
© Oxford University Press 2014. All rights reserved.

Arrays

© Oxford University Press 2014. All rights reserved.

• An array is a collection of similar data elements.

• These data elements have the same data type.

• Elements of arrays are stored in consecutive memory locations and are

referenced by an index (also known as the subscript).

• Declaring an array means specifying three things:

Data type - what kind of values it can store. For example, int, char, float

Name - to identify the array

Size - the maximum number of values that the array can hold

• Arrays are declared using the following syntax:

type name[size];

1st

element
2nd

element
3rd

element
4th

element
5th

element
6th

element
7th

element
8th

element
9th

element
10th

element

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7] marks[8] marks[9]

Introduction

© Oxford University Press 2014. All rights reserved.

• To access all the elements of an array, we must use a loop.

• That is, we can access all the elements of an array by varying

the value of the subscript into the array.

• But note that the subscript must be an integral value or an

expression that evaluates to an integral value.

int i, marks[10];

for(i=0;i<10;i++)

marks[i] = -1;

Accessing Elements of an Array

© Oxford University Press 2014. All rights reserved.

• Address of data element, A[k] = BA(A) + w(k – lower_bound)

where

A is the array

k is the index of the element whose address we have to calculate

BA is the base address of the array A

w is the word size of one element in memory. For example, size of

int is 2

99 67 78 56 88 90 34 85

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7]
1000 1002 1004 1006 1008 1010 1012 1014

marks[4] = 1000 + 2(4 – 0)
= 1000 + 2(4) = 1008

Calculating the Address of Array Elements

© Oxford University Press 2014. All rights reserved.

Store values in the array

Initialize the elements

Input values for the elements

Assign values to the elements

Inputting Values from Keyboard Assigning Values to Individual Elements

Initializing Arrays during declaration

int marks [5] = {90, 98, 78, 56, 23};

Storing Values in Arrays

int i, arr1[10], arr2[10];

for(i=0;i<10;i++)

arr2[i] = arr1[i];

int i, marks[10];

for(i=0;i<10;i++)

scanf(“%d”, &marks[i]);

© Oxford University Press 2014. All rights reserved.

Length = upper_bound – lower_bound + 1

where

upper_bound is the index of the last element

lower_bound is the index of the first element in the array

99 67 78 56 88 90 34 85

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6 marks[7]]

Here, lower_bound = 0, upper_bound = 7
Therefore, length = 7 – 0 + 1 = 8

Calculating the Length of an Array

© Oxford University Press 2014. All rights reserved.

Traversing an array

Inserting an element in an array

Searching an element in an array

Deleting an element from an array

Merging two arrays

Sorting an array in ascending or descending order

OPERATIONS ON ARRAYS

Algorithm for array traversal

step 1: [initialization] set i = lower_bound

step 2: repeat steps 3 to 4 while i <= upper_bound

step 3: apply process to a[i]

step 4: set i = i + 1

[end of loop]

step 5: exit

© Oxford University Press 2014. All rights reserved.

#include<stdio.h>

#include<conio.h>

int main()

{

int i=0, n, arr[20];

clrscr();

printf(“\n Enter the number of elements : ”);

scanf(“%d”, &n);

printf(“\n Enter the elements : ”);

for(i=0;i<n;i++)

{

printf(“\n arr[%d] = ”, i);

WAP to Read and Display N Numbers using
an Array

scanf(“%d”, &num[i]);

}

printf(“\n The array elements are ”);

for(i=0;i<n;i++)

printf(“arr[%d] = %d\t”, i, arr[i]);

return 0;

}

© Oxford University Press 2014. All rights reserved.

Algorithm to insert a new element to the end of an array

Algorithm INSERT(A, N, POS, VAL) to insert an element VAL at
position POS

Inserting an Element in an Array

Step 1: Set upper_bound = upper_bound + 1

Step 2: Set A[upper_bound] = VAL

Step 3; EXIT

Step 1: [INITIALIZATION] SET I = N

Step 2: Repeat Steps 3 and 4 while I >= POS

Step 3: SET A[I + 1] = A[I]

Step 4: SET I = I – 1

[End of Loop]

Step 5: SET N = N + 1

Step 6: SET A[POS] = VAL

Step 7: EXIT

© Oxford University Press 2014. All rights reserved.

Algorithm to delete an element from the end of the array

Algorithm DELETE(A, N, POS) to delete an element at POS

Deleting an Element from an Array

Step 1: Set upper_bound = upper_bound - 1

Step 2: EXIT

Step 1: [INITIALIZATION] SET I = POS

Step 2: Repeat Steps 3 and 4 while I <= N-1

Step 3: SET A[I] = A[I + 1]

Step 4: SET I = I + 1

[End of Loop]

Step 5: SET N = N - 1

Step 6: EXIT

© Oxford University Press 2014. All rights reserved.

