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COURSE OUTCOMES

CO1 Apply energy theorems for analysis of indeterminate structures

CO2 Analyze indeterminate structures with yielding of supports

CO3 Analyze beams and portal frames using slope deflection method

CO4 Analyze beams and portal frames using moment distribution methods

CO5 Analyze bending moment, normal thrust and radial shear in the arches




Structural Analysis-|

UNIT — I: Basic Analysis of Indeterminate Structures

Introduction-Strain energy in linear elastic system, expression of strain energy due to axial load, bending moment and shear
force — Castigliano’s first theorem - Deflections of simple beams and pin jointed trusses - Indeterminate Structural Analysis —
Determination of static and kinematic indeterminacies — Solution of trusses up to two degrees of internal and external
indeterminacy — Castigliano’s second theorem.

UNIT - Il Fixed Beams & Continuous Beams

Introduction to statically indeterminate beams- theorem of three moments-uniformly distributed load, central point load,
eccentric point load, number of point loads, uniformly varying load, couple and combination of loads — Shear force and
Bending moment diagrams —effect of sinking of support, effect of rotation of a support.

UNIT - 11l Slope-Deflection Method

Introduction- derivation of slope deflection equation- application to continuous beams with and without settlement of supports-
Analysis of single bay, single storey, portal frame including side sway.

UNIT - IV Moment Distribution Method

Introduction to moment distribution method- application to continuous beams with and without settlement of supports.
Analysis of single storey ,portal frames — including Sway

UNIT -V  Arches

Introduction- hinges-transfer of load to arches-linear arch-hinges in the arch-arch action-Horizontal force — three hinged arches
— circular arches — springs at different level-Two hinged arches- two hinged circular arches — fixed arches (only theory) -
Temperature stresses in arches.
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4 Introduction

® In mechanics, Energy Is defined as the capacity to do work,
and work Is the product of the force and the distance it

moves along its direction.

® In solid deformable bodies, the stresses multiplied by the
respective areas are the forces and the deformation are the
distances.

® The product of the force and deformations is the internal
work done in a body by externally applied forces.

® The internal work done Is stored In the body as the internal
elastic energy of deformation or the elastic strain energy.
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Conservation of energy, work and strain

® Conservation of energy Is one of the basic law of

physics and in a closed system consisting of a structure
and the applied force must obeys this law.

W=E +E

W = Work Performed

E. = Energy stored in the body
E, = Energy loss
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® Now In a structure, work is performed by the external load

moving through a distance and the energy Is stored due to
elastic deformation of the members.

e If the structure is static there is no Kinetic energy in the

system with no energy loss due to heat, permanent set etc.
The equation reduces to

W =E,
E. = Elastic strain energy also denoted by “U”
Hence for a conservational structural system

w=U

Strain energy/unit volume = u = 1/2xoxe
Total Strain energy = U =% [ oxexdv
where, ¢ = stress, € = strain
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" Real work and Complimentary work

® Work = Force x Displacement
® The work done as the force F moves through a distance dA
AW = F x dA

Total work done =W = [F x dA
e If force “F” Is three dimensional with components F,, F, and F,

Total work done W = ['F, x dA, + [F, x dA, + [F, x dA,
This work is known as Real work as shown in Fig. 1.
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Complimentary work:

AW.=AxdF

Total Complimentary work, W, = JA x dF as in Fig. 2.
® It isthe area above the load deflection curve.

® In linear elastic analysis, load — deflection curve is linear as shown in Fig. 3.

Real work = Complimentary work
W=W,=%FxA
Area below the graph = Area above the graph
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Expression of strain energy for linear elastic members

e Axial loaded members
® Members under Bending moment

® Members under torsional moment on a circular cross
section

® Members under shear force on a rectangular section
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® Axial loaded members:
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F = External force or load, A = Area of a bar, L = Length of a bar
E = Modulus of elasticity

t~ a Gt ey g tj—%),‘/\,‘\’
-
bemo s Wi n
M= L £ g
2 4
Wi "LS Bl

g (LS L L LS

™~




C .

From the pure bending, we know M/l = 6/y = E/R
where. M = Bending moment, | = moment of inertia, c = Bending stress, y = most distant
point from the neutral axis, E = modulus of elasticity, R = Radius of curvature

: 1 ; ;
Strain energy = work done = - moment X angle turned through (in radians)

Members under Bending moment:
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« Members under torsional moment on a circular cross section:

Strain energy = work done = %T do

U = % [ shear stress x shear strain x volume
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« Members under shear force on a rectangular section:

V = shear force, | = moment of inertia, b = width of the section, G =
shear modulus
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- Deflection by Strain Energy Method A

® This is also known as real work methods since work done by actual
loads are considered.

® From the law of conservation of energy
Strain energy = Real work done by loads

i
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This method is used for finding deflection in structure only under
the following situations:

® The structure Is subjected to a single concentrated load.

® Deflection required is at the loaded point and is in the direction of
load.
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" Deflection by Strain Energy Method

® This Method is also called ‘Real Work Method’.
® Since, work done by the actual loads are considered.
® From the law of conservation of energy,

Strain Energy (U) = Real work done by loads

U= i%m
0

® This equation can be used to find out the deflection in beams and
frames subjected to bending stresses.

Strain energy method can be used for finding deflection under the
following situations:

® The structure iIs subjected to a concentrated load.
® Deflection required is at the loaded point and is in the direction of

load.
o
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Q1. Using strain energy method determine the deflection of the free end of a
cantilever of length ‘L’ subiected to a concentrated load ‘P’ at the free end.
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Solution The bending moment at a distance x from the free end is,
M= Px

L
Strain Energy (S.E.) = j
0
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dx
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Work done by the load = IEPA, where A is the deflection at the free end.

Therefore, from conservation of cnergy,
S.E.= Work donc by external loads

—— = _PA
6E] 2
L
3EI

Q2. Using strain energy method determine the deflection under 60 kN load in
the beam shown in Figure.

60 kN
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Solution Reaction Ry = Ry = 30 kN
Therefore, bending moment at any dist

‘stance x from A or at a distance x from B

= 30x kN
HEL IJOx) X
SE = I 2x2E1
4
U= 3><ﬂ ¥’
4 EI g
g S o0 T 3 900 4
]
U= L_.%
, Eil
Work done by the load:
We = —l-xPA——1-X60xA
B2 2

Equating strain energy of the
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beam to the work done by load; we get,
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Q3. Using strain energy method determine the vertical deflection of point ‘C’
in the frame shown in Figure. E = 200 kN/mm2 and | = 30 x 106 mm*.
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® The details of bending moment expressions for various portion of the

o

structure is calculated individually for member BC than for member AB,
and given data in Tabular form:

Portion Origin Limit Expression
BC (8 0-3 X =¥
AB B S 0-4 ‘ 3
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Work doge = Exle=_2_

Equating work done to strain energy, we get A

Note: As the bending moment
is given in kN and metres, El
should be used as kNm2.

I.e. 1 kKNmm?2 = 1x 10-6 KNm?

s
3o B
By
El= 200 x 30 x 10°% x 10°% = 6000 kNm?
X e )
6000

= 0.045m=4.5mm
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Q4. Using strain energy method determine the horizontal deflection of the roller
end ‘D’ of the portal frame shown in Figure. EI = 8000 kNm?2 throughout.

B C
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A © Didp 5kN
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® The details of bending moment expressions for various portion of the
structure is calculated individually for member CD, BC than for member
AB, and given data in Tabular form:

~ Portion CD BC AB
Ongin D C B
Limit 0-4 0-3 0 -4

6 M 5 20 20 ~ 5x
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El  EI 2EI|

1133.33
El
1

Work done = %xP XA =-2-><SA=2.5A

Equating S.E. to work done, we get, 9 BA = 113333
E]

_ 453.33 _453.33
El
= 56.7 mm

A

=(0.0567m







g Castigliano’s First theorem

® The first theorem of Castigliano states that the partial
derivative of the total strain energy In any structure with
respect to applied force or moment gives the displacement
or rotation respectively at the point of application of the
force or moment in the direction of the applied force or

moment.
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" Proof of the First Theorem
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4 N

Castigliano’s Second Theorem

® The second theorem of castigliano states that the work done by
external forces in a structure will be minimum.

® The Theorem is very much useful In analysis of statically
Indeterminate structures.

Let W = Work done by external forces on a structure
U = Strain energy stored in the structure
W, = Work done by reactive forces

Strain Energy = U =W + W,
wW=U-W,;
By Castigliano’s 2nd theorem ‘W’ should be minimum.

Thus the partial derivative of the work done with respect to external
forces will be zero.
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® In case the supports are unyielding, the work done by
reactive forces will be zero.

@ Strain energy stored Is equal to the work done by external
forces will be minimum.

® Thus the partial derivative of strain energy with respect to
redundant reaction will be zero.

® Castigliano’s First theorem helps in determining deflection
of a structure and the Second theorem helps in determining
redundant reaction components.
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Law of Conservation of Energy
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Deflection by Castigliano’s Method:

Castigliano’s theorem may be represented by
iq = A dU fr M?*

22 =Y U= |—dx

R " dM,

where U = total strain energy
P;, M; — loads
A;, 6; — deflections.

e If a load is acting ata point and is in the desired direction, the general
expression for bending moment to cover the entire structure is to be find out.

® The strain energy for the entire structure is differentiated with respect to load
(P = Load or M = Moment) to get the desired deflection.

e If the load is not acting, a dummy load (P or M) is applied and then the
bending moment expressions is to be find out.

® If dummy load is used, First differentiate w.r.tthe dummy load, then substitute
dummy load as zero and then integrate w.r.t ‘x’.




/ Q1. A simply supported beam of span ‘L’, carries a concentrated load ‘P’ at

distance ‘a’ from the left hand side as shown in Figure. Using Castigliano’s

theorem determine the deflection under the load. Assume uniform flexural rigidity.

lp |

A B

t | C »T
! R /,

| - ] —
R\

=
Ny,

First determine the reaction by taking moment from any one support,

_ Pb
® ReactionatA, Rx= 1
® Reaction at B, Ry = ,%

@ Find out the expression for moment in a Tabular form for portion BC and then

@AC.
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Portion AC i CB
Origin A ‘ B
Limit 0w O-h

M % s % )
Flexural Rigidity EI El

’

The strain energy of the Beam= [/ = j et R
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AC=




o

Q2. Determine the vertical deflection at the free end and rotation at ‘A’ in
the over hanging beam shown in Figure. Use Castigliano’s theorem.

Assume uniform flexural rigidity.
J3 kN

A . 64
B
1 N ‘ '

Deflection at *C’= A,

® Taking force P =3 kN and moment about A,

™~

RBX6=P>(8 Pl
RB=—4-PT
Al 3
3 —3-P
k|
Ry= -
A3




4 Bending moment expression for over hanging beam for portion A
AB and BC is noted in the Tabular form.

Portion AB BC
Origin A C
Limit 0-6 - 0-2

M = X —Px
3
Flexural Rigidity El EI




— = -
I8EI| 3 | | 6EI |
4P* 4 p?

EI 3 EI

5.333P2
EI

dU 10.667P
Ac= b =T E

Substituting P = 3 kN, we get

.39
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Rotation at A= 0,
® Apply dummy moment, ‘M’ at A as shown in Figure

Mey B

2 #77

l3 kN
C

N W - I

My = O, gives

po M6 _M |
2 6 6
Portion AB BC
Origin A C
Limit 0-6 0-2
M
M (?—1 )x - M —3x
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U _()[[[6 l)x M] d + _[ )
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. d
AU jz M oAt (E-IJ-—H-O
a3 \e & ) 2El

Since, ‘M’ is a dummy moment, its value is substituted as zero, and then

Integrated
v | )dx

M - E! (=)

& el

:

6

1 ¢ x°
= ] ("?"‘xj dx Note: First differentiate
0 wrt the dummy load,
6 then substitute dummy
] ( X sz load as zero and then
= S dx integrate w.r.t “x’.
El 1§ 2
0
6
El




/ 30 kN/m \

Q2. Determine the vertical and s5pxN——pedocanaaaan,

) . . C
horizontal deflection at the free end | - T
. . . ’ R
‘D’ In the frame shown in Figure. _“L'“
Use Castigliano’s theorem. Take El = i o
12x 1013 Nmm?.
' .
——LTIIITP
/—3() kN/m = e i
/ s 30 KN/m
50 kN =——pppoccaona e - § - A
EB CE S0 kN ———b-fBI-;?_f—j_-:-ﬁfj_____:-:(.
§ D; | 0~
5 g | !
' lP :
A y ' |

Figure 2: Frame with dummy horizontal

load ‘Q’at ‘D’
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Vertical Deflection:

® Since, there iIs no load at ‘D’ in vertical direction, a dummy load ‘P’ is

applied at ‘D’ in vertical direction in addition to given loads as shown in
Figure 1. The moment expressions are presented in a tabular form.

Portion AB BC CD
Origin B ‘ & D
Limit 0-4 S 0-4 0-2

M — (4P + 240 + 50x) —(Px + 15x%) 0

Flexural Rigidity El El - Ef
: . M* _
Strain cnergy U = I T elx

)7
4P+240+50 PHIS\'
= I ( ) G \+I dx+ 0
2E]
4 : 4 2 2
4P+240+ 50 x Px+15x" |x
A= 5“:]2( )(4)¢r+j2( ) dx
or 2E] 2EI

0

/




. R

Since, P is dummy load, substitute P = ()

4 4
4(240+50x 3
Ap= | ( \)dr+j_15xdx
g, o s EI

4
4 4 15()(4) 6400
0

4

-

= E[Z4Ox+25x2 ]u+ = s 200

El
Now, El=12x 10" Nmm?
=12 x 10* kNm*

. 6400 s s
e S

= 5333 mm




Horizontal Deflection:

® Since, there is no load at ‘D’ in horizontal direction, a dummy load ‘Q’ is
applied at ‘D’ in horizontal direction in addition to given loads as shown in
Figure 2. The moment expressions are presented in a tabular form.

