
20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 1

Ex.No:1 Date:

Aim:

Write a program to implement the following operations on Binary Search

Tree

a) Insert b) Delete c) Search d) Display

Description:

 Binary Search Tree is a binary tree in which every node contains only

smaller values in its left subtree and only larger values in its right

subtree. There must be no duplicate nodes.

 It is called a binary tree because each tree node has a maximum of

two children.

 It is called a search tree because it can be used to search for the

presence of a number in O(log(n)) time.

The following operations are performed on a binary search tree...

1. Insertion

2. Search

3. Deletion

Procedure:

1. Insertion Operation in BST

In a binary search tree, the insertion operation is performed with O(log n)

time complexity. In binary search tree, new node is always inserted as a leaf

node.

The insertion operation is performed as follows...

Step 1 - Create a newNode with given value and set its left and right to

NULL.

Step 2 - Check whether tree is Empty.

Step 3 - If the tree is Empty, then set root to newNode.

Step 4 - If the tree is Not Empty, then check whether the value of

newNode is smaller or larger than the node (here it is root node).

Step 5 - If newNode is smaller than or equal to the node then move to its

left child. If newNode is larger than the node then move to its right

child.

Step 6- Repeat the above steps until we reach to the leaf node (i.e.,

reaches to NULL).

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 2

Step 7-After reaching the leaf node, insert the newNode as left child if the

newNode is smaller or equal to that leaf node or else insert it as

right child.

Search Operation in BST

In a binary search tree, the search operation is performed with O(log n)

time complexity. The search operation is performed as follows...

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the value of root node in the

tree.

Step 3 - If both are matched, then display "Given node is found!!!" and

terminate the function

Step 4 - If both are not matched, then check whether search element is

smaller or larger than that node value.

Step 5 - If search element is smaller, then continue the search process in

left subtree.

Step 6- If search element is larger, then continue the search process in

right subtree.

Step 7 - Repeat the same until we find the exact element or until the

search element is compared with the leaf node

Step 8 - If we reach to the node having the value equal to the search value

then display "Element is found" and terminate the function.

Step 9 - If we reach to the leaf node and if it is also not matched with the

search element, then display "Element is not found" and terminate

the function.

Deletion Operation in BST

In a binary search tree, the deletion operation is performed with O(log n)

time complexity.

Deleting a node from Binary search tree includes following three cases...

Case 1: Deleting a Leaf node (A node with no children)

Case 2: Deleting a node with one child

Case 3: Deleting a node with two children

Case 1: Deleting a leaf node

Step 1 - Find the node to be deleted using search operation

Step 2 - Delete the node using free function (If it is a leaf) and

terminate the function.

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 3

Case 2: Deleting a node with one child

Step 1 - Find the node to be deleted using search operation

Step 2 - If it has only one child then create a link between its parent

node and child node.

Step 3 - Delete the node using free function and terminate the

function.

Case 3: Deleting a node with two children

Step 1 - Find the node to be deleted using search operation

Step 2 - If it has two children, then find the largest node in its left

subtree (OR) the smallest node in its right subtree.

Step 3 - Swap both deleting node and node which is found in the

above step.

Step 4 - Then check whether deleting node came to case 1 or case 2

or else goto step 2

Step 5 - If it comes to case 1, then delete using case 1 logic.

Step 6- If it comes to case 2, then delete using case 2 logic.

Step 7 - Repeat the same process until the node is deleted from the

tree.

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 4

Public class BinarySearchTree

{

//Represent a node of binary tree

 public static class Node{

 int data;

 Node left;

 Node right;

 public Node(int data){

 //Assign data to the new node, set left and right children to null

 this.data = data;

 this.left = null;

 this.right = null;

 }

 }

 //Represent the root of binary tree

 public Node root;

 public BinarySearchTree(){

 root = null;

 }

 //insert() will add new node to the binary search tree

 public void insert(int data) {

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 5

 //Create a new node

 Node newNode = new Node(data);

 //Check whether tree is empty

 if(root == null){

 root = newNode;

 return;

 }

 else {

 //current node point to root of the tree

 Node current = root, parent = null;

 while(true) {

 //parent keep track of the parent node of current node.

 parent = current;

 //If data is less than current's data, node will be inserted to the left of tree

 if(data < current.data) {

 current = current.left;

 if(current == null) {

 parent.left = newNode;

 return;

 }

 }

 //If data is greater than current's data, node will be inserted to the right of tree

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 6

 else {

 current = current.right;

 if(current == null) {

 parent.right = newNode;

 return;

 }

 }

 }

 }

 }

 //minNode() will find out the minimum node

 public Node minNode(Node root) {

 if (root.left != null)

 return minNode(root.left);

 else

 return root;

 }

 //deleteNode() will delete the given node from the binary search tree

 public Node deleteNode(Node node, int value) {

 if(node == null){

 return null;

 }

 else {

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 7

 //value is less than node's data then, search the value in left subtree

 if(value < node.data)

 node.left = deleteNode(node.left, value);

 //value is greater than node's data then, search the value in right subtree

 else if(value > node.data)

 node.right = deleteNode(node.right, value);

 //If value is equal to node's data that is, we have found the node to be deleted

 else {

 //If node to be deleted has no child then, set the node to null

 if(node.left == null && node.right == null)

 node = null;

 //If node to be deleted has only one right child

 else if(node.left == null) {

 node = node.right;

 }

 //If node to be deleted has only one left child

 else if(node.right == null) {

 node = node.left;

 }

 //If node to be deleted has two children node

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 8

 else {

 //then find the minimum node from right subtree

 Node temp = minNode(node.right);

 //Exchange the data between node and temp

 node.data = temp.data;

 //Delete the node duplicate node from right subtree

 node.right = deleteNode(node.right, temp.data);

 }

 }

 return node;

 }

 }

 //inorder() will perform inorder traversal on binary search tree

 public void inorderTraversal(Node node) {

 //Check whether tree is empty

 if(root == null){

 System.out.println("Tree is empty");

 return;

 }

 else {

 if(node.left!= null)

 inorderTraversal(node.left);

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 9

 System.out.print(node.data + " ");

 if(node.right!= null)

 inorderTraversal(node.right);