1D Arrays For Inter Function
Communication

Passing individual elements Passing entire array

Passing data values Passing addresses

Passing Arrays to Functions

© Oxford University Press 2014. All rights reserved.

Passing data values

main()
{

int arr[5] ={1, 2, 3, 4, 5};
func(arr[3]);

}

void func(int num)
{

printf("%d", num);
}

Passing addresses
main()
{

int arr[5] ={1, 2, 3, 4, 5};
func(&arr[3]);

}

void func(int *num)
{

printf("%d", *num);
}

main()
{

int arr[5] ={1, 2, 3, 4, 5};
func(arr);

}

void func(int arr[5])
{

int i;
for(i=0;i<5;i++)

printf("%d", arr[i]);
}

Passing the entire array

Passing Arrays to Functions

© Oxford University Press 2014. All rights reserved.

•Concept of array is very much bound to the concept of pointer.

•Name of an array is actually a pointer that points to the first

element of the array.

int *ptr;

ptr = &arr[0];

•If pointer variable ptr holds the address of the first element in the

array, then the address of the successive elements can be calculated

by writing ptr++.

int *ptr = &arr[0];

ptr++;

printf (“The value of the second element in the array is %d”, *ptr);

Pointers and Arrays

© Oxford University Press 2014. All rights reserved.

•An array of pointers can be declared as:

int *ptr[10];

•The above statement declares an array of 10 pointers where each

of the pointer points to an integer variable. For example, look at the

code given below.

int *ptr[10];

int p=1, q=2, r=3, s=4, t=5;

ptr[0]=&p;

ptr[1]=&q;

Arrays of Pointers

ptr[2]=&r;

ptr[3]=&s;

ptr[4]=&t

Can you tell what will be the output of the following

statement?

printf(“\n %d”, *ptr[3]);

© Oxford University Press 2014. All rights reserved.

A two-dimensional array is specified using two subscripts where one
subscript denotes row and the other denotes column.

C looks at a two-dimensional array as an array of one-dimensional
arrays.

A two-dimensional array is declared as:

data_type
array_name[row_size][column_size];

Second Dimension

F
ir

st
 D

im
e

n
si

o
n

Two-dimensional Arrays

© Oxford University Press 2014. All rights reserved.

Therefore, a two dimensional m×n array is an array that contains m×n

data elements and each element is accessed using two subscripts, i

and j, where i<=m and j<=n

int marks[3][5];

Rows/Columns
Col 0 Col 1 Col2 Col 3 Col 4

Row 0 Marks[0][0] Marks[0][1] Marks[0][2] Marks[0][3] Marks[0][4]

Row 1 Marks[1][0] Marks[1][1] Marks[1][2] Marks[1][3] Marks[1][4]

Row 2 Marks[2][0] Marks[2][1] Marks[2][2] Marks[2][3] Marks[2][4]

Two Dimensional Array

Two-dimensional Arrays

© Oxford University Press 2014. All rights reserved.

• There are two ways of storing a 2-D array in memory. The first

way is row-major order and the second is column-major order.

• In the row-major order the elements of the first row are stored

before the elements of the second and third rows. That is, the

elements of the array are stored row by row where n elements of

the first row will occupy the first nth locations.

(0,0) (0, 1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3)

Memory Representation of a Array

© Oxford University Press 2014. All rights reserved.

• However, when we store the elements in a column major order,

the elements of the first column are stored before the elements of

the second and third columns. That is, the elements of the array

are stored column by column where n elements of the first column

will occupy the first nth locations.

(0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3,2)

Memory Representation of a Array

© Oxford University Press 2014. All rights reserved.

Passing individual elements

2D Array for Inter Function
Communication

Passing a row Passing the entire 2D
array

There are three ways of passing two-dimensional arrays to a
function.
First, we can pass individual elements of the array. This is exactly
same as we passed element of a one-dimensional array.

Passing 2D Arrays to Functions

© Oxford University Press 2014. All rights reserved.

Passing a row
Calling function
main()
{

int arr[2][3]= ({1, 2, 3}, {4, 5, 6} };
func(arr[1]);

}

Called function
void func(int arr[])
{

int i;
for(i=0;i<3;i++)

printf("%d", arr[i] * 10);
}

Passing the entire 2D array
To pass a two dimensional array to a function, we use the array
name as the actual parameter. (The same we did in case of a 1D
array.) However, the parameter in the called function must indicate
that the array has two dimensions.

Passing 2D Arrays to Functions

© Oxford University Press 2014. All rights reserved.

