Complex Variables & Transforms (20A54302)

II - B.TECH & I- SEM

Prepared by:

Dr. B. NAGABHUSHANAM REDDY, Professor Department of H &S

VEMU INSTITUTE OF TECHNOLOGY

(Approved By AICTE, New Delhi and Affiliated to JNTUA, Ananthapuramu) Accredited By NBA(EEE, ECE & CSE) & ISO: 9001-2015 Certified Institution Near

Pakala, P.Kothakota, Chittoor- Tirupathi Highway

Chittoor, Andhra Pradesh-517 112

Web Site: <u>www.vemu.org</u>

Unit – 1

Complex - analysis

• Function of Complex Variable/ Differentiation:

If for each value of the complex variable Z = X + iY in a given region 'R', we have one or more values of w=f(z)=u+iv, Then W is said to be a function of 'Z', and we have w=f(z)=u+iv.

Where u and v are real and imaginary parts of f(z). z=x+iy

and

f(z)=u(x,y)+iv(x,y) is a complex function.

• Continuity of a Function:

Let f(z) is said to be continuous function at z=z if $\lim_{z\to z_0} f(z) = f(z_0)$

• Differentiability of a Function:

A function f(z) is said to be differentiable at z=z if

exists. It is donated by
$$\begin{split} &\lim_{\Delta z \to 0} \left(\frac{f(z + \Delta z) - f(z)}{\Delta z} \right) \right) & f^{I}(z_{0}) \\ & \bullet \text{ Analytical } \quad \text{ i.e. } f^{I}(z_{0}) = \frac{\lim_{\Delta z \to 0} \left(\frac{f(z + \Delta z) - f(z)}{\Delta z} \right) \right)}{Function:} \end{split}$$

The complex function f(z) is said to be analytical function at z=a if the function f(z) has derivative at z=a and neighbourhood of z=a.

Example:

```
1. Let f(z) = z^2 f'(z) = 2z

At z=0, f'(z) = 2(0) = 0 (finite) f(z)

has derivative at z=0

Finally f(z) is called analytical function.

1

2. Let f(z) = \begin{bmatrix} z \\ -1 \\ z^2 \end{bmatrix}

f'(z) = \begin{bmatrix} z \\ -1 \\ z^2 \end{bmatrix}

At z=0, f'(z) = \begin{bmatrix} z \\ -1 \\ (0)^2 \end{bmatrix} = \begin{bmatrix} z \\ z^2 \end{bmatrix}

f(z) has no derivative at z=0
```

Finally f(z) is called **not analytical** function.

• Singular Point:

Let z=a is said to be singular point if the function f(z) is not analytical at z=a.

Example:

 $f(z) = \frac{1}{z}$, $f'(z) = \infty$ singular point.

• Cauchy – Riemann Equations in Cartesian co-ordinates:

• If f(z) is continuous in some neighbourhood of z and differentiable at z then the first order partial derivatives satisfy the equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at the point z which are called the Cauchy-Riemann equations.

proof:

Let f(z) = u+iv be an analytical function By definition of analytical function, f(z) has derivative. i.e. $f^{I}(z) = \Delta z \rightarrow 0 \left(\frac{f(z + \Delta z) - f(z)}{\Delta z} \right) \right)$ exists (finite) 1) z = x+iy f(z) = u+iv f(z) = u(x,y)+iv(x,y)2) $z = x+iy \Delta z = \Delta x + i \Delta y$ 3) $f z + \Delta z = ?$ $z + \Delta z = x+iy + \Delta x + i \Delta y$ $(z + \Delta z) = u(x + \Delta x) + i(y + \Delta y)$ $f^{I}(z) = u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) - [u(x,y)+iv(x,y])$ $f^{I}(z) = \lim_{\Delta x + i \Delta y \rightarrow 0} \left(\frac{[u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y)] - [u(x,y)+iv(x,y])}{\Delta x + i \Delta y} \right) \rightarrow (1)$

 $x = 0, \Delta y = 0$

Case (1) If
$$\triangle y = 0$$
, put $\triangle y = 0$ in (1).

$$f^{I}(z) \qquad (\underbrace{[u(x + \triangle x, y) + iv(x + \triangle x, y)) - [u(x,y) + iv(x,y)]}_{\Delta x} = \lim f^{I}(z) \qquad (\underbrace{\lim_{\Delta X \to 0} \frac{[u(x + \triangle x, y) - u(x,y)]}_{\Delta x}}_{\Delta x} + \underbrace{\lim_{\Delta X \to 0} \frac{i[v(x + \triangle x, y) - u(x,y)]}_{\Delta x}}_{\Delta x})$$

$$= f^{I}(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \rightarrow (2)$$

$$\begin{aligned} \text{Case (2) If } \Delta x &= 0, \text{ put } \Delta x = 0 \text{ in } (1) \\ & \begin{bmatrix} u(x,y+\Delta y)+iv(x,y+\Delta y)) - [u x,y+iv x,y] \\ (& () & () \\ () & () \\ \hline ()$$

Equate (2) & (3)

Compare the real and imaginary parts

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

$$\left\{ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \right\}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
(If $ux = vy$ and $uy = -vx$)

These are **Cauchy – Riemann** Equations in **Cartesian** co-ordinate System.

Cauchy – Riemann Equations in Polar co-ordinates:

Let z=x+iy We know that x=rcos θ , y=rsin θ z = rcos θ +irsin θ z = r(cos θ +isin θ) z = $re^{i\theta}$ f(z)=u+iv f($re^{i\theta}$) = u(r, θ)+iv(r, θ) \rightarrow (1) Differentiate (1) w.r.t 'r', f'($re^{i\theta}$) $e^{i\theta} = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \rightarrow$ (2) Differentiate (1) w.r.t ' θ ', f'(\rightarrow (3) Substitute (2) in (3), We get

$$\begin{bmatrix} \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \end{bmatrix} = \frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} r e^{i\theta} \text{ (i)} r i e^{i\theta} = \frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta}$$
$$\frac{\partial u}{\partial r} - r \frac{\partial v}{\partial r} = \frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta}$$
ir
Lets compare real and imaginary parts
$$\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$$
$$\frac{\partial v}{\partial \theta} = r \frac{\partial u}{\partial r}$$

These are Cauchy – Riemann Equations in Polar co-ordinate System. Examples

1) Show that f(z) = xy+iy is not analytical

Solution : Given ,
$$f(z) = xy+iy$$

 $f(z) = u+iv \ u = xy$
 $v = y$
 $\frac{\partial u}{\partial x} = y, \quad \frac{\partial v}{\partial x} = 0$
 $\frac{\partial u}{\partial y} = x, \quad \frac{\partial v}{\partial y} = 1$
 $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$
 $\frac{\partial u}{\partial y} \neq -\frac{\partial v}{\partial x}$

It doesn't not satisfies C-R equations and hence its not an analytical function.

2) Show that $f(z) = 2xy+i(x^2 - y^2)$ is not analytical function. Solution: Given $f(z) = 2xy+i(x^2 - y^2)$

It doesn't not satisfies C-R equations and hence its not an analytical function.

,

3) Test the analyticity $f(z) = e^{x}(\cos y - i \sin y)$ and also find the $f^{I}(z)$ Solution: Given $f(z) = e^{x}\cos y - i \sin y$

i*e^xsiny*

$$f(z) = u+iv u = e^x cosy$$

 $v = -e^x siny$

f(z) is **not analytical** function and the f^I(z)
4) Show that f(z) = z z²

$$\frac{\partial u}{\partial x} = e^{x} \cos y, \quad \frac{\partial v}{\partial x} = -e^{x} \sin y$$
does not exist.

$$\frac{\partial u}{\partial y} = -e^{x} \cos y$$
is not analytical function

$$\frac{\partial v}{\partial y} = -e^{x} \cos y$$
Solution : Given f(z) = z z²

$$\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} & \frac{\partial u}{\partial y} \neq -\frac{\partial v}{\partial x}$$

$$f(z) = (x+iy)^{1}(x+iy)^{2} = (x+iy) [\sqrt{x^{2} + y^{2}}]^{2}$$
$$f(z) = x(x^{2} + y^{2}) + iy(x^{2} + y^{2}) f(z) =$$

u+iv

$$u = x(x^{2} + y^{2}) = x^{3} + xy^{2} \quad \forall = y(x^{2} + y^{2}) = x^{2}y + y^{3}$$
$$\frac{\partial u}{\partial x} = 3x^{2} + y^{2}, \quad \frac{\partial v}{\partial x} = 2xy$$
$$\frac{\partial u}{\partial y} = 2xy, \quad \frac{\partial v}{\partial y} = x^{2} + 3y^{2}$$
$$\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} & \& \quad \frac{\partial u}{\partial y} \neq -\frac{\partial v}{\partial x}$$

f(z) is not analytical function

5) Show that w= logz is an analytical function and also find $\frac{dw}{dz}$

Solution : Given w = logz

put z = $re^{i\theta}$ $i\theta = \log r + \log e^{i\theta} w w$ = $\log re$ = $\log r + i\theta \log e$ f(z) = w = $\log r + i\theta = u + iv u$ = $\log r$ $v = \theta$

$$\begin{aligned} \frac{\partial u}{\partial r} &= \frac{1}{r'}, \quad \frac{\partial v}{\partial r} = \theta \\ \frac{\partial u}{\partial \theta} &= 0, \\ \frac{\partial u}{\partial \theta} &= 0, \\ \frac{\partial u}{\partial \theta} &= 1 \\ r \frac{\partial u}{\partial r} &= \frac{\partial v}{\partial \theta} & \frac{\partial u}{\partial \theta} &= -r \frac{\partial v}{\partial r} \\ r(\frac{1}{r}) &= 1 \quad \& \quad 0 = 0 \quad \text{It is an analytical function } f(z) \\ &= u + iv \\ f(re^{i\theta}) &= u(r, \theta) + iv(r, \theta) \end{aligned}$$

differentiate on both sides w.r.t 'r'

f'(

$$re^{i\theta}) e^{i\theta} = \frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}$$
$$f'(z) e^{i\theta} = \frac{1}{r} + i_{(0)}$$
$$f'(z) = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

6) Show that $f(x) = \sin x$ is an analytical function everywhere in the complex plane

Solution : Given f(x) = sinz

f(x) = sin(x+iy) f(x) = sinx cos(iy) + sin(iy) cosx f(X) = sinxcoshy + isinhy cosx f(x) = u+iv

u = sinx coshy v= sinhy cosx

$$\frac{\partial x}{\partial x} = \cos x \cosh y, \quad \frac{\partial x}{\partial x} - \sin x \sinh y$$

$$= \sin x \sinh y, \quad = \cosh y \cos x \quad \& \quad \begin{bmatrix} \frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial x} \end{bmatrix} = \frac{\partial v}{\partial y} \quad \begin{bmatrix} \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} \end{bmatrix} = -\frac{\partial v}{\partial x}$$

7) Test the analyticity of the function $f(z) = e^x (\cos y + i \sin y)$ and find $f^1(z)$. Solution : Given , $f(z) = e^x$

(cosy+isiny) = u+iv

 $u = e^{x} \cos y \qquad v = e^{x} \sin y$ $\frac{\partial u}{\partial x} = e^{x} \qquad \frac{\partial v}{\partial x} = e^{x} \sin y$ $\frac{\partial u}{\partial y} = -e^{x} \qquad \frac{\partial v}{\partial y} = e^{x} \cos y$ $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ & It is an **analytical** function

$$f(z) = u+iv$$

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial y} = e^{x} \cos y + i e^{x} \sin y$$

$$f'(z) = e^{x} (\cos y + i \sin y)$$

$$f'(z) = e_{x} i e_{y} = e^{(x+iy)}$$

$$f'(z) = e^{z}$$

8) Determine P such that the function $f(z) = \frac{1}{2} \log (x^2 + y^2) + itan^{-1} (\frac{px}{y})$ be an analytical function. Solution :

Given,
$$f(z) = \frac{1}{2} \log (x^2 + y^2) + itan^{-1} (\frac{px}{y})$$

It is an analytical function, It satisfies the C-R equation
 $y = u = \frac{1}{2} \log (x^2 + y^2) tan^{-1} (\frac{px}{y})$
 $\frac{\partial u}{\partial x} = \frac{1}{2} \frac{1}{x^2 + y^2} 2x, \qquad \frac{\partial v}{\partial x} = \frac{1}{1 + (\frac{px}{y})^2} \frac{p}{y}$
 $\frac{\partial u}{\partial y} = \frac{1}{2} \frac{1}{x^2 + y^2} 2y$
 $\frac{\partial v}{\partial y} = \frac{1}{1 + (\frac{px}{y})^2} \frac{-1}{p}$
 $\frac{\partial v}{\partial y} = \frac{y^2}{y^2 + (\frac{px}{y})^2} (\frac{-px}{y^2})$
similarly: $\frac{\partial v}{\partial x} = \frac{py}{p^2x^2 + y^2} \frac{\partial v}{\partial y} = \frac{-px}{y^2 + p^2x^2}$,
By given f(z) is an analytical function, f(z) satisfies C-R equations.
 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$
 $\frac{x}{2 + 2} = \frac{-px}{2} x y y + p^2x^2$
Comparing the equations we get:
 $P = -1$

Prove that function f(z) defined by f(z) = -R equations are satisfied at the origin, yet $f^{I}(0)$ does not exist. 9) Solution : Given $f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}$

i) To show that f(z) is continuous at z=0

et
$$\lim_{x \to 0} \frac{\lim_{x \to 0} \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}}{x^2+y^2} \text{ (given f(0) = 0) } \frac{\frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}}{x^2+y^2} \text{ , } z \neq 0 \text{ and f(0) is continues and C}$$
$$\lim_{x \to 0} \frac{y \to 0}{\lim_{x \to 0} \frac{x}{(1+i)}}{x^2}$$
$$_{3f(z) = f(z) = 1$$
$$\lim_{x \to 0} x(1+i) = 0 = f(0)$$
$$x \to 0 \text{ f(z) is continuous}$$

ii) To show that C-R equations are satisfied at origin

$$f(z) = \frac{x^3 + x^3 i - y^3 + iy^3}{x^2 + y^2} = \frac{x^3 - y^3}{x^2 + y^2} + \frac{i(x^3 + y^3)}{x^2 + y^2} f(z)$$

$$= u + iv$$

$$u = \frac{x^3 - y}{x^2 + y^2} = \frac{3}{x^2 + y^2}$$

$$v = \frac{x^3 - y}{x^2 + y^2} = \frac{3}{x^2 + y^2}$$

$$\frac{\partial u}{\partial x} = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x}$$
R Equat

$$\frac{\partial u}{\partial x} = \lim_{x \to 0} \frac{x - 0}{x} => \lim_{x \to 0}$$

$$\frac{\partial u}{\partial x} = 1$$

$$\frac{\partial u}{\partial y} = \lim_{y \to 0} \frac{u(0,y) - u(0,0)}{y}$$

$$\frac{\partial u}{\partial y} = \lim_{y \to 0} \frac{-y - 0}{y} => \lim_{y \to 0} -1 = -$$

$$\frac{\partial u}{\partial y} = -1$$

$$\frac{\partial u}{\partial y} = -1$$

$$\frac{\partial v}{\partial x} = \lim_{x \to 0} \frac{v(x,0) - v(0,0)}{x}$$

$$\frac{\partial v}{\partial x} = \lim_{x \to 0} \frac{x - 0}{x} = \lim_{x \to 0} 1 = 1$$

$$\frac{\partial v}{\partial y} = \lim_{y \to 0} \frac{y - 0}{y} =\lim_{x \to 0} 1 = 1$$

$$\frac{\partial v}{\partial y} = \lim_{y \to 0} \frac{y - 0}{y} =\lim_{x \to 0} 1 = 1$$

$$\frac{\partial v}{\partial y} = \lim_{y \to 0} \frac{y - 0}{y} =\lim_{x \to 0} 1 = 1$$

$$\frac{\partial v}{\partial y} = \lim_{y \to 0} \frac{y - 0}{y} =\lim_{x \to 0} 1 = 1$$

$$\frac{\partial v}{\partial y} = 1$$

$$C - \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} & a$$

$$\frac{\partial u}{\partial y} = 0$$

Equations are satisfied at origin iii) To how that $f^{I}(z)$ does not exist at origin $f^{I}(z) = y \rightarrow 0 z$ $x^{3} 1+i-y^{2}+3 y(1-i) 2$

—

$$f'(z) = yx \rightarrow 00 \qquad x \qquad x + iy$$
$$\lim_{x \to 0} x$$

$$x_{1+i} {}^{3}f'(z)_{x} \lim_{\to 0} x_{3} =$$

= 1+i (Finite)

f^ı(z) Exists

At y = mx

 $f^{I}(z) =$

$$f^{I}(z) = \frac{\lim_{z \to 0} \frac{f(z) - f(0)}{z}}{\frac{x^{3}(1+i) - m^{3}x^{3}(1-i)}{x^{2} + x^{2}m^{2}}} = f^{I}(z)$$

$$\lim_{x \to 0} \frac{f^{I}(z)}{x + imx} = f^{I}(z)$$

$$f^{I}(z) = \lim_{x \to 0} \frac{x^{3}[(1+i)-m^{3}(1-i)]}{x^{2}(1+m^{2})x(1+im)}$$

$$y \to mx$$

$$f^{I}(z) \qquad \lim_{x \to 0} \frac{[(1+i)-m^{3}(1-i)]}{(1+m^{2})(1+im)}$$

$$= \frac{[(1+i)-m^{3}(1-i)]}{(1+m^{2})(1+im)}$$

 $f^{I}(z) =$ (Infinite) $f^{I}(z)$ depends upon the 'm' value, so that the $f^{I}(z)$ does not exist at origin

Part – B

Laplace Equations

the equation of the form
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$
 or $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$

Harmonic Function

The function u and v are said to be harmonic, if it satisfies Laplace Equations

i.e

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

or
$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Milne – Thomson Method

When u is given find f(z) :

1) To find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$

2) To find $f^{I}(z) = u+iv$

Differentiate w.r.t 'x' we get

$$\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$$

$$f^{I}(z) = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y}$$

$$f^{I}(z) = \frac{\partial u}{\partial x} = \emptyset_{1}(z_{1})$$

$$\frac{\partial u}{\partial y} = \emptyset_{2}(z_{2})$$

$$0) \quad f^{I}(z) = \emptyset_{1}(z_{1}, 0) - i \quad \emptyset_{2}(z_{2}, 0)$$

(From C-R equation)

Integrate w.r.t 'z'
$$f(z) = 10$$
 ((z₁,0) dz - i 20) ((z₂,0) dz

+ c When v is given find f(z):

1) To find
$$\frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x}$
2) To find f(z) = u+iv
Differentiate w.r.t 'x', we get
 $f^{I}(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$
 $f^{I}(z) = \frac{\partial v}{\partial y} + i\frac{\partial v}{\partial x}$
 $\frac{\partial v}{\partial y} = \phi_{1}(z_{1,0})$
 $\frac{\partial v}{\partial x} = \phi_{2}(z_{2,0})$

(From C-R equation)

 $f^{I}(z) = Ø_{1}(z_{1},0) + i Ø_{2}(z_{2},0)$

Integrate w.r.t 'z' $f(z) = {}_1[\emptyset \square (z_1,0) + i \emptyset_2(z_2,0)$

]dz + c

Construct an analytical function f(z) when u = x³- 3x y² + 3x + 1 is given $\frac{\partial u}{\partial x} = 3x^2 - 3y^2 + 3$ 1) $\frac{\partial u}{\partial y} = -\frac{1}{6}$

Solution:

By Milne Thomson Method

f(z) =u+iv

$$\frac{\partial u}{\partial x} = \emptyset_{1}(z,0) = 3 z^{2} + 3$$

$$\frac{\partial u}{\partial y} = \emptyset_{2}(z \qquad , 0) = - \qquad \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \qquad 6(z) (0) = 0$$

$$\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \emptyset_{1}(z,0) - i \emptyset_{2}(z \quad f^{1}(z) = \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$f^{1}(z) = ,0)$$
Integrate w.r.t 'z' f(z) =
$$\begin{bmatrix} \emptyset_{1}(z,0) + i \emptyset_{2}(z,0) \end{bmatrix} dz + c f(z)$$

$$= \begin{bmatrix} 3z^{2} + 3 - 0 \end{bmatrix} dz + c f(z)$$

$$= \frac{3z^{3}}{3} + 3z + c$$

$$f(z) = z^{3} + 3z + c$$

3) Find the analytical function f(z) = u+iv if u+v (cosh2y -cos2x) Solution: $u+v = \overline{(cosh2y - cos2x)}$ f(z) = u+iv if(z) = ui-v (1+i)f(z) = (u-v)+i(u+v)f(z) = u+iv

$$\frac{\partial V}{\partial x} = \frac{[coh2y - cos2x]2cos2x - sin2x[0 + 2sin2x]}{[cosh2y - cos2x]^2}$$

$$\frac{\partial V}{\partial x} = \frac{2cos2x \cosh y - 2cos^2 2x - 2sin^2 2x}{[cosh2y - cos2x]^2}$$

$$\frac{\partial V}{\partial x} = \frac{2cos2x \cosh y - 2}{[cosh2y - cos2x]^2}$$

$$\frac{\partial V}{\partial x} = \emptyset_2(Z_{,0})$$

$$\frac{\partial V}{\partial x} = \frac{2cos2z \cosh 0 - 2}{[cosh0 - cos2z]^2} = \frac{2[cos2z - 1]}{[1 - cos2z]^2} = \frac{-2[1 - cos2z]}{[1 - cos2z]^2}$$

$$\frac{\partial V}{\partial x} = \frac{-2}{2sin^2 z}$$
Where F(z) = (1+i)f(z)
u+v = V

$$\overline{\partial_x} = \phi_2(z_{\partial V}, 0) = -\cos ec_2 z$$

$$\overline{\partial x} = \phi_2(z_{\partial V,0}) = -\operatorname{cosec2z}$$

$$\frac{\partial v}{\partial y} = \phi_1(z_{,0}) = \frac{[\operatorname{coh2y-cos2x}] \, 0 - \operatorname{sin2x}[\operatorname{sinh2y}(2)]}{[\operatorname{cosh2y-cos2x}]^2}$$

$$\phi_1(z,0) = \frac{\partial v}{\partial y} = \frac{-2 \operatorname{sin2xsinhy}}{[\operatorname{cosh2y-cos2x}]^2}$$

$$\frac{\partial v}{\partial y} = \frac{-0 \operatorname{sin2z}}{[\operatorname{cosh2y-cos2z}]^2} = 0$$

$$f(z) = u+iv$$

$$f(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f(z) = \frac{i(1-i)}{2}$$

$$f(z) = \frac{i(1-i)}{2}$$

$$f(z) = \frac{i(1-i)}{2}$$

$$f(z) = \frac{\partial u}{\partial x} = e^{x} x^{2} \cos y + 2x \quad e^{x} \cos y - e^{-y}$$

$$f(z) = \frac{\partial u}{\partial x} = e^{x} x^{2} \cos y + 2x \quad e^{x} \cos y - e^{-y}$$

$$g_{1}(z,0) = \frac{\partial u}{\partial x} = e^{z} z^{2}$$

$$analytical function, whose real part is u = y^{2}(\cos y - 2xy \sin y)$$

$$\frac{\partial u}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial u}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial u}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial v}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial v}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial v}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial v}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial v}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial v}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial v}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial v}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

$$\int \frac{\partial v}{\partial y} = -e^{x} x^{2} \qquad x \quad z$$

 $\cos(0) + 2z e^{z} \cos(0) - 0 - 0 - 0$

 $dz + 2 \mathbb{2} z e^z dz$

$$u = z^{2} dv = e^{z} dz du = 2z dz \quad v = e^{z} f(z) = e^{z}$$
$$z^{2} - 2 \mathbb{Z} dz e^{z} dz + 2 \mathbb{Z} e^{z} dz + c f(z) = e^{z}$$
$$z^{2} + c$$

2

5) The analytical function whose imaginary part is v(x,y) = 2xy Solution:

$$= 2y = \emptyset_{2}(z,0) = 2(0) = 0$$

$$\frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} = 2x = \emptyset_{1}(z,0) = 2(z) = 2z f(z)$$

$$= \emptyset(z) , 0] d I A^{1} c z(, 0) + i z(I)$$

$$= I Z d z + c$$

$$f(z) = 2 \frac{z^{2}}{2} + c$$

$$f(z) = z^{2} + c$$

Find harmonic conjugate at $u = e^{x^2-y^2}\cos^2xy$ and also find f(z)

Solution :	$u = e^{x^2 - y^2} \cos 2xy$
	$\frac{\partial u}{\partial x} = e^{x^2 - y^2} \cos 2xy (2x) - e^{x^2 - y^2} \sin 2xy (2y)$
	$\emptyset_1(z,0) = e^{z_2-0} \cos(2z) - e^{x_2-y_2}(0)$
	$\emptyset_1(z,0) = e^{z^2} 2z \frac{\partial u}{\partial y} = e^{x^2 - y^2} \cos 2xy (-2y) -$
	e ^{x2-y2} sin2xy (2x)

 $Ø_2(z,0) = 0 - 0$ $Ø_2(z,0) = 0 f(z)$ = u+iv f^I(z) = $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} - \mathbf{i} \frac{\partial u}{\partial \mathbf{y}}_{\mathbf{f}}(\mathbf{z}) =$ $f^{I}(z) = Ø_{1}(z,0) - i Ø_{2}(z,0)$ $f(z) = \square \phi_1(z,0) - i \phi_2(z,0)] dz + c f(z) = \square e^{z_2} 2z$ (put $z^2 = t => 2z dz = dt$) f(z) = $2e^t dt +$ dz + c $c = e^t + c$ $f(z) = e^{z_2} + c f(z) = e^{(x+iy)_2} f(z) =$ $e_{x_2-y_2+2xy_1} + c f(z) = e_{x_2-y_2}e_{2xy_1} + c u + iv =$ $e^{x_2-y_2}[\cos 2xy+i\sin 2xy] + c u+iv = e^{x_2-y_2}$ $\cos 2xy + i e e^{x_2-y_2}(\sin 2xy) + c$ $\mathbf{v} = \mathbf{e}^{\mathbf{x}\mathbf{2}-\mathbf{y}\mathbf{2}}\mathbf{sin}\mathbf{2}\mathbf{xy} + \mathbf{c}$

7) Find the analytical function f(z) such that $Re[f^{I}(z)] = 3 x^{2} - 4y - 3 y^{2}$ and f(1+i) = 0.

 $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}} \qquad \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = -\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$ Solution : $Re[f'(z)] = 3 x^2 - 4y - 3 y^2$ Integrate w.r.t 'y' we get f(z) = u+iv $x^2y - \frac{4y^2}{2} - \frac{3y^3}{3} + f(x)$ $\frac{\partial u}{\partial x}$ + i $\frac{\partial v}{\partial x}$ f'(z) = $\frac{\partial u}{\partial x}$ $Re[f^{I}(z)] =$ $\frac{\partial u}{\partial x} = 3 x^2 - 4y - 3 y^2 \qquad \qquad \frac{\partial v}{\partial y} = 3 x^2 - 4y - 3 y^2$ Integrate w.r.t 'x' we get **&** $u = \frac{3x^3}{3} - 4xy - 3y^2x + f(y) = 3$ $u = x^{3} - 4xy - 3y^{2}x + f(y) \qquad v = 3x^{2}y - y^{3} - 2y^{2} + f(x)$ Differentiate w.r.t 'x' we get Differentiate w.r.t 'y' we get $\frac{\partial v}{\partial x} = 6xy + f'(x)$ $\frac{\partial u}{\partial y} = -4x - \frac{1}{6xy} + f^{I}(y)$

From C-R equations $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ $-4x - 6xy + f^{I}(y) = -6xy - f^{I}(x)$ $-4x + f^{I}(y) = -f^{I}(x)$

Compare equation on both sides

i.e
$$f^{I}(x) = 4x$$
, $f^{I}(y) = 0$
 $f(x) = 4$ $2x dx$ $f(y) = c f(x)$

$$= \frac{4x^2}{2} + c$$

$$f(x) = 2 x^2 + c \qquad f(y) = c$$

$$f(z) = u + iv f(z) = [x^3 - 4xy - 3y^2x] + i [3 x^2y - y^3 - 2y^2] + 2x^2 + c$$
given $f(1+i) = 0 f(z) = u + iv$

$$z = x + iy = (1+i)$$
put $x = 1$, $y = 1 f(z) = [1 - 4 - 3] + i[3 - 2 - 1] + 2 + c f(1 + i) = 0 = -6 + 2i + c c$

$$= 6 - 2i$$

$$f(z) = [x^3 - 4xy - 3y^2x] + i [3 x^2y - y^3 - 2y^2] + 2 x^2 + 6 - 2i$$

8) Find the analytic function f(z) = u+iv if $u-v = e^x(\cos y - \sin y)$ Solution:

$$f(z) = u+iv i f (z) = iu-v$$

(1+i) f(z) = (u-v) + i (u+v)
f(z) = u+iv u = u-v = e^x
(cosy - siny)

$$F(z) = (1+i) f(z) \cos y - e^{x} \sin y =$$

$$\frac{\partial u}{\partial x} = e^{x}$$

$$\frac{\partial u}{\partial y} = -e^{x}$$

$$f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial y}$$

$$f(z) = \mathbb{P}[\emptyset_{1}(z,0) - i \emptyset_{2}(z,0)] dz + c$$

$$f(z) = \mathbb{P}[\emptyset_{1}(z,0) - i \emptyset_{2}(z,0)] dz + c$$

$$f(z) = \mathbb{P}[e^{z} + i e^{z}] dz + c$$

$$f(z) = e^{z} + i e^{z} + c$$

$$f(z) = e^{z} + i e^{z} + c$$

$$f(z) = e^{z} + i e^{z} + c$$

Harmonic Conjugate

1) Show that function u= 2xy+3y is harmonic and find harmonic conjugate.

Solution:

$$\frac{\partial u}{\partial x} = 2y \qquad \qquad \frac{\partial u}{\partial y} = 2x+3$$
$$\frac{\partial^2 u}{\partial x^2} = 0 \qquad \qquad \frac{\partial^2 u}{\partial y^2} = 0$$

$\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} = 0 \quad \text{u satisfies laplace}$

equation

'u' is a **Harmonic** function

$$dv = \frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy$$
$$dv = -(2x+3) dx + 2y dy v$$
$$= \mathbb{P}(2x+3) dx + 2y dy$$
$$\left(\frac{2x}{2} + 3x\right) + \frac{2y}{2} = 2^{-2}$$
$$v = -+c$$

 $v = -x^2 + y^2 - 3x + c$

2) Show that $u = 2\log (x^2 + y^2)$ is harmonic and find its harmonic conjugate.

Solution:

 $u = 2\log(x^2 + y^2)$

$$\begin{aligned} \frac{\partial u}{\partial x} &= 2 \frac{1}{x^2 + y^2} \sum_{\substack{x \\ y^2 = \frac{1}{x^2 + y^2} \ge x}} & \frac{\partial u}{\partial y} &= 2 \frac{1}{x^2 + y^2} \\ \frac{\partial^2 u}{\partial x^2} &= \frac{(x^2 + y^2)(4) - 4x(2x)}{(x^2 + y^2)^2} & \frac{\partial^2 u}{\partial y^2} &= \frac{(x^2 + y^2)(4) - 4y(2y)}{(x^2 + y^2)^2} \\ \frac{\partial^2 u}{\partial x^2} &+ \frac{\partial^2 u}{\partial y^2} &= \frac{4x^2 + 4y^2 - 8x^2 + 4x^2 + 4y^2 - 8y^2}{(x^2 + y^2)^2} \\ \frac{\partial^2 u}{\partial x^2} &+ \frac{\partial^2 u}{\partial y^2} &= 0 \\ dv &= \frac{\partial v}{\partial x dx} + \frac{\partial v}{\partial y} dy \\ dv &= \frac{\partial u}{\partial y} & dx + \frac{\partial v}{\partial y} dy \\ dv &= \frac{-4y}{x^2 + y^2} dx + \frac{4x}{x^2 + y^2} dy \\ dv &= \frac{-4y}{x^2 + y^2} (y dx - x dy) \\ v &= - 4 \int \left[\frac{x dy - y dx}{x^2 + y^2} \right]_{v} \\ &= - 4 \int d \tan^{-1}(\frac{y}{x}) \\ v &= - \frac{4 \tan^{-1}(\frac{y}{x}) + c}{1 + (\frac{y}{x})^2} \left[\frac{x dy - y dx}{x^2} \right]_{x} \end{aligned}$$

3) Find f(z) if the imaginary part is $r^2 \cos 2\theta + r \sin \theta$ Solution:

 $V = r^2 \cos 2\theta + r \sin \theta$

$$\begin{aligned} & \text{Integrate w.} \frac{\partial_{t} t_{an}^{-1} t_{y}^{y}}{\partial_{t} t_{an}^{-1} t_{y}^{y}} \underbrace{\text{veg} \tilde{t}_{an}^{t} t_{t}^{x} \frac{dy - y \, dx}{dy}}{dy t_{t}^{y} t_{t}^{y} t_{t}^{y} t_{t}^{y}} \underbrace{t_{t}^{y} \frac{dy - y \, dx}{dy}}{dy t_{t}^{y} t_{t}^{y} t_{t}^{y} t_{t}^{y} t_{t}^{y} t_{t}^{y}} \underbrace{t_{t}^{y} \frac{dy - y \, dx}{dy}}{dy t_{t}^{y} t_{t}^$$

[real f(z)]² = u^2

$$\frac{\partial(u^2)}{\partial x} = 2u \frac{\partial u}{\partial x}$$
$$\frac{\partial^2(u^2)}{\partial x^2} = 2u \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} \rightarrow 1$$

Similarly,

→2

$$\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] u^2 \text{ [real } f(z)]^2 = 2 f'(z)^2$$

5) If f(z) is analytical function with constant modulus ,then show that f(z) is constant.

Solution:

let f(z) is constant modulus

f(z) = u+iv

$$|f(z)| = u^{\sqrt{2}} + v^{2} = \text{constant}$$

$$\sqrt{u^{2} + v^{2}} = c$$

$$u_2 + v_2 = c_2 = c_1$$

Differentiate w.r.t 'x'

$$2u\frac{\partial u}{\partial x} + 2v\frac{\partial v}{\partial x} = 0 \rightarrow (1)$$

$$u = \frac{\partial v}{\partial y} - v^2 \frac{\partial u}{\partial y} - u^2 \frac{\partial u}{\partial y} - uv \frac{\partial v}{\partial y} = 0$$

Similarly

$$u^2 + v^2 \neq 0$$

$$\frac{\partial u}{\partial y} = 0$$

$$\int \frac{\partial u}{\partial y} = c$$

$$v = c f(z) \text{ is}$$

constant

Conformal Mapping :

u = c

A transformation w = f(z) is said to be conformal if it preserves angel between oriented curves in magnitude as well as in orientation.

Bilinear Transformation :

The transformation $w = f(z) = \frac{az+b}{cz+d}$ is called the bilinear transformation or mobius transformation. Where a,b,c,d are complex constants.

The method to find the bilinear transformation if three points and their images are given as follows:

We know that we need four equations to find 4 unknowns. To find a bilinear transformation we need three points and their images.

in cross ration, three are four points $(w,w_1, w_2,w_3) = (z,z_1, z_2, z_3)$

 $\frac{(w-w_1)(w_2-w_3)}{(w_1-w_2)(w_3-w)} \quad (z-z_1)(z_2-z_3)$ $= (w_1-w_2)(w_3-w) \quad (z_1-z_2)(z_3-z)$ Since we have to get w = $\frac{az+b}{cz+d}$, we take one point as 'z' and its image as 'w'

Problems about bilinear transformation:

1) Find the bilinear transformation on which maps the points (-1, 0, 1) into the points (0,i,3i) in w-plane **Solution :** In z-plane, $z_1 = -1$, $z_2 = 0$, $z_3 = 1$

In w-plane, $w_1 = 0$, $w_2 = i$, $w_3 = 3i$

In cross ration,

(w,0,i,3i) = (z,-1,0,1)

$$\frac{(w-w_1)(w_2-w_3)}{(w_1-w_2)(w_3-w)} \qquad \frac{(z-z_1)(z_2-z_3)}{(z_1-z_2)(z_3-z)}$$

$$\frac{(w-0)(i-3i)}{(0-i)(3i-w)} = \frac{(z+1)(0-1)}{(-1-0)(1-z)}$$

$$\frac{(w)(-2i)}{(-i)(3i-w)} = \frac{-(z+1)}{-(1-z)} =$$

$$-2wi(1-z) = (z+1)[-[i(3i-w)]]$$

$$-2wi + 2wiz = -[-3-wi](z+1)$$

$$-2wi + 2wiz = 3z + wiz + 3 + wi$$

3) Find the bilinear transformation that maps the points $(0,i,\alpha)$ respectively into $(0,1,\alpha)$.

Solution:

In z-plane,
$$z^{1} = 0$$
, $z_{2} = i$, $z_{3} = = \frac{1}{0} = \frac{1}{\alpha} = \frac{1}{z_{3}^{-1}} [z_{3}^{-1} = 0]$
 $w_{1} = 0$, $w_{2} = 1$, $w_{3} = \frac{1}{w_{3}^{-1}} = \frac{1}{0} = \alpha [w_{3}^{-1} = 0]$
In w-plane,
 $(w_{2} = \frac{1}{1})$
 $(w_{-}w_{1})(z_{-}z_{1})(z_{2} = -) w_{3}^{-1} = z_{3}^{-1} ((w_{-}w_{-}w_{1} - w_{2})(1 - w_{-}w_{3})z)(w_{-}z_{-}w_{2})(1 - 2z_{-})(z_{2}z_{3}^{-1})$
 $(w_{1} - w_{2})(\frac{1}{w_{3}^{-1}} - w) (z_{1} - z_{2})(\frac{1}{z_{3}^{-1}} - z)$
 $(w_{-}0)(0 - 1) (z_{-}z_{2})(\frac{1}{z_{3}^{-1}} - z)$
 $(w_{-}0)(0 - 1) (z_{-}z_{-}) = \frac{(z - 0)(z_{-}(0) - 0)}{(0 - z_{-})(1 - 0)}$
 $\frac{-w}{-1} = \frac{-z}{-z}$
 $w = -iz$

Fixed point :

The transformation $w = \frac{az+b}{cz+d}$ The roots of this transformation are called fixed points or invariant points. $z = \frac{az+b}{cz+d}$ (we know that w = f(z)) z(cz+d) = $az+b c z^2+dz = az+b c z^2+(d-a)z - b = 0$ **Problems:**

1) Find the fixed points of the transformation w =

Solution: The roots of above transformation are called fixed points

$$\frac{z-1+i}{z+2} \text{ put w} \qquad \frac{z-1}{z+1}$$

= z z = $\frac{z-1}{z+1}$ z(z+1)
= z-1 z² + z - z + 1
= 0 z²
+1 = 0 z² = -1 z = ±

i fixed points \pm i

2) The fixed points of the transformation w =

Solution: put w = z z-1+i $\mathbf{z} = \mathbf{z} + 2$ z(z+2) = (z-i+1) (a =1, b =1, c =1-i) $z^2 + 2z = z - i + l$ $z^{2}+z+i-l = 0$ $\underline{-b \pm b^2 - 4ac}$ -1 ± 1+4 (1 -i) **z** = 2a =2 −1 <u>+</u>1+4−4 i i **z** = 2 <u>- 3-4i</u> -1 + 3 - 4i& 2 2

3) Determine the bilinear transformation whose fixed points are 1,-1 **Solution**:

Given fixed points are z = 1,-1

The roots of the transformation is $w = _$ are called fixed points **put** w = z cz+d $z = \frac{az+b}{cz+d}$ $cz^2+(d-a)z - b = 0 (z+1)(z-1) = 0$ $z^2-1=0$ (c =1, d =0, a =0, b =1) $w = \frac{0z+1}{1z+0} = \frac{1}{z}$

Problems on images:

1) Write the image of the triangle with vertices (i,1+i,1) in the z-plane under the transformation w = 3z+4-2i

Solution:

у

(x,y) = (1,0) In w-plane: y in z-plane Transformation z =i \bigcirc $3(x+iy)+4-2i z= 1+i \bigcirc$ x+iy = 1+i u+iv = w (x,y) = (1,1) x = 3x+4, v= 3y-2 x = 2x+4, v= 3y-2x = 2x+4,

In w -plane
$$z - plane \frac{1}{2}$$

i) $y = 40 = \frac{-v}{u^2 + v^2}0$ ii) $y = \frac{1}{2} \Rightarrow \frac{1}{2} = \frac{-v}{u^2 + v^2}$
 $0 = -v$ $u^2 + v^2 = -2v v = 0$ Conclusion: 1
The image of infinite strip $0 < y <$ is transferred as straight line (v=0) or circle under the transformation $w = \frac{1}{2}$
3) Find the image of the region in the z- $\frac{1}{2}$ plane between the lines $y = 0$ and $y =$ under the transformation $w = e^2$
Solution: In z -plane
The lines are $y = 0$, $y = \frac{\pi}{2}$
Transformation
 $w = e^2$
 $u + iv = ex + iy = ex eiy Y = 0$ $u + iv = e^x$

2

 $[\cos y + i \sin y] u = e^x \cos y \qquad v = e^x \sin y$

In w-plane

i)
$$y = 0$$
 (9) $u = e^{x}$, $v = 0$
 π
ii) $y =$ (9) $u = 0$, $v = e$

4) Show that transformation $w = z + _$ maps the circle z = c into the eclipse $u = (c + \frac{1}{c}) \cos\theta$, $v = \frac{1}{c} \sin\theta$ (c - . Also discuss the z case when c = 1 in detail.

cosxsinhy

Unit – 2 Complex Integration

Line Integral:

suppose f(z) is a complex function in the region R, and C is a smooth curve in R. Consider an interval

 $x_{1} < x_{2} \dots < x_{n} < b \text{ are points in (a, b).}$ (a, b) and a < $\Delta x_{r} = x_{r} - x_{r-1} \text{ are chord vectors, then}$ () $\lim_{n \to \infty} \sum_{r=1^{n}} \Delta x_{r} = a^{b} f z dz$

Where the summation tends to a limit and independent of the points choice. The limit exists if f(z) is continuous along the path.

