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COURSE OUTCOMES

Understand the basic concepts of forces, Draw Free body Diagrams for forces and

- Determine the centroid and moment of inertia for different cross section areas
Understand concepts of stresses, strains, elastic moduli and strain energy and

.4 Evaluate relations between different moduli
Draw the shear force and bending moment diagrams for cantilevers, simply

CO 3 |supported beams and Overhanging beams with different loads and Understand the
relationship between shear force and bending moments

o 4 Compute the flexural stresses for different cross sections and Design beam sections
for flexure

CO 5 |Determine shear stresses for different shapes and analyze trusses




) (20A01201T) STRENGTH OF MATERIALS

UNIT-I: Introduction to Mechanics:

Basic Concepts, system of Forces Coplanar Concurrent Forces -Components in Space Resultant -Moment of Forces and its Application -
Couples and Resultant of Force Systems. Equilibrium of system of Forces: Free body diagrams, Equations of Equilibrium of Coplanar
Systems and Spatial systems-

Center of Gravity and moment of inertia: Introduction — Centroids of rectangular, circular, I, L and T sections - Centroids of built up sections.
Area moment of Inertia: Introduction — Definition of Moment of Inertia of rectangular, circular, I, L and T sections - Radius of gyration.
Moments of Inertia of Composite sections.

UNIT - II :Simple Stresses and Strains:

Types of stresses and strains — Hooke's law — Stress — strain diagram for mild steel — working stress — Factor of safety — lateral strain,
Poisson s ratio and volumetric strain — Elastic moduli and the relationship between them — Bars of Varying section — Composite bars —
Temperature stresses. Strain energy — Resilience — Gradual, Sudden, impact and shock loadings — simple applications.

UNIT — III Shear Force and Bending Moment:

Definition of beam — types of beams — Concept of Shear force and bending moment — S.F and B.M diagrams for cantilever, simply supported
and over changing beams subjected to point loads, uniformly distributed load, uniformly varying loads and combination of these loads — point
of contra flexure — Relation between S.F, B.M and rate of loading at section of a beam.

UNIT - IV Flexural Stresses:

Theory of simple bending — Assumptions — Derivation of bending equation: M/l = f/Y = E/R — Neutral axis — Determination of bending
stresses — Section modulus of rectangular and circular sections (Solid and Hallow), I, T, Angle and Channel Sections — Design of simple beam
sections.




UNIT - V: Shear Stresses:
Derivation of formula-Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T and angle

sections. Combined bending and shear.

Analysis of trusses by Method of Joints & Sections.

Textbooks:

1. S. Timoshenko, D.H. Young and J.V. Rao, “Engineering Mechanics”, Tata McGraw-HillCompany.
2. Sadhu Singh, “Strength of Materials”, 11th edition 2015, Khanna Publishers.

Reference Books:

1. S.S.Bhavikatti, “Strength of materials”, Vikas publishing house Pvt. Ltd.

2. R. Subramanian, “Strength of Materials”, Oxford University Press.

3. R. K. Bansal, “Strength of Materials”, Lakshmi Publications House Pvt. Ltd.

4. Advanced Mechanics of Materials — Seely F.B and Smith J.O. John wiley & Sons inc.,New York.




ME101: Engineering Mechanics

Mechanics: Oldest of the Physical Sciences

Archimedes (287-212 BC): Principles of Lever and Buoyancy!

Mechanics is a branch of the physical sciences that is
concerned with the state of rest or motion of bodies subjected

to the action.g

Rigid-body Mechanics € ME101
Statics
Dynamics

Deformable-Body Mechanics, and
Fluid Mechanics



Engineering Mechanics

Rigid-body Mechanics

* a basic requirement for the study of the
mechanics of deformable bodies and the
mechanics of fluids (advanced courses).

* essential for the design and analysis of many
types of structural members, mechanical
components, electrical devices, etc, encountered
In engineering.

A rigid body does not deform under load!



Engineering Mechanics

Rigid-body Mechanics

Statics: deals with equilibrium of bodies under

action of forces (bodies may be either at rest or
move with a constant velocity).




Engineering Mechanics

Rigid-body Mechanics

* Dynamics: deals with motion of bodies
(accelerated motion)

.




Mechanics: Fundamental Concepts

Length (Space): needed to locate position of a point in space, &

describe size of the physical system€ Distances, Geometric
Properties

Time: measure of succession of events € basic quantity in
Dynamics

Mass: quantity of matterin a body € measure of inertia of a
body (its resistance to change in velocity)

Force: represents the action of one body on another €

characterized by its magnitude, direction of its action, and its
point of application

€ Force is a Vector quantity.



Mechanics: Fundamental Concepts

Newtonian Mechanics

Length, Time, and Mass are absolute concepts
independent of each other

Force is a derived concept
not independent of the other fundamental concepts.
Force acting on a body is related to the mass of the body
and the variation of its velocity with time.

Force can also occur between bodies that are physically
separated (Ex: gravitational, electrical, and magnetic forces)



Mechanics: Fundamental Concepts

Remember:

* Mass is a property of matter that does not
change from one location to another.

* Weight refers to the gravitational attraction of
the earth on a body or quantity of mass. Its
magnitude depends upon the elevation at
which the mass is located

* Weight of a body is the gravitational force acting on it.



Mechanics: Idealizations

Tosimplify application of the theory

Particle: A body with mass but with dimensions
that can be neglected

Size of earth is insignificant
compared to the size of its
orbit. Earth can be modeled
as a particle when studying its
orbital motion




Mechanics: Idealizations

Rigid Body: A combination of large number of particles in
which all particles remain at a fixed distance (practically)
from one another before and after applying a load.

Material properties of a rigid body are not required to be
considered when analyzing the forces acting on the
body.

In most cases, actual deformations occurring in structures,
machines, mechanisms, etc. are relatively small, and rigid
body assumption is suitable for analysis



Mechanics: Idealizations

Concentrated Force: Effect of a loading which is
assumed to act at a point (CG) on a body.

*Provided the area over which the load is applied

is very small compared to the overall size of the
body.

/] Ex: Contact Force
between a wheel
and ground.

40 kN 160 kN



Mechanics: Newton’s Three Laws of Motion

Basis of formulation of rigid body mechanics.

First Law: A particle originally at rest, or moving in a straight line
with constant velocity, tends to remain in this state provided the
particle is not subjected to an unbalanced force.

F, K,
=
First law contains the principle of il
the equilibrium of forces€ main
topic of concern in Statics .

Equilibrium



Mechanics: Newton’s Three Laws of Motion

Second Law: A particle of mass “m” acted upon by an
unbalanced force “F” experiences an acceleration “a” that
has the same direction as the force and a magnitude that is
directly proportional to the force.

F e F=ma

Accelerated motion

Second Law forms the basis for most of
the analysis in Dynamics



Mechanics: Newton’s Three Laws of Motion

Third Law: The mutual forces of action and reaction between
two particles are equal, opposite, and collinear.

force of Aon B

A B force of Bon A

Action — reaction

Third law is basic to our understanding of Force € Forces always
occur in pairs of equal and opposite forces.



Vi eCh ANICS: Newton’s Law of Gravitational Attraction

Weight of a body (gravitational force acting on a body) is required to be
computed in Statics as well as Dynamics.
This law governs the gravitational attraction between any two particles.

F = mutual force of attraction between two particles
G = universal constant of gravitation
Experiments€ G =6.673x1011m3/(kg.s?)
Rotation of Earth is not taken into account
m;, m,= masses of two particles
r = distance between two particles



Gravitational Attraction of the Earth

Weight of a Body: If a particle is located at or near the surface of
the earth, the only significant gravitational force is that between

the earth and the particle
m

Weight of a particle having massm;=m :

Assuming earth to be a non-
rotating sphere of constant density
and having massm,=M,

r = distance between the earth’s
center and the particle

Let g = G M, /r?= acceleration due to gravity
Bl e




Mechanics: Units

Four Fundamental Quantities

Quantity Dimensional SIUNIT
Symbol Unit Symbol

Kilogram Kg

Mass M = Basic Unit
Length L Meter

Time T Second S

Force F Newton N

€ N=kg.m/s?

- 1 Newton is the force
required to give a mass of 1
- kg an acceleration of 1 m/s?

€ N=kg.m/s?



Mechanics: Units Prefixes

Exponential Form Prefix S| Symbol

Multiple

1 000 000 000 107 giga G

1 000 000 10° mega M

1 000 103 kilo k
Submultiple

0.001 107 milli m
0.000 001 10-° micro n

=

0.000 000 001 10-° nano




Scalars and Vectors

Scalars: only magnitude is associated.
Ex: time, volume, density, speed, energy, mass

Vectors: possess direction as well as magnitude, and must obey the
parallelogram law of addition (and the triangle law).

Ex: displacement, velocity, acceleration,
force, moment, momentum

Equivalent Vector: V =V, +V, (Vector Sum)

A%
V, , _
/ V2 /’7/' V /’

> ’ -
v, Vi \f!

Speed is the magnitude of velocity.



Vectors

A Vector V can be written as: V = Vn

V = magnitude of V
n = unit vector whose magnitude is one and whose direction coincides with
that of V

Unit vector can be formed by dividing any vector, such as the geometric
position vector, by its length or magnitude

Vectors represented by Bold and Non-ltalic letters (V)

Magnitude of vectors represented by Non-Bold, Italic letters (V)

X ; i,J, k —unit vectors

M
=



Vectors

Free Vector: whose action is not confined to or f /f
associated with a unique line in space f [ [ /
Ex: Movement of a body without rotation. f f

Sliding Vector: has a unique line of /
action in space but not a unique § pa
point of application ,, o /
Ex: External force on a rigid body /
€ Principle of Transmissibility
€ Imp in Rigid Body Mechanics

Fixed Vector: for which a unique point of /
application is specified > x
Ex: Action of a force on deformable body /




Vector Addition: Procedure for Analysis

Parallelogram Law (Graphical)
Resultant Force (diagonal)
Components (sides of
parallelogram)

Algebraic Solution
Using the coordinate system

Trigonometry (Geometry)
Resultant Force and Components
from Law of Cosines and Law of
Sines

Cosine law:
C =VA? + BE—2ABcosc

Sine law:

A _ B _ C
sina sinb sinc




Force Systems

Force: Magnitude (P), direction (arrow) and point of application (point A) is
important

Change in any of the three specifications will alter the effect on the bracket.

Force is a Fixed Vector

In case of rigid bodies, line of action of force is important (not its point of
application if we are interested in only the resultant external effects of the
force), we will treat most forces as

_, External effect: Forces applied (applied
| & I force); Forces exerted by bracket, bolts,
l .A\»q Foundation (reactive force)

Internal effect: Deformation, strain
pattern — permanent strain; depends on
material properties of bracket, bolts, etc.

Cable Tension P



Force Systems

Concurrent force:
Forces are said to be concurrent at a point if their lines of action
intersect at that point

F;, F, are concurrent forces; R will be on same plane; R =F;+F,

Forces act at same point Forces act at different point  Triangle Law

(Apply Principle of Transmissibility)



Components and Projections of Force

Components of a Force are not necessarily equal to the Projections
of the Force unless the axes on which the forces are projected are

orthogonal (perpendicular to each other). L

F, and F, are componentsof R. R=F;+F, -

F,and F, are perpendicular projections on
axes a and b, respectively.