 }

 }

 public static void main(String[] args) {

 BinarySearchTree bt = new BinarySearchTree();

 //Add nodes to the binary tree

 bt.insert(50);

 bt.insert(30);

 bt.insert(70);

 bt.insert(60);

 bt.insert(10);

 bt.insert(90);

 System.out.println("Binary search tree after insertion:");

 //Displays the binary tree

 bt.inorderTraversal(bt.root);

 Node deletedNode = null;

 //Deletes node 90 which has no child

 deletedNode = bt.deleteNode(bt.root, 90);

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 10

 System.out.println("\nBinary search tree after deleting node 90:");

 bt.inorderTraversal(bt.root);

 //Deletes node 30 which has one child

 deletedNode = bt.deleteNode(bt.root, 30);

 System.out.println("\nBinary search tree after deleting node 30:");

 bt.inorderTraversal(bt.root);

 //Deletes node 50 which has two children

 deletedNode = bt.deleteNode(bt.root, 50);

 System.out.println("\nBinary search tree after deleting node 50:");

 bt.inorderTraversal(bt.root);

 }

}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 11

Ex.No: 2 Date:

Aim:

Write a program to perform a Binary Search for a given set of integer

values

Description:

Binary Search: A binary search is an algorithm to find a particular element in

the list.

Search a sorted array by repeatedly dividing the search interval in half.

Begin with an interval covering the whole array. If the value of the search key
is less than the item in the middle of the interval, narrow the interval to the

lower half. Otherwise, narrow it to the upper half. Repeatedly check until the

value is found or the interval is empty.

In the binary search algorithm, we can find the element position using the

following methods.

a) Recursive Method

b) Iterative Method

The divide and conquer approach technique is followed by the recursive method.

In this method, a function is called itself again and again until it found an

element in the list.

A set of statements is repeated multiple times to find an element's index

position in the iterative method. The while loop is used for accomplish this task.

Procedure:

1. Compare x with the middle element.
2. If x matches with the middle element, we return the mid index.

3. Else If x is greater than the mid element, then x can only lie in the right half

subarray after the mid element. So we recur for the right half.
4. Else (x is smaller) recur for the left half.

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 12

USING RECURSIVE:
class BST

{

 private static class Node

 {

 int data;

 Node left;

 Node right;

 public Node (int data)

 {

 this.data=data;

 }

 }

 public static Node insert(Node root,intval)

 {

 if(root==null)

 {

 root=new Node(val);

 return root;

 }

 if(root.data>val)

 {

 root.left=insert(root.left,val);

 }

 else

 {

 root.right=insert(root.right,val);

 }

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 13

 return root;

 }

 public static void inorder (Node root)

 {

 if(root==null)

 {

 return;

 }

 inorder(root.left);

 System.out.println(root.data+" ");

 inorder(root.right);

 }

 public static void main(String args[])

 {

 int val[]={3,4,6,7,9,5,8};

 Node root=null;

 for(int i=0;i<val.length;i++)

 {

 root=insert(root,val[i]);

 }

 inorder(root);

 }

}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 14

2. Iterative Method

class BST
{

 private static class Node

 {

 int data;

 Node left;

 Node right;

 public Node (int data)

 {

 this.data=data;

 }

 }

 public static Node insert(Node root,intval)

 {

 if(root==null)

 {

 root=new Node(val);

 return root;

 }

 if(root.data>val)

 {

 root.left=insert(root.left,val);

 }

 else

 {

 root.right=insert(root.right,val);

 }

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 15

 return root;

 }

 public static void inorder (Node root)

 {

 if(root==null)

 {

 return;

 }

 inorder(root.left);

 System.out.println(root.data+" ");

 inorder(root.right);

 }

 public static void main(String args[])

 {

 int val[]={3,4,6,7,9,5,8};

 Node root=null;

 for(int i=0;i<val.length;i++)

 {

 root=insert(root,val[i]);

 }

 inorder(root);

 }

}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 16

Ex.No: 3 Date:

Aim:

Write a program to implement Splay trees.

Description:

 Splay tree is self-balancing BST.

 The main idea of splay tree is to bring the recently accessed item to root
of the tree, this makes the recently searched item to be accessible in O(1)

time if accessed again.

 The worst case time complexity of Binary Search Tree (BST) operations
like search, delete, insert is O(n). The worst case occurs when the tree is

skewed. We can get the worst case time complexity as O(Logn)

with AVL and Red-Black Trees.
 All splay tree operations run in O(log n) time on average, where n is the

number of entries in the tree. Any single operation can take Theta(n)

time in the worst case.

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 17

class SPLAY

{

 static class node

 {

 int key;

 node left, right;

 };

 static node newNode(int key)

 {

 node Node = new node();

 Node.key = key;

 Node.left = Node.right = null;

 return (Node);

 }

 static node rightRotate(node x)

 {

 node y = x.left;

 x.left = y.right;

 y.right = x;

 return y;

 }

 static node leftRotate(node x)

 {

 node y = x.right;

 x.right = y.left;

 y.left = x;

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 18

 return y;

 }

 static node splay(node root, int key)

 {

 if (root == null || root.key == key)

 return root;

 if (root.key > key)

 {

 if (root.left == null)

 return root;

 if (root.left.key > key)

 {

 root.left.left = splay(root.left.left, key);

 root = rightRotate(root);

 }

 else if (root.left.key < key)

 {

 root.left.right = splay(root.left.right, key);

 if (root.left.right != null)

 root.left = leftRotate(root.left);

 }

 return (root.left == null) ? root : rightRotate(root);

 }

 else

 {

 if (root.right == null)

 return root;

 if (root.right.key > key)

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 19

 {

 root.right.left = splay(root.right.left,key);

 if (root.right.left != null)

 root.right = rightRotate(root.right);

 }

 else if (root.right.key < key)

 {

 root.right.right = splay(root.right.right, key);

 root = leftRotate(root);

 }

 return (root.right == null) ? root : leftRotate(root);

 }

}

static node search(node root, int key)

{

 return splay(root, key);

}

static void preOrder(node root)

{

 if (root != null)

 {

 System.out.print(root.key + " ");

 preOrder(root.left);

 preOrder(root.right);

 }

}

public static void main(String[] args)

{

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 20

 node root = newNode(100);

 root.left = newNode(50);

 root.right = newNode(200);

 root.left.left = newNode(40);

 root.left.left.left = newNode(30);

 root.left.left.left.left = newNode(20);

 root = search(root, 20);

 System.out.print("Preorder traversal of the" + " modified Splay tree is \n");

 preOrder(root);

}

}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 21

Ex.No: 4 Date:

Aim:

Write a program to implement Merge sort for the given list of integer
values.

