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Course Objectives:
To make the student learn about

Basic characteristics of R, L, C parameters, their Voltage and Current Relations and Various
combinations of these parameters.

The Single Phase AC circuits and concepts of real power, reactive power, complex power,
phase angle and phase difference

Series and parallel resonances, bandwidth, current locus diagrams
Network theorems and their applications
Network Topology and concepts like Tree, Cut-set , Tie-set, Loop, Co-Tree

Unit- 1
Introduction to Electrical & Magnetic Circuits
Electrical Circuits: Circuit Concept – Types of elements - Source Transformation-Voltage – Current Relationship for Passive
Elements. Kirchhoff’s Laws – Network Reduction Techniques- Series, Parallel, Series Parallel, Star-to-Delta or Delta-to-Star
Transformation. Examples Magnetic Circuits: Faraday’s Laws of Electromagnetic Induction-Concept of Self and Mutual
Inductance-Dot Convention-Coefficient of Coupling-Composite Magnetic Circuit-Analysis of Series and Parallel Magnetic
Circuits, MMF Calculations.
Unit- 2
Network Topology
Definitions – Graph – Tree, Basic Cutset and Basic Tieset Matrices for Planar Networks – Loop and Nodal Methods of Analysis
of Networks & Independent Voltage and Current Sources – Duality & Dual Networks.Nodal Analysis, Mesh Analysis.
Unit- 3
Single Phase A.C Circuits

R.M.S, Average Values and Form Factor for Different Periodic Wave Forms – Sinusoidal Alternating Quantities – Phase and 
Phase Difference – Complex and Polar Forms of Representations, j-Notation, Steady State Analysis of R, L and C (In Series, 
Parallel and Series Parallel Combinations) with Sinusoidal Excitation- Resonance - Phasor diagrams - Concept of Power 
Factor- Concept of Reactance, Impedance, Susceptance and Admittance-Apparent Power, Active and Reactive Power, 
Examples.



Unit- 4
Network Theorems

Superposition, Reciprocity, Thevenin’s, Norton’s, Maximum Power Transfer, Millmann’s, Tellegen’s, and Compensation
Theorems for D.C and Sinusoidal Excitations.

Unit- 5
Three Phase A.C. Circuits

Introduction - Analysis of Balanced Three Phase Circuits – Phase Sequence- Star and Delta Connection -Relation between
Line and Phase Voltages and Currents in Balanced Systems - Measurement of Active and Reactive Power in Balanced and
Unbalanced Three Phase Systems. Analysis of Three Phase Unbalanced Circuits - Loop Method - Star Delta Transformation
Technique – for balanced and unbalanced circuits - Measurement of Active and reactive Power – Advantages of Three Phase
System.

Text Books:
1. Fundamentals of Electric Circuits Charles K. Alexander and Matthew. N. O. Sadiku, Mc Graw Hill, 5th
Edition, 2013.
2. Engineering circuit analysis William Hayt and Jack E. Kemmerly, Mc Graw Hill Company, 7th Edition,
2006.
Reference Books:
1. Circuit Theory Analysis & Synthesis A. Chakrabarti, Dhanpat Rai & Sons, 7th Revised Edition, 2018.
2. Network Analysis M.E Van Valkenberg, Prentice Hall (India), 3rd Edition, 1999.
3. Electrical Engineering Fundamentals V. Del Toro, Prentice Hall International, 2nd Edition, 2019.
4. Electric Circuits- Schaum’s Series, Mc Graw Hill, 5th Edition, 2010.
5. Electrical Circuit Theory and Technology John Bird, Routledge, Taylor & Francis, 5th Edition, 2014.



COURSE OUTCOMES

After completing the course, the student should be able to do the following

Given a network, find the equivalent impedance by using network reduction techniques and determine the current through any element
and voltage across and power through any element.

Given a circuit and the excitation, determine the real power, reactive power, power factor etc,.

Apply the network theorems suitably

Determine the Dual of the Network, develop the Cut Set and Tie-set Matrices for a given Circuit. Also
understand various basic definitions and concepts
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INTRODUCTION:

• In electric network analysis, the fundamental rules are Ohm‘s Law and Kirchhoff‘s Laws. 
While these humble laws may be applied to analyze just about any circuit configuration 
(even if we have to resort to complex algebra to handle multiple unknowns), there are 
some ―shortcut‖ methods of analysis to make the math easier for the average human.