R #F,+ F,unless a and b are perpendicular to
each other




Components of Force

.

)'

Examples

F =Fsin(x - f)
F’,=—Fcos(;r—/lb

y
|
|
I
|
|
|
|
|
|

F_ =~Fcos f e

F,=-Fsin p F_=Fcos(ff-a)
F_V=Fsin(/}-(1)



Vector

V = V{ccs6i+ sinbj)




Components of Force

)

Example 1:
Determine the x and y

scalar components of
F,, F,, and F; acting
at point A of the bracket




Components of Force

F, = 600 cos 35° = 491 N
F, = 600 sin 35° = 344 N
Fy = =500(3) = —400 N

Fy = 5003) = 300 N

a = tan™! [-g—;] = 26.6°

Fq = Fgsin a@ = 800 sin 26.6° = 358 N
Fq = —F4cos a = —800 cos 26.6° = -716 N



Components of Force

)
: Fy,=500N F,=600N
|
|
|
Alternative Solution




Components of Force

)
| Fy=500 N Fy=000 N
|
|
|

Alternative Solution

AB = §.2i — 0.4)
AB

V{08.2)2 + (—0.4)2

. _ AB
:"37.!.3 =

F =
S4B

3
(.21 — G4
J{6.2)2 — (—5.432

= 8G([0.447i — £.854)]

= 3581 — 71§j

f‘.

= 8GQ

C’)

F3x = 358N F3, =716 N



Components of Force

Example 2: The two forces act on a bolt at A. Determine their
resultant.

Graphical solution - construct a
parallelogram with sides in the same
Q =60 N direction as P and Q and lengths in
proportion. Graphically evaluate the
resultant which is equivalent in
direction and proportional in magnitude
to the diagonal.

Trigonometric solution - use the
triangle rule for vector addition in
conjunction with the law of cosines
and law of sines to find the resultant.



Components of Force

Solution:

R« Graphical solution - A parallelogram with sides

equal to P and Q is drawn to scale. The
magnitude and direction of the resultant or of
the diagonal to the parallelogram are
measured,

R =98N @=35°

 Graphical solution - A triangle is drawn with P
and Q head-to-tail and to scale. The
magnitude and direction of the resultant or of
the third side of the triangle are measured,

R =98N a=35°




Components of Force

Trigonometric Solution: Apply the triangle rule.
From the Law of Cosines,
R2=P2+Q02%-2PQcosB
= (40N)? + (60N )? — 2(40N )(60N)cos 155°

R=97.73 N

From the Law of Sines,

sin A _ sin B
0 R

sinA =sin B Q_
R
=xsin 155 °

60 N

97. 73N
A =15.04°

a=20°+A
a=35.04°




Components of Force

R=P—-Q

P = £0 ccs{29)i + sin{20)/]
= 37.58 + ~3.68]

=60

< %)




SO0

Components of Force

Example 3:Tension in cable BC is 725-N, determine the resultant of the three

forces exerted at point B of beam AB.

RIR Y

-— S40 min ——

(

4

L =1160 mm

Solution:

* Resolve each force into rectangular
components.

e Determine the components of the
resultant by adding the
corresponding force components.

e Calculate the magnitude and
direction of the resultant.



Components of Force

Resolve each force into rectangular components

\\ Magmtude (N) X-component (N) Y-component (N)
o/ B
IR Y TR L I o

=525

a / ‘%‘ 500 -300 -400
~ 780 720 -300

500 N\ | Rx = —1058 Ry = —200
'.‘ ?:Rx:‘l'R}J, R_{ AOS\ +\_200  ;
i 2 Calculate the magnitude and direction
|
' R, 1
: tang = X = s w=623°
s N R, 200

R R
= i[RI+ R =2259N

N



Components of Force

Alternate solution
R=F+F;+F,
Fq=725[—0.724i 4+ C.685)
F; = 500[-0.6i — 0.8)

F; = 7838[9.923i — £.384j
R = —_05i— 204j

Calculate the magnitude and direction




Rectangular Components in Space

y Y Y

Bt Bk BA

O] O —-—
: . . & D
¢ Fi
¥ ¢ /E C
. . * Resolve F)into
* The \./ector Fis Res.olve F into | rectangular
contained in the horizontal and vertical components
plane OBAC. components.
F.=F,cos¢
Fy =F cos0y = Fsin@ cos¢
Fj, = F sinf, F.=F,sing

= Fsin@, sin ¢



Rectangular Components in Space

cosgy
csb,k
¢ fl,_i
F= F(CGSQYL + ccs9,j + cos 9£k> J
F=F} ey i
L

Where A = cesg,i+ ces8,j + cesik /

2 is a unit vectcr along the line of acticn cf F and
cosby, cosb, and cosf,are the directicn cesine for #



Rectangular Components in Space

Direction of the force is defined by the location of two points

f{x-,y-,2-3and N{x5, 2,22}
d is the vector joining M and N

Nzyaz)  d=dyi + dyjrd,k

i = 2 X s e
dx—(lz—lw dy =2 —¥-J

8 4
Y S _—_—
Ly — \4Lz2 — 4~
F=F)L
Ad i —dyj+d k
=K I
A f
\\ u /]
ay . ,
Fo=F— F,=F= ""z=‘”7£




Rectangular Components in Space

Example: The tension in the guy

wire 1s 2500 N. Determine: SOLUTION:

* Based on the relative locations of the
points A and B, determine the unit
vector pointing from A towards B.

a)components F,, F,, F,of the
force acting on the bolt at A,

b)the angles ¢g,, g,, g, defining the

g * Apply the unit vector to determine
direction of the force PpPly

the components of the force acting
T on A.

« Noting that the components of the
unit vector are the direction cosines
for the vector, calculate the
corresponding angles.

50)




Rectangular Components in Space

Solution

—
—

Determine the unit vector pointing from A
: B towards B
L 7]

r _ N
’\ AB = —4Ci —8Gj — 30k
‘ AB = /(=437 — (80}% — (30)7

=9L,

(A

e 4

} / u/
| / \ . AB  —40i-8Cj— 30k
. 1 T

AB 542
= —0.4241 - (.848fj — C.318k

\

Determine the components of the force.

. rar s | = 1060 N
F=FA = 25 'J'J( 0.424i— 0.8 8’ 0.318k ; Fy — 2120 N
= —1050i + 2120 + 795k F, =795 N




Rectangular Components in Space

Solution

Noting that the components of the unit
vector are the direction cosines for the
vector, calculate the corresponding angles.

A = cosb, i+ cosby,j+ cosGk
= —0.424i+ £.848j + 8.3°8k

0.=115.1°
0, =32.0°

6, =71.5°




Vector Products .

o

Dot Product A.E = 4Brss5

> B

Applications:
to determine the angle between two vectors
to determine the projection of a vector in a specified direction

A.B = B.A (commutative)
A.(B+C) = A.B+A.C (distributive operation)

(LT
(LY
Il

> (G ¢ - 2 Y 53 ; 2 i
AB={Ad+ A j+Ak).(Bei+Bj+B,k)

u
e

I

) —

— 2 2
— a4x8x+a4y Uy+c428.oz



Vector Products

CrossProduct: Ax B =7 = ABsin

J
Ay Ag|TA,B, — A,B, Y+ (A By — AxBj + (A By — A, B, )k
B

ixj=k ixk=-j ixi=0
jxk=i jxi=-k jxj=0
v kXi=j kxXj=-i kxk=0




Moment of a Force (Torque)

Mecment abeut axis C-C 1s M, = Fd

Magnitude of M, measures tendency
of F to cause rotation of the body
about an axis along M ,,.

QL— ==8-0

[a)

N
- -

P4
75
@
Q
73
=

Mo rent cbout ex:

4

I
Sense of the moment may be determined by
the right-hand rule



Moment of a Force 1

*DMy=n XF=5 XF=rXF
Principle of Transmissibility |
Any force that has the same
magnitude and direction as F, is 9
equivalent if it also has the same NN
line of action and therefore, "

Line of action

produces the same moment.

Varignon’s Theorem
(Principle of Moments)

Moment of a Force about a point is equal to
the sum of the moments of the force’s
components about the point.

Mo =rXF=rX(F+F)=rXF +rXxXF



Rectangular Components of a Moment

The moment of F about O, J

My=7XF Fj

F=Fi+Fj+Fk i

r=xi+yj+zk "

My = Myi+Myj+ M,k

/

-~
~

BORES
NN R

i
X
F.

X

T S o \: P Pl T i o\
—-\y:z_zgyjl‘l"\Zx}:_x:z)]""-\xzy—}’zxjk

Yi

—7

A (x,y,2)

F_k



Rectangular Components of the Moment

The moment of F about B, Yy

) \ .'/)\‘ '

_F',!B =TA3 XF (]

- XS Finsy Xe P
T'AL, — \xA - xgl'l + \}'A _}’B}] + LA T ZB)k ry/i

F=LRi+5j+ 5k
\ l\‘l\
(@)
Mg=M.i+ M,j+ M,k :
i ] k
=|Xa— Xz Ya—JVs Z4— <3
E. F E,




Moment of a Force About a Given Axis

4
Moment M, of a force F applied at t

the point A about a point O

M_=1rXF

O

Scalar moment M, about an axis
OL is the projection of the moment
vector M onto the axis,

— {vE &)

Me=\Y# — 25

Moments of F about the coordinate . = (2F, — xF.)
axes (using previous slide) Y “ix z

Il
e
Al
el
I

N
se
S



Moment of a Force About a Given Axis

Moment of a force about an arbitrary axis

1%3 =Tap XK

I%BL = )».1%5 =4 {TAB X F,\:

rap =fra —1g

> If we take point Cin place of point B
/ MgL =ﬁ.[(rA _rC) ><F] °
=fi.[(ra —TB) XF ] +ﬁ.MXF ]

(rg —¢) and fi are in the same line




Moment: Example

Calculate the magnitude of the moment about the
base point O of the 600 N force in different ways

Solution 1.

Moment about O i1s

M, =4dF d =4c5540° + 2s5in40° = 4.35m

roanf

M, =¢&00{4.35} = 262G N.m Ans

Solution 2.
F, = 600c0s£0% = £60 N
F, = 600sint0% =386 N

=
o

|
1M
o)
(o)
=
>
)
.
e
+
)
0
o)
~~
(S
o)
-
-

|
(3
(@)}
b
<
<2
3
N
~
»n

4m

600 N

40 d

2m F, = 600 cos 40°



Moment: Example

Solution 3. —RA
v <A
d- = 4 + 2tan4G” = 5.68m “ll r ¥
M, =463{(5.68} = 261CN.m Ans o &,
Solution 4.
d, = 2+ 4cot4G® = 6.77m
M, =386(6.77; = 261GN.m £ns
Solution 5.
Ms=1rXF=(20i+4j) x600(cesid’i — sindd%)
My = —2620 N.m Ans The minus sign indicates that the

vector 1s in the negative z-direction



Moment of a Couple /6, A
Moment produced by two equal, opposite and \a\ Fr |

non-collinear forces is called a couple.