Portion AB BC CD
Origin B c | D
Limit | 0-4 0-4 0=2

M {02 - x) + 240 + 50x)] | -(20 + 15x%) Ox
Flexural Rigidity EI . El ET

4 2 ) 2
I J‘ [Q(2—x)+ 240+50x] dx-{-j [(2Q+ 15x )] 2 szz
0 2ET 9 2EI

du  42[0(2-x)+240 +50x ](2-x) . ¢ 2[2Q+15x2]2 2 02
Bpu = =5 = i+ d+ d
T do ! 2B ) T om (J; 2EI

©




Substituting O = 0

dx+0

Apy =

(240+50x ) (2—x) dx;} 30x2

El

(480 140x — 50x

= 1 | 407042
EI |
~373.33 37333
EI 12x10*
= 3.1 mm

4
aes [ 21
0
50x° ]4 +L[10x3 ]4
3 A ET 0

=0.0031 m




Q2. A cantilever beam is in the form of a
quarter of a circle in the vertical plane and is
subjected to a vertical load ‘P’ at its free end
as shown in Figure. Find the vertical and
horizontal deflections at the free end. Use
Castigliano’s theorem. Assume uniform
flexural rigidity.

NNCEN N

Vertical Deflection of free end:

@ Consider the section at ‘x’ as shown
In Figure 1. The Bending moment
at the section ‘x’Is

M = PR sin 6

o y
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Strain energy in the elemental length ‘R d0’ is
> |
(M— ]R de
2E] .

P> R*sin’ 0
2EI

RdO

P’ R? " 1-cos20
2El 2

do

PR s 1-cos26
2EI 2

do

0

P2 R [e ) sinze]"’2
4El 2

0

NANNNN

’ .
= K P’ R Figure 1: Cantilever curved beam
8EI

g U _nPR’
V' dP A4EI




Horizontal Deflection:

Since, there is no horizontal force at the free end, apply a dummy horizontal
force ‘Q’, as shown in Figure 2.

The bending moment at section “x’is P

M= PR sin 6 + OR (1 — cos 6) ' —y

Strain Energy (U ) =

"¢ [ PRsin6+Q R(1-cos6) ]2 P

U= do
E‘)- 2EI TRRRRS

Horizontal Displacement = A,

Figure 2: Cantilever curved beam
with dummy load ‘Q’at the free end

. sU ™[ PRsin0+QR(1 —~cos)]
HS 57

[R(1—cos®)]R d©
50 4 El
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Substituting, Q = 0, in above equation

1.6, AH =

ELI “9][12(1 —cosB)]R db
0
PR} "¢’
“—— | (sin@-sin6 cos6)d6
El 4
3 2
%j(sme— smze)de
0
PR’ (cosﬂ—- cos20 Y’
Al 4
3
% 0 -l--l+-}1-]
\
PR
2EI

EETI- , towards support -







4 ™
Deflection by Unit Load Method

e This method Is applicable to beam and rigid frame
where only flexural effect is considered.

e In the analysis, the effect of axial force and shear forces
are neglected.

® The deflection at any point can be find out by:
A Imtlr

Where, M = Bending moment at the section due to the external forces
m = Bending moment at the section due to unit loading
E = Modulus of Elasticity
| = Moment of Inertia of the section

© y




Q1. Determine the deflection at the free end of the over hanging beam shown

in Figure by unit load method.
A5 kN
\'x
_ \ (¢
SRS NS AR et \.Itl-/('l'l-/~

s

' b-\"..‘,"".‘\.

( -’,u ) U (.f!ﬂ___’
R
V@i e 0 - '/4 2 "
iy
I l”‘“
' - —— . R SS—— Wp——. -y s e . P
1 I -

Gy . | ()
Y LN p
T — (' 1 Y X O R - 2 T E—— bl

Figure 1. Beam with unit load at ‘C’
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/ ® Find out the reactions due to external forces, taking moment about A A

My 0, pives
Ry 6~ d5» 8 x4
Ry = 240 kN
M1 o=, pives
Ry =45 % 8§ — 240 = 120 kN
® Find out the reactions, when unit load acting at ‘C’

o | X8 )
' 0

Ra=0333kN L

1.333 kN

® Taking sagging moment as positive and hogging moment as
negative, find out the expressions for moments In various
portions of the beam due to external loading and unit force
where the deflection is to be determined in a Tabular form.

o y




Portion Al /(&
Origin | ¢
Limit 006 | R |
3 | |
M 1200~ — X 4552 —— % 45%
2 2
m ~0.333x X
I ’

2l .. I,

( -22.5x7 )( —x)dx
El

+

" j(l 20x -22.5x%)(-0.333x)dv
) E21

QB.N

a o

. j(-zox2 +3.7¢ )«a 2

[
+ 22.5x°d
) I, El, ! :

F* 2
1200  3.75¢ “+ 1 |22.5x"
El,| 3 4 El,| 4

0

il

1 [ 20x6° 375x6* 22.5x2°
- + +
El 3 4 4

a B
El

o
135

, upward
e, "




Q2. Determine the deflection and rotation at the free end of the cantilever
beam shown in Figure by unit load method. Given E = 200000 N/mm?2and

| =12 x 106 mm?
120 kN 20 kN
Y £
/] J
ﬁ 2o ‘ B Iy
- 2m e 2m a |

® Find out the deflection and rotation at the free end of the cantilever beam,
apply unit load for deflection and unit moment for rotation at the free end of

the beam as shown in Figure.

@ GCEK, Bnawanipatna

llkN

:

DANNNNN
1

Figure 1: Beam with unit vertical load at ‘C’




—)

1 kNm

SNONNANN
>

Figure 2: Beam with unit moment at ‘C’

® The bending moment expressions can be calculated by

® M for external given load, m; for unit vertical load at ‘C’ and m, for unit
moment at ‘C’ for various portion of cantilever beam and tabulated below.

Portion CH BA
Origin C B
Limit 0 =2 0-2
M ~20x [ 20 (2 4 x) + 20x ]
m; X ~(x + 2)
ms ~1 -]
{ Iy 2L

L




e

Mm, i

L
Vertical deflectionat ‘C’=' A = j .
) EI K

_ j‘(—20x)(—x) dx+j£20(2+ x)+20x](x+2)
), ) E2l,

- (- 2
_ J-zox dx+J'(40x+ 40) (x+2)dx

EI, 2EI,

0

I 3 2 2
20 x % 1 | 40x +120x +80x
3 El, |, 2El| 3 2

0

- 33333 1 1553333
El

EI, 3

306.67

———

El
@ 0

I




Rotationat ‘C’ = @, =

It

i

i

0
40 160
El, 2El,




- WRN )
Q3. Determine the vertical and horizontal = +F ' £
deflection at the free end of the bent et
shown in Figure by unit load method. B
Assume uniform flexural rigidity EI VL
throughout.

2m
1 kN
c .4
8 E \\\\)\
-+ B
-+ B
A
TR
Figure 1: Frame with unit vertical load at ‘E’ A
TR

@ Figure 2: Frame with unit horizontal load at ‘E’ /




e

® Find out the expressions in Tabular form for moment ‘M’ due to
external loads, m; due to the unit vertical load present at the free
end (Figure 1) and m,due to the unit horizontal load present at the
free end (Figure 2) of the bent.

™~

Portion ED DC CB BA
Origin E | D C B

Limit 0-15 0-15 0 -2 0-2

M 0 —20x -30 30 -10x
mi X -(1.5 +x) -3 -3

my 0 L E -(x +2)
Flexural Rigidity] £/ El El El

o

Note: Moment carrying tension on dotted side is taken as positive




Vertical deflection at ‘E’ = Agy,

ElAgy = | Mm, dx

1.5 2 2
0+ [ 20x(1.5+x)dx-+ [ 90dx+ [ (90+30x )dx
0 0 0

'!f(30x+ 20x? )dx+j' 9de+j' (90 + 30x )dx
0 0 0

30x>

2
2:|0

2 3 1.5
[30" g 20k } +[90x]3+[90x+
2 3 |

= 56.25 + 180 + 240
47625

476.25
EI




Horizontal Deflection at ‘E’ = Agy

ElAgy = | Mm, dx

2 2 '
0+0+ [ 30xdx+ [ (30+10x)( x+2)dx
0 0

[15x2]2+_2[ (10x* +50x-+60) dx
0

10x° x? e
= 60+ [— + 50x—+60x]
3 2
0
= 306.67
306.67
A —
EH 7l




/ 20 kN/m
Q4. Determine the  vertical AAL.M.ﬁB
deflections at A and C in the frame f—2m—~ T
shown in Figure by unit load { | 2m
method. Take E = 200 GPa, | = ! §
150 x 104 mm4. §£ l

3m - C
LEN 90¢kN

s e

'3 Bt o) s e e c
Y
Figure 1: Frame with unit vertical lod at ‘4’ - | kN

@ Figure 2: Frame with unit vertical load at ‘C”

/




/ ® The bending moment expressions for ‘M’ due to given load, m; due to unit N
vertical load at A and m, due to unit vertical load at C are Tabulated below.

Portion AB BC CD
Origin A B C
Limit 0-2 0-2 0-3
M 1
0x* 40 40 -130x
m X 2
. 2-=x

M 0 0

-x
Flexural Rigidity El El :

El

—
e ——

\krtical deflection at A= Ay,

g 2 3
_ 2
EIA, !" 10x* v+ [ 80+ | (40-130x)(2-x)dx
0 0

. 10x*

2 3
B 2 ‘
@ ’: 4 J0+[80x]0+‘(':(80-.300x+130x2)dx




..A

ﬂ

10(2*)

130x

3

X
) 2 OuyY - (0 I
+80(2) +| 80x - 300~ +—

= 2060
E = 240 GPa =240 x 10? N/m*
=150 x 10* mm*= 150 x 10* x 10"'* m*
=150 x 108 m*
~ 260
240%10° x150x107*
= (.722 mm

=7222%x10% m

R

()




e

Vertical Deflection at C = A,

EIA, = _[ Minty d

3
0+0+ [ (40-130x)(—x)dx
0

I
'—.w

(—40.\‘ +130x )dx

3
) X3
—20x" +1 30—]
3

0

.. 1 O

£

990 3 '
= =275x10 m
Ac. 240%10” x150%10 *

@ = 2.75 mm




DETREMINATE &
INDETREMINATE
STRUCTURES



actual structure

1dealized structure



Determinate structures

* Determinate structures are analysed just by
the use of basic equilibrium equations. By
this analysis, the unknown reactions are
found for the further determination

 Example of determinate structures are:
simply supported beams, cantilever beams,
single and double overhanging beams, three
hinged arches etc



o A 1 l ‘{ B
VA ' VB

(2) Simply supported beam




Indeterminate Structures:

* Redundant or indeterminate structures are not
capable of being analysed by mere use of basic
equilibrium equations.

* Along with the basic equilibrium equations,
some extra conditions are required to be used
like compatibility conditions of deformations etc
to get the unknown reactions for drawing
bending moment and shear force diagrams.

 Examples of indeterminate structures are: fixed
beams, continuous beams, fixed arches, two
hinged arches, portals, multistoried frames, etc.



e astructure is termed as statically indeterminate,
if it can not be analysed from principles of statics
alone, i.e.TH =037V =0,TM =0

* A statically indeterminate structure may be
classified as:

1. Externally indeterminate, (example: continuous
beams and frames shown in figure-1(a) and (b)).

2. Internally indeterminate, (example: trusses
shown in figure-1(c) and (d)).






EXTERNALLY INDETERMINATE
STRUCTURES:

A structure is usually externally indeterminate or
redundant if the reactions at the supports can
not be determined by using three equations of
equilibrium,i.e. ¥ H = 0.3V =0.S M =0

If however a beam rests on more than two
supports or in addition any of the end support is
fixed, there are more than two reactions to be
determined.

These reactions can not be determined by
conditions of equilibrium alone.

The degree of indeterminacy or redundancy is
given by the number of extra or redundant
reactions to be determined.



Internally indeterminate

* |f structure is externally determinate but it is
not possible to determine all internal forces
then structure is said to be internally
indeterminate.



S. No.

Determinate Structures

Equilibrium conditions are fully adequate to

analyse the structure,

Bendin_g moment or shear force at any section
is independent of the material property of the
structure.

The bending moment or shear force at any
section Is independent of the cross-section or

moment of inertia.

Temperature variations do not cause stresses.
No stresses are caused due to lack of fit,
Extra conditions like compatibility of

displacements are not requiredtoanalyse the

Indeterminate Structures

Conditions of equilibrium are not adequate

to fully analyse the structure.

Bending moment or shear force at any
section depends upon the material property.

The bending moment or shear force at any
section depends upon the cross-section or

moment of inertia.
Temperature variations cause stresses.
Stresses are caused due to lack of fit.

Extra conditions like compatibility of
displacements are required to analyse the

structure along with thcequilibnum

equations.



Type of Idealized

‘ ; , Reaction Number of Unknowns
Connection Symbol
(1) §\a‘3,. § Licht M S One unknown. The reaction is a
\ cable ¥ force that acts in the direction of
the cable or link.
2 i e oY iy i
) colla bt One unknown. The reaction 1s a
— i — F force that acts pelpe%lclia}lar to
the surface at the point of contact
-E ~ F
=T
rockers
(3) ( / One unknown. The reaction is a
SN N force that acts perpendicular to
F the surface at the point of contact

(4)

/E//.
7
Y v,
Y

Y

{ One unknown. The reaction i1s a

force that acts perpendicular to
the surface at the point of contact

S




F,
e %i" ' % F Two unknowns. The reactions

! are two force components.

M Two unknowns. The reactions
slider F E H"—J are a force and moment.

fixed-connected collar

(7

7)
M F, Three unknowns. The reactions
g v Fr.EE are the moment and the two force
components.
fixed support

re
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FIXED BEAMS



FIXED

« A beam whB3EAINARdS are fixed is known as a
fixed beam. Fixed beam is also called as built-in or

encaster beam.

* Incase of fixed beam both its ends are rigidly fixed
and the slope and deflection at the fixed ends are

Zero M‘
V
fixed fixed
support support

load
N
M

deflected beam



Advantages of fixed beams

()For the same loading, the maximum
deflection of a fixed beam Is less than that of a
simply supported beam.

()For the same loading, the fixed beam Is
subjected to lesser maximum bending
moment.

(111) The slope at both ends of a fixed beam Is
ZEero.

(Iv)The beam Is more stable and stronger.



Disadvantages of a fixed beam

(1) Large stresses are set up by temperature
changes.

(11) Special care has to be taken in aligning supports
accurately at the same level.

iy Large stresses are set If a little sinking of one
support takes place.

(Iv) Frequent fluctuations In loading render the
degree of fixity at the ends very uncertain

Eclit with WPS Office



The beam may be analyzed in the following stages.
(i) Let us first consider the beam as Simply supported.

Let v, and v, be the vertical reactions at the supports A and B.
Figure (ib) shows the bending moment diagram for this condition.
At any section the bending moment M, is a sagging moment.

