UNIT-I

* Number Systems & Code conversion, Boolean Algebra &
Logic Gates, Truth Tables, Universal Gates, Simplification
of Boolean functions, SOP and POS methods —
Simplification of Boolean functions using K-maps,Signed
and Unsigned Binary Numbers.

Number System Conversion Table

Binary Numbers Octal Numbers
1000 10
1001 11
1010 12

1011 13

Decimal Numbers

10

11

There are many methods or techniques which can be used to convert numbers from one base to another.
We'll demonstrate here the following -

¢ Decimal to Other Base System

4 Other Base System to Decimal

4 Other Base System to Non-Decimal

4 Shortcut method - Binary to Octal

4 Shortcut method - Octal to Binary

4 Shortcut method - Binary to Hexadecimal
4 Shortcut method - Hexadecimal to Binary

Decimal to Other Base System
Steps

= Step 1 — Divide the decimal number to be converted by the value of the new base.

D

Step 2 - Get the remainder from Step 1 as the rightmost digit (least significant digit) of new base
number.

(¥

Step 3 — Divide the quotient of the previous divide by the new base.

U

Step 4 — Record the remainder from Step 3 as the next digit (to the left) of the new base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in Step 3.

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base number.

Example —

Decimal Number: 294

Calculating Binary Equivalent —

Step Operation Result Remainder
Step 1 29/ 2 14 1
Step 2 14/ 2 7 0
Step 3 42 3 1
Step 4 3./2 1 1

Step 5 172 0 1

Other Base System to Decimal System
Steps

7 Step 1 — Determine the column (positional) value of each digit (this depends on the position of the
digit and the base of the number system).

7 Step 2 — Multiply the obtained column values (in Step 1) by the digits in the corresponding columns.

7 Step 3 — Sum the products calculated in Step 2. The total is the equivalent value in decimal.

Example
Binary Number - 11101,

Calculating Decimal Equivalent —

Step Binary Number Decimal Number

Step 1 11101, (1 x 2% + (1 x23) + (1 x22) + (0 x 27) + (1 x 20))49
Step 2 11101, (16 + 8+ 4 + 0 + 1)1

Step 3 11101, 2910

Binary Number — 11101, = Decimal Number — 2949

Other Base System to Non-Decimal System
Steps

< Step 1 — Convert the original number to a decimal number (base 10).

7 Step 2 — Convert the decimal number so obtained to the new base number.

Example
Octal Number — 25¢

Calculating Binary Equivalent —

Step 1 — Convert to Decimal

Step Octal Number Decimal Number
Step1 254 (2% 8") + (5% 8%)0
Step 2 254 (16 + 5)10

Step 3 25g 21410

Octal Number = 255 = Decimal Number = 2149

Step 2 - Convert Decimal to Binary

Step

Step 1
Step 2
Step 3
Step 4

Step 9

Operation
2112
10/2
512

212

112

Result

10

Decimal Number - 214o = Binary Number - 10101,

Octal Number - 25¢ = Binary Number - 10101,

Remainder

1

0

Shortcut method - Binary to Octal
Steps

< Step 1 - Divide the binary digits into groups of three (starting from the right).
< Step 2 - Convert each group of three binary digits to one octal digit.

Example
Binary Number - 10101,

Calculating Octal Equivalent -

Step Binary Number Octal Number
Step 1 10101, 010 101

Step 2 10101; 2g 5g

Step 3 10101, 25¢

Binary Number = 10101, = Octal Number - 25g

Shortcut method - Octal to Binary
Steps

+ Step 1 - Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal
for this conversion).

+ Step 2 - Combine all the resulting binary groups (of 3 digits each) into a single binary number.

Example
Octal Number - 25g

Calculating Binary Equivalent —

Step Octal Number Binary Number
Step 1 25g 210 510

Step 2 25g 010, 101,

Step 3 25g 0101015

Octal Number — 25g = Binary Number — 10101,

Shortcut method - Binary to Hexadecimal
Steps

+ Step 1 — Divide the binary digits into groups of four (starting from the right).

= Step 2 - Convert each group of four binary digits to one hexadecimal symbol.

Example
Binary Number = 10101,

Calculating hexadecimal Equivalent —

Step Binary Number Hexadecimal Number
Step 1 101013 0001 0101

Step 2 10101, 110 510

Step 3 10101, 1546

Binary Number — 10101, = Hexadecimal Number — 1544

Shortcut method - Hexadecimal to Binary
Steps

4 Step 1 — Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal digits may be
treated as decimal for this conversion).

+ Step 2 - Combine all the resulting binary groups (of 4 digits each) into a single binary number.

Example

Hexadecimal Number — 1544

Calculating Binary Equivalent -

Step Hexadecimal Number Binary Number
Step 1 1516 110 510

Step 2 1516 0001, 01015
Step 3 1516 000101015,

Hexadecimal Number = 1546 = Binary Number — 10101,

Boolean Algebra

Boolean algebra, a logic algebra, allows the rules used in the algebra of numbers to be applied to logic.
It formalizes the rules of logic. Boolean algebra is used to simplify Boolean expressions which
represent combinational logic circuits. It reduces the original expression to an equivalent expression

that has fewer terms which means that less logic gates are needed to implement the combinational
logic circuit.

