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(19A03704a) FINITE ELEMENT METHODS OPEN ELECTIVE-III Course 

Objectives:
1. Familiarize basic principles of finite element analysis procedure. 
2. Explain theory and characteristics of finite elements that represent engineering structures.
3. Apply finite element solutions to structural, thermal, dynamic problem.
4. Learn to model complex geometry problems and solution techniques. 

UNIT – I 
Introduction to finite element methods for solving field problems, Stress and equilibrium, Boundary conditions, Strain-Displacement relations, Stress- strain relations for 2D and 3D Elastic problems. Potential energy and equilibrium, The Rayleigh-Ritz method, Formulation of Finite Element Equations. One dimensional problems: Finite element modeling coordinates and shape functions. Assembly of global stiffness matrix and load vector. Finite element equations, Treatment of boundary conditions, Quadratic shape functions.
 
Learning Outcomes: 
At the end of the unit, the student will be able to 
1. Understand the concept of nodes and elements.(l2) 
2. Understand the general steps of finite element methods.(l2) 
3. Understand the role and significance of shape functions in finite element formulations (l2) 
4. Formulate and solve axially loaded bar problems. (l6)

 UNIT - II 
Analysis of trusses: Stiffness Matrix for plane truss element. Stress Calculations and Problems. 
Analysis of beams: Element Stiffness Matrix for two noded, two degrees of freedom per node beam element and simple problems. 

Learning Outcomes: 
At the end of the unit, the student will be able to 
1. Explain the use of the basic finite elements for structural applications using truss and beam. (l2) 
2. Formulate and analyze truss and beam problems. (l6)





UNIT - III 
Finite element modeling of two dimensional stress analysis - constant strain trianglesquadrilateral element-treatment of boundary conditions. Estimation of load Vector, Stresses.Finite element modeling of Axi-symmetric solids subjected to axi-symmetric loading with triangular elements.Two dimensional four nodedIsoparametric elements and problems. 

Learning Outcomes: 
1. At the end of the unit, the student will be able to • 
2. Explain the formulation of two – dimensional elements (Triangular and Quadrilateral Elements). (L2) 
3. Apply the formulation techniques to solve two – dimensional problems using triangle and quadrilateral elements. (L3) 
4. Formulate and solve axisymmetric problems. (L6)


UNIT - IV 
Steady state heat transfer analysis: One dimensional analysis of slab and fin, two dimensional analysis of thin plate. Analysis of a uniform shaft subjected to torsion loading.
 Learning Outcomes: 
1. At the end of the unit, the student will be able to 
2. Explain the application and use of the Finite Element Methods for heat transfer problems. (L2) 
3. Formulate and solve heat transfer problems. (L6)


UNIT V 
Dynamic analysis: 
Formulation of finite element model,element –mass matrices,evaluation of Eigen values and Eigen vectors for a stepped bar truss. 3D Problems: Finite Element formulation- Tetrahedron element-Stiffness matrix. 
Learning Outcomes: 
At the end of the unit, the student will be able to 
1. Understand problems involving dynamics using Finite Element Methods. 
2. Evaluate the Eigen values and Eigen Vectors for steeped bar. 
3. Develop the stiffness matrix for tetrahedron element.





Course Outcomes:

Upon successful completion of this course you should be able to 
1. Understand the concepts behind variational methods and weighted residual methods in FEM. 
2. Identify the application and characteristics of FEA elements such as bars, beams, and isoparametric elements, and 3-D element. 
3. Develop element characteristic equation procedure and generation of global stiffness equation will be applied. 
4. Able to apply Suitable boundary conditions to a global structural equation, and reduce it to a solvable form. 
5. • Able to identify how the finite element method expands beyond the structural domain, for problems involving dynamics, heat transfer and fluid flow.
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INTRODUCTION

[bookmark: BasicConcepts]BasicConcepts
The finite element method (FEM), or finite element analysis(FEA), is based on the idea of building a complicated object withsimple blocks, or, dividing a complicated object into small andmanageable pieces.Application of this simple idea can be foundeverywherein everyday life, as wellas inengineering.


[bookmark: Examples:]Examples:
· Lego (kids’ play)
· Buildings
· Approximation of the area of a circle:



“Element”Si	i
R


Why Finite Element Method?
· Design	analysis:	hand	calculations,	experiments, andcomputer simulations

· FEM/FEA is the most widely applied computer simulation method in engineering
· Closely integrated with CAD/CAM applications
A Brief History of the FEM

	[image: ]
	1943
	-----
	Courant (Variational methods)
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	1956
	-----
	Turner,Clough,MartinandTopp(Stiffness)
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	1960
	-----
	Clough(“FiniteElement”,planeproblems)


· 1970s	Applicationsonmainframecomputers
· 1980s	Microcomputers,pre-andpostprocessors
 	 1990s	Analysisoflargestructuralsystems	


What is FEM ?
· Many physical phenomena in engineering and science can be described in terms of partial differential equations.
· In general, solving these equations by classical analytical methods for arbitrary shapes is almost impossible.
· The finite element method (FEM) is a numerical approach by which these partial differential equations can be solved approximately.
· From an engineering standpoint, the FEM is a method for solving engineering problems such as stress analysis, heat transfer, fluid flow and electromagnetics by computer simulation.
· Millions of engineers and scientists worldwide use the FEM to predict the behaviour of structural, mechanical, thermal, electrical and chemical systems for both design and performance analyses.
BASIC STEPS OF FEM
1 Discretization of the structure
2 Identify primary unknown quantity 3 Selection of Displacement function
4 Formation of the element stiffness matrix and load vector 5 Formation of Global stiffness matrix and load vector
6 Incorporation of Boundary conditions 7 Solution of Simultaneous equations
8 Calculation of element strains and stresses 9 Interpretation of the result obtained.
Step1: Discretization of or structure – (Establish the FE mesh)
· The continuum is divided into a number of elements by imaginary lines or surfaces.
· The interconnected elements may have different sizes and shapes.
· Establish the FE mesh with set coordinates, element numbers and node numbers
· The discretized FE model must be situated with a coordinate system
· Elements and nodes in the discretized FE model need to be identified by “element numbers” and “nodal numbers.”
· Nodes are identified by the assigned node numbers and their corresponding coordinates
[image: ]
Step2: Identify primary unknown quantity

· Primary unknown quantity - The first and principal unknown quantity to be obtained by the FEM
Eg: Stress analysis: Displacement {u} at nodes
· In stress analysis, The primary unknowns are nodal displacements, but secondary unknown quantities include: strains in elements can be obtained by the “strain-displacement relations,” and the unknown stresses in the elements by the stress-strain relations (the Hooke’s law).
Step 3: Choice of approximating functions
· Displacement function is the starting point of the mathematical analysis.
· This represents the variation of the displacement within the element.
· The displacement function may be approximated in the form a linear function or a higher-order function.
· A convenient way to express it is by polynomial expressions.
· Shape or geometry of the element may also be approximated.
[image: ]
Step 4: Formation of the element stiffness matrix & load vector
· After continuum is discretized with desired element shapes, the individual element stiffness matrix is formulated.
· Basically it is a minimization procedure whatever may be the approach adopted.
· For certain elements, the form involves a great deal of sophistication.
· The geometry of the element is defined in reference to the global frame.
· Coordinate transformation must be done for elements where it is necessary.
{F}e= {K}e * {q}e
Step 5: Formation of overall stiffness matrix & load vector
· After the element stiffness matrices in global coordinates are formed, they are assembled to form the overall stiffness matrix.
· The assembly is done through the nodes which are common to adjacent elements.
· The overall stiffness matrix is symmetric and banded.
{F}G= {K} G * {q} G
Step6 : Incorporation of boundary conditions
· The boundary restraint conditions are to be imposed in the stiffness matrix.
· There are various techniques available to satisfy the boundary conditions.
  •	One is the size of the stiffness matrix may be reduced or condensed in its final
Finite Element Methods
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form.
· To ease computer programming aspect and to elegantly incorporate the boundary conditions, the size of overall matrix is kept the same.
Step7: Solution of simultaneous equations
· The unknown nodal displacements are calculated by the multiplication of force vector with the inverse of stiffness matrix.
· [δ]=inverse of [k].[F]
Step8: Calculation of stresses or stress-resultants
· Nodal displacements are utilized for the calculation of stresses or stress- resultants.
· This may be done for all elements of the continuum or it may be limited to some predetermined elements.
Step9: Display and Interpretation of Results
· Results may also be obtained by graphical means.
· It may desirable to plot the contours of the deformed shape of the continuum.
· Tabulation of results
· Graphic displays: (1) Static with contours. (2) Animations
[image: ]
Advantages of Finite Element Method
· Modeling of complex geometries and irregular shapes are easier as varieties of finite elements are available for discretization of domain.
· Boundary conditions can be easily incorporated in FEM.
· Different types of material properties can be easily accommodated in modeling from element to element or even within an element.
· Higher order elements may be implemented.
· FEM is simple, compact and result-oriented and hence widely popular among engineering community.
· Availability of large number of computer software packages and literature makes FEM a versatile and powerful numerical method.
Disadvantages of Finite Element Method
· Large amount of data is required as input for the mesh used in terms of nodal connectivity and other parameters depending on the problem.
· It requires a digital computer and fairly extensive
· It requires longer execution time compared with FEM.
· Output result will vary considerably.
Limitations of FEA
Finite Element Methods
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1. Proper engineering judgment is to be exercised to interpret results.
2. It requires large computer memory and computational time to obtain intend results.
3. There are certain categories of problems where other methods are more effective, e.g., fluid problems having boundaries at infinity are better treated by the boundary element method.
4. For some problems, there may be a considerable amount of input data. Errors may creep up in their preparation and the results thus obtained may also appear to be acceptable which indicates deceptive state of affairs. It is always desirable to make a visual check of the input data.
5. In the FEM, many problems lead to round-off errors. Computer works with a limited number of digits and solving the problem with restricted number of digits may not yield the desired degree of accuracy or it may give total erroneous results in some cases. For many problems the increase in the number of digits for the purpose of calculation improves the accuracy.
Applications of FEM
1. Mechanical engineering: In mechanical engineering, FEM applications include steady and transient thermal analysis in solids and fluids, stress analysis in solids, automotive design and analysis and manufacturing process simulation.
2. Geotechnical engineering: FEM applications include stress analysis, slope stability analysis, soil structure interactions, seepage of fluids in soils and rocks, analysis of dams, tunnels, bore holes, propagation of stress waves and dynamic soil structure interaction.
3. Aerospace engineering: FEM is used for several purposes such as structural analysis for natural frequencies, modes shapes, response analysis and aerodynamics.
4. Nuclear engineering: FEM applications include steady and dynamic analysis of reactor containment structures, thermo-viscoelastic analysis of reactor components, steady and transient temperature-distribution analysis of reactors and related structures.
5. Electrical and electronics engineering: FEM applications include electrical network analysis, electromagnetics, insulation design analysis in high-voltage equipments, dynamic analysis of motors and heat analysis in electrical and electronic equipments.
6. Metallurgical, chemical engineering: In metallurgical engineering, FEM is used for the metallurgical process simulation, moulding and casting. In chemical engineering, FEM can be used in the simulation of chemical processes, transport processes and chemical reaction simulations.
7. Meteorology and bio-engineering: In the recent times, FEM is used in climate predictions, monsoon prediction and wind predictions. FEM is also used in bio-engineering for the simulation of various human organs, blood circulation prediction and even total synthesis of human body.
8 Civil Engineering Structure: Finite element analysis (FEA) is an extremely useful tool in the field of civil engineering for numerically approximating physical structures that are too complex for regular analytical solutions. Consider a concrete beam with support at both ends, facing a concentrated load on its center span. The deflection at the center span can be determined mathematically in a relatively simple way, as the initial and boundary conditions are finite and in control. However, once you transport the same beam into a practical application, such as within a bridge, the forces at play become much more difficult to analyze with simple mathematics.
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Strain Displacement Relationship for Axisymmentric element:
Consider an axisymmetric ring element and its cross section to represent the general state of strain for an axisymmetric problem. The displacements can be expressed for element ABCD in the plane of a cross-section in cylindrical coordinates. We then let u and w denote the displacements in the radial and longitudinal directions, respectively. The side AB of the element is displaced an amount u, and side CD is then displaced an amount u + in the radial direction.