• As with any theorem of geometry or algebra, these network theorems are derived from 
fundamental rules. In this chapter, I‘m not going to delve into the formal proofs of any of 
these theorems. If you doubt their validity, you can always empirically test them by 
setting up example circuits and calculating values using the ―old‖ (simultaneous 
equation) methods versus the ―new‖ theorems, to see if the answers coincide. 

• Network theorems are also can be termed as network reduction techniques. Each and 
every theorem got its importance of solving network. Let us see some important 
theorems with DC and AC excitation with detailed procedures. 



TELLEGEN‟S THEOREM:

• Dc Excitation: Tellegen‘s theorem states algebraic sum of all delivered 
power must be equal to sum of all received powers. According to 
Tellegen‘s theorem, the summation of instantaneous powers for the n 
number of branches in an electrical network is zero. Are you 
confused? Let's explain. Suppose n number of branches in an 
electrical network have i1, i2, i3…. in respective instantaneous 
currents through them. These currents satisfy Kirchhoff's Current Law. 
Again, suppose these branches have instantaneous voltages across 
them are v1, v2, v3, ........... vn respectively. If these voltages across 
these elements satisfy Kirchhoff Voltage Law then



This theorem can easily be explained by the 
following example:



• In the network shown, arbitrary reference directions have been 
selected for all of the branch currents, and the corresponding branch 
voltages have been indicated, with positive reference direction at the 
tail of the current arrow. For this network, we will assume a set of 
branch voltages satisfy the Kirchhoff voltage law and a set of branch 
current satisfy Kirchhoff current law at each node. 

• We will then show that these arbitrary assumed voltages and currents 
satisfy the equation.



• And it is the condition of Tellegen‟s theorem. In the network shown in the 
figure, let v1, v2 and v3 be 7, 2 and 3 volts respectively. Applying Kirchhoff 
Voltage Law around loop ABCDEA. We see that v4 = 2 volt is required. 
Around loop CDFC, v5 is required to be 3 volt and around loop DFED, v6 is 
required to be 2. We next apply Kirchhoff's Current Law successively to 
nodes B, C and D. At node B let ii = 5 A, then it is required that i2 = - 5 A. At 
node C let i3 = 3 A and then i5 is required to be - 8. At node D assume i4 to 
be 4 then i6 is required to be - 9. Carrying out the operation of equation. 

• We get,



SUPER-POSITION THEOREM:

• DC: “ In an any linear , bi-lateral network consisting number of 
sources , response in any element(resistor) is given as sum of the 
individual Reponses due to individual sources, while other sources are 
non-operative” 

• AC: “ In an any linear , bi-lateral network consisting number of 
sources , response in any element(impedance) is given as sum of the 
individual Reponses due to individual sources, while other sources are 
non-operative”



Procedure of Superposition Theorem:

• Follow these steps in order to find the response in a particular branch 
using superposition theorem. 

• Step 1 − Find the response in a particular branch by considering one 
independent source and eliminating the remaining independent 
sources present in the network. 

• Step 2 − Repeat Step 1 for all independent sources present in the 
network. 

• Step 3 − Add all the responses in order to get the overall response in a 
particular branch when all independent sources are present in the 
network.



Let i1 is the current through 4 ohms, i1 = V / (R1+R2) 

Let us find current through 4 ohms using I source, while V 
is zero. Then equivalent circuit is

• Eg: 

Let V = 6v, I = 3A, R1 = 8 ohms and R2 = 4 ohms 

Let us find current through 4 ohms using V source, while I 
is zero. Then equivalent circuit is

Let i2 is the current through 4 ohms, i2 = I. R1 / (R1+R2)
Hence total current through 4 ohms is = I1+I2( as both 

currents are in same direction or otherwise I1-I2) 



• Let us find current through 4 ohms using I 
source, while V is zero. Then equivalent circuit is 

Let i2 is the current through 4 ohms, i2 = I. Z1 / (Z1+Z2) 
Hence total current through 4 ohms is = I1+I2 ( as both 
currents are in same direction or otherwise I1-I2).



