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Course Objectives:

To make the student learn about

[ Basic characteristics of R, L, C parameters, their Voltage and Current Relations and Various

combinations of these parameters.

[J The Single Phase AC circuits and concepts of real power, reactive power, complex power,

phase angle and phase difference

[1 Series and parallel resonances, bandwidth, current locus diagrams

[1 Network theorems and their applications

[1 Network Topology and concepts like Tree, Cut-set , Tie-set, Loop, Co-Tree

Unit- 1

Introduction to Electrical & Magnetic Circuits

Electrical Circuits: Circuit Concept - Types of elements - Source Transformation-Voltage — Current Relationship for Passive
Elements. Kirchhoff’s Laws — Network Reduction Techniques- Series, Parallel, Series Parallel, Star-to-Delta or Delta-to-Star
Transformation. Examples Magnetic Circuits: Faraday’s Laws of Electromagnetic Induction-Concept of Self and Mutual
Inductance-Dot Convention-Coefficient of Coupling-Composite Magnetic Circuit-Analysis of Series and Parallel Magnetic
Circuits, MMF Calculations.

Unit- 2

Network Topology

Definitions — Graph — Tree, Basic Cutset and Basic Tieset Matrices for Planar Networks — Loop and Nodal Methods of Analysis
of Networks & Independent Voltage and Current Sources — Duality & Dual Networks.Nodal Analysis, Mesh Analysis.

Unit- 3

Single Phase A.C Circuits

R.M.S, Average Values and Form Factor for Different Periodic Wave Forms - Sinusoidal Alternating Quantities — Phase and
Phase Difference — Complex and Polar Forms of Representations, j-Notation, Steady State Analysis of R, L and C (In Series,
Parallel and Series Parallel Combinations) with Sinusoidal Excitation- Resonance - Phasor diagrams - Concept of Power
Factor- Concept of Reactance, Impedance, Susceptance and Admittance-Apparent Power, Active and Reactive Power,
Examples.



Unit- 4
Network Theorems

Superposition, Reciprocity, Thevenin’s, Norton’s, Maximum Power Transfer, Millmann’s, Tellegen’s, and Compensation
Theorems for D.C and Sinusoidal Excitations.

Unit-5
Three Phase A.C. Circuits

Introduction - Analysis of Balanced Three Phase Circuits — Phase Sequence- Star and Delta Connection -Relation between
Line and Phase Voltages and Currents in Balanced Systems - Measurement of Active and Reactive Power in Balanced and
Unbalanced Three Phase Systems. Analysis of Three Phase Unbalanced Circuits - Loop Method - Star Delta Transformation
Technique - for balanced and unbalanced circuits - Measurement of Active and reactive Power — Advantages of Three Phase
System.

Text Books:

1. Fundamentals of Electric Circuits Charles K. Alexander and Matthew. N. O. Sadiku, Mc Graw Hill, 5th
Edition, 2013.

2. Engineering circuit analysis William Hayt and Jack E. Kemmerly, Mc Graw Hill Company, 7th Edition,
2006.

Reference Books:

1. Circuit Theory Analysis & Synthesis A. Chakrabarti, Dhanpat Rai & Sons, 7th Revised Edition, 2018.
2. Network Analysis M.E Van Valkenberg, Prentice Hall (India), 3rd Edition, 1999.

3. Electrical Engineering Fundamentals V. Del Toro, Prentice Hall International, 2nd Edition, 2019.

4. Electric Circuits- Schaum’s Series, Mc Graw Hill, 5th Edition, 2010.

5. Electrical Circuit Theory and Technology John Bird, Routledge, Taylor & Francis, 5th Edition, 2014.



COURSE OUTCOMES

After completing the course, the student should be able to do the following

[l Given a network, find the equivalent impedance by using network reduction techniques and determine the current through any element
and voltage across and power through any element.

[l Given a circuit and the excitation, determine the real power, reactive power, power factor etc,.

L1 Apply the network theorems suitably

[] Determine the Dual of the Network, develop the Cut Set and Tie-set Matrices for a given Circuit. Also
understand various basic definitions and concepts



UNIT -1



Electric Circuit

* The system in which
can flow from source to load through
one path and after delivering energy at
load, the current can return to the
other terminal of source through
another path is referred as electric
circuit.



Main Parts of an Electric Circuit

Electrical Sources (for delivering electricity to the
circuit and these are mainly electric generators and
batteries)
Controlling Devices (for controlling electricity and
these are mainly switches, circuit breakers, eLe,)
Protection Devices (for protecting the circuit from
abnormal conditions and these are mainly

S, , Switchgear systems)
Conducting Path (to carry current one point to other in
the circuit and these are mainly wires or conductors)

l .1)«]('




Basic Properties of an Electric
Circuit

A circuit 1s always a closed path.
A circuit always contain an energy source which acts as
source of electrons.
The electric elements include uncontrolled and
controlled source of energy, resistors, .

, €LC,
Inan flow of electrons takes place from
negative terminal to positive terminal
Direction of flow of conventional current is from
positive to negative terminal.

Flow of current leads to potential drop across the
various elements,




Types of Electric Circuit

Open Circuit-1f due to disconnection of any part ol an
if there is no flow of current the circuit
18 said to be open circuited.




Closed Circuit-1f there is no discontinuity in the
circuit and current can flow from one part to another
part of the circuit then the circuit is said to be closed

circunt.,

Simple Rlerkriz Clyceil




can further be
categorized according to their
structural features.

Series Circuit
Parallel Circuit
Series Parallel Circuit.




IDEAL VOLTAGE SOURCE

An ideal voltage source is a two-terminal device that
maintains a fixed voltage drop across its terminals, It is
often used as a mathematical abstraction that
simplifies the analysis of real electric circuits

ideal Voitage Source =



IDEAL CURRENT SOQURCE

A current source is an electronic circuit that delivers or
absorbs an electric current which is independent of the
voltage across it.

A current source is the dual of a voltage source.

*
Ideal current source = ¢, R’ ?v




DEPENDENT SOURCES

~ In the theory of electrical networks, a
dependent source is a voltage or a current source
whose value depends on a voltage or current
somewhere else in the network.

; | --> A simple electric circuit
3 R made up of a voltage
source and a resistor.
Here , V=iR (Ohm’s law)




»Some voltage (current) sources have their voltage
(current) values varying with some other variables.

» They are called dependent voltage (current) sources
or controlled voltage (current) sources,

+
Y (v..-‘..--)<'>(v..i..--) %5,
Depencert Dependent

voltage soorce current source



CLASSIFICATION

Dependent sources can be classified as follows:

1 Voltage-controlled voltage source:
The source delivers the voltage as per the voitage of the
dependent element.

V={f_{all{{v_{x}})

Uiy




2 Voltage-controlled current source:
The source delivers the current as per the voltage of the
dependent element, f

I={f_{b}}{{v_{x}}) B\ As
53

3.Current-controlled current source:

The source delivers the current as per the current of the
1

dependent element. AAA

={f-{c})‘{‘-{x}n " 85 —é -




4.Current-controlled voltage source:
The source delivers the voltage as per the current of the
dependent element.

V={f_{d}({i_{(x})) ¥
fis |




INDEPENDENT SOURCES

An independent voltage source maintains a
voltage(fixed or varying with time) which is not
affected by any other quantity. Similarly

an independent current source maintains a current
(fixed or time-varying) which is unaffected by any
other quantity,

+
C.DV-"('D( | )V.'«) f)l.im I, ii¢)

o dependent Independant
vollage aocsor surrenl siniste



SOURCE TRANSFORMATION

* |t is peocess of in which the circuit can be simplify or modified which
MAke Ouf CHOWE Mote 15 1O Wl |

* Thate are many ways L0 solve the ceoat to make it Umie
* The I are gven bellow



* |1 any circult s having the voltage source In series 1t can be converted
into current source with paralie! with that resistance . This process can
be reciprocated




Example

e Use source transformation to find v, in the
circuit.

2Q 30
W\

40 3A s Q v, 12V




we use current division 1o gel

2
= - 2)=04A
' 2+8()

and

v, =8i =8(0.4)=3.2V



Star-Delta Transformation

{a) Star (Y) section (b) Delta or mesh (A) section




Equivalence

* Equivalence can be found on
the basis that the resistance
between any pair of terminals in
the two circuits have to be the

same, when the third terminal is
left open.



DELTA to STAR

Now subtracting 2 from | and adding the result to 3, we will get the
following values for R R, and R,.

How to remember”?

Resistance of cach arm of star is given by the product
of the resistance of the two delta sides that meet ot 1ts
ends divided by the sum of the three delta resistance



STAR 1o DELTA
Multiplying | and 2, 2 and 3 |, 3 and | and sdding them
together and simplifying, we will have the following result

[ R, = BaBa+ RuRc+ RcR,

How to remember: The equivalent delta resistance between any
two point is given by the product of resistance taken two at a time
divided by the opposite resistance in the star configuration.