[image: ]
[image: ][image: ]



[image: ]

UNIT –II
ONE DIMENSIONAL & TWO DIMENSIONAL ELEMENTS
[image: ][image: ]
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Degrees of Freedom in FEA:
· Degree of Freedom (DoF) is a “possibility” to move in a defined direction. There are 6 DoF in a 3D space: you can move or rotate along axis x, y or z. Together, those components describe a motion in 3D. DoF in FEA also do other things: they control supports, information about stresses and more.
· Degree of freedom or DOF means the number of independent coordinates a structure can move. There are 6 DOF possible for a structure. They are movement on x,y and z axis and rotation about these axis.
· Whatever be the field, degree of freedom, dof in short, represents the minimum number of independent coordinates required to specify the position of every mass in the system uniquely.
· eg. A simple spring mass system as shown in Fig. which is constrained to move only in the vertical direction requires the displacement x only to specify the position of the mass m. Hence it has one degree of freedom.
· [image: ]If we attach another spring and another mass below the first mass then each mass will undergo different displacement and hence we need to specify x1 and x2 which are the displacements of masses 1 and 2 respectively. Hence this has 2 dof.
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Truss
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UNIT –III GENERATION OF ELEMENT
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UNIT –IV ISOPARAMETRIC FORMULATION
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UNIT-V 
DYNAMIC ANALYSIS
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Stress-Strain Relation

Recall, at any point in the body, there are three components of strains,
ie.

ou

€, ox
’ v
£, —
oy

Y2) lou ov

422
oy ox

The corresponding stress components at that point are

O-X
{o}=10,
7,

The stresses and strains are related through,

{o} =[Dl{s}

where [D] is called the material matrix, given by

1w 0
[Dl=1Z:4v 1 o
o oo
for plane stress problems and
i 1-v v 0
[Pl=7————" 1-v 0
(1+v)(l—2v) o P

for plane strain problems.
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8-3 Finite Element Modeling

The two-dimensional body is
transformed into finite element model
by subdividing it using triangular
elements.

Note:

1. Unfilled region exists for curved
boundaries, affecting accuracy of the
solution. The accuracy can be
improved by using smaller elements.

2. There are two displacement
components at a node. Thus, ata
node j, the displacements are:
0,,, inx-direction
0,;  iny-direction

CST

¢ CST - Constant Strain Triangle
* 3 nodes per Triangle
¢ First order Triangle Element

¢ Strain in the element won't vary.
Through out the element surface
constant strain is observed.

¢ Displacement function is Linear

* Hence the displacement model is

Difference B/W CST & LST elements

LST

LST - Linear Strain Triangle

6 nodes in Triangle

Second order Triangle Element
Strain will vary in the element as
Linear

Displacement function is quadratic

The variation of the displacements
over the element may be
expressed as:

U(Xy) =8 +@x+ay +ax +axy +ay’

VIXV) =8 4 X B o X R+ 2.y
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¢ CST elements are poor in

Capturing the bending behaviour * LST elements are good in

Capturing the bending

¢ For same number of elements, behaviour

true displacement and stresses not

. . ¢ For same number of elements
obtained in CST elements ’

true displacement and stresses

* Fighbelow shows the variation of obtained better in LST elements
shape function N1 for the CST

* Fig below shows the variation of
element

shape function N1 for the LST

el

Shape Function N, for CST Shape Function N, for LST
Example 5.1
Evaluate the shape functions N;, N;, and N, at the interior point P for the triangular ele-
ment shown in Fig. E5.1.
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FIGURE ES.1 Examples 5.1 and 5.2

Solution  Using the isoparametric representation (Eqs.5.15), we have
385 = LN, + 7N, + 4Ny = <256 + 3 + 4
4B= 2N+ 35N, + TNy = ~5E - 35y + 7

These two equations are rearranged in the form
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236 -3 =015
S¢+357=22
Salving the equations we obiain £ = 0.3 and = 02, which imlies that
N=03 N=02 N=05 L

In evaluating the strains, partial derivatives of u and v are to be taken with respect
toxand y. From Eqs. 5.12 and 5.15, we sce that , v and x, y are functions of £ and . That

is,u = u(x(£,7), y(¢, 7)) and similarly v = V(x(¢,m), y(¢,7)). Using the chain rule for
partial derivatives of u, we have

which can be written in matrix notation as

u LI A
% 9 o || ox
ou x dy|)ou
in an o [{ay

(5.16)
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where the (Z X 2) square matrix is denoted as the Jacobian of the transformation, J:
ax 2y

_| % ¥
I= a3y (.17)
m o
Some additional properties of the Jacobian are given in the appendix. On taking the
derivative of x and y,

o [”lz }'1:] 618
P
Also, from Eq. 5.16,
w ou
x| _ )%
sl = 5w (5.19)
ay e
where 3"V is the inverse of the Jacobian J, given by
T -yu]
1o
I dau[—xu s (520)

detd = Xy3)h3 = X3W3 (521)
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Example 5.2
Determine the Jacobian of the transformation J for the triangular element shown in Fig, ES.1.

Solution We have
3= Ky | _| =25 -50
e 30 -35
Thus, detJ = 23.75 units. This is twice the arca of the triangle. 1f 1, 2, 3 are in a clockwise
order, then det J will be negative. -

From Eqs. 5.19 and 5.20, t follows that

u du " ou
- B3y T N~

ax{_ 1 of an (5239)
u detJ - du x L3

ay 23 o 1391‘ |

Replacing u by the displacement v, we get a similar expression

v % v M v

2 s — Yy

bl S S (5.230)
v detJ x v bx v

ay 23 B§ 13 '377

Using the strain-displacement relations (5.5) and Egs. 5.12b and 5.23, we get

du
ax
v
3y
du v
3y ox

1@ e - nsla - a)
= Getd) (@~ a6) + xus(as — a) (5.24a)
=x2(dr = gs) + x3(Gs = s} + sl — G6) ~ Yis(qe — s)

From the definition of x;; and y,;, we can write Y31 = —yjzand yi; = ¥3 ~ Y3
and so on. The foregoing equation can be written in the form

1| Yt ynds + yiogs
€7 Qorg ) P02 T Xude + Xngs (5.24b)
Yoo+ Yoty + Xy + yuqs + xp1qs + yugs
This equation can be written in matrix form as

€=Bq (5.25)
v{here Bis a (3 X 6) element strain-displacement matrix relating the three strains to the
six nodal displacements and is given by

1| 0 w0 oy, o
B=Godl © = 0 xy 0 (526)

of the nodal coordinates.

Example 5.3

Find the strain-nodal displacement matrices B¢ i 4
T s man-nodal displacer or the elements shown in Fig, E5.3. Use loca!
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Solution 'We have
1 l:)'z: 0 y 0 y Ojl
B=——0 x 0 x5 0 x
¥z Y3 %13 ¥ X Mz
1[ 2 0 0 0 -2 o}
=zl 6 -3 0 3 0 0
-3 2 3 0 0 -2

where det J is obtained from xy3y53 — X303 = (3)(2) — (3)(0) = 6. Using the local num-
bers at the corners, B? can be written using the relationship as

1 -2 0 0 0 2 0
B = s ¢ 3 0-3 0 0 =
3 -2 -3 0 0 2

Potential-Energy Approach
The potential eneréy of the system, I1, is given by
H=%/eTDetdA— /u’fum— /u"’l'tde- Su'e, (527
A A L i

In the last term in Eq. 5.27, { indicates the point of application of a point load P; and
P, =[P, P,],T. The summation in  gives the potential energy due to all point loads.

Using the triangulation shown in Fig. 5.2, the total potential energy can be written
in the form

m= Z%[eTnetdA - 2 [u"'ftdA - [uf‘nde— }i_‘,ufr,- (5.28a)

or
n=3u, - E/uTMA - 2/ o'Trde - Do, (528b)
e e . L i

where U, = [ ¢"Det dA is the element strain energy.
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FIGURE 7.2 The quadrilateral element in £, 7 space (the master alement),

Now, the requirement that N; = 0 at nodes 2, 3, and 4 is equivalent to requiring that
N, = O along edges ¢ = +1and n = +1 (Fig. 7.2). Thus, A; has to be of the form

N=cl-§1-9) 72)

where ¢ is some constant. The constant is determined from the condition N, = 1 at
node 1. Since ¢ = —1, 3 = —1 atnode 1, we have

= ¢(2)(2) (7.3)

which yields ¢ = ;. Thus,
N=i1-801-9 (7.4)
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THE FOUR-NODE QUADRILATERAL

Consider the general quadrilateral element shown in Fig.7.1.The local nodes are numbered
as1,2,3,and 4in a counterclockwise fashion as shown, and (x;, ;) are the coordinates of
node i. The vectorq = [q,,¢,,. .., qg]T denotes the element displacement vector. The dis-
placement of an interior point Plocated at (x, y) is represented asu = [u(x, y), v(x. )’)]T'

Shape Functions

Following the steps in earlier chapters, we first develop the shape functions on a mastef
element, shown in Fig, 7.2.The master element is defined in £-,m-coordinates (or natural
coordinates) and is square shaped. The Lagrange shape functions where i = 1, 2,3.and
4, are defined such that A, is equal to unity at node 7 and is zero at other nodes. In par-
ticular, consider the definition of N;:

M =1 atnodel
=0 atnodes2 3 and4 1.1
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Now, the requirement that N; = 0 at nodes 2, 3, and 4 is equivalent to requiring that
N, = O along edges ¢ = +1and n = +1 (Fig. 7.2). Thus, A; has to be of the form

N=cl-§1-9) 72)

where ¢ is some constant. The constant is determined from the condition N, = 1 at
node 1. Since ¢ = —1, 3 = —1 atnode 1, we have

= ¢(2)(2) (7.3)

which yields ¢ = ;. Thus,
N=i1-801-9 (7.4)
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THE FOUR-NODE QUADRILATERAL

Consider the general quadrilateral element shown in Fig.7.1.The local nodes are numbered
as1,2,3,and 4in a counterclockwise fashion as shown, and (x;, ;) are the coordinates of
node i. The vectorq = [q,,¢,,. .., qg]T denotes the element displacement vector. The dis-
placement of an interior point Plocated at (x, y) is represented asu = [u(x, y), v(x. )’)]T'

Shape Functions

Following the steps in earlier chapters, we first develop the shape functions on a mastef
element, shown in Fig, 7.2.The master element is defined in £-,m-coordinates (or natural
coordinates) and is square shaped. The Lagrange shape functions where i = 1, 2,3.and
4, are defined such that A, is equal to unity at node 7 and is zero at other nodes. In par-
ticular, consider the definition of N;:

M =1 atnodel
=0 atnodes2 3 and4 1.1
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All the four shape functions can be written as
M=i1-80-n)
= -(1 +&1-m) @3)
=1+ 61 +m)
N=i(1-£)(1+m)

While implementing in a computer program, the compact representation of Eqs. 7.5 is
useful

Np= 5L+ €6)(1 + mmy) 76)

where (£;, ;) are the coordinates of node i.