Evaluation of the integrals: $f z dz = (u + iv)(dx + idy) = (udx - vdy + i(udy + vdx))^{(where u and v are functions of x.)}$

() **Problems: 1)** Evaluate $_{c}x^{2}$ + ixydz from A(1, 1) to B(2, 8) along x = t and y = t³. **Solution:** Along x = t, y = t³, dx = dt, dy = 3 t² dt, The limits for t are 1 and 2 c) $x^2 + ixy (dx + idy) = cx^2 dx - xy dy + i(xy dx + x^2 dy)$ 2 2 dt - 3 t⁶ dt + i4 t⁴ dt = t³-3 t⁷+i4 t⁵ (apply the lower = 1t 3 7 5 and upper limit) 1094 124i = - - + ----5 2 1+i ² dz along y = x^2 **2)** Evaluate $_0$ z 1+i ² dz along y = x^2 , dy = 2x dx Solution: 0 Z 1+i 2- y²+2ixy)(dx+idy) = 0(X

1 $2 - x^4$ dx - 2 x^3 2x dx + i($x^2 - x^4$ 2x dx + 2 x^3 dx)

= 0 (X2 2 =- +i 3 3 2+i **3)** Evaluate $_{1-i}(2x + 1 + iy)dz$ along (1-i) to (2+i). **Solution:** Along (1-i) to (2+i) is the straight line AB joining (1,-1) to (2,1). The equation of AB is y-1 = $-\frac{(-1-1)}{(1-2)}$ (x-2) y-2x = -3, y = 2x-3, dy = 2dxX varies from 1 to 2 2+i2 $_{1-i}(2x+1+iy)dz = _{1}2x+1 dx - (2x-3)2dx + i[2x-3]dx + (2x+1)2dx]$ 2 B (2,1) = (-2x+7 dx + i(6x-1)dx)<u>x2</u> <u>x2</u> = -2 +7x+i(6 -x)|(apply the lower 2 2 A(1,-1) and upper limit) 2+i $_{1-i}(2x+1+iy)dz = 4+8i$

(1,1)
$${}^{2}+5y+i(x^{2}-y^{2})]dz along y^{2} = x.$$

4) Evaluate $_{(0,0)}[3x]$

Solution: Along $y^2 = x$, 2ydy = dx, y varies from 0 to 1.

 $(0(1,0),3)[3 x^{2}+5y+i(x^{2}-y^{2})][dx+idy] = {}_{0}13 y^{4}2ydy+5y2y - (y^{4}-y^{2})dy + i[(3y^{4}+5y)dy+(y^{4}-y^{2})2ydy]$ $= 5\frac{y_{0}y_{5}}{6}\frac{y_{3}}{5}\frac{y_{3}}{3}\frac{y_{6}y_{5}y_{4}y_{2}}{6}\frac{y_{2}}{5}-2+5 \qquad) \text{ (apply the lower}$ $= 3\frac{129}{6}\frac{44i}{5}\frac{44i}{15}$

(1,3)
$${}^{2}ydx+(x^{2}-y^{2})dy \text{ along a}) y = 3 x^{2} b) y = 3x.$$

5) Evaluate (0,0) X

Solution: a) $y = 3 x^2$, dy = 6xdx, x varies from 0 to 1.

 $(0(1,0),3) x^2 y dx + (x^2 - y^2) dy = 0^1 3 x^4 dx + (x^2 - 9x^4) 6x dx$

Along C2= AB

x =1, dx =0 **y** varies from 0 to 1 1 3 $c_2(3z + 1)dz = i_0[3(1+iy)+1]dy = 4i - 2$

Along $c_3 = BC$ y =1, dy=0 x varies from 1 to 0 0 3 $c_3(3z + 1)dz = 1[3 (x + i)+1]dx = -_2 -3i-1$ Along $c_4 = CO$ x =0, dx=0 y

varies from 1 to 1

 $1 \quad 3 \quad) \quad c_4(3z + 1 \, dz = 1)$ $[3iy + 1]idx = 2 -i \quad z = 1$ $5 \quad 3 \quad 5 \quad 3 \quad c_3z + 1 \quad dz = 2 - 2$ -3i - i + 2 = 0

 $_{c}(3z+1)dz=0$

 $(1,1)^{2} + 4xy + ix^{2}]dz \text{ along } y = x^{2} 7)$ Evaluate (0,0) [3 x Solution: $y = x^{2}$, dy = 2xdx, $(0(1,0),1)[3 x^{2} + 4xy + ix^{2}] = 0^{1}(3 x^{2} + 4 x^{3} + i x^{2})(dx + i2xdx)$ $1 \qquad 2 + 4 x^{3} - 2 x^{3})dx + i(6 x^{3} + 8 x^{4} + x^{2})dx$ = 0 (3 x $= \frac{1}{24} + 1 \cdot \frac{3}{-2} + i(5 + \frac{1}{3}) \text{ (apply the lower and upper limit)}$ $3 \qquad 103i$

8) Evaluate $(y^2 + 2xy)dx + (x^2 - 2xy)dy$, where is the boundary of the region by $y = x^2$ and $x = y^2$

Solution:

C₁: Along OA, y = x², dy = 2xdx X varies from 0 to 1 $c_1(y^2 + 2xy)dx + (x^2 - 2xy)dy = 0^1(x^4 + 2x^3)dx + (x^2 - 2xy)dy = 0^1(x^4 + 2x^3)dx$

³)2xdx = -2_5 C₂: Along ABO, x = y², dx = 2ydy y varies from 1 to 0 - 2 x

 $c_2(y^2+2xy)dx + (x^2-2xy)dy =$

<u>•.</u>u<u>•.</u>u<u>•.</u>v<u>•.</u>v

Since $f^{I}(z)$ is continuous, o. x, o. y, o. x, o. y exist and are continuous in R.

According to Green's theorem

<u>. v . u</u>

 $c udx + vdy = . R(\bigcirc. x - \diamondsuit. y) dxdy$ () $() \qquad \bigcirc. v \oslash. u \qquad \bigcirc. v \oslash. U$ $c f z dz = . R(- \circlearrowright. x - \circlearrowright. y) dxdy + i . R(\circlearrowright. y - \circlearrowright. x) dxdy$ () $() \qquad \bigcirc. U \oslash. u \qquad \bigcirc. v$ () $() \qquad \bigcirc. v \qquad \bigcirc. v$ Since f(z) is analytic $c f z dz = \cdot R(\circlearrowright. y - \circlearrowright. y) dxdy + i \cdot R(\circlearrowright. y - \circlearrowright. y)$ dxdy $() \qquad \bigcirc. u \oslash. v$ $() \qquad \bigcirc. x = \circlearrowright. y \text{ and } \bigcirc. y = () \cdot x()$ c f z dz = 0

Cauchy's Integral Formula

If f(z) is analytical within and on a simple closed curve and c^{I} a is any point inside C, then $1 \qquad f(z)dz$

 $f(a) = __2\pi i c(z-a)$

proof: C is a closed curve and a is any point inside C, Enclose a within a circle C whose radius is r and the centre is at a. Now C is inside C.

f(z) is not analytical

inside C.

(z-a)

Cauchy's integral formula for the derivatives

(z)dz <u>1</u>

$$f(a) = \frac{1}{2\pi i} \frac{1}{c(z-a)}$$

Differentiating with respect to a successively

 $f_n(a) = 2n!\pi i c(z-af_z)dz_{n+1}$

We can evaluate easily the integrals of complex functions using this formula.

Problems:

ze^zdz

1) Evaluate $c_{(z+2)^3}$ where C is z = 3. Solution: z = -2 lies inside z = 3 According to Cauchy's integral formula $\frac{()}{1 + z \, dz^2 \, a = -2} \int f^{II}(a) = c (z-a)_3,$ [f(z) = z e πi2 $f^{I}(z) = z e^{z} + e^{z}$ $f^{II}(z) = z e^z +$ $f^{II}(-2) = -2e^{-2} + 2e^{-2}=0$ 2e^z ze^zdz c____(z+2)3 = **0.** dz **2)** Evaluate $c_{z_3(z+4)}$ where C is z = 2 using Cauchy's integral formula. **Solution:** z = 0 lies inside C and z = -4 lies outside. According to Cauchy's integral formula (z)dz <u>2</u> and $f(z) = (z+4) \int f'(z) = -\frac{1}{(z+4)^2} f''(z) =$

 $f^{II}(a) = 2\pi i_{c} (z-a)_{3} \quad [a=0 \qquad and f(z)= (z+4)] \quad f^{I}(z)=-(z+4)^{2} \quad f^{II}(z)=-(z+4)^{2} \quad f^{II}(z$

1

3) Evaluate
$$c$$
 $(z^3 - \sin 3z)dz$ where C is $z = 2$ using Cauchy's integral formula.

Solution: According to Cauchy's integral formula

 $f_{r} = \frac{f_{r}}{dz^{-3}} = \sin 3z$ $f''(a) = c_{(z-a)^3}$ [a= and f(z) = zπi 2 $\frac{\pi}{2}$ <2, z = $\frac{\pi}{2}$ lies inside C: z = 2 $f^{II}(\frac{\pi}{2}) = 3\pi - 9$ 3cos3z f^{II}(z) = 6z+9 sin3z fzdz _{c (z-a)3} = πi(3π-9) dz **4)** Evaluate $c = e_{z(z-1)3}$ where C is z = 2 using Cauchy's integral formula. dz $e^{-z}dz$ **Solution:** *c* _____*ez*(z-1)3 = *c* ____(z-1)3 z = 1 lies inside C i.e |z| = 2 $f(z) = e^{-z}$ According to Cauchy's integral formula $\frac{1}{1 - \frac{f(z)}{z - dz}} - c(z - a) =$ f(a), [a =1] ()

2πί $f^{II}(a) = \pi i c_{(z-a)3}$ 1 f z dz $f^{I}(z) = -e^{-z} f^{II}(z) = e^{-z}, f^{II}(1) = e^{-1}$ $e^{-z}dz$ in *c* (z–1)3 **= e 5)** Using Cauchy's integral formula evaluate z_{4dz} where C is ellipse and 9 $x_{2+4} y_{2} = c$ $(z+1)(z-i)_2$ 36. $z^4 dz$ Solution: $c (z+1)(z-i)^2$ $z^4 dz$ $z^4 dz$ 1 $z^4 dz$ = $c(z+1)(1+i)^2 - c(z-i)(1+i)^2 + (1+i)$ С $(z-i)^2$ Splitting into partial fractions z = -1 and z = i lie inside 9 $x^2+4y^2 = 36$ f z dz $\frac{1}{2\pi i} \underbrace{(\)}_{c(z-a)}$ f(a) = $\frac{f(z)dz 1}{c(z-a)^2} = f^{I}(a)$ 2πi f(z) =z⁴, a = -1, f(-1) = 1, a=I, f(i) = 1 1 1 $f^{I}(z) = 4z^{3}$ and $f^{I}(i) = -4i$ (1+i) $(1+i)^2$

 $\binom{1}{2},0$ (1,0)

 $(3z^2+7z+1)dz$

9) If $F(a) = c_{(z-a)}$ using Cauchy's integral formula where C is z = 2, F(1), F(3), $f^{II}(1-i)$. $(3z^2+7z+1)dz$ Solution: Suppose $F(a) = c_{(z-a)}$ $(3z^2+7z+1)dz$, [z=1 lies inside C] F(1) = _____ с (z-1) f(z)dz $(z-a) = 2\pi i f(a)$ С $[f(z) = 3z^2 + 7z + 1, f(1) = 3 + 7 + 1 = 11]$ (3z +7z+1) 2 = С $2\pi i \, 11 = 22 \, \pi i = F(1)$ (z-3) 2 (3z +7z+1) [z=3 is outside C] F(z) = c - dz,(z-3) (3z +7z+1) 2 с _____= 0 = F(3) (z-3) a = 1-i is inside C $F(a) = 2\pi i(3 a^2 + 7a + 1)$ $F^{I}(a) = 2\pi i(6a+7)$

F^{II}(a) = 12πi **F^{II}(1-i) = 12πi**

Complex Power Series

Taylor's Theorem:

If f(z) is analytic inside and a simple closed circle C with centre at a, then for z inside C f(z) = f(a) + $f'(a)(z-a) + \frac{f''(a)}{2}(z-a)^2 + \frac{f''(a)}{2}(z-a)^3 + ...$ 2! 3! **Proof:** Let Z be any point inside C, then enclose z with a circle c^I, with centre at a , let w be a point on c^I, then $= (1 - \underline{)} \quad w - z \, w - a - (z - a) \overline{w - a} \, w - \underline{a} \qquad \underline{1} \qquad \underline{1} \qquad \underline{1} \qquad z - a \quad -1$ $= \frac{1}{w - a} \left[1 + \frac{z - a}{w - a} + \frac{(z - a)^2}{(w - a)^2} + \frac{(z - a)^3}{(w - a)^3} + \dots + \frac{n}{n} + \dots \right]$ converges (z–a) uniformly (w–a) a. |z-a| < |w-a|multiplying multiplying $\left|\frac{z-a}{w-a}\right| < 1$ both sides by f(w) and integrating with respect to w on c¹ $C^{1} f(w-zw dw) = c^{1} f(w-aw dw) + (z-a) c^{1} f(w-aw dw)^{2} + (z-a) c^{1} f(w-aw dw)^{2}$ a)2 $C^{I} f(w-aw dw)_{3} + ... + (Z - a)_{n} C^{I} (w-af w) dw_{n+1}$

f(w) is analytic on c^ı

f(z)=f(0) + z f'(0) + 2! f''(a) + ... + n!

(f) (a)+...

This is a Maclaurin's series of f(z)

Laurent series

If f(z) is analytic in a ring R bounded by two concentric circles C_1 and C_2 of radii r_1 and r_2 ,

(r₁ > r₂) with centre at a then for all z in R P $f(z) = a_0 + a_1 (z-a) + a_2 (z-a)^2 + ... + b + b + ...$ $\int_{f \le dw} \frac{1}{f \le dw^1}$ Where $a_n = 2\pi i C_1 (w - a)_{n+1}$. $\int_{f \le dw^1} b_n = 2\pi i C_2 (w-a)_{-n+1}$

Where c¹ is any curve in R encircling C₂

00

Where C_1 and C_2 are described anticlockwise

Consider

$$(w-a)_{2} \begin{array}{c} -1 & \frac{f(w)dw}{2\pi i} C^{1} & \frac{1}{(w-z)} & \frac{f(w)dw}{2\pi i} C^{1} & \frac{f(w)dw}{2\pi i} C^$$

 $= n=0(z-a)^{n}a_{n}$ Equation 2 fw dw $\frac{1}{()}$ Where $an = 2\pi i C_{1}(w-a)_{n+1}$ $\frac{()}{1-fw dw}$ Consider $C_{2}(w-z)$ $2\pi i$

For C₂, w-a < z-a

$$\begin{bmatrix} w^{-a} \\ 1 \\ z-a \end{bmatrix} = + + \dots \end{bmatrix}$$

$$= + + \dots]$$

$$= \frac{1}{(w-z)} = \frac{1}{w-a-(z-a)} = \frac{1}{(z-a)(1-\frac{w-a}{z-a})}$$

$$= \frac{1}{(z-a)} \begin{bmatrix} 1-\frac{w-a}{z-a} \end{bmatrix}^{-1}$$

$$= \frac{1}{(z-a)} \begin{bmatrix} 1-\frac{w-a}{z-a} \end{bmatrix}^{-1}$$

$$= \sum b \quad \frac{1}{(z-a)} \begin{bmatrix} 1+\frac{w-a}{z-a} & \frac{(w-a)^2}{(z-a)^2} + \frac{(w-a)^3}{(z-a)^2} & \frac{2\pi i}{n} \\ (z-a)^3 & n \\ (z-a)^{-n} \end{bmatrix}$$

$$= \sum b \quad \frac{1}{(z-a)} \begin{bmatrix} 1+\frac{w-a}{z-a} & \frac{(w-a)^2}{(z-a)^2} + \frac{(w-a)^3}{(z-a)^2} & \frac{2\pi i}{n} \\ (z-a)^{-n} \end{bmatrix}$$

$$= \sum b \quad \frac{1}{(z-a)} \begin{bmatrix} 1+\frac{w-a}{z-a} & \frac{(w-a)^2}{(z-a)^2} + \frac{(w-a)^3}{(z-a)^2} & \frac{2\pi i}{n} \\ (z-a)^{-n} \end{bmatrix}$$

$$= \sum b \quad \frac{1}{(z-a)} \begin{bmatrix} 1+\frac{w-a}{z-a} & \frac{(w-a)^2}{(w-a)^2} + \frac{(w-a)^3}{(z-a)^2} \\ (w-a) & \frac{1}{(z-a)^{-n}} \end{bmatrix}$$

*c*² _{2πi (w-a)-3}

Substituting equations 2 & 3 in 1, we get $f(z) = n=0(z-a)^n a_n + n=1 z - a^{-n} b_n^{\infty}$ This is called the Laurent series of f(z)

The first part $_{n=0}(z-a)^n a_n$ is called the analytic part and the second part

 $\sum_{n=1}^{\infty} (z-a)^{-n} \mathbf{b}_n$ is called the principal part. If the principal part is zero, the series reduces to the Taylor's series

 $f(z) = f(a) + f'(a) (z-a) + 2! (z-a)^{2+} = 0$

Problems

00

1) Expand log z by Taylor's series about z = 1.

