently?

 CPU Interrupt-request line triggered by I/O device

o Checked by processor after each instruction

 Interrupt handler receives interrupts

o Maskable to ignore or delay someinterrupts

 Interrupt vector to dispatch interrupt to correct handler

Page 95

o Context switch at start andend

o Based on priority

o Some non maskable

o Interrupt chaining if more than one device at same interruptnumber

Interrupt-Driven I/O Cycle

 Interrupt mechanism also used for exceptions

o Terminate process, crash system due to hardwareerror

o Page fault executes when memory accesserror

 System call executes via trap to trigger kernel to executerequest

 Multi-CPU systems can process interruptsconcurrently

o If operating system designed to handleit

o Used for time-sensitive processing, frequent, must befast

Page 96

Direct Memory Access

 Used to avoid programmed I/O (one byte at a time) for large datamovement

 Requires DMAcontroller

 Bypasses CPU to transfer data directly between I/O device and memory

 OS writes DMA command block intomemory

o Source and destinationaddresses

o Read or writemode

o Count of bytes

o Writes location of command block to DMAcontroller

o Bus mastering of DMA controller – grabs bus fromCPU

o When done, interrupts to signalcompletion

Six Step Process to Perform DMA Transfer

Application I/O Interface:

 I/O system calls encapsulate device behaviors in genericclasses

 Device-driver layer hides differences among I/O controllers fromkernel

 New devices talking already-implemented protocols need no extrawork

 Each OS has its own I/O subsystem structures and device driverframeworks

Page 97

 Devices vary in manydimensions

o Character-stream orblock

o Sequential orrandom-access

o Synchronous or asynchronous (orboth)

o Sharable or dedicated

o Speed of operation

o read-write, read only, or write only

A Kernel I/OStructure

Characteristics of I/O Devices

Page 98

 Subtleties of devices handled by devicedrivers

 Broadly I/O devices can be grouped by the OSinto

o Block I/O

o Character I/O (Stream)

o Memory-mapped fileaccess

o Networksockets

o For direct manipulation of I/O device specific characteristics, usually an escape /

back door

o Unix ioctl() call to send arbitrary bits to a device control register and data to

device data register

Block and Character Devices

 Block devices include disk drives

o Commands include read, write,seek

o Raw I/O, direct I/O, or file-systemaccess

o Memory-mapped file accesspossible

4 File mapped to virtual memory and clusters brought via demand paging

o DMA

 Character devices include keyboards, mice, serialports

o Commands include get(), put()

o Libraries layered on top allow line editing

Network Devices

 Varying enough from block and character to have owninterface

 Unix and Windows NT/9x/2000 include socketinterface

o Separates network protocol from networkoperation

o Includes select()functionality

 Approaches vary widely (pipes, FIFOs, streams, queues,mailboxes)

Clocks and Timers

 Provide current time, elapsed time,timer

 Normal resolution about 1/60second

Page 99

 Some systems provide higher-resolutiontimers

 Programmable interval timer used for timings, periodicinterrupts

 ioctl() (on UNIX) covers odd aspects of I/O such as clocks andtimers

Blocking and Nonblocking I/O

 Blocking - process suspended until I/Ocompleted

o Easy to use and understand

o Insufficient for someneeds

 Nonblocking - I/O call returns as much asavailable

o User interface, data copy (bufferedI/O)

o Implemented via multi-threading

o Returns quickly with count of bytes read orwritten

o select() to find if data ready then read() or write() totransfer

 Asynchronous - process runs while I/Oexecutes

o Difficult touse

o I/O subsystem signals process when I/Ocompleted

Two I/O Methods

Kernel I/O Subsystem

 Scheduling

o Some I/O request ordering via per-devicequeue

Page 100

o Some OSs tryfairness

o Some implement Quality Of Service (i.e.IPQOS)