Individual elements of the array mat can be accessed using either:

mat[i][j] or *(*(mat + i) + j) or*(mat[i]+j);

Pointer to a one-dimensional array can be declared as:

int arr[]={1,2,3,4,5};

int *parr;

parr=arr;

Similarly, pointer to a two-dimensional array can be declared as:

int arr[2][2]={{1,2},{3,4}};

int (*parr)[2];

parr=arr;

Pointers and 2D Arrays

© Oxford University Press 2014. All rights reserved.

A two and multi-dimensional array is initialized in the same was as

a single dimensional array is initialized. For example,

int marks[2][3]={90, 87, 78, 68, 62, 71};

int marks[2][3]={{90,87,78},{68, 62, 71}};

Initializing Multi-dimensional Arrays

•A multi-dimensional array is declared and initialized the same

way as we declare and initialize one- and two-dimensional arrays.

© Oxford University Press 2014. All rights reserved.

• A multi-dimensional array is an array of arrays.

• Like we have one index in a single dimensional array, two indices in a

two-dimensional array, in the same way we have n indices in a n-

dimensional array or multi-dimensional array.

• Conversely, an n dimensional array is specified using n indices.

• An n dimensional m1 x m2 x m3 x ….. mn array is a collection of

m1×m2×m3× ….. ×mn elements.

• In a multi-dimensional array, a particular element is specified by using

n subscripts as A[I1][I2][I3]…[In], where

I1<=M1 I2<=M2 I3 <= M3 ……… In <= Mn

Multi-dimensional Arrays

© Oxford University Press 2014. All rights reserved.

Multi-dimensional Arrays

© Oxford University Press 2014. All rights reserved.

A pointer to a three-dimensional array can be declared as:

int arr[2][2][2]={1,2,3,4,5,6,7,8};

int (*parr)[2][2];

parr=arr;

We can access an element of a three-dimensional array by writing:

arr[i][j][k]= *(*(*(arr+i)+j)+k)

Pointers and Three-dimensional Arrays

© Oxford University Press 2014. All rights reserved.

• Arrays are widely used to implement mathematical vectors,

matrices and other kinds of rectangular tables.

• Many databases include one-dimensional arrays whose

elements are records.

• Arrays are also used to implement other data structures like

heaps, hash tables, deques, queues, stacks and string. We will

read about these data structures in the subsequent chapters.

• Arrays can be used for dynamic memory allocation.

Applications of Arrays

static memory allocation dynamic memory

allocation

memory is allocated at

compile time.

memory is allocated at

run time.

memory can't be

increased while

executing program.

memory can be increased

while executing program.

used in array. used in linked list.

dynamic memory allocation.

malloc() allocates single block of

requested memory.

calloc() allocates multiple block of

requested memory.

realloc() reallocates the memory

occupied by malloc() or calloc()

functions.

free() frees the dynamically allocated

memory.

malloc() function in C:

• The malloc() function allocates single block of requested

memory.

• It returns NULL if memory is not sufficient.

• The syntax of malloc() function is given below:

ptr=(cast-type*)malloc(byte-size)

#include<stdio.h>

#include<stdlib.h>

int main(){

int n,i,*ptr,sum=0;

printf("Enter number of elements: ");

scanf("%d",&n);

ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc

if(ptr==NULL)

{

printf("Sorry! unable to allocate memory");

exit(0);

}

prinftf("Enter elements of array: ");

for(i=0;i<n;++i)

{

scanf("%d",ptr+i);

sum+=*(ptr+i);

}

printf("Sum=%d",sum);

free(ptr);

return 0;

}

calloc() function in C:

• The calloc() function allocates multiple block of requested

memory.

• It initially initialize all bytes to zero.

• It returns NULL if memory is not sufficient.

• The syntax of calloc() function is given below:

ptr=(cast-type*)calloc(number, byte-size)

#include<stdio.h>

#include<stdlib.h>

int main(){

int n,i,*ptr,sum=0;

printf("Enter number of elements: ");

scanf("%d",&n);

ptr=(int*)calloc(n,sizeof(int)); //memory allocated using calloc()

if(ptr==NULL)

{

printf("Sorry! unable to allocate memory");

exit(0);

}

printf("Enter elements of array: ");

for(i=0;i<n;++i)

{

scanf("%d",ptr+i);

sum+=*(ptr+i);

}

printf("Sum=%d",sum);

free(ptr);

return 0;

}

realloc() function in C:

• If memory is not sufficient for malloc() or

calloc(), you can reallocate the memory by

realloc() function. In short, it changes the memory

size.

• Let's see the syntax of realloc() function.

ptr=realloc(ptr, new-size)

• The memory occupied by malloc() or calloc() functions must be

released by calling free() function. Otherwise, it will consume

memory until program exit.

• Let's see the syntax of free() function.

free(ptr)

C Functions

In c, we can divide a large program into the basic

building blocks known as function.