Magnitude of the combined moment of
the two forces about O:

M=F@ +d)—Fa =Fd

M=ra XF +rgp X(—F)

=(rA—rB)><F

=1 X F
M = rFsin8 = Fd

The moment vector of the couple is independent
of the choice of the origin of the coordinate axes,
1.e., it is a free vector that can be applied at any
point with the same effect.




Moment of a Couple

Two couples will have equal moments if Fydy =F,d>

The two couples lie in parallel planes

The two couples have the same sense or the
tendency to cause rotation in the same direction.

Examples:

b PP
I




Addition of Couples

Consider two intersecting planes P,
and P, with each containing a couple

M; =r XF; in plane Py
M, =r XF, inplaneP;

Resultants of the vectors also form a couple

M=rXR=rXF; +F)

By Varigon’s theorem
M=r XF; +r xXF>
=M; +M>

Sum of two couples is also a couple that is equal to
the vector sum of the two couples

M,




Couples Vectors

i . ‘\}t M=Fd E
S A 7 \

g— == 5 — '(.‘_)_“;‘
/O X /O x /Ov—_x 2 \'/"\L‘?M‘ x

A couple can be represented by a vector with magnitude and
direction equal to the moment of the couple.

f
I
o
z
I
—
z

Couple vectors obey the law of addition of vectors.

Couple vectors are free vectors, i.e., the point of application is not
significant.

Couple vectors may be resolved into component vectors.



Couple: Example

Moment required to turn the shaft connected at
center of the wheel = 12 Nm

Case I: Couple Moment produced by 40 N
forces = 12 Nm

Case II: Couple Moment produced by 30 N
forces = 12 Nm

If only one hand is used?
Force required for case [ is 80N

Force required for case I1is 60N

What if the shaft 1s not connected at the center
of the wheel?

Is it a Free Vector?

Casel




Equivalent Systems

. —n B "%
2 =(F LB E
F F
A R M=Fd

At support O
W, =W, +W;

My = W]d] + Wzdz




Equivalent Systems: Resultants

N 1 = 3
| Bty e
& \ b - o ) B
. ke .
. | o
3 ' .
% y
» M 1 ¢
. ) . ] ,
A\ ¢ 2a
4% ) i . =

Fr=F+ F>+F3

What is the value of d?

Moment of the Resultant force about the grip must be equal to the
moment of the forces about the grip

Frd = Fid; + Fod2 +F3d3 Equilibrium Conditions




Equivalent Systems: Resultants

Equilibrium

Equilibrium of a body is a condition in which the
resultants of all forces acting on the body is zero.

Condition studied in Statics



Equivalent Systems: Resultants

Vector Approach: Principle of Transmissibility can be used

Magnitude and direction of the resultant force R is obtained by
forming the force polygon where the forces are added head to tail

in any sequence

(

R=F1+F2+F3+

oo = SF

R.=2F, R,=3F, R=J/GF)?+GF)?

2F.

0= tan 1 = ey

R

=

2F,

\




Equivalent Systems: Example

150 N 600 N 100 N 250 N

AL ‘ N
Llﬁm—l‘l.i’.m i 2m -

For the beam, reduce the
system of forces shown to (a)
an equivalent force-couple
system at A, (b) an equivalent
force couple system at B, and
(¢) a single force or resultant.

Note: Since the support
reactions are not included, the
given system will not maintain
the beam in equilibrium.

Solution:

a) Compute the resultant force for
the forces shown and the resultant
couple for the moments of the
forces about A.

b) Find an equivalent force-couple
system at B based on the force-
couple system at A.

¢) Determine the point of application
for the resultant force such that its
moment about A is equal to the
resultant couple at A.



Equivalent Systems: Example

SOLUTION
(a) Compute the resultant force and

the resultant couple at A.

150 j 600§ 100§ -250

\t ‘ f I‘B R _ . . . . )
i) —> F =150j- 600j+ 100j - 250]

— 281

48i -

R= - (600N)j

MR=3% rxF

= 161 x(-600j) + 28i x (100]) + 4.8i x (—250))
R_ —(1880N n)k (600 N) j

(‘ —

(1SSO N=m) k




Equivalent Systems: Example

b) Find an equivalent force-couple system at

"“" " B based on the force-couple system at A.
( o The force is unchanged by the movement
1880 Nsm) . of the force-couple system from A to B.

R= -(600N);
The couple at B is equal to the moment about
B of the force-couple system found at A.
- (600 N) j
‘ MB = MR + rga x R
3 B ) = —-1800k + (—4.8i) x (-600j)

(1000 Nam) k

(1000N.n )k



Equivalent Systems: Example

R=F+Fo+F3+ F4

R= 150 - 600 + 100 - 250 = =600 N R

e —
T~ -

Rd = Fyd¢ + Fodz + Fads + Fads4 150 N 600N | 100N 250 N

d=313n AL ‘ —
Ll.Sm—v‘l.va :?.mJ




Rigid Body Equilibrium

A rigid body will remain in equilibrium provided

* sum of all the external forces acting on the body is
equal to zero, and

 Sum of the moments of the external forces about a
point is equal to zero

SF, =0 SM, =0

\ / SF, =0 =M, =0

o, »F_ = 2M. =0
. F,=0 :




Rigid Body Equilibrium
Free-Body Diagrams

Space Diagram: A sketch
showing the physical conditions
of the problem.

Free-Body Diagram: A sketch
showing only the forces on the
selected particle.



Rigid Body Equilibrium

!o‘
Support Reactions —————
I I
Prevention of
Translation or Iou ,,
Rotation of a body p—
pin
Restraints
fixed support




Rigid Body
Equilibrium

Various Supports
2-D Force
Systems

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin

Action on Body to Be Isolated

1. Flexible cable, belt,
chain, or rope i
Weight of cable })/Z
negligible _
Weight of cable ]___01(_/_7:
not negligible

-

T

A

Force exerted by

a flexible cable is
always a tension away
from the body in the
direction of the cable.

2. Smooth surfaces

Contact foree is
compressive and is
normal to the surface,

3. Rough surfaces

Rough surfaces are
capable of supporting
a tangential
compo-nent F
(frictional force) as
well as a normal
component

N of the resultant

4. Roller support

~
=

Roller, rocker, or ball
support transmits a
compressive force
normal to the
supporting surface.

5. Freely sliding guide

Collar or slider free to
move along smooth
guides; can support
force normal to guide
only.




Rigid Body
Equilibrium

Various Supports
2-D Force
Systems

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)

Type of Contact and Force Origin

Action on Body to Be Isolated

6. Pin connection

Pin free to turn A freely hinged pin

connection is capable
L of supporting a force
R \ > in any direction in the
x R plane normal to the
R,

pin axis. We may
either show two
Pin not free to turn components R, and
R, or a magnitude R
and direction 6. A pin
R, M ot free to turn also
R, supports a couple M.

7. Built-in or fixed support

A A
::. S
; . or il
HEE
1 Weld

A A built-in or fixed
| support is capable of
supporting an axial
P force F, a transverse
: force V (shear force),
and a couple M
v (bending moment) to
prevent rotation.

8. Gravitational attraction

() 1
HH

The resultant of
gravitational
. attraction on all
e elements of a body of
" mass m is the weight
W= mg and acts
toward the center of
the earth through the
center mass G,

W=mg

9. Spring action

Linear Nonlinear
tn, ¥ B
X : F = kx :Hnr;!emng

=~ p ./
| I /7 Softening
-y g

Spring force is tensile
if spring is stretched
and compressive if
compressed. For a

]_,": linearly elastic spring

- the stiffness & is the

force required to
deform the spring a
unit distance.




Rigid Body
Equilibrium

Various Supports
3-D Force
Systems

MODELING THE ACTION OF FORCES IN THREE-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin

Action on Body to Be Isolated

. Member in contiset with smooth

surface, or ballaupported member
2 2

Force must be normal to the

: ¢ strface and directed toward

LS o
U~ P

x J =% y
Member in contact 2
with rough |
wurfiace : The possibility exists for a

force F tangent to the surface
(friction foree) to act on the
member, as well 4 a normal
force N.

constraint i A lateral foroe P exerted by the
guide on the wheel can exist, in
addition to the normal force N,
e vy
Ball-and-socket joint

A ball-and-socket joint free to
ot about the center of the
Il can support o force R with

all three companenta.

In addition to three components
of farce, o fixed connection

oan support a couple M
represented by its three
components.

Thrust bearing ks capable of
supporting axial force R, as
well as radial forces R, and R,
Couples M, and M, must, in
some cases, he assumed zero
in order to provide statical
v determinacy.




SAMPLE FREE-BODY DIAGRAMS
Mechanical System Free-Body Diagram of Isolated Body
F b d 1. Plane truss
r e e O y Weight of truss P
assumed negligible P
d . compared with P y
|
jlagram |
A, R
I 15,
2. Cantilever beam v
. Cantilever beam Fy F"l Fy ‘3 F’l Fy
Ys F, 1 F 1 [
(== N ' |
F
rJ_ : i i L A Mass m M * "l'
TIA Mass m Wimg :
et 1
/\
- ]
= ; N
1 |
- 2 P e / [
v ). Nfe—p, 'W=mg |
\ia le Fy o ' B,
4. Rigid system of interconnected bodies
| 1 analyzed as a single unit -"'
" y P . Weight of mechanism |
M | L
W=mg |
|
T m




Rigid Body
Equilibrium

Categories
in 2-D

CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS

Force System Free-Body Diagram [Independent Equations
1. Collinear s

¥ - IF,=0
2. Concurrent LF, =0

at a point
ZF) =0

3. Parallel IF,=0 IM,=0
4. General IF,=0 IM,=0

£F,=0




CATEGORIES OF EQUILIBRIUM IN THREE DIMENSIONS
Force System Independent Equations
Rigid BOdY 1. Concurrent
o t int
Equilibrium e F. =0
ZF, =0
F, =0
i 2. Concurrent
FatsegDorles with a line
n s-
F, =0 M, =0
IF, =0 IM.=0
IF,=0
3. Parallel
IF,. =0 IM, =0
IM_=0
4. General
IF. =0 IM, =
ZFy = zM’ =
EF, = 0 =M, =0




Rigid Body Equilibrium: Example

Solution:

 Create a free-body diagram of the joist. Note
that the joist is a 3 force body acted upon by
the rope, its weight, and the reaction atA.

» The three forces must be concurrent for static
equilibrium. Therefore, the reaction R must
pass through the intersection of the lines of
action of the weight and rope forces.

Find the tension in the rope and Determine the direction of the reaction force

the reaction atA. R.

A man raises a 10 kg joist, of
length 4 m, by pulling on a rope.

» Utilize a force triangle to determine the
magnitude of the reaction force R.



Rigid Body Equilibrium: Example

» Determine the magnitude of the reaction
force R.

T R _ 98IN
sin31.4° sin110°  sin38.6°

OS.1 N

T'=819N
R =147.8N
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2.1 CENTRE OF GRAVITY

« Centre of gravity(C.G) of a body is defined as the
point through which the entire weight of the body
acts. A body has only one centre of gravity for all
its positions.