RECIPROCITY THEOREM:

DC & AC: ― In any linear bi-lateral network ratio of 
voltage in one mesh to current in other mesh is same 
even if their positions are inter-changed‖. 

Eg: 

Find the total resistance of the circuit, Rt = R1+ 
[R2(R3+Rl)] / R2+R3+RL. 

Hence source current, I = V1 / Rt. 

Current through RL is I1 = I. R2 / (R2+R3+RL) 

Take the ratio of , V1 / I1 ---1 

Draw the circuit by inter changing position of V1 and I



Find the total resistance of the circuit, Rt = 
(R3+RL) + [R2(Rl)] / R2+R1. 

Hence source current, I = V1 / Rt.

Current through RL is I1 = I. R2 / (R2+R1) 

Take the ratio of , V1 / I1 ---2 

If ratio 1 = ratio 2, then circuit is said to be satisfy 
reciprocity



THEVENIN’S THEOREM:

• DC: ― An complex network consisting of number voltage and current sources 
and be replaced by simple series circuit consisting of equivalent voltage source in 
series with equivalent resistance, where equivalent voltage is called as open 
circuit voltage and equivalent resistance is called as Thevenin‘s resistance 
calculated across open circuit terminals while all energy sources are non-
operative‖ 

• AC: ― An complex network consisting of number voltage and current sources 
and be replaced by simple series circuit consisting of equivalent voltage source in 
series with equivalent impedance, where equivalent voltage is called as open 
circuit voltage and equivalent impedance is called as Thevenin‘s impedance 
calculated across open circuit terminals while all energy sources are non-
operative‖





NORTON’S THEOREM: 

• DC: ― An complex network consisting of number voltage and current 
sources and be replaced by simple parallel circuit consisting of equivalent 
current source in parallel with equivalent resistance, where equivalent 
current source is called as short circuit current and equivalent resistance is 
called as Norton‘s resistance calculated across open circuit terminals while 
all energy sources are non-operative‖ 

• AC: ―An complex network consisting of number voltage and current 
sources and be replaced by simple parallel circuit consisting of equivalent 
current source in parallel with equivalent impedance, where equivalent 
current source is called as short circuit current and equivalent impedance is 
called as Norton‘s impedance calculated across open circuit terminals while 
all energy sources are non-operative‖



Here we need to find current through RL using Norton‘s theorem. 
Short circuit the AB terminals to find the Norton‘s current. 
Total resistance of circuit is, Rt = (R2.R3) / (R2+R3) + R1 
Source current, I = E / Rt 
Norton‘s current , IN = I. R3 / (R2+R3) ----1 from figure .1
Norton‘s resistance, RN = (R1.R3)/ (R1+R3) + R2 ----2 from figure 2



MAXIMUM POWER TRANSFER THEOREM:

• DC: “ In linear bi-lateral network maximum power 
can be transferred from source to load if load 
resistance is equal to source or thevenin‘s or 
internal resistances. 

• AC: “ In linear bi-lateral network maximum power 
can be transferred from source to load if load 
impedance is equal to complex conjugate of 
source or thevenin‘s or internal impedances‖ Eg: 
For the below circuit explain maximum power 
transfer theorem.



• Let I be the source current, I = V / (R1+R2)

• Power absorbed by load resistor is, PL = I2 .R2

= [ V / (R1+R2)]2 .R2. 

To say that load resistor absorbed maximum power , dPL / dR2 = 0

When we solve above condition we get, R2 = R1. 

Hence maximum power absorbed by load resistor is, PLmax = V 2 / 4R2.



MILLIMAN‟S THEOREM: 

• DC: “ An complex network consisting of number of parallel branches , 
where each parallel branch consists of voltage source with series 
resistance, can be replaced with equivalent circuit consisting of one 
voltage source in series with equivalent resistance‖



Where equivalent voltage source value is , V‘ = (V1G1+V2G2+------+VnGn)

-------------------------------- G1+G2+----------------Gn

Equivalent resistance is , R‘ = 1 / ( G1+G2+-------------------Gn) 

AC: “ An complex network consisting of number of parallel branches , where 
each parallel branch consists of voltage source with series impedance, can be 
replaced with equivalent circuit consisting of one voltage source in series 
with equivalent impedance

Where equivalent voltage source value is , V‘ = (V1Y1+V2Y2+------+VnYn) -----
--------------------------- Y1+Y2+----------------Yn

Equivalent resistance is , Z‘ = 1 / ( Y1+Y2+-------------------Yn)
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 Recap of Three Phase System

 Three Phase Quantities: Line/Phase Voltage and Current

 Three Phase Power and Power Measurement

2

Outline



THREE-PHASE SOURCES

3

• A typical three-phase system consists of three voltage sources connected 

to loads by three or four wires (or transmission lines).