We now express the displacement field within the element in terms of the nodal
values, Thus, if w = [u, v]" represents the displacement components of a point located
at (¢£,1), and g, dimension (8 X 1), is the element displacement vector, then

w=Ng + Ng; + Nigs + Nogy

v = MNg; + Ngs + Nagg + Nagy (7.72)
which can be written in matrix form as
u=Nq (7.7b)
where
M ON ON ON O
N= N 78
[OM oN 0N 0N a8

In the isoParameUic formulation, we use the same shape functions N; to also ex-
press the coordinates of a point within the element in terms of nodal coordinates. Thus,

x = Nuxy + Noxy + Noxz + Npx,
¥ = Nyu + Noyy + Nyys + Ny, 79

qusequlemly, we will need to express the derivatives of a function in Xx-,
y-coordinates in terms of its derivatives in ¢-, n-coordinates. This is done as follows: A

function f = f(x, y), in view of Eqs. 7.9, can be considered to be an implicit function of
¢andyas f = f[x(¢n), y(£ n)]. Using the chain rule of differentiation, we have

o _fox ofoy
o axof  ayof
of _afex  ofsy

an  dxdm  ayay 10
or
of o
o\ )ax
af [~ ¥ o (7.11)

m 3y
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where J 1s the Jacobian matrix
ax ay

_ |9 e¢
I= ax ay (7.12)

am ay
In view of Eqs. 7.5 and 7.9, we have
J = l[’(1_7I)X1*(1_77)"2“"(1*"'1)"3‘(1‘*‘”)% *(l—n)yﬁ(l*n)yz“r(l+n)y.z-(1+n)y4]

4L A=~ (L) xt 1+Ex+(1-6)x, |~ (1-On—(1+E)n+(1+E)y+ (1-6)y
(7.13a)
N [J“ le}
"21 jZZ
(7.13b)
Equation 7.11 can be inverted as
o of
ax | ) o
of =J! af (7.14a)
8y an
or
o 24
x|\ _ 1 | Ay =) o€
of [~ detJ|:—Jz| 1,,} af (7.14b)
ay an

These expressions will be used in the derivation of the element stiffness matrix.
An additional result that will be needed is the relation

dxdy = det¥ d¢ dn (7.15)
The proof of this result, found in many textbooks on calculus, is given in the appendix.

Element Stiffness Matrix

The stiffness matrix for the quadrilateral element can be derived from the strain energy
in the body, given by

U= /gafedv (7.16)
v

or

U= E:,/hfs(m 717
&)

where ¢, is the thickness of element e.
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‘The strain—displacement relations are

du
e 8x
e={eb= ‘;_: (718)
Yoy o ow
ay  ox
By considering f = u in Eq.7.14b, we have
au au
ax 1 | J T )8
= 19
du det.l|:—12, Jn || ou (715
ay an
Similarly,
o av
ax 1 Jo Ay |) 8
=—— .19b
v detJ |:AJZ| Sy ] 8w (7.190)
ay an
Equations 7.18 and 7.19a,b yield
3
E3
ou
m
=A .20
€ av (7.20)
o
av
n
where A is given by
1 L P 0
= e 0 0 5L J, (7.21)

I Iy h -l
Now, from the interpolation equations Eqs. 7.7a, we have

= Gq (1.22)
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‘where

-(1-m) O (1-m) 0 (1+w) 0 ~(1+x) O
g=1 -9 0 —(1+¢ 0 (1+¢& o 1-& o0

4 0 ~(1-m 0 (I-m) 0 (1+m 0 -—(1+m
0 -(-¢ 0 -(1+H 0 (1+§ o0 1-9
(7.23)
Equations 7.20 and 7.22 now yield
e=Bq (7.24)
where
B = AG (7.25)

The relation € = Bq s the desired result. The strain in the element is expressed in terms
of its nodal displacement. The stress is now given by

o =DBq (7.26)
where DBis a (3 X 3) material matrix. The strain energy in Eq. 7.17 becomes
3 1
u=3 %q"'|:t, / / B'DB det J d¢ dn]q (7.272)
e -1 J-1
= 3iq'ky (1210
where
1 1
kK=t / / BDB detJ d¢ dn (7.28)
-t J-1

is the element stiffness matrix of dimension (8 X 8).
‘We note here that quantities B and det J in the integral in Eq. (7.28) are involved
functions of £ and 7, and so the integration has to be performed numerically. Methods

of numerical integration are discussed subsequently.

Element Force Vectors

Body Force A body force that is distributed force per unit volume, contributes
to the global load vector F. This contribution can be determined by considering the body

force term in the potential-energy expression

/ a’tdv (7.29)
v

Using n = Nq, and treating the body force [ = fe f,]T as constant within each ele-
ment, we get
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Definition:

The term isoparametric (same parameters) is derived from the use of
the same shape (interpolation) functions N to define the element’s

geometric shape as are used to define the displacements within the
element.

Alternatively:

The basic principle of isoparametric elements is that the interpolation
functions for the displacements are also used to represent the
geometry of the element.

4 4
u=%N.u, . v=>Nv,
i=1

4 4
x :EIN, X,y :ZIN, V;

Basic Principle of Isoparametric Elements

» In this formulation, displacements are expressed in terms of the
natural (local) coordinates and then differentiated with respect to
global coordinates. Accordingly, a transformation matrix [J], called
Jacobian, is produced.

» If the geometric interpolation functions are of lower order than the
displacement shape functions, the element is called
subparametric. If the reverse is true, the element is referred to as
superparametric.

» The isoparametric formulation is generally applicable to 1-, 2-
and 3- dimensional stress analysis. The isoparametric family
includes elements for plane, solid, plate, and shell problems. Also,
it is applicable for nonstructural problems.
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» The isoparametric formulation makes it possible to generate
elements that are nonrectangular and have curved sides. So it
can facilitate an accurate representation of irregular elements.

» Numerous commercial computer programs have adopted this
formulation for their various libraries of elements.

X 2 s=—1 s s=1
1 L 2 1 L 2
x.u
— ey
(@) (b

Two-Noded Bar Isoparametric Element

n n
A -
o 790 F=xEn) &= g 4 nt
y=yEm) m=n)
Coordinate
h Traastortmaion i
(x3, ¥2) ——
(. y)

(@) Slave (distorted) element ®) Master Garent) clement

Isoparametric coordinate transformation.

As shown in the figure, the local (natural) coordinate system (& 77) for
the two elements have their origins at the centroids of the elements,
with (£ ) varying form —1 to 1. The natural coordinate system needs
not to be orthogonal and neither has to be parallel to the x-y axes.

The coordinate transformation will map the point (& 7)) in the master
element to x(& 7 and y( 1) in the slave element.
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Step 2: Select Displacement Functions

In other words, we look for shape functions that map the regular
shape element in isoparametric coordinates to the quadrilateral
in the x-y coordinates whose size and shape are determined by
the eight nodal coordinates X, ¥p, Xp ¥ «eeees X ¥y

Tems in Pascal Triangle  Polynomial Degree Number of Terms Triangle
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Shape Function for 4-Nodes quadrilateral Elements

M= U=Dn) N = D)
N3:%(1+§)(l+n) ; N4:%(1*§)(1+'7)

These shape functions are seen to map the (& 7) coordinates of

any point in the rectangular element in the above master element

to x and y coordinates in the quadrilateral (slave) element.

For example, consider the coordinates of node 1, where:
&=-1,n=-1 using the above equation, we get x=x;, y=y,
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Shape Function for 4-Nodes quadrilateral Elements

i

lat nodei
0 at all other nodes

where » = the number of shape functions associated with
number of nodes

s

wEm| [N 0 N, 0 Ny 0 N, 0] ;N'""

wem/ [0 N 0 N, 0 N, 0 N, u;’iNv
i=1

u
{} =[V]1d]

where u and v are displacements parallel to the global x and y
coordinates
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Step 3: Define the Strain/Displacement ana Stress/Strain
Relationships

Using Chain Rule
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» Derive the Element Stiffness Matrix and Equations
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Evaluate the stiffness matrix for the y
quadrilateral element shown in Figure
using the four-point Gaussian quadrature
rule.

Let E =30x10° psi, v=0.25 and h=1 in.

3,2 6.2

Solution
we evaluate the k matrix. Using the four-point rule, the four points are:
(&-m)=(-0.5773.-0.5773)
(&.1m,)=(-0.5773.0.5773)
(&.75)=(0.5773,-0.5773) W, =Wy =W =W, =1.0
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Similarly, [B.], [Bs], and [Bs] must be evaluated like [Bi], at (—0.5773, —0.5773). We
then repeat the calculations to evaluate [B] at the other Gauss points [Eq. (10.4.4a)].

Using a computer program written specifically to evaluate [B] at each Gauss
point and then [k], we obtain the final form of [B(=0.5773, —0.5773)] as

[B(-0.5773,-0.5773)] =

—0.1057 0 0.1057 0 0 —0.1057 0 —03943

—0.1057 —0.1057 —0.3943 0.1057 0.3943 0 —0.3943 0

0 03943 0 01057 03943 03943  0.1057 —0.3943
(10.4.4h)

with similar expressions for [B(—0.5773,0.5773)], and so on.
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For the rectangular element shown previous
Example, assume plane stress conditions

Let E =30x10 psi, v = 0.3 and displacements: I
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Higher-Order Shape Functions

0
0

» In general, higher-order element shape functions can
be developed by adding additional nodes to the sides
of the linear element.

» These elements result in higher-order strain variations
within each element, and convergence to the exact

solution thus occurs at a faster rate using fewer
elements.

» Another advantage of the use of higher-order
elements is that curved boundaries of irregularly

shaped bodies can be approximated more closely than
by the use of simple straight-sided linear elements.
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Shape function of a quadratic isoparametric
element
Ni=3(1=s)(1 =) (=s—1=1) y " Edged =41
Ny= 1 +5)(1=ps—1-1) ‘
Ny=L(1+5)(1+(s+1-1)

Ny=1(1=5)(1+0)(=s+1=1)
or, in compact index notation, we express
Ni =51+ s5:) (1 + 1) (ss; + 11, — 1)

‘where i is the number of the shape function
si=—LL1L=1  (i=12.3.4) Figure 10-16  Quadiratic isoparametric element

w=-l-LL1 o (=1234) For the midside nodes (i = 5,6,7,8).
Ns=1(1-0(1+5)(1-s)
No=3(1+5)(1+0)(1-1)
N =11+ (1 +5)(1 —5)
Ns=1(1-s9)(1+)(1 1)

Shape function of a cubic isoparametric element

y
For the corner nodes (i = 1,2,3,4),
Ni =35 (1+s8)(1 + 1) [0 + ) = 10]
For the nodes on sides s = £1 (i =7,8,11,12),
Ni= 35 (1+ss0) (1 +9u)(1 = ¢2) -
— |
withs;= tland ;= +3. Figure 10-18  Cubic isoparametric element

For the nodes on sides 1= +1 (i = 5,6,9,10),
Ni =5 (1 +t6)(1 +9ss:)(1 = 57)

i — |
with f; = +1ands; = + 3.
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Definition of an axisymmetric solid

» An axisymmetric solid (or a thick-walled body) of revolution is
defined as a 3-D body that is generated by rotating a plane
and is most easily described in cylindrical coordinates. Where
zis called the axis of symmetry.

» If the geometry, support conditions, loads, and material
properties are all axially symmetric (all are independent of ),
then the problem can be idealized as a two-dimensional one.

Examples of an axisymmetric solid
Problems such as soil masses subjected to circular footing loads,

thick-walled pressure vessels, and a rocket nozzle subjected to
thermal and pressure loading can often be analyzed using

axisymmetric elements.