» Centroid is defined as the point at which the total
area of a plane figure is assumed to be
concentrated. It is the CG of a plane figure

* CG of a rectangle is the point where the
diagonals meet

» CG of a triangle is the point where the medians
meet

« CG of a circle is at its centre




2.1 CENTRE OF GRAVITY

« Consider a plane figure of total area A composed
of a number of small areas a1, a2, a3,...., an

Let x1= Distance of CG of a1 from axis of
reference QY

x2= Distance of CG of a2 from axis of reference
0)

x3= Distance of CG of a1 from axis of reference
0)'

xn= Distance of CG of an from axis of reference
oY




2.1 CENTRE OF GRAVITY

* The moments of all areas about axis OY=a1x1 +
a2x2 + adx3+ ....... + anxn

X

1

o]
K4
b L

L+

» Let G be the centre of gravity of the total area
about the axis OY whose distance from QY is Xc




PLANE FIGURES BY METHOD OF
MOMENTS

» Moment of total area about OY=AXc

» Sum of moments of small areas about axis OY
must be equal to the moment of total area about
QY.

e Hence a1x1 + a2x2 + a3x3+ ....... + anxn= AXc
® o= 5 aixi/zai 11X1 + a2x2 + a3x3+ ....... + anxn)/A

=1

@ L S
Ye= 2 alyi Zai

=1

™~




PLANE FIGURES BY METHOD OF o

INTEGRATION

« |f the areas are large in number (that is i tends to
infinity), then the summations in the above
equations can be replaced by integration. And
when the number of split up areas are large, the
size of component areas will be small, hence a
can be replaced by dA in the above equation.

* Hence
Xc=|xdA//dA
Ye=|ydA/[dA




CALCULATE CENTRE OF
GRAVITY

» Axes about which moments of areas are taken, is
known as axis of reference.

» Axis of reference of plane figures is generally
taken as the lowest line of the figure for
determining Axis of reference of plane figures is
generally taken as the lowest line of the figure for
determining c and left line of the figure for
calculation Xc

« If the given section is symmetrical about X-X or Y-
Y, CG will lie in the line of symmetry




2.2 AREA MOMENT OF INERTIA

» Consider an area A as shown. Let dA be an elemental area
of the area A with coordinates x and y. The term Zx*dA is
called the moment of inertia of area A about y axis and
term Zy*dA is called the moment of inertia of area A about
X-axis

L] l_’

o Ixx= Zy?dA & lyy= Ex?dA

» When dA is very small, mathematically Zy2dA= [y2dA
Tx2dA= [x2dA

™~




" 2.4 AREA MOMENT OF

INERTIA

o Ixx= Jy2dA & lyy= |x2dA

« If ris the distance of an area dA (which is a part
of area A) from an axis AB, then the sum of terms
r’dA (ie Z rdA) to cover the entire area is called
the moment of inertia of the area A about axis AB

or second moment of area of area A about axis
AB.

» Moment of inertia is a fourth dimensional term as

it is obtaine @ /ing area by distance
squared. He / unit is m”4




2.5 RADIUS OF GYRATION

» Mathematical term defined by the expression, k=V
(I/A) is called radius of gyration.
o |=Ak?

» Hence the radius of gyration can be considered a
that distance at which the complete area is
squeezed and kept as a strip of negligible width
such that there is no change in the moment of
inertia

_L?!—

[

—




2.6 THEOREMS OF MOMENT OF
INERTIA

* 1) Perpendicular axis theorem:-

The area moment of inertia about an axis
perpendicular to its plane at any point is equal to
the sum of moment of inertia about two mutually
perpendicular axes through the point O and lying
In the same plane of area.

Polar moment of inertia is defined as the product of
area and square of distance between CG from
the axis of reference perpendicular to the area.

™~




2.6 THEOREMS OF MOMENT OF

INERTIA

» Proof:- Consider an infinitesimal elemental area
dA with co-ordinates (x,y).

)
uL/tv T
o Ixx=]y2dA ;lyy=Ix2dA; Izz=|r2dA
o 2= x2 + yz

Hence r? x dA= x? dA + y* x dA
* Hence lzz= Ixx + lyy




2.6 THEOREMS OF MOMENT OF

INERTIA

» Parallel axis theorem:- Moment of inertia about
any axis in the plane of an area is equal to sum of
moment of inertia about a parallel centroidal axis
and the product of area and square of the
distance between the two parallel axes

» Referring to the figure given below, the theorem

_J

¥e

IGG + Ayc?

™




2.6 THEOREMS OF MOMENT OF
INERTIA

» |JAB—> Moment of inertia about axis AB

» |GG—=> Moment of inertia about centroidal axis GG
parallel to AB

» A= The area of plane figure given.

* Yc—=2 The distance between the axis AB and the
parallel centroidal axis GG

* Proof.- Consider an elemental strip dA whose CG
Is at a distance y from centroidal axis G-G

™~




2.6 THEOREMS OF MOMENT OF o

INERTIA

» IGG= [y? dA
IAB= [(y + yc)? dA
IAB= [(y? + yc? + 2yyc) dA

* y is a variable and yc is a constant; hence Jy? dA=
IGG and [yc? dA= Ayc?.

» Jy dA/ A=distance of centroid from the axis of
reference= 0 as GG is passing through the
centroid.

« Hence |IAB= IGG + Ayc?




2.7 DETERMINATION OF MOMENT A
OF INERTIA

* 1) Moment of inertia of a rectangular section
about the centroidal axis in the plane of
section

» Consider a rectangular section of length b and

depthd.Let """ [~ ° ° ntal axis passing
through the ; u! a.




2.7 DETERMINATION OF MOMENT
OF INERTIA

« Consider a rectangular elemental strip whose CG
IS at a distance y from the horizontal centroidal
axis.

* Area of the strip dA=b x dy

® s ,Y. .., Ntofinertia of strip about the
. . | !

e Ixx =bd?¥/12
o Similarly lyy =db3/12




2.7 DETERMINATION OF MOMENT
OF INERTIA

« 2) Moment of inertia of a rectangular section
about an axis passing through the base of the
rectangle

» Consider a rectangular section of length b and
depth d. Let AB be the horizontal ax J
through the base of the rectangle. —1

» IAB=IGG + A x Yc?= bd?12 + bd x (
» |AB= bd?¥/3 i




2.7 DETERMINATION OF MOMENT h
OF INERTIA

» 3) Moment of inertia of a hollow rectanqular
section about the centroidal axi "|
of section |

7\
[ ¥
| ¥

» Moment of inertia of main section about X-X axis=
b2d23/12

» Moment of inertia of the cut out section about X-X
axis= b1d13/12




2.7 DETERMINATION OF MOMENT A
OF INERTIA

« Moment of inertia of the hollow rectangular
section about X-X axis= (b2d23/12- b1d13/12)

« Similarly Moment of inertia of the hollow
rectangular section about Y-Y axis= (d2b2°/12-
d1b13/12)

» Moment of inertia of the hollow rectangular
section about any axis= ( M| of outer rectangular
section about the axis - Ml of cut-out rectangular
section about the axis )




2.7 DETERMINATION OF MOMENT h
OF INERTIA

» 4) Moment of inertia of a circular section
passing through the centre and lying in the
plane of the figure

« Consider an elementary circular ring of radius r
and thickness dr. Area of the circular ring =2trdr

*» The moment of inertia about an axis passing
through the centre O of the circle and
[=ieafeone lar to the plane of area,

 |zz= MR™/2=1D"4/32
« According to perpendicular axis
theorem, Ixx=lyy= %2 lzz= TD"4/64




2.7 DETERMINATION OF MOMENT A
OF INERTIA

* 5) Moment of inertia of a hollow circular
sec

* Moment of inertia of outer circle about X-X axis=
mD*/64

Moment of inertia of the cut-out circle= rd*4/64
» Moment of inertia of the hollow circular section
about X-X axis Ixx= 1 x (D*4 — d"4) /64
» Similarly lyy= 1 x (D*4 — d*4) /64




2.7 DETERMINATION OF MOMENT h
OF INERTIA

* 6) Moment of inertia of a semicircular area

« Inn= Moment of inertia of the semicircular lamina
about an axis passing through the centre of the
semicircle=1/2 x Moment of inertia of a circular
lamina about an axis passing through the centre
and lying in the plane of the figure= mD*4/128




2.7 DETERMINATION OF MOMENT A
OF INERTIA

» Moment of inertia of the semicircle about an axis
passina throuah the CG of the semicircle= Inn + A

o [xx=1D"4/128 + wD?/8 x (2D/317)*= 0.11R"4




2.7 DETERMINATION OF MOMENT A
OF INERTIA

» 7) Moment of inertia of a triangular section
about its base

» Consider an elemental strip DE of the triangle at
a distance y from the vertex opposite to the base

of the triangle. From the abovi 4 (d-
e .
DE=b (1- y/d) o £

N b .

» Area of the elemental strip dA= DE xdy =b (1-

Inn= [y x b (1-y/d) x dy
0

o wiurnent ur inertia of the area about N-N,

e |nn=bd3/12 Y.




2.7 DETERMINATION OF MOMENT A
OF INERTIA

* 8) Moment of inertia of a triangle about the
centroidal axis parallel to the base of the
triangle

g L =AM D—=la~ L Avin2
i [

| —
—— b ——

* bd¥*12 - bd/2 x d?/9= Igg
* lgg= bd*/36




2.8 MASS MOMENT OF
INERTIA

» Consider a body of mass M lying in the XY plane.
Let

X= distance of CG of the body from QY axis

N f the body from OX axis

-l x

* Moment of mass M about OY axis= Mx




2.8 MASS MOMENT OF
INERTIA

» Second moment of mass M about OY axis= Mx?

« Second Moment of mass is known as mass
moment of inertia

* Mass moment of inertia(IM) about an axis is
hence defined as the product of mass of a body

s perpendicular distance from

3

-




L%

2.8 MASS MOMENT OF
INERTIA

» Suppose the body is split up into small masses
m1, m2, m3,....., mn. Let the distance of CGs of
masses be at distances r1, r2, r3,.....rn from an
axis of reference. Then mass moment of inertia
about that axis is given by

o IM=2mi X ri?