Solution:

$$^{\dagger_{III}}(a)_{3!}(z-a)^{3+...+}$$

(a) ^{fn}n!(z a=1, f(1)

f"(a)

$$\frac{1}{f^{l}(z) = z, f^{l}(1) = 1,}$$

$$f^{ll}(z) = -z_{2}, f^{ll}(1) = -1,$$

$$f^{ll}(z) = z_{3}, f^{ll}(1) = 2, \qquad f^{iv}(z) =$$

$$\frac{-3!}{z_{4}}, f^{iv}(1) = -3!$$

$$\log z = (z-1) - \frac{1}{2}(z-1)^{2} + \frac{1}{3}(z-1)^{3} - \frac{1}{4}(z-1)^{4} + \dots + \underline{(-1)^{n-1}n^{(z-1)n} + \dots}$$

$$7z-2$$

2) Obtain all the Laurent series of the function $\frac{about z = -1}{\binom{z+1}{z(z-2)}, 7z-2}$ Solution: $f(z) = \frac{1}{\binom{z}{z+1}, 2(z-2)}$ put z+1 = u, z = u-1 z-

2 = u-3

$$\frac{7z-2}{(z+1)^{2}z(z-2)} = \frac{7(u-1)^{-2}}{u(u-1)^{2}(u-3)} = \frac{A}{u+u-1} = \frac{B}{u-3} = \frac{C}{1+u-3}$$

A = lim = -3 $u \to 0 u^{-1} (u^{-3}) 7u^{-9}$ B = lim = 1 u→1 u (u−3) 7u-9 **C** = lim = 2 u→3 u−1 u $\overline{()}$ $-\frac{3+1}{u-3} + \frac{2}{u-3} - 3 - 1 - u - 1 (2) - u - 1 u$ u - 3 - u - 3 - 1 - u - 1 (2) - u - 1 u(-)u-1 <u>2</u>_____ 3 $= -3 - (1+u+u^2+u^3+...) - (1+u+u^2+...) u 39$ $= - u_3 - 53 - (1 + 322)(z+1) - (1 + 322)(z+1)^2 - (1 + 324)(z+1)^3 + ...$ 1 **3)** Expand $\overline{(z^2 - is^2 the}$ region (i) 0 < |z - 1| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2Solution: $\frac{1}{(z^2 - 3z + 2)} \quad \frac{1}{(z - 2)} \quad \frac{1}{(z - 1)} = -$ (i) |z - 1| < 1

$$\frac{1}{(z-2)} \cdot \frac{1}{(z-1)} = \frac{1}{(z-1-1)} \cdot \frac{1}{(z-1)}$$

$$= \cdot \frac{1}{[1-(z-1)]} \cdot \frac{1}{(z-1)} = (1 - (z-1))^{-1} \cdot \frac{1}{(z-1)}$$

$$= \cdot (1 + (z-1) + (z-1)^{2} + (z-1)^{3} + \cdots) - \frac{1}{(z-1)}$$

$$(z-1)^{1}$$

(ii)

$$|| || |^{1} < \frac{z}{|z|} z < 2, |z| < 1, <1$$

$$|| || |^{1} < \frac{z}{|z|} z < 2, |z| < 1, <1$$

$$|1 - = --$$

$$(z-2)$$

$$\frac{1}{2} (1 - \frac{z}{2})^{-1} \frac{1}{z} (1 - \frac{1}{z})^{-1}$$

$$(z-1)$$

$$-4 z z^{3} 1 + 4 + \cdots) z^{2}$$

$$= 2 (1 + 2 + 4 + 8 + ...) - z (1 + z z^{2})$$

$$= 2 (1 + 2 + 4 + 8 + ...) - z (1 + z z^{2})$$

$$(iii)$$

$$\frac{1}{||} |z| > 2, 2 < |Z|, <1, z$$

$$z(1 - \frac{2}{z}) - z(1 - \frac{1}{z}) - \frac{1}{z} = -\frac{1}{z} - \frac{1}{z}$$

$$(z-2)$$

$$(z-1))z$$

$$= -(1 - \frac{2}{z}) - 1 - 1(1 - 1)1$$

$$z z z z z$$

$$(1 + + ...) - zzzzzz$$

n-1

n-1-1)

$$=\frac{1}{2} = \sum_{n=1}^{\infty} = n=1 \qquad = n=1 \qquad = \frac{2}{2} + \frac{2^2}{2} \qquad = \frac{1}{2} (1 + \frac{1}{2} + \cdots)$$

$$= n=1 \qquad = n=1 \qquad = \frac{2}{2} + \frac{2^2}{2} \qquad = \frac{1}{2} (1 + \frac{1}{2} + \frac{1}{2} + \cdots)$$

$$= n=1 \qquad = \frac{2}{2} + \frac{2^2}{2} \qquad = \frac{1}{2} (1 + \frac{1}{2} + \frac{1}{2} + \cdots)$$

 $(z^{2}-1)$ **4)**Find**t** $he Laurent series expansion of the function ______ if 2< z <3. (z+2)(z+3)$

Solution:

-

1

$$f(z) = \underbrace{(z^{2}-1)}_{(z+2)(z+3)} = 1 - \underbrace{(5z+7)}_{(z^{2}+5z+6)}$$
$$\boxed{38} = 1+$$

$$(z+2)$$
 $(z+3)$

$$= 1 + \frac{3}{z(1+\frac{2}{2})} - \frac{8}{3(1+\frac{2}{2})} - \frac{8}{3(1+\frac{2}{2})} - \frac{8}{3(1+\frac{2}{2})} - \frac{1}{3} + \frac{8}{3(1+\frac{2}{3})} - \frac{1}{3(1+\frac{2}{3})} - \frac{1}{3(1+\frac{2$$

e2z

5) Expand $f(z) = (z-1)_3$ about z=1 as Laurent series. Also indicate the region of convergence of the series.

 $z \qquad A \qquad B$

$$\begin{array}{c} \overbrace{(z-1)(z-3)}^{(z-1)} \quad \overbrace{(z-1)}^{=} = & + \\ z & 1 \\ z & 1 \\ \end{array}$$

$$A = \lim \underline{\qquad} = - \\ z \rightarrow 1 (z-3) 2 z 3 \\B = \lim = z \rightarrow 3 & - \\ f(z) = \frac{3}{2(z-3)} \cdot \frac{1}{2(z-1)} = \frac{3}{2(z-1-2)} \cdot \frac{1}{2(z-1)} \\ = & \frac{3}{2(z-3)} \cdot \frac{1}{2(z-1)} = \frac{3}{2(z-1-2)} \cdot \frac{1}{2(z-1)} \\ = & \frac{3}{-4(1-\frac{1}{-2})} \\ = -\frac{3}{3} (1 & \frac{-z-1}{2})^{-1} \cdot \frac{1}{2(z-1)} - \frac{3}{4} (1+\frac{1}{2} + \frac{(z-1) \cdot 3}{2^2} - 1 \cdot \frac{1}{2(z-1)} z - 1 \cdot 2 + ...) - \\ & \frac{1}{2} \quad \frac{3}{2} \quad (\frac{z-1}{2})^n \\ = 2(z-1) - 4 n = 0 \end{array}$$

Contour Integration

Singular points

Singular point: A point at which f(z) ceases to be analytic is called a singular point.

Isolated singular point: Suppose z=a is a singular point of a function f(z) and no other singular point of f(z) exists in a circle with centre at a, then z=a is said to be an isolated singular point.

In such a case f(z) can be expanded by Laurent series around z=a**Pole:** If the principal part of f(z) consists of a finite number of terms b_1 , b_2 ... $b_n = b_n \neq z$

0 then (z-a) is said to be a pole of order n.

if n=1, z=a is said to be a simple pole.(note: if f(z) has a pole at z=a, then $\lim_{z \to a} f(z) = \infty$)

Removable singularity: If a single valued function f(z) is not defined at z=a $\lim_{z\to\infty} ()$ and f z exists, then z=a is said to be $a \sin z$ removable singularity f(z) =_____, z=0 is a removable

singularity. $\ensuremath{\mathbf{z}}$

Essential singularity: If the principal part of f(z) consists of an infinite number of terms, then z=a is said to be an essential singularity

 $e_z = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots$ z=0 is an essential singularity.

Singularity at infinity: Suppose we substitute $z = \frac{1}{2}$, $f(\frac{1}{2}) = F(w)$ (say), then the singularity at w=0 of F(w) is called the w

 $\ensuremath{{}_{1}}\xspace$ singularity at infinity. e^z has an

essential singularity at $z = \infty$, since e_z has an essential singularity at z=0.

Entire function: A function which is analytic everywhere in the finite plane is called an entire function or integral function.

Examples: e^z , sin z, cos z are entire functions.

Note: An entire function can be represented by a Taylor series which has an infinite radius of convergence. Conversely, if a power series has an infinite radius of convergence, it represents an entire function.

Liouville's theorem: If f(z) is analytic and bounded, i.e f(z) < m for some constant m in the entire complex plane, then f(z) is a constant.

Residue: We know that $c_{(z-a^{dz})} = 2\pi i$ where C is z - a = R and $c_{(z-a^{dz})n} = 0$, if $n \neq -1$.

c () $f z dz = 2\pi i b_1$ where C is the circle with centre at a and f(z) is expanded in Laurent series. b_1 is said to be the residue of f(z) at z=a [the coefficient of $\frac{1}{(z-a)}$ in the principal part of the Laurent series of f(z)].

Cauchy's Residue Theorem:

Statement: If f(z) is an analytic function inside and on a closed curve 'C' except at a finite number of points, inside C, then $c f z dz = 2\pi i$ (sum of the residues at the points where f(z) is not analytic and which lie inside C).

If the poles of order one and n then the residues are

eiz

Solution: The given function is $f(z) = (z_{2+1})$, f(z) is not analytic at z = i and z = -i

Therefore, the poles of f(z) are i and -i, both are simple poles If z=a is a simple pole, then the residue at z= a is $\lim(z-a)fz_{z\to a}$ ()

Res z=i= $\lim(z-i)fz = \lim(z-i)$ = - e

2 z→iz→i (z+i)(z-i)eiz i () Res $z = -i = \lim(z+i)fz = \lim(z+i)$ = **e**. $z \rightarrow -iz \rightarrow -i$ (z-i)(z+i)2 sin_{2z} 2) Find the poles of the function and the corresponding residues at each pole, f(z) =-π--(z---)² 6 sin^2z π The given function is $f(z) = ---\pi$, z- is a double pole Solution: (z--)2 6 6 2 π sin $\int 6\pi \lim_{\pi \to \infty} dz dz (z-\pi 6)^2$ Res at z = =(z---)² 6 $z \rightarrow 6$ π π 1 <u>3</u> $\sqrt{3}$ = lim 2 sinz cosz = 2 Sin Cos = 2 = $z \rightarrow \pi$ 2 2 2 6 6 6 z sinz **3)** Find the residue of $(z-\pi)_3$ at $z = \pi$. z sinz The given function is $f(z) = (z-\pi)_3$, $z = \pi$ is a pole of order 3 Solution:

If z = a is a pole of order 3, then residue at z = a is

e^zdz

(sum of residues at the poles which lie inside C)

e^zdz <u>2</u>πie

c(z+2)(z-1) = 3

Evaluation of real integrals in unit circle

2π

We can evaluate the integrals of the type $_0 f(\cos \theta, \sin \theta) d\theta$ where $f(\cos \theta, \sin \theta)$ is a rational function, using residue theorem.

 $^{i\theta}$, we can write $\cos \theta = =$ $e_{i\theta+e-i\theta}$ we know that if z = e $1 \quad e_{i\theta-e-i\theta}$ $\cos \theta = \frac{1}{2} (z+\underline{)}$ and $\sin \theta = \underline{z}$ 2i $\underline{1} \quad 1$ $\sin \theta = (z-) 2iz$

i $e_{i\theta}$ $d\theta =$ dzand $d\theta =$ $\frac{1}{dz}$ izBy this substitution we can change the integral into a function of z.

We know that $_{c} f(z)dz = 2\pi i$ (sum of the integrals) We

take C is z =1, then θ varies from 0 to 2π

```
2π
```

0
$$f(\cos\theta, \sin\theta)d\theta = {}_{c}g(z)dz$$
 where C is z =1

We can evaluate using residue theorem

Problems

 2π d θ 2π

 $a+bsin\theta = \frac{\sqrt{a^2-b^2}}{a^2-b^2}$, a>b>0 using residue theorem. Consider C = $z^1=1$, $z = e^{i\theta}$ **1)** Show that 0 Solution: $\cos \theta = \frac{1}{2} (z+), \sin \theta = (z-)$ 1 1 1 2i z Z dz 2π **d**θ $0 \quad a+b\sin\theta = c iz[a+2bi(Z-1z)]$ 2 f(z) = [____bz2+2aiz-b] $c f(z)dz = c_bz_2+2aiz-bdz$ $bz^2 + 2aiz - b = b(z-\alpha)(z-\beta)$ 2ai $(\alpha+\beta) = -$, $\alpha\beta = -1$ where b $a_{i\pm i} a_{-b^2}^{\sqrt{2}}$ $-ai-ia^2-b^2$ $\sqrt{}$ $\alpha = and \beta = b b$ $\alpha < 1$ and $\beta > 1$ α lies in C $_{c} f(z) dz = 2\pi i \text{ Res } Z = \alpha$ 2 Res Z = α = lim (Z - α) f(z) = lim

2 dz

$$z \rightarrow \alpha \qquad z \rightarrow \alpha \ b(z - \beta)$$

$$= \underbrace{\frac{2}{b(\alpha - \beta)}}_{b(\alpha - \beta)} = \frac{2}{b[\frac{-ai+i\sqrt{a^2 - b^2}}{b} + \frac{ai+i\sqrt{a^2 - b^2}}{b}]}_{ai+\frac{1}{b}} = \frac{1}{i\sqrt{a^2 - b^2}}_{ai+\frac{1}{b}} = \frac{2\pi i}{i\sqrt{a^2 - b^2}}_{ai+\frac{1}{b}} = \frac{2$$

1 1 1
$$\cos \theta = \frac{1}{2} (z+\underline{)}, \sin \theta = (z-\underline{)}_z$$

2i z

$$dz = i e^{i\theta} d\theta \text{ and } d\theta = \frac{dz}{iz}$$

$$2\pi \quad d\theta \qquad dz \qquad 4z dz$$

$$0 \qquad (6-3\cos\theta)^2 = c \frac{|z|_{6-1}}{|z|_{32}} = c^{9i(z^2-4z+1)^2} \sqrt{-1}$$

The poles are α and β where α = 2 - 3 and β = 2 + 3 and both are double poles, among which α lies inside C.

<u>d</u> 2f(z)] Res at $z = \alpha = \lim_{n \to \infty} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n}$ $[(Z - \alpha) z \rightarrow \alpha dz]$ $\underline{d} \underline{z} \underline{\overline{\alpha}}(+\underline{\beta})$ = $z \rightarrow \lim \alpha dz [(Z - \beta)_2] = (\alpha - \beta)^3$ $(\alpha + \beta) = 4, \alpha - \beta = -23$ Res at $z=\sqrt{\alpha} = =$ $\frac{\frac{4}{24\sqrt{3}}}{c 9 i(z 2 - 4z + 1) 2} = \frac{4}{9i} \frac{\frac{1}{4z} dz 4\pi}{2\pi i \sqrt{3}}$ dθ 2π **3)** Evaluate 0 $(a+b\cos\theta)^2$, a>b>0 using residue theorem $0 2\pi d\theta$ put $z = e^{i\theta}$, $\frac{1}{2}$ – Solution: $(a+b\cos\theta)^2$ $dz = e^{i\theta}$ $d\theta^{dz} = d\theta$ $\cos\theta =$ (**Z+** 1) izz 4zdz dθ 2π The poles are α and β , both are double poles $0 (a+b\cos\theta)^2 = c i(2az+bz^2+b)^2$ <u>b</u>2

$$\begin{array}{c} \sqrt{1} \\ \underline{-a+a^2-b^2} \\ \end{array} \qquad \begin{array}{c} \sqrt{1} \\ \underline{-a-a^2-b^2} \\ \end{array}$$

Where $\alpha = and \beta$

= b b

a lies inside C

<u>d</u>

z

Residue at $z = \alpha = z \rightarrow \lim \alpha dz [b_2(Z - \beta)^2]$

 $\underline{1}(\underline{\alpha + \beta})$

$$= - \left(\right) \quad 2 \quad 2$$

$$b(\alpha - \beta)$$

$$= - b\left(b8(a2 - b2)32 \right) = 4(a2 - b2) \frac{3}{2}$$

$$2\pi \quad d\theta$$

$$0 \quad (a + b\cos\theta)2 = 2\pi i \text{ (Res } z = \alpha \text{ by residue theorem)}$$

$$2\pi i a^4 \qquad 2\pi a$$

$$2\pi a = 3 = 3$$

4i(a²-b²)(**a**2-b2)2

Contour integration when the poles lie on imaginary axis

f(x)
We can evaluate integrals of the type
____= h(x), using residue theorem. g(x)

Consider $_{c}h(z)$ dz when the poles of h(z) lie on imaginary axis. We take positive imaginary axis. Integration is taken over the semicircle and the line – R to R. The poles lie on upper half plane. If the poles lie on real axis

$$_{R}$$
 () $_{c}h(z) dz = -_{R}h$

z dz + r h(z) dz

We know that by residue theorem $_{c}h(z) dz = 2\pi i$ (sum of the residues of h(z) at its poles which lie on upper half plane)

$$_{-R}h(z) dz + _{r}h(z) dz = 2\pi i$$
 (sum of the residues)

In the limiting case $R \rightarrow \infty$ we get

$$\sum_{\infty}^{\infty} h(x) dx \text{ (if } rh(z) dz = 0)$$

Problems:

Evaluate by contour integration 0 $\frac{\infty dx}{1+x^2}$

Solution: Consider $_{c}$ 1+z² where C is the contour consisting of semicircle $_{\Gamma}$ and the line (diameter) from -R to R.

= $_{c} f Z dz$ fz dz = cfZ dz ∞ ____ () () The poles of f(z) = are i, -i, 2i, -2i. z^2 All are simple poles i and 2i lie on upper half plane. $(1+z^2)(4+z^2)$ Res at z=i= $\lim (z-i)f(z) z \rightarrow i$ z^2 1 ____ = z lim→ i (i+z)(4+z2)= - 6i Res at z=2i = lim (z-2i)f(z) $z \rightarrow 2i$ z^2 1 4 = $z \lim \rightarrow 2i (z+2i)(1+z_2) = -4i(-3) = 3i$ According to residue theorem cfZ dz2 (sumbif residues) () 1 1 π $= 2\pi i (-+) =$ 6i 3*i* 3 \mathbf{x}^2 π ∞ $(1+x^2)(4+x^2)$ ∞ _ _ = 3

 $\infty x_2 dx$

3) Evaluate $0 \quad 1+x^6$ using residue theorem.

$$\sum_{n=1}^{\infty} \text{Solution:} = - \left\{ e^{n} f x \, dx \right\}_{R}$$

$$= \int_{-R} f z \, dz + r f z \, dz \quad [r f x \, dz = 0]$$

$$= \int_{-R} f z \, dz + r f z \, dz \quad [r f x \, dz = 0]$$

$$= \int_{-R} f z \, dz = \int_{R} f z \, dz \quad [r f x \, dz = 0]$$

$$= \int_{-R} f z \, dz = \int_{R} f z \, dz$$

$$\frac{(3z-2e^{\frac{-6}{6}})}{6z^4} = \lim$$

$$\frac{(3z-2e^{\frac{-6}{6}})}{6z^4} = \lim$$

$$\frac{-3\pi i}{2\pi i} \qquad \frac{e^{\frac{-6}{2\pi i}}}{6} \qquad \frac{1}{6} \qquad \frac{\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{\pi}{6} \qquad \frac{1}{6} \qquad \frac{\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{\pi}{6} \qquad \frac{\pi}{6} \qquad \frac{\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{\pi}{6} \qquad \frac{\pi}{6} \qquad \frac{\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{\pi}{6} \qquad \frac{\pi}{6} \qquad \frac{\pi}{6} \qquad \frac{\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{\pi}{6} \qquad \frac{\pi$$

<u>πi</u>

<u>3πi</u>

$$z \rightarrow e_{2\pi i} \frac{(3z-2e^{2})}{6z^{4}}$$

= lim

<u>πi</u>

$$z \rightarrow e_{32\pi} 1$$
 3π 3π i
 $\frac{1}{2} = e^{\frac{2}{2}} (c_6 + s_2 - i_2 - i_5 + s_1) = \frac{1}{2}$

5πi 5πi

According to residue theorem

4) Evaluate $\frac{1}{-\infty} \frac{dx}{(x^2+1)^3}$ using residue theorem. ∞ () Solution: ∞ f x dx $\frac{R}{(z)} = -R(z)dz + rfz dz$ [rfz dz = 0] = cfz dz $\frac{R}{(z^2+1)} = rfz dz$ [rfz dz = 0] R [rfz dz = 0]

The poles are i and -i of order 3, z=i lies on upper half plan and inside the semicircle

Res at z=i = lim____1 dz d^2 [(z - i) 3f(z)] z \rightarrow i 2

$$= lim - (z+i)^3 dz_2 ()$$

$$z \rightarrow 2i^2 2$$

$$1 12 = -$$

$$lim - 2z$$

$$\rightarrow i^{(z+i)^5} = 6$$

$$= - = i$$

(2i)⁵ 16
According to residue theorem
$$_{c} f Z dz = 2$$

(residue at z = i) () πi
 $= 2\pi i = \frac{3 - 3\pi}{16i - 8}$
 $= 2\pi i = \frac{3\pi}{16i - 8}$
 $= \frac{3\pi}{16i - 8}$
 $= \frac{3\pi}{16i - 8}$
 $= \frac{3\pi}{16i - 8}$

Evaluation of the integrals of the type

 ∞ imxf(x) dx

∞e Jordan's

Lemma

If f(z) is a function of z satisfying the following properties:

- (i) f(z) is analytic in upper half plane except at a finite number of poles
- (ii) $f(z) \to 0$ uniformly as $\frac{1}{z} \to \infty$ with $0 \le \arg z \le \pi$
- (iii) a is a positive integer, then

$$r \lim_{c \to \infty} c f z e^{iaz} dz = 0$$

Where C is a semicircle with radius r and centre at the origin

∞
$$imxf(x) dx = c e^{imx} f z dz = 2\pi i$$

∞ e

(sum of the residues which lie on upper half plane)

Problems

c (z2+16)(z2+9) z=3i, -3i, 4i and -4i are simple poles. 3i and 4i lie on upper half

plane.