The function contains the set of programming

statements enclosed by {}.

A function can be called multiple times to provide

reusability and modularity to the C program

Advantage of functions in C

There are the following advantages of C functions.

o By using functions, we can avoid rewriting same logic/code
again and again in a program.

o We can call C functions any number of times in a program and
from any place in a program.

o We can track a large C program easily when it is divided into
multiple functions.

o Reusability is the main achievement of C functions.

o However, Function calling is always a overhead in a C program.

Function Aspects

o Function declaration A function must be declared globally in a c

program to tell the compiler about the function name, function
parameters, and return type.

o Function call Function can be called from anywhere in the

program. The parameter list must not differ in function calling

and function declaration. We must pass the same number of
functions as it is declared in the function declaration.

o Function definition It contains the actual statements which are

to be executed. It is the most important aspect to which the

control comes when the function is called. Here, we must notice
that only one value can be returned from the function.

S.No C function

aspects

Syntax

1 Function

declaration

return_type function_name (argument

list);

2 Function call function_name (argument_list)

3 Function

definition

return_type function_name(argument

list)

{

function body;

}

Types of Functions

There are two types of functions in C programming:

1.Library Functions: are the functions which are declared in the C

header files such as scanf(), printf(), gets(), puts(), ceil(), floor()

etc.

2.User-defined functions: are the functions which are created by

the C programmer, so that he/she can use it many times. It

reduces the complexity of a big program and optimizes the

code.

Return Value
A C function may or may not return a value from the function. If you don't have to return any

value from the function, use void for the return type.

Example without return value:

void hello()

{

printf("hello c");

}

Example with return value:

int get()
{

return 10;

}

float get()
{

return 10.2;

}

User-defined functions:

o function without arguments and without return
value

o function without arguments and with return value

o function with arguments and without return value

o function with arguments and with return value

Example for Function without argument and without return value

#include<stdio.h>

void printName();

void main ()

{

printf("Hello ");

printName();

}

void printName()

{

printf("welcome");
}

#include<stdio.h>

void sum();

void main()

{

printf("\ncalculating the sumof two numbers:");

sum();

}

void sum()

{

int a,b;

printf("\nEnter two numbers");

scanf("%d %d",&a,&b);

printf("The sum is %d",a+b);

}

Example for Function without argument and with return value

#include<stdio.h>

int sum();

void main()

{

int result;

printf("\nGoing to calculate the sum of two numbers:");

result = sum();

printf("%d",result);

}

int sum()

{

int a,b;

printf("\nEnter two numbers");

scanf("%d %d",&a,&b);

return a+b;

}

Example for Function with argument and without return value

#include<stdio.h>

void sum(int, int);

void main()

{

int a,b,result;

printf("\nGoing to calculate the sum of t
wo numbers:");

printf("\nEnter two numbers:");

scanf("%d %d",&a,&b);

sum(a,b);

}

void sum(int a, int b)

{

printf("\nThe sum is %d",a+b);

}

#include<stdio.h>

int sum(int, int);

void main()

{

int a,b,result;

printf("\nGoing to calculate the sum of t
wo numbers:");

printf("\nEnter two numbers:");

scanf("%d %d",&a,&b);

result = sum(a,b);

printf("\nThe sum is : %d",result);

}

int sum(int a, int b)

{

return a+b;

}

Example for Function with argument and with return value

Recursion in C

Recursion is the process which comes into existence when a function calls a

copy of itself to work on a smaller problem. Any function which calls itself is

called recursive function, and such function calls are called recursive calls.

Recursion involves several numbers of recursive calls. However, it is important

to impose a termination condition of recursion. Recursion code is shorter than

iterative code however it is difficult to understand.

For Example, recursion may be applied to sorting,

searching, and traversal problems.

#include <stdio.h>

int fact (int);

int main()

{

int n,f;

printf("Enter the number whose factorial you want to calculate?");

scanf("%d",&n);

f = fact(n);

printf("factorial = %d",f);

}

int fact(int n)

{

if (n==0)

{

return 0;

}

else if (n == 1)

{

return 1;

}

else

{

return n*fact(n-1);

} }

#include<stdio.h>

int fibonacci(int);

void main ()

{

int n,f;

printf("Enter the value of n?");

scanf("%d",&n);

f = fibonacci(n);

printf("%d",f);

}

int fibonacci (int n)

{

if (n==0)

{

return 0;

}

else if (n == 1)

{

return 1;

}

else

{ return fibonacci(n-1)+fibonacci(n-2);

}

}

Call by value and Call by reference in C

There are two methods to pass the data into the function in

C language, i.e., call by value and call by reference.