Description:

Merge Sort

 Merge Sort is a Divide and Conquer algorithm. It divides input

array in two halves, calls itself for the two halves and then merges
the two sorted halves.

 The merge() function is used for merging two halves.

 The merge(arr, l, m, r) is key process that assumes that arr[l..m]
and arr[m+1..r] are sorted and merges the two sorted sub-arrays

into one.

Three main components of the divide-and-conquer approach to algorithm design:

1. Divide: continuously break down the larger problem into smaller

parts.

2. Conquer: solve each of the smaller parts by utilising a function

that’s called recursively.

3. Combine: merge all solutions for all smaller parts into a single

unified solution, which becomes the solution to the starting problem.

Procedure:
MergeSort(arr[], l, r)

If r > l

 1. Find the middle point to divide the array into two halves:
 middle m = l+ (r-l)/2

 2. Call mergeSort for first half:

 Call mergeSort(arr, l, m)

 3. Call mergeSort for second half:
 Call mergeSort(arr, m+1, r)

 4. Merge the two halves sorted in step 2 and 3:

 Call merge(arr, l, m, r)

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 22

class MergeSort

{

 void merge(int arr[], int l, int m, int r)

 {

 int n1 = m - l + 1;

 int n2 = r - m;

 int L[] = new int[n1];

 int R[] = new int[n2];

 for (int i = 0; i < n1; ++i)

 L[i] = arr[l + i];

 for (int j = 0; j < n2; ++j)

 R[j] = arr[m + 1 + j];

 int i = 0, j = 0;

 int k = l;

 while (i < n1 && j < n2)

 {

 if (L[i] <= R[j])

 {

 arr[k] = L[i];

 i++;

 }

 else

 {

 arr[k] = R[j];

 j++;

 }

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 23

 k++;

 }

 while (i < n1)

 {

 arr[k] = L[i];

 i++;

 k++;

 }

 while (j < n2)

 {

 arr[k] = R[j];

 j++;

 k++;

 }

 }

 void sort(int arr[], int l, int r)

 {

 if (l < r)

 {

 int m = l + (r - l) / 2;

 sort(arr, l, m);

 sort(arr, m + 1, r);

 merge(arr, l, m, r);

 }

 }

 static void printArray(int arr[])

 {

 int n = arr.length;

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 24

 for (int i = 0; i < n; ++i)

 System.out.print(arr[i] + " ");

 System.out.println();

 }

 public static void main(String args[])

 {

 int arr[] = { 12, 11, 13, 5, 6, 7 };

 System.out.println("Given Array");

 printArray(arr);

 MergeSort ob = new MergeSort();

 ob.sort(arr, 0, arr.length - 1);

 System.out.println("\nSorted array");

 printArray(arr);

 }

}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 25

Ex.No: 5 Date:

Aim:

Write a program to implement Quick sort for the given list of integer values.

Description:

QuickSort is a Divide and Conquer algorithm. It picks an element

as pivot and partitions the given array around the picked pivot.
There are many different versions of quickSort that pick pivot in

different ways.

1. Always pick first element as pivot.
2. Always pick last element as pivot (implemented below)

3. Pick a random element as pivot.
4. Pick median as pivot.

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 26

import java.util.*;

class Main
 {
 //partitions the array around pivot=> last element
 static int partition(int numArray[], int low, int high)
 {
 int pivot = numArray[high];
 // smaller element index
 int i = (low - 1);
 for (int j = low; j <= high - 1; j++) {
 // check if current element is less than or equal to pivot
 if (numArray[j] <= pivot) {
 i++;
 // swap the elements
 int temp = numArray[i];
 numArray[i] = numArray[j];
 numArray[j] = temp;
 }
 }
 // swap numArray[i+1] and numArray[high] (or pivot)
 int temp = numArray[i + 1];
 numArray[i + 1] = numArray[high];
 numArray[high] = temp;
 return i + 1;
 }

//sort the array using quickSort
 static void quickSort(int numArray[], int low, int high)
 {
 //auxillary stack
 int[] intStack = new int[high - low + 1];

 // top of stack initialized to -1
 int top = -1;

 // push initial values of low and high to stack
 intStack[++top] = low;
 intStack[++top] = high;

 // Keep popping from stack while is not empty
 while (top >= 0) {
 // Pop h and l
 high = intStack[top--];
 low = intStack[top--];

 // Set pivot element at its correct position
 // in sorted array
 int pivot = partition(numArray, low, high);

 // If there are elements on left side of pivot,

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 27

 // then push left side to stack
 if (pivot - 1 > low)
 {
 intStack[++top] = low;
 intStack[++top] = pivot - 1;
 }

 // If there are elements on right side of pivot,
 // then push right side to stack
 if (pivot + 1 < high) {
 intStack[++top] = pivot + 1;
 intStack[++top] = high;
 }
 }
 }

public static void main(String args[])
 {
 //define array to be sorted
 int numArray[] = { 3,2,6,-1,9,1,-6,10,5 };
 int n = 8;
 System.out.println("Original Array:" + Arrays.toString(numArray));
 // call quickSort routine to sort the array
 quickSort(numArray, 0, n - 1);
 //print the sorted array
 System.out.println("\nSorted Array:" + Arrays.toString(numArray));
 }
}

Output:
Original Array:[3, 2, 6, -1, 9, 1, -6, 10, 5]
Sorted Array:[-6, -1, 1, 2, 3, 6, 9, 10, 5]

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 28

Ex.No: 6 Date:

Aim:

 Write a program to find the solution for the knapsack problem using the

greedy method.