Problem

* A delta-section of resistors is given in
figure. Convert this into an equivalent
star-section.

Ans.: R, =3; R,=10Q; R.=1.5.



The figure shows a
network. The
number on each
branch represents
the value of
resistance in ohms.
Find the resistance
between the points
E and F.




Solution







Difference between Magnetic and
Electric Circuit

The Difference between the Magnetic and
Electric Circuit are explained considering
various factors like the basic definition,
relationbetween Flux and Current, Reluctance
and Resistance, EMF and MMF, different
analogies of both the circuits. Like its density
and intensity, laws applicable in the circuit,
Magnetic and Electric lines, etc.



BASIS

Definition

Relation

Between Flux

and Current

Units

MMF
EMF

and

MAGNETIC CIRCUIT

for
called

The closed path
magnetic flux is
magnetic circuit.

Flux = mmf/reluctance

Flux ¢ is measured in
weber (wb)

Magnetomotive force is the
driving force and is
measured in Ampere turns
(AT)

Mmf =[ H.dl

ELECTRIC CIRCUIT

The closed path for electric
current is called electric
circuit.

Current = emf/ resistance

Current | is measured in
amperes

Electromotive force is the
driving force and measured
in volts (V)
Emf=[E.dl



Reluctance
and
Resistance

Relation
between

Permeance
and
Conduction

Analogy

Analogy

Density

Intensity

Drops

Reluctance opposes
flow of magnetic flux S =

llag and measured

(AT/wb)

the

in

Permeance = 1/reluctance

Permeability

Reluctivity

Flux density B
(wb/m2)

Magnetic intensity H

Mmf drop = ¢S

@/a

NI/

Resistance opposes the
flow of current
R = p. I/a and measured in

(Q)

Conduction = 1/ resistance

Conductivity
Resistivity

Current density J = l/a
(A/m2)

Electric density E = V/d

Voltage drop = IR



Flux
Electrons

Examples

Variation
Reluctance
and
Resistance

and

of

In magnetic circuit
molecular poles are aligned.
The flux does not flow, but
sets up in the magnetic
circuit.

For magnetic flux, there is
no perfect insulator. It can
set up even in the non
magnetic materials like air,
rubber, glass etc.

The reluctance (S) of a
magnetic circuit is not
constant rather it varies with
the value of B.

In electric circuit electric
current flows in the form of
electrons.

For electric circuit there are
a large number of perfect
insulators like glass, air,
rubber, PVC and synthetic
resin which do not allow it
to flow through them.

The resistance (R) of an
electric circuit is almost
constant as its value
depends upon the value of
p. The value of p and R can
change slightly if the
change Iin temperature
takes place



Magnetic Circuit

The closed path followed by magnetic lines
of forces or magnetic flux 1s called magnetic
circuit. A magnetic circuit 1s made up of
magnetic materials having high permeability
such as 1ron, soft steel, etc. Magnetic circuits
are used 1n various devices like electric motor,
transformers, relays, generators galvanometer,
etc.



Electric Circuit

The rearrangement by which various
electrical sources like AC source or DC source,
resistances, capacitance and another electrical

parameter are connected is called electric
circuit or electrical network.



Coupled circuit

An electric circuit is said to be a coupled
circuit, when there exists a mutual inductance
between the coils (or inductors) present in that
circuit. In the absence of resistor, coil becomes
inductor. Sometimes, the terms coil and
inductor are interchangeably used.



Dot Convention

Dot convention 1s a technique, which gives
the details about voltage polarity at the dotted
terminal. This information 1s useful, while writing
KVL equations.

[f the current enters at the dotted terminal of one
coil (or inductor), then it induces a voltage at
another coill (or inductor), which 1s
having positive polarity at the dotted terminal.

If the current leaves from the dotted terminal of
one coil (or inductor), then 1t induces a voltage at
another coill (or inductor), which 1s
having negative polarity at the dotted terminal.



Classification of Coupling

Coupling is classified into the following two
categories.

* Electrical Coupling
* Magnetic Coupling



Electrical Coupling

* Electrical coupling occurs, when there exists
a physical connection between two coils (or
inductors). This coupling can be of either
aiding type or opposing type. It 1s based on
whether the current enters at the dotted
terminal or leaves from the dotted terminal.



Coupling of Aiding type

<

'

'
¥

.- el

-3

* Since the two inductors are connected
in series, the same current I flow
through both inductors having self-
inductances L, and L,.

* In this case, the current, I enter at the
dotted terminal of each inductor. Hence,
the induced voltage in each inductor
will be having positive polarity at the
dotted terminal due to the current
flowing in another coil.

* Therefore, the equivalent
inductance of series combination of
inductors shown in the above figure is

Leff=LI1+L2+2M



-y

&

Coupling of Opposing type

In the circuit, the current I enters at the dotted
terminal of the inductor having an inductance of L.
Hence, 1t induces a voltage in the other inductor
having an inductance of L,.

So, positive polarity of the induced voltage is
present at the dotted terminal of this inductor.

In the above circuit, the current I leaves from
the dotted terminal of the inductor having an
inductance of L,. Hence, it induces a voltage in the
other inductor having an inductance of L,.
So, negative polarity of the induced voltage is
present at the dotted terminal of this inductor.
Therefore, the equivalent inductance of series
combination of inductors shown in the above figure
is Leff = L1+L2-2M

In this case, the equivalent inductance has been
decreased by 2M. Hence, the above electrical circuit
is an example of electrical coupling which is
of opposing type.



Magnetic Coupling

* Magnetic coupling occurs, when there 1s no
physical connection between two coils (or
inductors). This coupling can be of either
aiding type or opposing type. It 1s based on
whether the current enters at the dotted
terminal or leaves from the dotted terminal.



Coupling of Aiding type

i o 2
- > [ 1 - -
+ +

- .
Vi L1 | ' L v2

The currents flowing through primary and secondary coils are
1, and 1, respectively.

In this case, these currents enter at the dotted terminal of
respective coil. Hence, the induced voltage in each coil will be having
positive polarity at the dotted terminal due to the current flowing in
another coil.



Coupling of Opposing Type

i1 \ i2
- - —-
+ ¥
.
v Ly ‘ | L2 V2
.
- .

The currents flowing through primary and secondary coils are i, and
1, respectively. In this case, the current, 1, enters at the dotted terminal of primary
coil. Hence, it induces a voltage in secondary coil. So, positive polarity of the
induced voltage is present at the dotted terminal of this secondary coil.

In the above circuit, the current. i, leaves from the dotted terminal of
secondary coil. Hence, it induces a voltage in primary coil. So, negative
polarity of the induced voltage is present at the dotted terminal of this primary
coil.



UNIT - 2



® o
Objectives
® To introduce the mesh — current method.

® To formulate the mesh-current cquations.

® To solve clectric circuits using the mesh-current

meothod -



. @ Mesh Anglysss (Loop Analysis)

® MeshAnalysis is developed by applying KVL around meshes in
the circuit,

® Loop (mesh) analysis results ina system of linear equations

which must be solved for unknown currents.

® Reduces the number of required equations to the number of

moeshes
® Can be done systematically with little thinking

® A5 usual, be careful writing moesh cquations follow sign

convention.



® ©
Definitions
Mesh: Loop that does not enclose other loops

Essential Branch: Path between 2 essential nodes {without
crossing other essential nodes).

How many mesh-currents?

# of essential nodes Ne = 4
£ of essential branches Be = 6

No. of Mesh-currents ™M = Be —~(Ne-1)

sEnough equations 1o get unknowns




® ®
Steps of Mesh Analysis
1. Identify the number ol basic meshes.

> Assign a current to cach mesh.

3. Apply KVL around cach loop to get an
cquation in terms of the loop Ccurrcnts.
4. Solve the rcsulling system ol lincar

cquations.