Call by value in C
o In call by value method, the value of the actual parameters is copied

into the formal parameters.

o In call by value method, we can not modify the value of the actual
parameter by the formal parameter.

o In call by value, different memory is allocated for actual and formal

parameters since the value of the actual parameter is copied into the
formal parameter.

o The actual parameter is the argument which is used in the function

call whereas formal parameter is the argument which is used in the
function definition.

#include<stdio.h>

void change(int num) {

printf("Before adding value inside functio
n num=%d \n",num);

num=num+100;

printf("After adding value inside function
num=%d \n", num);

}

int main() {

int x=100;

printf("Before function call x=%d \n", x);

change(x);//passing value in function

printf("After function call x=%d \n", x);

return 0;

}

#include <stdio.h>

void swap(int *, int *); //prototype of the function

int main()

{

int a = 10;

int b = 20;

printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main

swap(&a,&b);

printf("After swapping values in main a = %d, b = %d\n",a,b); /*The values of actual parameters do change

in call by reference, a = 10, b = 20 */

}

void swap (int *a, int *b)

{

int temp;

temp = *a;

*a=*b;

*b=temp;

printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters, a = 20, b = 10

}

No. Call by value Call by reference

1 A copy of the value is

passed into the function

An address of value is passed into

the function

2 Changes made inside the

function is limited to the

function only. The values of

the actual parameters do

not change by changing the

formal parameters.

Changes made inside the function

validate outside of the function

also. The values of the actual

parameters do change by changing

the formal parameters.

3 Actual and formal

arguments are created at

the different memory

location

Actual and formal arguments are

created at the same memory

location

C Pointers
The pointer in C language is a variable which stores the address of another variable. This

variable can be of type int, char, array, function, or any other pointer

Declaring a pointer
The pointer in c language can be declared using * (asterisk symbol). It is also known as

indirection pointer used to dereference a pointer.

int *a; //pointer to int

char *c; //pointer to char

#include<stdio.h>

int main()

{

int number=50;

int *p;

p=&number;//stores the address of number variable

printf("Address of p variable is %x \n",p);

/* p contains the address of the number therefore printing p gives the address of number */

printf("Value of p variable is %d \n",*p);

/*As we know that * is used to dereference a pointer therefore if we print *p, we will get the val

ue stored at the address contained by p. */

return 0;

}

Linked Lists

LINKED LISTS

• A linked list is a linear data structure, in which

the elements are not stored at contiguous

memory locations. The elements in a linked

list are linked using pointers as shown in the

below image:

Types of Linked List

• Singly Linked List:

• Circular Linked List:

• Doubly Linked List:

https://www.geeksforgeeks.org/data-structures/linked-list/singly-linked-list/
https://www.geeksforgeeks.org/data-structures/linked-list/singly-linked-list/
https://www.geeksforgeeks.org/data-structures/linked-list/singly-linked-list/

Singly Linked List:

• It is the simplest type of linked list in which every
node contains some data and a pointer to the next
node of the same data type. The node contains a
pointer to the next node means that the node stores
the address of the next node in the sequence. A
single linked list allows the traversal of data only in
one way. Below is the image for the same:

https://www.geeksforgeeks.org/data-structures/linked-list/singly-linked-list/

Introduction to linked lists

• Like arrays, Linked List is a linear data

structure. Unlike arrays, linked list elements

are not stored at a contiguous location; the

elements are linked using pointers. They

includes a series of connected nodes. Here,

each node stores the data and the address of

the next node.

Why Linked List?

Arrays can be used to store linear data of similar types, but arrays
have the following limitations.

1.The size of the arrays is fixed

2.Insertion of a new element / Deletion of a existing element in
an array of elements is expensive

For example, in a system, if we maintain a sorted list of IDs in
an array id[].
id[] = [1000, 1010, 1050, 2000, 2040].
And if we want to insert a new ID 1005, then to maintain the sorted
order, we have to move all the elements after 1000 (excluding
1000).
Deletion is also expensive with arrays until unless some special
techniques are used. For example, to delete 1010 in id[], everything
after 1010 has to be moved due to this so much work is being done
which affects the efficiency of the code.

Representation
of LL

• A linked list is represented by a pointer to the first
node of the linked list. The first node is called the
head. If the linked list is empty, then the value of
the head points to NULL.

• Each node in a list consists of at least two parts:

• A Data Item (we can store integer, strings or any
type of data).