Boolean Expression Calculator

Use the calculator to find the reduced boolean expression or to check your
Boolean expression ~(A*"B)*(—A +B)*(—B + B)
Your answer ~A + ~-B * B

The boolean expression is reduced to —A

Your answer is equivalent

Truth Table

A B output
O O 1
O 1 1
1 O O

https://electronics-course.com/combinational-logic

Notes:
« Use ~ * + to represent NOT AND OR respectively. Do not omit the * operator for an AND operation.
(~AB)+(B~C)+(AB) will return an error
(~A*B)+(B*~C)+(A*B) is OK
- Boolean operations follows a precedence order of NOT AND OR. Expressions inside brackets () are always
evaluated first, overriding the precedence order.
« Please enter variables only, constants like 0,1 are not allowed.
« Variables E, I, N, O, Q, S are not allowed

Boolean Expression Simplification

The following example shows how to use algebraic techniques to simplify a boolean expression

~(A*B)*(~A+B) " (~B + B)

~(A*B)*(~A+B)*1 6 - Complement law
~(A*B)* (~A+ B) 5 - Identity law
(~A+~B)* (~A+B) 8 - DeMorgan's law
TN i = R = 4 - Distributive law
~A + 0 6 - Complement law
~A 5 - Identity law

Each line (or step) gives a new expression and the rule or rules used to derive it from the previous one. There can be
several ways to arrive at the final result. You can use our calculator to check the intermediate steps of your answer.
Equivalent means your answer and the original boolean expression have the same truth table.

Laws of Boolean Algebra

Boolean Algebra Laws are used to simplify boolean expressions.

Basic Boolean LLaws

1. ldempotent Law
AT A=A
A+ A=A
2. Associative Law
(A B)™ C©C =A™ ({(B™C)
(A+B)+ C=A+ (B + C)
3. Commutative Law
A*B=B*A
A+ B =B+ A
4. Distributive Law
A* (B + C)
A+ (B ™)
S. Identity Law
A*O =0 A* 1 =A
A+ 1 =1 A+ O = A
S. Complement Law
A * ~A =0
A+ —A = 1
7. Involution Law
~(—A) = A
8. DeMorgan's Law
~(A*B)= A+ —B
~(A + B)=~-A* —-B

A*B +A*C
A+B) ™ A+ C)

Logic gates are the basic building blocks of any digital system. It is an electronic circuit having one or more
than one input and only one output. The relationship between the input and the output is based on a
certain logic. Based on this, logic gates are named as AND gate, OR gate, NOT gate etc.

AND Gate

A circuit which performs an AND operation is shown in figure. It has n input (n >= 2) and one output.

Y = A AND B AND C........ N
Y = AB.C s N
¥ = ABC cveais N

Logic diagram

Truth Table
- Inputs Ougutm
A B . Ab
0 0 0
0 1 0
1 0 0
: - 1 : 3

OR Gate

A circuit which performs an OR operation is shown in figure. It has n input (n >= 2) and one output.

Logic diagram

@ >
<

Truth Table
Inputs Output
A B A+B
0 0)
0 1 1
1 0 1
1 1 1
NOT Gate
NOT gate is also known as Inverter. It has one input A and one output Y.
L = NOT A
Y = A

Logic diagram

Truth Table

Inputs Output

A B
(0] 1
1 o
NAND Gate
A NOT-AND operation is known as NAND operation. It has n input (n >= 2) and one output.
Y A NOT AND BNOTANDC........ N
Y A NAND B NAND C........ N

Logic diagram

A —

v .
|

A a— Z

—
4

Truth Table

Inputs Output

‘Oﬂnugl

B B OO0
Blo|k| 0o m

NOR Gate

A NOT-OR operation is known as NOR operation. It has n input (n >= 2) and one output.

A NOTORBNOTORC....... N
A NORBNORC....... N

Y
) ¢

Logic diagram

)
7
\#j

B —= _d B
Truth Table
Inputs Output
A B A+B
0 0 1
0 1 0
: 0 o
1 1 0
XOR Gate

XOR or Ex-OR gate is a special type of gate. It can be used in the half adder, full adder and subtractor. The
exclusive-OR gate is abbreviated as EX-OR gate or sometime as X-OR gate. It has n input (n >= 2) and

one output.

Y - A XORBXORC N
Y = A @OBGC....c.e N
Y = AB + AB

Logic diagram

Truth Table
Inputs Output
Al B |AG)B
o| o 0
0.l s 1
% 416 1
.) I ! 0
XNOR Gate

XNOR gate is a special type of gate. It can be used in the half adder, full adder and subtractor. The
exclusive-NOR gate is abbreviated as EX-NOR gate or sometime as X-NOR gate. It has n input (n >= 2)
and one output.

Y = A XOR B XORC N
Y - A OBOC N
Y - "AB +AB

Logic diagram

TRUTH TABLE

(feuontpuodiq)

o
b i Ko pue yy d w 3
o
(uoneatdui)
buap dy ! &
o °
I
(uonaunfsip AAISNIIXI) o &
amsnpxa biod ©
Q,
(uonounisip aatsnjour) <
anisnjout hsod L -
(uonounfuoo) .M. @
bpued o
vonisodoud & & 18
uonisodoud ¢ & i
(uone3au) 8
dyu 1 v 3
E &
| |
vonisodoud & o SRS

as k-map is assumed to be
connected so we can make

/group this way

RS
PQ 00 01 11 10
00 1 O
O
01 O 1
a4
11 O 1
12
10 1 O
8

as we have to take maxm. elements
in a group so we've made 1 group
of41'snot2groupsof2 1's

UNIT-II

Combinational Logic Circuits: Adders &Subtractors, Multiplexers, Demultiplexers,
Encoders, Decoders, Programmable Logic Devices.

Adders and Subtractors in Digital
Logic

Subtraction of two binary numbers can be accomplished by adding 2's complement of the subtrahend to the
minuend and disregarding the final carry if any. If the MSB bit in the result of addition is a ‘0’. then the result
of addition is the correct answer. If the MSB bitis a “1’. , this implies that the answer has a negative sign.
The true magnitude, in this case, is given by 2’s complement of the result of the addition.

Block Diagram of Combinational Logic Circuit:

A X
COMBINATIONAL LOGIC ONE OR MORE

MULTIPLE B
INPUTS CIRCUITS OUTPUT
Zz

Cc

Points to Remember on Combinational Logic Circuit:

pa—

. Output depends upon the combination of inputs.