Wi W,

L
TVa HJ

(ia) Freel{/ supported condition

(ib) Free B.M.D.



* (ii) Now let us consider the effect of end couples M, and M,
alone.

Let v be the reaction at each »

end due to this condition. 4 Mg
v Vv

Suppose Mp > My. (iia) Effect of end couples

ThenV = MB;MA. M,

If Mg > M, the reaction Vis I
upwards at B and downwards at A.  (iib) Fixed B.M.D.
Fig (iib). Shows the bending moment

diagram for this condition.

At any section the bending moment M., is hogging moment.

Eclit with WPS Office



* Now the final bending moment

diagram can be drawn by it s

combining the above two B.M.

diagrams as shown in Fig. (iiib) M, Mp
Vy Vs

Now the final reaction V, =v,-v

and Vg =v, +v
The actual bending momentatany (jiib) Resultant B.M.D.
section X, distance x from the end A is given by,



V | Vi

(ia) Freely supported condition

M, -

(iib) Fixed B.M.D.

(ib;) Free B.M.D.

(||a) Effect of end couples
W,

MA : MB .
v, (iiia) Fixed beam y_ (iiib) Resultant B.M.D.

Eclit with WPS Office



dz
EI——M ./

i Integrgtmg, we get,
El[dx ) = [\ Mydx — f, Mjdx

* But at x=0, —=O
dx

andatx—ldx 0

Further fo' M,.dx = area of the Free BMD = a
l

fM;dx = area of the fixed B.M.D = a’

Substituting in the above equation, we get,
0=a-a



!
a=a
~. Area of the free B.M.D. = Area of the fixed B.M.D.
Again consider the relation,

d?y B :

El TxZ M, — M,

Multying by x we get,
d?y ,

Elx ﬁ = MxX — MxX
* Integrating we get,

[ d? l (—_—
© |l d—x)27= JoMyx dx — [ Myx dx
B ﬂ_ [ — L Rtat

EI[xdx y]o—axax

Where x= distance of the centroid of the free B.M.D. from A.
and x’'= distance of the centroid of the fixed B.M.D. from A.

Eelit wath W ES Offiee



* Further at x=0, y=0 and % =0

* and at x=l, y=0 and X = 0.
dx

 Substituting in the above relation, we have
0 =ax-a'x
dx=a'x"
or X=X
" The distance of the centroid of the free B.M.D . From A=The
distance of the centroid of the fixed B.M.D. from A.

~a=a
X=X

Eelit wath W ES Offiee



Find the fixed end moments of a fixed beam subjected to a
point load at the center.

>
Sobs
I [—=s
727
W

W
L ] A'r f— A l
1 Wil A -1 B
MXl=-XIX— 12 ) 1/2
2 4 ”
M = — ﬂ,fA — ‘!-‘HB /\\
Free BMD
M _ M
Fixed BMD

wi

Tl wee s Resultant BMD



= Find the fixed end moments of a fixed beam subjected to a
eccentric point load.

.

A I\ B
— 3
[
;L W
e A=A | a i b
A a E B
M, + Mg 1 Wab 7 f
Xl=—=—xIX Wab
2 2 [ l
b +
My + Mg = 5 T —(1)
e v = x M, Free BMD
Mg
Ma + 2Mp i _l+a Fixed BMD

X
M,+ M, 3 3
a
MB:MAX

[l —a
a
Mg =+——-(2)



Wab : a | b
MA+MB=T-—- -(1) A 4 :
| [
My = My X~ —— —(2) . * }
= > Rt R w Wab
B A b laz_ _a. Wha?
Wab? Resultant BMD
MA e [2
From (2),
Wha?
MB =

[2

Eclit with WPS Office



Fixed beam with ends at different levels (Effect of
sinking of supports),,

M, is negative (hogging) and Mp is positive (sagging). Numerically
M, and Mg are equal.

Let V be the reaction at each support.

Eclit with WPS Office



Consider any section distance x from the end A.
Since the rate of loading is zero, we have, with the usual notations

d*y
El— =10
dx*

Integrating, we get,

3
Shear force = EI%;{- — i

Where (is a constant
Atx =0, S.F.=+V

Eclit with WPS Office



B.M. at any section = EIZ
Atx =0, B.M.=—-M,

x2

Integrating again,

EI %xz — M,x + C5 (Slope equation)

Butatx=0, Y=o . C;=0

kY% .
Eclit with WPS Office



Integrating again,

o _Vx® Max?
Ely = ~ =
Butatx =0,y =0

+Cp - (Deflection equation)

oo C4 = {)
Atx =l y = =6
VI3 Myl? _
—EIl§ = S —— —(i)
But we also know that at B, x = [ and % =
And substitute in slope Eq. EIZ—i = %xz — Myx
Vi?
&) = T = MAI
2M
sV = TA ——————— —(ii)
3 2
Substituting in deflection Eq.(i) i.e., —EI 6 = Vé ~ M‘;l ;we have,
2M, 1B Myl?
—El§="Ax—-—2

Dr. PVen (59 wagar lﬁ".‘ ey ﬂué rofessor, 2



M, I?

ElIS = G
6EId
. 12

Hence the law for the bending moment at any section distant x

from A is given by,

d?y

M = El—— = Vx — M,
oy~ ZMa _ GEIS
A B £
But for B.M. at B, putx = |,
2M, 6EIS 12E1I6 6EI6 6EIS
“Mp =——X1 — = — =
[ [= [= [- [2

Hence when the ends of a fixed beam are at different levels,

- 6EIS ,
The fixing moment at each end = T numerically.

At the higher end this moment is a hogging moment and at the
lower end this moment isggisagging.moment.
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120 kN
* Solution:

4 A ] 8 m
* The M (Free B.M.) and M’ (Fixed jA—Ll—t
B.M.) diagrams have beenshown .~ 6m 6m B%

in Fig.(b) and (c) respectively.

@

For the M-Diagram: _
1 i
A=Ex6x160=480kNm (b):
Mg

For the M’ diagram: ;
(c) |

/

My+M ; | k
=———x12=6(M; + M) ——<A__ *

Eclit with WPS Office




* Area of the fixed B.M. D. = Area of the free B.M.D.

A=A
6(My + Mg) = 480
7 PR T R | — (1)

The distance of the centroid of the free B.M. D. from A = The
distance of the centroid of the fixed B.M.D. from A.

g ¥ =&
6+4 (My+2Mz\ 12
3 My + Mg 3

(My + 2Mg)12=(M, + M5)10
12M, + 24 Mg — 10 My — 10Mg = 0

2M, + 14 Mg = 0
My=-TMp ——— — (8 s.onm o



* Substitute My = —7Mp in equation (1)

A 1 3

Mp = —13.33 kNm

My = —7Mjg O, oW
= —=7(—13.33) =93.33 HOSN

s My =93.33 kNm 160

13.33

Eclit with WPS Office



* A fixed beam of span 5 metres carries a concentrated load of 20 t
at 3 meters from the left end. If the right end sinks by 1 cm, find
the fixing moments at the supports. For the beam section take
[=30,000 cm?and E=2x103 t/cm?. Find also the reaction at the
supports.

A’j 3m J, 2 m EB

« A fixed beam of span 5 metres carries a concentrated load of 20 t
at 3 meters from the left end.

20 t

Aa 3 m
e S

2 m

i
E 1 cm
R

= The right end sinks by 1 cm, find the fixing moments at the

su ppOl"tS.
Eelit wrth W EPS Ot



Wab®  6EI6 [ A 3m
MAz_ |2 B |2 MAC_)

20X3x22 6><2><10~°’><30,000><1]
52 52X1002 i
= —[9.6 + 0.48] tm=-10.08 tm (hogging)

Wba? = 6EIS
MB - - +

[2 i

[ 20%X2%3% . 6X2X10°%30,000%1
. 52 52X1002
—14.4 + 0.48] tm=-13.92 tm (hogging)

tm

Eelit wath W ES Offiee




A 3m
10.08

Reaction at A: A

ZMB=0
Vix5+1392-10.08-(20x2) =0
LV, = 7232t

Reaction at B:

W Vp=20-7232=12.7681.

Eclit with WPS Office
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113,92



Continuous Beams



Introduction:

(1 Beams are made continuous over the supports to
increase structural integrity.

(J A continuous beam provides an alternate load path in
the case of failure at a section.

JIn regions with high seismic risk, continuous beams and
frames are preferred in buildings and bridges.

J A continuous beam is a statically indeterminate
structure.



The advantages of a continuous beam as compared to a simply
supported beam are as follows

1) For the same span and section, vertical load capacity is more.
2) Mid span deflection is less.

3) The depth at a section can be less than a simply supported
beam for the same span. Else, for the same depth the span can
be more than a simply supported beam.

= The continuous beam is economical in material.
4) There is redundancy in load path.

= Possibility of formation of hinges in case of an
extreme event.

5) Requires less number of anchorages of tendons.

6) For bridges, the number of deck joints and bearings are
reduced.

= Reduced maintenance



There are of course several disadvantages of a continuous
beam as compared to a simply supported beam.

1) Difficult analysis and design procedures.
2) Difficulties in construction, especially for precast members.

3) Increased frictional loss due to changes of curvature in the
tendon profile.

4) Increased shortening of beam, leading to lateral force on the
supporting columns.

5) Secondary stresses develop due to time dependent effects like
creep and shrinkage, settlement of support and variation of
temperature.

6) The concurrence of maximum moment and shear near the
supports needs proper detailing of reinforcement.

7) Reversal of moments due to seismic force requires proper
analysis and design.



Clapeyron’s theorem of three moments

: L~
MA -"1""‘”’ R VA e S W . VA Y S e = Y W MC
| L i L b

* Asshown in above Figure, AB and BC are any two successive
spans of a continuous beam subjected to an external loading.

* |f the extreme ends A and C fixed supports, the support

moments My, Mgand M, at the supports A, B and C are given
by the relation,

Mgly +2Mg(l; + 1) + M (1) =

6ﬂ.1ﬂ n 6{12X_:
2 L



6a,X;

Myly + 2Mp(l; + 1)) + Mc(ly) = l
1

_|_

Where,

00,X,
L5

a, = area of the free B.M. diagram for the span AB.

0, = area of the free B.M. diagram for the span BC.

X;= Centroidal distance of free B.M.D on AB from A.

X,= Centroidal distance of free B.M.D on BC from C.



dx M,

— %
Free B.M.D

dx /:’Mx, Mp ;

X e |

My «<—— : \114«': (c)

X E X E

i€ > < =
leed B.M.D

¢ (d)




X _
< }I_I Ig
Free B.M.D
dx M Mp
X <>/
Mﬂ H__ \:fﬂ’
X1 X
< —

Fixed B.M.D

(a)The given beam

(b) Free B.M.D.

(c) Fixed B.M.D.



Consider the span AB:

Let at any section in AB distant x from A the free and fixed
bending moments be M, and M,." respectively.

Hence the net bending moment at the section is given by
d*y _ f
EIE = M, — M,

Multiplying by x, we get
d*y ,
El’.}'ﬁﬁ — Mxi‘ — M.r X



* Integrating from x = 0 to x = [y, we get,

d*y ,
Effx—= J’Mxxdx—J’Mxxdx
dx?

0 0 0

l I

dy I |
El X = foxdx—foxdx —-——(1)



But it may be such that
Atx =0, deflectiony =0
Atx =1,y =0; and slope at B forAB,i—i = Opy

f[fl M,.x dx = a;x; = Moment of the free B.M. D. on AB about A .

f[f'l M, x dx = a; ;' = Moment of the fixed B.M.D. on AB about A.



El

L, I
dy ] :
X.—/— —" = | Myxdx— | M, xdx ——(1)
dx

0 0 0

* Therefore the equation (1) is simplified as,
El[l,0p4 — 0] = a;X; —a;X; .

But a = area of the fixed B.M.D. on AB = (Ma+Mp) L,

{:.MA-I—EMB) l1

X; = Centroid of the fixed B. M.D.from A = 2
Ma+Mg 3




* Therefore,

. (Mg+Mg) /My +2Mpg\ L
— l1X( )

2
1
= (M4 +2Mp)—
My+Mg/ 3 (M, B)%

2
EIl,0p,= a;X; — (M, + ZMB)l—l

6a1x1

6El O, = (M4 oMl ====(2)

Similarly by considering the span BC and taking C as origin it can
be shown that,

602Xz

6EI OBC_ (MC+2MB)12 - - = —(3)

6z = slope for span CB at B



* Butfp,y = — Op, asthe direction of x from A for the span
AB, and from C for the span CB are in opposite direction.

* And hence,0gz4 + Oz, = 0

6EI Ogs = 22— (M, +2Mp)l;  — — — —(2)
i

6EI Ogc = <22 — (Mc +2Mp)l, ————(3)
2

 Adding equations (2) and (3), we get

6a;x; 5 6azx2

El BBA+6EI 686': I L

— (M4 +2Mp)ly — (Mc + 2Mp)l;

6aix; 6arx-»
11+ 2X2

6EI(0ps + Opc) =
Iy I

— [Myly +2Mg(ly + 1) + M L5 |

- 6a1fi 6a2.x_2
14 l>

6axq, 6ax,
" 2X2

[M4ly +2Mpg(ly + 1) + Mcly| =
Iy I
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Moment-Distribution Method

* Classical method.

* Used for Beams and Frames.

* Developed by Hardy Cross in 1924.

* Used by Engineers for analysis of small structures.

* |t does not involve the solution of many simultaneous equations.

NWE
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Moment-Distribution Method

For beams and frames without sidesway, it does not involve the
solution of simultaneous equations.

For frames with sidesway, number of simultaneous equations
usually equals the number of independent joint translations.

In this method, Moment Equilibrium Equations of joints are solved
iteratively by considering the moment equilibrium at one joint at a
time, while the remaining joints are considered to be restrained.

oW
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Definitions and Terminology

Sign Convention

* Counterclockwise member end moments are considered positive.
* Clockwise moments on joints are considered positive.

Member Stiffness

* Consider a prismatic beam AB, which is hinged at end A and fixed
at end B.

L |

El = constant




Member Stiffness

If we apply a moment M at the end A, the beam rotates by an
angle © at the hinged end A and develops a moment VI, at the
fixed end B, as shown.

Mg, = carryover moment

M = applied moment ( % \\\\\\\\\\\\ E )
/7?? A -

L R

L

| El = constant

The relationship between the applied moment M and the rotation
0 can be established using the slope-deflection equation.