Footing load

e
I
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FE axisymmetric elements

axisymmetric problems can be analyzed by a finite element of
revolution, called axisymmetric elements. Each element consists of a
solid ring, the cross-section of which is the shape of the particular
element chosen (triangular, rectangular, or quadrilateral elements).
An axisymmetric element has nodal circles rather than nodal points

r
axisymmetric element jjm

qujations of Equilibrium:

The three-dimensional elasticity equations in cylindrical
coordinates can be summarized as follows
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The three-dimensional strain-displacement relationships of
elasticity in cylindrical coordinates were u, v, w are the
displacements in ther, 8,dz, respectively, are:
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The three-dimensional stress-strain relationships for isotropic
elasticity are:
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In axisymmetric problems, because of the symmetry about the z
-axis, the stresses are independent of the @ coordinate.
Therefore, all derivatives with respect to @ vanish and the
circumferential (tangent to @ direction) displacement
component is zero; therefore,

Vo =Ve. =0 and T,=T,,=0
Su u ow ou Ow
& == . Eg=— , E=_—— , V.=t —
or r oz oz Or

Derivation of the Stiffness Matrix and Equations
Step 1: Discretize and Select Element Type

Typical slice through an axisymmetric solid Discretized into triangular elements
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Step 2: Select Displacement Functions

u(r,z)y=a;+a,r+asz
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vi= = =
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In Matrix Form

-1
al (1 n z u; a| |15
= . . ase=|1 1;
a I oz uj 5 j
a3 Loy 2y Uy, 6 Lo

Solving for the a’s
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Step 3: Define the Strain/Displacement and Stress/Strain Relationships
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Step 4 :Derive the Element Stiffness Matrix and Equations

(%1=[[[ BY [(D)[B]dV
[kKl=27 j j [BY [DI[B] rdr dz

1) Numerical integration (Gaussian quadrature)
2) Explicit multiplication and term-by-term integration.

3) Evaluate [B] at a centroidal point of the element

_ Lt tn, _ z+z,+z,
r=r=T z=z=—-"T———
[B(7.2)]=[B]

[k]=277 A[B] [D][B]

Example 1

r

For the element of an axisymmetric body rotating with a constant
angular velocity @ = 100 rev/min.

Evaluate the approximate body force matrix, include the weight
of the material, where the weight density p, is 0.283 Ib/in°.

The coordinates of the element (in inches) are shown in the
figure.

The body forces per unit volume
evaluated at the centroid of the element

are
. L«r 2333 in

2, =0.283 Ib/in’
(1 2) 3. ")

— Axis of symmetry
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Dynamics is a special branch of mechanics where inertia of accelerating masses
must be considered in the force-deflection relationships. In order to describe
motion of the mass system, a component with distributed mass s approximated
by a finite number of mass points. Knowledge of certain principles of dynamics
is essential to the formulation of these cquations.

Every structure is associated with certain frequencies and mode shapes of
free vibration (without continuous application of load), based on the distribution
of mass and stiffness in the structure. Any time-dependent external load acting
on the structure, whose frequency matches with the natural frequencies of the
structure, causes resonance and produces large displacements leading to failure
of the structure. Calculation of natural frequencies and mode shapes is thercfore
very important.

"

Consider i mass m, of a system of connected rigid bodies and the force
components F; (j = 1.2,..6) acting upon it in three-dimensional space. If the mass
m, is in equilibrium at rest, then ZF, = 0.

If mass m, is not in equilibrium, it will accelerate in accordance with
Newton’s second law ice.,  F,=m, ii,

The force (—m;.i) is called the reversed effective force or inertia force.
According to D’Alembert’s principle, the net external force and the inertia
force together keep the body in a state of ‘fictitious equilibrium’
ie. S(F,-mii,)=0

If the displacement of the mass m; is represented by 8u, (j = 1,2,..6), then the
virtual work done by these force components on the mass m; in equilibrium is
given by

8W; = YF, . 8u,=0.
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FINITE ELEMENT ANALYSIS

D Alembert’s principle rewriten in the form,
BWi= Y Fj . 8, - X (m ). Su, = 0 is a statement of virmual work
Jfor asystem in motion.
For a simple spring of stiffness °k” and a lumped mass ‘m’ under steady state
undamped condition of oscillation without extemnal force, the force equilibrium
‘condition of the system is given by

Ku) + m ) =0,
K u(t) isthe reactive elastic force applied to the mass

where, F,
Displacement in vibration is a simple harmonic. motion and can be
represented by a sinusoidal function of ime as

u
where, @ isthe frequency of vibration in radians/sec

Itis more often expressed in “F* cyclessec or Hertz (Hz) where @ = 2x
Then, velocity ()= —ou cos ot

and acecleration ()= ~w'u sin 01 = -0%u(t)

K+ m o0 = (k- o'm) u(®) = 0

In general, for a system with *n’ degrees of freedom, stiffness ‘K’ and mass
“m’ are represented by stffess marix K] and mass matrix [M] respectively.

Then, (K- (M) fu} = {0}

or (MK -0 [ fu} = (0}

Here, [M] is the mass matsix of the entie structure and is of the same order,
say n % n, a5 the stifiness matrix (K]. This is also obtained by assembling
element mass matrices in a manner exactly identical 1o assembling clement
tiffness matrices. The mass matrx is obtained by two different approaches, as
explained subsequently

“This s a typical cigenvalue problem, with o as cigenvalues and {u} as
cigenvectors. A structure with ‘n” DOF wil therefore have “n” eigenvalues and
" cigenvectors. Some cigenvalues may be repeated and some cigenvalues may
be complx, in pairs. The equation can be represented in the standard form,
[AJ(x),= 2, x), Indynamic analyss, o indicaes i* natura fequency and {x);
indicates i natural mode of vibraton. A natural mode is & qualitative plot of
nodal displacemens. I every natural made of vibration, all the points on the
component will reach their maximum valucs at the same time and will pass
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CHAPTERS  DYNAMIC ANALYSIS 239

through zero displacements at the same time. Thus, in a particular mode, all the
poinis of a component wil vibrate with the same frequency and their relative
displacements are indicated by the components of the corresponding
cigenvector. These relative (or proportional) displacements at different points
on structure remain same at every time instant for undamped free vibration
(Ref. Fig. 8.1). Hence, without oss of generality, {u(0)} can be writtn as {u}

o —

FIGURE 8.1 Mode shape
Since {u) = {0} forms a trivial soluton, the homogencous system of
cquations ([A]-A]) {u} = (0}ives anon-trivial solutin only when
AI-A0)= {01,
which implies  Det ([A]-1(1]

“This expression, called characteristic equation, resulls in " order
polynomia in % and will thercfore have  roots. For each , the corresponding
cigenvector {ul, can be obtained from the n homogencous equalions
represented by (K] ~ A [MD {u} = {0}. The mode shape represented by {u(t)}
gives elatives values of displacements in various degrees of freedom

Itcan also be represented as
IAI[X] = [X][A]
where, (Al = MI" (K]

[X] i called the modal ma
xh

and [A] is called the spectral matrix with each diagonal clement
representing one eigenvalue, comesponding to the eigenvector of that colum,
‘and off-diagonal elements equal to zero.

¢ whose i column represents i* cigenvector

8
“The equation of mtion of fce vibrations (IK] o’ [M]) {u} = {0) i a system

of homogeneous equations (right side vector zero) and hence does not give
unique numerical solution. Made shape is a set of relative displacements
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Pleasc note that the same lumped mass is considered in each
translational degree of freedom (without proportional sharing of mass
between them) at each node.

Lumped mass matrix of a beam element in X-Y plane, with its axis
along x-axis and with two DOF per node (deflection along Y axis and
slope about Z axis) is given below. Lumped mass is not considered in
the rottional degrees of freedom.

Tooo
oo 000
- 2L
[lzunxa
soo

Note that lumped mass terms are not included in 2% and 4* rows, as
el ascolumns comesponding i ratonal degresof feedom.
Lumped mass mairx of a CST elemen with 2 DOF per nod. In this
case, mespacive of th shape o e slement, mass 1s sssumed squally
Gisributed a h tres nodes, 1 s dsbutd equally i all DOF a sach
hode,without any sharing of mass betwee difetent DOF

100000
010000
001000
000100
000010
000001
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Note : Natural frequencies obtained using lumped mass matrix are LOWER
than exact values.

Example 8.1 Find the natural frequencies of longitudinal vibrations of the
unconstrained stepped shafl of aras A and 2A and of equal lengths (L), as
shown below.

n B

— 0 o —

‘Solution : Let the finite element model of the shaf be represented by 3 nodes

and 2 truss elements (as only longitudinal vibrations are being considered) as

CEE——
o).

W
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v v
PAL[2 1
wabeg ] ]
Assembling the lement stiffness and mass matice,
22 0
KI=2E(-2 3 |
L 0 -1 1
420
MI=PALl2 6 4
L 0 12

Eigenvalues of the equation ([K] - [M] ) {u} = {0} are the roots of the
characteristic equation represented by

ABIL -2 4ppALs —2ABIL -0 2ppAL/ o
RAEIL-0?2ppAL/  3AE/L-076ppAL/ —1AE/L-?pALl
| 0 ~AE/L-a®pALI6  AE/L-a?2ppAL
Mltiping l he ems by (LIAE)ad subsiing ="
20-28) -20+p) 0 |
[-20+8) 30-2) ~(1+p)=
o
o 18p@-20-
. ! e
he roots ofthis cquation are. B=0, 20r + or 0 =0, 28 or 3£
° o b 2 o Pl ol
Comsponia vt ki o (1K~ M) ()= 0 for
different values of w’as [I 1 1] forp=0,[1 0 -2 for

-1 1] forp=2.
“The first eigenvector implies rigid body motion of the shafl. One component
(uy in this example) is equated 10 *1" and other displacement components
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Note  Static solution for such an unconsirained bar, with rigid body motion,
involves a singular [K] matrix and can not be solved for {u}, while dynamic
analysisis mathematically possible.

Example 8.2

Find the natural frequencies of longitudinal vibrations of the same stcpped shaft
of arcas A and 2A and of equal lengths (L), when it is constrained at one end, as
shown below.

—— Lo L=
Solution

Let the finie element model of the shaft be represented by 3 nodes and 2 truss
lements (as only longitudinal vibrations are being considered) as shown below.

I T T
e
w7

Using consistent mass matrix approach

) - 24N [2 '];&r z];

wh-et ]

6 12 624 12
‘Assembling the element silness and mass matrices,
AEI: 2-2 0
-2 3
0 1
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After applying boundary condition at node 1, 1* row and 1% column of the
assembled matrix can be deleted. Bigenvalues of the equation ([K] - o’ [M] )
{u} = {0} are the roots of the characierisic equation represented by

BAE/L-0%6pAL/6 ~ AE/L-o'pAL
|-AB/L-0?pALI6  AE/L-a?2pAL,

Vhliig e s by A9 i =P
130-26) 4“[51:0
|=0+p) (-20)

or HE-1ap2=0  =p=(1+427)1

9BME . 665IE

“The roots oftis equ HOSUE, ;, ‘Cax4E]
o o

don are B = 0.164, 1109 or

Corresponding eigenvectors are obtained from ([K] - a? [M)) {u} = (0} for
different values of ' as [0 1 17321

ions of the constrained
stepped shaft of areas A and 2A and of cqual lengihs (L), as shown below.
Compare the results oblained using lumped mass matrix approach and
consistent mass matri anproach.
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POTENTIAL ENERGY AND EQUILIBRIUM;
THE RAYLEIGH-RITZ METHOD

In mechanics of solids, our problem is to determine the displacement u of the body shown
in Fig. 1.1, satisfying the equilibrium equations 1.6. Note that stresses are related to strains,
which, in turn, are related to displacements. This leads to requiring solution of second-
order partial differential equations. Solution of this set of equations is generally referred
to as an exact solution. Such exact solutions are available for simple geometries and load-
ing conditions, and one may refer to publications in theory of elasticity. For problems of
complex geometries and general boundary and loading conditions, obtaining such solutions
is an almost impossible task. Approximate solution methods usually employ potential en-
ergy or variational methods, which place less stringent conditions on the functions.