Description:

The knapsack problem is a problem in combinatorial optimization: Given
a set of items, each with a weight and a value, determine the number of each

item to include in a collection so that the total weight is less than or equal to

a given limit and the total value is as large as possible.

Given weights and values of n items, we need to put these items in
a knapsack of capacity W to get the maximum total value in the

knapsack.

Input:

Items as (value, weight) pairs
arr[] = {{60, 10}, {100, 20}, {120, 30}}

Knapsack Capacity, W = 50;

Output:

Maximum possible value = 240
by taking items of weight 10 and 20 kg and 2/3 fraction

of 30 kg. Hence total price will be 60+100+(2/3)(120) = 240

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 29

import java.util.Scanner;

class Knapsack

{

public static void main(String[] args)

{

Scanner sc=new Scanner(System.in);

int object,m;

System.out.println("Enter the Total Objects");

object=sc.nextInt();

int weight[]=new int[object];

int profit[]=new int[object];

for(int i=0;i<object;i++)

{

System.out.println("Enter the Profit");

profit[i]=sc.nextInt();

System.out.println("Enter the weight");

weight[i]=sc.nextInt();

}

System.out.println("Enter the Knapsack capacity");

m=sc.nextInt();

double p_w[]=new double[object];

for(int i=0;i<object;i++)

{

p_w[i]=(double)profit[i]/(double)weight[i];

}

System.out.println("");

System.out.println("-------------------");

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 30

System.out.println("-----Data-Set------");

System.out.print("-------------------");

System.out.println("");

System.out.print("Objects");

for(int i=1;i<=object;i++)

{

System.out.print(i+" ");

}

System.out.println();

System.out.print("Profit ");

for(int i=0;i<object;i++)

{

System.out.print(profit[i]+" ");

}

System.out.println();

System.out.print("Weight ");

for(int i=0;i<object;i++)

{

System.out.print(weight[i]+" ");

}

System.out.println();

System.out.print("P/W ");

for(int i=0;i<object;i++)

{

System.out.print(p_w[i]+" ");

}

for(int i=0;i<object-1;i++)

{

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 31

for(int j=i+1;j<object;j++)

{

if(p_w[i]<p_w[j])

{

double temp=p_w[j];

p_w[j]=p_w[i];

p_w[i]=temp;

int temp1=profit[j];

profit[j]=profit[i];

profit[i]=temp1;

int temp2=weight[j];

weight[j]=weight[i];

weight[i]=temp2;

}

}

}

System.out.println("");

System.out.println("-------------------");

System.out.println("--After Arranging--");

System.out.print("-------------------");

System.out.println("");

System.out.print("Objects");

for(int i=1;i<=object;i++)

{

System.out.print(i+" ");

}

System.out.println();

System.out.print("Profit ");

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 32

for(int i=0;i<object;i++)

{

System.out.print(profit[i]+" ");

}

System.out.println();

System.out.print("Weight ");

for(int i=0;i<object;i++)

{

System.out.print(weight[i]+" ");

}

System.out.println();

System.out.print("P/W ");

for(int i=0;i<object;i++)

{

System.out.print(p_w[i]+" ");

}

int k=0;

double sum=0;

System.out.println();

while(m>0)

{

if(weight[k]<m)

{

sum+=1*profit[k];

m=m-weight[k];

}

else

{

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 33

double x4=m*profit[k];

double x5=weight[k];

double x6=x4/x5;

sum=sum+x6;

m=0;

}

k++;

}

System.out.println("Final Profit is="+sum);

}

}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 34

Ex.No:7 Date:

Aim:

 Write a program to find minimum cost spanning tree using Prim’s

algorithm.

Description:

A Spanning Tree (ST) of a connected undirected weighted graph G is a

subgraph of G that is a tree and connects (spans) all vertices of G. A

graph G can have multiple STs, each with different total weight (the

sum of edge weights in the ST).

A Min(imum) Spanning Tree (MST) of G is an ST of G that has the

smallest total weight among the various STs.

How does Prim’s Algorithm Work? The idea behind Prim’s algorithm is

simple, a spanning tree means all vertices must be connected. So the

two disjoint subsets (discussed above) of vertices must be connected to

make a Spanning Tree. And they must be connected with the minimum

weight edge to make it a Minimum Spanning Tree.

Algorithm :

Prims minimum spanning tree (Graph G, Souce_Node S)

1. Create a dictionary (to be used as a priority queue) PQ to hold pairs of (

node, cost).

2. Push [S, 0] (node, cost) in the dictionary PQ i.e Cost of reaching

vertex S from source node S is zero.

3. While PQ contains (V, C) pairs :

4. Get the adjacent node V (key) with the smallest edge cost (value) from the

dictionary PQ.

5. Cost C = PQ [V]

6. Delete the key-value pair (V, C) from the dictionary PQ.

7. If the adjacent node V is not added to the spanning tree.

8. Add node V to the spanning tree.

9. Cost of the spanning tree += Cost C

10. For all vertices adjacent to vertex V not added to spanning tree.

11. Push pair of (adjacent node, cost) into the dictionary PQ.

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 35

// A Java program for Prim's Minimum Spanning Tree (MST)

// algorithm. The program is for adjacency matrix

// representation of the graph

import java.io.*;

import java.lang.*;

import java.util.*;

class MST {

 // Number of vertices in the graph

 private static final int V = 5;

 // A utility function to find the vertex with minimum

 // key value, from the set of vertices not yet included

 // in MST

 int minKey(int key[], Boolean mstSet[])

 {

 // Initialize min value

 int min = Integer.MAX_VALUE, min_index = -1;

 for (int v = 0; v < V; v++)

 if (mstSet[v] == false && key[v] < min) {

 min = key[v];

 min_index = v;

 }

 return min_index;

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 36

 }

 // A utility function to print the constructed MST

 // stored in parent[]

 void printMST(int parent[], int graph[][])

 {

 System.out.println("Edge \tWeight");

 for (int i = 1; i < V; i++)

 System.out.println(parent[i] + " - " + i + "\t"

 + graph[i][parent[i]]);

 }

 // Function to construct and print MST for a graph

 // represented using adjacency matrix representation

 void primMST(int graph[][])

 {

 // Array to store constructed MST

 int parent[] = new int[V];

 // Key values used to pick minimum weight edge in

 // cut

 int key[] = new int[V];

 // To represent set of vertices included in MST

 Boolean mstSet[] = new Boolean[V];

 // Initialize all keys as INFINITE

 for (int i = 0; i < V; i++) {

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 37

 key[i] = Integer.MAX_VALUE;

 mstSet[i] = false;

 }

 // Always include first 1st vertex in MST.

 key[0] = 0; // Make key 0 so that this vertex is

 // picked as first vertex

 parent[0] = -1; // First node is always root of MST

 // The MST will have V vertices

 for (int count = 0; count < V - 1; count++) {

 // Pick thd minimum key vertex from the set of

 // vertices not yet included in MST

 int u = minKey(key, mstSet);

 // Add the picked vertex to the MST Set

 mstSet[u] = true;

 // Update key value and parent index of the

 // adjacent vertices of the picked vertex.