Unit -3

LAPLACE TRANSFORMS

LAPLACE TRANSFORM

Definition:

Let f(t) be a function of t, defined $\forall t \ge 0$. If the integral

 ∞ -st f(t) dt exists, then it is called the Laplace Transform of

0?**e**

f(t) and it is denoted by L{f(t)} or f(s).

Here s is parameter, real or complex.L is called Laplace Transform operator.

$L{f(t)} = \mathbb{Q}_{0}^{OO} e^{-st} f(t) dt$

Def: Piece-wise Continuous Function:

Afunction is said to be piece-wise continuous (or) Sectionally Continuous) over the closed interval [a,b] if it is defined on that interval and is such that the interval can be divided into a finite number of sub intervals, in each of which f(t) is continuous and both right and left hand limits at every end point if the sub intervals.

Def:Functions of Exponential Order:

A function f(t) is said to be of exponential order as $t \rightarrow \infty$ if $\lim_{t \rightarrow \infty} (e)^{-at} f(t) = finite \ quantity$ (or)

If for a given positive integer T, \ni a positive number M Such that $|f(t)| < Me^{at} \quad \forall t \ge T$, Sufficient Conditions for existence of Laplace Transform are 1)

f(t) is Piece-wise Continuous Function in [a, b] where a>0, 2)

f(t) is of Exponential Order function.

Linear Property:

<u>Theorem:</u> If c_1 , c_2 are constants and f_1 , f_2 are functions of t, then $L[c_1 f_1(t) + c_2 f_2(t)] = c_1 L[f_1(t)] + c_2 L[f_2(t)]$

Proof: The definition of Laplace Transform is

$$L[f(t)]] = \int_0^\infty e^{-st} f(t) dt ----(1)$$

By definition

$$L[c_{1} f_{1}(t) + c_{2} f_{2}(t)] = \int_{0}^{\infty} e^{-st} [c_{1} f_{1}(t) + c_{2} f_{2}(t)] dt$$
$$= \overline{\int}_{0}^{\infty} e^{-st} \int_{0}^{\infty} e^{-st} f_{1}(t) dt + c_{2} \int_{0}^{\infty} e^{-st} f_{2}(t) dt$$
$$= \overline{\int}_{0}^{\infty} e^{-st} c_{1} f_{1}(t) dt + \int_{0}^{\infty} e^{-st} c_{2} f_{2}(t) dt$$

$=c_1 L[f_1(t)] + c_2 L[f(t)]$ <u>Laplace Transform (L.T) of some Standard Functions:</u>

1)Show that L{1}=

Solution: By definition of L.T L[f(t)] = f(t) $\int_0^\infty e^{-st}$ dt-----(1) Put f(t)=1 o.b.s $L[1] = \int_0^\infty e^{-st}$.1. dt $-1 = = (0-1) = \left[\frac{e-st}{2}\right]^\infty$ 1/s

$$-s s \mathbf{0}$$

1

3) Show that $L[e^{at}] = \frac{1}{s-a}$

Solution: By definition of L.T , L[f(t

$$J = \int_{0}^{\infty} e^{-st} f(t) dt - \dots (1)$$

$$e^{at} = \begin{bmatrix} 0 & e^{-st} & e^{at} & dt \\ & = \begin{bmatrix} 0 & e^{-(s-a)T} & dt \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{-(s-a)t}}{-(s-a)} \end{bmatrix} \qquad (e^{-\infty} = 0)$$

$$= \frac{1}{s-a} \qquad 0$$

Put f(t) =
$$e^{at}$$
 o.b.s in (1)
Note: $L[e^{-at}] = \frac{1}{s+a}$
s
4) Show that $L[\cos at] = \overline{s^2 + a^2}$ and $L[\sin at] = \overline{s^2 + a^2}$
Solution: W.k.t $e^{i\theta} = \cos \theta + i \sin \theta$
 $e^{iat} = \cos at + i \sin at$
 $L[e^{iat}] = L[\cos at + i \sin at]$
 $L[\cos at + i \sin at] = L[e^{iat}]$
 $= \frac{1}{s-ia}$
 $(L[e^{at}] = \frac{1}{s-a})$
 $= \frac{s+ia}{(s-ia)(s+ia)}$
 $= \frac{s+ia}{s^2 + a^2}$
 $= \frac{s}{s^2 + a^2} + i \frac{a}{s^2 + a^2}$

Equte real and imaginary parts we get

s
L[Cos at] =
$$\overline{s^2 + a^2}$$
 and L[Sin at] = = $\overline{s^2 + a^2}$
5) Find L [Sin hat]

$$\frac{e^{at}-e^{-at}}{2}$$
Solution: L [Sin hat] = L [= $\frac{1}{2} \left[\frac{1}{s-a} - \frac{1}{s+a} \right] = \frac{1}{2} \left[L \left\{ e^{at} \right\} - L \left\{ e^{-at} \right\} \right]$

$$= \frac{1}{2} \left[\frac{\frac{s+a-s+a}{s^2-a^2}}{\frac{a}{s^2-a^2}} \right]$$

6) Find L [Cos hat]

$$\frac{e^{-}+e^{-}}{2} at at$$
Solution: L [Cos hat] = L [] = ½ [L { e^{at} } +L { e^{-at} }]
$$= \% \left[\frac{1}{s-a} + \frac{1}{s+a}\right]$$

S

$$= \frac{1}{2} \left[\frac{s+a+s-a}{s^2-a^2} \right] = = \frac{1}{s^2-a^2}$$
7) Show that (i)) L [tⁿ] = $\rho(n+1)/s^{n+1}$, n>-1
(ii) L [tⁿ] = n!/s^{n+1}, n is +ve integer

Solution: : By definition of L.T

1)

2)

$$L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt -----(1)$$

$$L[t^{n}] = \int_{0}^{\infty} e^{-st} t^{n} dt \qquad \text{put st = x i.e t = x/s}$$

$$= \int_{0}^{\infty} e^{-x} (\frac{x}{s})^{n} \frac{dx}{s} \qquad dt = \frac{dx}{s}$$

$$= \frac{1}{s^{n+1}} \int_{0}^{\infty} e^{-x} x^{n} dx$$

$$= \frac{1}{s^{n+1}} \rho(n+1), \quad \text{for } (n+1) > 0$$

$$L[t^{n}] = \rho(n+1)/s^{n+1}, \quad n > -1$$

$$L[t^{n}] = n!/s^{n+1}, \quad n \text{ is +ve integer} \qquad FORMULAE$$

$$1$$

$$L[t^{n}] = \frac{s}{c}$$

$$L[t^{n}] = \frac{s}{s}$$

3)
$$L^{e^{at}} = \frac{1}{s-a} [$$
, $L[e-at] = s+\underline{1}a$

4) L[Cos at]=
$$\overline{s^2 + a^2}$$

a
5) L[Sin at] $\overline{s^2 + a^2}$ =
6) L[Sin hat] \overline{s} =
7) L[Cos $\overline{s^2 - a^2}$ hat]=
8) $L(t^n) = \rho(n+1)/s^{n+1}$, $n > -1$
9) $L(t^n) = n!/s^{n+1}$, n is +ve integer PROBLEMS
1 Find the Laplace Transformation (LT) of t^2

1. Find the Laplace Transformation (L.T) of $t^2 + 2t + 3$

Solution: L
$$[t^2 + 2t + 3] = L[t^2] + 2L[t] + L[3]$$

= $\frac{!}{s^3} + 2 \cdot \frac{1}{s^2} + \frac{1}{s^2 \cdot 1} = \frac{1}{s^3}$

$$t^{\frac{5}{2}} + 4]_{5} L[$$
Solution: $L[t^{\frac{5}{2}} + 4] = L[t^{\frac{5}{2}}] + L^{\frac{5}{4}}]$

$$e^{3t} + 3e^{-2t}]^{=\frac{p(\frac{7}{2})}{s^{7/2}} + \frac{4}{s}}$$
3. Find $L[$
Solution: $L[e^{3t} + 3e^{-2t}] = L[e^{3t}] + 3L[e^{-2t}]$

$$= \frac{1}{s^{-3}} + 3\frac{1}{s^{+2}}$$
4. Find $L[\sin 3t + \cos^{2} 2t]$
Solution: $L[\sin 3t + \cos^{2} 2t] = L[\sin 3t] + L[\cos^{2} 2t]$

$$= \frac{3}{s^{2}+9} + L[\frac{+}{2}] - 3 - 1 - \frac{\cos 4t}{3}$$

$$= \frac{3}{s^{2}+9} + \frac{1}{2}\{L[1] + L[\cos 4t]\}$$

$$= \frac{3}{s^{2}+9} + \frac{1}{2}\{L^{\frac{1}{5}} + \frac{s}{s^{2}+16}]$$
5. Find $L[f(t)]$ if $f(t) = 0, \ 0 < t < 2$

$$= 3, \ t > 2$$

Solution: By definition of L.T

First shifting Theorem (F.S.T):

If L[f(t)]=f (s) then L[e^{at} f(t)]= f(s-a)

Proof: By definition of L.T

$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt = f(s) - (1)$$

$$L[e^{at}f(t)] = \int_0^\infty e^{-st} e^{at} f(t) dt$$

$$= \int_0^\infty e^{-(s-a)t} f(t) dt Put \quad s-a=p = \int_0^\infty e^{-pt} f(t) dt$$

$$dt$$

$$= f(p) = f(s-a)$$

Note: $L[e^{-at}f(t)] = f(s+a)$

Problems:

1) Find
$$L[t^{3} e^{-3t}]$$

Solution : let $f(t) = t^{3}$
 $L[f(t)] = L[t^{3}] = \frac{3!}{s^{3+1}} = \frac{6}{s^{4}} = f(s)$
By F.S.T , $L[e^{-at} f(t)] = f(s+a)$ $a=3 L[e^{-3t} f(t)] = f(s+3)$
 $L[e^{-3t}t^{3}] = \frac{6}{(s+3)^{4}}$

PROOF:- By definition of L.T

$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt = f(s) - (1)$$

$$\int_0^\infty e^{-st} L[g(t)] = g(t) dt = \int_0^\alpha e^{-st} g(t)$$

$$dt + \int_a^\infty e^{-st} g(t) dt$$

$$= 0 + \int_a^\infty e^{-st} f(t - a) dt \text{ put } t - a = x = \int_0^\infty e^{-s(a+x)} f(x) dx$$

$$t = a + x$$

$$= e^{-as} \int_0^\infty e^{-sx} f(x) dx \qquad dt = dx, (x = 0 \text{ to } \infty)$$

 $= e^{-as} \mathbf{f}(\mathbf{s})$

Example :

Find Laplace Transform of $g(t) = \frac{\cos(t - \frac{2\pi}{3}), \text{ if } t > _}{32\pi}$ = 0, $\text{if } t < _\frac{3}{3}$ Solution: Let $f(t) = \cos t$, $a = \frac{-3}{3}$

f (t-a) = cos (

$$\frac{2\pi}{3}$$
) = cos (t - $\frac{2\pi}{3}$)
t-a) f (t
t-a) f (t-a) f (t-a)

Change of scale property:

If L[f(t)] = f(s) then L [f(at)] = $\frac{1}{a}$ f($\frac{s}{a}$) <u>NOTE</u>: L [f($\frac{t}{a}$)] = a f(as)

Laplace transformof the derivative of f(t)

□ If f(t) is continous for all t □ and f (t) is piecewise continous, then L{f(t)}exists, provided lime ${}^{st}f(t)$ and □□ L{f(t)} ${}^{s}II{f(t)}-f(0) sf(s)-f(0)$ L{f^n(t)} ${}^{s}II{f(s)-s^{n-1}f(0)-s^{n-2}f(0)....f^{n-1}(0)}$ **Example** Derivelaplace transform of sin at

Let f(t) sinat then $f'(t) = a \cos t$ and f''(t) -a sinat Also f(0) = 0, f'(0) = a from this also f''(0) = 0, also from this By derivative formula, $L[f''(t)] = s^2 L[f(t)] - s f(0) - f'(0) - (1)$ $L\{-a^2 \sin t\} = 2L(sin at) - a$ $(-a^2) L(sin at) + a = s^2 L(sin at) a =$ $(s^2 + a^2) L(sin at)$ $L(sin at) = \frac{a}{s^2 + a^2}$

Laplace transform of the integration of f(t) If L[f(t)]=f(s) then $L[\int_0^t f(t)dt] = \frac{f(s)}{s}$ Example:

Find L.T. of
$$\int_0^t \sin at \, dt$$
 Solution:
Let
 $\begin{bmatrix} a \\ f(t) \end{bmatrix} = L[\sin at] = \frac{s^2 + a^2}{s}$ f(t) =
 $\int_0^t f(t) dt] = \frac{f(s)}{s}$ - f(

$$L[\int_0^t \sin at \, dt = \frac{1}{s} \left(\frac{a}{s^2 + a^2} \right)$$

Multiplication by t:
$$\frac{d}{s} \left[f(s) \right]$$

If L[f(t)]=f(s) then L[t f(t)] $\frac{\frac{d}{ds} [f(s)]}{(-1)^2 \frac{d}{ds^2} [f(s)]} = (-1)^n \frac{d^n}{ds^n} [f(s)]$

 $L[t^n f(t)] =$

Example : Find L[t *sin*²t]

Solution: Let $sin^{2}t] = L[\frac{1-COS 2t}{2}]$ let $sin^{2}t] = L[\frac{1-COS 2t}{2}]$ L[f(t)] = L[$\frac{1}{2}(L[1] - L[COS 2t]) = \frac{1}{2}(\frac{1}{s} - \frac{s}{s^{2}+4}) = \frac{2}{s(s^{2}+4)} = f(s)$ $= -\frac{d}{ds}[f(s)]$ $= -\frac{d}{ds}[\frac{2}{s(s^{2}+4)}]$ $= -2[\frac{-1}{\{s(s^{2}+4)\}^{2}}]\frac{d}{ds}(s(s^{2}+4))$ $= [\frac{2}{\{s(s^{2}+4)\}^{2}}]\frac{d}{ds}(s^{3}+4s)$

By theorem L[t f(t)]

$$= \left[\frac{2}{\{s(s^{2}+4)\}^{2}} - \frac{6s^{2}+8}{s^{2}(s^{2}+4)^{2}}\right] (3s^{2}+4) \text{ Division}$$

<u>by t:</u>

If L[f(t)]=f(s) then L[
$$\frac{f(t)}{t}$$
] = $\int_{s}^{\infty} f(s) ds$, provided $\lim_{t \to 0} \frac{f(t)}{t}$ exists.
Problems: (1) Find
L[
Solution: Let f(t) = $e^{-3t} - e^{-4t}$
L[f(t)] = L[$e^{-3t} - e^{-4t}$] = $\frac{1}{s+3} - \frac{1}{s+4} = f(s)_{w.k.t}$
, L[$\frac{f(t)}{t}$] = $\int_{s}^{\infty} f(s) ds$
 $\frac{e^{-} - e^{-}}{t}$] = $\int_{s}^{\infty'} (\frac{1}{s+3} - \frac{1}{s+4}) ds$ $_{3t}$ $_{4t}$
L[
 $\int_{s}^{\infty} f(s) ds$
 $= \log(s+3) - \log(s+4)$
 $\int_{s+4s}^{\infty} \int_{s}^{\infty} \int_{s}^{\infty} (\frac{1}{s+3} - \frac{1}{s+4}) ds$ $_{3t}$ $_{4t}$
L[
 $\int_{s}^{\infty} \int_{s}^{\infty} \int_{s+3}^{\infty} \int_{s}^{s+3} \int_{s}^{s+4s} \int_{s}^{s+3} \int_{s}^{s+3} \int_{s}^{s+3} \int_{s}^{s+3} \int_{s}^{s+3} \int_{s}^{s+3} \int_{s}^{s+3} \int_{s}^{s+4s} \int_{s}^{s+3} \int_{s}^{s+4s} \int_{s}^{s+3} \int_{s}^{s+3} \int_{s}^{s+3} \int_{s}^{s+3} \int_{s}^{s+3} \int_{s}^{s+4s} \int_{s}^{s+3} \int_{s}^{s+3}$

Solution: Let
$$f(t) = \cos at - \cos bt$$

$$L[f(t)] = L[\cos at - \cos bt]$$

$$f(s) = \frac{s}{s^2 + a^2} - \frac{s}{s^2 + b^2}$$
w.k.t, $L[\frac{f(t)}{t}] = \int_s^{\infty} f(s) ds$

$$\frac{\cos at - \cos bt}{t} = \int_s^{\infty} (\frac{s}{s^2 + a^2} - \frac{s}{s^2 + b^2}) ds_{L[}$$

$$= \left[\log (s - \frac{1}{2} \log (s^2 + b^2) \right] \right]$$

$$= \left[\log (s - \frac{1}{2} \log (s^2 + b^2) \right]$$

$$= \frac{1}{2} \log (\frac{s^2 + b^2}{s^2 + a^2})$$

 $\int_0^\infty \left[\frac{e^- - e^-}{t} \right]^{t} \frac{\text{Integrals by Laplace transforms:}}{t}$ **Evaluation of**] dt (1). Using L.T. Evaluate Solution: First we will find $L\left[\frac{e^{-t}-e^{-2t}}{t}\right]_{let}$ $f(t) = e_{-t} - e_{-2t}$ $L[f(t)] = L[e^{-t} - e^{-2t}]$ $=\frac{1}{S+1}-\frac{1}{S+2}=f(s)$ w.k.t, $L[\frac{f(t)}{t}] = \int_{s}^{\infty} f(s) ds$, $\frac{e^{-t} - e^{-2t}}{t} = \int_{s}^{\infty} \left(\frac{1}{s+1} - \frac{1}{s+2} \right) ds$ $\log (s+1) - \log (s+2) = \log ($ $\frac{\infty \infty}{\frac{s+1}{s+2}}$ = S S ∞ = log S

$$\frac{s(1+\frac{1}{s})}{s(1+\frac{2}{s})} = \log 1 - \log \left(\frac{s+1}{s+2}\right)$$
$$= \int_{0}^{t} \int_{1+\frac{2}{s}}^{1+\frac{2}{s}} \int_{1+\frac{2}{s}} \int_{1+\frac{2}{s}}^{1+\frac{2}{s}} \int_{1+\frac{2}{s$$

therefore, L[

The definition of Laplace Transform is

$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

$$L[\frac{e^{-t} - e^{-2t}}{t}] = \int_0^\infty e^{-st} \left[\frac{e^{-t} - e^{-2t}}{t}\right] dt = \log\left(\frac{s+2}{s+1}\right)$$

Put s=0 on both sides

$$\int_{0}^{\infty} 1 \left[\frac{e^{-t} - e^{-2t}}{t} \right] dt = \log \left(\frac{2}{1} \right) = \log 2$$
2. Using LT find
$$\int_{0}^{\infty} \left(\frac{\cos at - \cos bt}{t} \right) dt$$
Solution: First we find
$$\frac{\cos at - \cos bt}{t}$$
L[[]
$$Let f(t) = \cos at - \cos bt$$

$$L[f(t)] = L [\cos at - \cos bt] f(s)$$

$$L[f(t)] = L [\cos at - \cos bt] f$$
$$= \frac{s}{s^2 + a^2} - \frac{s}{s^2 + b^2}$$

w.k.t,
$$\frac{f(t)}{t} = \int_{s}^{\infty} f(s) ds$$

$$\begin{bmatrix} \frac{\cos at - \cos bt}{t} \\ 1 \end{bmatrix} = \int_{s}^{\infty} \left(\frac{s}{s^{2} + a^{2}} - \frac{s}{s^{2} + b^{2}} \right) ds$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{2} \left[\log \left(s \right) \right]$$

$$= \frac{1}{2} \left[\log \left(\frac{s^{2} + a^{2}}{s^{2} + a^{2}} \right) \right]$$

$$= \frac{1}{2} \left[\log \left(\frac{s^{2} + a^{2}}{s^{2} + a^{2}} \right) \right]$$

$$= \frac{1}{2} \left[\log \left(\frac{s^{2} + a^{2}}{s^{2} + a^{2}} \right) \right]$$

$$= \frac{1}{2} \left[\log \left(\frac{s^{2} + a^{2}}{s^{2} + a^{2}} \right) \right]$$

$$= \frac{1}{2} \left[\log \left(\frac{s^{2} + a^{2}}{s^{2} + a^{2}} \right) \right]$$

$$= \frac{1}{2} \left[\log \left(\frac{s^{2} + a^{2}}{s^{2} + a^{2}} \right) \right]$$

$$= \frac{1}{2} \left[\log \left(\frac{s^{2} + a^{2}}{s^{2} + a^{2}} \right) \right]$$

$$= \frac{1}{2} \left[\log \left(\frac{s^{2} + a^{2}}{s^{2} + a^{2}} \right) \right]$$

$$= \frac{1}{2} \left[\log \left(\frac{s^{2} + a^{2}}{s^{2} + a^{2}} \right) \right]$$

$$= \frac{1}{2} \left[\log \left(\frac{s^{2} + a^{2}}{s^{2} + a^{2}} \right) \right]$$

$$= \log \sqrt{\left(\frac{b^{2}}{a^{2}} \right)}$$

$$= \log \left(\frac{b^{2}}{a^{2}} \right)$$

Laplace Transform of Periodic Function:

<u>Definition</u>: A function f(t) is said to be periodic with period T, if $\forall t$, f(t+T) = f(t) where T is positive constant.