Potential Energy, 11

The total potential energy IT of an elastic body, is defined as the sum of total strain
energy (U) and the work potential:

1 = Strain energy + Work potential
W) (WP) (1.24)

For linear elastic materials, the strain energy per unit volume in the body is 107 For
the elastic body shown in Fig. 1.1, the total strain energy U is given by

U= 1/oTsdv (1.25)
2 h

The work potential WP is given by
WP =— /qudV - /uTTds - >u'P, (1.26)
v s {
The total potential for the general elastic body shown in Fig, 1.1 is

n= 1/.rTsdv - /n'de - /uTTds - >u'p, 1.27)
2 v v s t
We consider conservative systems here, where the work potential is independent
of the path taken. In other words, if the system is displaced from a given configuration
and brought back to this state, the forces do zero work regardless of the path. The po-
tential energy principle is now stated as follows:
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Principle of Minimum Potential Energy

For conservative systems, of all the kinematically admissible displacement fields,
those corresponding to equilibrium extremize the total potential energy. If the
extremum condition is a minimum, the equilibrium state is stable.
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POTENTIAL ENERGY AND EQUILIBRIUM;
THE RAYLEIGH-RITZ METHOD

In mechanics of solids, our problem is to determine the displacement u of the body shown
in Fig. 1.1, satisfying the equilibrium equations 1.6. Note that stresses are related to strains,
which, in turn, are related to displacements. This leads to requiring solution of second-
order partial differential equations. Solution of this set of equations is generally referred
to as an exact solution. Such exact solutions are available for simple geometries and load-
ing conditions, and one may refer to publications in theory of elasticity. For problems of
complex geometries and general boundary and loading conditions, obtaining such solutions
is an almost impossible task. Approximate solution methods usually employ potential en-
ergy or variational methods, which place less stringent conditions on the functions.

Potential Energy, 11

The total potential energy IT of an elastic body, is defined as the sum of total strain
energy (U) and the work potential:

1 = Strain energy + Work potential
W) (WP) (1.24)

For linear elastic materials, the strain energy per unit volume in the body is 107 For
the elastic body shown in Fig. 1.1, the total strain energy U is given by

U= 1/oTsdv (1.25)
2 h

The work potential WP is given by
WP =— /qudV - /uTTds - >u'P, (1.26)
v s {
The total potential for the general elastic body shown in Fig, 1.1 is

n= 1/.rTsdv - /n'de - /uTTds - >u'p, 1.27)
2 v v s t
We consider conservative systems here, where the work potential is independent
of the path taken. In other words, if the system is displaced from a given configuration
and brought back to this state, the forces do zero work regardless of the path. The po-
tential energy principle is now stated as follows:
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Principle of Minimum Potential Energy

For conservative systems, of all the kinematically admissible displacement fields,
those corresponding to equilibrium extremize the total potential energy. If the
extremum condition is a minimum, the equilibrium state is stable.
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finite element method vs classical method

Classical Methods

Finite Element method

1) Bxact equations are formed and exact
solutions are obtained.

2) Solutions can be obtained for few
standard cases.

3) For the solution of shape, Boundary
conditions and loading some assumptions are
made.

4) When material is not isotropic, solution
for the problems becomes very difficult.

5) If structure consist more than one
material, it is difficult to analyze.

1) Exact equations are formed but
approximate solutions are formed.

2) Solution can be obtained for all problems.

3) Noassumptions are made problem s
treated asitis.

4) Alltype of property can handle without
any difficulty.

6) If structure consist more than one material
then it can be analyzed without any difficulty.

Finite difference method vs Finite element method

Finite difference method
(FOM)

1) FDM makes the paint wise approximation
to governing equations. Thus continuity
only atnode points not along the sides of
elements.

2) FDM gives the value at on node point only

means it do not give any approximating
function to evaluate the basic values
(deflection).

3) FDM makes stair type approximation to
sloping and curved boundaries.

4) FDM needs large numbers of nodes to
obtained good result.

5) FDM fairly complicated problems can be
handled.

Finite Element method
(FEM)

1) FEM makes the piece wise approximation

thus continuity at node points and also
along the sides of elements.

2) FEM can give the value at any point other
than node also by interpolation.

3) FEM can consider the sloping boundaries
exactly .

4) FEM need few nodes.

5) FEM can be handled all complicated
problems.
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Kxample 1.2
The potential energy for the linear elastic one-dimensional rod (Fig. E1.2), with body foro

neglected, is
1 (du\?
n= 3 /u’ EA< dx) dx — 2u,
where u; = u(x = 1).
Let us consider a polynomial function

u =gy +ax + a3x*
This must satisfy « = Oatx = Oandu = Oatx = 2.Thus,

Hence,

-

y E=1,A

Solution from
mechanics

Approximate
solution

+1.5

Solution from
Mechanics

Stress from
[~ approximate
solution

Stress  +1

FIGURE E1.2
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Ihen dujdx = 2a;(—1 + x) and
1 2
= 5/ 4a}(~1 + x)dx — 2(—a,)
o

=2a§/ (1~ 2x + x*)dx + 2a,
o

=24(3) + 24,
We set ¢11/da, = 4a3(§) + 2 = 0, resulting in
a;= =075 w =—a;=075
The stress in the bar is given by

a:E%:l.sa—x) [

We note here that an exact solution is obtained if piecewise polynomial interpo-
lation is used in the construction of u.

The finite element method provides a systematic way of constructing the basis
functions ¢, used in Eq. 1.30.
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>IRESSES AND EQUILIBRIUM

A three-dimensional body occu;
Fig. 1.1. Points in the body are
strained on some region,

pying a volume V and having a surface § is shown in
If)cated by x, y, z coordinates. The boundary is con-
where displacement is specified. On part of the boundary, dis-
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tributed force per unit area T, also called traction, is applied. Under the force, the body
deforms. The deformation of a point x ( = [x, y, z]T) is given by the three components
of its displacement:

u = [g,v,w]" (L1)

The distributed force per unit volume, for example, the weight per unit volume, is the vec-
tor f given by

f=[fof . LI (1.2)

The body force acting on the elemental volume ¢V is shown in Fig. 1.1. The surface trac-
tion T may be given by its component values at points on the surface:

T=(T.T,. 7] 3

Examples of traction are distributed contact force and action of pressure. A load P act-
ing at a point i is represented by its three components:

P, =[PP, (1.4

The stresses acting on the elemental volume dV are shown in Fig. 1.2. When the volume
dV shrinks to a point, the stress tensor is represented by placing its components in a
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(3 X 3) symmetric matrix. However, we represent stress by the six independent com-
ponents as in

0 = [0,,09,0,, Ty, Ters Tyl T (1.5)

where o, o, o, are normal stresses and 7, 7., 7,,, are shear stresses. Let us consid-
er equilibrium of the elemental volume shown in Fig. 1.2. First we get forces on faces by
multiplying the stresses by the corresponding areas. Writing F, = 0, 2F, =0, and
2F, = 0 and recognizing dV = dx dy dz, we get the equilibrium equations

do, 9Ty

+2 40 0
ax dy 24 fe=

dar,, 9 a, 97y,
+f, =
x ay 8z F (1.6)
37y, | 87y do,
ax | 3y oz
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Special Cases

One dimension. In onc dimension, we have normal stress o along x and the
corresponding normal strain €. Stress~strain relations (Eq. 1.14) are simply

o = Ee (1.16)
Two dimensions. In two dimensions, the problems are modeled as plane stress
and plane strain.

Plane Stress. A thin planar body subjected to in-plane loading on its edge sur-
face is said to be in plane stress. A ring press fitted on a shaft, Fig. 1.5a, is an example. Here
stresses o';, 7, and 7, are set as zero. The Hooke’s law relations (Eq. 1.11) then give us

%
““E"E
T,
L= (117)
2(1 + »)
Yy E Xy
&=- (o, t o)
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FIGURE 1.5 (a) Plane stress and (b} plane strain.
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The inverse relations are given by

1 1}
oy €
ob=; f,,z v 1 . 0 e (118)
Ty 00— LAIe

which is used as o = De.

Plane Strain. I a long body of uniform cross section is subjected to transverse
loading along its length, a small thickness in the loaded area, as shown in Fig. 1.5b, can
be treated as subjected to plane strain. Here ¢, v.., 7,, are taken as zero. Stress o,

may not be zero in this case. The stress—strain relations can be obtained directly from
Egs.1.14 and 1.15:

o, 1-w» v

E 0 €
o, 0= m v 1-w ? €, (1.19)
Tay 0 0 3= v\ sy

D here is a (3 X 3) matrix, which relates three stresses and three strains.

Anisotropic bodies, with uniform orientation, can be considered by using the ap-
propriate D matrix for the material.
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The stram m the tangential direction depends on the tangential displacement v and on
the radial displacement u.

However, for axisymmetric deformation behavior, recall that the tangential
displacement v is equal to zero.

The tangential strain is due only to the radial displacement.

Having only radial displacement v, the new length of the arc AB
is (r+ u)dé, and the tangential strain is then given by:

(r+u)dé-rdé u
P it i L
rdé r
Consider the longitudinal element BDEF to obtain the longitudinal strain and the shear
strain. The element displaces by amounts u and w in the radial and longitudinal

directions at point E.

The element displaces
additional amounts:
(éwiléz)dz along line BE and
(Bular)dr along line EF
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The normal strain in the radial direction is then given by: e,=%’
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Furthermore, observing lines EF and BE, we see that point F
moves upward an amount (awizr)dr with respect to point £
and point B moves to the right an amount (Gulz)dz with
respect to point E.
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The longitudinal normal
strain is given by:
w
-

oz

The shear strain in the -z
plane is:

u_aw

iy

‘Summarizing the strain-displacement relationships gives:
RRL W S .

" Ty Ta "aw
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COORDINATES AND SHAPE FUNCTIONS

Consider a typical finite element e in Fig. 3.5a. In the lox i

- el cal number scheme, the first
no::ile ;vﬂl be numbered 1 and the second node 2. The Rotation x; = x-coordinate of
node 1, x; = x-coordinate of node 2 is used. We define i inate
system, denoted by ¢, as ne a natural or intrinsic coordinal
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FIGURE 3.5 Typical element in x- and {-coordinates.

f= 2t (x-x) -1 @4
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FIGURE 3.6 Linear interpolation of the displacement field within an element.





image34.png
From Fig. 3.5b, we see that £ = —1 at node 1 and £ = 1 at node 2. 1he length of an
element is covered when & changes from —1 to 1. We use this system of coordinates in
defining shape functions, which are used in interpolating the displacement field.

Now the unknown displacement field within an element will be interpolated by a
linear distribution (Fig. 3.6). This approximation becomes increasingly accurate as more
elements are considered in the model. To implement this linear interpolation, linear
shape functions will be introduced as

1 -

e

Ni(¢) = (3.5)

1

+ N
v

Ny(§) = (3.6)

s 1

The shape functions N, and N; are shown in Figs. 3.7a and b, respectively. The graph of
the shape function A, in Fig. 3.7a is obtained from Eq. 3.5 by noting that ¥, = 1 at
£=~1,N, = Oat £ = 1,and N, is a straight line between the two points. Similarly, the
graph of N, in Fig. 3.7b is obtained from Eq. 3.6. Once the shape functions are defined,
the linear displacement field within the element can be written in terms of the nodal
displacements g, and ¢, as

u=Ng + Nyg, (3.7a)
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FIGURE 3.6 Linear interpolation of the displacement field within an element.
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From Fig. 3.5b, we see that £ = —1 at node 1 and £ = 1 at node 2. 1he length of an
element is covered when & changes from —1 to 1. We use this system of coordinates in
defining shape functions, which are used in interpolating the displacement field.