» If the small masses are large in number, then the
summation in above equation can be replaced by
integral,

e Im=Jr2dm

* Physical meaning of mass moment of inertia:- It is
the resistance of a rotating body against the
change in angular velocity




2.9 MASS MOMENT OF INERTIA OF A
RECTANGULAR PLATE ABOUT CENTROIDAL
AXIS PARALLEL TO THE BASE OF THE PLATE

« Consider a rectangular plate of width b, depth d
and thickness t composed of a material of density

™




RECTANGULAR PLATE ABOUT
CENTROIDAL AXIS PARALLEL TO THE
BASE OF THE PLATE

« Mass of the plate= pxbxdxt

« Consider an elementary rectangular strip of width
b, depth dy and thickness t at a distance y from
the centroidal axis X-X . The area of the strip
s, dA= b x dy

» Mass of the strip, dm= Volume of the strip x
density= Thickness x Area of the strip x density=t
Xbxdyxp

*» Mass moment of inertia of the strip = y* dm= y3x
(tx b xdy x p)




'

RECTANGULAR PLATE ABOUT
CENTROIDAL AXIS PARALLEL TO THE
BASE OF THE PLATE

» Mass moment of inertia of the entire mass about
XX axis= [ v2dm = v (t x b x dy x p)
d/2

=Iy’x (tx b x dyx p)
-d/2

=bt p x d*/12= p x t x b d*/12= Density x thickness
x Moment of inertia of the rectangular section
about the centroidal axis parallel to the base

* bt p x d= Mass of the rectangular plate= M




RECTANGULAR PLATE ABOUT
CENTROIDAL AXIS PARALLEL TO THE
BASE OF THE PLATE

« Hence moment of inertia of a rectangular plate
about the centroidal axis parallel to its base
Imxx= Md?/12

« Moment of inertia of a rectangular plate about the
centroidal axis perpendicular to its base, Imyy=
Mb?/12

» Moment of inertia of a hollow rectangular plate of
outer section dimensions B, D and inner section
dimensions b, d is given by the equation, Imxx=
1/12 (MD? - md?); where M is the mass of outer
section and m is the mass of cut-out section.




2.9 MASS MOMENT OF INERTIA OF A N
RECTANGULAR PLATE ABOUT AN AXIS
PASSING THROUGH ITS BASE

« Consider a rectangular plate of width b, depth d
and thickness t composed of a material of density

p.
» Mass of the plate= pxb xdxt

« Consider an elementary rectangular strip of width
b, depth dy and thickness t at a distance y from
the base AB . The area of the strip is, dA= b x dy

* Mass of the strip, dm= Volume of the strip x
density= Thickness x Area of the strip x density=t
Xbxdyxp




2.9 MASS MOMENT OF INERTIA OF A
RECTANGULAR PLATE ABOUT AN AXIS
PASSING THROUGH ITS BASE

« Mass moment of inertia of the strip = y> dm= y?x
(tx b xdyxp)
» Mass moment of inertia of the entire mass about
XX axis= [ y?2dm = Jy?x (t x b x dy x p)
d

=J;y"‘x (tx b x dyx p)
=bt p x d*/3= p x t x b d*/3= Density x thickness x

Moment of inertia of the rectangular section about
the centroidal axis parallel to the base




2.9 MASS MOMENT OF INERTIA OF A N
RECTANGULAR PLATE ABOUT AN AXIS
PASSING THROUGH ITS BASE

* bt p x d= Mass of the rectangular plate= M
« Hence moment of inertia of a rectangular plate

about a horizontal axis passing through to its
base Imxx= Md?*/3

« Moment of inertia of a rectangular plate about the
centroidal axis perpendicular to its base and
passing through the vertical side, Imyy= Mb?*/3
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[.oad is defined as the set of external forces acting on a
mechanism or engineering structure which arise from

service conditions in which the components work

Common loads in engineering applications are tension and

compression
Tension:- Direct pull. Eg:Force present in lifting hoist

Compression:- Direct push. Eg:- Force acting on the pillar of
a building
Sign convention followed: Tensile forces are positive and

compressive negative




® There are a number of different ways in which load can be

applied to a member. Typical loading types are:

* A) Dead/ Static load- Non fluctuating forces generally
caused by gravity

* B) Live load- Load due to dynamic effect. Load exerted by a
lorry on a bridge

* C) Impact load or shock load- Due to sudden blows

® D) Fatigue or fluctuating or alternating loads:
Magnitude and sign of the forces Changing with time




STRESS

® When a material is subjected to an external force, a resisting
force is set up within the component, this internal resistance

force per unit area is called stress. SI unit is N/m?(Pa).
1kPa=1000Pa, 1IMPa=10"6 Pa, 1 Gpa=10"9Pa, 1 Terra
Pascal=10"12 Pa d;

® In engineering applications, we use the

the original cross section area of the specimen S SR

and it is known as conventional stress or

Engmeermg stress lp




STRAIN

When a body is subjected to some external force, there is some
Change of dimension of the body. The ratio of change of dimension
of the body to its original dimension is known as strain

Strain is a dimensionless quantity

Strain may be:- a) Tensile strain b) Compressive strain c)
Volumetric strain d) Shear strain

Tensile strain- Ratio of increase in length to original length of
the body when it is subjected to a pull force

Compressive strain- Ratio of decrease in length to original
length of the body when it is subjected to a push force

Volumetric strain- Ratio of change of volume of the body to the
original volume

Shear strain-Strain due to shear stress




TYPE OF STRESSES

STRESS
v
Direct stressl Simple Stress Indirect stress Combine'd Stress
Shear Stress Normal stress Torsional Stress Bending Stress




® Direct stress mayv be normal stress or shear stress
Y

e Normal stress (0‘ ) is the stress which acts in direction
perpendicular to the area. Normal stress is further classified

into tensile stress

* Tensile stress is the stress induced in a body, when it is
subjected to two equal and opposite pulls (tensile forces) as a

result of which there is a tendency in increase in length

® It acts normal to the area and pulls on the area




® Consider a bar subjected to a tensile force P at its ends. Let
A= Cross sectional area of the body
L=Original length of the body
dL= Increase in length of the body due to its pull P
0= Stress induced in the body
e=Tensile strain

Consider a section X-X which divides the body into two halves




TYPES OF DIRECT STRESS
(Tensile stress)

® The left part of the section x-x, will be in equilibrium it P=R
(Resisting force). Similarly the right part of the section x-x
will be in equilibrium if P=R (Resisting force)

3 i P
G ' a4
'
x (@
o .
- [C% Resisting force (R)
[
(5
e P
Pr—
Resisting force (R) ¢— -
©




Tensile stress (0)= Resisting force/ Cross sectional area= Applied
force/ Cross sectional area=P/A

Tensile strain= Increase in length/Original length= dL/L

Compressive stress:- Stress induced in a body, when subjected to
two equal and opposite pushes as a result of which there is a
tendency of decrease in length of the body

It acts normal to the area and it pushes on the area

In some cases the loading situation is such that the stress will vary
across any given section. In such cases the stress at any given point
is given b_v

o= Lt AA=> 0 AP/ AA= dP/dA= derivative of force w.r.t area




TYPES OF DIRECT STRESS
(Compressive stress)

P ! P
P . —

()

P

]
|

-
: b)
P
Resisting lorce (R)
! ()
P S Q— .:. P
@ R +R
PR« 5-S—
$ )

* Compressive stress=Resisting force/ cross sectional area= Applied
force/ cross sectional area

* Compressive strain= Decrease in length/ Original lengthz -dL/L

* Sign convention for direct stress and strain:- Tensile stresses and strains
are considered positive in sense producing an increase in length.
Compressive stresses and strains are considered negative in sense

producing decrease in length




® Shear stress :- Stress Induced in a body, when subjected to
two equal and opposite forces which are acting tangentially
across the resisting section as a result of which the bocly tends

to shear off across that section

® Consider a rectangular block of height h, length L and width
unity. Let the bottom face AB of the block be fixed to the
surface as shown. Let P be the tangential force applied along
top tace CD of the block. For the equilibrium of the block,
the surface AB will offer a tangential reaction force R which
is equal in magnitude and opposite in direction to the applied

tangential force P




TYPES OF DIRECT STRESS
(Shear stress)

* Consider a section X-X cut parallel to the applied force which splits
rectangle into two parts

» 3
D — C D — c
A—>
] X x X=X x
. P—
.l.
L PO IIIIIT L Cl L
A «~— A A - )
o L e
(a) (L] ©

* For the upper part to be in equilibrium; Applied force P=Resisting force

* For the lower part to be in equilibrium; Applied force P=Resisting force
R

* Hence, shear stress T= Resisting force/Resisting area=P/L x 1=P/L
® Shear stress is tangential to the area on which it acts




® As the face AB is fixed, the rectangular section ABCD will be
distorted to ABC1D1, such that new vertical face AD1 makes an

angle (p with the initial face AD

® Angle @ is called shear strain. As ¢ is very small,
* (p=tan @=DD1/AD=dl/h

¢ Hence shear strain=dl/h
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LASTICITY & ELASTIC LIMIT

The property of a body by virtue of which it undergoes
deformation when subjected to an external force and regains its
original configuration (size and shape) upon the removal of the
deforming external force is called elasticity.

The stress Correspondjng to the limiting value of external force
upto and within which the deformation disappears completely
upon the removal of external force is called elastic limit

A material is said to be elastic if it returns to its original,
unloaded dimensions when load is removed.

[f the external force is so large that the stress exceeds the elastic
limit, the material loses to some extent its property of elasticity. If
now the force is removed, the material will not return to its
original shape and size and there will be a residual deformation in
the material




HOOKE'S LAW & ELASTIC MODULI

® Hooke’s law states that: “When a body is loaded within
elastic limit, the stress is proportional to strain developed” or
“Within the elastic limit the ratio of stress applied to strain
developed is a constant”

® The constant is known as Modulus of elasticity or
Elastic modulus or Young’s modulus

® Mathematically within elastic limit
Stress/Strain=0/e=E
o= P/A;e =AL/L
E=PL/AAL




HOOKE'S LAW & ELASTIC MODULI

® Young's modulus (E) is generally assumed to be the same in
tension or compression and for most of engineering
applications has a high numerical value. Typically, E=210 x
1079 N/m? (=210 GPa) for steel

®* Modulus of rigidity, G= T/@= Shear stress/ shear strain
* Factor of safety= Ultimate stress/Permissible stress

® In most engineering applications strains donot often exceed
0.003 so that the assumption that deformations are small in

relation to orinal dimensions is generally valid




STRESS-STRAIN CURVE (TENSILE TEST)

® Standard tensile test involves subj ecting a circular bar of
uniform cross section to a gradually increasing tensile load

until the failure occurs

® Tensile test is carried out to compare the strengths of various
materials

@ Change in length of a selected gauge length of bar is recorded

by extensometers

e A graph is plotted with load vs extension or stress vs strain
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1.8 STRESS-STRAIN CURVE (TENSILE
TEST)

Load or stress

P
Partially plastic = ——! -

E specimen

T\

Circular
cross-section Gauge
length

- P

Extension or strain

Fig. 1.3. Typical tensile test curve for mild steel.




STRESS-STRAIN CURVE (TENSILE TEST
DIAGRAM)

A= Limit of proportionality; It is the point where the linear
nature of the stress strain graph ceases

B—> Elastic limit; It is the limiting pomt for the condition that
material behaves elastlcally, but hooke's law does not apply . For
most practical purposes it can be often assumed that limit of
proportionality and elastic limits are the same

Beyond the elastic limits, there will be some permanent
deformation or permanent set when the load is removed

C (UpperYield point), D (Lower yield Ipomt )=2 Points after which
strain increases without correspondingly high increase in load or
stress

E=> Ultimate or maximum tensile stress; Point where the necking
starts

F-> Fracture point

\




CONSTITUTIVE RELATIONSHIPS
BETWEEN STRESS & STRAIN

* A) I-Dimensional case (due to pull or push or shear force)
O0=Ee
* B) 2-Dimensional case

* Consider a body of length L, width B and height H. Let the body

be subjected to an axial load. Due to this axial load, there is a
deformation along the length of the body. This strain
corresponding to this deformation is called longitudinal strain.