The least value of T > 0 is called the periodic function of f(t).

Example: sin t = sin $(2\pi + t) = sin(4\pi + t) = ----$ Here sint is periodic function with period 2π .

Formula :- If f(t) is periodic function with period T $\forall t$ then $L[f(t)] = \frac{1}{1 - e^{-st}} \int_0^T e^{-st} f(t) dt$

Problem : Find the L. T of the function $f(t) = e^t$, 0 < t < 5 and f(t)=f(t+5)

$$\frac{1}{1-e^{-s5}} \int_0^5 e^{-st} f(t) dt$$

= $\frac{1}{1-e^{-s5}} \int_0^5 e^{-st} e^t dt$
Solution : Here T=5 $L[f(t) = \frac{1}{1-e^{-5s}} [\frac{e^{(1-s)t}}{1-s}] = \frac{1}{1-e^{-5s}} [\frac{e^{5(1-s)}}{1-s}]$

The unit step function or Heaviside's unit function :

S

It is denoted by u(t-a) or H(t-a) and is defined as H(t-a) = 0, t<a

=1, t>a <u>L.T.</u>

of unit step function:

e-*as* Prove that L[H(t-a)] = _____

Solution : L[H(t-
$$\int_0^\infty e^{-st} H(t_{-a}) dt$$
 a)] =

$$= \int_0^a e^{-st} H(t_{-a}) dt + \int_a^\infty e^{-st} H(t_{-a}) dt$$

$$= \int_0^a 0 + \int_a^\infty e^{-st} . 1$$

$$= \left(\frac{e^{-st}}{-s}\right)$$

$$= \left(\frac{e^{-sa}}{s}\right) . dt$$

Inverse Laplace Transform :

Definition : If f(s) is the Laplace Transform of f(t) then f(t) is called the inverse Laplace Transform of f(s) and is denoted by $L^{-1}f s$. i.e., $f(t)^{(=)}$ $L^{-1}f s$ [()]

 L^{-1} is called inverse Laplace Transform operator, but not reciprocal.

Example : If
$$L^{e^{at}} = \frac{1}{s-a} [\text{then } e^{at} = L^{-1} [\frac{1}{s-a}]$$

Linear Property :

If $f_1(s)$ and $f_2(s)$ are L.T. of $f_1(t)$ and $f_2(t)$ respectively then

 $L^{-1}[c_1 f_1(s) + c_2 f_2(s)] = c_1 L^{-1}[f_1(s)] + c_2 L^{-1}[f_2(s)]$ where c_1

, c_2 constants.

<u>Standard Formulae :</u>

$$1 \qquad \Rightarrow \ L^{-1}\left[\frac{1}{s}\right] = 1$$

$$(2) \ L\left[e^{at}\right] = \frac{1}{s-a} \qquad \begin{array}{l} (1) \ L \\ [1] = \end{array} \Rightarrow \ L^{-1}\left[\frac{1}{s-a}\right] = e^{at}$$

$$(3) \ L\left[e^{-at}\right] = \frac{1}{s+a} \qquad s \qquad \Rightarrow \ L^{-1}\left[\frac{1}{s+a}\right] = e^{-at}$$

$$a$$

(4)
$$L[\sin at] = \overline{s^2 + a^2} \Rightarrow L^{-1}[\frac{1}{s^2 + a^2}] = \frac{1}{a} \sin at$$

(5) $L [\cos \frac{s}{s^2 + a^2}at] \Rightarrow L^{-1}[\frac{s}{s^2 + a^2}] = \cos$
(5) $L[\sin hat] \frac{a}{s^2 - a^2} \Rightarrow L^{-1}[\frac{1}{s^2 - a^2}] = \frac{1}{a} \sinh at$
(6) $L [\cos \frac{s^2 - a^2}{s^2 - a^2} \Rightarrow L^{-1}[\frac{s}{s^2 - a^2}] = \cosh at$

7)
$$L(t^{n})=\rho(n+1)/s^{n+1}$$
, $n \ge L^{-1}\left[\frac{1}{s^{n+1}}\right] = \frac{t}{\rho(n+1)}$
8) $L(t^{n})=n!/s^{n+1}$, $n \text{ is +ve integer} \Rightarrow L^{-1}\left[\frac{1}{s^{n+1}}\right] = \frac{t}{n!}^{n}$ Problems:
(1) $L^{-1}\left[\frac{1}{s^{2}} + \frac{1}{s+4} + \frac{1}{s^{2}+4} + \frac{s}{s^{2}-9}\right]$ Find
solution: $L^{-1}\left[\frac{1}{s^{2}}\right] + L^{-1}\left[\frac{1}{s+4}\right] + L^{-1}\left[\frac{1}{s^{2}+4}\right] + L^{-1}\left[\frac{s}{s^{2}-9}\right]$
 $= t + e^{-4t} + \frac{1}{2} \sin 2t + \cosh 3t.$
 $L^{-1}\left[\frac{1}{s^{2}+25}\right]$
 $L^{-1}\left[\frac{1}{s^{2}+25}\right] = L^{-1}\left[\frac{1}{s^{2}+5^{2}}\right] = \frac{1}{5}\sin 5t$
 $L^{-1}\left[\frac{1}{2s-5}\right]$

5

(2) Find solution

•

(3) Find

$$L^{-1}\left[\frac{1}{2s-5}\right] = \frac{1}{2}L^{-1}\left[\frac{1}{s-5/2}\right] = \frac{1}{2}e^{\frac{1}{2}t} \text{ solution}$$
(4) Find
$$L^{-1}\left[\frac{2s+1}{s(s+1)}\right] = L^{-1}\left[\frac{s+s+1}{s(s+1)}\right] = L^{-1}\left[\frac{1}{s+1} + \frac{1}{s}\right] = e^{-t} + 1$$
(5) Find
$$L^{-1}\left[\frac{3s-8}{4s^2+25}\right] = \frac{1}{2}L^{-1}\left[\frac{3s-8}{s^2+2\frac{5}{2}/4}\right] = \frac{3}{2}Cos$$

$$= \frac{1}{2}\left\{3L^{-1}\left[\frac{5}{2s^2+(5/2)^2}\right] - 8L^{-1}\left[\frac{1}{s^2+(5/2)^2}\right] + 8L$$

Sin <u>5</u>

25

:

= ¾ Cos 4/5 Sin t

2

FIRST SHIFTING THEOREM OF INVERSE L.T:

If
$$L^{-1}[f(s)] = f(t)$$
 then $L^{-1}[f(s-a)] = e^{at} f t()$
= $e^{at} L^{-1}[f(s)]$
By definition of $| T$

PROOF:

By definition of L.T $\int_0^\infty e^{-st} f(t) dt = f(s) - \dots - (1) \quad L[f(t)] = f(t)] = \int_0^\infty e^{-st} e^{at} f(t) dt$ $= \int_0^\infty e^{-(s-a)t}$

L[*eat*

$$f(t) dt Put s-a=p = \int_0^\infty e^{-pt} f(t)$$

$$dt$$

$$= f(p) = f(s-a)$$

$$L[e^{at}f(t)]=f(s-a)$$

$$\Rightarrow L^{-1}[f(s-a)] = e^{at} f(t) \quad (or) L^{-1}[f(s-a)] = = e^{at} L^{-1}[f(s)]$$

$$Note: L^{-1}[f(s+a)] = = e^{-at} L^{-1}[f(s)]$$

PROBLEMS

$$L^{-1}\left[\frac{s+3}{(s+3)^2+8^2}\right] = e^{-3t} L^{-1}\left[\frac{s}{s^2+8^2}\right] = b^{-3t} L^{-1}\left[\frac{s}{s^2+8^2}\right] = b^{-3t} L^{-1}\left[\frac{s}{s^2+8^2}\right] = b^{-3t} L^{-1}\left[\frac{1}{s^2+2s+5}\right] = L^{-1}\left[\frac{1}{(s+1)^2+4}\right] = e^{-t} L^{-1}\left[\frac{1}{s^2+2^2}\right] = e^{-t} L^{-1}\left[\frac{1}{(s+1)^2}\right] = L^{-1}\left[\frac{1}{(s+1)^2}\right] = L^{-1}\left[\frac{1}{(s+1)^2}\right] = e^{-t} L^{-1}\left[\frac{1}{s^2}\right] = e^{-t} L^{-1}\left[\frac{1$$

Solution :

½ Sin 2t

3) Find

Solution :

4) Find Inverse L.T of
$$\frac{s}{(s+3)^2}$$

 $L^{-1}\left[\frac{s}{(s+3)^2}\right] = L^{-1}\left[\frac{s+3-3}{(s+3)^2}\right] = e^{-3t} L^{-1}\left[\frac{s-3}{s^2}\right]$ Solution :
 $= e^{-3t} \left\{ L^{-1}\left[\frac{1}{s}\right] - 3L^{-1}\left[\frac{1}{s^2}\right] \right\} = e^{-3t}$ (1-3t)
 $L^{-1}\left[\frac{s+3}{s^2-10s+29}\right]$
 $L^{-1}\left[\frac{s+3}{s^2-10s+29}\right] = L^{-1}\left[\frac{s+3}{(s-5)^2+4}\right] = L^{-1}\left[\frac{(s-5)+5+3}{(s-5)^2+4}\right]$
 $= e^{5t} L^{-1}\left[\frac{s+8}{s^2+4}\right]$
 $= e^{5t} \left\{L^{-1}\left[\frac{s}{s^2+4}\right] + 8L^{-1}\left[\frac{1}{s^2+4}\right]\right\}$
 $= e^{5t} \left\{L^{-1}\left[\frac{s}{s^2+2^2}\right] + 8L^{-1}\left[\frac{1}{s^2+2^2}\right]\right\}$

5) Find

Solution :

] (By F.S.T)

 $= e^{5t} [\operatorname{Cos} 2t + 8 \times \frac{1}{2} \times \operatorname{Sin} 2t] = e^{5t}$ $\underbrace{SECOND SHIFTING THEOREM:}_{=e^{5t}} [\operatorname{Cos} 2t + 4 \operatorname{Sin} 2t]$ If $L^{-1}[f(s)] = f(t)$ then $L^{-1}[e^{-as}f(s)] = g \left\{ \begin{array}{c} \end{array} \right\}^{\circ}$ where $g(t) = f(t-a), t > a = 0, \quad t < a$ $= 0, \quad t < a$ $Proof: By S.S.T of L.T, \ L[g(t)] = e^{-as}f(s) \quad (\text{write proof of SST})$ $\Rightarrow L^{-1}[e^{-as}f(s)] = g t()$ $\Rightarrow L^{-1}[e^{-as}f(s)] = f(t-a), t > a = 0, \quad t < a \text{ Note:}$ $We \ can \ also \ written \ as \ L^{-1}[e^{-as}f(s)] = f(t-a) \ H(t-a)$

Problem:

Find
$$L^{-1}\left[\frac{e}{s^2+1}\right]$$

 $L^{-1}\left[\frac{e^{-1}}{s^2+1}\right] = L^{-1}\left[e^{-\pi s}\frac{1}{s^2+1}\right]_{\pi s}$

Solution:

Let
$$f(s) = \frac{1}{s^2 + 1}$$

 $L^{-1}[f(s)] = \frac{L^{-1}[\frac{1}{s^2 + 1}]}{1 = 1} = 1$

by S.S.T *L*⁻¹[*e*^{-*as*} f(s)] = *f*(*t*-*a*), *t*>*a* =0, *t*<*a*

So
$$L^{-1}[e^{-\pi s}f(s)] = f(t-\pi), t > \pi$$

=0, $t < \pi$
 $L^{-1}[e^{-\pi s}\frac{1}{s^2+1}] = Sin(t-\pi), t > \pi = 0,$
 $t < \pi$

Chang of scale property :

If
$$L^{-1}[f(s)] = f(t)$$
 then $L^{-1}[f(\frac{s}{a})] = a f(at)$
(or) $L^{-1}[f(as)] = \frac{1}{a} f(\frac{t}{a})$

Proof: By the change of scale property,

$$L[f(at)] = \frac{1}{a} f(\frac{s}{a})$$
$$\Rightarrow L^{-1}[f(\frac{s}{a})] = a f(at)$$

$$(\text{or}) \\ L^{-1}[f(as)] = \frac{1}{a} f(\frac{t}{a}) \\ \text{Problem(1): If } L^{-1}[\frac{s^{2}-1}{(s^{2}+1)^{2}}] = t \cos t, \text{ then find } L^{-1}[\frac{9s^{2}-1}{(9s^{2}+1)^{2}}] \\ \text{Solution : Given } L^{-1}[\frac{s}{(s^{2}+1)^{2}}] = t \cos t \\ \text{ i.e., } L^{-1}[f(s)] = f(t) \\ \text{, Here } f(s) = \frac{s^{2}-1}{(s^{2}+1)^{2}} f(t) = t \cos t \\ L^{-1}[\frac{9s^{2}-1}{(9s^{2}+1)^{2}} \text{ Now }] = L^{-1}[\frac{(3s)^{2}-1}{\{(3s)^{2}+1\}^{2}}] \\ = L^{-1}[f(3s)] \\ = \frac{1}{3}f(\frac{t}{3}) \\ L^{-1}[f(as)] = \frac{1}{a}f(\frac{t}{a}) = \frac{1}{3}\frac{t}{3}\cos\frac{t}{3} \\ a = 3 \end{cases}$$

Inverse Laplace Transform of partial fractions :

Problems : (1) Find
$$L^{-1}\left[\frac{(s^{2}+1)(s-1)}{s^{4}}\right]$$
 Proof : By theorem of L.T. $L[t^{n} f(t)]$
Solution : Given $L^{-1}\left[\frac{(s^{2}+1)(s-1)}{s^{4}}\right] = L^{-1}\left[\frac{(s^{3}-s^{2}+s-1)}{s^{4}}\right]$ $(-1)^{n}\frac{d}{ds^{n}} = f(s)$
 $= L^{-1}\left[\frac{1}{s}\right] - L^{-1}\left[\frac{1}{s^{2}}\right] + L^{-1}\left[\frac{1}{s^{3}}\right] - L^{-1}\left[\frac{1}{s^{4}}\right]$ $\Rightarrow L^{-1}\left[\frac{d^{n}}{ds^{n}}f(s)\right] = (-1)^{n}$
 $= 1 - t + \frac{1}{2}t^{2} - \frac{t^{3}}{6}$ $t^{n}f(t)$ Note: $L^{-1}\left[f'(s)\right] = -tf(t)$
(2). Find $L^{-1}\left[\frac{s+5}{s^{2}-3s+2}\right]\log\left(\frac{s+3}{s+4}\right]$ blution : Here $f(s) = \overline{s^{2}-3s+2}$ Problem (1): Find
reduce into partial $\frac{s+5}{s^{4}+4}$ fractions $f(s) = \overline{s^{2}-3s+2}$ $r^{n}f(t)$ Note: $L^{-1}[f'(s)] = -tf(t)$
 $f(s) = \frac{s+5}{s^{2}-3s+2} = \frac{s+5}{(s-1)(s-2)} = \frac{A}{s-1} + \frac{B}{s-2} - ----(1)$ $(j) = \log(s+3) - \log(s+3$

log

$$\frac{\overline{s+3} - \overline{s+4}}{L^{-1}[f'(s)] = L^{-1}[\frac{1}{s+3} - \frac{1}{s+4}]} = e^{-3t \cdot e^{-4t}}$$
By theorem, $-t f(t) = e^{-3t} - \frac{e^{-3t} - e^{-t}}{-t} e^{-4t} H.W. Find $\frac{L^{-1}[\log(\frac{s+1}{s-1})]}{4tt \text{ SO}, \frac{e^{t} - e^{-t}}{t}}$
[replace 3 by $\Rightarrow L^{-1}[f(s)] = \frac{e^{-4t} - e^{-3t}}{t} 1 \text{ and } 4 \text{ by (-1)}]$
(2) Find $L^{-1}[\frac{s}{(s^2 + a^2)^2}]$
Solution: W.K.T $L^{-1}[\frac{1}{(s^2 + a^2)}] = \frac{1}{a} \sin at$
i.e $L^{-1}[f(s)] = f(t) 1 \text{ Let } f(s)$
 $= , f(t) \frac{1}{(s^2 + a^2)} - e^{-3t} \sin at$$

We have
$$L^{-1}[f'(s)] = -t f(t)$$

 $L^{-1}\left[\frac{d}{ds}\left(\frac{1}{(s^2+a^2)}\right)\right] = -t \frac{1}{a} \sin at$
 $L^{-1}\left[\frac{-2s}{(s^2+a^2)^2}\right] = -\frac{t}{a} \sin at$
 $\Rightarrow L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right] = \frac{t}{2a} \sin at$

Inverse L.T. of integrals :-

If $L^{-1}[f(s)] = f(t)$ then $L^{-1}[\int_{s}^{\infty} f(s) ds] = \frac{f(t)}{t}$ Proof : We have $\lfloor \lfloor \frac{f(t)}{t} \rfloor = \int_{s}^{\infty} f(s) ds$ provided exist

$$\Rightarrow L^{-1}\left[\int_{s}^{\infty} f(s) ds\right] = \frac{f(t)}{t}$$

Multiplication by powers of s :-

If $L^{-1}[f(s)] = f(t)$ and f(0) = 0, then $L^{-1}[s f(s)] = f'(t)$ Proof :

W.K.T. L[f'(t)] = s L[f(t)] - f(0)

S

$$= s f(s) - 0$$
$$\Rightarrow L^{-1}[s f(s)] = f'(t)$$

In general we have, $\Rightarrow L^{-1}[s^n f(s)] = f^n(t)$ if $= f^n(0) = 0$

Problems :

$$L^{-1}\left[\frac{s^{2}}{(s^{2}+a^{2})^{2}}\right]$$
(1) Find
$$L^{-1}\left[\frac{s}{(s^{2}+a^{2})^{2}}\right] = L^{-1}\left[s.\frac{s}{(s^{2}+a^{2})^{2}}\right]$$

solution :

Let f(s) =

 $L^{-1}[f(s)] = (s^2 + a^2)^2 f(t) = f'(t) =$ $\frac{1}{2a} [\sin L^{-1} [\frac{s}{(s^2+a^2)^2}] \text{ at } + \text{t a cos at }]$ We have $L^{-1}[s f(s)] = f'(t)$ $\Rightarrow L^{-1}[\frac{s^2}{(s^2 + a^2)^2}] = \frac{1}{2a}$ (2) Find $L^{-1}\left[\frac{s^2}{(s-1)^4}\right]$ (sin at + at cos at) Solution $\frac{s}{(s-1)^4}$: $[f(s)] = L^{-1}[\frac{s}{(s-1)^4}]$ $=L^{-1}\left[\frac{s-1+1}{(s-1)^4}\right]$ $= e^t L^{-1} \left[\frac{s+1}{s^4} \right]$ $= e^t L^{-1} \left[\frac{1}{s^3} + \frac{1}{s^4} \right]$ $= e^t \left(\frac{t^2}{2} + \frac{t^3}{6}\right) = f(t)$ Let $f(s) = L^{-1}$

] by F.S.T.

$$e^{t} \left(\frac{t^{2}}{2} + \frac{t^{3}}{6}\right) + e^{t} \left(t + \frac{t^{2}}{2}\right)$$
Now $f'(t) = = e^{t} \left(t + t^{2} + \frac{t^{3}}{6}\right)$
By theorem
$$L^{-1}[s f(s)] = f'(t)$$

$$L^{-1}[s \frac{s}{(s-1)^{4}}] = e^{t} \left(t + t^{2} + \frac{t^{3}}{6}\right)$$
Division
by power of S:
$$\frac{\text{Theorem: If } L^{-1}f s [()] () \qquad () = f t, \text{ then } L^{-1}}{s = 0 \blacksquare f t dt}$$

Prof: we have by LT,

$$\int_{0}^{t} f_{(t)} dt = \frac{f(s)}{s} \qquad L[$$

$$\Rightarrow L-1 \begin{bmatrix} f(s) \\ s \end{bmatrix} = 6 \textcircled{P} f t dt$$

$$-1 \begin{bmatrix} f(s) \\ s^{2} \end{bmatrix} t t \qquad Note: ()$$

$$Problem:$$
1) Find
$$L^{-1}[\frac{1}{s(s+3)}]$$
solution: Let f (s) = $\frac{1}{s+3}$

$$L^{-1}[f(s)] = L^{-1}[\frac{1}{s+3}] = e^{-3t} = f(t)$$
By theorem, $L^{-1}\begin{bmatrix} 4s \cdot f(s) \end{bmatrix} = 0 \oiint f(t) dt$

$$\Rightarrow L^{-1}[\frac{1}{s(s+3)}] = \int_{0}^{t} e^{-3t} dt = \frac{e^{-3t}}{-3}] \int_{0}^{t} = \frac{1-e^{-3t}}{3}$$
2) Find
$$L^{-1}[\frac{1}{s(s^{2}+a^{2})}]$$
Solution: let f(s) = $\frac{1}{s^{2}+a^{2}}, L^{-1} = [f(s)] = sinat = f(t)$

<u>Convolution : -</u>

If f(t) and g(t) are two functions defined for $t \ge 0$, then the convolution of f(t) and g(t) is defined as, $f(t) * g(t) = \int_0^t f(u) g(t-u) du$ f(t) * g(t) can also be written as (f * g)(t). Note:- The convolution operation is commutation i.e., (f * g)(t) = (g * t)(t) $\Rightarrow \int_0^t f(u) g(t-u) du = \int_0^t f(t-u) g(u) du$ <u>Convolution theorem :-</u> If L[f(t)] = f(s) and L[g(t)] = g(s) then L[f(t) * g(t)] = L[f(t)]. L[g(t)] (or) = f(s). g(s)

So,
$$L[(f * g) (t)] = f(s) . g(s)$$

Corollary :- $L^{-1}[f(s) . g(s)] = (f * g) t$
 $= \int_0^t f(u) g(t-u) du$
 $= \int_0^t f(t-u) g(u) du$

Problems:

(1). Find $L^{-1}\left[\frac{1}{(s-2)(s^2+1)}\right]$ by using convolution theorem.