OoOh~hpE
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Member Stiffness

By substituting M ;= M, 6,=0, and 6;= W = FEM = O into the
slope-deflection equation, we obtain

_(4EI
M _(Tje (1)

“The bending stiffness, K_, of a member is defined as the moment
that must be applied at an end of the member to cause a unit
rotation of that end.”

By setting 6 = 1 rad in Eq. 1, we obtain the expression for the
bending stiffness of the beam of figure to be

_4E
L

K (2)

[



Member Stiffness

when the modulus of elasticity for all the members of a structure is
the same (constant), it is usually convenient to work with the
relative bending stiffness of members in the analysis.

“The relative bending stiffness, K, of a member is obtained by
dividing its bending stiffness, K , by 4E.”

A

K=" == )

* Now suppose that the far end B of the beam is hinged as shown.

A A
L |

El = constant |

NP



Member Stiffness

The relationship between the applied moment M and the rotation
O of the end A of the beam can now be determined by using the
modified slope-deflection equation.

By substituting M, = M, 6,= 6, and W = FEM,, = FEM,, = 0 into
MSDE, we obtain

_(3El
M _(Tje (4)

M = applied moment (/ \\\\\
A B” l

L L |
|

El = constant |

wh R



Member Stiffness

By setting 6 = 1 rad, we obtain the expression for the bending
stiffness of the beam of figure to be

3EI
K="_ 5
3 (5)
A comparison of Eq. 2 & Eg. 5 indicates that the stiffness of the
beam is reduced by 25% when the fixed support at B is replaced by

a hinged support.

The relative bending stiffness of the beam can now be obtained by
dividing its bending stiffness by 4E.

K _3(1
K223 ©)



Member Stiffness

Relationship b/w applied end moment M and the rotation 6

[?jG If far end of member is fixed

M = (7)

3EI . .
(Tje If far end of member is hinged
Bending stiffness of a member

% if far end of member is fixed

= 3El ©
e If far end of member is hinged

Relative bending stiffness of a member

— if far end of member is fixed

©)
31

—— If far end of member is hinged
4 L 10




Carryover Moment

Let us consider again the hinged-fixed beam of Figure.

Mg, = carryover moment
\\\\\\\\\\\
M = applied moment ( {e \\\\\\\\ E )
~

A
| L

| El = constant

When a moment M is applied at the hinged end A of the beam, a
moment VI, develops at the fixed end B.

The moment M, is termed the carryover moment.



Carryover Moment

To establish the relationship b/w the applied moment M and the
carryover moment M;,, we write the slope deflection equation for
Mg, by substituting M .= Mg, 6:= 0, and 6,=W = FEM ;= 0 into
SDE

_(2EIl')
Mg, _(T)(% (10)

By substituting 6 = ML/(4El) from Eg. 1 into Eg. 10, we obtain

Mg, == (11)

Eqg. 11 indicates, when a moment of magnitude M is applied at the
hinged end of the beam, one-half of the applied moment is carried
over to the far end, provided that the far end is fixed. The direction
of M, and M is same.

14
7



Carryover Moment

When the far end of the beam is hinged as shown, the carryover
moment Vi, is zero.

__________ ~
//// \\\\
o =
M = abolied moment ( 0 T~
~N

| L |

| El = constant |

j M If far end of member is fixed
Mg, =19 2 (12)

| 0 iIf far end of member is hinged
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Carryover Factor (COF)

“The ratio of the carryover moment to the applied moment
(Mg,/M) is called the carryover factor of the member.”

It represents the fraction of the applied moment M that is carried
over to the far end of the member. By dividing Eq. 12 by M, we can
express the carryover factor (COF) as

1 If far end of member is fixed

COF = j 2 (13)
| 0 If far end of member is hinged



Distribution Factors

When analyzing a structure by the moment-distribution method,
an important question that arises is how to distribute a moment
applied at a joint among the various members connected to that

joint.
Consider the three-member frame shown in figure below.

A\] B D

J o

E = constant Lo, 1

Lli I1 |_3, |3




Suppose that a moment M is applied to the joint B, causing it to
rotate by an angle 6 as shown in figure below.

M = applied moment

—_—
—_—
S ————

E = constant Lo, 1

|/ Lll Il L3I |3 l
I I

To determine what fraction of applied moment is resisted by each
of the three members AB, BC, and BD, we draw free-body diagrams
of joint B and of the three members AB, BC, and BD.



By considering the moment equilibrium of the free body of joint B
(XM, =0), we write

M+ Mg, +Mpe + Mg, =0
M =—(Mga +Mge +Mgp) (14)

M

MBA MBA/B\) (MBD
A

°

MBC e\
—
B




Since members AB, BC, and BD are rigidly connected to joint B, the
rotations of the ends B of these members are the same as that of
the joint.

The moments at the ends B of the members can be expressed in
terms of the joint rotation 6 by applying Eq. 7.

Noting that the far ends A and C, respectively, of members AB and
BC are fixed, whereas the far end D of member BD is hinged, we
apply Eq. 7 through Eq. S to each member to obtain

[ 4E] \ _
Mg, = —2 10 = Kg,0 = 4EK;,0 (15)
BA K |_1 ) BA BA
Mge = (45'2 \)9 = Kgc0 = 4EK;0 (16)
Moo = 3B )0 — k0 — 4EK .0 (17)
\ L, ) 18



-
Substitution of Eqg. 15 through Eq. 17 into the equilibrium equation

Eqg. 14 yields
v :_(4E|1 | 4El +3E|3\e

?Ll L L)
=—K +K +K )):—(ZKB)) 18)

BA BC BD

in which)_Kz represents the sum of the bending stiffnesses of all
the members connected to joint B.

“The rotational stiffness of a joint is defined as the moment
required to cause a unit rotation of the joint.”

From Eq. 18, we can see that the rotational stiffness of a joint is
equal to the sum of the bending stiffnesses of all the members
rigidly connected to the joint.



The negative sign in Eq. 18 appears because of the sign convention.

To express member end moments in terms of the applied moment
M, we first rewrite Eq. 18 in terms of the relative bending
stiffnesses of members as

M = —4E(Kga + Kge + Kgp ) =—4E D Kg

0=

v 19
4ED K, (19)

By substituting Eq. 19 into Egs. 15 through 17, we obtain

M., :—(ZKBQ JM (20)

Mac = {ZI?B'EJM (21)




K
MBD :_(ZBVDBJM (22)
From Egs. 20 through 22, we can see that the applied moment M is
distributed to the three members in proportion to their relative
bending stiffnesses.

“The ratio K/>K,for a member is termed the distribution factor of
that member for end B, and it represents the fraction of the applied
moment VI that is distributed to end B of the member.”

Thus Egs. 20 through 22 can be expressed as

Mga = -DFgaM (23)

Mgc = —DFgcM (24)

M BD - _DFBDM (25)
15



in which DFg, = Kz, /> Ky, DFge= Kge/>Kg, and DFgp = Kgp/> K, are the
distribution factors for ends B of members AB, BC, and BD,
respectively.

For example, if joint B of the frame is subjected to a clockwise
moment of 150 k-ft (M = 150 k-ft) and if L, = L, = 20 ft, L; = 30 ft,
and |, =1, =1;=1,sothat

Ko = Koo =2LO=0.05|

3( |
K. =2| 1 |=0.025I
- 4(30)

then the distribution factors for the ends B of members AB, BC,
and BD are given by



oF — - _ 0.05! o4
K+ Koo + Ky (0.05+0.05+0.025)
DF, - Kae _ 0051

Ky +Kg + Ky, 01251

0.2

oF  — Kap _0.0251 _
K+ Ko + Ky 0.1251

These distribution factors indicate that 40% of the 150 k-ft
moment applied to joint B is exerted at end B of member AB, 40%

at end B of member BC, and the remaining 20% at end B of
member BD.

The moments at ends B of the three members are

Mga = —DFgsM =-04(150)= —60k - ft or 60 k-t )
My =—DFycM =-04(150)= 60k - ft or 60k-ft )
Mgp = —DFgpM =-0.2(150)= 30k - ft or 30k-ft )



Based on the foregoing discussion, we can state that, in general,
“the distribution factor (DF) for an end of a member that is rigidly
connected to the adjacent joint equals the ratio of the relative
bending stiffness of the member to the sum of the relative bending
stiffnesses of all the members framing into the joint”; that is

DF = ¢ (26)
2K

“The moment distributed to (or resisted by) a rigidly connected end
of a member equals the distribution factor for that end times the

negative of the moment applied to the adjacent joint.”



Fixed-End Moments

The fixed end moment expressions for some common types of
loading conditions as well as for relative displacements of member
ends are given inside the back cover of book.

In the MDM, the effects of joint translations due to support
settlements and sidesway are also taken into account by means of
fixed-end moments.

Consider the fixed beam of Figure.

Py

I El | 25



A small settlement A of the left end A of the beam with respect to
the right end B causes the beam’s chord to rotate counterclockwise
by an angle W = A/L.

- —
- —_—

El |

By writing the SDE for the two end moments with W = A/L and by
setting 0,, 65, and FEM ,; and FEM, due to external loading, equal
to zero, we obtain

_BEIA

FEM ,; =FEM, = K

in which FEM,; and FEM,, denote the FEM due to the relative
translation A between the two ends of the beam.



Note that the magnitudes as well as the directions of the two FEM
are the same.

- —
- _—

It can be seen from the figure that when a relative displacement
causes a chord rotation in the CCW direction, then the two FEMs
act in the CW (-ve) direction to maintain zero slopes at the two
ends of the beam.

Conversely, if the chord rotation due to a relative displacement is
CW, then both FEM act in CCW (+ve) direction.



R
Moment-Distribution Method

* MDM Moment Distribution Method
« MD Table Moment Distribution Table

« COM Carryover Moment

* COF Carryover Factor

- DM Distributed Moment

c UM Unbalanced Moment

28



Basic Concept of the Moment Distribution Method

30 k
1.5 k/ft
El = constant
AI \]/ \]/ \]/ \l/ \Li l In E =29,000 ksi
/7,7 | =500 in%
B C
I 20 ft . 10ft | 10ft { 15 ft |

Distribution Factors

The first step in the analysis is to calculate the distribution factors
at those joints of the structure that are free to rotate.

The distribution factor for an end of a member is equal to the
relative bending stiffness of the member divided by the sum of
relative bending stiffnesses of all the members connected to the
joint.

DF = ZK? 2§26)



R
Basic Concept of the Moment Distribution Method

30k
1.5 k/ft
\l' \l' \l/ \l/ \L l _______ El = constant
,i N E=29,000ksi
""""""" S | =500 in4
201t ® 10ft | 10ft 15ft

C
|
|

We can see that only joint B and C of the continuous beam are free
to rotate. The distribution factors at joint B are

Dy = Kea _ 1/20 _
Ko 21/20
DFBC — KBC _ |/20 —

Koo+ Ko  21/20



R
Basic Concept of the Moment Distribution Method

30 k
1.5 k/ft l
El = constant
\l' \l' \l' \l' \]//i I RS N E =29,000 ksi
__________ /7,7 | =500 in%
20 ft , 10ft | 10ft ? 15 ft |
| | | |
Similarly at joint C
1 /20
DF,, = c8 / = 0.429
Kes + Kop  (1/20)+(1/15)
1 /15
DF,, = — e _ / =0.571

Keg +Key  (1/20)+(1/15)

Note that the sum of distribution factors at each joint must always
equal 1. The DF are recorded in boxes directly beneath the
corresponding member ends on top of the VID Table.



30k
1.5 k/ft l
El = constant
E = 29,000 ksi L L ~L ~L .L’& e D
|=500in* = B Te~L_ L P C~el_ -0 /7,7
C
20 ft 10ft | 10ft 15 ft N
- ] g I
Distribution Factors 0.5 0.5 0.429 | 0.571




30 k
1.5 k/ft | |
AIQ Ly | 1\”{ l ,\”*7 ID
T NS
50 50 g 75 75 ¢

Fixed End Moments

Next, by assuming that joints B and C are restrained against
rotation by imaginary clamps applied to them, we calculate the
FEM that develop at the ends of each member. (1. line MD Table)

1.520°

FEM . = =50k—-ft)  or +50k - ft

1.5(20%

FEM,, = —BNLk_ft ) o _B0 L - ft

FEMBC:30820 ~75k—ft}]  or  +75k-ft

FEMcg =75k —ft ) or - 75Kk - ft
FEM ., = FEM . =0 33



30k
1.5 k/ft l
El = constant
E = 29,000 ksi A L:L ~L »L »L,— i oo - D
| = 500 in® ,,& ____________ -9
B C
B 20 ft 10ft | 10ft 15 ft N
| - 7l > |
Distribution Factors 0.5 0.5 0.429 | 0571
1.Fixed-end Moments +50 50 | +75 75




1.
e

50 50 g 75 75 ¢

Balancing Joint C

Since joints B and C are actually not clamped, we release them,
one at a time. Let us begin at joint C.

From fig. we can see that there is a -75 k-ft (clockwise) FEM at end

C of member BC, whereas no moment exists at end C of member
CD.

As long as joint C is restrained against rotation by the clamp, the
-75 k-ft unbalanced moment is absorbed by the clamp.



30 k
1.5 k/ft | |
. Hihj( l IL ID
N
50 50 g 75 75 ¢

When the imaginary clamp is removed to release the joint, the -75
k-ft unbalanced moment acts at the joint, causing it to rotate in the
CCW direction until it is in equilibrium.

2)

75 75

Unbalanced joint moment




The rotation of joint C causes the distributed moments, DIVl; and
DM, to develop at ends C of members BC and CD, which can be

evaluated by multiplying the negative of the unbalanced moment
(+75 k-ft) by distribution factors DF-; and DF, respectively.

DM s = 0.429(+75)=+32.2 k — ft
DM, =0.571(+ 75)= +42.8 k — ft

Unbalanced joint moment

Distributed moments

These distributed moments are recorded in line 2 of the MD Table,

and a line is drawn beneath them to indicate that joint C is now
balanced.

17
2



30k
1.5 k/ft l
El = constant
E =29,000 ksi A LL ~L »L »L’& oo - D
| = 500 in? el et 9
B C
B 20 ft 10ft | 10ft 15 ft N
A : i i I
Distribution Factors 05 | 0.5 0.429 | 0.571
1.Fixed-end Moments +50 50 | +75 75
2.Balance joint C and carryover +32.2/+42.8




The DM at end C of member BC induces a COM at the far end B,

which can be determined by multiplying the DIV by the COF of the
member.