® Similarly there are deformations along directions perpendicular to
line of application of fore. The strains corresponding to these

deformations are called lateral strains




CONSTITUTIVE RELATIONSHIPS
BETWEEN STRESS & STRAIN

8L = Increase in length,
b = Decrease in breadth, and
&d = Decrease in depth.

Then longitudinal strain =

Fig. 1.3. Typical tensile test curve for mild steel.




CONSTITUTIVE RELATIONSHIPS
BETWEEN STRESS & STRAIN

*® Longitudinal strain is always of opposite sign of that of lateral
strain. le if the longitudinal strain is tensile, lateral strains are

compressive and vice versa

® Every longitudinal strain is accompanied by lateral strains in

orthogonal directions

e Ratio of lateral strain to longitudinal strain is called

Poisson’s ratio (J); Mathematically,
® U=-Lateral strain/Longitudinal strain

® Consider a rectangular ﬁgure ABCD subjected a stress in Ox
direction and in O y direction




YOUNG’S MODULUS (E):--

Young’'s Modulus (E) is defined as the Ratio
of Stress (o) to strain (g).

E=c/¢ (5)




BULK MODULUS (K):--

. When a body is subjected to the identical stress o
iIn three mutually perpendicular directions, the body
undergoes uniform changes in three directions without

the distortion of the shape.
« The ratio of change in volume to original volume

has been defined as volumetric strain(e, )

*Then the bulk modulus, K is defined as K=o/ g,



BULK MODULUS (K):-- o

o]
\ o]
'K=0'/8V ............. (6) 0'/’_7

Where, ¢,= AV/V
~ Change in volume

~ Original volume

= Volumetric Strain



MODULUS OF RIGIDITY (N): OR
MODULUS OF TRANSVERSE ELASTICITY OR
SHEARING MODULUS
Up to the elastic limit,
shear stress (1) o« shearing strain(¢)
T=N¢

Expresses relation between shear stress and shear
strain.

where
Modulus of Rigidity =N=</¢ .. (7)



ELASTIC CONSTANTS

YOUNG’'S MODULUS E=o0/¢

BULK MODULUS K=o/¢g,

MODULUS OF RIGIDITY N=1/ ¢



COMPLEMENTRY STRESSES:“A stress in a
given direction cannot exist without a balancing
shear stress of equal intensity in a direction at
right angles to it.”
!
T,

T— i

Moment of given couple=Force *Lever arm
= (t.AB)*AD

Moment of balancing couple= (7".AD)*AB
so (t.AB)*AD=(t.AD)*AB =>1=17’

Where t=shear stress & t'=Complementary shear
stress




State of simple shear: Here no other stress is

B T C acting - only simple shear.
T X T
o)
O v
A , D

Let side of square = b
length of diagonal AC =N2 .b

consider unit thickness perpendicular to block.



Equilibrium of piece ABC

the resolved sum of t perpendicular to the
diagonal = 2*(t*b*1)cos 45°= V2 t.b

If o Is the tensile stress so produced on the
diagonal T C

B «
o(AC*1)=V2 1.b !

2
c(V2 .b)=v2 1.b )(G '

SO A

o=17 T



Similarly the intensity of compressive stress on
plane BD is numerically equal to .

“‘Hence a state of simple shear produces pure
tensile and compressive stresses across
planes inclined at 45 © to those of pure shear,
and intensities of these direct stresses are

each equal to pure shear stress.” ,
B~ C

X
O

Q




RELATION BETWEEN ELASTIC CONSTANTS
(A) RELATION BETWEEN E and K

G,
Let a cube having a side L be subjected to
three mutually perpendicular stresses of
Intensity o

By definition of bulk modulus
K= al &
Now g, =3 , /V = o/K



The total linear strain for each side
e =c/E - o /(MmE) - 6 /(MmE)

so oL /L =¢g=(c/E) *(1-2 /m)

now V=L3

oV =3 gl

SV/V = 3 L2351/ L3= 38L/L
= 3 (6/E) * (1-2 /m)



Equating (i) and (iii)
o/K = 3(c /E)(1-2 /m)

E =3 K(1-2 /m)




(B) Relation between E and N

B B e
x|
T
O
{4 O
A D

A

Linear strain of diagonal AC,
e=¢/2 = /2N



State of simple shear produces tensile
and compressive stresses along
diagonal planes and

=17

Strain € of diagonal AC, due to these
two mutually perpendicular direct
stresses

e=o/E - (- o/mE) = (6/E)*(1+1/m)
But =1
so e = (t/E)*(1+1/m)



From equation (i) and (iii)

t /2N = (t /E)(1+1/m)

OR
E =2N(1+1/m)

But E=3 K (1-2/m)

Eliminating E from --(9) & --(10)
uw=1/m=(3K-2N) /(6K +2N)
Eliminating m from —(9) & --(10)
E = 9KN / (N+3K)




(C) Relation between E ,K and N:--

E = 2N(1+1/m)

E = 3K (1-2 /m)
E = 9KN / (N+3K)

(D) Relation between ,K and N:--
i =1/m=(3K-2N)/(6K+2N)



CONSTITUTIVE RELATIONSHIPS
BETWEEN STRESS & STRAIN

® Strain along x direction due to 0x= 0 x/E
Strain along x direction due to 0 y=-lL x Oy/E
Total strain in x direction ex= 0 x/E - L x Oy/E
Similarly total strain in y direction, ey= 0 y/E - i « 0x/E

¢ |n the above equation tensile stresses are considered as

positive and compressive stresses as negative
()3 Dimensional case:-

Consider a 3 D body subjected to 3 orthogonal normal

stresses in X,y and z directions respectively




CONSTITUTIVE RELATIONSHIPS
BETWEEN STRESS & STRAIN

® Strain along x direction due to 0x= 0 x/E
Strain along x direction due to 0 y=-l x 0y/E
Strain along x direction due to 0 z=-[1 x 0z/E
Total strain in x direction ex= 0 x/E - L x (Oy/E + 0z/E)
Similarly total strain in y direction, ey= 0 y/E - i x (OXE +
0z/E)

Similarly total strain in z direction, ez= 0 z/E - il x (OxE +
oy/E)




" Stress o, along the axis and o, and o,
perpendicular to it.

€E=0/E-0 /mE -0 /mE----- i
£ =6 /F -6 /mE-'6./mE(i
8;: G;/E -0, /mE - 6 _/mE----- (iii)
Note:- If some of the stresses have opposite sign

necessary changes in algebraic signs of the above

expressions will have to be made.

A




" Upper limit of Poisson’s Ratio: )
adding (i), (ii) and (iii)

€.+ €

+ ¢g,=(1 - 2/m)(o,+ ©

+ c,)/ E. . ()

y y

known as DILATATION

For small strains represents the change in
volume /unit volume.







ANALYSIS OF BARS OF VARYING CROSS h
SECTION

* Consider a bar of different lengths and of different diameters (and
hence of different cross sectional areas) as shown below. Let this

bar be subiected to an axial load P.
A Section 3

Section 1

‘P_ A, Ay A, f:

L —>e—L.—>e—L —»

® The total change in length will be obtained by addj.ng the changes

in length of individual sections

e Total stress in section 1: 61=E1 x AL1/L1
ol x L1/E1=AL1
01=P/A1; Hence AL1=PL1/A1El

* Similarly, AL2=PL2/A2E2; AL3=PL3/A3E3




ANALYSIS OF BARS OF VARYING CROSS -
SECTION

* Hence total elongation AL=Px (L1/A1E1+L2/A2E2 +
L3/A3E3)

® If theYoung’s modulus of different sections are the same,

E1=E2=E3=E; Hence AL=P/Ex (L1/A1+L2/A2 + L3/A3)

® When a number of loads are acting on a body, the resulting strain,
according to principle of superposition, will be the algebraic sum
of strains caused by individual loads

® While using this principle for an elastic body which is subjected to
a number of direct forces (tensile or compressive) at different
sections along the length of the body, first the free body diagram
of individual section is drawn. Then the deformation of each
section is calculated and the total deformation is equal to the
algebraic sum of deformations of individual sections




ANALYSIS OF UNIFORMLY TAPERING k

CIRCULAR ROD

® (Consider a bar uniformly tapering from a diameter D1 at one
end to a diameter D2 at the other end

® [et

® P> Axial load acting on the bar
e Length of bar

e E— Young’s modulus of the material

l.:
l:_'—'lfl'_ J )




ANALYSIS OF UNIFORMLY TAPERING h

CIRCULAR ROD

¢ (Consider an infinitesimal element of thickness dx, diameter Dx at a distance x
from face with diameter D1.

Deformation of the element d(Ax)=P x dx/ (Ax E)

Ax=m/4 x Dx*; Dx= D1 - (D1 -D2)/L x x

Let (D1-D2)/L=k; Then Dx= D1-kx

d(ALx)= 4 x P x dx/(1 x (D1-kx)? x E)

Integrating from x=0 to x=L 4PL/(TMED1D2)
{:a(Ax)= [};P.Q/(n.(m-lu)’ «E)

Let D1-kx=A; then dx= -(d A/k)

When x=0, A=D1; When x=L, A=D2

L D2
AlLx)= [$xPadx/(ma )2 =
%d( X) Im dX/(Mx A% k+E)

ALx= 4PL/(MEDID2)




ANALYSIS OF UNIFORMLY TAPERING
RECTANGULAR BAR

A bar of constant thickness and uniformly tapering in width from one end to the other
end is shown in Fig. 1.14.

Let P = Axial load on the bar
L = Length of bar
a = Width at bigger end
b = Width at smaller end
E = Young's modulus
t = Thickness of bar




ANALYSIS OF BARS OF COMPOSITE k

SECTIONS

® A bar, made up of two or more bars of equal lengths but of
different materials rigidly fixed with each other and behaving
as one unit for elongation and shortening when subjected to

axial loads is called composite bar.

® Consider a composite bar as shown below

® [et
P> Applied load
L-> Length of bar

A1 Area of cross section of Inner member

A2=> Cross sectional area of OQuter member




ANALYSIS OF BARS OF COMPOSITE
SECTIONS

Strain developed in the outer member= Strain developed in

the inner member

ol1/E1 =02/E2

Total load (P)= Load in the inner member (P1) + Load in
the outer member (P2)

ol xA1+02xA2=P

Solving above two equations, we get the values of 01, 02 &

el and e2

\




STRESS & ELONGN. PRODUCED IN A 1

BAR DUE TO ITS SELF WEIGHT

* Consider a bar of length L, area of cross section A rigidly fixed at
one end. Let p be the denslty of the material. Consider an
infinitesimal element of thickness dy at a distance y from the

bottom of th

® The force acting on the element considered= weight of the
portion below it=pAgy




" STRESS & ELONGN. PRODUCED INA |
BAR DUE TO ITS SELF WEIGHT

® Tensile stress developedz Force acting on the element/Area

of cross section= pgy.