 Buffering - store data in memory while transferring betweendevices

o To cope with device speedmismatch

o To cope with device transfer sizemismatch

o To maintain “copysemantics”

o Double buffering – two copies of thedata

4 Kernel and user

4 Varying sizes

4 Full / being processed and not-full / being used

4 Copy-on-write can be used for efficiency in some cases

Device-status Table

 Caching - faster device holding copy of data

o Always just acopy

o Key toperformance

o Sometimes combined withbuffering

 Spooling - hold output for a device

o If device can serve only one request at atime

o i.e.,Printing

Page 101

 Device reservation - provides exclusive access to adevice

o System calls for allocation andde-allocation

o Watch out for deadlock

Error Handling

 OS can recover from disk read, device unavailable, transient writefailures

o Retry a read or write, forexample

o Some systems more advanced – Solaris FMA,AIX

4Trackerrorfrequencies,stopusingdevicewithincreasingfrequencyof

retry-ableerrors

 Most return an error number or code when I/O requestfails

 System error logs hold problemreports

I/O Protection

 User process may accidentally or purposefully attempt to disrupt normal operation via

illegal I/O instructions

o All I/O instructions defined to beprivileged

o I/O must be performed via systemcalls

 Memory-mapped and I/O port memory locations must be protected

Use of a System Call to Perform I/O

Page 102

Kernel Data Structures

 Kernel keeps state info for I/O components, including open file tables,network

connections, character devicestate

 Many, many complex data structures to track buffers, memory allocation, “dirty”blocks

 Some use object-oriented methods and message passing to implementI/O

o Windows uses message passing

4 Message with I/O information passed from user mode into kernel

4 Message modified as it flows through to device driver and back to process

4 Pros / cons?

UNIX I/O Kernel Structure

Transforming I/O Requests to Hardware Operations

 Consider reading a file from disk for a process:

o Determine device holdingfile

o Translate name to device representation

o Physically read data from disk intobuffer

Page 103

o Make data available to requestingprocess

o Return control to process

Life Cycle of An I/O Request

Page 104

Goals of Protection:

Protection

 In one protection model, computer consists of a collection of objects, hardware or

software

 Each object has a unique name and can be accessed through a well-defined set of

operations

 Protection problem - ensure that each object is accessed correctly and only by those

processes that are allowed to doso

Principles of Protection

 Guiding principle – principle of least privilege

o Programs, users and systems should be given just enough privileges to perform

their tasks

o Limits damage if entity has a bug, gets abused

o Can be static (during life of system, during life ofprocess)

o Or dynamic (changed by process as needed) – domain switching, privilege

escalation

o “Need to know” a similar concept regarding access todata

 Must consider “grain”aspect

o Rough-grained privilege management easier, simpler, but least privilege now

done in large chunks

o For example, traditional Unix processes either have abilities of the

associated user, or of root

o Fine-grained management more complex, more overhead, but moreprotective

o File ACL lists,RBAC

o Domain can be user, process,procedure

Domain Structure

 Access-right = <object-name,rights-set>

where rights-set is a subset of all valid operations that can be performed on the object

 Domain = set ofaccess-rights

Page 105

Domain Implementation (UNIX)

 Domain =user-id

 Domain switch accomplished via filesystem

4 Each file has associated with it a domain bit (setuid bit)

4Whenfileisexecutedandsetuid=on,thenuser-idissettoownerofthe file

beingexecuted

4 When execution completes user-id is reset

4 Domain switch accomplished via passwords

 su command temporarily switches to another user’s domain when other domain’s

password provided

 Domain switching viacommands

 sudo command prefix executes specified command in another domain (if originaldomain

has privilege or password given)

Domain Implementation (MULTICS)

 Let Diand Djbe any two domainrings

 If j <I DiDj

Page 106

Access Matrix

 View protection as a matrix (accessmatrix)

 Rows represent domains

 Columns represent objects

 Access(i, j) is the set of operations that a process executing in Domaini can invoke on

Objectj

Use of Access Matrix

 If a process in Domain Ditries to do “op” on object Oj, then “op” must be in the access

matrix

 User who creates object can define access column for thatobject

 Can be expanded to dynamic protection

o Operations to add, delete accessrights

o Special accessrights:

4 owner of Oi

4copyopfromOitoOj(denotedby“*”)

4control–DicanmodifyDjaccessrights

4transfer–switchfromdomainDitoDj

o Copy and Owner applicable to anobject

o Control applicable to domainobject

 Access matrix design separates mechanism frompolicy

o Mechanism

4Operating system provides access-matrix + rules

Page 107

4Ifensuresthatthematrixisonlymanipulatedbyauthorizedagentsand that

rules are strictlyenforced

oPolicy

4 User dictates policy

4 Who can access what object and in what mode

4 But doesn’t solve the general confinement problem

Access Matrix of Figure A with Domains as Objects

Access Matrix with Copy Rights

Access Matrix WithOwner Rights

Page 108

Implementation of Access Matrix

 Generally, a sparsematrix

 Option 1 – Globaltable

o Store ordered triples <domain, object, rights-set > intable

o A requested operation M on object Oj within domain Di -> search table for < Di,

Oj, Rk>

4 with M ∈ Rk

o But table could be large -> won’t fit in mainmemory

o Difficult to group objects (consider an object that all domains canread)

 Option 2 – Access lists forobjects

o Each column implemented as an access list for one object

Page 109

o Resulting per-object list consists of ordered pairs <domain, rights-set > defining

all domains with non-empty set of access rights for theobject

o Easily extended to contain default set -> If M ∈ default set, also allowaccess

 Each column = Access-control list for one object

Defines who can perform whatoperation

Domain 1 = Read, Write

Domain 2 = Read

Domain 3 = Read

 Each Row = Capability List (like a key)

For each domain, what operations allowed on what objects

Object F1 – Read

Object F4 – Read, Write, Execute

Object F5 – Read, Write, Delete, Copy

 Option 3 – Capability list fordomains

o Instead of object-based, list is domain based

o Capability list for domain is list of objects together with operations allows on

them

o Object represented by its name or address, called a capability

o Execute operation M on object Oj, process requests operation and specifies

capability as parameter

4 Possession of capability means access is allowed

o Capability list associated with domain but never directly accessible bydomain

4 Rather, protected object, maintained by OS and accessed indirectly

4 Like a “secure pointer”

4 Idea can be extended up to applications

 Option 4 – Lock-key

o Compromise between access lists and capability lists

o Each object has list of unique bit patterns, calledlocks

Page 110

o Each domain as list of unique bit patterns calledkeys

o Process in a domain can only access object if domain has key that matches one of

the locks

Access Control

 Protection can be applied to non-fileresources

 Solaris 10 provides role-based access control (RBAC) to implement leastprivilege

o Privilege is right to execute system call or use an option within a systemcall

o Can be assigned to processes

o Users assigned roles granting access to privileges andprograms

4 Enable role via password to gain its privileges

o Similar to accessmatrix

Revocation of Access Rights

 Various options to remove the access right of a domain to anobject

o Immediate vs. delayed

o Selective vs.general

Page 110

o Partial vs.total

o Temporary vs. permanent

 Access List – Delete access rights from accesslist

o Simple – search access list and removeentry

o Immediate, general or selective, total or partial, permanent ortemporary

 Capability List – Scheme required to locate capability in the system before capability

can be revoked

o Reacquisition – periodic delete, with require and denial ifrevoked

o Back-pointers – set of pointers from each object to all capabilities of that object

(Multics)

o Indirection – capability points to global table entry which points to object – delete

entry from global table, not selective(CAL)

o Keys – unique bits associated with capability, generated when capabilitycreated

4 Master key associated with object, key matches master key for access

4 Revocation – create new master key

4Policydecisionofwhocancreateandmodifykeys–objectowneror

others?