2. Outputis a pure function of present inputs only i.e., Previous State inputs won't have any effect on
the output. Also, It doesn't use memory.
3.In other words,

OUTPUT=F (INPUT)

1. Inputs are called Excitation from circuits and outputs are called Responses of combinational logic
circuits.

Classification of Combinational Logic Circuits:

1. Arithmetic: 2. Data Handling: 3. Code Converters:
e Adders e Multiplexers e BCD to Excess-3 code and vice versa
& Subiacreis e DeMultiplexers e BCD to Gray code and vice versa

* Multipliers e Encoders and Decoders * Seven Segment

* Comparators

Multiplexer

A multiplexer is a combinational circuit that has 2" input lines and a single output line. Simply, the multiplexer is a multi-input
and single-output combinational circuit. The binary information is received from the input lines and directed to the output

line. On the basis of the values of the selection lines, one of these data inputs will be connected to the output.

Unlike encoder and decoder, there are n selection lines and 2" input lines. So, there is a total of oN possible combinations of

inputs. A multiplexer is also treated as Mux.

There are various types of the multiplexer which are as follows:

2*%1 Multiplexer:

In 2x1 multiplexer, there are only two inputs, i.e, Ag and A4, 1 selection line, i.e., Sp and single outputs, i.e., Y. On the basis of

the combination of inputs which are present at the selection line S° one of these 2 inputs will be connected to the output.

The block diagram and the truth table of the 2x1 multiplexer are given below.

Block Diagram:

Enable

(E)

L

A, >

Ao ®

Multiplexer

2x1

———» Output

Y)

Truth Table:

Select (S5)

INPUTS Output
So Y
(8 Ao
1 Al

L
0 A The Demultiplexer
1 B
F Lig ™ g ST The demuitiplexer is a combinational logic
i e 3 D circuit designhed to switch one common input
line to one of several seperate output line
ab
Select

The data distributor, known more commonly as the demultiplexer or “Demux” for short, is
the exact opposite of the Multiplexer we saw in the previous tutorial.

The demultiplexer takes one single input data line and then switches it to any one of a
number of individual output lines one at a time. The demultiplexer converts a serial data
signal at the input to a parallel data at its output lines as shown below.

1-to-4 Channel De-multiplexer

—/0—— A
>—/0—> B
Common F § Data
Input ") o > C Outputs
—./.-—. D

Encoders and Decoders in Digital
Logic

Binary code of N digits can be used to store 2N distinct elements of coded information. This is what

encoders and decoders are used for. Encoders convert 2N lines of input into a code of N bits and

Decoders decode the N bits into 2N lines.

1. Encoders -
An encoder is a combinational circuit that converts binary information in the form of a 2N input lines
into N output lines, which represent N bit code for the input. For simple encoders, itis assumed that

only one input line is active at a time.

As an example, let's consider Octal to Binary encoder. As shown in the following figure, an octal-to-

binary encoder takes 8 input lines and generates 3 output lines.

DO
D1
D2
D3
D4
D5

D6
D7

<

N

Programmable logic device

A programmable logic device (PLD) is an electronic component used to build reconfigurable digital
circuits. Unlike digital logic constructed using discrete logic gates with fixed functions, a PLD has an
undefined function at the time of manufacture. Before the PLD can be used in a circuit it must be
programmed to implement the desired function.!Xl Compared to fixed logic devices, programmable logic
devices simplify the design of complex logic and may offer superior performance.!2 Unlike

for microprocessors, programming a PLD changes the connections made between the gates in the
device.

PLDs can broadly be categorised into, in increasing order of complexity, Simple Programmable Logic
Devices (SPLDs), comprising programmable array logic, programmable logic array and generic array
logic; Complex Programmable Logic Devices (CPLDs) and Field-Programmable Gate Arrays (FPGAS).

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Reconfigurable_computing
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Tape-out
https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Microprocessors
https://en.wikipedia.org/wiki/Simple_programmable_logic_device
https://en.wikipedia.org/wiki/Programmable_array_logic
https://en.wikipedia.org/wiki/Programmable_logic_array
https://en.wikipedia.org/wiki/Generic_array_logic
https://en.wikipedia.org/wiki/Complex_programmable_logic_device
https://en.wikipedia.org/wiki/Field-Programmable_Gate_Array

UNIT-HI

Sequential Logic Circuits: RS, Clocked RS, D, JK, Master Slave JK, T Flip-Flops,
Shift Registers, Types of Shift Registers, Counters, Ripple Counter, Synchronous
Counters, Asynchronous Counters, Up-Down Counter.

Input Qutput |

x X X l—f\
'—: Combinational V)

Logic Circuit Pasitiva

Feedback
Previous
State
Memory [M Clock

Sequential Logic
Circuits

Sequential Logic Circuits use flip-flops as
memory elements and in which their output is
dependent on the input state

Unlike Combinational Logic circuits that change state depending upon the actual signals being

applied to their inputs at that time, Sequential Logic circuits have some form of inherent “Memory’

built in.

This means that sequential logic circuits are able to take into account their previous input state as
well as those actually present, a sort of “before” and “after” effect is involved with sequential

circuits.

In other words, the output state of a “sequential logic circuit” is a function of the following three
states, the “present input”, the “past input” and/or the “past output’. Sequential Logic

circuits remember these conditions and stay fixed in their current state until the next clock signal
changes one of the states, giving sequential logic circuits “Memory”.

https://www.electronics-tutorials.ws/combination/comb_1.html

Sequential logic circuits are generally termed as two state or Bistable devices which can
have their output or outputs set in one of two basic states, a logic level “1” or a logic level
“O” and will remain “latched” (hence the name latch) indefinitely in this current state or
condition until some other input trigger pulse or signal is applied which will cause the
bistable to change its state once again.