® From the above equation, it is clear that the maximum stress

at the section where y=L, ie at the fixed end (pgL) and
minimum stress is at the free end(=0)

® Elongation due to self weight

g
ALy= f pgydy/AE= pgL?/2AE
0




STRESS IN BAR DUE TO ROTATION

Consider a bar of length | rotating about the axis y at a constant angular velocity ®, Consider
an infinitesimal element of thickness dx at a distance x from the axis of rotation.

Y
L | s T M
| B —1 P
i a
l-bix I 'd-dr I |
- ~
—
Y

Tensile force on element ST= Centrifugal force on element TM

Centrifugal force on element TM= Mass of element TM xr x @*= {I/2 = (x+dx)} x Axp
XTX O

r= x+ Y% x(1/2- (x+dx)
As dx is numerically very small, x + dx=x
Hence tensile force on element ST=(1/2 = x) x Ax{x + ¥ax (1/2-x)} x px @*

=Axpx@ix(f/4-x%/2




STRESS IN BAR DUE TO ROTATION

Tensile stress developed= Tensile force /cross sectional area=Axpx @*x (1*/4-x?)/2A
Crod=px®*x (1*/4-x%)/2

orod =0, whenx=1/2

orod =Maximum when d (Grod )/dx=0; i when x=0

Orodmax ==px®*x1*/8

Extension of element= Grod xdx/E

|
Extension of entire bar=] p x w* x (F/4 - x*)dx/2=px w* x F/12E
0

Extension of entire bar= px ®*x1*/12E




THERMAL STRESS

® Thermal stresses are the stresses induced in a body due to change in
temperature. Thermal stresses are set up in a body, when the
temperature of the body is raised or lowered and the body is restricted
from expanding or contracting

* Consider a body which is heated to a certain temperature
Let
L= Original length of the body
AT=Rise in temp
E=Young's modulus
a=Coeflicient of linear expansion
dL= Extension of rod due to rise of temp
® If the rod is free to expand, Thermal strain developed
et=AL/L=ax AT




THERMAL STRESS

® The extension of therod, AL=LxaxAT

® If the body is restricted from expanding freely, Thermal stress
developed is ot/ et=E

e ot=ExaxAT

® Stress and strain when the support yields:-

If the supports yield by an amount equal to 0, then the actual

expansion is given by the difference between the thermal
strain and &

Actual strain,e= (Lx 0t x AT — 8)/L
Actual stress= Actual strain x E= (Lx ¢ x AT —0)/Lx E




Temperature stresses:-

Change in temp.

Expands/ Shortens

no constraint

1S

Material

|

present

Material

Constrained

No Expansion/
Contraition

Temperature
stresses
Induced in material



ﬂ—ﬁ&)onstraint
4 Bar

L

& > Uniform temp. increased to t°
Expansion A=La t

but A=PL/AE=P/A*L/E = o, L/E

sooy, AE/L=LatE/L=atE
Gy,= Compressive , if temp. increases
o= tensile, if temp. decreases

Suppose the support yield by an amount &
op=( A- 6)"E/L =(La t - 8)"E/L



Composite Section:- (Temp. stresses .)
Extension in steel = Contraction in copper

< L LAY A

Steel(S) | A

~—— — Copper(C) | i
A (9]

E of Copper > steel 2

A =Free expansion of steel due to rise in temp.

Al =Free expansion of copper due to rise in temp.
A, ° =Additional extension in steel to behave as
composite section

A, ° =contraction in copper to behave as
composite section



Ag = Ag A
AL T A=A ~AC
ASTHIAST=IN S
PL(1/AE. +1/A.E )= Lt(a, - o) ----(1)
P=t(a. - o)/ (1/AE. +1/A_E,)
Substituting in eq.(1)
cu=FP /A andoc,.=F /A,
G B o e = {0~ o))
ecte =1 (0.~ o) strain relation



APPLIED AND REACTIVE FORCES

Forces that act on a Body can be divided into
two Primary types: applied and reactive.

In common Engineering usage, applied forces are
forces that act directly on a structure like, dead,
live load etc.)

Reactive forces are forces generated by the action
of one body on another and hence typically occur
at connections or supports.

The existence of reactive forces follows from
Newton’s third law, which state that to every
action , there is an equal and opposite reaction.



SUPPORTS

To bear or hold up (a load, mass, structure, part, etc.);
serve as a foundation or base for any structure.

To sustain or withstand (weight, pressure, strain, etc.)
without giving way

It is a aid or assistance to any structure by preserve its load

Supports are used to connect structures to the ground or
other bodies in order to restrict (confine) their movements
under the applied loads. The loads tend to move the
structures, but supports prevent the movements by exerting
opposing forces, or reactions, to neutralize the effects of
loads thereby keeping the structures in equilibrium.



TYPES OF SUPPORTS

Supports are grouped into three categories,
depending on the number of reactions
(1,2,0r3) they exert on the structures.

1) Roller support
2) Hinge support
3) fixed support



ROLLER SUPPORT

Roller supports are free to rotate and
translate along the surface upon which the
roller rests.

The surface can be horizontal, vertical, or
sloped at any angle.

The resulting reaction force is always a
single force that is perpendicular to, and
away from, the surface



= T
Pl

Restrains the structure from moving in one or two perpendicular directions.



‘—’-—78rackel
-’-—\ Rollers
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HINGE SUPPORT

« A Hinge support can resist both vertical and
horizontal forces but not a moment. They will allow
the structural member to rotate, but not to translate
In any direction

Pin or hinge support is used when we need to
prevent the structure from moving or restrain its
translational degrees of freedom.

« A hinge is a type of bearing that connects two solid
objects, typically allowing only a limited angle of
rotation between them. Two objects connected by an
ideal hinge rotate relative to each other about a
fixed axis of rotation.






Rigid Body

Smooth Pin













FIXED SUPPORT

- Fixed supports can resist vertical and
horizontal forces as well as a moment. Since
they restrain both rotation and translation,
they are also known as rigid supports.

Fixed E




B

.... - . -8
' . o ,.’

fixed end
heam

/
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BEAM

A beam is a structural member (horizontal)
that is design to support the applied load
(vertical). It resists the applied loading by a
combination of internal transverse shear
force and bending moment.

It is perhaps the most important and widely
used structural members and can be
classified according to its support conditions.



Extremely common structural element

In buildings majority of loads are vertical and
majority of useable surfaces are horizontal

1/39



3 feams
T

devices for transferring
vertical loads horizontally

action of beams involves combination of
bending and shear

2/39



TYPES OF BEAMS

The following are the important types of
beams:

1. Cantilever

2. simply supported
3. overhanging

4. Fixed beams

5. Continuous beam



CANTILEVER BEAVI

« A beam which is fixed at one end and free
at the other end is known as cantilever
beam.







SIMPLY SUPPORTED BEAMS

A beam supported or resting freely on the
supports at its both ends,

W = lrcaintlengh




FIXED BEAMS

« A beam whose both ends are fixed and is
restrained against rotation and vertical

movement. Also known as built-in beam or
encastred beam.

fixed end

beam \,
.

L%
-

g




OVERHANGING BEAM

« |If the end portion of a beam is extended
outside the supports.

4— L —————

beam




The image part with relatonship 1D 42 was not found i th fle.




CONTINUOUS BEAMS

« A beam which is provided with more than

b

two supports.




TYPES OF LOADS

- Concentrated load assumed to act at a point
and immediately introduce an
oversimplification since all practical loading
system must be applied over a finite area.

J concentrated loads |
Ny : . beam i!




Loads on Beams

Point loads, from concentrated loads or other beams

Distributed loads, from anything continuous

Point Load

" Reactions

10/39



uniformly distnibuted load

beam



uniformly varymng load

heam

£



What the Loads Do

The loads (& reactions) bend the beam,
and try to shear through it

11/39



Bending

-
T

c
T

4—-
==

k4

Shear

12/39



in architectural structures, bending
moment more important

Importance increases as span increases

short span structures with heavy loads,
shear dominant

e.g. pin connecting engine parts

beams in building
designed for bending
checked for shear

13/39



How we calculate the Efiects

First, find ALL the forces (loads and reactions)

Make the beam into a free body (cut it out and
artificially support it)

Find the reactions, using the conditions of equilibrium

\ 4
f f
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INTERNAL REACTIONS IN BEAMS

At any cut in a beam, there are 3 possible
iInternal reactions required for equilibrium:

normal force,
shear force,
bending moment.




INTERNAL REACTIONS IN BEAMS

At any cut in a beam, there are 3 possible
iInternal reactions required for equilibrium:

normal force,
shear force,

- bending moment. AT Positive Directions

Shown!!!
Left Side of Cut

Pb/L ' V
Faaaa X




INTERNAL REACTIONS IN BEAMS

At any cut in a beam, there are 3 possible
iInternal reactions required for equilibrium:

normal force,
shear force,

- bending moment. AT Positive Directions

Shown!!!
Right Side of Cut

Pal/lL




SHEAR FORCES, BENRING MOMENTS -
SIGN QQNVENTIQNS AL LSRR |

left section right section

|

Shear forces:

positive shear: ;
A

negative shear: [T | ([
v
Bending moments:

Negatvemoment [I) (I cw
positive moment -) ( AN




3ign Conventions
Bending Moment Diagrams (cont.)

Sagging bending moment is POSITIVE (happy)

(R

Hogging bending moment is NEGATIVE
(sad)

T

24/39



GCantilever Beam
Point Load at End

Consider cantilever beam with point load on end

W
Mg =-WL | vertical reaction, R=.-W
and moment reaction Mg, = - WL

R=-W

e Use the free body idea to isolate part of the beam

e Add in forces required for equilibrium

15/39



Point Load at [llﬂ w

= -Wx
Take section anywhere at distance, x from end [

Add in forces, V = -W and moment M = - Wx

V=-W

Shear V =- W constant along length V=-W ’ l HM ’ ” H l“ H ”HH

Shear Force Diagram

Bending Moment BM = -W.x BM = WL | m- 1
whenx =L BM = -WL (LA
whenx=0 BM=0

Bending Moment Diagram

16/39



Cantilever Beam
Uniformly Distributed Load

For maximum shear V and bending moment BEM

Total Load W =
MR:WUZ . l
R=W=wlL
vertical reaction, R=W =wL

and moment reaction Mg=-WL/2 =-wL?2

17/39



Example 2 - Gantilever Beam
Uniformly Distributed Load (cont.)

For distributed V and BM

R
= o 2
Take section anywhere at distance, x from end M = -wx?/2 = i 23!

Add in forces, V=w.x and moment M = - wx.x/2

V =wx

Shear V=wx

whenx=L V=W=wL V=wL HHTHH\T‘“WX
whenx=0 V=0 =W , LA

Shear Force Diagram

BM =wx /2
Bending Moment BM = w.x?/2 h
whenx =L BM =wL?%2=WL/2 N wﬂg hﬁ?
when x =0 BM=0 T
(parabolic) Bending Moment Diagram

18/39
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1)

2)
3)

4)
5)

Assumptions made in Pure bending theory

The beam is initially straight and every layer is free to
expand or contract.