Capability-Based Systems

 Hydra

o Fixed set of access rights known to and interpreted by thesystem

4 i.e. read, write, or execute each memory segment

4Usercandeclareotherauxiliaryrightsandregisterthosewithprotection

system

4 Accessing process must hold capability and know name of operation

4Rightsamplificationallowedbytrustworthyproceduresforaspecific

type

o Interpretation of user-defined rights performed solely by user's program;system

provides access protection for use of these rights

o Operations on objects defined procedurally – procedures are objectsaccessed

indirectly by capabilities

o Solves the problem of mutually suspicioussubsystems

o 1111cIncludes library of prewritten securityroutines

Page 111

 Cambridge CAPSystem

o Simpler butpowerful

o Data capability - provides standard read, write, execute of individualstorage

segments associated with object – implemented inmicrocode

o Software capability -interpretation left to the subsystem, through itsprotected

procedures

4 Only has access to its own subsystem

4 Programmers must learn principles and techniques of protection

Language-Based Protection

 Specification of protection in a programming language allows the high-leveldescription

of policies for the allocation and use of resources

 Language implementation can provide software for protection enforcement when

automatic hardware-supported checking is unavailable

 Interpret protection specifications to generate calls on whatever protection systemis

provided by the hardware and the operatingsystem

Security

The Security Problem:

 System secure if resources used and accessed as intended under all circumstances

l Unachievable

 Intruders (crackers) attempt to breachsecurity

 Threat is potential securityviolation

 Attack is attempt to breachsecurity

 Attack can be accidental ormalicious

 Easier to protect against accidental than malicious misuse

Security Violation Categories

 Breach of confidentiality

o Unauthorized reading ofdata

 Breach of integrity

o Unauthorized modification ofdata

 Breach of availability

o Unauthorized destruction ofdata

Page 112

 Theft of service

o Unauthorized use ofresources

 Denial of service (DOS)

o Prevention of legitimateuse

Security Violation Methods

 Masquerading (breachauthentication)

o Pretending to be an authorized user to escalateprivileges

 Replay attack

o As is or with messagemodification

 Man-in-the-middle attack

o Intruder sits in data flow, masquerading as sender to receiver and viceversa

 Session hijacking

o Intercept an already-established session to bypassauthentication

Standard Security Attacks

Page 113

Security Measure Levels

 Security must occur at four levels to beeffective:

o Physical

4 Data centers, servers, connected terminals

o Human

4 Avoid social engineering, phishing, dumpster diving

o Operating System

4 Protection mechanisms, debugging

o Network

4 Intercepted communications, interruption, DOS

 Security is as weak as the weakest link in thechain

Program Threats

 Many variations, manynames

 Trojan Horse

o Code segment that misuses itsenvironment

o Exploits mechanisms for allowing programs written by users to be executed by

other users

o Spyware, pop-up browser windows, covert channels

o Up to 80% of spam delivered by spyware-infectedsystems

 Trap Door

o Specific user identifier or password that circumvents normal securityprocedures

o Could be included in a compiler

 Logic Bomb

o Program that initiates a security incident under certaincircumstances

 Stack and BufferOverflow

o Exploits a bug in a program (overflow either the stack or memorybuffers)

o Failure to check bounds on inputs,arguments

o Write past arguments on the stack into the return address onstack

o When routine returns from call, returns to hacked address

n Pointed to code loaded onto stack that executes maliciouscode

Page 114

o Unauthorized user or privilegeescalation

 Viruses

o Code fragment embedded in legitimate program

o Self-replicating, designed to infect othercomputers

o Very specific to CPU architecture, operating system,applications

o Usually borne via email or as amacro

n Visual Basic Macro to reformat hard drive

SubAutoOpen()

Dim oFS

Set oFS = CreateObject(’’Scripting.FileSystemObject’’)

vs = Shell(’’c:command.com /k format c:’’,vbHide)