• The voltage sources can be either wye-connected or delta-connected.

Y-connected source Δ-connected source



THREE-PHASE LOADS

4

• 3-phase loads can also be either wye-connected or delta-connected.

Y-connected load Δ-connected source



BALANCED SOURCE AND LOAD
Balanced Source: All phase voltages are equal in magnitude 
and are out of phase with each other by 120.

abc or positive sequence

Balanced Load: The phase impedances are equal in magnitude 
and in phase.

Van Vp0

Vbn Vp120

Vcn Vp 240 Vp120



THREE PHASE QUANTITIES

QUANTITY SYMBOL

Phase current Ip

Line current IL

Phase voltage Vp

Line voltage VL



PHASE VOLTAGES & LINE VOLTAGES
Phase voltage is measured across any single source or load. 

Line voltage is measured between any two of the three lines.

VL = Vab = Vp

VL = Vab = Van – Vbn

For balanced source,

VL Vp0 Vp120  3Vp30



PHASE CURRENTS & LINE CURRENTS
Line current (IL) is the current in a line of the 3-phase system.

Phase current (Ip) is the current in a phase/arm of the source or load. 

For balanced 3-phase system:

For Y-load, IL = Ip

ForΔ-load,

IL  Ia  IAB  ICA

 I AB 11 240 

IL = 3I p 30



Calculate the line currents.

Numerical 1



Single Phase Equivalent Circuit

10 j8

5 j2

Total impedence per phase ZY = 15 + j6 = 16.15521.8



a

Y

I 
Van   6.81 21.8

1100

Z 16.15521.8

Ib  Ia120

 6.81141.8A

Ic  Ia 240

 6.81 261.8  6.8198.2A



Numerical 2
A balanced delta-connected load having an impedance 20-j15 

is connected to a delta-connected, positive-sequence generator

having Vab = 3300V.

Calculate the phase currents of the load and the line currents.



Solution:

Numerical 2
ZΔ  20  j15   2536.87

Vab  3300

AB

Δ

3300


VAB  13.236.87A
Z 2536.87

IBC  IAB120 13.2-83.13A 

ICA  IAB120 13.2156.87A

Phase Currents: I



 22.866.87

Ib  Ia120  22.86 -113.13A 

Ic  Ia120  22.86126.87A

Ia  IAB 330

 13.236.87 330A

Line Currents:



A balanced positive sequence Y-connected source

with Van = 10010 V is connected to a -connected

balanced load with impedance (8 + j4)  per phase.

Calculate the phase and line currents at the load.

Numerical 3



Solution: Balanced Y-source with Van= 10010V 

BalancedΔ-load with Z= 8+j4 

Numerical 3

AB

AB

Z


VAB

Δ

3 Van30

VAB 173.240V


173.240

19.3613.43
8 j4

Phase Current I

Line Voltage VAB 

=> I



IAB 19.3613.43 A

IBC  IAB120 19.36106.57 A 

ICA  IAB120 19.36133.43 A

Phase Currents:



Ia  3 IAB 30  3 (19.36) (13.43 30)

Ia  33.53 16.57 A

Ib  Ia 120  33.53 136.57 A 

Ic  Ia120  33.53 103.43 A

Line Currents:



Instantaneous Power in 3-Phase SystemThe phase voltage for 3-phase balanced Y-system is given as :

The phase currents are given as,

CN p

vAN 

vBN

 2Vp cost
 2Vp cos(t 120 )

0

v  2V cos(t 1200 )

vAN

vBN

vCN

Z θ

Z θ

Z θ

N N

ia

ib

ic

a p

b p

c p

i  2I cos(t )

i  2I cos(t 1200 )

i  2I cos(t 1200 )



 The total instantaneous power is p  pa  pb  pc  vANia  vBNib  vCNic

p  2VpI p cost cos(t ) cos(t 120)cos(t 120)  cos(t 120)cos(t 120)

Applying the trigonometric identity cos Acos B 
1 cos(A B)  cos(A B)

2

17
0

p p

2

p Vp I p 3cos  cos(2t  )  cos(2t   240)  cos(2t   240)

p Vp I p 3cos  cos  cos cos 240  sin sin 240  cos cos 240  sin sin 240

where,   2t 

p V I

3cos  cos  2(

1
) cos 

 3V I cos
p p  

The total instantaneous power in a balanced three-phase system is constant!