The material is homogenous and isotropic.

Young’s modulus (E) is same in both tension and
COmpression.

Stresses are within the elastic limit.

The radius of curvature of the beam is very large in
comparison to the depth of the beam.
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6) A transverse section of the beam which is plane before bending
will remain plane even after bending.

7) Stress is purely longitudinal.



wws  DERIVATION OF PURE BENDING EQUATION

PART I:
Relationship between bending stress and radius of curvature.
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Consider the beam section of length “dx” subjected to pure
bending. After bending the fibre AB 1s shortened in length,
whereas the fibre CD is increased in length.

In b/w there is a fibre (EF) which is neither shortened in length
nor increased in length (Neutral Layer).

Let the radius of the fibre E'F’ be R . Let us select one more fibre
GH at a distance of ‘y’ from the fibre EF as shown in the fig.

EF=EF =dx=Rd0
The initial length of fibre GH equals R d6

After bending the new length of GH equals
G'H= (R+y) do

=R dO+ydo



Change in length of fibre GH = (R d0 +y d0) - Rd0 = y dO
Therefore the strain in fibre GH
€= change in length / original length=y d6/ R d0

€ =y/R

[f o, is the bending stress and E is the Young’s modulus of the material,
then strain

€=0,/E

o, /[E=y/R=>0c = (E/R)y--------- (1)

o, = (E/R) y => i.e. bending stress in any fibre is proportional to the

distance of the fibre (y) from the neutral axis and hence maximum
bending stress occurs at the farthest fibre from the neutral axis.
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Note: Neutral axis coincid ith the horiz entroi
axis of the cross section

N .A 047
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“!: Moment of resistance

s b

on one side of the neutral axis there are compressive stresses and on
the other there are tensile stresses. These stresses form a couple,
whose moment must be equal to the external moment M. The

moment of this couple, which resists the external bending moment,
1s known as moment of resistance.

7

' S
Neutral Axis —

O

|
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Moment of resistance

s
H

o da

Consider an elemental area “da’ at a distance ‘y’ from the neutral axis.

The force on this elemental area = _ x da

=(E/R) y x da {from (1)}

The moment of this resisting force about neutral axis =

(E/R)ydaxy =(E/R)y*da



" Total moment of resistance Qe by the beam section,
M'=J (E/R) y* da
=E/R | y? da

| y? da =second moment of the area =moment of inertia about the
neutral axis.

~M'=(E/R) I,

For equilibrium moment of resistance (M') should be equal to
applied moment M

i.e. M'=M
Hence. We get M= (E/R) I,
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(E/R) = (M/ly,)---==-=(2)

From equation 1 & 2, (M/I,)=(E/R)=(c /y) ----
BENDING EQUATION.

(Bernoulli-Euler bending equation)

Where E= Young’s modulus, R= Radius of curvature,
M= Bending moment at the section,

[,,= Moment of inertia about neutral axis,
o .= Bending stress

y = distance of the fibre from the neutral axis



w ECTION MODULUS:
- (M=o, /y)

or ¢, =(M/1)y

[ts shows maximum bending stress occurs at the greatest distance
from the neutral axis.

Lety, . = distance of the extreme fibre from the N.A.

o = maximum bending stress at distance y,_.

b max)

Y pmax) =5 (M/l) Ymax

where M is tl]e x)mum moment carrying capacity of the section,

b( max) y max

M O Bl max) (I/ymax) =0 Z

»{max)

Where Z= 1/y_ = section modulus (property of the section)



section modulus

¥

£
H

(1) Rectangular cross section

t Z= INAI Ymax
=( bd3¥12) / d/2
AN e A d =bd?/6




(2) Hollow rectangular section

B
b Z= lya ! Yinax
D/2 d2| p
=1/12(BD3-bd?) / (D/2)
N A =(BD?*-bd?) / 6D
Y e
Z= INA I Ymax
=(nd*/64) / (d/2)

= nud®/ 32
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(4) Triangular section

Zomihon Yo
=(bh? /36) / (2h/3)
=bh?/24

h/3
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Shear Stress in Beams

y

0 Consider the effects of shear force (V).

0 Already know how to find resulting axial force and
moment due to stress o, from Chapter 4.

0 We have two more equations for shear stress:

= Total shear force in the y-direction: |7, dd=-I"

s Total shear force in the z-direction: | r_d4=0

Shear Stress in Beams 3



Shear Stress in Beams

0 Considera cantilever beam composed of separate planks clamped at
one end:

Shear force

Pure bending

O Shear force causes tendency to “slide.”

O Stressesare equal in horizontal and
vertical directions. ke

Shear Stress in Beams 4
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Shear Stress: Horizontal

O Letus considerthe horizontal component (T, = Ty,).

O Cuta section with cross-sectional
area gata distancey, above the
centroid.

- - Ay
C D s

--------- f---__- ___FA Ve V/)
cYvYyw

FBD — X

Shear Stress in Beams 5
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Shear Stress: Horizontal

w

O AH is the horizontal shearing force. Ve Vo
0 Elementwidthis Ax.
R C1 11D

O Sum forces in x-direction: o dA \E ?’ oy dA

S F, =AH+ (0, —0p)dd=0 s

a X
My

0 Recall from chapter 4: |o|= =

O Solve for AH and use equation for o:

AH :J(O’D—CTC \d4 :j| 'UD;'\[C l_wl-l =]' M ;'UC \U‘}'(Z-l

Shear Stress in Beams 6
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Shear Stress: Horizontal

w

O Recall first moment, Q, is defined as: Ve ' L"n
(_;) — J‘_l '('](7 Cy 1D
e o dA \g ?ll’” dA
0 The term My-M. can be rewritten as: w— A\ H
X
A .
Mo-M. =AM = ﬂA\'zf_L\'
dx
. . . N,

O Applyingthis to our equation for AH: = T* Ax

O Wecan rearrange this to define horizontal shear per unitlength, g,
called shear flow.

AH 1O
Ax 7

(I:

Shear Stress in Beams 7
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Side Note on Q

0 Qisthe definition of the first moment for the area above y, with
respect to the x-axis (see Appendix A in textbook),

OD= jj dA = c'lj_‘

where y bar is the distance between the centroid of the shaded section
and the centroid of beam cross-section.

Shear Stress in Beams 8
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Example Problem

0 Abeam is made of three planks, 20 by 100 mm in cross-section, nailed
together. Knowing that the spacing between nails is 25mm and that
the vertical shear in the beamis V=500 N, determine the shearing

force in each nail.
I-— 100 mm -|
Y

| 20 mm
| A

100 mm

20 mm —  ~—

| —X
20 mm

Shear Stress in Beams 9




Shear Stress: Vertical

O Now, let us consider the vertical component (T,,= Tyy).

0 We can calculate the average vertical shear stress on the cross-section.

. _MH ’ o Y L\ 1o _
=—=| —/[AX —_— =
A .A.‘.l \ ] I\ r _X.\‘ / ] f G
o
Lare = £y

Shear Stress in Beams 10
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Shear Stress: Vertical

O So, where is T,y maximumand minimum?
» UseQto find out.
= Q=0 attop and bottom surfaces

# Q= maximum somewhere in between

max normal stress

\ /J shearstress=0

max shearstress
normalstress=0

(’J \ max normal stress

shearstress=0

Shear Stress in Beams 11



Shearing Stress in Common Shapes

0 Rectangular cross-section
Yy

: | _ | o1
e Q=4dAy=blc—y );(c+_\')=:b(c2—)‘2)
P T, - -
i ' c=v%h 3 ) P 2 )
‘ Y l o [ g)_ [ 17‘( =3 )_ 3] {(2_ “2)
" T l T b(2ef/12) 20 4bc?V
c=vh
|
A
37 i< )
— =12 ]
y 24\ ¢ )
|
3
o o [Tmax = 5

— Shear Stress in Beams 12
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Shearing Stress in Common Shapes

0 Beamswith flanges
w Vertical shear stresses are larger in the web than in the flange.
= Usually only calculate the values in the web.
m Ignore the effects of the small fillets at the corners.

»  Flangeshave large horizontal shear stresses, which we will learn how to
calculate later on.

Fi | ' ‘i J r = F_
ange\“ B max 1
— B * *web
D E G ; (F___,.
C '1 \
S - (
4—' T.l\'(
/
e D' E') \F G E') | F /

(a) (b) (c)

Shear Stress in Beams 13
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Trusses

Lecture 7

Truss: is a structure composed of slender members

A AT\
(two-force members) joined together at their end points e :3&.
to support stationary or moving load. : 4,"3.?'.7'7'3“

** Each member of a truss is usually of uniform cross
section along its length.

Calculation are usually based on following assumption:

» The loads and reactions act only at the joint.

>

» Weight of the individual members can be neglected.

» Members are either under tension or compression. —

D

Joints: are usually formed by bolting or welding the members to a common plate, called a

gusset plate, or simply passing a large bolt through each member.
» Joints are modeled by smooth pin connections.

) L&

Member\
(Wooden Strut

v.0
)
vy\0
)

| T | —— 7

')

@




Analysis of Trusses ST

Truss Analysis

\

Internal equilibrium

External equilibrium l
l To find the force in each member
To find the reaction forces /\
Method of joints Method of sections

External Equilibrium: to find the

oo B
reaction forces, follow the below steps: . a—> 500 N
1. Draw the FBD for the entire truss
system. 2m N\
2. Determine the reactions. Using the a5/
equations of (2 D) which states: AR Sy
| )

ND T

\ ) e AL e R s e, SR TN,



Analysis of Trusses Lecture 7

Method of Joints: to find the forces in any member, ‘
choose a joint, to which that member is connected,
and follow the below steps:

3/4a

1/'4a

1. Draw the FBD for the entire truss system.

2. Determine the reactions. Using the
equations of (2 D) which states:

Y F.=0, YF,=0, >M,=0

3. Choose the joint, and draw FBD of a joint
with at least one known force and at most
two unknown forces.

J4a

14a

4. Using the equation of (2 D) which states:

N =0, ZFy=O’

5. The internal forces are determined.

\6 ‘Choose another joint.
Ny

\ ) e bedtniedradinamane. iR




Analysis of Trusses Lecture 7

Method of section (Internal equilibrium): to find G a4 E
the forces in any member, choose a section, to which ; 4 '\ > 100 N
that member is appeared as an internal force, and 3 ' /// R \
follow the below steps: L A :Y/ B [ NC N D
> . « -M.-.’ :
1. Draw the FBD for the entire truss system. NS (ISP e e
\J
2. Determine the reactions. Using the 1200 N
o o) : : yo
equations of (2 D) which states: : | 3 400 N
| |
3
YR=0. YF=0, yM,=0|
y 0 A
-~
3. Choose the section, and draw FBD of that ! ? & m
A,

section, shows how the forces replace the
sectioned members.

4. Using the equation of (2 D) which states:

ZF"zo’ ZF}':O’ ZM"ZO Im

A
(3. The internal forces are determined. :-"—t
- Y A
| 6: Choose another section or joint.
‘ A_\-r 4dm
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