@ WWentifying the Meshes

<5

Assigning Mesh Currents

%QCS

am——- l
Ma;hl +j Vs
\
T







Mesh-Current Equations

./\/‘ § _Jj

"V' +I‘R'+(I"I:)RJ=O

I:Rz* VJ -+ (I)'I') R, = 0




‘ ‘ NMaosh Current Mathaod
1. Assign mesh currents

2. Write mesh equations
A0+ 044) « (4,0 K440) ~ D

“0Q
(3

.l
A2+ Ed) (1 N4 0) - TO ~ 0
3. Solve mesh equations ( | 40
£

4k, - 10§, = ©

“10i,* 208, = 70

A, - 104, =0
THi. = 280
Solution: §, = 1A Iy =dA



. . M CGiarerA irethvnl Cam

Case | YWhan 3 current source exists only in one meash

Loop 1
10 + Ji, + O6(i ~i,) =

0 0V

Loop 2

i, ==-35A

No need 1o write a
loop equation



| ® Case Il: Super Mesh

Whonm a Cunert SOuweon mamtin beftweon 1w eahes

YT e
S - S
8 wv ﬁo) (% ) “u

l----o- - - - —— i

23

n=i1+6 iy =28A




I | Case 1 Maash witn Deoonden! SOurcon

TS+ 55, » 2001 -<i,)~ 0O

1, + 2O08,-1,) =4I, = 0

.. . ‘.-'l

=753 % 54, » 20~ ~ O

O, i) = 20053, ) + 45, = 0
" . .‘J‘

“ = 7“



U 1hwe meshcwurront method 2o e o

oLl ) 1O
\o VA
Q.I . . -
10402 =

100V

45

Ans [ = A




@® ® Solution

Iy SO A )y 10D




® ® Solution
For meesh 2, 204, — 108 = iy, ~ 0 (L
Dus st pnodes AL 1, ™ 1; - 1z sothat (1) becoames 3y = (106G)a; (2)
Foeo the supesmnash, 100 » S04y ¢ 1Ny — 150 = g + M, = D

™y ’0’:‘5;—3‘;’:’0‘) (3)
"y =2 o“- o= 02y (4
Bua, v~ 1O so that (3) becosnes 4 = 2 (2730, (%)

Solviax (1) o (5), 1, ~0.11764,
Vo= 104> = ] 1763 valts, G =i == (Sh, = 19607 A




Nodal Analysis

* The node-voltage method is based on following idea.Instead
of solving for circuit variables,

e jand v of each element, we solve for a different set of
parameters, node voltages in this case,

 which automatically satisfy KVLs.As such, we do not need to
write KVLs and only need to solve KCLs.




Nodal Analysis

e Nodal analysis is more commonly used than mesh or loop
analysis for analysing networks.

* |t can be used to determine the unknown node voltages of
both planar and non-planar circuits.

 Nodal equations are usually formed by applying Kirchoff’s
Current Law to the nodes with unknown voltages, whereas

equations based on Kirchoff’s Voltage




Nodal Analysis

* In order to apply nodal analysis to a circuit, the first step is to
select a reference node or datum node and then assign a
voltage at each of the other nodes with respect to the

reference node.




Procedure in Nodal Analysis

e Select a reference node and treat it to be at zero or ground
potential.

e Label the nodes with unknown voltages.

e At each of these nodes, mark currents in the elements as
flowing away from

e the node.

* Form KCL equations and solve the set of simultaneous
equations for the

 unknown voltages.




Nodes

* Node refers to any point on a circuit where two or more
circuit elements meet. For two nodes to be different, their
voltages must be different. Without any further knowledge, it
is easy to establish how to find a node by using Ohm's Law:
V=IR. When looking at circuit schematics, ideal wires have a
resistance of zero. Since it can be assumed that there is no
change in the potential across any part of the wire, all of the
wire in between any components in a circuit is considered
part of the same node.




Simple sample problem

‘\

Node
Voltage I

Fig 2. Worked Example: 3




Va=64




Nodes with same voltage

e |n this circuit diagram the voltage in the green node is
the samethroughout, likewise, the voltages in the blue
node and the red node are the same throughout.




Enter vs. Leaving

lenter = lleaving

Node equation: I1 + 12 = Node

13, < I3 {,Iz
As you can see |1 and 12

are entering the node

and I3 is exiting the node. ~T

If we move I3 to the left I1

side of the Node

equation, then the node
equation becomes,

Node equation: 11 + 12+ (-
13) =0




UNIT -3



Single Phase AC

“* Characteristics of Sinusoidal

“* Phasors

** Phasor Relationships for R, L and C
“» Impedance

** Parallel and Series Resonance

% Examples for Sinusoidal Circuits Analysis



Sinusoidal Steady State Analysis

Any steady state voltage or current in a linear circuit with a
sinusoidal source is a sinusoid
— All steady state voltages and currents have the same frequency as
the source

In order to find a steady state voltage or current, all we need to know
is its magnitude and its phase relative to the source (we already know
its frequency)

We do not have to find this differential equation from the circuit, nor
do we have to solve it

Instead, we use the concepts of phasors and complex impedances

Phasors and complex impedances convert problems involving
differential equations into circuit analysis problems



Characteristics of Sinusoids

Outline:
. Time Period: T
Frequency: / (Hertz)
Angular Frequency: o (rad/sec)
Phase angle: @
. Amplitude: V,, I,

DB W



Characteristics of Sinusoids :

A=

Both the polarity and magnitude of voltage are changing.



Characteristics of Sinusoids :

Time Period: 77— Time necessary to go through one cycle. (s)
Frequency: f— Cycles per second. (Hz)

f=UT
Radian frequency(Angular frequency): o= 2a/=24/T (rad/s)

i= @in(ot. v jQ/bsina)t

Amplitude: V| [

m m

m?* - m




" Characteristics of Sinusoids :

Effective Roof Mean Square (RMS) Value of a Periodic
Waveform — 1s equal to the value of the direct current which is
flowing through an R-ohm resistor. It delivers the same average
power to the resistor as the periodic current does.

1 ¢7 .5 2
— | i*Rdt=I"R
7 Jo

— Effective Value of a Periodic Waveform 7, = \/ % J'OT i*dt

e e e B 17 (71 —cos2wt R TN S T
Iql._\/?]:) /° sin a)tdt—\/Tj:) > dt_\/?]m.a_ﬁ

1 e , B Ve
I/(f[f =\/FJ'° vadt _ﬁ



* Characteristics of Sinusoids :

Phase (angle)
) "I Phase angle

i=1_sin(wt+¢

©>0

. \\‘ -

S VANV




Characteristics of Sinusoids :

Phase difference

v=V sin(wtf + @) i=1, sm(awt+p,)

Ap=¢,—¢ =0t+@ —(0t+@,) = ¢, — @,
Ap=p —p, >0 — V(1) leads i(z) by (¢, - @,). or i(7) lags v(7) by (¢, - ¢,)
Ap =@, — @, <0— W) lags i() by (¢, - @), or i(7) leads (2) by (¢, - @)

Ap=¢, =, =0 o AP S~y =
In phase PERTRSEg Out of phase

v’ in v’ i“ v’ in

v % V
; ]
I / i

aw

T




' Characteristics of Sinusoids :

Review

The sinusoidal waves whose phases are compared must:
1. Be written as sine waves or cosine waves.

2. With positive amplitudes.

3. Have the same frequency.

360° does not change anything.
90° —— change between sin & cos.
180° —— change between + & -

*s1n @ = Ccos

(
\.
(
*CcOS @ = sin 0+£)
\ 2



Characteristics of Sinusoids :

Phase difference

v, = 2202 sin(3141-30°) V> =220+2 cos(3142+30°)
Find Ap="7?

v, = 220~/2 cos(314 1 +30°) = 220+/2 sin(314 £ + 30° + 90°)
= 22042 5sin(3147+120°)

Ap =@, —p, =-30°-120° =-150°
If v, =—-2202cos(3147+30°)
v, =—-220\/§cos(3|41+30°) = 220\/5cos(3l4t+30°+180°)
= 220+/2 cos[360° - (3147 +210°)|
= 2202 sin(3141 —150° + 90°)

= 220/2 5in(3147 - 60°)

A =@, —@, =-30°+60° = 30°



Characteristics of Sinusoids :

Phase difference

; T
i® sm(a)t + 5)

V, l‘A B R ’f,,
; T
1, sm| wt ——
N ’
I\
-1t/3 : ®




Phasors

A phasor is a Complex Number which represents magnitude and phase of a sinusoid

Outline:
1. Complex Numbers
2. Rotating Vector

3. Phasors

A sinusoidal voltage/current at a given frequency, is characterized by only
two parameters : amplitude and phase



Phasors

¢.g. voltage response Time domain
“
— > v(t)=meos(at+(p)
Re {VQ} o Jlwr+g)
Complex form: v(t) =V e
A Angular frequency o is
\\ known in the circuit.

~

“~- Phasor form: &V, | Zop
-

Frequency domain
A sinusoidal v/i

v(r)=V, cos(ar+¢) <
} L

\ .
Complex transform \ By knowing angular

;) frequency o rads/s.
Phasor transform n?

BV, | Lo~



Phasors

Rotating Vector

i(t) =1, sin(ox + )
X i

.................................................

.................................................