• Pointer (Or Reference) to the next node (connects
one node to another) or An address of another
node

Algorithm for traversing a linked list

Step 1: [Initialize] Set Ptr = Start

Step 2: Repeat Steps 3 And 4 While Ptr != Null

Step 3: Apply Process To Ptr -> Data

Step 4: Set Ptr = Ptr -> Next

[End Of Loop]

Step 5: Exit

Algorithm to print the number of nodes in a linked list

Step 1: [Initialize] Set Count =0

Step 2: [Initialize] Set Ptr = Start

Step 3: Repeat steps 4 And 5 While Ptr != Null

Step 4: Set Count = +1

Step 5: Set Ptr = Ptr -> Next

[End Of Loop]

Step 6: Write Count

Step 7: Exit

Algorithm to search a linked list

Step 1: [Initialize] Set Ptr = Start

Step 2: Repeat Step 3 While Ptr != Null

Step 3: If Val = Ptr ->Data

Set Pos = Ptr

Go To Step 5

Else

Set Ptr = Ptr -> Next

[End Of If]

[End Of Loop]

Step 4: Set Pos = Null

Step 5: Exit

Inserting a New Node in a Linked List

Case 1: The new node is inserted at the beginning.

Case 2: The new node is inserted at the end.

Case 3: The new node is inserted after a given node.

Case 4: The new node is inserted before a given node.

Step 1: If Avail = Null

Write Overflow

Go To Step 7

[End Of If]

Step 2: Set New_node = Avail

Step 3: Set Avail = Avail -> Next

Step 4: Set New_node ->Data = Val

Step 5: Set New_node -> Next = Start

Step 6: Set Start = New_node

Step 7: Exit

Algorithm new node is inserted at the end

Algorithm new node is inserted after a given node.

Algorithm new node is inserted before a given node.

Algorithm to delete the first node

Algorithm to delete the last node

Algorithm to delete the node after a given node

CIRCULAR LINKED LISTS

Circular linked list

A circular linked list is that in which the last node

contains the pointer to the first node of the list. While

traversing a circular linked list, we can begin at any node and

traverse the list in any direction forward and backward until

we reach the same node we started. Thus, a circular linked list

has no beginning and no end. Below is the image for the same:

Inserting a New Node in a Circular Linked List
Case 1: The new node is inserted at the beginning of the circular linked list.
Case 2: The new node is inserted at the end of the circular linked list.

Algorithm new node is inserted at the end of the circular linked list

Algorithm to delete the first node

Algorithm to delete the last node

DOUBLY LINKED LISTS

Doubly linked list

• A doubly linked list or a two-way linked list is a more complex

type of linked list which contains a pointer to the next as well

as the previous node in sequence, Therefore, it contains three

parts are data, a pointer to the next node, and a pointer to the

previous node. This would enable us to traverse the list in the

backward direction as well. Below is the image for the same:

Algorithm to insert a new node at the beginning

Algorithm to insert a new node at the end

Algorithm to insert a new node after the given node

Algorithm to insert a new node before the given node

Deleting a Node from a Doubly Linked List

• Case 1: The first node is deleted.

• Case 2: The last node is deleted.

• Case 3: The node after a given node is deleted.

• Case 4: The node before a given node is deleted.

Algorithm to delete the first node

Algorithm to delete the last node

Algorithm to delete a node after a given node

Algorithm to delete a node before a given node

CIRCULAR DOUBLY LINKED LISTS

Algorithm to insert a new node at the beginning

Algorithm to insert a new node at the end

Algorithm to delete the first node

Algorithm to delete the last node

QUEUES

© Oxford University Press 2014. All rights reserved.

© Oxford University Press 2014. All rights reserved.

• Queue is an important data structure which stores its elements in

an ordered manner.

• We can explain the concept of queues using the following analogy:

People moving on an escalator. The people who got on the escalator

first will be the first one to step out of it.

• A queue is a FIFO (First-In, First-Out) data structure in which the

element that is inserted first is the first one to be taken out.

• The elements in a queue are added at one end called the rear and

removed from the other one end called the front.

Introduction

INSERTING AN ELEMENT

DELETING A ELEMENT

Array
Representation

of
Queues

© Oxford University Press 2014. All rights reserved.

• Queues can be easily represented using linear arrays.

• Every queue has front and rear variables that point to the position
from where deletions and insertions can be done, respectively.

• Consider the queue shown in figure

0 1 2 3 4 5 6 7 8 9

12 9 7 18 14 36

• Here, front = 0 and rear = 5.
• If we want to add one more value in the list say with value 45, then

rear would be incremented by 1 and the value would be stored at
the position pointed by rear.

12 9 7 18 14 36 45

0 1 2 3 4 5 6 7 8 9

Array Representation of Queues

© Oxford University Press 2014. All rights reserved.

• Now, front = 0 and rear = 6. Every time a new element has to be

added, we will repeat the same procedure.

• Now, if we want to delete an element from the queue, then the

value of front will be incremented. Deletions are done from only

this end of the queue.

9 7 18 14 36 45

0 1 2 3 4 5 6 7 8 9

• Now, front = 1 and rear = 6.