Sequential Logic Representation

Input Output
'::> Combinational
Logic Circuit O aliias
e I'_ F eedback
Previous
State

Memory = _I_L Clock
[~ Signal

The word “Sequential” means that things happen in a “sequence”, one after another and in
Sequential Logic circuits, the actual clock signal determines when things will happen next.
Simple sequential logic circuits can be constructed from standard Bistable circuits such
as: Flip-flops, Latches and Counters and which themselves can be made by simply

T Flip-Flop

The toggle, or T, flip-flop is a two-input flip-flop. The inputs are the toggle (T) input and a clock (CLK)
input. If the toggle input is HIGH, the T flip-flop changes state (toggles) when the clock signal is
applied. If the toggle input is LOVWV, the T flip-flop holds the previous state.

— O l—

—P>CLK O lo—

T flip-flop symbol.

The standard symbol for a T flip-flop is illustrated in the figure above. The clock input may be
preceded by an inverter. An inverter indicates a flip-flop will toggle on a HIGH-to-LOVWV transition of the
clock pulse. The absence of an inverter indicates the flip-flop will toggle on a LOW-to-HIGH transition
of the pulse.

Truth table
CLK 4 B Coext Comment
Rising edge 0 Q Hold state
Falling edge 0 Q Hold state
Rising edge 1 Q Toggle
Falling edge 1 Q No change

Q. oxt — after the clock transition” output
Q - the current output

Now, follow the explanation of the circuit using the truth table and the timing diagram shown in the
figure above. The timing diagram shows the inputs and the resulting outputs. We will assume an initial
condition (fg) of Q being LOW and Q being HIGH. At t1, when the clock changes from a LOW to a

HIGH, the outputs remain the same as the T input is LOW. The T input goes HIGH at f5. At t3, the

clock changes from a LOW to a HIGH and the device changes state; Q goes HIGH and Q goes LOW.
The outputs remain the same at f4 since the device is switched only by a LOW-to-HIGH transition. At

t5, when the clock goes HIGH, Q goes LOW and Q goes HIGH; they remain that way until £7.

Between f3 and t7, two complete cycles of CLK occur. During the same time period, only one cycle is

observed for Q or Q. Since the output frequency is one-half the clock (input) frequency, this device
can be used to divide the input frequency by 2.

The most commonly used T flip-flops are J-K flip-flops wired to perform a toggle function. This use will
be demonstrated later in this section.

Synchronous Counter

Synchrounous generally refers to something which is cordinated with others based on time.
Synchronous signals occur at same clock rate and all the clocks follow the same reference clock.

In previous tutorial of Asynchronous Counter, we have seen that the output of that counter is directly
connected to the input of next subsequent counter and making a chain system, and due to this chain
system propagation delay appears during counting stage and create counting delays. In synchronous
counter, the clock input across all the flip-flops use the same source and create the same clock signal at
the same time. So, a counter which is using the same clock signal from the same source at the same
time is called Synchronous counter.

Synchronous Up Counter

In the above image, the basic Synchronous counter design is shown which is Synchronous up counter. A 4-bit
Synchronous up counter start to count from 0 (0000 in binary) and increment or count upwards to 15 (1111 in
binary) and then start new counting cycle by getting reset. Its operating frequency is much higher than the
same range Asynchronous counter. Also, there is no propagation delay in the synchronous counter just
because all flip-flops or counter stage is in parallel clock source and the clock triggers all counters at the same
time.

The external clock is directly provided to all J-K Flip-flops at the same time in a parallel way. If we see the
circuit, the first flip-flop, FFA which is the least significant bit in this 4-bit synchronous counter, is connected to
a Logic 1 external input via J and K pin. Due to this connection, HIGH logic across the Logic 1 signal, change
the state of first flip-flop on every clock pulse.

Next stage, the second flip-flop FFB, input pin of J and K is connected across the output of the first Flip-flop.
For the case of FFC and FFD, two separate AND gate provide the necessary logic across them. Those AND
gates create logic using the input and output from the previous stage flip-flops.

We can create the same counting sequence used in the Asynchronous counter by making a situation where
each flip-flops change its state depending on whether or not all preceding flip-flops output is HIGH in logic. But
in this scenario, there will be no ripple effect just because all flip-flops are clocked at the same time.

https://circuitdigest.com/electronic-circuits/jk-flip-flop-truth-table-working

Asynchronous Counters

If the flip-flops do not receive the same clock signal, then that counter is called as Asynchronous counter.
The output of system clock is applied as clock signal only to first flip-flop.
The remaining flip-flops receive the clock signal from output of its previous stage flip-flop.

Hence, the outputs of all flip-flops do not change affectaffect at the same time.
Now, let us discuss the following two counters one by one.

= Asynchronous Binary up counter
= Asynchronous Binary down counter

Asynchronous Binary Up Counter

An ‘N’ bit Asynchronous binary up counter consists of ‘N’ T flip-flops. It counts from O to 2V — 1. The block
diagram of 3-bit Asynchronous binary up counter is shown in the following figure.

1

To Qo Ta Q1 T2 QL
> o ¥ T
Flip-Flop Flip-Flop Flip-Flop

> P> —p

Counter
Output

clk

The 3-bit Asynchronous binary up counter contains three T flip-flops and the T-input of all the flip-flops are
connected to “1'. All these flip-flops are negative edge triggered but the outputs change asynchronously.
The clock signal is directly applied to the first T flip-flop. So, the output of first T flip-flop toggles for every
negative edge of clock signal.

The output of first T flip-flop is applied as clock signal for second T flip-flop. So, the output of second T flip-
flop toggles for every negative edge of output of first T flip-flop. Similarly, the output of third T flip-flop
toggles for every negative edge of output of second T flip-flop, since the output of second T flip-flop acts as
the clock signal for third T flip-flop.

Assume the initial status of T flip-flops from rightmost to leftmost is Q-Q;Q, = 000 . Here, Q> &

Qo are MSB & LSB respectively. We can understand the working of 3-bit asynchronous binary counter

from the following table.