1 1 solution: Let f(s) =

$$\overline{s-2}$$
, g(s) = $\overline{s^2+1}$
 $L^{-1}[f(s)] = \frac{L^{-1}[\frac{1}{s-2}]}{s-2} = e^{2t}$, $L^{-1}[g(s)] = \frac{L^{-1}[\frac{1}{s^2+1}]}{s^2+1} = \sin t$

By convolution theorem ,

$$L^{-1}[f(s), g(s)] = \int_{0}^{t} f(t - u) g(u) du$$

$$\Rightarrow L^{-1}[\frac{1}{(s-2)(s^{2}+1)} = \int_{0}^{t} e^{2(t-u)} \sin u \, du$$

$$= e^{2t} \int_{0}^{t} e^{-2u} \sin u \, du$$

$$= e^{2t} \left[\frac{e^{-2u}}{(-2)^{2}+1^{2}} \left(- \frac{1}{\cos u} \right) \right]$$

$$= e^{2t} \left[\frac{e^{-2t}}{5} \left(-2 \sin t - \frac{e^{0}}{5} \left(-1 \right) \right] \right]$$

$$= e^{2t} \left[\frac{e^{-2t}}{5} \left(-2 \sin t - \frac{e^{2t}}{5} \right) \right]$$

$$= 2 \sin t - \cos t + \frac{1}{5} \left(-\frac{1}{5} \right)$$

$$=\frac{1}{5}[e^{2t} \cdot 2 \sin t - \cos t]$$
2) Find $L^{-1}[\frac{1}{s(s^2-a^2)}]$ by convolution theorem
1 $g(s) = \frac{1}{s^2-a^2}$
Solution : Let $f(s) = \underline{}, \quad g(s) = \frac{1}{s^2-a^2}$
 $L^{-1}[f(s)] = \frac{L^{-1}[\frac{1}{s}] = 1 = f(t), \quad L^{-1}[g(s)] = \frac{L^{-1}[\frac{1}{s^2-a^2}]}{=\frac{1}{a}\sinh}$ at = g(t) By convolution theorem ,
 $L^{-1}[f(s), g(s)] = \int_0^t f(t-u) g(u) du$
 $\Rightarrow L^{-1}[\frac{1}{s(s^2-a^2)}] = \int_0^t 1 \frac{1}{a}\sinh au \, du$
 $= \frac{1}{a}[\frac{\cosh au}{a}], \text{ (apply limits o to t)}$
 $= \frac{1}{a^2}(\cosh at - 1)$

Application of L. T to Ordinary Differential Equations:

The L.T method is easier, time – saving and excellent tool for solving O.D.Es

Working rule for finding solution of D. E by L. T:

- 1) Write down the given equation and apply L.T O.B.S
- 2)Use the given conditions
- 3) Re arrange the given equation to given transformation of the solution
- 4) Take inverse L.T O. B. S to obtain the desireds obesve Sali stying the given conditions

The formulae to be used in this process are:

$$L [f^{1} (t)] = s f (s) - f(0) L [f^{11} (t)] = s^{2} f (s) - s f(0) - f^{1}(0) L [f^{111} (t)] = s^{3} f (s) - s^{2} f(0) - sf (0) - f^{11} (0) Note : let f(t) = y (t) and f (s) = y (s) Problems :$$

1) Solve 4 y¹¹+ π ²y = 0 , y (0) = 2 , y¹ (0)= 0

Solution : Here y = y (t)
Given D. E
$$4y^{11}(t) + \pi^2 y(t) = 0$$
 Let L. T O.B.S
 $4L[y^{11}(t)] + \pi$ ² L[y(t)
 $\Rightarrow 4[s^2 L(y)] - s y(0) - y^1(0)] + \pi] = L[0]^2$
 $\Rightarrow L[y][4s^2 + \pi^2] - L[y] = 0$
 $\Rightarrow L[y] = \frac{8s}{4s^2 + \pi^2}$ $4s(2) - 0 = 0$

Let
$$L^{-1}O.B.S$$
, we get y(t)

$$\begin{aligned}
 L^{-1}\left[\frac{3}{4(s^2 + \pi^2/4)}\right] &= 8 \\
 &= \frac{8}{4} L^{-1}\left[\frac{s}{s^2 + (\pi^2/2)^2}\right] \\
 &= 2.\cos \frac{\pi}{2t}
 \end{aligned}$$

$$= 2.\cos \frac{\pi}{2t} \quad \text{is solution of}$$

gven D.E

3) Solve $y^{111}+2y^{11}-y^{1}-2y = 0$ with $y(0) = y^{1}(0) = 0$, $y^{11}(0) = 6$ Solution : given D . E

Let L.T On Both Sides

$$L[y^{11}] + 2 L[y^{11}] - L[y^{1}] - 2 L[y] = 0$$

$$y^{1}(0)]$$

$$-s L[y] - y(0) - 2 L[y] = 0$$

$$\Rightarrow L[y] (s^{3} + 2s^{2} - s - 2) - 6 = 0$$

$$\Rightarrow L[y] = \frac{6}{s^{3} + 2s^{2} - s - 2}$$

$$\Rightarrow s^{3} L[y]s^{2} y(0)s y^{1}(0)y^{11}(0) + 2[s^{2} L[y]$$

$$L[y] = \frac{6}{(s-1)(s+1)(s+2)} = \frac{A}{s-1} + \frac{B}{s+1} + \frac{C}{s+2} - ----(1)$$

$$6 = A(s+1)(s+2) + B(s-1)(s+2) + C(s-1)(s+1) - -----(2) = A(2)(3) \Rightarrow A = 1$$
Put s = -1 in (2)

$$\Rightarrow 6 = B(-2)(1) \Rightarrow B = -3$$
Put s = -2 in (2)

$$\Rightarrow 6 = C(-3)(-1) \Rightarrow C = 2$$

Substitute A, B, C in (1) $\Rightarrow L[y] = \frac{1}{s-1} - \frac{3}{s+1} + \frac{2}{s+2}$ $\Rightarrow y = L^{-1} \left[\frac{1}{s-1} - \frac{3}{s+1} + \frac{2}{s+2} \right]$ $\Rightarrow y(t) = e^{t} - 3e^{-t} + 2e^{-2t}$

is the solution of given D. E HW: Solve the D.E $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t$ Ans: y(t) = $\frac{e^{-t}}{3}$ (sin t – 2 sin 2t)

UNIT – IV

FOURIER SERIES

Periodic Function :

<u>Definition</u> : A function f(x) is said to be periodic with period T , if \forall

x, f(x+T) = f(x) where T is positive constant.

The least value of T > 0 is called the periodic function of f(x).

Example: sin x = sin $(2\pi + x) = sin(4\pi + x) = -----$

Here sinx is periodic function with period 2π . <u>Def</u>:

Piecewise Continuous Function:

A function is said to be piece-wise continuous (or) Sectionally Continuous) over the closed interval [a,b] if it is defined on that interval and is such that the interval can be divided into a finite number of sub intervals, in each of which f(x) is continuous and both right and left hand limits at every end point if the sub intervals. **Dirichlet Conditions:**

A function f(x) satisfies Dirichlet conditions if

(1) f(x) is well defined and single valued except at a finite no. of points

in (-l*,*l)

- (2) f(x) is periodic function with period 21
- (3) f(x) and f'(x) are piece wise continuous in (-I,I)

Fourier Series: If f(x) satisfies Dirichlet conditions , then it can be

represented by an infinite series called Fourier Series in an interval (-I,I) as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} an \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} bn \sin \frac{n\pi x}{l} - \dots - nn = \frac{1}{l} \int_{-l}^{l} f(x) dx, \ an = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$$
$$bn = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (1) \text{ where}$$

Here a_0 , an and bn are called Fourier coefficients.

These are also calle Euler's formula. Note (1): If $x \in (-\pi, \pi)$ Then f(x) = $(i. e., inteval is (-\pi, \pi))$ $(i. e., inteval is (-\pi, \pi))$ $\frac{a_0}{2} + \sum_{n=1}^{\infty} (an \cos nx + bn \sin nx))$ $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$, $an = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$

Where $a_0 =$

$$\int_{\text{bn}} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$
Note (2): In interval (0,2^π), f(x) = $\frac{a_0}{2} + \sum_{n=1}^{\infty} (an \cos nx + bn \sin nx)$
Where $a_0 = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx$, $a_1 = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx \, dx$
 $b_1 = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx \, dx$
Note (3): The Fourier Series in (-I,I), (- π , π), (b, 2 π ,)(c, c + 2 π) are called Full range expansion series
Note (4): The above series (1) converges to f(x) if x is a point of continuity
The above series (1) converges to $\frac{f(x+0)+f(x-0)}{2}$ if x is a point of discontinuity
 $f(\pi-0)+f(-\pi+0)$
Note (5): At $x = \pm \pi$, $f(x) =$ ______ here $x \in (-\pi, \pi)$

Even and odd functions:

<u>Case (1)</u>: If the function f(x) is an even function in the interval (-I,I)

i.e.,
$$f(-x) = f(x)$$
 then $a_0 = \frac{-2^l 0}{2^l 0} \int x^0 dx$

an = $\frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx$ (since f(x) & $\cos \frac{n\pi x}{l}$ are even functions) bn = $\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \Rightarrow$ bn=0 (since f(x). $\sin \frac{n\pi x}{l}$ is odd function) Therefore, in this case we get (only) Fourier cosine series only.

Case (2): If function f(x) is odd i.e., f(-x) = -f(x) then an = 0 (since $f(x) \cos \frac{n\pi x}{l}$ is odd) (a₀=0 also) And bn = $\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n\pi x}{l} dx$ In this case we get fourier sine series only. [only for intervals (-I,I), (- π , π)]**Problems**

:

1)Find Fourier series for the function $f(x) = e^{ax}$ in (0,2 π) Solution : Given

function $f(x) = e^{ax}$ in (0,2 π)

$$\frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} e^{ax} dx = \frac{1}{\pi} \left(\frac{e}{a} \right)_{ax a_0}^{ax} = 0 \text{ apply limits } 0$$

to 2π

$$=\frac{1}{a\pi}(e^{2\pi a}-1)$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} e^{ax} \cos nx \, dx \qquad \text{an}$$

$$= \frac{1}{\pi} \left[\frac{e^{ax}}{a^2 + n^2} (a \cos nx + n \sin nx) \right] \qquad \text{apply limits 0 to } 2\pi$$

$$= \frac{1}{\pi} \left[\frac{e^{2\pi a}}{a^2 + n^2} (a \cos 2n\pi + 0) - \frac{e^0}{a^2 + n^2} \right] \qquad \text{apply limits 0 to } 2\pi$$

$$= \frac{1}{\pi} \left[\frac{e^{2\pi a}}{a^2 + n^2} (e^{2\pi a} - 1) \right] \qquad \text{apply limits 0 to } 2\pi$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} e^{ax} \sin nx \, dx$$

$$= \frac{1}{\pi} \left[\frac{e^{2\pi a}}{a^2 + n^2} (a \sin nx + n \cos nx) \right] \qquad \text{apply limits 0 to } 2\pi$$

$$= \frac{1}{\pi} \left[\frac{e^{2\pi a}}{a^2 + n^2} (0 - n \cos 2n\pi) - \frac{e^0}{a^2 + n^2} (0 - n) \right]$$

$$= \frac{1}{\pi} \frac{n}{a^2 + n^2} (1 - e^{2\pi a}) = \frac{-n}{\pi(a^2 + n^2)} (e^{2\pi a} - 1)$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx \, dx$$

(a + 0)] apply limits 0 to 2π

=

Now the fourier series is
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} an \cos nx + \sum_{n=1}^{\infty} bn \sin nx$$

$$= \frac{\frac{1}{a\pi}(e^{2\pi a} - 1)}{2} + \sum_{n=1}^{\infty} \frac{a}{\pi(a^2 + n^2)} (e^{2\pi a} - 1)$$
$$\frac{-n}{\pi(a^2 + n^2)} (e^{2\pi a} - 1) \sin nx \qquad \cos x + \sum_{n=1}^{\infty} 1$$
(2): Find Fourier series for the function $f(x) = e^x$ in $(0, 2\pi)$

Solution : Given function $f(x) = e^x in (0, 2\pi) a_0 =$

apply $\frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} e^x dx$ limits 0 to 2π $= \frac{1}{\pi} (e^{x}) \quad \text{apply limits 0 to } 2\pi$ $=\frac{1}{\pi}(e^{2\pi}-1)$ $an = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx$ $=\frac{1}{\pi}\int_0^{2\pi}e^x\cos nx\,dx$ bn $= \frac{1}{\pi} \left[\frac{e^{x}}{1+n^{2}} \left(1 \cos nx + n \sin nx \right) \right]$ $=\frac{1}{\pi}\left[\frac{e^{2\pi}}{1+n^2}\left(\cos 2n\pi + 0\right) - \frac{e^0}{1+n^2}\left(\cos 0 + 0\right)\right]$ $=\frac{1}{\pi}\frac{1}{1+n^2}[e^{2\pi}-1]$ $= \frac{1}{\pi(1+n^2)} (e^{2\pi} - 1)$ $= \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx$ $= \frac{1}{\pi} \int_0^{2\pi} e^x \sin nx \, dx$ $= \frac{1}{\pi} \left[\frac{e^{x}}{1+n^{2}} (\sin nx + n \cos nx) \right] \quad \text{apply limits 0 to } 2\pi$ $= \frac{1}{\pi} \left[\frac{e^{2\pi}}{1+n^{2}} (0 - n \cos 2n\pi) - \frac{e^{0}}{1+n^{2}} (0 - n) \right]$ $= \frac{1}{\pi} \frac{n}{1+n^2} (1 - e^{2\pi}) = \frac{-n}{\pi(1+n^2)} (e^{2\pi} - 1)$

Now the fourier series is f(x) = $\frac{a_0}{2} + \sum_{n=1}^{\infty} an \ cos \ nx + \sum_{n=1}^{\infty} bn \ sin \ nx$ $= \frac{\frac{1}{\pi} (e^{2\pi} - 1)}{2} + \sum_{n=1}^{\infty} \frac{1}{\pi (1 + n^2)} \ (e^{2\pi} - 1) \ cos \ nx + \sum_{n=1}^{\infty} \frac{-n}{\pi (1 + n^2)} \ (e^{2\pi} - 1) \ sin \ nx$

Problem (3): H.W

Find Fourier series for the function $f(x) = e^{-x}$ in (0,2 π)

(Hint:- put a = -1 in problem (1) we get the solution.)
(4) Express f(x) = x - π as Fourier Series in the interval - π < x < π Solution: Given function f(x) = x - π a₀

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x - \pi) dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x dx - \frac{1}{\pi} \int_{-\pi}^{\pi} \pi dx$$

= 0 - [x] with limits -
$$\pi$$
 to π
= 0 - [π + π] = 2 π an =

$$dx \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x - \pi) \cos nx \, dx \quad (since even) = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos nx \, dx - \frac{1}{\pi} (-\pi) \int_{-\pi}^{\pi} \cos nx \, dx = \frac{1}{\pi} (0) (since x \cos nx is odd) + 2 \int_{0}^{\pi} \cos nx \, dx = \frac{1}{\pi} (0) (since x \cos nx is odd) + 2 \int_{0}^{\pi} \cos nx \, dx = 0 + 2 [\frac{1}{n}] 0 to \pi$$
 limits apply we get an = 0+0 = 0

$$bn = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x - \pi) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx - \frac{1}{\pi} (-\pi) \int_{-\pi}^{\pi} \sin nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx - \frac{1}{\pi} (-\pi) \int_{-\pi}^{\pi} \sin nx \, dx$$

$$(even) \quad (odd) = \frac{1}{\pi} 2 \int_{0}^{\pi} x \sin nx \, dx - \frac{1}{\pi} (-\pi) \int_{-\pi}^{\pi} \sin nx \, dx = \frac{1}{\pi} [[x(-\frac{\cos n\pi}{n})] - \int_{0}^{\pi} \frac{-\cos n\pi}{n} \, dx]$$

$$= \frac{2}{\pi} [[\pi \frac{\cos n\pi}{n} + 0 + \frac{1}{n} (\frac{\sin n\pi}{n})] \quad apply \ \text{limits 0 to } \pi$$

$$= \frac{2}{\pi} [-\pi \frac{\cos n\pi}{n} + 0 + \frac{1}{n} (0)] = -\frac{2}{n} \cos n\pi = -\frac{2}{n} (-1)^n = \frac{2}{n} (-1)^{n+1}, n=1,2,3......$$
Now the Fourier Series of f(x) is f(x)