Array Representation of Queues

© Oxford University Press 2014. All rights reserved.

• Before inserting an element in the queue we must check for

overflow conditions.

• An overflow occurs when we try to insert an element into a queue

that is already full, i.e. when rear = MAX – 1, where MAX specifies

the maximum number of elements that the queue can hold.

• Similarly, before deleting an element from the queue, we must

check for underflow condition.

• An underflow occurs when we try to delete an element from a

queue that is already empty. If front = -1 and rear = -1, this means

there is no element in the queue.

Array Representation of Queues

© Oxford University Press 2014. All rights reserved.

Step 1: IF REAR=MAX-1, then;

Write OVERFLOW

Go to Step 4

[END OF IF]

Step 2: IF FRONT == -1 and REAR = -1, then

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: SET QUEUE[REAR] = NUM

Step 4: Exit

Algorithm for Insertion Operation

Algorithm for Deletion Operation

Step 1: IF FRONT = -1 OR FRONT > REAR, then

Write UNDERFLOW

Goto Step 2

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

[END OF IF]

Step 2: Exit

LINKED LIST
Representation

of
Queues

© Oxford University Press 2014. All rights reserved.

• In a linked queue, every element has two parts: one that stores data

and the other that stores the address of the next element.

• The START pointer of the linked list is used as FRONT.

• We will also use another pointer called REAR which will store the

address of the last element in the queue.

• All insertions will be done at the rear end and all the deletions will

be done at the front end.

• If FRONT = REAR = NULL, then it indicates that the queue is empty.

1 7 3 4 2 6 5 X

FRONT REAR

Linked Representation of Queues

© Oxford University Press 2014. All rights reserved.

Inserting an Element in a Linked Queue

Step 1: Allocate memory for the new node and name it as PTR

Step 2: SET PTR->DATA = VAL

Step 3: IF FRONT = NULL, then

SET FRONT = REAR = PTR

SET FRONT->NEXT = REAR->NEXT = NULL

ELSE

SET REAR->NEXT = PTR

SET REAR = PTR

SET REAR->NEXT = NULL

[END OF IF]

Step 4: END

© Oxford University Press 2014. All rights reserved.

Deleting an Element from a Linked Queue

Step 1: IF FRONT = NULL, then

Write “Underflow”

Go to Step 5

[END OF IF]

Step 2: SET PTR = FRONT

Step 3: FRONT = FRONT->NEXT

Step 4: FREE PTR

Step 5: END

© Oxford University Press 2014. All rights reserved.

7 18 14 36 45 21 99 72

0 1 2 3 4 5 6 7 8 9

• We will explain the concept of circular queues using an example.

• In this queue, front = 2 and rear = 9.

• Now, if you want to insert a new element, it cannot be done

because the space is available only at the left of the queue.

• If rear = MAX – 1, then OVERFLOW condition exists.

• This is the major drawback of a linear queue. Even if space is

available, no insertions can be done once rear is equal to MAX – 1.

• This leads to wastage of space. In order to overcome this problem,

we use circular queues.

• In a circular queue, the first index comes right after the last index.

• A circular queue is full, only when front=0 and rear = Max – 1.

Circular Queues

© Oxford University Press 2014. All rights reserved.

• For insertion we check for three conditions which are as follows:

 If front=0 and rear= MAX – 1, then the circular queue is full.

90 49 7 18 14 36 45 21 99 72

front=0 1 2 3 4 5 6 7 8 rear = 9

 If rear != MAX – 1, then the rear will be incremented and value will
be inserted

90 49 7 18 14 36 45 21 99

front=0 1 2 3 4 5 6 7 rear= 8 9

• If front!=0 and rear=MAX -1, then it means that the queue is
not full. So, set rear = 0 and insert the new element.

49 7 18 14 36 45 21 99 72

front=1 2 3 4 5 6 7 8 rear= 9

Inserting an Element in a Circular Queue

© Oxford University Press 2014. All rights reserved.

Algorithm to Insert an Element in a
Circular Queue

Step 1: IF FRONT = 0 and Rear = MAX – 1, then

Write “OVERFLOW”

Goto Step 4

[END OF IF]

Step 2: IF FRONT = -1 and REAR = -1, then;

SET FRONT = REAR = 0

ELSE IF REAR = MAX – 1 and FRONT != 0

SET REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: SET QUEUE[REAR] = VAL

Step 4: Exit

© Oxford University Press 2014. All rights reserved.

• To delete an element again we will check for three conditions:

 If front = -1, then it means there are no elements in the queue. So
an underflow condition will be reported.

0 1 2 3 4 5 6 7 8 9

 If the queue is not empty and after returning the value on front, if
front = rear, then it means now the queue has become empty and
so front and rear are set to -1.