No of negative edge of Clock Qo LSB Q4 Q, MSB
o) 0O o) o)
1 1 0 ©
2 0 1 ©
3 1 1 0
4 0 0 1

)]
-
©]
-

Here @, toggled for every negative edge of clock signal. (), toggled for every @, that goes from

1 to O, otherwise remained in the previous state. Similarly, (Js toggled for every @, that goes from 1

to O, otherwise remained in the previous state.

The initial status of the T flip-flops in the absence of clock signal is Q2Q1Qc — 000 . This is

incremented by one for every negative edge of clock signal and reached to maximum value at 7" negative
edge of clock signal. This pattern repeats when further negative edges of clock signal are applied.

Asynchronous Binary Down Counter

An ‘N’ bit Asynchronous binary down counter consists of ‘N’ T flip-flops. It counts from 2V — 1 to 0. The
block diagram of 3-bit Asynchronous binary down counter is shown in the following figure.

1
To Qo Ty Q1 T2 Q2
T T T
Flip-Flop Flip-Flop Flip-Flop
Qo > Q1 >
~ Counter
s Output

The block diagram of 3-bit Asynchronous binary down counter is similar to the block diagram of 3-bit
Asynchronous binary up counter. But, the only difference is that instead of connecting the normal outputs
of one stage flip-flop as clock signal for next stage flip-flop, connect the complemented outputs of one
stage flip-flop as clock signal for next stage flip-flop. Complemented output goes from 1 to O is same as the
normal output goes from O to 1.

Bidirectional Counter

Both Synchronous and Asynchronous counters are capable of counting “Up” or counting “Down”, but
their is another more “Universal” type of counter that can count in both directions either Up or Down
depending on the state of their input control pin and these are known as Bidirectional Counters.
Bidlirectional counters, also known as Up/Down counters, are capable of counting in either direction
through any given count sequence and they can be reversed at any point within their count sequence

by using an additional control input as shown below.

Synchromous 3-bit Up/Dowvwn Counter

L f_:»;sg < QA QcC

g Qc | —
FrRC

CcLK
K e 1—

g aa |-
ur.oowH | EE A —;D_f
—_—

=~ LN
. > Lo

2 e
Clocki7ulse

3 =2 3 -3 S = r g
SeE== D I I I B
Pulosceo)
' J] ' L]
w : ' M
O -
']
1]

S — e
2 | m B N B e
2B I l ' l l—

UNIT-IV

8085 microprocessor Review (brief details only), 8086 microprocessor, Functional
Diagram, register organization 8086, Flag register of 8086 and its functions, Addressing

modes of 8086, Pin diagram of 8086 , Minimum mode & Maximum mode operation of
8086, Interrupts in 8086.

8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel
in 1977 using NMOS technology.

It has the following configuration —

4 8-bit data bus

16-bit address bus, which can address upto 64KB

A 16-bit program counter

A 16-bit stack pointer

Six 8-bit registers arranged in pairs: BC, DE, HL

“ Requires +5V supply to operate at 3.2 MHZ single phase clock

L

U

U

(

It is used in washing machines, microwave ovens, mobile phones, etc.

8085 Microprocessor — Functional Units

8085 consists of the following functional units —

Accumulator

It is an 8-bit register used to perform arithmetic, logical, /0 & LOAD/STORE operations. It is connected to
internal data bus & ALU.

Arithmetic and logic unit

As the name suggests, it performs arithmetic and logical operations like Addition, Subtraction, AND, OR,
etc. on 8-bit data.

General purpose register

There are 6 general purpose registers in 8085 processor, i.e. B, C, D, E, H & L. Each register can hold 8-
bit data.

These registers can work in pair to hold 16-bit data and their pairing combination is like B-C, D-E & H-L.

Program counter

It is a 16-bit register used to store the memory address location of the next instruction to be executed.
Microprocessor increments the program whenever an instruction is being executed, so that the program
counter points to the memory address of the next instruction that is going to be executed.

Stack pointer

It is also a 16-bit register works like stack, which is always incremented/decremented by 2 during push &
pop operations.

Temporary register

It is an 8-bit register, which holds the temporary data of arithmetic and logical operations.

Flag register

It is an 8-bit register having five 1-bit flip-flops, which holds either O or 1 depending upon the result stored
in the accumulator.

These are the set of 5 flip-flops —

2 Sign (S)

s Zero (Z2)

< Auxiliary Carry (AC)
= Parity (P)

= Carry (C)

Its bit position is shown in the following table —

D7 D6 D5 D4 D3 D2 D1 DO

S Z AC = CY

Instruction register and decoder

It is an 8-bit register. When an instruction is fetched from memory then it is stored in the Instruction
register. Instruction decoder decodes the information present in the Instruction register.

Timing and control unit

It provides timing and control signal to the microprocessor to perform operations. Following are the timing
and control signals, which control external and internal circuits —

2 Control Signals: READY, RD’, WR’, ALE
@ Status Signals: SO, S1, |IO/M’

“ DMA Signals: HOLD, HLDA

@ RESET Signals: RESET IN, RESET OUT

Interrupt control

As the name suggests it controls the interrupts during a process. When a microprocessor is executing a
main program and whenever an interrupt occurs, the microprocessor shifts the control from the main
program to process the incoming request. After the request is completed, the control goes back to the main

program.

There are 5 interrupt signals in 8085 microprocessor: INTR, RST 7.5, RST 6.5, RST 5.5, TRAP.

8086 microprocessor

Intel 8086

o

Intel 8086 microprocessor is the enhanced version of Intel 8085 microprocessor. It was designed by Intel in 1976.

The 8086 microprocessor is al16-bit, N-channel, HMOS microprocessor. Where the HMOS is used for "High-speed
Metal Oxide Semiconductor".

Intel 8086 is built on a single semiconductor chip and packaged in a 40-pin IC package. The type of package is DIP
(Dual Inline Package).