 // Consider only those vertices which are not

 // yet included in MST

 for (int v = 0; v < V; v++)

 // graph[u][v] is non zero only for adjacent

 // vertices of m mstSet[v] is false for

 // vertices not yet included in MST Update

 // the key only if graph[u][v] is smaller

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 38

 // than key[v]

 if (graph[u][v] != 0 && mstSet[v] == false

 && graph[u][v] < key[v]) {

 parent[v] = u;

 key[v] = graph[u][v];

 }

 }

 // print the constructed MST

 printMST(parent, graph);

 }

 public static void main(String[] args)

 {

 /* Let us create the following graph

 2 3

 (0)--(1)--(2)

 | / \ |

 6| 8/ \5 |7

 | / \ |

 (3)-------(4)

 9 */

 MST t = new MST();

 int graph[][] = new int[][] { { 0, 2, 0, 6, 0 },

 { 2, 0, 3, 8, 5 },

 { 0, 3, 0, 0, 7 },

 { 6, 8, 0, 0, 9 },

 { 0, 5, 7, 9, 0 } };

 // Print the solution

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 39

 t.primMST(graph);

 }

}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 40

Ex.No:8 Date:

Aim:

Write a program to find minimum cost spanning tree using Kruskal’s

algorithm.

 Description:

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy

approach. This algorithm treats the graph as a forest and every node it has as

an individual tree. A tree connects to another only and only if, it has the least

cost among all available options and does not violate MST properties.

Algorithm :

Kruskal’s minimum spanning tree (Graph G)

0. Create an empty minimum spanning tree M i.e M = ∅ (zero edges)

1. Sort the edge-list of the graph G in ascending order of weights.

2. For each edge (A, B) in the sorted edge-list.

3. If Find_Set_Of_A != Find_Set_Of_B, then

4. Add edge A-B to the minimum spanning tree M i.e M = M + edge (A - B)

5. Make a set / union of Find_Set_Of_A + Find_Set_Of_B.

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 41

// Java program for Kruskal's algorithm to

// find Minimum Spanning Tree of a given

// connected, undirected and weighted graph

import java.io.*;

import java.lang.*;

import java.util.*;

public class Graph {

 // A class to represent a graph edge

 class Edge implements Comparable<Edge> {

 int src, dest, weight;

 // Comparator function used for

 // sorting edgesbased on their weight

 public int compareTo(Edge compareEdge)

 {

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 42

 return this.weight - compareEdge.weight;

 }

 };

 // A class to represent a subset for

 // union-find

 class subset {

 int parent, rank;

 };

int V, E; // V-> no. of vertices & E->no.of edges

 Edge edge[]; // collection of all edges

 Graph(int v, int e)

 {

 V = v;

 E = e;

 edge = new Edge[E];

 for (int i = 0; i < e; ++i)

 edge[i] = new Edge();

 }

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 43

 // A utility function to find set of an

 // element i (uses path compression technique)

 int find(subset subsets[], int i)

 {

 // find root and make root as parent of i

 // (path compression)

 if (subsets[i].parent != i)

 subsets[i].parent

 = find(subsets, subsets[i].parent);

 return subsets[i].parent;

 }

 // A function that does union of two sets

 // of x and y (uses union by rank)

 void Union(subset subsets[], int x, int y)

 {

 int xroot = find(subsets, x);

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 44

 int yroot = find(subsets, y);

 // Attach smaller rank tree under root

 // of high rank tree (Union by Rank)

 if (subsets[xroot].rank < subsets[yroot].rank)

 subsets[xroot].parent = yroot;

 else if (subsets[xroot].rank > subsets[yroot].rank)

 subsets[yroot].parent = xroot;

 // If ranks are same, then make one as

 // root and increment its rank by one

 else {

 subsets[yroot].parent = xroot;

 subsets[xroot].rank++;

 }

 }

 // The main function to construct MST using Kruskal's

 // algorithm

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 45

 void KruskalMST()

 {

 // This will store the resultant MST

 Edge result[] = new Edge[V];

 // An index variable, used for result[]

 int e = 0;

 // An index variable, used for sorted edges

 int i = 0;

 for (i = 0; i < V; ++i)

 result[i] = new Edge();

 // Step 1: Sort all the edges in non-decreasing

 // order of their weight. If we are not allowed to

 // change the given graph, we can create a copy of

 // array of edges

 Arrays.sort(edge);

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 46

 // Allocate memory for creating V subsets

 subset subsets[] = new subset[V];

 for (i = 0; i < V; ++i)

 subsets[i] = new subset();

 // Create V subsets with single elements

 for (int v = 0; v < V; ++v) {

 subsets[v].parent = v;

 subsets[v].rank = 0;

 }

 i = 0; // Index used to pick next edge

 // Number of edges to be taken is equal to V-1

 while (e < V - 1) {

 // Step 2: Pick the smallest edge. And increment

 // the index for next iteration

 Edge next_edge = edge[i++];

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 47

 int x = find(subsets, next_edge.src);

 int y = find(subsets, next_edge.dest);

 // If including this edge doesn't cause cycle,

 // include it in result and increment the index

 // of result for next edge

 if (x != y) {

 result[e++] = next_edge;

 Union(subsets, x, y);

 }

 // Else discard the next_edge

 }

 // print the contents of result[] to display

 // the built MST

 System.out.println("Following are the edges in "

