
SOFTWARE ENGINEERING
CONCEPTS

INTRODUCTION TO SE

• Software engineering is an engineering branch

associated with development of software

product using well-defined scientific principles,

methods and procedures. The outcome of

software engineering is an efficient and reliable

software product.

• Software project management has wider scope

than software engineering process as it

involves communication, pre and post delivery

support etc.

COURSE OBJECTIVES

• At the end of the course should the student

should be equipped with the understanding of

software engineering concepts. That is

• software product,

• software design and development process,

• software project management

• and related design complexities etc.

SE OVERVIEW

• What is Software?

• What is Engineering?

What is Software?

• Software is more than just a program code.

• A program is an executable code, which

serves some computational purpose.

What is Software?

• Software is considered a collection of

• executable programming code,

• associated libraries and documentations.

• when made for a specific requirement is

called software product.

What is Software?

• Software when made up of a specific

requirement is called a software product.

What is Engineering?

• Engineering is all about

• developing products,

• using well-defined, scientific principles
and methods.

• We apply mathematical laws …differential

eqns, laplace, fourier to design filters, tuned

circuits. Physics EM waves to design antenaes.

• Chemistry biology etc to design sensors eg

blood pressure pulse rate stress levels.

WHAT IS SOFTWARE
ENGINEERING?

• Software engineering is an engineering

branch associated with development of

software product using well-defined scientific

principles, methods and procedures.

• The outcome of software engineering is an

efficient and reliable software product.

SOFTWARE ENGINEERING CONCEPT

SOFTWARE ENGINEERING CONCEPT

• The above diagram provides an illustration of

the stages that a software production process

goes through.

• Imagine any engineering product does go from

an idea on the drawing board that has to satisfy

certain requirements. The product goes through

analysis design and actual production.

• Initially the software product is a concept thus

needs deeper analysis from abstraction to

concrete realisation.

SOME SE DEFINITIONS- IEEE

• 1 The application of a systematic,

disciplined, quantifiable approach to the

development, operation and maintenance of

software; that is, the application of

engineering to software.

• 2 The study of approaches as in the above

statement.

SOME SE DEFINITIONS- Fritz Bauer
(German computer scientist)

• Software engineering is the Establishment and

use of sound engineering principles to obtain

economically software that is reliable and works

on real machines efficiently.

SOFTWARE EVOLUTION

.

SOFTWARE EVOLUTION

• The process of developing a software product

using software engineering principles and

methods is referred to as software evolution.

SOFTWARE EVOLUTION

• This includes the initial development of

software and its maintenance and updates, till

desired software product is developed, which

satisfies the expected requirements

Software Evolution stages

• requirement gathering process.

• software prototype creation by developers

• users feedback at the early stage

of software product development.

• The users suggest changes, on which several

consecutive

updates and maintenance keep on changing

too.

• This process changes to the original software,

till

the desired software is accomplished.

Even after the user has desired software in

hand, the advancing technology and the

changing

requirements force the software product to

change accordingly

Special Note

• Re-creating software from scratch

and to go one-on-one with requirement is not

feasible. The only feasible and economical

solution

is to update the existing software so that it

matches the latest requirements.

Software Evolution Laws

• Lehman has given laws for software evolution.

He divided the software into three different

categories:

• S-type that is static−type

• P-type practical −type

• E-type embedded −type

Lehman’s
Static Software Evolution Law

• Lehman has given laws for software evolution. He
divided the software into three different

• categories:

• S-type is a software, which works strictly
according to defined specifications and solutions.

• The solution and the method to achieve it, both are
immediately understood before coding.

• The s-type software is least subjected to changes
hence this is the simplest of all.

• For example, calculator program for
mathematical computation.

Lehman’s Practical Software
Evolution Law

• P-type is a software with a collection of

procedures.

• This is defined by

• exactly what procedures can do. In this

software, the specifications can be described

but the

• solution is not obvious instantly. For example,

gaming software.

Lehman’s Embedded type Software
Evolution

• E-type or embedded−type software works

closely as the requirement of real-world

• environment.