Since joint B remains clamped, the COF of the member BC is %
(Eq.13). Thus, COM at the end B of member BC is

COM . = COF_, (DM, )= %(+ 32.2)=+16.1 k—ft

1
COM . =COF_ (DM )==(+42.8)=+21.4 k—ft

2
Unbalanced joint moment
75 \Z .~ Carryover moments
Prat 21.4
\
A £ R, \ D
R AN 7
B 16.1 C 428
% P

Carryover moments Distributed moments 9



These COM are recorded on the same line of the IVID Table as the
DM, with a horizontal arrow from each DM to its COIMI.

The total member end moments at this point in this analysis are
depicted in Figure.

30 k
1.5 k/ft 21.4

IGiHh | \)L\ )ID

4283 473

It can be seen that joint C is now in equilibrium, because it is
subjected to two equal, but opposite moments.

Joint B, however, is not in equilibrium, and it needs to be balanced.
Before we release joint B, an imaginary clamp is applied to joint C
in its rotated position.

17
5



30k
1.5 k/ft l
El = constant
E = 29,000 ksi A ‘L‘L ‘L ’L ‘L”& e RS D
| =500 in* ST 9
B C
B 20 ft 10 ft 10 ft 15 ft N
| i “ g |
Distribution Factors 0.5 0.5 0.429 | 0.571
1.Fixed-end Moments +50 -50 | +75 -75
2.Balance joint C and carryover +16.1 <—— +32.2/+42.8 —> +24.1




30 k
1.5k/ft 21.4

IGiHhﬂL ! \)LC )ID
91.1

42.8 478

Balancing Joint B

Joint B is now released. The unbalanced moment at this joint is
obtained by summing all the moments acting at the ends B of
members AB and BC, which are rigidly connected to joint B.

From the MD Table (lines 1 & 2), we can see that there is a -50 k-ft
FEM at end B of member AB, whereas the end B of member BC is
subjected to a +75 k-ft FEM and a +16.1 k-ft COM. The unbalanced
moment at joint B is

UMy =-50+75+16.1=+41.1 k—ft



This UM causes joint B to rotate, as shown, and induces DM at
ends B of member AB and BC.

Unbalanced joint moment

a11 )/
o

AI 5//797 )7 ID

B C

The DM are evaluated by multiplying the negative of the UM by
the distribution factors:

DM, = 0.5(-41.1)= —20.6 k — ft
DM g =0.5(-41.1)= -20.6 k — ft

These DIV are recorded on line 3 of the MD Table and a line is
drawn beneath them to indicate that joint B is now balanced.



30k
1.5 k/ft l
El = constant
E =29,000 ksi A ~L~L ~L »L »L”*—/ oo - D
| = 500 in% e /7,7
B C
B 20 ft 10ft | 10ft 15 ft N
A : i I
Distribution Factors 05 | 05 0.429 | 0.571
1.Fixed-end Moments +50 50 | +75 75
2.Balance joint C and carryover +16.1 «<——  +32.2/+42.8 —> +24.1
3.Balance joint B and carryover 103 «<—— -20.6| -206 ——> -10.3




Unbalanced joint moment

1_11.1/

A {l\ ad N D
o<

206 B 10.3 C

One-half of the DM are then carried over to the far ends A and C of
members AB and BC, respectively, as indicated by the horizontal
arrows on line 3 of Table.

Joint B is then reclamped in its rotated position.

Y N A —




Balancing Joint C

With joint B now balanced, we can see from the MD Table (line 3)
that, due to the carryover effect, thereis a -10.3 k-ft UM at joint C.

Recall that the moments above the horizontal line at joint C were
balanced previously. Thus we release joint C again and distribute
the UM to ends C of members BC and CD as

10;3_
4.4 v\’ f‘,
AI Al 8 ID
B C 59

DM ¢ = 0.429(+10.3)= +4.4 k —ft
DM, =0.571(+10.3)=+5.9 k — ft



The DM are recorded on line 4 of the MD Table, and one-half of
these moments are carried over to the ends B and D of members
BC and CD, respectively. Joint C is then reclamped.

10.3
ﬂl 4.4\.«";\ 2.9\
A /- ! D
S L AN /I
B 2.2 C 59

Balancing Joint B
The +2.2 k-ft UM at joint B (line 4) is balanced in a similar manner.

The DM and COM thus computed are shown on line 5 of the VID
Table (slide 49).

Joint B is then reclamped.



30k
El = constant - k/ft l
I Ll Ll ———
| =500 in* ST
B C
I"‘ 20 ft . 10 ft I| 10ft | 15 ft _ l

Distribution Factors 0.5 | 0.5 0.429 | 0.571
1.Fixed-end Moments +50 -50 | +75 -75
2.Balance joint C and carryover +16.1 <——  +32.2 +42.8 —> +24.1
3.Balance joint B and carryover -10.3 «<—— -20.6| -20.6 ——> -10.3

+2.2 <— +4.4 | 45.9 ——> +2.9

4.Balance joint C and carryover




30k
1.5 k/ft l
El = constant
Cmow afllidl Ll pee—
| = 500 in% I 7 2
B C
B 20 ft L 10ft | 10ft | 15 ft N
A : | I
Distribution Factors 05 | 05 0.429 | 0.571
1.Fixed-end Moments +50 50 | +75 75
2.Balance joint C and carryover +16.1 «<——  +32.2/+42.8 —> +24.1
3.Balance joint B and carryover 103 «<—— -20.6| -206 ——> -10.3
4.Balance joint C and carryover 22 <«<—— 144 |459 —> 429
5.Balance joint B and carryover 06 «<— -11 | -11 —> .06




It can be seen from line 5 of the MD Table that the UM at joint C
has now been reduced to only -0.6 k-ft.

Another balancing of joint C produces an even smaller unbalanced
moment of +0.2 k-ft at joint B, as shown on line 6 of the MD Table.

Since the DM induced by this unbalancing moment are negligibly
small, we end the moment distribution process.

The final member end moments are obtained by algebraically
summing the entries in each column of the MD Table.

The final Moments are recorded on line 8 of The IVID Table.



30k
1.5 k/ft l
El = constant
E = 29,000 ksi L L i i L,& . By
|1=500in* B 0 el 77 el -7 /7,7
C
20 ft L 10ft | 10ft | 15 ft N
I“‘ : A I
Distribution Factors 05 | 05 0.429 | 0.571
1.Fixed-end Moments +50 50 | +75 75
2.Balance joint C and carryover +16.1 «<——  +32.2(+42.8 —> +24.1
3.Balance joint B and carryover 103 «<—— -20.6| -206 ——> -10.3
4.Balance joint C and carryover +2.2 <—— +4.4 |+5.9 ——> +2.9
5.Balance joint B and carryover 06 «<— -11 | -11 —> 06
6.Balance joint C and carryover +0.2 <—— +0.3 |+0.3 ——> +0.2
7.Balance joint B 01 | -0.1
8.Final Moments +39.1 -71.8 | +71.7 -49 | +49 +24.5




The final moments are shown on the free body diagrams of
members in Fig.

30k
1.5 k/ft 18 l 19 49 24.5

39<1i¢ - H,) CT CT) CTC Dl>

With the MEM known, member end shears and support reactions
can now be determined by considering the equilibrium of
members and joints.

SFD and BMD are same to those which are drawn in Slope
Deflection Method for the same beam.



Practical Application of the MDM

The foregoing approach provides the clearer insight into the basic
concept of the MIDIM.

From a practical point of view, it is usually more convenient to use
an alternative approach in which all the joints of the structure that
are free to rotate are balanced simultaneously in the same step.

All the COMs that are induced at the far ends of the members are
then computed simultaneously in the following step.

The process of balancing of joints and COMs is repeated until the
UMs at the joints are negligibly small.



Practical Application of the MDM

Consider again the three span continuous beam shown in figure.

30 k
1.5 k/ft l
El = constant
A \|r \Ir \|r Jr \Jr * —' """""" - D E = 29,000 ksi
_________ | =500 in%
C
20 ft 10 ft 10 ft 15 ft

The MD Table used for carrying out the computations is shown in
the next slide.

The previously computed distribution factors and FEMs are
recorded on the top and the first line, respectively of the table.



30k
1.5 k/ft l
El = constant
E = 29,000 ksi A ~L~L ~L »L »L’*—/ oo - D
| = 500 in® e T -9
B C
B 20 ft 10 ft . 10 ft 15 ft N
| - “ g I
Member Ends AB BA BC CB CD DC
Distribution Factors 0.5 0.5 0.429 | 0.571
1.Fixed-end Moments +50 -50 | +75 -75




-
The MD process is started by balancing joints B and C.

From line 1 of the \MID Table we can see that the UM at joint B is

UM =-50+75=+25 Kk —ft

The balancing of joint B induces DIVIs at ends B of members AB and

BC, which can be evaluated by multiplying the negative of the UV
by the distribution factor.

DM, = 0.5(- 25)= -12.5k — ft
DM g =0.5(-25)=—-12.5k —ft



1.5 k/ft

El = constant

E =29,000 ksi

| =500 in*

Member Ends
Distribution Factors

1.Fixed-end Moments
2.Balance Joints

A L;H+‘ Ly #” -
.

-
-

- o

-
Il pe—

-
—
-

J 20 ft 10ft | 10ft 15ft
< ’ ’l ’ |
AB BA BC CB CD DC

0.5 0.5 0.429 | 0.571
+50 -50 +75 -75
-12.5| -12.5




Joint C is then balanced in a similar manner.

From line 1 of the \MID Table, we can see that the UM at joint C is
UM, =-75k —ft

The balancing of joint C induces the following DMs at ends C of
members BC and CD, respectively

DM g = 0.429(+ 75)= +32.2 k — ft
DM, = 0.571(+ 75)=+42.8 k — ft

The four DVIs are recorded on line 2 on the MD Table, and a line is
drawn beneath them, across the entire width of the table, to
indicate that all the joints are now balanced.



El = constant

E =29,000 ksi

| =500 in*

Member Ends
Distribution Factors

1.Fixed-end Moments
2.Balance Joints

30k
1.5 k/ft l
AILHHH,*\ e P
I C
J 20 ft 10ft | 10ft 15ft |
I : 7 i I
AB BA BC cB CD DC
0.5 0.5 0.429 | 0.571
+50 -50 +75 -75
-12.5| -12.5 +32.2| +42.8
19



In the next step of analysis, the COIVIs that develops at the far ends
of the members are computed by multiplying the distributed
moments by the COFs.

COM ,, = %(DM )= %(—12.5): 6.3 kTt
COM ., = %(DM )= %(-12.5): 6.3 k—ft
COM . :%(DM CB):%(+32.2)= +16.1 k—ft

COM ., = %(DM )= %(+ 42.8)= +21.4 k—ft

These COMs are recorded on the line 3 of the MD Table, with an
inclined arrow pointing from each DIVl to its COM in the next slide.



30k
El = constant - k/ft l
I Liddd ———
| =500 in* ST
B C
B 20 ft . 10 ft J 10 ft § 15 ft _ i

Member Ends | AB BA BC | CB CD DC
Distribution Factors 0.5 | 0.5 0.429 | 0.571
1.Fixed-end Moments +50 -50 | +75 -75
2.Balance Joints -12.5| -12.5 +32.2| +42.8
3.Carryover -6.3 « +16. s -6.3 o +21.4




We can see from line 3 of MD Table that, due to the carryover
effects, there are now +16.1 k-ft and -6.3 k-ft unbalanced moments
at joints B and C, respectively.

Thus these joints are balanced again, and the DIMs thus obtained
are recorded on the line 4 of the MD Table.

One-half of the DMs are then carried over to the far ends of the
members (line 5), and the process is continues until the UMs are
negligibly small.

The final MEMSs, obtained by algebraically summing the entries in
each column of the MID Table, are recorded on line 11 of the table.



30k

El = constant - k/ft l

Il L uL e I

|=500in* B el 7P el - /;,7

_ 20 ft . 10ft | 10ft _C_ 15 ft N

Member Ends l AB BA  BC | CB CD DC |
Distribution Factors 05 | 05 0.429 | 0.571
1.Fixed-end Moments +50 50 | +75 -75
2.Balance Joints -12.5 | -12.5 +32.2| +42.8
3.Carryover 63 & +16.1 £ > 63 TN 014
4.Balance Joints -8.1 | -8.1 +2.7 | +3.6
5.Carryover -4.1 « +1.4 > -4.1 = +1.8
6.Balance Joints -0.7 | -0.7 +1.8 | +2.3
7.Carryover 04 < 0o £ > o4 S
8.Balance Joints -0.5 | -0.5 +0.2 | +0.2
9.Carryover 03 < w1 € S o3 S 61
10.Balance Joints -0.05/| -0.05 +0.1 | +0.2
11.Final Moments +38.9 -71.8 | +71.7 -49.1 | +49.1 +24.5




30k

El = constant - k/ft l

Il L uL e I

|=500in* B el 7P el - /;,7

_ 20 ft . 10ft | 10ft _C_ 15 ft N

Member Ends l AB BA  BC | CB CD DC |
Distribution Factors 05 | 05 0.429 | 0.571
1.Fixed-end Moments +50 50 | +75 -75
2.Balance Joints -12.5 | -12.5 +32.2| +42.8
3.Carryover 63 & +16.1 £ > 63 TN 014
4.Balance Joints -8.1 | -8.1 +2.7 | +3.6
5.Carryover -4.1 « +1.4 > -4.1 = +1.8
6.Balance Joints -0.7 | -0.7 +1.8 | +2.3
7.Carryover 04 < 0o £ > o4 S
8.Balance Joints -0.5 | -0.5 +0.2 | +0.2
9.Carryover 03 < w1 € S o3 S 61
10.Balance Joints -0.05| -0.05 +0.1 | +0.2
11.Final Moments +38.9 -71.8 | +71.7 -49.1 | +49.1 +24.5




N
Flow Chart for MDM

Calculate Distribution Factors, DF =

!

Calculate Fixed End Moments

!

Balance the Moments at All Joints Free to Rotate

W
Evaluate UMs and then Find DMs

W
Find Carryover Moments

W
Repeat the Above Two Steps Until the UMs are Negligibly Small

!

Determine the Final End Moments

!

Compute Member End Shears, Determine Support Reactions, and draw SFD & BMD

K
K

20
0



R
Example 1

* Determine the reactions and draw the shear and bending moment
diagrams for the two-span continuous beam shown in Figure.