Intel 8086 uses 20 address lines and 16 data- lines. It can directly address up to 229 = 1 Mbyte of memory.
It consists of a powerful instruction set, which provides operation like division and multiplication very quickly.

8086 is designed to operate in two modes, i.e., Minimum and Maximum mode.

Difference between 8085 and 8086 Microprocessor

8085 Microprocessor 8086 Microprocessor

It is an 8-bit microprocessor. It is a 16-bit microprocessor.

It has a 16-bit address line. It has a 20-bit address line.

It has a 8-bit data bus. It has a 16-bit data bus.

The memory capacity is 64 KB. The memory capacity is 1 MB.

The Clock speed of this microprocessor is 3 MHz. The Clock speed of this microprocessor varies between 5, 8

and 10 MHz for different versions.
It has five flags. It has nine flags.

8085 microprocessor does not support memory 8086 microprocessor supports memory segmentation.

segmentation.

It does not support pipelining. It supports pipelining.

It is accumulator based processor. It is general purpose register based processor.

It has no minimum or maximum mode. It has minimum and maximum modes.

In 8085, only one processor is used. In 8086, more than one processor is used. An additional

external processor can also be employed.

It contains less number of transistors compare to 8086 It contains more number of transistors compare to 8085

microprocessor. It contains about 6500 transistor. microprocessor. It contains about 29000 in size.

The cost of 8085 is low. The cost of 8086 is high.

Functional Diagram

PR,

PN

ATTITUDE
CONTROL
ELECTRONICS
(ACE)

REENTRY

JET FIRING
COMMANDS

PRIMARY
RATE GYRO
PACKAGE

SECONDARY
RATE GYRO
PACKAGE

> REACTION
CONTROL
SYSTEM
ORMT ATTITUDE ORBIT ATTITUDE
AND MANEUVER » AND MANEUVER
ELECTRONICS REACTION CONTROL
(Oamt) SYSTEM
POWER
INVERTER

Maximum mode configuration of
8086 microprocessor (Max mode)

8086 microprocessor characteristics:

e |t contains 20 bit address bus.

e |t contains 16-bit data bus, therefore 8086 is called as 16-bit microprocessor.

e |tis 2-stage pipelined processor. It can prefetch 6 bytes from memory and store into queue to
increase the speed of the execution.

e |t's control bus carries signals for executing operations such as read ,write etc.

e |t has Memory Banks. 2 banks of 512KB each. These banks are called as lower Bank (even) and
higher Bank (odd).

e |In 8086 the entire memory is divided into four memory segments which are code ,stack, data and
extra segment.

e 8086 has 16 bit 10 address.

e |t has 256 interrupts.

8086 has two operating Modes:

1. Minimum mode
2. Maximum mode

https://www.geeksforgeeks.org/architecture-of-8086/

X4 X5 CLK
RES' RESET
8284
RDY Clock READY
Generator
Sys Ready
(Wait State
Generator)
Reset
Circuit Interrupt NIV c—
requests

INTR ——

RQ, / GT},

RQ!, / GT | s

Bus Request
Logic

4 —ip |
Only For TEST
8087 COP

Qs() -
Qs‘ —————

T

——
Logic 0

AD op=—AD

A,6fS3 Ay

BHE"'

O 00o ™

8‘2 .S"

MN/MX'

ALE

16 '
/ s(‘: ’

IS,

's.o

lL.e Three latches
Of 8 bit each

21 8282

—t

8286
(2)

1
~J "¢
T OF

> %
DT/R' DEN
ALE

CLK
8288

h
P
[—
Bus
controller
[—

—— BHE'

(3) r+> A
8 bit latch 19 0

(Address Bus)

D —DO

15

(Data Bus)

8 Bit data Transreceiver

MRDC’
MRDC’
AMWTC'
IORC’

lowc'
AlOwWC'

INTA'

(Control Bus)

Interrupt is the method of creating a temporary halt during program execution and allows peripheral
devices to access the microprocessor. The microprocessor responds to that interrupt with an ISR (Interrupt
Service Routine), which is a short program to instruct the microprocessor on how to handle the interrupt.

The following image shows the types of interrupts we have in a 8086 microprocessor —

Interrupts

Hardware Software
Interrupt Interrupt

Non-Maskable

Maskable Interrupt
Interrupt

Hardware Interrupts

Hardware interrupt is caused by any peripheral device by sending a signal through a specified pin to the
microprocessor.

The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non-maskable interrupt and INTR is
a maskable interrupt having lower priority. One more interrupt pin associated is INTA called interrupt
acknowledge.

NMI

It is a single non-maskable interrupt pin (NMI) having higher priority than the maskable interrupt request
pin (INTR)and it is of type 2 interrupt.

When this interrupt is activated, these actions take place —

4 Completes the current instruction that is in progress.
“ Pushes the Flag register values on to the stack.

“ Pushes the CS (code segment) value and IP (instruction pointer) value of the return address on to the
stack.

< |IP is loaded from the contents of the word location O0O008H.
4 CS is loaded from the contents of the next word location OO0O0AH.

“ Interrupt flag and trap flag are reset to O.

INTR

The INTR is a maskable interrupt because the microprocessor will be interrupted only if interrupts are
enabled using set interrupt flag instruction. It should not be enabled using clear interrupt Flag instruction.

The INTR interrupt is activated by an |/O port. If the interrupt is enabled and NMI is disabled, then the
microprocessor first completes the current execution and sends ‘0’ on INTA pin twice. The first ‘0’ means
INTA informs the external device to get ready and during the second ‘0’ the microprocessor receives the 8

bit, say X, from the programmable interrupt controller.

These actions are taken by the microprocessor —

L

First completes the current instruction.

L

Activates INTA output and receives the interrupt type, say X.

L

Flag register value, CS value of the return address and IP value of the return address are pushed on

to the stack.

IP value is loaded from the contents of word location X x 4

L

L

CS is loaded from the contents of the next word location.