End Sub

 Virus dropper inserts virus onto thesystem

 Many categories of viruses, literally many thousands ofviruses

o File /parasitic

o Boot / memory

o Macro

o Sourcecode

o Polymorphic to avoid having a virussignature

o Encrypted

o Stealth

o Tunneling

o Multipartite

o Armored

Page 115

A Boot-sector Computer Virus

System and Network Threats

 Some systems “open” rather than secure bydefault

o Reduce attacksurface

o But harder to use, more knowledge needed to administer

 Network threats harder to detect,prevent

o Protection systemsweaker

o More difficult to have a shared secret on which to baseaccess

o No physical limits once system attached tointernet

4 Or on network with system attached to internet

o Even determining location of connecting systemdifficult

4 IP address is only knowledge

 Worms – use spawn mechanism; standaloneprogram

 Internetworm

o Exploited UNIX networking features (remote access) and bugs in finger and

sendmailprograms

o Exploited trust-relationship mechanism used by rshto access friendly systems

without use ofpassword

Page 116

o Grappling hook program uploaded main worm program

4 99 lines of C code

o Hooked system then uploaded main code, tried to attack connectedsystems

o Also tried to break into other users accounts on local system via password

guessing

o If target system already infected, abort, except for every 7thtime

The Morris Internet Worm

 Port scanning

o Automated attempt to connect to a range of ports on one or a range of IP

addresses

o Detection of answering serviceprotocol

o Detection of OS and version running onsystem

o nmap scans all ports in a given IP range for aresponse

o nessus has a database of protocols and bugs (and exploits) to apply against a

system

o Frequently launched from zombiesystems

4 To decrease trace-ability



Page 117

 Denial of Service

o Overload the targeted computer preventing it from doing any usefulwork

o Distributed denial-of-service (DDOS) come from multiple sites atonce

o Consider the start of the IP-connection handshake(SYN)

4 How many started-connections can the OS handle?

o Consider traffic to a website

o Accidental – CS students writing bad fork()code

o Purposeful – extortion,punishment

Cryptography as a Security Tool

 Broadest security toolavailable

o Internal to a given computer, source and destination of messages can be known

and protected

4 OS creates, manages, protects process IDs, communication ports

o Source and destination of messages on network cannot be trusted without

cryptography

4 Local network – IP address?

– Consider unauthorized host added

4 WAN / Internet – how to establish authenticity

– Not via IPaddress

Cryptography

 Means to constrain potential senders (sources) and / or receivers (destinations)of

messages

o Based on secrets(keys)

o Enables

4 Confirmation of source

4 Receipt only by certain destination

4Trust relationship between sender and receiver

Page 118

Secure Communication over Insecure Medium

Encryption

 Encryption algorithm consistsof

o Set K ofkeys

o Set M ofMessages

o Set C of ciphertexts (encryptedmessages)

o A function E : K → (M→C). That is, for each k K, E(k) is a function for

generating ciphertexts from messages

4 Both E and E(k) for any k should be efficiently computable functions

o A function D : K → (C → M). That is, for each k K, D(k) is a function for

generating messages from ciphertexts

4 Both D and D(k) for any k should be efficiently computable functions

 An encryption algorithm must provide this essential property: Given a ciphertext c C,

acomputer can compute m such that E(k)(m) = c only if it possessesD(k)

Page 119

o Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used to

produce them, but a computer not holding D(k) cannot decryptciphertexts

o Since ciphertexts are generally exposed (for example, sent on the network), it is

important that it be infeasible to derive D(k) from theciphertexts

Symmetric Encryption

 Same key used to encrypt anddecrypt

o E(k) can be derived from D(k), and viceversa

o DES is most commonly used symmetric block-encryption algorithm (createdby

USGovt)

o Encrypts a block of data at a time

o Triple-DES considered moresecure

 Advanced Encryption Standard (AES), twofishup andcoming

 RC4 is most common symmetric stream cipher, but known to havevulnerabilities

o Encrypts/decrypts a stream of bytes (i.e., wirelesstransmission)

o Key is a input to psuedo-random-bitgenerator

4Generatesaninfinitekeystream

AsymmetricEncryption

 Public-key encryption based on each user having twokeys:

o public key – published key used to encryptdata

o private key – key known only to individual user used to decryptdata

 Must be an encryption scheme that can be made public without making it easy tofigure

out the decryptionscheme

o Most common is RSA blockcipher

o Efficient algorithm for testing whether or not a number isprime

o No efficient algorithm is know for finding the prime factors of anumber

 Formally, it is computationally infeasible to derive D(kd , N) from E(ke , N), and so E(ke,