Even though the instantaneous power of each phase is time-varying.

This result is true whether the load is Y- or ∆- connected.



The average power per phase Pp for either the ∆-connected or the 

Y-connected balanced load is P/3, or

17
1

Pp Vp I p cos

And the reactive power per phase is 

Q p Vp I p sin

The apparant power per phase is

Sp Vp I p

The complex power per phase is

S  P  jQ  V I*

p p p p p

Here Vp and Ip are rms values of the phase voltage and phase current .



 Vp, Ip, VL, and IL are all rms values and that θ is the angle of the load 

impedance or the angle between the phase voltage and the phase current.

 The total average power is the sum of the average powers in the phases:

P  Pa  Pb  Pc  3Pp  3VpI p cos  3VLIL cos

 For a Y-connected load, IL = Ip and 𝑉𝐿= 3𝑉𝑝

3VLIL sin

 For a ∆-connected load, 𝐼𝐿 = 3𝐼𝑝 and VL = Vp

 Similarly, the total reactive power is Q  3VpI p sin 

*Z

p

p

p

3V2

 The total complex power: S  3S  3V I *  3I 2Z 
p p p p

Z p  Zp is the load impedance per phase

S  P  jQ 

17
2

3VLIL



Line Power Quantities for Balanced Y- or Δ-loads

 NOTE: φ is the load (or impedance) angle i.e. the angle between the 

phase voltage and phase current.

3VLIL cos Real Power: P 

3VLIL sin

3VLIL

17
3

 Reactive Power: Q 

 Apparent Power: S 

 Instantaneous power: p( t)  pa (t)  pb (t)  pc (t)  3Vp I p cos()



Check that power remains same on Y-Δ transformation

17
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Numerical 4For the balanced system shown in figure, find:

a) The magnitude of the line current

b) The magnitude of the line and phase voltages at the load

c) The real, reactive and apparent powers consumed by the load

d) The power factor of the load.
0.06Ω j0.12Ω

0.06Ω j0.12Ω

0.06Ω j0.12Ω
bnV =120∟-1200

Vcn=120∟-2400 +
-

+

-

-

Vɸ
+

+

-

Van=120∟0
0

208V

Zɸ

ZɸZɸ Zɸ=12+j9 Ω

3
17
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3

LV
V  

208
120V



Solution:

Both, the generator and the load are Y-connected, therefore, its easy to construct a per phase 

equivalent circuit.

a) Phase/line current:

L

L load

V 1200 1200
I     7.94 37.1A

Z  Z (0.06  j0.12)  (12 j9) 15.1237.1

b) Phase voltage over the load: Vp  I p * Zp  (7.9437.1)(12 j9)  119.1 0.2V

The magnitude of the line voltage on the load: VL  3Vp  206.3V

+

-
Zɸ

0.06Ω j0.12Ω

ɸV =120∟00 12+j9 ΩVɸL

IL

17
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c) The real power consumed by the load:

17
7

The reactive power consumed by the load:

The apparent power consumed by the load:

d) The load power factor:

Pfload = cosΦ = cos 36.9° = 0.8 lagging

Pload  3VpI p cos  3119.17.94cos36.9  2270 W

Qload  3VpI p sin  3119.17.94sin 36.9 1702var

Sload
 3VpI p  3119.17.94  2839 VA



• A major advantage of three-phase systems for power

distribution is that the three-phase system uses a lesser amount

of wire than the single-phase system for the same line voltage

VL and the same absorbed load power PL.

• The two cases (of single phase and three phase system) will be

compared in the next slides, considering that both have wires

of the same material and length, and that the loads are

resistive.