L

Interrupt flag and trap flag is reset to O

UNIT-V

Instruction set of 8086, Assembler directives, Procedures and Macros, Simple programs
involving arithmetic, logical, branch instructions, Ascending, Descending and Block move
programs, String Manipulation Instructions. Overview of 8051 microcontroller, Architecture,
/O ports and Memory organization, addressing modes and instruction set of 8051(Brief
details only), Simple Programs.

Instruction Set of 8086

Instructions are classified on the basis of functions they perform.
They are categorized into the following main types:

Data Transfer instruction

All the instructions which perform data movement come under this category.
The source data may be a register, memory location, port etc. the destination may be a register, memory location

or port. The following instructions come under this category:

Instruction

MOV

LDS

LES

LEA

LAHF

SAHF

XLAT/XLATB

XCHG

PUSH

POP

POPF

IN

ouT

Description

Moves data from register to register, register to memory, memory to register, memory to accumulator,

accumulator to memory, etc.

Loads a word from the specified memory locations into specified register. It also loads a word from the next

two memory locations into DS register.

Loads a word from the specified memory locations into the specified register. It also loads a word from next

two memory locations into ES register.

Loads offset address into the specified register.

Loads low order 8-bits of the flag register into AH register.

Stores the content of AH register into low order bits of the flags register.
Reads a byte from the lookup table.

Exchanges the contents of the 16-bit or 8-bit specified register with the contents of AX register, specified

register or memory locations.

Pushes (sends, writes or moves) the content of a specified register or memory location(s) onto the top of

the stack.

Pops (reads) two bytes from the top of the stack and keeps them in a specified register, or memory

location(s).
Pops (reads) two bytes from the top of the stack and keeps them in the flag register.
Transfers data from a port to the accumulator or AX, DX or AL register.

Transfers data from accumulator or AL or AX register to an I/O port identified by the second byte of the

instruction.

Logical Instructions

Instruction of this group perform logical AND, OR, XOR, NOT and TEST operations. The following instructions come under

this category:

Instruction

AND

OR

XOR

NOT

TEST

Description

Performs bit by bit logical AND operation of two operands and places the result in the specified destination.
Performs bit by bit logical OR operation of two operands and places the result in the specified destination.
Performs bit by bit logical XOR operation of two operands and places the result in the specified destination.
Takes one's complement of the content of a specified register or memory location(s).

Perform logical AND operation of a specified operand with another specified operand.

Rotate Instructions

The following instructions come under this category:

Instruction

RCL

RCR

ROL

ROR

Description

Rotate all bits of the operand left by specified number of bits through carry flag.
Rotate all bits of the operand right by specified number of bits through carry flag.
Rotate all bits of the operand left by specified number of bits.

Rotate all bits of the operand right by specified number of bits.

Macro and Procedure

1. Macro:

Macro is a set of instruction and the programmer can use it anywhere in the program by using its
name. It is mainly used to achieve modular programming. So same set of instructions can be used
multiple times when ever required by the help of macro. Wherever macro’s identifier is used, it is

replaced by the actual defined instructions during compilation thereby no calling and return occurs.

Syntax of macro:

smacro macro_name number_of_parameters
<macro body>

%»endmacro

2. Procedure :

Procedures are also like macro, but they are used for large set of instruction when macro is useful for
small set of instructions. It contains a set of instructions which performs a specific task. It contains
three main partsi.e Procedure name to identify the procedure, procedure body which contains set of
instructions, and RET statement which denotes return statement. Unlike macros, procedures follow
call-return method thereby achieving true modularity.

S.No.MACRO

O01.

02.

03.

04.

05.

06.

07.

08.

09.

Macro definition contains a set of instruction to

support modular programming.

It is used for small set of instructions mostly
less than ten instructions.

In case of macro memory requirement is high.

CALL and RET instruction/statements are not
required in macro.

Assembler directive MACRO is used to define
macro and assembler directive ENDM is used to
indicate the body is over.

Execution time of macro is less as it executes
faster than procedure.

Here machine code is created multiple times as
each time machine code is generated when
macro is called.

In a macro parameter is passed as part of
statement that calls macro.

Overhead time does not take place as there is
no calling and returning.

PROCEDURE

Procedure contains a set of instructions which
can be called repetitively which can perform a
specific task.

It is used for large set of instructions mostly
more than ten instructions.

In case of procedure memory requirement is
less.

CALL and RET instruction/statements are
required in procedure.

Assembler directive PROC is used to define
procedure and assembler directive ENDP is used
to indicate the body is over.

Execution time of procedures is high as it
executes slower than macro.

Here machine code is created only once, it is
generated only once when the procedure is
defined.

In a procedure parameters are passed in
registers and memory locations of stack.
Overhead time takes place during calling
procedure and returning control to calling
program.

Branch instructions

The branch instructions are used to change the sequence of instruction execution.
Use branch instructions to change the sequence of instruction execution.

Since all branch instructions are on word boundaries, the processor performing the branch ignores bits 30 and 31 of the generated branch target
address. All branch instructions can be used in unprivileged state.

A branch instruction computes the target address in one of four ways:

— Target address is the sum of a constant and the address of the branch instruction itself.
— Target address is the absolute address given as an operand to the instruction.
— Target address is the address found in the Link Register.

— Target address is the address found in the Count Register.

Using the first two of these methods, the target address can be computed sufficiently ahead of the branch instructions to prefetch instructions along the
target path.

Using the third and fourth methods, prefetching instructions along the branch path is also possible provided the Link Register or the Count Register is
loaded sufficiently ahead of the branch instruction.

The branch instructions include Branch Unconditional and Branch Conditional. In the various target forms, branch instructions generally either branch
unconditionally only, branch unconditionally and provide a return address, branch conditionally only, or branch conditionally and provide a return
address. If a branch instruction has the Link bit set to 1, then the Link Register is altered to store the return address for use by an invoked subroutine.
The return address is the address of the instruction immediately following the branch instruction.