 + "the constructed MST");

 int minimumCost = 0;

 for (i = 0; i < e; ++i) {

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 48

 System.out.println(result[i].src + " -- "

 + result[i].dest

 + " == " + result[i].weight);

 minimumCost += result[i].weight;

 }

 System.out.println("Minimum Cost Spanning Tree "

 + minimumCost);

 }

 // Driver's Code

 public static void main(String[] args)

 {

 int V = 4; // Number of vertices in graph

 int E = 5; // Number of edges in graph

 Graph graph = new Graph(V, E);

 // add edge 0-1

 graph.edge[0].src = 0;

 graph.edge[0].dest = 1;

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 49

 graph.edge[0].weight = 10;

 // add edge 0-2

 graph.edge[1].src = 0;

 graph.edge[1].dest = 2;

 graph.edge[1].weight = 6;

 // add edge 0-3

 graph.edge[2].src = 0;

 graph.edge[2].dest = 3;

 graph.edge[2].weight = 5;

 // add edge 1-3

 graph.edge[3].src = 1;

 graph.edge[3].dest = 3;

 graph.edge[3].weight = 15;

 // add edge 2-3

 graph.edge[4].src = 2;

 graph.edge[4].dest = 3;

 graph.edge[4].weight = 4;

 // Function call

 graph.KruskalMST();

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 50

 }

}

 Ex.No:9 Date:

Aim:

Write a program to find a single source shortest path for a given graph.

Description:

Bellman-Ford single source shortest path algorithm is a below :

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 51

● Bellman-Ford algorithm finds the shortest path (in terms of distance /

cost) from a single source in a directed, weighted graph containing

positive and negative edge weights.

● Bellman-Ford algorithm performs edge relaxation of all the edges for

every node. Bellman-Ford Edge Relaxation

If (distance-from-source-to [node_v] > distance-from-source-to

[node_u] + weight-of-path-from-node-u-to-v)

then

distance-from-source-to [node_v] = distance-from-source-to [

node_u] + weight-of-path-from-node-u-to-v)

● With negative edge weights in a graph Bellman-Ford algorithm is

preferred over Dijkstra’s algorithm as Dijkstra’s algorithm cannot

handle negative edge weights in a graph.

Below data structures are used for storing the graph before running

Bellman-Ford algorithm

● EdgeList : List of all the edges in the graph.

● EdgeWeight : Map of edges and their corresponding weights.

Algorithm :

Bellman-Ford Single Source Shortest Path (EdgeList, EdgeWeight)

1. Initialize the distance from the source node S to all other nodes as

infinite (999999999) and to itself as 0.

Distance [AllNodes] = 999999999, Distance [S] = 0.

2. For every node in the graph

3. For every edge E in the EdgeList

4. Node_u = E.first, Node_v = E.second

5. Weight_u_v = EdgeWeight (Node_u, Node_v)

6. If (Distance [v] > Distance [u] + Weight_u_v)

7. Distance [v] = Distance [u] + Weight_u_v

https://algotree.org/algorithms/single_source_shortest_path/dijkstras_shortest_path/

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 52

// A Java program for Dijkstra's single source shortest path

// algorithm. The program is for adjacency matrix

// representation of the graph

import java.io.*;

import java.lang.*;

import java.util.*;

class ShortestPath {

 // A utility function to find the vertex with minimum

 // distance value, from the set of vertices not yet

 // included in shortest path tree

 static final int V = 9;

 int minDistance(int dist[], Boolean sptSet[])

 {

 // Initialize min value

 int min = Integer.MAX_VALUE, min_index = -1;

 for (int v = 0; v < V; v++)

 if (sptSet[v] == false && dist[v] <= min) {

 min = dist[v];

 min_index = v;

 }

 return min_index;

 }

 // A utility function to print the constructed distance

 // array

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 53

 void printSolution(int dist[])

 {

 System.out.println(

 "Vertex \t\t Distance from Source");

 for (int i = 0; i < V; i++)

 System.out.println(i + " \t\t " + dist[i]);

 }

 // Function that implements Dijkstra's single source

 // shortest path algorithm for a graph represented using

 // adjacency matrix representation

 void dijkstra(int graph[][], int src)

 {

 int dist[] = new int[V]; // The output array.

 // dist[i] will hold

 // the shortest distance from src to i

 // sptSet[i] will true if vertex i is included in

 // shortest path tree or shortest distance from src

 // to i is finalized

 Boolean sptSet[] = new Boolean[V];

 // Initialize all distances as INFINITE and stpSet[]

 // as false

 for (int i = 0; i < V; i++) {

 dist[i] = Integer.MAX_VALUE;

 sptSet[i] = false;

 }

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 54

 // Distance of source vertex from itself is always 0

 dist[src] = 0;

 // Find shortest path for all vertices

 for (int count = 0; count < V - 1; count++) {

 // Pick the minimum distance vertex from the set

 // of vertices not yet processed. u is always

 // equal to src in first iteration.

 int u = minDistance(dist, sptSet);

 // Mark the picked vertex as processed

 sptSet[u] = true;

 // Update dist value of the adjacent vertices of

 // the picked vertex.

 for (int v = 0; v < V; v++)

 // Update dist[v] only if is not in sptSet,

 // there is an edge from u to v, and total

 // weight of path from src to v through u is

 // smaller than current value of dist[v]

 if (!sptSet[v] && graph[u][v] != 0

 && dist[u] != Integer.MAX_VALUE

 && dist[u] + graph[u][v] < dist[v])

 dist[v] = dist[u] + graph[u][v];

 }

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 55

 // print the constructed distance array

 printSolution(dist);

 }

 // Driver's code

 public static void main(String[] args)

 {

 /* Let us create the example graph discussed above

 */

 int graph[][]

 = new int[][] { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },

 { 4, 0, 8, 0, 0, 0, 0, 11, 0 },

 { 0, 8, 0, 7, 0, 4, 0, 0, 2 },

 { 0, 0, 7, 0, 9, 14, 0, 0, 0 },

 { 0, 0, 0, 9, 0, 10, 0, 0, 0 },

 { 0, 0, 4, 14, 10, 0, 2, 0, 0 },

 { 0, 0, 0, 0, 0, 2, 0, 1, 6 },

 { 8, 11, 0, 0, 0, 0, 1, 0, 7 },

 { 0, 0, 2, 0, 0, 0, 6, 7, 0 } };

 ShortestPath t = new ShortestPath();

 // Function call

 t.dijkstra(graph, 0);

 }

}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 56

 Ex.No:10 Date:

Aim:

Write a program to find the solution for job sequencing with deadlines

problems.