A complex coordinates

x ¥
B=)

fumber: [ /%) =] ,, COS

m

—_

\J

ot + @)+ jl, sin( ot + @)

Real value: l(t) = 1m Sin(wt g ¢) - Imag (lmej(wuw))



Phasors

Rotating Vector

>

v=V sm(wt+@) [ ) N—




Phasors

Complex Numbers

: . A=a+ jb — Rectangular Coordinates
Imaginary axis

A=|4(cosp+ jsin p)

A= |A|ej Y__ Polar Coordinates

Real axis
>
conversion: |A| o m
A=a+ jb—> A=|A4e’? { b
@ = arclg —
a

|4le’® — a+ jb { a=|Acosp

e’ =c0s90° + jsin90° =0+ j=+; b=|A|Si"(0



Phasors

Complex Numbers

Arithmetic With Complex Numbers

Addition: A=a+jb, B=c+jd, A+B=(a+c)+jb+d

¢ Imaginary Axis

. Real Axis




Phasors

Complex Numbers

Arithmetic With Complex Numbers

Subtraction: A=a+jb B=c+jd, A-B=(a-c)+jb-d)

¢+ Imaginary
Axis




Phasors

Complex Numbers

Arithmetic With Complex Numbers
Multiplication: A=A4, Z¢,, B=B, Z ¢g
AxB=(A4,xB,) £ (ps+ ¢p)

Division: A=A4, Z¢,, B=B, £ ¢q
A/Bz(Am/Bm)é((pA'(pB)



Phasors

Phasors

A phasor is a complex number that represents the magnitude and phase of
a sinusoid:

L. cos(cot + go) > [=1 Lo

Phasor Diagrams

* A phasor diagram is just a graph of several phasors on the complex
plane (using real and imaginary axes).

* A phasor diagram helps to visualize the relationships between currents
and voltages.



Phasors

Complex Exponentials
A=|Ale’?
A" =|Ae’ " =| A cos(ot + )+ jlAsin(wt + @)
Re{ Ae’™} =| A|cos(wt + @)
e A real-valued sinusoid is the real part of a complex exponential.

e Complex exponentials make solving for AC steady state an
algebraic problem.



Phasor Relationships for R, L and C

Outline:
[-V Relationship for R, L and C,

Power conversion



' Phasor Relationships for R, L and C

Resistor g yj relationship for a resistor

o——> Suppose v =V sin @t
[]R . 4 I/m . :
» | =—=-"smaf=1 smax
R R

Relationship between RMS: [ =

Wave and Phasor diagrams:

R




Phasor Relationships for R, L and C

Resistor @ Time domain — Frequency domain

¥

> Vmejg T leej¢
V. /0=RI /¢
&= RX

(wt+6 i(
el (W+0) _ R]mef Wit +¢)
v(t)=V, cos(wt+6) V(t)=Ri(r)
i(t) =1, cos(wt +¢)

With a resistor 0= ¢, v(f) and i(¢) are in phase .



* Phasor Relationships for R, L and C

7N =~ =\~ P=1V Pe

Resistor ® Power

SR — * Transient Power

[]R pZVi=V”'Sin@'lmsmatzlm‘/msmza)t

_ 1,,,2V,,, (1—cos2ax) =1V — IV cos2ax
= Note: I and V are RMS values. P>0

* Average Power

1

T |
- [ pdr= = j( VI(1-cos2an)dt = VI

v o P=IV=I"R="—
R



Phasor Relationships for R, L and C

Resistor

v=311sin314¢ , R=10Q, Findi and P

v, 311

V=—2="c=220(V

Jmiomittd ol 3]
R 10

i=22J2sin314 P =1V =220 x22 =4840 (W)



Phasor Relationships for R, L and (

Inductor ® v~ relationship
di
5 v=v,,=L—
%j dt
: Suppose i =/, sin ot
-
)
u | L . .
2 di d(I sinex)

v=L—=1L =1, wLcoswt
) ‘ dt dt
. =1, @Lsin (a)t +90°)
= Sin(a)t + 90")

fime %_"_l;{dt - %fxydw %J: vdi= i, + %_f{: vdt



Phasor Relationships for R, L. and C

Inductor ® v~i relationship
o A V= L% - Imesm(wt +%0) . l/m Sln((w + 900)
V,=1,0L
v : - == Relationship between RMS: V = [l
i V
g I = > XLzai,=27jL (Q)
o— B L

e XL o f

For DC, f:'Oy —)XL= 0.

— v(¢t) leads i(¢) by 90°, or i(¢) lags v(¢) by 90°



Phasor Relationships for R, L. and C

Inductor ® v ~ [ relationship

Wave and Phasor diagrams:

b
b

v



* Phasor Relationships for R, L and C

Inductor ® Power

p=Vi=Vmsin((ot+90°)Imsm(d =V I coswt-sinmt

= V”’zl’" sin 2wt =VIsin 2ax

Energy stored: ¥/ = j' vidt = J‘iLidi = lLi2
0 0 2

wo =Ll -Lp
2

max

AVCrage Power P = l Ir pd{ — l J.thlsm zaxd[ — O
/e r

Reactive Power Q=IV=I*’XL=% (Var)

L

m-m

4

iy

/

v
=




Phasor Relationships for R, L and C

Inductor

L=10mH, v=100sin@¢, Findi, when /= 50Hz and 50kHz.
X, =27l =27 x50x10x107 =3.14(Q)

vV 100/42

=22.5(4
X, 314 (4)

i, (£)=22.5v2 sin(er —90°)4

X, =27l =272%x50x10° x10 x10~* = 3140 (Q2)
vV 100/+2
X, 3.14

i, (£)=22.5v/2 sin(cwr —90° Jna

] S0k T

=22.5(mA)



Phasor Relationships for R, L and C

Capacitor @ v ~ i relationship
Cd dv
= dt dt
Suppose: v =V sinat
| c—— . R :
4 z=(oCV,,,cosa)t=a)CVmsm(a)t+90 )= ,,,sm(a)t+90‘)
1 1 o 1 1
- v=={idt==[ idt+={ idt=v,+~[ ids
c > cv > C 0 C 0
————_ Relationship between RMS: 7 = oy = V = v
e Ko

1 1
Y A 9}
CTwC 24C )

X
I\\
~

[A X(.oclf ForDC, f=0, > X.—> »

a3

-~

1®

—— = i(t) leads v(t) by 909, or v(t) lags i(t) t;y 909



V' Phasor Relationships for R, L and C

Capacitor ® v ~ / relationship

+0
Y

W)=V, e

Jort
d\/’(t) . Cdee = /.(Z)CVmejml
dt dt ‘

Represent v(7) and i(f) as phasors: fe o, C1&=

i(t)y=C
&
JX ¢

* The derivative in the relationship between v(¢) and i(¢) becomes a
multiplication by - u_IC in the relationship between &and & .

* The time-domain differential equation has become the algebraic equation in the

frequency-domain.

* Phasors allow us to express current-voltage relationships for inductors and
capacitors much like we express the current-voltage relationship for a resistor.



Phasor Relationships for R, L and C

Capacitor ® v ~ | relationship

Wave and Phasor diagrams:

/iv

e — iR




Phasor Relationships for R, L and C

Capacitor ePower

5 .
p=vi=V,sinat-I,sin(ox +90°) =~ sin 2t = VIsin 2ex

Energy stored: t

W= j:vidt= j(:v-C-%-dt = _[(:Cvdv= %Cv2
]

W =ECV,3=CV2

max

Average Power: P =0

Reactive Power ¢ — 1y = > x_ = Y~ (var) /
XC




Phasor Relationships for R, L. and C

Capacitor

Suppose C=20uF, AC source v=100sinmt, Find X and I for/= S0Hz,
S0kHz.

Pl X e e o TROT

woC 27C
B ome o AR




N Phasor Relationships for R, L and C

Review (v — i Relationship)

Time domain Frequency domain

—F v=R-i & p. B, v and / are in phase.

R

di : ’
_Nz'\_ v":LE e jwL-B. X, =wl »vicadsiby 90" .
. Ay 1

—H— ICZC— I&:.—'}g.X(,:L,vlagsiby%" .

C dt joc e



Phasor Relationships for R, L and C

Summary:
. R: X. =R Ap=0

L: X, =al=2nLof Ap=¢,—¢,=—

o V=IX

® Frequency characteristics of an Ideal Inductor and Capacitor:
A capacitor is an open circuit to DC currents;
A Inductor is a short circuit to DC currents.



Impedance (Z)

Outline:

Complex currents and voltages.
Impedance
Phasor Diagrams



’ Impedance (Z)

Complex voltage, Complex current, Complex Impedance

* AC steady-state analysis using phasors allows us to express the
relationship between current and voltage using a formula that looks

likes Ohm’s law: y 3
& Sz 7'is called impedanceJ

measured in ohms ()

= Kot =T 2
&: [ me'i‘p‘. 2 [ mé(oi

Zz_ll?czf_: J(o,~@;) IZIem:IZIZ(O



' Impedance (Z)

Complex Impedance

Z__pz_ II/m @, —¢;) _|Z|ejco ‘le(ﬂ

m

¢ Complex impedance describes the relationship between the voltage
across an element (expressed as a phasor) and the current through the
element (expressed as a phasor).