Delete this element and set
rear = front = -1

81

0 1 2 3 4 5 6 7 8 front=rear= 9

 If the queue is not empty and after returning the value on front, if
front = MAX -1, then front is set to 0.

72 63 9 18 27 39 81

0 1 2 3 4 rear= 5 6 7 8 front= 9

Deleting an Element from a Circular Queue

© Oxford University Press 2014. All rights reserved.

Algorithm to Delete an Element from a Circular Queue

Step 1: IF FRONT = -1, then

Write “Underflow”

Goto Step 4

[END OF IF]

Step 2: SET VAL = QUEUE[FRONT]

Step 3: IF FRONT = REAR

SET FRONT = REAR = -1

ELSE

IF FRONT = MAX -1

SET FRONT = 0

ELSE

SET FRONT = FRONT + 1

[END OF IF]

[END OF IF]

Step 4: EXIT

© Oxford University Press 2014. All rights reserved.

• A deque is a list in which elements can be inserted or deleted at

either end.

• It is also known as a head-tail linked list because elements can be

added to or removed from the front (head) or back (tail).

• A deque can be implemented either using a circular array or a

circular doubly linked list.

• In a deque, two pointers are maintained, LEFT and RIGHT which

point to either end of the deque.

• The elements in a deque stretch from LEFT end to the RIGHT and

since it is circular, Dequeue[N-1] is followed by Dequeue[0].

Deques

© Oxford University Press 2014. All rights reserved.

• There are two variants of a double-ended queue:

 Input restricted deque: In this dequeue insertions can be done only

at one of the ends while deletions can be done from both the

ends.

Output restricted deque: In this dequeue deletions can be done

only at one of the ends while insertions can be done on both the

ends.

29 37 45 54 63

0 1 2 LEFT = 3 4 5 6 RIGHT = 7 8 9

42
63 27 18

RIGHT = 0 1 2 3 4 5 6 LEFT = 7 8 9

Deques

© Oxford University Press 2014. All rights reserved.

• A priority queue is a queue in which each element is assigned a
priority.

• The priority of elements is used to determine the order in which
these elements will be processed.

• The general rule of processing elements of a priority queue can be
given as:

An element with higher priority is processed before an element
with lower priority

Two elements with same priority are processed on a first come
first served (FCFS) basis

• Priority queues are widely used in operating systems to execute the
highest priority process first.

• In computer’s memory priority queues can be represented using
arrays or linked lists.

Priority Queues

• When arrays are used to implement a priority queue, then a

separate queue for each priority number is maintained.

• Each of these queues will be implemented using circular arrays

or circular queues. Every individual queue will have its own

FRONT and REAR pointers.

• We can use a two-dimensional array for this purpose where

each queue will be allocated same amount of space.

• Given the front and rear values of each queue, a two

dimensional matrix can be formed.

Array Representation of Priority Queues

© Oxford University Press 2014. All rights reserved.

• When a priority queue is implemented using a linked list, then

every node of the list contains three parts: (1) the information or

data part, (ii) the priority number of the element, (iii) and address

of the next element.

• If we are using a sorted linked list, then element having higher

priority will precede the element with lower priority.

A 1 B 2 C 3 D 3 E 4 X

A 1 B 2 C 3 F 4 D 5 E 6 X

Priority queue after insertion of a new node

Linked Representation of Priority Queues

© Oxford University Press 2014. All rights reserved.

• When implementing a queue using an array, the size of the array
must be known in advance.

• If the queue is allocated less space, then frequent OVERFLOW
conditions will be encountered.

• To deal with this problem, the code will have to be modified to
reallocate more space for the array, but this results in sheer wastage
of memory. Thus, there lies a tradeoff between the frequency of
overflows and the space allocated.

• A better solution to deal with this problem is to have multiple
queues or to have more than one queue in the same array.

• One important point to note is that while queue A will grow from left
to right, the queue B on the same time will grow from right to left.

Queue A Queue B

0 1 2 3 4 ………………………………. n-4 n-3 n-2 n-1

Multiple Queues

© Oxford University Press 2014. All rights reserved.

• Queues are widely used as waiting lists for a single shared resource

like printer, disk, CPU.

• Queues are used to transfer data asynchronously e.g., pipes, file IO,

sockets.

• Queues are used as buffers on MP3 players and portable CD players,

iPod playlist.

• Queues are used in Playlist for jukebox to add songs to the end, play

from the front of the list.

• Queues are used in OS for handling interrupts. When programming a

real-time system that can be interrupted, for ex, by a mouse click, it

is necessary to process the interrupts immediately before

proceeding with the current job. If the interrupts have to be handled

in the order of arrival, then a FIFO queue is the appropriate data

structure

Applications of Queues