18 k
2 k/ft
AI ! ii”””llc
L 10ft | 15 ft | 30 ft |

El = constant



R
Solution

1.Distribution Factors
Only joint B is free to rotate. The DFs at this joint are

18 k
2 k/ft
A | bl Liliild I
L 10ft 15 ft | 30 ft
| | | |
1 /25
DF,, = Kea / —0.545
Kgn + Kee ( /25)+(1/30)
1/30
DF,. = Kec / —0.455

Kot Koo (1/25)+(1/30)

DF,, + DFy. =0.545+0.455 =1 Checks

20
2



18 k

AI | ) 4 ¢ik/¢ﬂ¢ || IC

0.545| 0.455

Distribution Factors




2.Fixed-End Moments (FEMs)

Assuming that joint B is clamped against rotation, we calculate the
FEMs due to the external loads by using the FEM expressions

2 k/ft
N V= l )71)(& RN
\ 64.8 43.2 /g "\ 150 150 ./

FEM ,, = 18(10)I5) _ 64.8k—ftj  or +64.8Kk - ft

(25¥
FEM,, = 18(225)2)2(15)= 43.2k-ft) o —43.2K-ft
FEMg. _2B0F _yg0y gy or +150 k - ft
12 )

FEMcg :@:BOk—f’[) or —150 k - ft 69



18 k

A | sl i 4 ik/ﬁ || IC

AB BA BC
0.545| 0.455

Distribution Factors

1.Fixed-end Moments +64.8 -43.2 +150 -150




3.Moment Distribution

Since Joint B is actually not clamped, we release the joint and
determine the unbalanced moment (UM) acting on it by summing
the moments at ends B of members AB and BC

18 k
2 k/ft
Alr ! )Lé NEREEN P
\ 64.8 43.2 /g~ 150 150 ./

UMy =-43.2+150 = +106.8 k —ft

The DMs due to these UMs at end B of member AB and BC are
determined by multiplying the negative of the UM by the DF

DMy, =DF;, UM, =0545 106.8 = 58.2 k ft
DM g = DFg. (UM )=0455(-1068)= -48.6 k—ft



18 k

A | sl i 4 ik/ﬁ || IC

AB BA BC
e ) 0.545| 0.455
Distribution Factors
1.Fixed-end Moments +64.8 -43.2 +150 -150

2.Balance Joint B -58.2 -48.6




N
3.Moment Distribution

The COMs at the far ends A and C of members AB and BC,
respectively, are then computed as

COM ,, = %(DM )= %(— 58.2)= -29.1 k — ft

COM , = %(DI\/I )= %(— 48.6)=-24.3 k- ft
Joint B is the only joint of the structure that is free to rotate, and

because it has been balanced, we end the moment distribution
process.



18 k
l 2 k/ft
El = constant A i‘l' ‘l' ‘l' ‘l' ‘l' ‘l' ‘l' IC
AB BA BC CB

.545| 0.455
Distribution Factors 0
1.Fixed-end Moments +64.8 -43.2 +150 -150
2.Balance Joint B -58.2 -48.6
3.Carryover -29.1 — i -24.3

4 .Final Moments +35.7 -101.4| +101.4 -174.3




-
Member End Shears, Support Reactions, SFD & BMD

See Example 1 in Slope-Deflection Method



R
Example 2

* Determine the reactions and draw the shear and bending moment
diagrams for the two-span continuous beam shown in Figure.

| 5m | 5m | 5m | 5m |

E = constant



R
Solution

1. Distribution Factors
Joints B and C of the continuous beam are free to rotate. The DFs

at inint R are

80kN 40 kN
b
A H . C
| 5m | 5m | 5m | 5m |
| | | | |
DF,, - Kea _ 15100 .o
Ken+Kge  (@.51/10)+(1/10)
DF,. = Koc 110 0.4

Koo+ Koo @51/10)+(1/10)



Similarly, at joint C,

80kN 40 kN

_Keg _ 011 _
“ Kg 0.l




e
2. Fixed-End Moments

80kN 40 kN

FEM,, = % ~ +100 kN.m )

FEM g, =100 kN.m )
FEM,, = +4%10 = +50 KN.m)

FEMg, =-50 kN.m )



]
MD TABLE 80kN 40 kN

g Il .

AB BA BC CB
0.6 0.4 1.0

E = constant

Distribution Factors
1.Fixed-end Moments +100 100 +50 50




N
3. Moment Distribution

After recording the DFs and the FEMs in the MD Table, we begin
the IVID process by balancing joints B and C.

The UM at joint B is equal to -100+50=-50 kN.m. Thus DMs at the
ends B of members AB and BC are

DM g, = DFg (UM )= 0.6(+50)=+30 kN.m
DM g = DFge (UM )= 0.4(+50)=+20 kN.m

Similarly, the UM at joint Cis -50 kN.m, we determine the DIV at
end C of member BC to be

DM ¢ = DF s (UM )=1(+50) = +50 kN.m



MD TABLE

E = constant

Distribution Factors
1.Fixed-end Moments
2.Balance Joints B and C

80 kN

l

40 kN

l :

e

AB BA BC CB
0.6 0.4 1.0

+100 -100 +50 -50
+30 +20 +50




3. Moment Distribution

One-half of these DIVIs are then carried over to the far ends of the
members.

This process is repeated, until the UVis are negligibly small.

4. Final Moments

The final MEMSs, obtained by summing the moments in each
column of the I\VID Table, are recorded on the last line of the table.



]
MD TABLE 80kN 40 kN

! Il .

e

E = constant

AB BA BC CB
Distribution Factors 06 |04 10
1.Fixed-end Moments +100 -100 +50 50
2.Balance Joints Band C +30 +20 +50
3.Carryover +15 «— +25 «— T +10
4.Balance Joints B and C -15 -10 -10
5.Carryover -7.5 “— -5 e > -5
6.Balance Joints B and C +3 +2 +5
7.Carryover +1.5 — +2.5 «— +1
8.Balance Joints Band C -1.5 | -1 -1
9.Carryover -0.8 — -0.5 «— -0.5
10.Balance Joints B and C +0.3 | +0.2 +0.5
11.Carryover 02 < 103 < = 101
12.Balance Joints Band C -0.2 | -0.1 -0.1
13. Final Moments +108.4 -83.4, +83.4 0 ku




80 kN 40 kN

37. 5 28 34

C A 7 83.4 C B C
108.4T 83 4 834 T 83.4 T T

42.5 37.5 28.34 11.66
B, = 65.84
80 kN 40 kN
% L
<
108.4 kN.m T
65. 84 kN 11.66 kN

42.5 kN

88



80 kN 40 kN
A l l C
< I_ . B,
108.4 kN.m T

T T

65.84 kN 11.66 kN

42.5kN

42.5

28.34

-11.66

-37.5

Shear Force Diagram (kN) 89



80 kN 40 kN

.

(A B

108.4 kN.m T T
65.84 kN 11.66 kN
42.5kN

104.1

-108.4

Bending Moment Diagram (kN . m) 90



]
Example 3

Determine the member end moments and reactions for the three-
span continuous beam shown, due to the uniformly distributed
load and due to the support settlements of 5/8 in. at B, and 1.5 in.

at C, and % in. at D.

2 k/ft
Aﬁii iii,&}Billb}CllliiD
| 20 ft ’ 20 ft | 20 ft |
El = 29,000 ksi

I=7,800in.4

91



Solution

1. Distribution Factors

2 k/ft
Aﬁi\l« ‘L‘L‘L,hlB‘L‘L‘Li;‘LC‘L‘L‘L‘LJ;,D
, 20 ft I 20 ft , 20 ft !
At Joint A
DF, =1
At Joint B
31/80
7 (31/80)+ (1/20) 0429
20 _ 4571

©~ (31/80)+ (1/20)

92



R
Solution

1. Distribution Factors

2 k/ft
Aﬁi\l« ‘L‘L‘L,h‘LB‘L‘L‘Lig,‘LC‘L‘L‘L‘LHiD
| 20 ft | 20 ft | 20 ft |
At Joint C
B 1/20 B
PFes = (31/80)+(1/20) 07
. 31/80 B
PFeo = (31/80)+(1/20) 0429
At Joint D

DFDC - 1

93



2. Fixed-End Moments

2 k/ft
Aﬁi\]/ ¢¢¢X£¢B¢¢¢i97¢c¢¢¢¢io
| 20 ft | 20ft 20 ft |

A g =2in.
—11 5 — 7
Age =15-3=35n.
—11 3 — 3
Agc =13 —4=141In

94



2. Fixed-End Moments

SEIn 6(29,000X7,800{%)

FEM 5 = FEM g, =+ [ =+ s = +.2272k -
SEIn 6(29,000X7,800{%j

FEM e = FEM gp =+~ 7 =+ ————~————2 = 41,7181k -
- 6(29,000X7,800{%]

_BEIA _, = —1472.7K-ft

CENA — CENA —
CD

coor (0y @2y

95



R
2. Fixed-End Moments

Aiiiiijgtilligfclliiﬁb

| 20 ft | 20ft | 20 ft |
I | | I

The FEMs due to the 2 k/ft external load are

FEM ., = FEM,. = FEM, =+ 2(123)2 = +66.7 k - ft

FEM,, = FEM, = FEM .. =—@:—66.7 K - ft

Thus the FEMs due to the combined effect of the external load and
the support settlements are

96



R
2. Fixed-End Moments

2 le /6%

Aiiiii,itiili’}clliiﬂio

| 20 ft | 20 ft | 20 ft |

I | | I
FEM ,; =+1,293.9k - ft FEMg, = +1160.5 k - ft
FEM g =+1,784.8k - ft FEMcg = +1,651.4 k - ft

FEM, =—1,406 k - ft FEM pc =-1,539.4k - ft

97



3. Moment Distribution

The MD is carried out in the usual manner, as shown in the MD
Table.

Note that the joints A and D at the simple end supports are
balanced only once and that no moments are carried over to these

joints.

4. Final Moments
See the MD Table and Figure on next slides.

98



.Fixed-en
2.Balance Joints
3.Carryover

4.Balance Joints
5.Carryover

6.Balance Joints
7.Carryover
8.Balance Joints
9.Carryover
10.Balance Joints
11.Carryover
12.Balance Joints

13.Carryover

14.Balance Joints

13.Carryover

14.Balance Joints
11.Final Moments

oments

2 k/ft

+1293.9 +1160.5 +1784.8 +1651.4 -1406 -1539.4
-1293.9 -1263.5| -1681.8 -140.1 -105.3Z +1539.4
N ga7  |-701 &£ ™ _840.9 +769.7
+307.6 | +409.5 +40.7|+30.5
+20.4 +204.8
-8.8 -11.6 -116.9| -87.9
£ N\
-58.5 -5.8
+25.1| +33.4 /\ +3.3 | +2.5
+1.7 +16.7
-0.7 -1.0 -9.5 -7.2
4.8 é:/\_%x -0.5
+2.1 | +2.7 +0.3| +0.2
& N\
+0.2 +1.4
-0.1 -0.1 -0.8 | -0.6
04 &
+0.2 | +0.2
0 -426.6 | +426.6 +804.1! -804.1 0

99



2 k/ft

Aﬂillll,&,‘tllliﬁclllli')

2 k/ft 2 k/ft 804.1 2 k/ft

Wby (iilllil) (Jl,llllil
lA BT>424'6 TB cl C DT

100



Concept of fixed end moments

Obtained using unit load method



Derivation of the Slope-Deflection

Equation

b

L

P
~—(}’L——-1

P

raL——»

—-a(l - a)PL L

FEMj,

> Pl
B +"g—

B ) +Pl7213
L_

B
+a(]l — a)PL

Figure 12.5 Fixed-end moments

B WN



Derivation of the Slope-Deflection
Equation

(d) —% C‘\ l 1 l i

L
W et
o 11wl? J’ l l 5wl
@ —155- (A B)+192
L
le (1] (>
w
. Y v 1 l l 1 Yy Y VY
() ( A B }
. L
w 3 2 3 w 3 2 3
- 12L(L -2a°L+a’) +m(L—2aL+u)

Figure 12.5 Fixed-end moments (continued)
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Derivation of the Slope-Deflection

Equation
w
o “~L2 m H"va
(.5) —W A B) +W
- L >

W

Figure 12.5 Fixed-end moments (continued)

o wWwN



Derivation of the Slope-Deflection
Equation

t O =0
AL ; - 2E
) +AEI0 R = B ) +2E10
1-‘ 14
'6EIH 6F.IHT
I L?
L
0, =0 A Op=0
. YT ’
T'}"}’A 12EIA 1
" I.-B
L
+[i;) 2a-b) M +AZ/I§_'1 (2b-a)
(1) A { B >
j«—— (1 \ﬂt' b .
L

Figure 12.5 Fixed-end moments (continued)
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Derivation of the Slope-Deflection
Equation

w (Xx)

initial position
o 0 N T A S e s
BI

\

elastic curve

Continuous beam whose supports settle under load

Figure 12.2

o wmN



§12.3 Derivation of the Slope-Deflection
Equation

line tangent to elastic curve at B’

initial position of centerline

_f Deformations of member
AB plotted to an

A’ Ap -
Y exaggerated vertical
B scale
A
IpA
line tangent to curve at A’
- A

AB - A/’\
L

Wi =

© wN



Derivation of the Slope-Deflection
Equation

Figure 12.4

OA~NDN



lllustration of the Slope-Deflection
Method

P, P,
04 Op O,
A \ B > / 5
I o e ——— 10 F A Y
7 74
A NP

Continuous beam with applied loads
(deflected shape shown by dashed line)

Figure 12.4

N NN



§12.3 Derivation of the Slope-Deflection
Equation

/

line tangent to curve at A’

2EI

M, = T(zHA + 0 — 3y,p) + FEM
2E1

My, = T(zgn + 0, — 3y,) + FEMy,

line tangent to elastic curve at B’

initial position of centerline

Deformations of member
AB plotted to an
exaggerated vertical
scale



§12.3 Derivation of the Slope-Deflection
Equation

line tangent to elastic curve at B’

initial position of centerline

_f Deformations of member
AB plotted to an

A’ Ap -
Y exaggerated vertical
B scale
A
X
—
A N F
line tangent to curve at A’
- A

2ET
MNF — T‘(ZQN + HF — 3l/jNF) + FEMNF



lllustration of the Slope-Deflection
Method

At joint A: M,z =0

AtJO]nt B: MB‘\ + MB(" — 0
At joint C: Mqp=0

o 1€ MSf &) & 9 @
TR r

Joint A Joint B Joint C

Free bodies of joints and beams (sign convention:
Clockwise moment on the end of a member is
positive)



Analysis of Structures by the Slope-
Deflection Method

P W
, ' T N
B C B (
] (7<= AT ﬂl
r—— —x {1900 ™~ __ -7 o[ )
i ()()’ \\\\ /// , " \
I o ! \
l l l
| | - |
\ \ axis of ,
| \ symmetry |
\ 90° \ \
Al x
A 5_2 D

B L A L N

< ‘—,.2‘ SRy ._?.- =
All joints restrained against Due to symmetry of structure and
displacement; all chord loading, joints free to rotate but not
rotations  equal zero translate; chord rotations equal zero

Figure 12.7



Analysis of Structures by the Slope-
Deflection Method

o~

A A
y Bl 1 1
 y—— — T ———— = ~€
;"I J()()‘-" 90" ’{,7
;'7 ’ '7
/ J /! -_"I ;/
’ I j"\ Yup | {f‘\ Yep
/ ,7
y y
Al Mo

P
A A
o o
——a
/—-J()() _____
—”i //'\ Yap
/
e

Unbraced frames with chord rotations

Figure 12.7 (continued)




Example 12.2

Using the slope-deflection method, determine the member end
moments in the indeterminate beam shown in Figure 12.8a. The beam,
which behaves elastically, carries a concentrated load at midspan. After
the end moments are determined, draw the shear and moment curves.
If I = 240 in4and E = 30,000 kips/in2, compute the magnitude of the

slope at joint B.