“ Impedance is a complex number and is not a phasor (why?).

¢ Impedance depends on frequency.



Impedance (Z)

Complex Impedance

Resistor
Zpi=R Ap=0,0rZ,=R L0

The impedance is R

Capacitor The ”impedance is 1/joC

ZzLe'T:;!_:_jx, or
© wC wC ;

V4

Inductor The impedance 1s jowL

¥ 3
2

Z.=—/2-90°
oC

2 - wle’ =joL=jX, ° Z =woll9°

=)

A:—,:-—-—
Ap=0,-¢,=



Impedance (Z

Complex Impedance
Impedance in series/parallel can be combined as resistors.

B B B -
" & L7 Z z,
5 o
L=2,+2Z,+..+2Z, =i2k LA B +L=ii
k=1 Z Z, Z =t
Voltage divider: Current divider:

e & Lo fop l gopZ
sz Z,+2Z, Zi+Z,



Impedance (Z)

Complex Impedance

Z

&

“_I :

| & ﬁtﬁc—
y Z+Z
&_ “& B ’8(24-22)
| v 1Y Z2Z+Z,7 477,
L=
Z 7
%,

" ZEA T B,



Impedance (Z)

Complex Impedance

Phasors and complex impedance allow us to use Ohm’s law with
complex numbers to compute current from voltage and voltage
from current

__.,._—/\/\/\_
~ 20kW + w =377
10V £ 0° <> ImF /= Ve Find V.

 How do we find V.?
» First compute impedances for resistor and capacitor:
Z,=20kW =20kW £ 0°
Z-=1/j (377 *1mF) = 2.65kW £ -90°




N Impedance (Z)

Complex Impedance

20kW + w=2377
10V £ 0° ImF =/ Ve Find V.
20kW £ 0° Now use the voltage divider to find V.
V= 107.£0°(_2:05HQZL - %0 ;
+ 2.65kQ2 2 - 90" + 20,2 £0°
10V £0° Ve =< 2.65kW <L -
- 90°
V. =10V L00_ 265490
20.17£-7.54°

=131V £-82.46°



~ Impedance (Z)

Complex Impedance

Impedance allows us to use the same solution techniques
for AC steady state as we use for DC steady state.

« All the analysis techniques we have learned for the linear circuits are
applicable to compute phasors

- KCL & KVL
— node analysis / loop analysis
— Superposition
— Thevenin equivalents / Norton equivalents
— source exchange
* The only difference is that now complex numbers are used.



Impedance (Z)
Kirchhoft’s Laws

KCL and KVL hold as well in phasor domain.

n
p i,- Transient current of the "k branch

n

KVL: Z Y= v,- Transient voltage of the "k branch



Impedance (Z)

Admittance

« I=YV, Yis called admittance, the reciprocal of
impedance, measured in Siemens (S)

* Resistor:

— The admittance is 1/R
* Inductor:

— The admittance 1s 1/joL
* (Capacitor:

— The admittance is joC



Impedance (Z)
Phasor Diagrams
* A phasor diagram is just a graph of several phasors on the complex
plane (using real and imaginary axes).

* A phasor diagram helps to visualize the relationships between currents
and voltages.

[=2mA Z 40°, V,=2V /£ 40°

— 2m/;é 40° Ve=531V £-50°% V=5.67V £-29.37°
+
- Imaginary Axis
ImF T Ve I & %
V a R Real Axis
+
kW Ve
_ Y
N S |
Ve




Parallel and Series Resonance

Qutline:
RLC Circuit,

Series Resonance

Parallel Resonance



Parallel and Series Resonance :

Series RLC Circuit (2nd Order RLC Circuit )

&
|
R%M V=V +V, +V,
v ; gl Phasor  j&- & & &
b *
LL Vz\/VRZ"'(VL—Vc);z
v c Ve
T -
e ——  =J(IR}+(X, - IX,)}

= [\JR*+(X, - X,.)’
= I RE 4+ X2 (X=X,-X)

=1Z
Z=JR*+X* =\/R"+(coL--]—)2
o




Paralle! and Series Resonance :

Series RLC Circuit

V=24V, -V =IZ z-JR+X* =R +(0l——)’
R L C ac

Z

X=X,-X Phase difference:
V, -V,
£ R = tan~ +—<
R
& 4 X, —Xe
= tan
T s i

5
X,>X.— ¢>0, vleadsiby ¢ — Inductance Circuit
X,<X.— @<0, vlagsiby ¢— Capacitance Circuit

X,=X.— ¢=0, vand i in phase — Resistors Circuit



Parallel and Series Resonasnce @

Series RLC Circuit

=i = & 1 & 1 = R+ B, — X

R = vy

l = AR+ j(X, - XN = KR+ jX) = B
- :§ v ;&

‘d' TL=—2=R+ j(X, —X;)

-+ dy,

2] = JR? +(X, — X )’

Z=R+jX=|Z|4¢{ X, - X,

@ = tan

¢=¢v—¢i



J Parallel and Series Resonance :

Series Resonance (2nd Order RLC Circuit)

V, -V X, -X
R
1 1 !
mleNX =X‘, —=a)L—)V =V c—l =— =
S ™ £ NIRRT
Resonance condition Resonant frequency
——— V,=V and =0 — Series Resonance
§A I&L {
: e = &
"R




Parallel and Series Resonance :

Series Resonance

Resonance condition: X, = X . (é =wl) -V, =V,
5 > ¥ ¥
e Z,=yR*+(X,-X.) =R > I[,=—=—
o R
Z, .. whenV=constant,/ =1 =1,

When, XL=XC >> R Sl IOXL=IOXC >>10R —_— VL =V(’~ > V

* Quality factor Q,




J

Parallel and Series R

lesonance
Parallel RLC Circuit 1 1 1
= + = + jaC
R+ jwl —j/awC R+ jolL
}g- __________________________ . R — ./(UL 3 (UC
1 ; "R+ joL )R- ij)
RS 5 R _ L
| E = =gt JlOC >
g L.L A { ’85 R+’ J( R+’ L’ )R
2 L\ When (oC- ZO‘L, 5)=0, Y, =
LS T R +&’L’ R? + 2
f &In phase with &
""""""""""""""""" Parallel Resonance
CR?
Parallel Resonance frequency @, l——
\/._
In generally R << X @ ] (/i l )
<< R —_— — 2 et
ARSI ""Te Y Taic
R . R . R _RC
= Zmax Imin: l=l(,=W(,=VR2+w§L2=P Pt 1 LI_VR2+L2 L 4

LC C



Parallel and Series Resonance :

Parallel RLC Circuit

Z — oo,

*Quality factor Q,

] 0 I 0 Y() Y()

. 8 |
fi=-jofs  K=jokk 0~ T




Parallel and Series Resonance :

Parallel RLC Circuit
Review
For sinusoidal circuit, Series : vV=yv, +V,
Parallel : [ = i| +i2
Two Simple Methods:

Phasor Diagrams and Complex Numbers

V£V, +V,

I#1,+1,



UNIT -4



INTRODUCTION:

« In electric network analysis, the fundamental rules are Ohm's Law and Kirchhoff's Laws.
While these humble laws may be applied to analyze just about any circuit configuration
(even if we have to resort to complex algebra to handle multiple unknowns), there are
some —shortcut|| methods of analysis to make the math easier for the average human.

« As with any theorem of geometry or algebra, these network theorems are derived from
fundamental rules. In this chapter, I'm not going to delve into the formal proofs of any of
these theorems. If you doubt their validity, you can always empirically test them by
setting up example circuits and calculating values using the —old|| (simultaneous
equation) methods versus the —new|| theorems, to see if the answers coincide.

« Network theorems are also can be termed as network reduction techniques. Each and
every theorem got its importance of solving network. Let us see some important
theorems with DC and AC excitation with detailed procedures.



TELLEGEN™S THEOREM:

* Dc Excitation: Tellegen’s theorem states algebraic sum of all delivered
power must be equal to sum of all received powers. According to
Tellegen’s theorem, the summation of instantaneous powers for the n
number of branches in an electrical network is zero. Are you
confused? Let's explain. Suppose n number of branches in an
electrical network have il, i2, i3.... in respective instantaneous
currents through them. These currents satisfy Kirchhoff's Current Law.
Again, suppose these branches have instantaneous voltages across
them arevl, v2,v3, ........... vn respectively. If these voltages across
these elements satisfy Kirchhoff Voltage Law then



This theorem can easily be explained by the
following example:

g +. Vi - c©
L= L2
5 . Va Iy < V.,
- o SO | - -
Lo L L+
= L=
Iy = VYa I < Ve
L - -
Al ! J
i =




* In the network shown, arbitrary reference directions have been
selected for all of the branch currents, and the corresponding branch
voltages have been indicated, with positive reference direction at the
tail of the current arrow. For this network, we will assume a set of
branch voltages satisfy the Kirchhoff voltage law and a set of branch
current satisfy Kirchhoff current law at each node.