Now the unknown displacement field within an element will be interpolated by a
linear distribution (Fig. 3.6). This approximation becomes increasingly accurate as more
elements are considered in the model. To implement this linear interpolation, linear
shape functions will be introduced as

1 -

e

Ni(¢) = (3.5)

1

+ N
v

Ny(§) = (3.6)

s 1

The shape functions N, and N; are shown in Figs. 3.7a and b, respectively. The graph of
the shape function A, in Fig. 3.7a is obtained from Eq. 3.5 by noting that ¥, = 1 at
£=~1,N, = Oat £ = 1,and N, is a straight line between the two points. Similarly, the
graph of N, in Fig. 3.7b is obtained from Eq. 3.6. Once the shape functions are defined,
the linear displacement field within the element can be written in terms of the nodal
displacements g, and ¢, as

u=Ng + Nyg, (3.7a)




image37.png
1=k MLy ‘
M M ?_I_
i
| ‘2 £ 1 2 ¢
£=0 L
@ N ®)
ke
a1
1 2 £
©

FIGURE 3.7 (a) Shape function ;,

(b) shape function N, and (c) linear interpolation using
N and N,
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Of, In matrix notation, as

where

N=[N,N] and q=(q,q,)" (38

In these equations, q is referred to as the element displacement vector. It is readily verk

fied from Eq. 3.7a that u = Gratnode 1, u = g, at node 2. and that u varies linearly
(Fig. 3.7¢). ’

X = Nx, + Nyx, (39)

that both the displacem, inate *
n 4 a ent 4 and the coordina
are interpolated within the element using the same shape functions N, and Nb. This
referred to as the isoparamerric fo ! -
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, Now coming to FEM when we want to find the stresses in a member subjected to
axial loads such as the stepped bar shown below. since the bar is long and thin we
can assume that the longitudinal displacements are significantly higher than the

lateral displacements. So neglecting this lateral displacement we can discretise this
system into two 2 noded elements.
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* When we use a 2 noded clement it is assumed that there is only on degree of
freedom at each node namely the axial displacement of that node. So total degrees
of freedom in this case for one clement is 2.

* On the other hand in a beam clement that is subjected to only vertical transverse
loads. we require minimum 2 dofs. Why is this s0?

 Take the case of a simply supported beam subjected to a central point load as
shown in the figure below.

vz

s i

 Ifwe specify the position of every point in the beam with only one variable
namely the transverse displacement w. then if we look for two symmetrically
placed points along the beam such as points 1 and 2. the displacements will be the
same and equal to w. So if have to specifically refer to only one point uniquely we
need one more variable that can be used to identify that point. Hence we introduce
another variable namely the slope of the deflection curve.

« Soa simple beam subjected to only vertical loads can be modelled using a beam

element that has 2 dofs per node namely So total dof s for one two noded beam
clement is 2 x 2 =4.

1If the beam is subjected to a load as shown below
P

——

Then there is an axial displacement that comes into the picture additionally. So we
have to introduce one more dof namely axial displacement u at each node thus
Dringing the dof per node to 3 and total dof to 6.

Similarly a 3 noded triangular element used to model a thin rectangular fin has one
dof (variable) per node namely temperature so total dof is 3 x 1 =3. In a structural
application there will be two dof per node namely u and v displacements, Hence
total dof for a 3 noded triangular clement for stress analysis will be 3 x 2 =6.

A 4 noded tetrahedral solid element has 3 dof per node (u.v.and v displacements)
‘when used in structural applications so total dof is 4 x 3 =12.

So we need to understand the physical behaviour of the system and model it
appropriately.
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Shape Functions:

In the finite element analysis aim is to find the field variables at nodal points by
rigorous analysis. assuming at any point inside the element basic variable is a function
of values at nodal points of the clement. This function which relates the field variable at
any point within the element to the field variables of nodal points is called shape
function. This is also called as interpolation function and approximating function. In
two dimensional stress analysis in which basic field variable is displacement.

Shape functions are the polynomials meant to describe the variation of primary
variable along the domain of clement.

u=ENu,v=ENy, L (51)

where summation is over the iumber of nodes of the element, For example for thres noded triangular element.
displacement at P (x, ) is

=INu =Nt Nyuy+ Nyg

IN, = N+ Nyt Nywy

[l _[M 0 N 0 N 0w
J7lo & o N 0 Mw
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where g is displacement at any point in the element
[N shape function

{8}, is vestor of nodal displacements

Similarly in case of 6 noded triangular element

{8}=[v] {e},

2x1 2x12 12x1
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Shape Functions:

In the finite element analysis aim is to find the field variables at nodal points by
rigorous analysis. assuming at any point inside the element basic variable is a function
of values at nodal points of the clement. This function which relates the field variable at
any point within the element to the field variables of nodal points is called shape
function. This is also called as interpolation function and approximating function. In
two dimensional stress analysis in which basic field variable is displacement.

Shape functions are the polynomials meant to describe the variation of primary
variable along the domain of clement.

u=ENu,v=ENy, L (51)

where summation is over the iumber of nodes of the element, For example for thres noded triangular element.
displacement at P (x, ) is

=INu =Nt Nyuy+ Nyg

IN, = N+ Nyt Nywy
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where g is displacement at any point in the element
[N shape function

{8}, is vestor of nodal displacements

Similarly in case of 6 noded triangular element

{8}=[v] {e},

2x1 2x12 12x1
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POLYNOMIAL SHAPE FUNCTIONS

Polynomials are commonly used as shape finctions. There are two reasons for using them:
() They are easy to handle mathematically i e. differentiation and integration of polynomials is easy

(i) Using polynomial any function can be approximated reasonably well. If a function is highly
nonlinear we may have to approximate with higher order polynomial. Fig. 5.1 shows approximatior
of a nonlinear one dimensional function by polynomials of different order.

; )

(a) Constant (©) Linear (¢) Quacratic

Approximation with polynomials
One Dimensional Polynomial Shape Function

A general one dimensional polynomial shape function of nth Order is given by,

u(x)= o+ oy x+ Qx4 ..y X"

In matrix form # =

Sl {a}

where [6]=[rx

and o = [ s 0t taer]

Thus in one dimensional #* order complete polynomial there are m =+ 1 terms,
Two Dimensional Polynomial Shape Function

A general form of two dimensional polynomial model is

(X, 3) = @+ Gy ¥4 0y @ P s @+ Tt ey

(X, 1) = Gy + G X+ Ty ¥4t o)

o

)

where

(o) = [ @ a0y ]
Tt may be observed that in two dimensional problem. total mumber of terms  in a complete nth degree
‘polynomial is

(n+1)n+2)

m (53)

For first order complete polynomial n = 1

“m (7"1'f1"':5
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POLYNOMIAL SHAPE FUNCTIONS

Polynomials are commonly used as shape finctions. There are two reasons for using them:
() They are easy to handle mathematically i e. differentiation and integration of polynomials is easy

(i) Using polynomial any function can be approximated reasonably well. If a function is highly
nonlinear we may have to approximate with higher order polynomial. Fig. 5.1 shows approximatior
of a nonlinear one dimensional function by polynomials of different order.
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(a) Constant (©) Linear (¢) Quacratic

Approximation with polynomials
One Dimensional Polynomial Shape Function

A general one dimensional polynomial shape function of nth Order is given by,

u(x)= o+ oy x+ Qx4 ..y X"

In matrix form # =

Sl {a}

where [6]=[rx

and o = [ s 0t taer]

Thus in one dimensional #* order complete polynomial there are m =+ 1 terms,
Two Dimensional Polynomial Shape Function

A general form of two dimensional polynomial model is

(X, 3) = @+ Gy ¥4 0y @ P s @+ Tt ey

(X, 1) = Gy + G X+ Ty ¥4t o)

o

)

where

(o) = [ @ a0y ]
Tt may be observed that in two dimensional problem. total mumber of terms  in a complete nth degree
‘polynomial is

(n+1)n+2)

m (53)

For first order complete polynomial n = 1

“m (7"1'f1"':5
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Another convenient way to remember complete two dimensional polynomual is i the form of Pascal
Triangle shown in Fig. 5.2

v
i
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N ¥
p / 1N ase w0
i
Xy X Quartic 15
¥ NG\ W
7/ aaw
Xy g7 T NG\
. |
T AT R Y sl

Fig. 5.2 Pascal triangle
Three Dimensional Polynomial Shape Function

A general three dimensional shape function of nth order complete polynomial is given by

O [ SO
V95 2) = mar + U2 X+ B3 ¥ O 2+ Uas X4 ot U 772 -59)
(X, 9 Z) = Gy + G ¥+ Oy ¥ Gy g T+ e+ Ay ¥
u(x, v, G 0 0
or 8(x, v, 2)=v(x, v,2) 0 G o|{a} .{5.10)
o 0 G
Where G, =[1xyz 22y)) |
and {a} =[a, @y @y ]

It may be observed that a complete nth order polynomial in three dimensional case is having aumber of
terms m given by the expression
1 2 3]
ol )(n; )(n+3)

(+90+2)0+3 _,

Thus when n=1.m = =

ie arayxragyra,s
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5.3 CONVERGENCE REQUIREMENTS OF SHAPE FUNCTIONS

Numerical solutions are approximate <olutions Stiffess coefficients for a displacements model have higher
‘magnitudes compared to those for the exact solutions. Tn other words the displacements obtained by finite
element analysis are lesser than the exact values, Thus the FEM gives lower bound values. Hence itis desirable
that as the finite element analysis mesh is refined. the solution approaches the exact values. This requirement
is shown graphically in Fig 5.4 Tn order to ensure this convergence criteria. the shape functions should
satisfy the following requirement:

Fig. 5.4 Convergence of FEM solution

1. The displacement models must be continnous within the elements and the displacements must be
compatible between the adjacent elements. The second part implies that the adjacent elements must
deform without causing openings. overlaps or discontinuities between the elements. This requirement
is called *compatibility requirement” .

According to Felippa and Clough this requirement is satisfied. if the displacement and s partial
derivatives upto one order less than the highest order derivative appearing in strain energy function
is continuous. Hence in plane stress and plane strain problems. it is enough if continuity of
displacement is satisfied. since strain energy function includes only first order derivatives of the
displacement (SE = % stress  strain). It implies, it is enough if C* continuity is ensured in plane
stress and plane strain problems. In case of flexure problems (beams, plates, shells) the strain

energy terms include second derivatives of displacements | like

Hence to satisfy compaibility requirement, not only displacement continuity but slope continuity
( C* ~continuity) should be satisfied. Hence in flexure problems displacements and their first
derivatives are selected as nodal field variables.

2. The displacement model should inchude the rigid body displacements of the element. It means in
displacement model there should be a term which permit all points on the elemeni fo experience the
same displacement. Itis obvious, if such term do not exists, shifting of the origin of the coordinate
system will cause additional stresses and strains, which should not occur. In the displacement
model.