N) need not be kept secret and can be widelydisseminated

o E(ke , N) (or just ke) is the publickey

o D(kd , N) (or just kd) is the privatekey

o N is the product of two large, randomly chosen prime numbers p and q (for

example, p and q are 512 bits each)

Page 120

o EncryptionalgorithmisE(ke,N)(m)=mkemodN,wherekesatisfieskekdmod (p−1)(q

−1) =1

o The decryption algorithm is then D(kd , N)(c) = ckd mod N

Asymmetric Encryption Example

 For example. make p = 7and q =13

 We then calculate N = 7∗13 = 91 and (p−1)(q−1) =72

 We next select kerelatively prime to 72 and<72, yielding 5

 Finally,we calculate kdsuch that kekdmod 72 = 1, yielding29

 We how have our keys

o Public key, ke, N = 5,91

o Private key, kd , N = 29,91

o Encrypting the message 69 with the public key results in the cyphertext62

 Cyphertext can be decoded with the privatekey

o Public key can be distributed in cleartext to anyone who wants to communicate

with holder of publickey

Authentication

 Constraining set of potential senders of amessage

o Complementary and sometimes redundant toencryption

o Also can prove messageunmodified

 Algorithmcomponents

o A set K ofkeys

o A set M ofmessages

o A set A ofauthenticators

o A function S :K → (M→A)

4Thatis,foreachkK,S(k)isafunctionforgeneratingauthenticators

frommessages

4 Both S and S(k) for any k should be efficiently computable functions

o AfunctionV:K→(M×A→{true,false}).Thatis,foreachkK,V(k)isafunction

for verifying authenticators onmessages

4 Both V and V(k) for any k should be efficiently computable functions

Page 121

 For a message m, a computer can generate an authenticator a Asuch that V(k)(m, a)

=true only if it possessesS(k)

 Thus, computer holding S(k) can generate authenticators on messages so that any other

computer possessing V(k) can verifythem

 Computer not holding S(k) cannot generate authenticators on messages that can be

verified usingV(k)

 Since authenticators are generally exposed (for example, they are sent on the network

with the messages themselves), it must not be feasible to derive S(k) from the

authenticators

Authentication – Hash Functions

 Basis of authentication

 Creates small, fixed-size block of data (message digest, hash value) fromm

 Hash Function H must be collision resistant onm

o Must be infeasible to find an m’ ≠ m such that H(m) =H(m’)

o If H(m) = H(m’), then m =m’

o The message has not been modified

o Common message-digest functions include MD5, which produces a 128-bithash,

and SHA-1, which outputs a 160-bithash

Authentication – MAC

 Symmetric encryption used in message-authentication code (MAC) authentication

algorithm

 Simpleexample:

o MAC defines S(k)(m) = f (k,H(m))

4Where f is a function that is one-way on its first argument

– k cannot be derived from f (k,H(m))

4Becauseofthecollisionresistanceinthehashfunction,reasonably

assurednoothermessagecouldcreatethesameMAC

4 A suitable verification algorithm is V(k)(m, a) ≡ (f (k,m) = a)

4NotethatkisneededtocomputebothS(k)andV(k),soanyoneableto

compute one can compute theother

Authentication – Digital Signature

 Based on asymmetric keys and digital signaturealgorithm

Page 122

 Authenticators produced are digitalsignatures

 In a digital-signature algorithm, computationally infeasible to derive S(ks) from V(kv)

o V is a one-wayfunction

o Thus, kvis the public key and ksis the privatekey

 Consider the RSA digital-signature algorithm

o Similar to the RSA encryption algorithm, but the key use isreversed

o Digital signature of message S(ks)(m) = H(m)ksmodN

o The key ksagain is a pair d, N, where N is the product of two large, randomly

chosen prime numbers p andq

o Verification algorithm is V(kv)(m, a) ≡ (akvmod N =H(m))