* We will then show that these arbitrary assumed voltages and currents
satisfy the equation.



* And it is the condition of Tellegen™s theorem. In the network shown in the

figure, let vl, v2 and v3 be 7, 2 and 3 volts respectively. Applying Kirchhoff
Voltage Law around loop ABCDEA. We see that v4 = 2 volt is required.
Around loop CDFC, v5 is required to be 3 volt and around loop DFED, v6 is
required to be 2. We next apply Kirchhoff's Current Law successively to
nodes B, Cand D. At node B letii=5 A, then itis required thati2 =-5 A. At
node Cleti3 =3 A and then i5is required to be - 8. At node D assume i4 to
be 4 then i6 is required to be - 9. Carrying out the operation of equation.

* We get,

—

[ X5+2%X(-5)+3x3+2x4+3x(-8)+2x(-9)=0

Hence Tellegen’s theorem is verified.



SUPER-POSITION THEOREM:

* DC: “In an any linear, bi-lateral network consisting number of
sources , response in any element(resistor) is given as sum of the

individual Reponses due to individual sources, while other sources are
non-operative”

* AC: “In an any linear, bi-lateral network consisting number of
sources , response in any element(impedance) is given as sum of the

individual Reponses due to individual sources, while other sources are
non-operative”



Procedure of Superposition Theorem:

* Follow these steps in order to find the response in a particular branch
using superposition theorem.

* Step 1 - Find the response in a particular branch by considering one
independent source and eliminating the remaining independent
sources present in the network.

» Step 2 — Repeat Step 1 for all independent sources present in the
network.

* Step 3 - Add all the responses in order to get the overall response in a
particular branch when all independent sources are present in the
network.



e Eg: |—'-.-a'-,-'.

Let V=6v, | =3A, R1 =8 ohms and R2 =4 ohms

Let us find current through 4 ohms using V source, while | "'
is zero. Then equivalent circuit is

Let il is the current through 4 ohms, i1 =V / (R1+R2) | \ |

Let us find current through 4 ohms using | source, while V sv(©) () 4ng:

is zero. Then equivalent circuit is ‘ ] :
T

Let i2 is the current through 4 ohms, i2 =1. R1 / (R1+R2) _‘””'_'_r‘

Hence total current through 4 ohms is = 11+12( as both
currents are in same direction or otherwise 11-12)




* Let us find current through 4 ohms using |
source, while V is zero. Then equivalent circuit is

Let i2 is the current through 4 ohms, i2 =1. 721 / (Z1+Z2)
Hence total current through 4 ohms is = 11+12 ( as both
currents are in same direction or otherwise 11-12).




RECIPROCITY THEOREM:

DC & AC: — In any linear bi-lateral network ratio of
voltage in one mesh to current in other mesh is same
even if their positions are inter-changed]|.

Eg:
Find the total resistance of the circuit, Rt = R1+
[R2(R3+RI)] / R2+R3+RL.

Hence source current, | = V1 / Rt.

Current through RLis 11 =1. R2 / (R2+R3+RL)

Take the ratioof , V1 /11 ---1

Draw the circuit by inter changing position of V1 and |

Am

VDG

.

AL
1k

1200hm ..

¢ R2

2700hm

$ RL=3300hm




Find the total resistance of the circuit, Rt =
(R3+RL) + [R2(RI)] / R2+R1.

Hence source current, | = V1 / Rt.
Current through RLis 11 =1. R2 / (R2+R1)
Take the ratio of , V1 /11 ---2

If ratio 1 = ratio 2, then circuit is said to be satisfy
reciprocity

AL

e

1k

@ 1200|1m§ R)

2100hm |
2 RL=3300hm

{

L10vDC

—_—
-




THEVENIN’S THEOREM:

* DC: — An complex network consisting of number voltage and current sources
and be replaced by simple series circuit consisting of equivalent voltage source in
series with equivalent resistance, where equivalent voltage is called as open
circuit voltage and equivalent resistance is called as Thevenin‘s resistance
calculated across open circuit terminals while all energy sources are non-
operative||

* AC: — An complex network consisting of number voltage and current sources
and be replaced by simple series circuit consisting of equivalent voltage source in
series with equivalent impedance, where equivalent voltage is called as open
circuit voltage and equivalent impedance is called as Thevenin‘s impedance
calculated across open circuit terminals while all energy sources are non-

operative||



;1 1=

Fig 1

Fig 2




NORTON’S THEOREM:

* DC: — An complex network consisting of number voltage and current
sources and be replaced by simple parallel circuit consisting of equivalent
current source in parallel with equivalent resistance, where equivalent
current source is called as short circuit current and equivalent resistance is
called as Norton‘s resistance calculated across open circuit terminals while
all energy sources are non-operative||

 AC: —An complex network consisting of number voltage and current
sources and be replaced by simple parallel circuit consisting of equivalent
current source in parallel with equivalent impedance, where equivalent
current source is called as short circuit current and equivalent impedance is
called as Norton‘s impedance calculated across open circuit terminals while
all energy sources are non-operative||



Here we need to find current through RL using Norton‘s theorem.
Short circuit the AB terminals to find the Norton’s current.
Total resistance of circuit is, Rt = (R2.R3) / (R2+R3) + R1
Source current, | = E / Rt
Norton‘s current, IN = 1. R3 / (R2+R3) ----1 from figure .1
Norton’‘s resistance, RN = (R1.R3)/ (R1+R3) + R2 ----2 from figure 2



MAXIMUM POWER TRANSFER THEOREM:

* DC: “ In linear bi-lateral network maximum power
can be transferred from source to load if load i
resistance is equal to source or thevenin’s or
internal resistances.  §

 AC: “ In linear bi-lateral network maximum power Ly RZ%
can be transferred from source to load if load
impedance is equal to complex conjugate of
source or thevenin’s or internal impedances|| Eg:
For the below circuit explain maximum power
transfer theorem.




* Let | be the source current, | =V / (R1+R2)
 Power absorbed by load resistor is, PL =12 .R2
=[V/(R1+R2)]2 .R2.
To say that load resistor absorbed maximum power, dPL/ dR2 =0
When we solve above condition we get, R2 = R1.
Hence maximum power absorbed by load resistor is, PLmax =V 2 / 4R2.



MILLIMAN™S THEOREM:

* DC: “ An complex network consisting of number of parallel branches,
where each parallel branch consists of voltage source with series
resistance, can be replaced with equivalent circuit consisting of one
voltage source in series with equivalent resistance||

WW=——T1"WW

-
1
~
]
|}
]
1

Fig 1 Fig 2



Where equivalent voltage source value is, V' = (V1G1+V2G2+------ +VnGn)

Equivalent resistanceis, R =1/ ( G1+G2+-------------———--- Gn)

AC: “ An complex network consisting of number of parallel branches , where
each parallel branch consists of voltage source with series impedance, can be
replaced with equivalent circuit consisting of one voltage source in series
with equivalent impedance




UNIT -5



Outline

1 Recap of Three Phase System

[ Three Phase Quantities: Line/Phase Voltage and Current

d Three Phase Power and Power Measurement




« Atypical three@ﬁ&%@ﬁﬂéﬁ%é@g OF thtee voltage sources connected

to loads by three or four wires (or transmission lines).

* The voltage sources can be either wye-connected or delta-connected.

o a o a
O n Vca + i_ Vr::b

V” C 2 b
o b Y ©

Vbc

Y-connected source A-connected source 3




» 3-phase loads caﬂ_léigt?gé %i%ﬁ%%%ected or delta-connected.

a o

b o

C O C O

Y-connected load

A-connected source




BALANCED SOURCE AND LOAD

Balanced Source: All phase voltages are equal in magnitude
and are out of phase with each other by 120°.

V,, =V, 20 \

120°
Vy, =V, 2 ~120° o < e 4 »
V,, =V, 2 —240° =V, £ +120° el

abc or positive sequence
Vbn

Balanced Load: The phase impedances are equal in magnitude
and in phase.



THREE PHASE QUANTITIES




PHASE VOLTAGES & LINE VOLTAGES

Phase voltage Is measured across any single source or load.
Line voltage I1s measured between any two of the three lines.