U= ayxrayy

the temn @, provides for the rigid body displacement. Hence to satisfy the requirement of rigid
body displacement, there should be constant term in the shape function selected.
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3. The displacement models must include the constant strain state of the element. This means, there
should exist combination of values of polynomial terms that cause all points in the element o
experience the same strain. One such combination should occur for each possible strain. The necessity
of this requirement is understood physically, if we imagine the refinement of the mesh. As these
elements approach infinitesimal size, the strains within the element approach constant values. Unless.
the shape function ferm includes these constant strain ferms, we cannot hope fo converge o a
correct solution. In the displacement model,

VS Uy Uy ¥+ G ¥ 4 Uy X 4+ @y 3
@, and @, provide for uniform strain £,

aty and @4y provide for wniform sirain £,

An additional consideration in the selection of polynomial shape fiunction for the displacement model
is that the pattern should be independent of the orientation of the local coordinate system. This property s
known as Geometric Isotropy, Spatial Isotropy or Geometric Invariance. There are two simple guidelines
10 construct polynomial series with the desired property of isotropy:

1. Polynomial of order  that are complete, have geometric isotropy

2. Polynomial of order » that are not complete, yet contain appropriate ferms 10 preserve ‘symmetry'
have geometric isotropy. The simple test for this property is to nterchange x and v in two dimensional
problems orx,y. 2 i eyclic order in three dimensional problems and see that the total expression do
not change. However the arbitrary consiants may change.
For example, we wish to construct a cubic polynomial expression for an element that has eight
nodal values assigned to it Tn this sifuation. we have to drop fwo terms from the complete cubic
polynomial which contains 10 terms. To maintain geometric isotropy drop only terms that oceur in
symmetric pairs i.c. ¥, ¥ or ¥, xv%. Thus the acceptable cight term cubic polynomials shape
function exhibiting geometric isotropy are

U Oy X+ Uy Y+ U X Y+ U3+ @ Py + g

W T U+ ) g

Uy Oy X+ Y+ Uy X+ Y+ g 4 6 Xy 4 o

ad @y x s ayy g a4 o @ s agy

In finite clement analysis. the safest approach to reach correct solution is o pick the shape functions
that satisfy all the requirements. For some problemss, however, choosing shape functions that meet
all the requirements may be difficult and may involve excessive numerical computations. For this
reason some investigators have veatured to formulate shape finctions for the elements that do not
‘meet compatibility requirements. In some cases aceeptable convergence has been obtained. Such
elements are called ‘non-conforming elements'. The main disadvantage of using nou-conforming
elements is that we 1o longer know in advance that correct solution is reached.

Characteristic of Shape function

1. Value of shape function of particular node is one and is zero to all other nodes.
2. Sum of all shape function is one.
3. Sum of the derivative of all the shape functions for a particular primary variable is zero.
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Coordinate Systems

The following terms are commonly referred in FEM

(i) Global coordinates

(i) Local coordinates and

(iii) Natural coordinates.

However there is another ferm *generalized coordinates” used for defining a polynomial form of
interpolation function. This has nothing to do with the “coordinates” term used here to define the
location of points in the clement.

Global coordinates

The coordinate system used to define the points in the entire structure is called global coordinate
system Figure 4.14 shows the cartesian global coordinate system used for some of the typical
cases.

T 2 @ 3
o — o @ 5 .,
x % X

(@

9

-~ >x

(®)

Fig. 414  Global coordinate system

Local coordinates
For the convenience of deriving element properties. in FEM many times for cach clement a
separate coordinate system is used. For example, for typical elements shown in Fig. 4.14, the local
coordinates may be as shown in Fig. 4.15. However the final cquations are to be formed in the
common coordinate system ic. global coordinate system only.
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Natural coordinate
A natural coordinate system is a coordinate system which permits the specification of a point
within the clement by a set of dimensionless numbers, whose magnitude never exceeds unity. It is
obtained by assigning weightages to the nodal coordinates in defining the coordinate of any point
inside the element. Hence such system has the property that ith coordinate has unit value at node i
of the element and zero value at all other nodes. The use of natural coordinate system is advantages
in assembling clement properties (stiffacss matrices), since closed form integrations formulac are
available when the expressions are in natural coordinate systems

Natural coordinate systems for one dimensional, fwo dimensional and three dimensional elements
P MR (I
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Natural Coordinates in Two Dimensions
Natural coordinates for triangular and rectangular elements are discussed below:

1. Natural Coordinates for Triangular Elements: Consider the typical 3 noded triangular element shown
inFig 4.20. Since there are three nodes. for any point there are three coordinates. say Z,. L, and L, From the
definition of natural coordinates, we have

v

@78
(470
¢70)

Expressing the above cquations in matrix fonm,
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Tt can be shown that the determinant,
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Proof. Now.

T4 3
Det=fu x xsf=(xays=x0)=(m3s=3n)+ (un-xnn)
pro» il
Consider the triangle ABC shown in Fig 421 Drop perpendiculars AD. BE and CF on to x-axis
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Fig. 421

Now, Arca of triangle ABC
=Area ADEC + Area CEFB — Area ADFB
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Proof. Now.

T4 3
Det=fu x xsf=(xays=x0)=(m3s=3n)+ (un-xnn)
pro» il
Consider the triangle ABC shown in Fig 421 Drop perpendiculars AD. BE and CF on to x-axis
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Fig. 421

Now, Arca of triangle ABC
=Area ADEC + Area CEFB — Area ADFB
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Referring to Fig. 4.22 and applying equation 4.8, we get Area of subtraingle CPB
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Fig.4.22 Area coordinates for a triangie
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+, Equation 4.9 reduces to
24
n| |24 4
24,
L= 4y
24| 4 _(410)
Ll |24 4
4

where 4, 4 Arare the area o sub-rangles PCB, PAC and PAB which arecppositeto nodes 1,3 and 3 resptiely. Hence he
‘natal coordinates i tianglesar also know a area coordinates.
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Natural Coordinates in Three Dimensions

Natueal coordinates for a 4 noded tetrahedron may be derived and it results into volume coordinates. Consider
the typical tetrahedron shown in Fig. 4.24.

1
XA 5
Fig. 424 Tetrahedron coordinates

‘The natural coordinates are related to the Cartesian coordinates as follows:

) fal s s
R AR @12)
o= om ) e
The above equation may be solved by inverting the 4 x 4 matrix. It gives
L ly(“gu:,pd,znm 2, 3and4 413)
¥R 13
where 6 =" 3and4
P
5 5

and
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The otier constants arc obtained by cyclic changes in the subscripts. It may be noted that the above
equations arc valid only when the nodes arc mumbered so that nodes 1, 2 and 3 arc ordered counter clockwise:
when viewed from node 4. It is also necessary that for coordinates system of right handrule is srietly adhered
to.
TV, is the volume ofthe smaller tetrahedron which has vertices P and the three nodes other thanthe node.
. then the tetrahedron coordinates can be considered as volume coordinates, defined as

L% 12300 (414
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Example 5.4
Consider the bar shown in Fig. E3.4. An axial load P = 200 X 10° N is applied as shown.
Using the penalty approach for handling boundary conditions, do the following:

(a) Determine the nodal displacements.
{b) Determine the stress in each material.
{c) Determine the reaction forces.

fe——300 mm——p+———400 mm ——

Aluminum Steel
Ay= 2400 mm? Ay= 600 mm®
E,=70 X 10°N/m?  E;=200 % 10° N/m?
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dolution

(a) The element stiffness matrices are

1 2 _* Global dof
L _T0X10°X 24000 1 -1
K=o -1
and
2 3
L 200%10° x 600[ 1 -1
K= 40 -1 1
The structural stiffness matrix that is assembled from k' and k2 is
1 2 3
056 ~056 0

K =109 -056 086 -030
0 -030 030

The global load vector is

F=[0, 200 x 10, 0JF

Now dofs | and 3 are fixed. When using the penalty approach, therefore, a large num-
ber C is added to the first and third diagonal elements of K. Choosing C based ot

Eq.3.80, we get
C = [086 x 10°] x 10*
Thus, the modified stiffness matrix is

8600.56 —0.56 o
K=10° -056 08 -030
0 -030 8600.30

The finite element equations are given by

860056 -056 o (g, 0
109 -056 08 -030 Q¢ =4200 x 10°
0 -030 860030 | g, [

which yields the solution

Q= [151432 X 10, 023257, 81127 x 107" mm

(b) The element stresses {Eq.3.16) are

300 0.23257
= 5427MPa

o =70 x 107 x L1 1]{15.1432 x 10'5}
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where 1 MPa = 10° N/m* = 1 N/mm®. Also,

_ 11 1)fozss
2= W0 X 10 X 7 {8.1127 x 10*}

= —11629 MPa
{c) The reaction forces are obtained from Eq.3.78 as
R =-CQ
= —[0.86 x 10'] X 15.1432 x 10~
= -13023 x 10°

[

[0.86 X 10°°] x 8.1127 X 107
= —69.77 X 1°N -

Example 3.5
InFig. E3.53,aload P = 60 X 10° N is applied as shown. Determine the displacement field,
stress, and support reactions in the body. Take E = 20 X 10° N/mm?

12mm

2
250 mm’ Wall

IhlSOmm 150 mm- 2

®)
FIGURE E3.5

Solation In this problem, we should first determine whether contact occurs between the bar
and the wall, B. To do this, assume that the wall does not exist. Then, the solution to the

problem can be verified to be
Qp = 1.8mm

where (0 is the displacerent of point B'. From this result, we see that contact doaes occur. The
problem has to be re-solved, since the boundary conditions are now different: The displacement
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at B' is specified to be 1.2 mm. Consider the two-element finite element model in Fig. 3.5b.
The boundary conditions are @, = 0and 0; = 1.2 mm. The structural stiffness matrix K is

K = 2010 x 250 _1 7; "1)
150 0 -1 1

and the global load vector F is
F=1[0, 60x10° 0]

In the penalty approach, the boundary conditions Q; = 0 and Q; = 1.2 imply the following
modifications: A large number C chosen here as C = (2/3) X 10'°, is added on to the 1st
and 3rd diagonal elements of K. Also, the number (C x 1.2) gets added on to the 3rd
component of F. Thus, the modified equations are

o200 -1 0 (e 0
St 2 1 Kep={eoxiw
o -1 2000t o, 80.0 x 107

The solution is

Q =[749985 X 105, 1500045, 1.200015] mm
The element stresses are

o =200 % 160 x LI 1]{7.49985 x 10'5}

15 1500045
= 199996 MPa
oy =200 x 10° x L1 1]f1500045
130 1200015
~ ~40004MPa

The reaction forces are

—C X 7.49985 x 107
= -49.999 X 1I’N

and

Ry = ~C x (1200015 - 1.2)
= -10.001 x 1°N
The results obtained from the penalty approach have & small approximation error due 1

the flexibility of the support introduced. In fact, the reader may verify that the elimination

approach for handling boundary conditions v }
AR 100 5 E Yields the exact reactions, Ry = =500 x 10 I:
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INTRODUCTION

The finite element analysis of truss structures is presented in this chapter. Two-
dimensional trusses (or plane trusses) are treated in Section 4.2. In Section 4.3, this treat-
‘ment is readily generalized to handle three-dimensional trusses. A typical plane truss is
shown in Fig. 4.1. A truss structure consists only of two-force members. That is, every truss
element is in direct tension or compression (Fig. 4.2). In a truss, it is required that all loads
and reactions are applied only at the joints and that all members are connected togeth-
er at their ends by frictionless pin joints. Every engineering student has, in a course on
statics, analyzed trusses using the method of joints and the method of sections. These
methods, while illustrating the fundamentals of statics, become tedious when applied to
large-scale statically indeterminate truss structures. Further, joint displacements are not
readily obtainable. The finite element method on the other hand is applicable to stati-
cally determinate or indeterminate structures alike. The finite element method also pro-
vides joint deflections. Effects of temperature changes and support settlements can also

be routinely handled.
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FIGURE 4.1 A two-dimensional truss.
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FIGURE 4.2 A two-force member.
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PLANE TRUSSES

Modeling aspects discussed in Chapter 3 are now extended to the two-dimensional truss.
The steps involved are discussed here.