17
8

Advantage of Three Phase 

System



Power Loss in Single Phase and Three Phase 

Systems

two transmission wires is

2 (1)L

L

P2

V 2
Ploss  L2I R  2R

L

17
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L
V

For the two-wire single-phase system, I 
PL, so the total power loss in the



2

2
(2)L L

LP 'loss
3V V 2

 P2   P2 
 3(I ') R '  3R '  R '   

 L   L 

For the three-wire, three-phase system, IL’= |Ia| = |Ib| = |Ic| = PL / 3VL

The total power loss in the three transmission wires is

18
0



Equations (1) and (2) show that for the same total power delivered PL and

same line voltage VL,

=>

(3)
Ploss

P 'loss R '


2R

Also R 
l

and R ' 
l

where r and r′ are the radii of the wires
r2  (r ')2

(4)
P 2(r ')2

P ' r 2

loss 
loss

2

18
1

Material for three phase
=

2
=

3
(2)=1.33

2r 2 2

3(r ')3( (r ') l)

Material for single phase


2(r2l)

If the same power loss is tolerated in both systems, then r2 = 2(r′)2. The ratio 

of material required is determined by the number of wires and their volumes,



UNBALANCED THREE PHASE SYSTEMS
(1) The source voltages are not equal in magnitude and/or differ 

in phase by angles that are unequal, or

(2) load impedances are unequal (more practical scenario).

Z Z

18
2

Z
I =

VAN , I =
VBN , I =

VCN
a b c

A B C

In   Ia  Ib  Ic 



 In a three-wire system where the neutral line is absent, we can still

find the line currents Ia, Ib, and Ic using mesh analysis.

 At node N, KCL must be satisfied so that Ia + Ib + Ic = 0 in this case.

The voltage at node N will not be zero in such a case. The same could

be done for an unbalanced ∆-Y,Y-∆, or ∆-∆ three-wire system.

 To calculate power in an unbalanced three-phase system requires that we

find the power in each phase earlier.

 The total power is not simply three times the power in one phase but

the sum of the powers in the three phases.

18
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THREE-PHASE POWER MEASUREMENT
 A single wattmeter can measure the average power in a

three-phase system that is balanced i.e. P1 = P2 = P3 ; the

total power is just 3x the reading of that one wattmeter.

 However, two or three single-phase wattmeters are

necessary to measure power if the system is unbalanced.

18
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THREE-WATTMETER METHOD

This method can work regardless of whether the load is balanced 

or unbalanced, wye- or delta-connected. PT  P1  P2  P3

185



TWO-WATTMETER METHOD

The two-wattmeter method is the most commonly used method for 

three-phase power measurement in a 3-wire system (no neutral wire).

186



 Notice that the current coil of each wattmeter measures the line

current, while the respective voltage coil is connected between the

respective line and the third line and measures the line voltage.

 Although the individual wattmeters no longer read the power taken by

any particular phase, the algebraic sum of the two wattmeter readings

equals the total average power absorbed by the load, regardless of

whether it is wye- or delta-connected, balanced or unbalanced.

 The total real power is equal to the algebraic sum of the two

wattmeter readings

PT  P1  P2

18
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Two-Wattmeter Method for a balanced three phase system

Assume the source is in the abc sequence and the load impedance Z y  Zy.

Each phase voltage leads its respective phase current by θ

Each line voltage leads the corresponding phase voltage by 30°.
18
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 Thus, the total phase difference between the phase current Ia and 

line voltage Vab is θ + 30°.

 The average power read by wattmeter W1 is
*

18
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0 0

1 ab a ab a L L
P  Re(V I ) V I cos( 30 ) V I cos( 30 )

 Similarly, we can show that the average power read by wattmeter 2 is
* 0 0

2 cb c cb c L L
P  Re(V I ) V I cos( 30 ) V I cos( 30 )



cos(A B)  cos Acos B  sin Asin B
We now use the trigonometric identities

cos(A B)  cos Acos B  sin Asin B

to find the sum and the difference of the two wattmeter reading P1 and P2

0 0cos( P1  P2 VLIL 30 )  cos(   30 ) 

P1  P2 VLIL cos cos30 sin sin 30 cos cos30 sin sin 30

P1  P2 VLIL 2cos cos30  3VLIL cos

Thus, the sum of the wattmeter readings gives the total average power

PT  P1  P2 (1)