O d
Vca -_|- i_ Vab
C b
< ©
Vbc
O C
VL:Vab:Van_Vbn VL_Vb_V
= Vap = Vy

For balanced source,
V, =V, £0° -V, /~120° =3V, /30



PHASE CURRENTS & LINE CURRENTS

Line current (I,) Is the current in a line of the 3-phase system.

Phase current (1) Is the current in a phase/arm of the source or load.
~or balanced 3-phase system:

-or Y-load, I, =1, ] s
For A-load, .,
IAB
ILZIaZIAB_ICA ; / Za
= 1 (1-12-240") ! Z, o
— I AB L L 5 Z, \

I, =+/31,2-30°




Numerical 1

Calculate the line currents.

520

‘ .
() 11020°V

O

() 110/-120° V
-2Q

110/-240°V ()

0O o
o
+
..
oo
o

r A
|
Irs
= O
(ol a)
=
+
~.
el
e



Sinale Phas? Eaurvalent Circuit

7 R A

e 5— }2 0

ch (iD 10+ j8 ZY

Q

S
< O

Total impedence per phase Z, =15+ 6 =16.155£21.8°



| =V HOZL07 e o1 g0

* 7, 16.155/21.8°

|, =1 /—120°
- 6.81/ —141.8°A

| =1/ —240°
—~ 6.81/—261.8° = 6.81./98.2°A




Numerical 2
A balanced delta-connected load having an impedance 20-j15 Q

IS connected to a delta-connected, positive-sequence generator
having V,, = 330£0° V.

Calculate the phase currents of the load and the line currents.



Numerical 2
Solution: 7 =20- j15Q =25/-36.87°

V, =330£0°
Phase Currents: |1, = Vas _ _ 33020 =13.2/36.87°A
Z 25/ —36.87°

A

e = |,y / —120° =13.2./-83.13°A
lon = lag/ +120° =13.2./156.87°A




Line Currents:

| = 1,u/3/-30°

~ (1323687°)(J32-30°)A
_22.86./6.87°

|, =1,/ -120° = 22.86./ -113.13°A
| =1,/ +120° = 22.86./126.87°A




Numerical 3
A balanced positive sequence Y-connected source

with V,,= 100£10° V Is connected to a A-connected
balanced load with impedance (8 + J4) €2 per phase.

Calculate the phase and line currents at the load.



Solution: Balanced Y-$durea @vitics] 3 100.210° V
Balanced A-load with Z,= 8+j4 Q

Phase Current |, = Vag
ZA

Line Voltage Vg = J3 V,, £30°
Vs =173.2240°V

=5 I, =113:2£807 19 36,1343

8+ J4




Phase Currents:

| =19.36./13.43° A

e = |/ —120°=19.36./ ~106.57°

lon = lnag/ +120°=19.36./133.43°

A

A




Line Currents:

. =3 1z £—30°=1/3 (19.36) £(13.43°—30°)

| =33.53 /-16.57° A

|, =1 /-120°=3353 /-136.57° A

| =1/ +120°=33.53 /103.43° A




The phabn gtibaytForSpbisnlanedd ivisgidhina gedspste m

Van =\/§Vp coSak
Ve = \/2Vp cos(at —120 O)

VAN

Vey =2V, cos(at +120°)

The phase currents are given as,

i, =21 cos(at —6)
i, =+/21 , cos(at —6-120°)
i, =+/21 , cos(at —6+120°)




» The total instantaneous power IS p=p, + P, + Pe = Vanla + Vanly + Voul

p =2V, |, [coset cos(ct —6) + cos(et —120) cos(at —6-120) + cos(et +120) cos(et —6+120) |
1
2
p=V,l,[3cosd +cos(2at — ) + cos(2at — @ — 240) + cos(2wt — 6 + 240) |
p=V,I, | 3cosd + cosa + cosa cos 240 + sin & sin 240 + cosa cos 240 —sin e sin 240

>App|ying the trigonometric identity cos Acos B == [cos(A+ B)+cos(A—B)]

where, o = 2wt — 6

p=V I, H_3COS(9 +CoSax + 2(— %) cosah: 3V 1 cosd
The total instantaneous power in a balanced three-phase system is constant!
Even though the iInstantaneous power of each phase Is time-varying.
This result is true whether the load is Y- or A- connected.



The average power per phase P, for either the A-connected or the
Y-connected balanced load is P/3, or

P,=V, I, cosd
And the reactive power per phase Is
Q,=V,l,sind
The apparant power per phase Is
S, =Vl
The complex power per phase Is
S =P +jQ =VI
P P P P P

Here V, and |, are rms values of the phase voltage and phase current .



» The total average power Is the sum of the average powers In the phases:
P=P,+P,+P,=3P, =3V,1,cosf = /3V I, cosd
> For a'Y-connected load, I, = I,and V.= V3V,
» For a A-connected load, I, = vV3I,and V| =V,
> Similarly, the total reactive power is Q =3V,1_sin@=+/3V,1, sind
3V?
P

*

P

> The total complex power: s =35 =3V 1 "=31"Z = =
Z,=7,20 isthe load impedance per phase

S=P+jQ=+3V1, /0

» V, I, Vi, and I are all rms values and that 6 Is the angle of the load
Impedance or the angle between the phase voltage and the phase current.



Line Power Quantities for Balanced Y- or A-loads

> Instantaneous power: p(t) = p,(t) + p, (t) + p.(t) =3V, I, cos(p)

» Real Power: P = \/§VLIL COSQ@
> Reactive Power: Q =+/3V,1, sing
> Apparent Power: S =/3V, I,

» NOTE: ¢ Is the load (or impedance) angle 1.e. the angle between the
phase voltage and phase current.



Check that power remains same on Y-A transformation



For the balancec systmmﬁlﬂﬁﬂblﬂ'e, find:

a) The magnitude of the line current

b) The magnituc

c)T

d) |

0.06Q j0.12Q
/\/\/\/_fWY\_

Vcn:]20 L '2400

Vp,=1201_-120°

— Y Y Y

e of the line and phase voltages at the load
he real, reactive and apparent powers consumed by the load
"he power factor of the load.

ANN—
0.06Q j0.12CQ

Van=120L_0"

@ @ 7,=12+j9 Q

208V
Zy
0.06€2 j0.12€Q
- ANA—Y YN V¢ =

VL_

208

/3

NE

=120V



Solution:

Both, the generator and the load are Y-connected, therefore, its easy to construct a per phase

equivalent circuit. |
5 0.06Q j0.12Q

— Y Y Y
Vy=120L (" V¢L<' Zy |12+)9 Q
a) Phase/line current:
| = v = _12040 — = 12020 =7.94/-37.1°A
Z +Z., (0.06+)0.12)+(12+ J9) 15.12/37.1°

b) Phase voltage over the load: V, =1,*Z, =(7.94£-37.1°)(12+ ]9) =119.1/-0.2°V
The magnitude of the line voltage on the load: V|, = \/§Vp = 206.3V



c) The real power consumed by the load:
Poad =3V, 1, COS@p = 3x119.1x7.94¢c0536.9° = 2270 W

load

The reactive power consumed by the load:
Qioag =3V, 1, SN =3x119.1x7.94sIn36.9° = 1702 var

The apparent power consumed by the load:
Sioag = 3Vpl, =3x119.1x7.94 = 2839 VA

load

d) The load power factor:

Pfi,.g = cos® = cos 36.9° = 0.8 lagging



Advantage of Three Phase
System

« A major advantage of three-phase systems for power
distribution Is that the three-phase system uses a lesser amount
of wire than the single-phase system for the same line voltage
V| and the same absorbed load power P, .

* The two cases (of single phase and three phase system) will be
compared In the next slides, considering that both have wires
of the same material and length, and that the loads are
resistive.



Power Loss In Single Phase and Three Phase

Systems ; |
For the two-wire single-phase system, I, = V—L so the total power loss in the
two transmission wires Is y

) PL2 o Iy
I:)Ioss — 2' L R — 2R \72 (1) [ | O AN -
L
Single- P, *
phase — V Load
source N
R
O “‘v"\’ .'u’l\'s'

Transmission lines



For the three-wire, three-phase system, 1,.’=[L.| = [I,| = || = P_/~/3V,
The total power loss In the three transmission wires Is

P2 P2
=3(1, )*R'=3R" —R'| - 2)
Ioss 2 2
3V, A
R la
— o
+
Three- | Vi Z0°  |Three-
phase R 9L - phase
balanced s it balanced
source o 5 V, /-120° load
—O0—AMW————3

Transmission lines



Equations (1) and (2) show that for the same total power delivered P, and
same line voltage V|, P 2R

loss — 3
I:)'Ioss R' ( )
AlsO R = ol and R'= ol where r and r’ are the radii of the wires
TTr? r(r')
P 2(r")?
=> loss 4
o= 4)

If the same power loss Is tolerated In both systems, then r2 = 2(’)2. The ratio
of material required Is determined by the number of wires and their volumes,

Material for single phase _ 2(zr?l) _ 2r°

: S— = 222(2)21.33
Material for three phase ~ 3(z(r')*l) 3(r')" 3




UNBALANCED THREE PHASE SYSTEMS

(1) The source voltages are not equal In magnitude and/or differ
In phase by angles that are unequal, or
(2) load impedances are unequal (more practical scenario).