• This software has a high degree of evolution as

there are various changes in

• laws, taxes etc. in the real world situations. For

example, Online trading software.

The Eight laws for E-Type software
evolution

• In order that the software evolution follow the

real world. The following laws must be in place..

The Eight laws for E-Type software
evolution

1 Continuing change – An E-type software system
must evolve in a manner that it continues to adapt to
the real world changes, else it becomes progressively
less useful. Redundant!

2 Increasing complexity - As an E-type software
system evolves, its complexity should continue to
increase unless work is done to maintain or reduce it.
(i.e. Some modification is done rendering it less
complex)

The Eight laws for E-Type software
evolution

3 Conservation of familiarity - The familiarity

with the software or the knowledge about how

and why was it developed in that particular

manner etc. must be retained at any cost, to

implement the changes in the system.

4 Continuing growth- In order for an E-type

system to resolve some business problem, its

size of implementing the changes grows

according to the lifestyle changes of the

business.

5 Reducing quality - The quality of an E-type

system will appear to be declining unless it is

rigorously maintained and adapted to operational

environment change.

6 Feedback systems- E-type evolution processes

constitute multi-level, multi-loop, multi-agent

feedback systems and must be treated as such to

achieve significant improvement over any

reasonable base.

The Eight laws for E-Type software
evolution

7 Self-regulation - E-type system evolution

processes are self-regulating with the distribution

• of product and process measures close to

normal.

8 Conservation of Organizational

stability(invariant work rate) - the average

effective global activity rate in an evolving E-type

system is invariant over the product's lifetime.

(That is its activity is constant throughout its life.)

Software Paradigms

Software Paradigms

• Software paradigms refer to the methods and

steps, which are taken while designing the

software.

• There are many methods proposed which are

at work today, there is the need to see where in

the

• software engineering these paradigms stand.

These can be combined into various categories,

• though each of them is contained in one

another:

• Programming paradigm is a subset of Software

design paradigm which is further a subset of

• Software development paradigm.

Software Development Paradigm

• This Paradigm is known as software
engineering paradigms where all the
engineering conceptspertaining to the
development of software are applied.

• It includes various researches and

requirement gathering which helps the software
product to build. It consists of –

• Requirement gathering

• Software design

• Programming

Software Design Paradigm

• This paradigm is a part of Software

Development and includes –

• Design

• Maintenance

• Programming

Programming Paradigm

• This paradigm is related closely to

programming aspect of software development.

This includes –

• Coding

• Testing

• Integration

NEED FOR SOFTWARE
ENGINEERING

Need of Software Engineering

• The need of software engineering arises
because of higher rate of change in user
requirements

• and environment on which the software is
working. The main factors that have resulted in
the need of producing software products using
structured methods are as follows

• Large software - It is easier to build a wall than
a house or building, likewise, as the size

• of software becomes large engineering has to
step in to give SW a scientific process.

• Scalability- If the software process were not based
on scientific and engineering concepts, it

• would be easier to re-create new software than to
scale an existing one. Larger systems evolve from
small-scale ones…database from a few tables to
100s plus

• Cost- As hardware industry has shown its skills and
huge manufacturing has lower down the

• price of computer and electronic hardware. But the
cost of software remains high if proper processes
are not adapted.

• Dynamic Nature- The always growing and adapting
nature of software hugely depends

• upon the environment in which user works. If the
nature of software is always changing, new

• enhancements need to be done in the existing one.
This is where software engineering plays

• a good role.

• Quality Management- Better process of software
development provides better and quality

• software product.

Characteristics of good software

• First and foremost, a software product must

meet all the requirements of the customer or

end-user.

• the cost of developing and maintaining the

software should be low.

• The development of software should be

completed in the specified time-frame.

• These are the obvious things which are

expected from any project (and software

development is a project in itself).

• The three characteristics of good application

software are :-

1) Operational Characteristics

2) Transitional Characteristics

3) Revision Characteristics

• These set of factors can be easily explained by

Software Quality Triangle.