P = 16 kips

< 9’
HAZ'() 1




Example 12.2 Solution

P =16 kips e Since joint A is fixed against rotation, 8,
N 9'41 = 0; therefore, the only unknown
0a=0 displacement is 65 Using the slope-
— B deflection equation
A TSy 0t _
\~~——~3§5/A;L 2EI
- L=1% = MNF — 7(29;\; + H[? — 311/‘,\”:*) + FEM‘.\.’F
P = 16 kips e The member end moments are:
Vag VBa 2E] PL
Mg =—(0p) — —
CTI lT: ) AB I3 (05) 2
A B
Mg Mp, v 2E](?9 ) PL
= —  —
BA ~YB
L 8
Vi ¢ To determine g, write the equation of
1 moment equilibrium at joint B
oty
Mg T Q+ SMy=0
Ry Mgy =0 24



Example 12.2 Solution (continued

e Substituting the value of Mg, and solving for 65 give

AEI PL

_HB + — = 0

L 8
" PF?
4 32E]

where the minus sign indicates both that the B end of member
AB and joint B rotate in the counterclockwise direction

e To determine the member end moments,

2EI ( —PIL? PL 3PL P
M, = 3 —— = ——— = —54Kkip-ft Ans.

32EI 8 16
4H<—PE> PL
BA — =4
L \ 32EI 8



Example 12.2 Solution (continued

, P =16 kips
e To complete the analysis, apply Vas ° ) ’1 Vi
the equations of statics to a free ( ' T' |
body of member AB A B
54 kip - ft | |
. . 1< L=18
ot OEM, =0
0 = (16 kips) (9 ft) — Vj, (18 ft) — 54 kip - ft Free body used
Vs = S kips to compute end
N " shears
t 2F, =0
0= Vg + Vip — 16

¢ To evaluate 6z, express all variables in units of inches and kips.

5 PIL? 16(18 X 12)° o
— = = —U.UVSZ rac
. 32FI 32(30.000)240




Example 12.2 Solution (continued

e Expressing 6 in degrees

2rrad  —0.0032

360°
0

g = —

Op
0.183° Ans.
11 kips
] shear
-5 Kips
45 kip - ft

l//\ moment

54 kip - ft

Shear and moment curves




Example 12.3

Using the slope-deflection method, determine the member end
moments in the braced frame shown in Figure 12.9a. Also compute the
reactions at support D, and draw the shear and moment curves for
members AB and BD.

— P =6 kips
w = 2 kips/ft
Y
[=120 in*
[=60in? )
P D —=
» 18’ RN




Example 12.3 Solution

P = 6 Kips
w =2 Kips/fi e
. L \4
C
A , B
I1=120in"
I=60in* —T
Ho -
- - 18’ >l< -l-'~>l

A, = 1.43 kips "'-“‘\L

w = 2 Kips/ft

gl

Y Y Y v v \Lvm A= 143 kip
T |

62.57 kip - fi
|

36.86 kip - ft
18 !

e Use the slope-deflection equation

_ 2FI

MNF - T(ZO‘.\: - ia 6,:‘ — 3(1/NF) -+ FEMNF

e The fixed-end moments produced by the uniform load on member AB

wl?
FEM,; = —=—
wl?
FEMg, = T



Example 12.3 Solution (continued

P =6 Kips
B 4"y
ﬂ ‘;) ( c
\_/ A/IDB
Joint D Joint B
Mpp XM,

e Express the member end moments as

2E(120) 2(18)%(12)
M»lB:_———()B == = IllEHB_648
‘ 18(12) 12
2E(120) 2(18)%(12)
MBA — —(203) + : = 2 ._2EH + 648
18(12) 12
2E(60) ,
Mgy = 5(12) (205 + 0p) = 2.22E0, + 1.11E6)
2E(60)
My = (20, + 05) = 2.22E0,, + 1.11E6,

~ 9(12)



Example 12.3 Solution (continued

P = 6 kips
B 4"y
;) ( C
"/ \/ Wm;
Joint D Joint B
Mpp N . \ Mpg

W, W,

¢ To solve for the unknown joint displacements 6z and 6, write equilibrium
equations at joints D and B.

At joint D (see Fig. 12.9bh): Y EMp=0

Mpg =0
At joint B (see Fig. 12.9¢): Yy EMp=0

MBA + MBD - 24(12) . O



Example 12.3 Solution (continued

e Express the moments in terms of displacements; write the equilibrium
equations as

At joint D: 2.22E0, + 1.11E6; = 0
At joint B: (2.22E0; + 648) + (2.22E60; + 1.11E60,) — 288 =0

e Solving equations simultaneously gives

46.33
91) = E
92.66
03 = 7
E



Example 12.3 Solution (continued

¢ To establish the values of the member end moments, the values of 65
and 6, are substituted

92.66
M, = 1.115(— - ) — 648

= —750.85 kip +in = —62.57 kip - ft Ans.

92.66

= 44229 kip-in = +36.86 kip - ft Ans.
92.66 46.33

= —154.28 kip+in = —12.86 kip - ft Ans.




Example 12.3 Solution (continued

w = 2 Kips/ft "
A, —I—Hklps ‘B‘ I I | I I | BA AL —l-Hl\lps
62. 47 Kip - " 26 86 kip - ft
’ 18" J
19.43 Kips Free bodies of members

|\ and joints used to

v — | compute shears and

reactions

16.57 Kips

31.81 Kip - ft

M /\

V 36.86 kip - ft

62.57 kip - ft




Example 12.3 Solution (continued

Viy  , V=6kips  V=6kips ~ P=6kips
i 4
i, 1 (T |
/AN p C
24 kip - ft

VB[) = I 43 I\lp\

F =22.57 kips
F =22.57 kips Eree bodies of members
—1—» Vap = 1.43 kips and joints used to
B compute shears and

2 ap - fi '
12.86 kip - ft reactions

D,.=143Kips 1.43 kips
V M



Example 12.4

Use of Symmetry to Simplify the Analysis of a Symmetric Structure
with a Symmetric Load

Determine the reactions and draw the shear and moment curves for the

columns and girder of the rigid frame shown in Figure 12.10a. Given: l,g

= lep = 120 in4, Iz = 360 in4, and E is constant for all members.

w = 2 Kips/ft




Example 12.4 Solution

N%( N%(
| ) ( s v=30 kl[)s W=2 Kipsi v ) 108

\-/MB" 7 8] klpq _.et DT olo BT 5"0‘! 19_ 7 8] }\lp\
B

Moments il A
acting on 83.33Tap- |“ 83.33 kip - fi

joint B

30’ .

e Expressing member end moments with Equation 12.16, reading the value
of fixed-end moment for member BC from Figure 12.5d, and substituting
6 = 6and 6. =-6,

2E(120) 2E(360) wL?
AB 16(12) ( B) B AdB( 30(|2) (“HB.+ H() 12
2E(120) 2(30)*(12)
— 2 = 2.5 =3 ' — -
Mp, 6(12) (26,) 0E6, 2E[20 + (—06)] 5
= 2FH — 1800 26



Example 12.4 Solution (continued

IWB(- IWB('

(—-—u—-—e e Writing the equilibrium equation at joint B yields

Mgy + Mpe =0

M Moments

acting on e Substituting Equations 2 and 3 into Equation 4
H joint B and solving for 6 produce

2.5E60 + 2.0E6 — 1800 = 0

_ 400
E

0



Exam

le 12.4 Solution (continued

e Substituting the value of 6 given by Equation 5 into Equations 1, 2, and
3 gives

M 4p

(400)
1.25E( —
E

500 kip+in = 41.67 kip - ft

400
2B —
E

1000 kip-in = 83.33 kip - ft

(400)
2El — | — 1800
E

—1000 kip - in

—83.33 kip - ft

Ans.

Ans.

Ans.



Example 12.4 Solution (continued

30 kips
4-1— V =7.81 kips
/X 83.33 kip - fi 7.81 kips  83.33 kip - ft
| B
116’
A, =781 kips | . .
S 4 Z Eree bodies of girder
ip . fi BC and column AB
R 41.67 kip - f BC and column AB
shear moment used to c_om ute
A, =30 kips shears: final shear
! and moment curves
also shown



Example 12.4 Solution (continued

V=30 kip.\l 1 W= 31‘“[’5/ ft i V =30 kips
7.81 kips_eT o e T """"1 19_ 78] kips
/" B C \\\
83.33 kip - ft 83.33 kip - ft
) 0 4
30 kips

l\ A, =781
\I shear '

30 kips

141.67 kip - ft

l/ \] moment

—-83.33 kip - ft —83.33 kip - ft

Free bodies of girder
BC and column AB

used to compute
shears: final shear
and moment curves
also shown




Example 12.5

Using symmetry to simplify the slope-deflection analysis of the frame in
Figure 12.11a, determine the reactions at supports A and D. El is
constant for all members.

P =16 Kkips P =16 Kips
BAz : HB:O HC:O




Example 12.5 Solution

P =16 kips P =16 kips
HA:O HB:-O 9(‘:0

L— l()'—»L— lO'—J<— lO'—»L— lO'—»'

e Since all joint and chord rotations are zero, the member end moments
at each end of beams AB and BC are equal to the fixed-end moments
PL/8 given by Figure 12.5a:

PL  16(20)
FEM = i? = . = *40 kip - ft Ans.




Example 12.5 Solution (continued

= 16 kips

8 kips 8 kips 8 kips 8 kips
& (5=
40 l\lp tt 40 kip - ft 40 kip - ft 40 kip - ft
8 kips T

V 16 Kips
8 kips 16 kips
40 kip - ft
g B
40 kip - ft 40 kip - ft

WD
Free body of beam AB. joint B. T
and column BD. Final shear and t

moment diagrams for beam AB.

16 kips



Example 12.6

Determine the reactions and draw the shear and moment curves for the
beam in Figure 12.12. The support at A has been accidentally
constructed with a slope that makes an angle of 0.009 rad with the
vertical y-axis through support A, and B has been constructed 1.2 in
below its intended position. Given: El is constant, | = 360 in4, and E =
29,000 kips/in2.

Vv

0, =—0.009 rad
A=1.2"




Example 12.6 Solution

e 0, =-0.009 rad. The settlement of

a=12 support B relative to support A
= *N l produces a clockwise chord

A T B B .
\ 0, & B 93 T rotation
| | i = 1.2 = ().005 radi
/ J ——— -— radaians
L=20 BUE 20012

e Angle 65 is the only unknown displacement. Expressing member end
moments with the slope-deflection equation

2EI

AB
M,p = I (29/\ + Op — 3‘!’,\8) + FEM 4
AB

2E(360)

M, = = [2(—0.009) + 6 — 3(0.005)]
2E(360)

My, = — 20, + (—0.009) — 3(0.005)]




\v

=%

Example 12.6 Solution (continued
6, =—0.009 rad \ ¢ \Writing the equilibrium equation at
A=1.2" joint B yields
N Sl
Y Y: 6, 7
B 7 - 20" | Mgy =0

e Substituting Equation 2 into
Equation 3 and solving for 65 yield

3E(20, — 0.009 — 0.015) = 0

0z = 0.012 radians



Example 12.6 Solution (continued

e To evaluate M,g, substitute 65 into Equation 1.:

M,z = 3(29.000)[2(—0.009) + 0.012 — 3(0.005)]

= —1827 kip+in = —152.25 kip - ft

e Complete the analysis by using the equations of statics to compute the

reaction at B and the shear at A. V,=7.61 Kips
Gt SM, =0 (T,
0 = Rp(20) — 152.25  15225kip-fi
Ry = 7.61 kips
r SF,=0
Vi, = 7.61 kips

Ans.

Ans.

=

1

Ryz=1.61 kips



Example 12.6 Solution (continued

\‘

- L= 20/ .
7.61 Kips
vV
M \/
~152.25 kip - ft

Shear and moment curves




Example 12.7

Although the supports are constructed in their correct position, girder AB
of the frame shown in Figure 12.13 is fabricated 1.2 in too long.
Determine the reactions created when the frame is connected into the

supports. Given: El is a constant for all members, | = 240 in4, and E =
29,000 kips/in2.

- — —— —— —
e \

l- 18’ J




Example 12.7 Solution

A=12"
,,,,,,,, |
— 5 —=— e The chord rotation g of column
B // ‘ BC equals
P A 12 1
/ l Ve =T T 9(2) 90 ™
AC . .
e Since the ends of girder AB are at

| the same level, w,g = 0. The

18’ >

A

unknown displacements are 65 and
Oc



Example 12.7 Solution (continued

e Using the slope-deflection equation (Equation 12.16), express member
end moments in terms of the unknown displacements. Because no loads
are applied to the members, all fixed-end moments equal zero.

2E(240)
Mip = —2 1) () = 2.222E6,
2E(240)
My = — ) (20,) = 4.444E0,
2E(240) ]
o= 20 [y (L]
= 8.889FE0,; + 4.444E60, — 0.1481E
2E(240) 1
o= 20 g, 5(L)]

= 8.889E0, + 4.444E0; — 0.1481E



Example 12.7 Solution (continued

¢ \Writing equilibrium equations gives
JOint C: M(‘B — 0
Joint B: Mgy + Mg =0

e Substituting and solving for 6 and 6. yield

8.889E0, + 4.444E0, — 0.1481E = 0
4.444E6, + 8.889E0, + 4.444F6, — 0.1481E = 0
6 = 0.00666 rad
6. = 0.01332 rad
e Substituting 6. and 63 into Equations 1 to 3 produces
M,z = 35.76 kip - ft My, = 71.58 kip - ft
Mp- = —71.58 kip - ft M =0 Ans.