The assembler supports various extended mnemonics for branch instructions that incorporate the BO field only or the BO field and a partial BI field into
the mnemonics.

String manipulation instructions in 8086 microprocessor

String is a group of bytes/words and their memory is always allocated in a sequential order. String is either
referred as byte string or word string. Here we will see some instructions which are used to manipulate the
string related operations.

The String manipulation instructions are as follows.

Opcode Operand Description

REP Instruction Used to repeat the given instruction till CX # O.

REPE/REPZ Instruction Used to repeat the given instruction until CX = 0 or zero flag ZF =
S i

REPNE/REPNZ Instruction Used to repeat the given instruction until CX = 0 or zero flag ZF =
g 2

MOVS/MOVSB/MOVSW ———— Used to move the byte/word from one string to another.

COMS/COMPSB/COMPSW —— Used to compare two string bytes/words.

INS/INSB/INSW ——— Used as an input string/byte/word from the I/0O port to the

provided memory location.

OUTS/OUTSB/OUTSW —— Used as an output string/byte/word from the provided memory
location to the I/O port.

SCAS/SCASB/SCASW —— Used to scan a string and compare its byte with a byte in AL or
string word with a word in AX.

LODS/LODSB/LODSW —— Used to store the string byte into AL or string word into AX.

Microcontrollers - 8051 Architecture

Let us now discuss the architecture of 8051 Microcontroller.

In the following diagram, the system bus connects all the support devices to the CPU. The system bus
consists of an 8-bit data bus, a 16-bit address bus and bus control signals. All other devices like program
memory, ports, data memory, serial interface, interrupt control, timers, and the CPU are all interfaced

together through the system bus.

External
Iinterrupts
On-Chip
INTO
1 llNTl ROM
(for o
Interrupt |[&—————— program On-Chip ETC = g
Control code) Timer O C—} X
- 7
4> Timerl |+ B
e TO (7 4
N 7
v
CcPU <
OscC BUS 4 1/O Ports Serial
Control Port
30PF - - 30PF l l I I I I l I

L ™0 RXD

Address/Data
4 to 30 MHz

Memory mapped I/O and Isolated I/O

Isolated 1/0 -
Then we have Isolated I/0 in which we Have common bus(data and address) for /0 and memory but

separate read and write control lines for I/0. So when CPU decode instruction then if data is for 1/0
then it places the address on the address line and set |/0 read or write control line on due to which
data transfer occurs between CPU and |I/0. As the address space of memory and |/0 is isolated and the

name is so. The address for I/0 here is called ports. Here we have different read-write instruction for

Address Bus

Data Bus

Maoemory e

Memory control line | ‘ O control line ‘ I

both I/0 and memory.

Memory Mapped I/0 -
In this case every bus in common due to which the same set of instructions work for memory and |/0.
Hence we manipulate |/0 same as memory and both have same address space, due to which

addressing capability of memory become less because some part is occupied by the I/0.

[Address Bus

Memory
Control Bus

There are 5 different ways to execute this instruction and hence we say, we have got 5 addressing modes for
8051.

They are :

1) Immediate addressing mode

2) Direct addressing mode

3) Register direct addressing mode

4) Register indirect addressing mode

5) Indexed addressing mode.

Immediate Addressing Mode

Immediate Addressing Mode

Instruction Opcode Bytes Cycles

MOV A, #6AH 79H 2 1

Program Memory
0207
0206
0205 | 6A | eon
0204
0203 — Accumulator
0202 74
0201 PC = PC + 2 | 0204]
0200 Program Counter

The picture above describes the above instruction and its execution.

saved in program memory 0203. (See, any part of the program memory can be used, this is
just an example) When the opcode 74H is read, the next step taken would be to transfer
whatever data at the next program memory address (here at 0203) to accumulator A (EOH is
the address of accumulator). This instruction is of two bytes and is executed in one cycle. So

after the execution of this

program memory.

instruction, program counter will add

www.CircuitsToday.com

The opcode for MOV A,

data is 74H. The opcode is saved in program memory at 0202 address. The data 6AH is

2 and move to 0204 of

Direct Addressing Mode

Direct Addressing Mode

Instruction Opcode Bytes Cycles

MOV A, #049H ES 2 1

Program Memory

0207

0206 Afc | 1E |
020s

0204 I

0203 o4 | 1F] oans
0202 ES Register Bank #0

0201

0200 | 0204 |

www.CircuitsToday.com

As shown in picture above this is a 2 byte instruction which requires 1 cycle to complete.
Program counter will increment by 2 and stand in O204. The opcode for instruction MOV A,
address is ESH. When the instruction at 0202 is executed (E5H), accumulator is made active
and ready to receive data. Then program control goes to next address that is O203 and look
up the address of the location (04H) where the source data (o be transferred to
accumulator) is located. At 0O4H the control finds the data 1F and transfers it to accumulator

and hence the execution is completed.

Register Direct Addressing Mode

Processor Status Word

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0O
CY AC FO RS1 RSO ov P
= Register bank Select bit O
= Register bank Select bit 1
RS1 RSO ra—— Register Bank Status
0 0 0 - Register Bank 0 is selected
0 1 1 - Register Bank 1 is selected
1 0 2 - Register Bank 2 is selected
1 1 3 - Register Bank 3 is selected

Register Indirect Addressing Mode

Register Indirect Addressing Mode

Instruction

Opcode

Bytes

Cycles

MOV A, @ RO

E6H

1

Program Memory

ACC

EC

Data memory

2F

0203

PC=PC+1

2F

20

RBO

Indexed Addressing Mode

Indexed Addressing Mode

Instruction Opcode Bytes Cycles
MOVC A,@A +DPTR 93H 1 >
Program Memory
et ey e
¥ acc | Data :
ACC 02 b
Data
= ADD
01 FE DPTR
DPH DPL
93
0O1FC

——t PC = PC + 1