 Description:

Job sequencing is the set of jobs, associated with the job i where

deadline di >= 0 and profit pi > 0. For any job i the profit is earned if and only

if the job is completed by its deadline. To complete a job, one has to process

the job on a machine for one unit of time. Only one machine is available for

processing the jobs.

Algorithm for job sequencing

Input: A is the array of jobs with deadline and profit S array will be the
output.

1. Begin

2. Sort all the jobs based on profit Pi so

3. P1 > P2 > P3 >=Pn

4. d = maximum deadline of job in A

5. Create array S[1,… ,d]

6. For i=1 to n do

7. Find the largest job x

8. For j=i to 1

9. If ((S[j] = 0) and (x deadline<= d))

10. Then

11. S[x] = i;

12. Break;

13. End if

14. End for

15. End for

16. End

Procedure:

Steps for performing job sequencing with deadline using greedy approach is as

follows:

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 57

1. Sort all the jobs based on the profit in an increasing order.

2. Let α be the maximum deadline that will define the size of array.

3. Create a solution array S with d slots.

4. Initialize the content of array S with zero.

5. Check for all jobs.

1. If scheduling is possible a lot ith slot of array s to job i.

2. Otherwise look for location (i-1), (i-2)...1.

3. Schedule the job if possible else reject.

6. Return array S as the answer.

7. End.

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 58

import java.util.*;

class Job

 {

 char id;

 int deadline, profit;

 // Constructors

 public Job() {}

 public Job(char id, int deadline, int profit)

 {

 this.id = id;

 this.deadline = deadline;

 this.profit = profit;

 }

 // Function to schedule the jobs take 2 arguments

 // arraylist and no of jobs to schedule

 void printJobScheduling(ArrayList<Job> arr, int t)

 {

 // Length of array

 int n = arr.size();

 // Sort all jobs according to decreasing order of

 // profit

 Collections.sort(arr,

 (a, b) -> b.profit - a.profit);

 // To keep track of free time slots

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 59

 boolean result[] = new boolean[t];

 // To store result (Sequence of jobs)

 char job[] = new char[t];

 // Iterate through all given jobs

 for (int i = 0; i < n; i++) {

 // Find a free slot for this job (Note that we

 // start from the last possible slot)

 for (int j

 = Math.min(t - 1, arr.get(i).deadline - 1);

 j >= 0; j--) {

 // Free slot found

 if (result[j] == false) {

 result[j] = true;

 job[j] = arr.get(i).id;

 break;

 }

 }

 }

 // Print the sequence

 for (char jb : job)

 System.out.print(jb + " ");

 System.out.println();

 }

 // Driver's code

 public static void main(String args[])

 {

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 60

 ArrayList<Job> arr = new ArrayList<Job>();

 arr.add(new Job('a', 2, 100));

 arr.add(new Job('b', 1, 19));

 arr.add(new Job('c', 2, 27));

 arr.add(new Job('d', 1, 25));

 arr.add(new Job('e', 3, 15));

 System.out.println("Following is maximum profit sequence of jobs");

 Job job = new Job();

 // Function call

 job.printJobScheduling(arr, 3);

 }

}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 61

Ex.No:11 Date:

Aim:

Write a program to find the solution for a 0-1 knapsack problem using
dynamic programming.

Description:

You are given the following-

● A knapsack (kind of shoulder bag) with limited weight capacity.

● Few items each having some weight and value.

The problem states:

Which items should be placed into the knapsack such that-

● The value or profit obtained by putting the items into the knapsack is
maximum.

● And the weight limit of the knapsack does not exceed.

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 62

Knapsack Problem Variants-

Knapsack problem has the following two variants-

1. Fractional Knapsack Problem

2. 0/1 Knapsack Problem

0/1 Knapsack Problem-

Given weights and values of n items, put these items in a knapsack of

capacity W to get the maximum total value in the knapsack. In other

words, given two integer arrays val[0..n-1] and wt[0..n-1] which

represent values and weights associated with n items respectively. Also

given an integer W which represents knapsack capacity, find out the

maximum value subset of val[] such that sum of the weights of this

subset is smaller than or equal to W. You cannot break an item, either

pick the complete item or don’t pick it (0-1 property).

Procedure:

Recursion by Brute-Force algorithm OR Exhaustive Search.

Approach: A simple solution is to consider all subsets of items and calculate

the total weight and value of all subsets. Consider the only subsets whose

total weight is smaller than W. From all such subsets, pick the maximum

value subset.

Optimal Sub-structure: To consider all subsets of items, there can be two

cases for every item.

1. Case 1: The item is included in the optimal subset.

2. Case 2: The item is not included in the optimal set.

Therefore, the maximum value that can be obtained from ‘n’ items is

the max of the following two values.

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 63

1. Maximum value obtained by n-1 items and W weight (excluding nth

item).

2. Value of nth item plus maximum value obtained by n-1 items and W

minus the weight of the nth item (including nth item).

If the weight of ‘nth’ item is greater than ‘W’, then the nth item cannot

be included and Case 1 is the only possibility.

Below is the implementation of the above approach:

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 64

class Knapsack {

 // A utility function that returns
 // maximum of two integers
 static int max(int a, int b) { return (a > b) ? a : b; }

 // Returns the maximum value that
 // can be put in a knapsack of
 // capacity W
 static int knapSack(int W, int wt[], int val[], int n)
 {
 // Base Case
 if (n == 0 || W == 0)
 return 0;

 // If weight of the nth item is
 // more than Knapsack capacity W,
 // then this item cannot be included
 // in the optimal solution
 if (wt[n - 1] > W)
 return knapSack(W, wt, val, n - 1);

 // Return the maximum of two cases:
 // (1) nth item included
 // (2) not included
 else
 return max(val[n - 1]+ knapSack(W - wt[n - 1], wt,val, n - 1),

knapSack(W, wt, val, n - 1));
 }

 public static void main(String args[])
 {
 int val[] = new int[] { 60, 100, 120 };
 int wt[] = new int[] { 10, 20, 30 };
 int W = 50;
 int n = val.length;
 System.out.println(knapSack(W, wt, val, n));
 }
}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 65

Ex.No:12 Date:

Aim:

Write a program to solve the Sum of subsets problem for a given set of

distinct numbers using backtracking.