4Where kvsatisfies kvksmod (p − 1)(q − 1) = 1

Key Distribution

 Delivery of symmetric key is hugechallenge

o Sometimes doneout-of-band

 Asymmetric keys can proliferate – stored on keyring

o Even asymmetric key distribution needs care – man-in-the-middle attack

Digital Certificates

 Proof of who or what owns a publickey

 Public key digitally signed a trustedparty

 Trusted party receives proof of identification from entity and certifies that public key

belongs to entity

 Certificate authority are trusted party – their public keys included with webbrowser

distributions

o They vouch for other authorities via digitally signing their keys, and soon

User Authentication

 Crucial to identify user correctly, as protection systems depend on userID

 User identity most often established through passwords, can be considered a special case

of either keys or capabilities

 Passwords must be keptsecret

o Frequent change ofpasswords

o History to avoidrepeats

Page 123

o Use of “non-guessable”passwords

o Log all invalid access attempts (but not the passwords themselves)

o Unauthorizedtransfer

 Passwords may also either be encrypted or allowed to be used onlyonce

o Does encrypting passwords solve the exposureproblem?

4 Might solve sniffing

4 Consider shoulder surfing

4 Consider Trojan horse keystroke logger

Passwords

 Encrypt to avoid having to keepsecret

o But keep secret anyway (i.e. Unix uses superuser-only readably file/etc/shadow)

o Use algorithm easy to compute but difficult toinvert

o Only encrypted password stored, neverdecrypted

o Add “salt” to avoid the same password being encrypted to the samevalue

 One-timepasswords

o Use a function based on a seed to compute a password, both user andcomputer

o Hardware device / calculator / key fob to generate thepassword

4 Changes very frequently

 Biometrics

o Some physical attribute (fingerprint, handscan)

o Multi-factorauthentication

o Need two or more factors forauthentication

4i.e.USB“dongle”,biometricmeasure,andpassword

Implementing Security Defenses

 Defense in depth is most common security theory – multiple layers ofsecurity

 Security policy describes what is beingsecured

 Vulnerability assessment compares real state of system / network compared to security

policy

 Intrusion detection endeavors to detect attempted or successfulintrusions

Page 124

o Signature-based detection spots known badpatterns

o Anomaly detection spots differences from normalbehavior

4 Can detect zero-day attacks

o False-positives and false-negatives aproblem

 Virusprotection

 Auditing, accounting, and logging of all or specific system or networkactivities

Firewalling to Protect Systems and Networks

 A network firewall is placed between trusted and untrustedhosts

o The firewall limits network access between these two securitydomains

 Can be tunneled orspoofed

o Tunneling allows disallowed protocol to travel within allowed protocol (i.e.,

telnet inside ofHTTP)

o Firewall rules typically based on host name or IP address which can bespoofed

 Personal firewall is software layer on given host

o Can monitor / limit traffic to and from the host

 Application proxy firewall understands application protocol and can control them (i.e.,

SMTP)

 System-call firewall monitors all important system calls and apply rules to them (i.e.,

this program can execute that systemcall)

Network Security Through Domain Separation Via Firewall

Page 125

Computer Security Classifications:

 U.S. Department of Defense outlines four divisions of computer security: A, B, C, andD

 D – Minimalsecurity

 C – Provides discretionary protection throughauditing

o Divided into C1 andC2

4 C1 identifies cooperating users with the same level of protection

4 C2 allows user-level access control

4B–AllthepropertiesofC,howevereachobjectmayhaveunique

sensitivitylabels

o Divided into B1, B2, andB3

o A – Uses formal design and verification techniques to ensuresecurity