Exam

5.96 kips

le 12.7 Solution (continued

5.96 kips 5.96 kips

7.95 kips —€>l i
'ff' A

35.76 kip - ft

35.76 kip - ft

>

| 9195 KIpS 7/ s8kip. n
18’ Bl A

\ 7.95 klps—b 71.58 kip - ft

71.58 kip - ft U W
7.95 Kips

\I ; ,96 Kips

71.58 kip - fi



§12.5 Analysis of Structures That Are
Free to Sidesway

Q — ’7~___,:'l +=C )
? 50 ()()w
/ /
/f‘/ ///;'/ h
1/ ( ,’{*\ 1/ ’,1 //~\
If I/
A D .y

Unbraced frame, deflected shape shown to an exaggerated scale by
dashed lines, column chords rotate through a clockwise angle w

Figure 12.14



§12.5 Analysis of Structures That Are
Free to Sidesway

P
N
C—>[] 1
—_ e
T N~
BA cD
, /\ /-\
V| <t— i Vs -—
B A C A
h h
(A _y D
w_/ w%_/
Myp Mpc

Free-body diagrams of
columns and girders;
unknown moments shown
In the positive sense, that
IS, clockwise on ends of
members

Figure 12.14 (continued)



Example 12.8

Analyze the frame in Figure 12.15a by the slope-deflection method. E is
constant for all members; I,g = 240 in4, Iz = 600 in4, and I = 360 in4.

A A
okps -
— S | ] ¥
b C 903
90
/
/ /
12’ // / //!
J
’*"r /\%B //x' 18’
, A HAz ‘ ,/
’-"L -~ {l,CD
Op=01|
D i 2
15 .




6 kips

Example 12.8 Solution

e |dentify the unknown displacements
Og, 6., and A. Express the chord
rotations W,z and Wep in terms of A:

'{—'ﬁ"

i
A

AR = — and
Yap 12

SO Yap = L5Ycp

8’

EI  240E
K =—="—">
: L 12

BC L 15
‘K _EI _ 360E
L 18

e Compute the relative bending
stiffness of all members.

= 20E

EI  600E
= — = —— = 40E

= 20E



Example 12.8 Solution (continued

e Set 20E = K, then
Ky =K Kpe = 2K Kep = K

e Express member end moments in terms of displacements: Myg= (2EI/L)
(26 + 6 - 3w\r) + FEMye. Since no loads are applied to members
between joints, all FEMyg = 0.

Mg = 2K, 30 — 3P4p) Mcg = 2Kpc (20 + 0p)
Mg, = 2KAB(2HB - 39['.43) Mcp = QK(“D(Q(’C - 31/’(‘[))
Mpc = 2Kpc (205 + 6¢) Mpe = 2Kep(0c — 3¢ cp)

e Use Equations 1 to express w,g in terms of y-p, and use Equations 2 to
express all stiffness in terms of the parameter K.

MAB = 2K(HB — 4.51//(‘[)) MCB - 4K(2(’)( -+ HB)
Mgy = 2K(20b’ - 45‘!’(‘0) Mep = 2K(29(' - 3‘1’(‘1})
Mpc = 4K(205 + 6.) Mpc = 2K(0c — 3cp)



Example 12.8 Solution (continued

e The equilibrium equations are:

JOint B: MBA + MB( — 0
Joint C: Mo+ Mep =0
Shear ati Mp, + M, M/ + Mpr

I equation BA AB | Mcp DC 4 6 =0
(see Eq. 12.21): 12 18

e Substitute Equations 4 into Equations 5, 6, and 7 and combine terms.

1203 + 40( " 9(,0(*[) = (
408 -+ ]26(‘ e 6‘,&('1) == O

108

9(')3 = o 60( - 39{![('[) K



Example 12.8 Solution (continued

e Solving the equations simultaneously gives

2.257 0.97 3.44

Op = % bg = K Yep = N
5.16
AISO, l//AB — l.5‘./f(_‘[_) — =

Since all angles are positive, all joint rotations
and the sidesway angles are clockwise.

e Substituting the values of displacement above into Equations 4, establish
the member end moments.

M,z = —26.45 kip - ft Mp, = —21.84 kip - ft
My = 21.84 kip - ft Mg = 16.78 kip - ft
M- = —16.76 kip - ft Mpe = —18.7 kip - ft Ans.



Example 12.8 Solution (continued

21.84 kip - ft

——__]16.76 kip - ft

21.84 kip - ft 16.76 kip - ft
—_—
6 kips
4.03 kips
e
: 1.97 Kips
2.57 kips -
18.7 kip - ft
\T/ 18.7 kip - ft
Reactions and moment diagrams 2.57 kips




Example 12.9

Analyze the frame in Figure 12.16a by the slope-deflection method.
Given: El is constant for all members.

2 kips/ft

3 kips/ft




3 kips/ft

Example 12.9 Solution

2 kips/ft

Y

A

e Express member end moments
In terms of displacements with
Equation 12.16 (all units in Kip-

feet).

3(8])2
M,p = %(93 — 3,p) — %
Mpy = E(zﬁs — 3iup) + '%(i)-
a 8 ‘ 12
2ET ,
Mpc = E(z(’ﬁ + 6¢)
2ET

Mcp = 1—,(29c + 0p)



Example 12.9 Solution (continued

Mpc

B

FF) (o

\/M Moments
Mpy

7 acting on

U joint B
4 | \ Mp,

V|<—
B

R =24 kips

Mcg 24 Kip - fi

Moments acting on joint C

¢ \Write the joint equilibrium equations
at B and C. Joint B:

+D ZMB = 0: MB/\ =+ MB(' =0

e Joint C:

e Shear equation:
Gt ZM, =0
Mpy + Myp + 24(4) — Vi(8) =0

eSolving for V; gives

y _ May + Myy + 96
P
8




Example 12.9 Solution (continued

used to establish third

B C
Vi —6>1 ITJD equilibrium equation

//;ﬁf/“ Free body of girder

A/IBA
e |solate the girder and consider e Express equilibrium equations in
equilibrium in the horizontal terms of displacements by
direction. substituting Equations 1 into

Equations 2, 3, and 4. Collecting

s > - U, efor -
2k, = 0. therefore V; =0 terms and simplifying,

192
e Substitute Equation 4a into 100, — 260 — O,y = Y
Equation 4b:
ny . = 134
Mgy + Myp + 96 = 0 Op — 20 = El
30, — 6y = —
~VEH AB E]



Example 12.9 Solution (continued

e Solution of the equations

~53.33  45.33 ~90.66

0 o == y —_—
B El ¢ El Vs El

e Establish the values of member end moments by substituting the
values of 6z, 6., and w,g into Equations 1.

2EI| 53.33 3)(90.66
My = _ BX )} — 16 = —70.67 kip - ft
8 | EI El
2EI| (2)(53.33 3)(90.66
Mg, = 2)( ) . BA ) + 16 = —25.33 kip - ft
‘ 8 El i
2EI| (2)(53.33 45.33
Mg = 2)( )+ }:253%1@ ft
12| EI El
2EI[ (2)(45.33) 53 33}
M, p = = 24 kip - ft A
B~ 1) El El P ns 29



Example 12.9 Solution (continued

6
\ shear
-4.11 (kips)
7 \
25.33 = moment
24

25.33 D
\ 10.11 kips
24 Kips
24 kips k7i0.6;{[ o Reactions and shear
P \1/41\4 =70.67 kip - ft and moment curves
shear moment

4.11 kips



Example 12.10

Analyze the frame in Figure 12.17a by the slope-deflection method.
Determine the reactions, draw the moment curves for the members, and
sketch the deflected shape. If | = 240 in4and E = 30,000 kips/in2,
determine the horizontal displacement of joint B.

P = 12 kips




Example 12.10 Solution

P = 12 kips P =12 kips
. 1

- |/ l —p- |/ b
\T/M BA \t/‘w cD
4\.’1”3‘ $1’"’([)
P S
|:| 15
—

V) — V,
!‘ 45’ =! 15’ '
e Express member end moments in terms Tl V2
of displacements with the slope- Myp v \T/
deflection equation.
2EI
MNF — T(zf)N + 0F - 3(//N[:) + FEMN[: (1216)
Pb2a  12(30)*(15) Pa*b  12(15)*(30)
FEMRC = = > 9 FEMCD = > 9
L- (45)° (45)°
= —80 kip - ft = 40 kip - ft



Example 12.10 Solution (continued

e To simplify slope-deflection expressions, set EI/15 = K.

2ET
AB — F(()B — 3i) = 2K(0p — 3¢)
2E1
Mg, = 1—5(203 — 3¢) = 2K (205 — 3¢)
2ET | 2
My = E(Z()B + 6,) — 80 = ;K(Z()B + 6,) — 80
2ET , 2
Mcp = E(zf)(- + 93) + 40 = ;K(zﬁ(« + 93) + 40
2EI
Mep = 1_5(29( = 3‘/’) = 2K(0c — 3¢)
2ET
b — 1_5(9( — 3¢) = 2K(0C =3 3‘/’)



Example 12.10 Solution (continued

e The equilibrium equations are:

Joint B: Mgy, + Mg =0
Joint C: Mcp+ M~ =0

e Shear equation:

_ Mps + M Vv — Mep + Mpe

where V A
15 - 15

e Substituting V; and V, given by Equations 4b into 4a gives
Mpy + Myp + Mcp + Mpe =0

Alternatively, set Q = 0 in Equation 12.21 to produce Equation 4.



Example 12.10 Solution (continued

e Express equilibrium equations in terms of displacements by substituting
Equations 1 into Equations 2, 3, and 4. Combining terms and simplifying
give

8KOz + KO- — 9Ky = 120

KO, + K6 — 4Ky = 0

e Solving the equations simultaneously,

0_410 9__130 10
B 01K & 21K d'_31<

e Substituting the values of the 65, 6, and w into Equations 1,

M, = 19.05 kip - ft My, = 58.1 kip - ft
M('D — _4476 klp 2 f[ M[)(' — _3238 klp p ft (6)
Mp- = —58.1 kip - ft M- = 44.76 kip - ft Ans. 29



Example 12.10 Solution (continued

e Compute the horizontal displacement of joint B. Use Equation 1 for Mxg.
Express all variables in units of inches and kips.

2E]

Man = 512y 0 = 30)

e From the values in Equation 5 (p. 485), 65 = 5.86(; substituting into
Equation 7,

2(30. 000)( 0)
19.05(12) = 5(12) (5.86 — 31))
¥ = 0.000999 rad
A .
p== A =yL=0000999(15 X 12) = 0.18 in Ans.



Example 12.10 Solution (continued

66.4

[,/’/////ﬁ\\\\\\\\\\“\~\\\‘ moment

I/ \I (kip - ft)

~58.1 ~44.76

581 B C 4476

\

41 N

P =12 kips

5.14 kips

19.05 Kip - n\T/ \T/S?_.SS Kip - ft

8.3 kips 3.7 kips



Determine the moments at each joint of the frame shown in Fig. 11-22a.
EI 1s constant for each member.

2 k/ft

e

s —~ /
ofgfl o, ﬁ\<|

/




(b)



w2 2(12)?

FEM)p = — — = — = —24k-f
wL?  2(12)?
FEM), p = — = = 24 k- ft
( )cB D D
_ Ay _ A, _ As
h=710 "2="7p ¥~

As shown in Fig. 11-22¢, the three displacements can be related. For
example, A, = 0.5A; and A; = 0.866A,. Thus, from the above
equations we have

l/lz = —0417l/11 l/l:; o= 0433¢1



My = 2E<%>[2(0) + 6 — 3¢y] + 0 (1)
Mgs = 2E<%>[293 +0 — 3¢y] + 0 (2)
Mpc = ZE(é)[ZHB + 6c — 3(—0.417¢)] — 24 (3)
Mgy = 215(%)[2% + 0 — 3(—0.4174¢,)] + 24 (4)
Mcp = 2E(21—O)[29C + 0 — 3(0.433,)] + 0 (5)
Mpc = ZE(%)[Z(O) + 6c — 3(0.4339;)] + 0 (6)



Equations of Equilibrium. Moment equilibrium at joints B and C

yields
Mgy + Mpe =0 (7)
Mcp + Mcp =0 (8) 0
20.78 ft
r+2Mo = 0 -
My + M Mpe + Mc
Myp + Mpe — ( AB T B")(34) - ( DCZO C")(40.78) ~ 24(6) = 0
_2'4MAB - 3'4MBA s 2'04MCD B 104MD( - 144 = () (9)
20 ft
V= Mpc+ Mcp -




24
0.733605 + 0.1676- — 0.3924,

EI

24

016705 + 0.5330¢ + 0.0784y; = — —
144
—184093 = 05120C =+ 3880¢1 _— E

Solving these equations simultaneously yields
ElOg = 87.67 ElIf = —82.3 El)y, = 67.83
Substituting these values into Egs. (1)—(6), we have

MAB — —232 k‘ft MBC == 563 k'ft MCD == _253 k’ft Ans.
Mgy = —5.63k-ft Mcg=253k-ft Mp- = —17.0k-ft  Ans



Determine all relations at points A and D in Figure shown. El is constant.

60 kN =

A

10 m

\ 4

74



§12.6 Kinematic Indeterminacy

A B

Indeterminate first degree, Indeterminate fourth degree
neglecting axial deformations

Figure 12.18 Evaluating degree of kinematic indeterminacy




§12.6 Kinematic Indeterminacy

G H I LS NN RN
E D . ,; % £
F :{ 2 > ;‘ a-f‘a 1:7'q
A B|: ck DI,
A B & . , e e
1 2
Indeterminate eighth degree, Indeterminate eleventh degree,
iImaginary rollers added at points 1 imaginary rollers added at points

and 2 1,2,and 3

Fiqure 12.18 Evaluating degree of kinematic indeterminacy (continued



Figure 10.17: Evaluating degree of kinematic indeterminacy: (a) indeterminate first degree,
neglecting axial deformations; (b) indeterminate fourth degree; (c¢) indeterminate eighth de-
gree, imaginary rollers added at points 1 and 2; (d) indeterminate eleventh degree, imaginary

rollers added at points 1, 2, and 3.
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