Description:

In this article, we will solve Subset Sum problem using a backtracking

approach which will take O(2^N) time complexity but is significantly faster

than the recursive approach which take exponential time as well.

Subset sum problem is the problem of finding a subset such that the sum of

elements equals a given number. The backtracking approach generates all

permutations in the worst case but in general, performs better than the

recursive approach towards subset sum problem.

A subset A of n positive integers and a value sum is given, find whether or

not there exists any subset of the given set, the sum of whose elements is

equal to the given value of sum.

Algorithm:

subsetSum(set, subset, n, subSize, total, node, sum)

Input − The given set and subset, size of set and subset, a total of the

subset, number of elements in the subset and the given sum.

Output − All possible subsets whose sum is the same as the given sum.

Begin

if total = sum, then display the subset

//go for finding next subset

subsetSum(set, subset, , subSize-1, total-

set[node], node+1, sum) return

else

for all element i in the set, do subset[subSize] := set[i]

subSetSum(set, subset, n, subSize+1,

total+set[i], i+1, sum) done

End

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 66

import java.io.*;

class GFG {

 // Returns true if there is a subset

 // of set[] with sum equal to given sum

 static boolean isSubsetSum(int set[], int n, int sum)

 {

 // Base Cases

 if (sum == 0)

 return true;

 if (n == 0)

 return false;

 // If last element is greater than

 // sum, then ignore it

 if (set[n - 1] > sum)

 return isSubsetSum(set, n - 1, sum);

 /* else, check if sum can be obtained

 by any of the following

 (a) including the last element

 (b) excluding the last element */

 return isSubsetSum(set, n - 1, sum)

 || isSubsetSum(set, n - 1, sum - set[n - 1]);

 }

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 67

 /* Driver code */

 public static void main(String args[])

{

 int set[] = { 3, 34, 4, 12, 5, 2 };

 int sum = 9;

 int n = set.length;

 if (isSubsetSum(set, n, sum) == true)

 System.out.println("Found a subset"

 + " with given sum");

 else

 System.out.println("No subset with"

 + " given sum");

 }

}

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 68

Ex.No:13 Date:

Aim:

Implement N Queens problem using Backtracking.

Description:

N Queens problem :

Place N queens on a chessboard of dimension N x N i.e N rows x N columns,

such that no two queens can attack each other.

Consider below chessboards of size 4, the board on the left side is valid in

which no two queens can attack each other; whereas the board on the right

is invalid.

Algorithm : N Queens

bool IsBoardOk (chessboard, row R, column C) {

If there is a queen ‘Q’ positioned to the left of column C in

row R, then return False;

If there is queen ‘Q’ positioned on the upper left

diagonal, then return false;

If there is queen ‘Q’ positioned on the lower left

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 69

diagonal, then

 return false;

return true;

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 70

/* Java program to solve N Queen Problem using
backtracking */
public class NQueenProblem {
 final int N = 4;

 /* A utility function to print solution */
 void printSolution(int board[][])
 {
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++)
 System.out.print(" " + board[i][j]
 + " ");
 System.out.println();
 }
 }

 /* A utility function to check if a queen can
 be placed on board[row][col]. Note that this
 function is called when "col" queens are already
 placed in columns from 0 to col -1. So we need
 to check only left side for attacking queens */
 boolean isSafe(int board[][], int row, int col)
 {
 int i, j;

 /* Check this row on left side */
 for (i = 0; i < col; i++)
 if (board[row][i] == 1)
 return false;

 /* Check upper diagonal on left side */
 for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
 if (board[i][j] == 1)
 return false;

 /* Check lower diagonal on left side */
 for (i = row, j = col; j >= 0 && i < N; i++, j--)
 if (board[i][j] == 1)
 return false;

 return true;
 }

 /* A recursive utility function to solve N
 Queen problem */
 boolean solveNQUtil(int board[][], int col)
 {
 /* base case: If all queens are placed
 then return true */
 if (col >= N)
 return true;

20A05301P Advanced Data Structures and Algorithms Lab

Computer Science and Engineering Page 71

 for (int i = 0; i < N; i++) {
 /* Check if the queen can be placed on
 board[i][col] */
 if (isSafe(board, i, col)) {
 /* Place this queen in board[i][col] */
 board[i][col] = 1;

 /* recur to place rest of the queens */
 if (solveNQUtil(board, col + 1) == true)
 return true;

 /* If placing queen in board[i][col]
 doesn't lead to a solution then
 remove queen from board[i][col] */
 board[i][col] = 0; // BACKTRACK
 }
 }

 }

boolean solveNQ()
 {
 int board[][] = { { 0, 0, 0, 0 },
 { 0, 0, 0, 0 },
 { 0, 0, 0, 0 },
 { 0, 0, 0, 0 } };

 if (solveNQUtil(board, 0) == false) {
 System.out.print("Solution does not exist");
 return false;
 }

 printSolution(board);
 return true;
 }

 // driver program to test above function
 public static void main(String args[])
 {
 NQueenProblem Queen = new NQueenProblem();
 Queen.solveNQ();
 }
}
// This code is contributed by Abhishek Shankhadhar

	Merge Sort
	Algorithm :
	Ex.No:8 Date:
	Description:
	Algorithm : (1)
	Ex.No:9 Date:
	Description: (1)
	Algorithm : (2)
	Ex.No:10 Date:
	Description: (2)
	Ex.No:11 Date:
	Description: (3)

	Knapsack Problem Variants-
	0/1 Knapsack Problem-
	Procedure:
	Description:
	Algorithm:
	Ex.No:13 Date:
	Description: (1)