19
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Similarly 0 0cos(
1 2 L L

 P  P V I 30 ) cos(   30 ) 

P1  P2 VLIL cos cos30 sin sin 30 cos cos30 sin sin 30

P1  P2  VLIL 2sin sin 30

P2  P1 VLIL sin

Thus, the difference of the wattmeter readings is proportional to the 

total reactive power,

(2)

19
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QT  3P2  P1



 Dividing Eq. (2) by Eq. (1) gives the tangent of the power factor angle as

 Thus the power factor is,

T
P

3
 P2 P1 tan 

QT  
P  P



 2 1 

1


3
 P2 P1 cos  cos tan




P  P


 2 1 

T

19
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T T
P2From (1) and (2), the apparent power can calculated as S  Q2



Thus, the two-wattmeter method not only provides the total real and 

reactive powers, it can also be used to compute the power factor.

19
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1. If P2 = P1, the load is resistive.

2. If P2 > P1, the load is inductive.

3. If P2 < P1, the load is capacitive.

 Although these results are derived from a balanced Y-connected load, they are 

equally valid for a balancedΔ-connected load.

 The two-wattmeter method cannot be used for power measurement in a 3-phase 

4-wire system unless the current through the neutral line is zero.

 We can use the three-wattmeter method to measure the real power in a 3-phase 

4-wire system.



Numerical 
5

The three-phase balanced load in figure, has impedance per phase of

ZY = 8 + j6 Ω. If the load is connected to 208-V lines, predict the 

readings of the wattmeter W1 and W2. Find PT and QT.



Numerical 
5

Thus the Power Factor angle θ = 36.87°.

Since the line voltage VL = 208 V, 

the line current is

Solution:

The impedance per phase is ZY  (8 j6) 1036.87

10
L

Y

I
Z


Vp


208 3

12A



P1 VLIL cos  30  208*12*cos36.87  30  980.48W

P2 VLIL cos  30  208*12*cos36.87  30  2478.1W

Since P2  P1 , the load is inductive. This is evident from the load ZY itself.

PT  P1  P2  3.459kW

QT  3(P2  P1)  3(1497.6)VAR  2.594kVAR



Three wattmeters W1, W2, and W3 are connected, respectively, to 

phases A, B, and C of an unbalanced Y-connected load as in figure. 

The balanced source is Y-connected with phase voltage 100 V in 

negative (acb) sequence.

Find

(a) the wattmeter readings

(b)the total power absorbed 

by the load.

Numerical
6



Numerical 
6

Solution: The line currents are,

15
a

I 
1000

 6.670A

b
I 

100120
 8.9493.44A

10 j5

c
I 

100120
 10 66.87A

6 j8



(a) The wattmeter readings are,

(b) The total power absorbed is PT  P1 P2 P3 667800600 2067W

The power absorbed can also be calculated as the power dissipated 

across the resistors,

b c
P  I

2
(15) I

T a

2
(10) I

2
(6)  6.672(15) 8.942(10)102(6)  667 800 600  2067W

1

2

3

VANAN a AN a Ia

BN b BN b VBN Ib

CN c CN c VCN Ic

P  Re(V I *) V I cos(  ) 100*6.67*cos(00 00)  667W

P Re(V I *) V I cos(  ) 100*8.94*cos(1200 93.440) 800W

P  Re(V I *) V I cos(  ) 100*10*cos(1200  66.870)  600W



The two-wattmeter method produces wattmeter readings

P1 = 1560 W and P2 = 2100 W when connected to a delta-

connected load. If the line voltage is 220 V, calculate:

(a) the per-phase average power,

(b) the per-phase reactive power,

(c) the power factor.



Numerical 7Solution:
(a). The total real or average power is PT  P1 P2 1560 2100 3660W

3 3
T

p

P
The per phase average power is P  

3660
1220W

(b) The total reactive power is QT  3(P2 P1)  3(21001560)935.3VAR

3 3
T

p

Q
The per phase reactive power is Q  

935.3
311.77VAR

(c) The power-factor angle is   tan1 QT   tan1  935.3
14.330


P

 
3660 

 T 

Hence the power factor is cos  0.9689 (lagging) as QT is positive or P2 > P1
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