Local and Global Coordinate Systems

The main difference between the one-dimensional structures considered in Chapter 3
and trusses is that the elements of a truss have various orientations. To account for these
different orientations, local and global coordinate systems are introduced as follows:
A typical plane-truss element is shown in local and global coordinate systems in
Fig. 4.3. In the local numbering scheme, the two nodes of the element are numbered 1
and 2. The local coordinate system consists of the x'-axis, which runs along the element
from node 1 toward node 2. All quantities in the local coordinate system will be denot-
ed by a prime ('). The global x-, y-coordinate system is fixed and does not depend on
the orientation of the element. Note that x,y, and z form a right-handed coordinate sys-
tem with the z-axis coming straight out of the paper. In the global coordinate system,

x

Deformed
e element

4’ = g cos@ + g, sing
o 4% = g3 cosf + g sind

olobal coordinate system. tin (a) a local coordinate system and (b) 2
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every node has two degrees of freedom (dofs). A systematic numbering scheme is adopt-
ed here: A node whose global node number is j has associated with it dofs 2j — 1 and
2j.Further, the global displacements associated with node j are Qy;; and Qy;, as shown
in Fig. 4.1.

Let g1 and g be the displacements of nodes 1 and 2, respectively, in the local
coordinate system. Thus, the element displacement vector in the local coordinate system
is denoted by

q =[gnal @)

The element displacement vector in the global coordinate system is a (4 X 1) vec-
tor denoted by

9= (01,59 %]" “2)

The relationship between g’ and q is developed as follows: In Fig. 4.3b, we see that g}
equals the sum of the projections of g, and g, onto the x’-axis. Thus,

qi = qicosf + gsinf (4.3a)
Similarly,
g3 = gsc080 + gsind (4.3v)

At this stage, the direction cosines £ and m are introduced as £ = cos@ and m = cos ¢
(= sin #). These direction cosines are the cosines of the angles that the local x'-axis
makes with the global x-, y-axes, respectively. Equations 4.3a and 4.3b can now be writ-
ten in matrix form as

7 =1q (@)
where the transformation matrix L is given by
¢ m o0 0
= 4.5
L l:ﬂ 0 ¢ m:I “3)

Formulas for Calculating ¢ and m

Simple formulas are now given for calculating the direction cosines ¢ and i from nodal
coordinate data, Referring to Fig. 4.4, let (x,, ;) and (x, y;) be the coordinates of nodes
1 and 2, respectively, We then have

FIGURE 4.4 Direction cosines.




image72.png
(46)

where the length £, is obtained from
L=V -x)+(n-n’ @7

The expressions in Eqgs. 4.6 and 4.7 are obtained from nodal coordinate data and can
readily be implemented in a computer program.

Element Stiffness Matrix

An important observation will now be made: The truss element is a one-dimensional
element when viewed in the local coordinate system. This observation allows us to use pre-
viously developed results in Chapter 3 for one-dimensional elements. Consequently,
from Eq. 3.26, the element stiffness matrix for a truss element in the local coordinate sys-

tem is given by
EA]l 1 -1
k= .
£ l:—l lj| @8)

where A, is the element cross-sectional area and E, is Young’s modulus. The problem
at hand is to develop an expression for the element stiffness matrix in the global coor-
dinate system. This is obtainable by considering the strain energy in the element. Specif-
ically, the element strain energy in local coordinates is given by

U =1q"k'q (49
Substituting for q' = Lyq into Eq. 4.9, we get
U, =4q"[Lk'L]g (4.10)

The strain energy in global coordinates can be written as

U. = 1q'kq (a.11)
where k is the element stiffness matrix in

N € global coordinates. From the previous equa-
tion, we obtain the element stiffness matr; P 4

ix in global coordinates as
k=LKL (4.12)
Substituting for L from Eq. 4.5 and for k’ from Eq. 4.8, we get

& tm - —fm

ke EAl tm o e g
& |- -em g m

—tm —m g g
The element stiffness matrices are assembled j
tural stiffness matrix. This assembly is illustrat

for directly placing element stiffness matrices i
line solutions is explained in Section 4.4

n the usual manner to obtain the struc-
ed in Example 4.1. The computer 10gic
nto global matrices for banded and sky-
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‘The derivation of the result k = L'k’L also follows from Galerkin’s variational
principle. The virtual work 8W as a result of virtual displacement J’ is

W = ¥T(k'g') (4.14a)
Since §s’ = Lip and q' = Lg, we have
sW = ¢T[LTK'L]q (4.14b)
= ¥'kq

Stress Calculations

Expressions for the element stresses can be obtained by noting that a truss element in
local coordinates is a simple two-force member (Fig. 4.2). Thus, the stress ¢ in a truss
element is given by

o= E,e {4.15a)

Since the strain ¢ is the change in length per unit original length,

_o—4
o =E, .
E, q;}
==f-1 1 4.15b)
é',[ ]{ @ (4.15b)

This equation can be written in terms of the global displacements q using the transfor-
mation q' = Lq as

E,
o= =%[-1 1]Lq (4.150)
A
Substituting for L from Eq. 4.5 yields
E,
o= ?'[—é’ -m € mlq {4.16)

Once the displacements are determined by solving the finite element equations, the
stresses can be recovered from Eq.4.16 for each element. Note that a positive stress im-
plies that the element is in tension and a negative stress implies compression.

Example 4.1
Consider the four-bar truss shown in Fig. E4.1a. It is given that E = 29.5 X 10°psi and
A, = 1in?for all elements. Complete the following:

(a) Determine the element stiffness matrix for each element.

(b) Assemble the structural stiffness matrix K for the entire truss.

{¢) Using the elimination approach, solve for the nodal displacement.
(d) Recover the stresses in each element.

(e) Calcutate the reaction forces.
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FIGURE E4.1
Solution

(a) 1t is recommended that a tabulor form be used for representing nodal coordinate
data and element information. The nodal coordinate data are as follows:
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‘1he element connectivity table is

Element 1 2
1 1 2
2 3 2
3 1 3
4 4 3

Note that the user has a choice in defining element connectivity. For example, the con-
nectivity of element 2 can be defined as 2-3 instead of 3-2 as in the previous table. How-
ever, calculations of the direction cosines will be consistent with the adopted connectivity
scheme. Using formulas in Egs. 4.6 and 4.7, together with the nodal coordinate data and
the given element connectivity information, we obtain the direction cosines table:

Element (A [ m
1 40 1 0
2 30 0 -1
3 50 08 06
4 40 1 [

For example, the direction cosines of elements 3 are obtained as € =
(x3 — x1)/€. = (40 — 0)/50 = 08 and m = (3 — y)/€ = (30 - 0)/50 = 0.6.
Now, using Eq. 4.13, the element stiffness matrices for clement 1 can be written as

1 2 3 4 <«Global dof

10 -1 0]1

6
k‘=~———29'54:10 oo 002
-10 10|3
00 00 a

The global dofs associated with element 1, which is connected between nodes
1 and 2, are indicated in k' earlier. These global dofs are shown in Fig. E4.1a and as-
sist in assembling the various element stiffness matrices.

The element stiffness matrices of elements 2, 3, and 4 are as follows:

5 6 3 4
O LETC) PO
% 1o 0 o of3
lo -1 o 1] 4
1 2 s s
6 48 —64 —48] 1
e BSXICN e s a8 —36) 2
O |6t -as 64 |5
|-48 -36 48 36 6
7 8 5 6
[1 o -1 o] 7
k‘=M o o o0 o 8
0 1 0 1 ofs
l o o o ofs
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(b) The structural stiffness matrix K is now assembled from the element stiffness matnces.
By adding the element stiffness contributions, noting the element connectivity, we get

1
2268
576
=150

1]
—7.68
—5.76

[

0

_ 295 x 10°

K=""%0

2
5.6
432

[

0
-576
—432

0

[

3
~15.0
4]
150
0
0
0
0
[

4
[0
0
0

200

-20.0
0
[

5
~7.68
—5.76

0

0
2268

576
-15.0
0

6
-576
—432

0
-200

576
2432
0
0

7
0

ooo

-

50
0

15.0
0

8
0
0
0
0
0
0
0

0

N U e wN

8

(¢) The structural stiffness matrix K given above needs to be modified to account for
the boundary conditions. The elimination approach discussed in Chapter 3 will be
used here. The rows and columns corresponding to dofs 1,2, 4,7, and 8, which corre-

spond to fixed supports, are deleted from the K matrix. The reduced finite element
equations are given as

15 0 o ]fe 20000
295 X 10° 3
g | O 268 576 {05y = 0

0 5716 2432l0, ~25000

Solution of these equations yields the displacements

o 27.12 x 107
Qsp =19 565%107? }in.
Qs -2225 X 107

The nodal displacement vector for the entire structure can therefore be written as
Q= [0.0.27.12 X 10°%,0,5.65 X 10 ~2225 x 10~,0,0{" in.

{d) The stress in each element can now be determined from Eq. 4.16, as shown below.

The connectivity of element 1is 1 ~ 2. Consequently, the nodal displace-
ment vector for element 1is given by q = [0,0,27.12 x 10~,01", and Eq. 4.16 yields

o
U;z9.5><106[1010 0
=222 2 0

40 ! 2712 x 107

0

= 200000 psi
The stress in member 2 is given by
565 x 107
29.5 x

o= 23X bl 010 -1 25x107
+27.12 x 1073

0

—21880.0 psi
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Following smilar steps, we get
ay = ~52080psi
o4 = 4167.0psi
(e) The final step is to determine the support reactions. We need to determine the reac-
tion forces along dofs 1,2, 4,7, and 8, which correspond to fixed supports. These are
obtained by substituting for Q into the original finite element equation R = KQ — F.

In this substitution, only those rows of K corresponding to the support dofs are need-
ed,and F = O for these dofs. Thus, we have

[
[
R, 2268 576 150 0 -768 -576 0 O »
Bl sosxqge 576 43 0 0 =57 ~432 0 0 27'12’;10
Ry¢p = T 0 0 0 200 0 -200 0 0 565 X 107
R, 0 [ 0 0 -150 o0 150 0 __22'25 x 107
Ry o ¢ o6 o0 o0 6 0o 0 =
0
which results in
Ry —15833.0
R, 3126.0
R, = 21879.0 pib
R, -4167.0
Ry 0

A free body diagram of the truss with reaction forces and applied loads is shown
in Fig. E4.1b. [ ]
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Athin plate of thickness ¢, with a hole in the
middle, is subjected to a uniform traction
load, 7 as shown. This 3-D plate can be
analyzed as a two-dimensional problem.

2-D problems generally fall into two
categories: plane stress and plane strain.

Aplane stress problem

a) Plane Stress

The thin plate can be analyzed as a plane stress problem, where the normal and
shear stresses perpendicular to the x-y plane are assumed to be zero, i.e.

0.=0,7.=0,7_=0
The nonzero stress components are

0,#0,0,#0, 7, %0

b) Plane Strain

Adam subjected to uniform pressure
and a pipe under a uniform internal
pressure can be analyzed in two-
dimension as plain strain problems.

The strain components perpendicular to

Adam subjected to a uniform
itr;e x-p plane are assumed to be zero, = pressure
£=0y.=0.7,=0 4

Thus, the nonzero strain components
are &, &, and

& #0;6,#0; 7, #0

Pipe under a uniform
internal pressure
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8-2 General Loading Condition

Atwo-dimensional body can be subjected to three types of forces:

a) Concentrated forces, P, & P, ata point, i;

b) Body forces, f, , & f;,, acting at its centroid;

c) Traction force, 7 (i.e. force per unit length), acting along a perimeter

£ = thickness at (x, y)

£y, f, = body force components

per unit volume at (x, y)

The 2-dimensional body experiences a
deformation due to the applied loads.

Atany pointin the body, there are two
components of displacement, i.e.

u = displacement in x-direction;
v = displacement in y-direction.
L

t = thickness at (x, y)

f,. f, = body force components

per unit volume at (x, )