= A | :VAN | :VBN | :VCN
a b 1 Tc
ZA ZB ZC
Van Z,
In
—i-
N
o
Z Z
I, |Van > CC In:_(|a+|b+|c)
D '
o >,
B
I Ven

18
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» In a three-wire system where the neutral line Is absent, we can still
find the line currents 1, 1,,, and I, using mesh analysis.

> At node N, KCL must be satisfied so that I, + I, + I. = 0 In this case.
The voltage at node N will not be zero in such a case. The same could
be done for an unbalanced A-Y, Y-A, or A-A three-wire system.

» To calculate power in an unbalanced three-phase system requires that we
find the power In each phase earlier.

» The total power is not simply three times the power in one phase but
the sum of the powers in the three phases.



THREE-PHASE POWER MEASUREMENT

> A single wattmeter can measure the average power In a
three-phase system that is balanced i.e. P, = P, = P5; the
total power is just 3x the reading of that one wattmeter.

> However, two or three single-phase wattmeters are
necessary to measure power If the system is unbalanced.

18
Vi




THREE-WATTMETER METHOD

This method can work regardless of whether the load iIs balanced
or unbalanced, wye- or delta-connected. P =P, +P,+P,

f=T0Y =t e
F Three-phase
Wa load (wye
b o *

410k or delta,
O kb e - balanced or
W unbalanced)
cC O - AT

185



TWO-WATTMETER METHOD

The two-wattmeter method iIs the most commonly used method for
three-phase power measurement In a 3-wire system (no neutral wire).

W,
a o =LA
'a'—!'-\_
-+ Three-phase
load (wye
bo 4 or delta,
balanced or
W, unbalanced)
C O =LA
[.. .J’a” ﬂ.’\. o
- -

186



> Notice that the current coil of each wattmeter measures the line
current, while the respective voltage coil Is connected between the
respective line and the third line and measures the line voltage.

> Although the individual wattmeters no longer read the power taken by
any particular phase, the algebraic sum of the two wattmeter readings
equals the total average power absorbed by the load, regardless of
whether It is wye- or delta-connected, balanced or unbalanced.

» The total real power iIs equal to the algebraic sum of the two
wattmeter readings

P, =R+P,



Two-Wattmeter Method for a balanced three phase system

\, 7
s
vob
' rd
b - b zY "\" ZY
L 2 p——
= \\zv
va \"\/\
W,
+ N + — + C \\
¢ O——— W f
e

Assume the source Is in the abc sequence and the load impedance Z, =2, 26.

Each phase voltage leads its respective phase current by 6

Each line voltage leads the corresponding phase voltage by 30°.



» Thus, the total phase difference between the phase current I, and
line voltage V,, Is 6 + 30°.

» The average power read by wattmeter W, Is

P =Re(V,I,)=V,_I, cos(@+30°) =V, 1 cos(6+30°)

ao o

+ '0 5//'/
Vs 4

: b 2y <2
bo—¢ <

= Y\ Zy
Voo \

£ Lai. o

» Similarly, we can show that the average power read by wattmeter 2 is
P, =Re(V_I)=V_I_cos(6-30°) =V, I cos(6-30°)




cos(A+ B) =cos AcosB —sin Asin B
cos(A—B) =cos Acos B +sin Asin B
to find the sum and the difference of the two wattmeter reading P, and P,

We now use the trigonometric identities

P+P, =V, I | cos(6+30°)+cos(6—30°) |
R +P, =Vl [cos@cos30-sindsin30+cosd cos30+sin sin 30}
P +P, =V, 2c0s8cos30 = /3V,l, cosd

Thus, the sum of the wattmeter readings gives the total average power
P =R +P, 1)



Similarly P,—P, =V, I, | cos(6+30°)—cos(6—30°) |

B —P, =V, I [cos@cos30-sindsin30—cos&cos30—sin Gsin 30]
2 — B, ==V 1,2sin@sin 30
2, —P, =V, I sin@

Thus, the difference of the wattmeter readings Is proportional to the
total reactive power,

QT:\/§(P2_Pl) (2)



» From (1) and (2), the apparent power can calculated as S, =P+ Q7

» Dividing Eqg. (2) by Eqg. (1) gives the tangent of the power factor angle as

tanez%:\/?[%%%J

» Thus the power factor Is,

cos6) = cosktan ( PU



Thus, the two-wattmeter method not only provides the total real and
reactive powers, it can also be used to compute the power factor.

1. If P, = P4, the load is resistive.

2. If P, > Py, the load Is Inductive.

3. If P, <Py, the load Is capacitive.

» Although these results are derived from a balanced Y-connected load, they are
equally valid for a balanced A-connected load.

» The two-wattmeter method cannot be used for power measurement in a 3-phase
4-wire system unless the current through the neutral line Is zero.

» We can use the three-wattmeter method to measure the real power in a 3-phase
4-wire system.



Numerical
5

The three-phase balanced load in figure, has impedance per phase of
Zy, = 8 + )6 Q. If the load Is connected to 208-V lines, predict the
readings of the wattmeter W, and W,. Find Py and Q.

W,
ao 211
T AR
+ +
Vob
= I,
B
bo Fs
vcb
W,
* + +




Numerical

Solution: >
The impedance per phase is Z, = (8+ j6) =10.36.87°

Thus the Power Factor angle 68 = 36.87°.

Since the line voltage V, = 208 \V, W,
the line current is v Ll
V Vb B -
I = : :208/\/5212'6\ bo—t =
z,] 10 :
Vb
T + 2 +




P, =V_I, cos(&+30°)=208*12*cos(36.87°+30°) = 980.48W
P,=V_I, cos(@—30°)=208*12*cos(36.87°—30°) = 2478.1W
Since P, > P, the load is inductive. This is evident from the load Z. itself.
P = P, + P, = 3.450kW

Q; =+/3(P, —P) = +/3(1497.6)VAR = 2.594kVAR



Numerical

Three wattmeters W1, W?, and W3 are connected, respectively, to
phases A, B, and C of an unbalanced Y-connected load as in figure.
The balanced source Is Y-connected with phase voltage 100 V In
negative (acb) sequence.

- IG

Find > D A

he wattmeter readings i T -
(a) the wattme g ; Vou 3150
(b)the total power absorbed S , - Jn
by the load. B - 10 Q 6 Q

’ ' Ve .. L /80
CN. = o)~ SN J5Q - C
. © B



Numerical
6

Solution: The line currents are, ,

_10020° _ 657 0°A

I
T b,

_1002120° _ 594 93.44°A -

a P A
{ M/1
Y+ |
Van 15Q
_ 5
AN
== 7N\
10Q & 2, 6Q
Ven Vog -:\ —j8 Q
(AR . Ne

| _
10+ Jo Vi g

_100£-120°

|
; 6— j8

=10/-66.87°A  + =




(a) The wattmeter readings are,

A =Re(Vp 1) =Vl cos(€, -6, )=100%6.67*cos(0° —0°) =667W

D, =Re(Vyy 1) =Vgy 1, c0s(§, —6, ) =100%8.94 *cos(120° —93.44°) =800W
2, =Re(Vyy I7) =Veu I cos(§, —6, ) =100*10*cos(-120° +66.87°) = 600W

(b) The total power absorbed is B =B + B, + P, =667+800+600=2067W

The power absorbed can also be calculated as the power dissipated

across the resistors,
Po=|1 "(18)+|I, [2(10) +|1|? (6) = 6.672(15) + 8.942(10) + 107 (6) = 667 + 800+ 600 = 2067W



The two-wattmeter method produces wattmeter readings
P, = 1560 W and P, = 2100 W when connected to a delta-
connected load. If the line voltage i1s 220V, calculate:

(a) the per-phase average power,

(b) the per-phase reactive power,

(c) the power factor.




Solution: Numerical 7
(a). The total real or average power is B =B + P, =1560+ 2100 = 3660W

The per phase average power Is P, = ZT = 36360 =1220W

(b) The total reactive power is Q; = v/3(P,—R) =/3(2100-1560) = 935.3VAR

The per phase reactive power Is Q = % = 9335'3 =311.77VAR

- I _ —I(QT _ —1(935-3\_ 0
(c) The power-factor angle is 6 =tan Lﬁj_tan |\% b_14.33

Hence the power factor is cosé = 0.9689 (lagging) as Qy is positive or P, > P,
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