The Software Quality Triangle.

Software Operational Characteristics

a) Correctness: The software should meet all the

specifications stated by the customer. (ie answers

the question ..Is it what the customer ordered?)

b) Usability/Learnability: The amount of efforts

or time required to learn how to use the software

should be less. This makes the software user-

friendly even for IT-illiterate people. (Naïve

users…is there enough documentation..to start-

run..operate the software…?)

SW Operational Characteristics

c) Integrity : Just like medicines have side-

effects, in the same way a software may have a

side-effect i.e. it may affect the working of

another application. But a quality software

should not have side effects.

d) Reliability : The software product should

not have any defects. Not only this, it shouldn't

fail while execution. (No hidden aspects…lives

up to expectations no surprises during

operation…bugs that may cause it to

hang..crash etc)

SW Operational Characteristics

• e) Efficiency : This characteristic relates to the way software uses the available

resources. The software should make effective use of the storage space and

execute commands as per desired timing requirements. (Does not slow down or

use up system resources eg memory. Is multithreaded can run sub- processes or

threads to assist OS..)

-

f) Security : With the increase in security threats nowadays, this factor is gaining

importance. The software shouldn't have ill effects on data / hardware. Proper

measures should be taken to keep data secure from external threats. (Product does

not take over OS processes…is separated from host system…operates outside of the

hardware,,eg uses virtual machine…software that emulates hardware without affecting

it.)

•

g) Safety : The software should not be hazardous to the environment/life.

(Some Software systems are used in patient monitoring, emergency relief, Accident

fire services. They should be able to perform safely without harming the users..eg not

provide false alarms ..eg fire where there is none or wrong patient health readings eg

in a neonatal incubator..humidifiers..temperature etc. wrong location or warning of an

earthquake…etc)

SW Transition Characteristics

• a) Interoperability : Interoperability is the ability of software to
exchange information with other applications and make use of
information transparently.

•
b) Reusability : If we are able to use the software code with some
modifications for different purpose then we call software to be
reusable. (Object Oriented programming OOP uses classes which
can be “inherited” . These present a core program that a user can
modify eg the MSOffice Document is a class which a user can use
without having to rewrite it…..a user can add-on contents. Most
classes at lower levels can be implemented in code..eg Java)

•
c)Portability : software portability is demonstrated by its ability of
to perform same functions across all environments and platforms.
Same software being used on different machines/hardware. Same
software useable with different OSes.

SW Revision Characteristics

a) Maintainability : Any kind of user should be

able to carry out maintenance of the software with

ease.

b) Flexibility : Changes in the software should be

easy to make.

c) Extensibility : It should be easy to increase or

extend the functions performed by the SW.

SW Revision Characteristics

•

d) Scalability : It should be very easy to

upgrade it for more work-load (or for an

increased number of users).

e) Testability : Testing the software should be

easy and comprehensive.(Easy especially if its

modularised…)

SW Revision Characteristics

•

f) Modularity : Any software is said to made of

units and modules which are independent of

each other. (These modules are then integrated

to make the final software. If the software is

divided into separate independent parts that

can be modified, tested separately, it has high

modularity. High modularity implies loose

coupling. Programming uses

functions…methods..subroutines to ensure

modularity)

SUMMARY ON GOOD SW
CHARACTERISTICS

• Importance of any of these factors varies from

application to application. In systems where

human life is at stake – critical systems eg life

support, fire, emergency, relief accident-

integrity and reliability factors must be given

prime importance.

• In any business related application where

cost saving is primary usability and

maintainability are key factors to be

considered.

SUMMARY ON GOOD SW
CHARACTERISTICS

• Always remember in Software Engineering,

quality of software is everything,

• Thus the developer/ Engineer must try to

deliver a product which has all these

characteristics and qualities at ALL COST!!

Conclusion on SE intro

In short, Software engineering is a branch of

computer science, which uses well-defined

engineering concepts required to produce

• efficient,

• durable,

• scalable,

• in-budget and on-time software products.