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} (an \cos nx + bn \sin nx)_{f(x)}$$

$$= \frac{2\pi}{2} + \sum_{n=1}^{\infty} [(0) \cos nx + \frac{2}{n} (-1)^{n+1} \sin nx]$$

$$= \pi + \sum_{n=1}^{\infty} [\frac{2}{n} (-1)^{n+1} \sin nx]$$
(5)Obtain the interval $[-\pi, \pi]_{2}$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{n}{1^2}$
Hence show

that (or) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = 12$

Solution: Given function is $f(x) = x - x^2$ in $[-\pi, \pi]$ $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x - x^2) dx$ $= \frac{1}{\pi} \int_{-\pi}^{\pi} x dx - \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx$ $= 0 (\text{odd}) - \frac{1}{\pi} [\frac{x^3}{3}] = -2\pi^2/3$

$$an = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} (x - x^2) \cos nx \, dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos nx \, dx - \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx \, dx$$
$$(odd) \qquad (even)$$
$$u = 0 - \frac{1}{\pi} 2 \int_{0}^{\pi} x^2 \cos nx \, dx \qquad x^2, \quad dv = \cos nx \, dx$$
$$= -\frac{2}{\pi} \left[\left(\frac{x^2 \sin nx}{n} \right) - \frac{2}{n} \int_{0}^{\pi} x \sin nx \, dx \right] \qquad du = 2x \, dx, \, dv = \mathbb{P}\cos nx \, dx$$
apply limits 0 to π

apply limits 0 to
$$\pi$$

$$= \frac{4}{\pi n} \left[-\pi \frac{(-1)^n}{n} + \frac{1}{n^2} \right]$$

$$= \frac{4}{n^2} (-1)^{n+1}$$
(sin nx)] $2udv = \frac{4}{1^2} = 4$ $uv - 2vdu$
an = if n is odd a1 = $\frac{4}{1^2} = 4$

$$n^{2}$$

$$-\frac{4}{n^{2}} \text{ if n is even}$$

$$a2 = \frac{4}{2^{2}} = 1$$

$$a3 = \frac{4}{3^{2}} = 4/9$$

$$bn = \frac{1}{\pi} \int_{-\pi}^{\pi} (x - x^{2}) \cos nx \, dx$$

$$= \frac{1}{\pi} \left[\int_{-\pi}^{\pi} x \sin nx \, dx - \int_{-\pi}^{\pi} x^{2} \sin nx \, dx \right]$$
(even) (odd)
$$= \frac{2}{n} \left[(-\frac{x \cos nx}{n}) + \frac{1}{n} \int_{0}^{\pi} \cos nx \, dx \right]$$
(even) (odd)
$$= \frac{2}{n} \left[-\pi \frac{(-1)^{n}}{n} + \frac{1}{n^{2}} \qquad \sin nx \right] b1 = 2/1 = 2 = \frac{2}{n} (-1)^{n+1} = \frac{2}{n} \text{ if n is}$$
odd
$$= - 2/2 = -1$$

$$b3 = 2/3 \qquad = -\frac{2}{n} \text{ if n is even}$$
Now
$$= \frac{a_{0}}{2} + \sum_{n=1}^{\infty} (an \cos nx + bn \sin nx) - \dots - (1) \text{ substitute}$$

$$f(x) = \frac{-\pi^{2}}{3} + 4 \left(\frac{\cos x}{1^{2}} - \frac{\cos 2x}{2^{2}} + \frac{\cos 3x}{3^{2}} - \dots \dots \right)$$
in
$$+ 2 \left(\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \dots \right) - \dots - (2)$$

in

(1)

put x = 0 in (2)
f(0) = 0 =
$$\frac{-\pi^2}{3}$$
 + 4($\frac{1}{1^2}$ - $\frac{1}{2^2}$ + $\frac{1}{3^2}$)
 π^2
 $\Rightarrow \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} +=$
Half range series
(1) The half range cosine series in (0,1) is f(x) = $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$
 $a_0 = \frac{2}{l} \int_0^l f(x) dx$, $a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx$
(2) The half range sine series in (0,1) is f(x) = $\sum_{n=1}^{\infty} b \sin \frac{n\pi x}{l}$
where $b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx$
Note :1) The half range cosine series in (0,\pi) is f(x) = $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$
 $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$, $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos n\pi dx$ where

Note :2) The half range sine series in (0, π) is $f(x) = \sum_{n=1}^{\infty} bn \sin nx$ where bn = $\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx$ (1)Express $f(x) = \pi - x$ as Fourier cosine and sine series in (0, π) Solution :

 $\pi 2$

 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$ (1) The half range cosine series for f(x) is $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} \pi_{-x} dx$ where $= \frac{2}{\pi} [\pi x - \frac{x^2}{2}] \text{ apply limits o to } \pi$ $= \frac{2}{\pi} [\pi^2 - \frac{\pi^2}{2} - (0 - 0)] = \frac{2}{\pi} (\frac{\pi^2}{2}) = \pi$ $\frac{2}{\pi} \int_0^{\pi} f(x) \cos^{\pi} n\pi \, dx$ an = $=\frac{2}{\pi}\int_0^{\pi}(\pi-x)\cos n\pi \,\mathrm{d}x$ $=\frac{2}{\pi} [\{(\pi - \mathbf{x}) \ \frac{\sin nx}{n}\} + \int_0^{\pi} \frac{\sin nx}{n} d\mathbf{x}]$ (apply o to π) $=\frac{2}{\pi}[(0-0) + \frac{1}{n}(-\frac{\cos nx}{n})]$ $= - \frac{2}{\pi n^2} \left[\cos n\pi - \cos 0 \right]$ $= -\frac{2}{\pi n^2} [\cos n\pi - \cos 0]$)] apply o to π $= -\frac{2}{\pi n^2} [[(-1)^n - 1] = \frac{2}{\pi n^2} [[1 - (-1)^n]]$ $\frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2}{\pi n^2} \left[\left[1 - (-1)^n \right] \cos nx \right]$ f(x) = Now (1) \Rightarrow Ans: $2\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ (bn = $\frac{2}{n}$) H.W.) Express $f(x) = \pi - x$ as fourier sine series in (o, π 2) Find the half range sine series of f(x) = x in the range $0 < x < \pi$

Hence deduce that

Solution : The half range cosine series for f(x) is f(x) $=\frac{a_0}{2} + \sum_{n=1}^{\infty} an \cos nx$ (1) where $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \frac{2}{\pi} \int_0^{\pi} f(x) = \frac{2}{\pi} \int_0^{\pi} \frac{2}{x \, dx} = \frac{2}{\pi} \left[\frac{x^2}{2} \right]$ apply limits o to π $=\pi$ $an = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$ $=\frac{2}{\pi} \mathbb{P}_0^{\pi}(\mathbf{x}) \cos nx \, \mathrm{dx}$ $= \frac{2}{\pi} \left[\left\{ (\mathbf{x}) \frac{\sin nx}{n} \right\} - \mathbb{P}_{0}^{\pi} \frac{\sin nx}{n} d\mathbf{x} \right]$ (apply o to π) $=\frac{2}{\pi}$ [(0-0) $-\frac{1}{n}$ ($-\frac{\cos nx}{n}$

= $\frac{2}{\pi n^2} [(-1)^n - 1]_{n-1}]$ apply o to π

 $=\frac{2}{\pi n^2} [\cos n\pi - \cos 0]$

an = 0 if n is even

 $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots =$

8

$$= -\frac{4}{\pi n^{2}}$$
Now
(1)
$$\Rightarrow: f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{-4}{\pi n^{2}} \cos nx \text{ if n is odd}$$

$$x = \frac{\pi}{2} - \frac{4}{\pi} \left(\frac{\cos x}{1^{2}} + \frac{\cos 3x}{3^{2}} + \frac{\cos 5x}{5^{2}} - \dots \right)$$

Put x=0 on both sides

if n is odd

3) Express $f(x) = \cos x$, $0 < x < \pi$ in half range sine series

 $\pi \qquad \sum_{n=1}^{\infty} bn \sin nx -----(1)$

$$\begin{aligned} &= \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx \\ &= \frac{2}{\pi} \int_0^{\pi} \cos x \sin nx \, dx \\ &= \frac{2}{\pi} \frac{1}{2} \int_0^{\pi} \left[\sin \left(n + 1 \right) x + \sin \left(n - 1 \right) x \right] \, dx \\ &= \frac{1}{\pi} \left[\frac{\sin \left(n + 1 \right) x + \sin \left(n - 1 \right) x \right] \, dx \\ &= \frac{1}{\pi} \left[\frac{-\cos(n+1)x}{n+1} - \frac{\cos(n-1)x}{n-1} \right] \text{ apply limits o to } \pi \\ &= \frac{1}{\pi} \left[\frac{-\cos(n+1)\pi}{n+1} - \frac{\cos(n-1)\pi}{n-1} + \frac{1}{n+1} + \frac{1}{n-1} \right] \\ &= \frac{1}{\pi} \left[\left(\frac{-(-1)^{n+1}}{n+1} + \frac{(-1)^n}{n-1} + \frac{1}{n+1} + \frac{1}{n-1} \right) \right] \\ &= \frac{1}{\pi} \left[\left(\frac{(-1)^2(-1)^n}{n+1} + \frac{(-1)^n}{n-1} + \frac{1}{n+1} + \frac{1}{n-1} \right) \right] \\ &= \frac{1}{\pi} \left[\left(-1 \right)^n \left\{ \frac{1}{n+1} + \frac{1}{n-1} \right\} + \left\{ \frac{1}{n+1} + \frac{1}{n-1} \right\} \right] \\ &= \frac{1}{\pi} \left[\left\{ (-1)^n + 1 \right\} \left(\frac{1}{n+1} + \frac{1}{n-1} \right) \right] \\ &= \frac{2n}{\pi} \left[\frac{1+(-1)^n}{n^2-1} \right] \text{ (n not equal to 1)} \end{aligned}$$

Solution : The half range sine series in (0,) is f(x) =

where

]] , n is not equal to 1

bn = 0 if n is odd. $= \frac{4n}{\pi(n^2 - 1)} \text{ if n is even} \qquad b1 = b3 = b5 = ----- = 0$ (1) $\Rightarrow f(x) = \sum_{n=2}^{\infty} \frac{4n}{\pi(n^2 - 1)} \sin nx$, for n is even 4)Find half range sine series for $f(x) = x(\pi - x)$, in $0 < x < \pi$ $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3}$ Deduce that +.....= 32

Solution : Fourier series is
$$f(x) = \sum_{n=1}^{\infty} bn \sin nx \dots (1)bn$$

$$\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x(\pi - x) \sin nx \, dx$$

$$= \frac{2}{\pi} \pi \int_{0}^{\pi} x \sin nx \, dx - \frac{2}{\pi} \int_{0}^{\pi} x^{2} \sin nx \, dx$$

$$= 2 \left[\left(\frac{-x \cos nx}{n} \right) - \int_{0}^{\pi} \frac{-\cos nx}{n} \, dx \right] - \frac{2}{\pi} \left[\left(\frac{-x^{2} \cos nx}{n} \right) - \int_{0}^{\pi} \frac{-\cos nx}{n} 2x \, dx \right]$$

(apply
0 to
$$\pi$$
)
(apply
(apply
o to π) = 2 [$(\frac{-\pi \cos n\pi}{n}) + 0 + \frac{1}{n}(\frac{\sin nx}{n}) 0$ to π] - $\frac{2}{\pi}$ [$(\frac{-\pi^{2} \cos n\pi}{n}) + 0 + \frac{2}{n}\int_{0}^{\pi} x \cos nx \, dx$]
= 2 [$-\pi \frac{(-1)^{n}}{n} + 0$] + $\frac{2}{\pi}$. $\pi^{2} \frac{(-1)^{n}}{n} - \frac{4}{\pi n}$ [$(\frac{x \sin nx}{n}) 0$ to $\pi - \mathbb{E}_{0}^{\pi} \frac{\sin nx}{n} \, dx$
= 2 [$-\pi \frac{(-1)^{n}}{n}$] + $2\pi \frac{(-1)^{n}}{n} + \frac{4}{\pi n^{2}}(\frac{-\cos nx}{n})$
= $\frac{4}{\pi n^{3}}$ [$-\cos n\pi + \cos 0$]) 0 to π
= $\frac{4}{\pi n^{3}}$ [$[1-(-1)^{n}]$] sub in (1)

bn (1) $\Rightarrow f(x) = \sum_{n=1}^{\infty} \frac{4}{\pi n^3} [[1-(-1)^n] \sin nx]$ (1) $\Rightarrow f(x) = b1 \sin x + b2 \sin 2x + b3 \sin 3x +$ $= \frac{4}{\pi} (2) \sin x + 0 + \frac{4}{\pi . 3^3}$ $\Rightarrow x(\pi - x) = \frac{8}{\pi} [\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} +](2) \sin 3x + Put$ $x = \pi/2$ on both sides

 $\pi\pi \qquad [- ^{3} +] \Rightarrow$ $(2)^{=} ^{3}$ $\stackrel{2}{\Rightarrow} \pi 4^{2} (\pi 8)^{\frac{\pi}{2}} \qquad [\frac{1}{3} - \frac{1}{3^{3}} + 5^{3}]$ $\Rightarrow [\frac{1}{1} - \frac{1}{3^{3}} + \frac{1}{5^{3}}] = \pi_{2}$

FOURIER SERIES IN AN ARBITRARY INTERVAL I,e in (-I,I) & (0,2I)

Problem : 1) Obtain the half range sine series for e^x in 0<x<1 Solution : Given f(x) = e^x in (0,l)

The half range sine series for f(x) in (0,l) is $f(x) = \sum_{n=1}^{\infty} bn \sin \frac{nnx}{l}$(1) I=1 Where by $=\frac{2}{l}\int_0^l f(x) \sin \frac{n\pi x}{l} dx$ $=\frac{2}{1}\int_{0}^{1}f(x)\sin n\pi x\,dx$ bn = 2 $\int_0^1 e^x \sin(n\pi x) dx$ =2 $\frac{e^x}{(1)^2 + (n\pi)^2}$ (sin $n\pi x - n\pi \cdot \cos n\pi x$) apply limits 0 to 1 $=\frac{2}{1+n^2\pi^2}\left[e^1(0-n\pi)\cos(n\pi)-e^0(0-n\pi)\cos(0)\right]$ $=\frac{2}{1+n^2\pi^2}[-n\pi.e]{.}\cos n\pi + n\pi]$ $=\frac{2}{1+n^2\pi^2}[-n\pi e(-1)^n + n\pi]$ $=\frac{2n\pi}{1+n^2\pi^2}[1-e(-1)^n]$ bn $\sum_{n=1}^{\infty} \frac{2n\pi}{1+n^2\pi^2} \left[1-e(-1)^n\right] \sin n\pi x$ f(x) =(1) \Rightarrow

 $\sum_{n=1}^{\infty} bn \sin \frac{n\pi x}{l} \qquad \text{Find the half} \\ = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n\pi x}{l} \, dx \text{ series of } f(x) =$

1 in (0,l) Solution : The half range sine series in
(0,l) is f(x) =

where bn

2)

$$= \frac{2}{l} \left[\frac{2}{0} \left(1 \sin \frac{n\pi x}{l} \right) \right] dx$$
$$= \frac{2}{l} \left[\frac{-\cos\left(\frac{n\pi x}{l}\right)}{\frac{n\pi}{l}} \right] apply limits o to l$$
$$= -\frac{2}{l} \cdot \frac{l}{n\pi} \left[\cos n\pi - \cos 0 \right]$$
$$= -\frac{2}{n\pi} \left[(-1)^n - 1 \right]$$

bn = 0 if n is even

if n is odd

Now (1) $\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{l}$ 3)Find the half range cosine series of f(x) = x(2-x) in the range $0 \le x \le 2$ $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{4^2}$ Hence find sum of series **Solution** : Given function $f(x) = x(2-x) = 2x - x^2$ The half range cosine series for f(x) is $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$(1) where $a_0 = \frac{2}{2} \int_0^2 f(x) dx = \frac{2}{2} \int_0^2 f(x) 2x - x^2 dx$ $=\frac{2}{2}\left[\frac{2x^2}{2}-\frac{2x^3}{3}\right]$ apply 0 to $2 = -\frac{4}{3}$ $an = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx$ $=\frac{2}{2}\int_{0}^{2}f(x)\cos\frac{n\pi x}{2}\,\mathrm{dx}$ (I=2) $= \int_0^2 (2x - x^2) \cos \frac{n\pi x}{2} dx$ (using integration by parts) $= \left[(2x - x^2) \frac{2}{n\pi} \left\{ \sin \frac{n\pi x}{2} + (2 - 2x) \frac{4}{n^2 \pi^2} \cos \frac{n\pi x}{2} + (2) \frac{8}{n^3 \pi^3} \sin \frac{n\pi x}{2} \right\}$ apply limits 0 to 2 $= \frac{-8}{n^2 \pi^2} \cos n\pi - \frac{8}{n^2 \pi^2} = \frac{-8}{n^2 \pi^2} \left[1 - (-1)^n \right]$ $\frac{-16}{n^2\pi^2}$ when n is even an =

= 0 when n is odd

Substitute the values of a_0 and an in (1) we get

$$(1) \Rightarrow 2x - x^{2} = \frac{\frac{2}{3}}{\frac{16}{\pi^{2}}} \sum_{n=2,4,6}^{\infty} \left(\frac{1}{n^{2}} \cos \frac{n\pi x}{2}\right) \\ = \frac{2}{3} - \frac{16}{\pi^{2}} \left(\frac{1}{2^{2}} \cos \pi x + \frac{1}{4^{2}} \cos 2\pi x + \frac{1}{6^{2}} \cos 3\pi x + \dots\right) \\ = \frac{2}{3} - \frac{16}{\pi^{2}} \cdot \frac{1}{2^{2}} \left(\cos \pi x + \frac{1}{2^{2}} \cos 2\pi x + \frac{1}{3^{2}} \cos 3\pi x + \dots\right) \\ \Rightarrow 2x - x^{2} = \frac{2}{3} - \frac{4}{\pi^{2}} \left(\cos \pi x + \frac{1}{2^{2}} \cos 2\pi x + \frac{1}{3^{2}} \cos 3\pi x + \dots\right) - \dots (2)$$

Putting x = 1

in (2) we get

$$2 - 1 = \frac{2}{3} - \frac{4}{\pi^2} (\cos \pi + \frac{1}{2} \cos 2\pi + \frac{1}{3^2} \cos 3\pi + \frac{1}{4^2} \cos 4\pi + \dots)$$

$$\Rightarrow 1 - \frac{2}{3} = -\frac{4}{\pi^2} (-1 + \frac{1}{2^2} - \frac{1}{3^2} + \frac{1}{4^2} - \dots)$$

$$\Rightarrow \frac{1}{3} = \frac{4}{\pi^2} (1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots)$$

$$+ \Rightarrow \frac{\pi^2}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} - \dots) = \frac{12}{1^2}$$

(4) Expand $f(x) = e^{-x} as Fourier series$ in (-1,1)

Solution : Here I = 1

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

 $= \frac{1}{1} \int_{-1}^{1} e^{-x} dx = (\frac{e^{-x}}{-1})$ apply limits -1 to 1
 $= -e^{-1} + e^1 = e^{-\frac{1}{e}} = 2 \sinh 1$
 $\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$ an =
 $= 1 \int_{-1}^{1} e^{-x} \cos(n\pi x) dx$
 $= \frac{e^{-x}}{(-1)^2 + (n\pi)^2} (-\cos n\pi x + n\pi)$

. sin n πx) apply limits -1 to 1

$$\begin{aligned} &= \frac{1}{1+n^2\pi^2} \left[e^{-1} \{ -(-1)^n + 0 \} - e^1 \{ -(-1)^n + 0 \} \right] &\quad -\sin n\pi x - \\ &= \frac{1}{1+n^2\pi^2} (-1)^n (e - e^{-1}) &\quad n\pi x \right] \\ &= \frac{1}{1+n^2\pi^2} (-1)^n 2 \sinh 1 &\quad apply \\ &= \frac{1}{1+n^2\pi^2} (-1)^n 2 \sinh 1 &\quad to 1 \\ &= \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx_{bn} &\quad to 1 \\ &= \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx (l=1) \\ &= \int_{-1}^{1} e^{-x} \sin (n\pi x) dx \\ &= \frac{e^{-x}}{(-1)^2 + (n\pi)^2} (&\quad Now Fourier series of f(x) \\ &= \frac{1}{1+n^2\pi^2} \left[e^{-1} (0 - n\pi \cdot \cos n\pi) - e^1 (0 - n\pi \cdot \cos n\pi) \right] f(x) = \\ &= \frac{1}{1+n^2\pi^2} n\pi (-1)^n 2 \sinh 1 \\ &= \frac{a_0}{2} + \sum_{n=1}^{\infty} an \cos n\pi x + + \sum_{n=1}^{\infty} bn \sin n\pi x \dots (1) \end{aligned}$$

 $f(x) = \frac{2 \sinh 1}{2} + \sum_{n=1}^{\infty} \frac{1}{1+n^2 \pi^2} (-1)^n 2 \sinh 1 \cos n\pi x + \sum_{n=1}^{\infty} \frac{1}{1+n^2 \pi^2} n\pi (-1)^n 2 \sinh 1 \sin n\pi x$

$$\Rightarrow f(\mathbf{x}) = 2 \sinh 1 + \left[\frac{1}{2} + \sum_{n=1}^{\infty} \frac{1}{1+n^2\pi^2} (-1)^n \left\{ \cos n\pi x + n\pi \sin n\pi_{\mathbf{x}} \right\} \right]$$

• Functions having points of discontinuity : Problems:

(1) If f(x) is a function with period 2π is defined by f(x) =

0 , for - π < x \leq 0

x = x, for $0 \le x < \pi$ then write the fourier series for f(x)

 $\pi 2$

8

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots =$

Solution : The Fourier series in
$$(-\pi, \pi)$$
 is $f(\mathbf{x}) = \frac{\mathbf{a}_0}{2} + \sum_{n=1}^{\infty} (an \cos nx + bn \sin nx) - (1)$
Where $\mathbf{a}_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) dx + \int_{0}^{\pi} f(x) dx$
 $= \frac{1}{\pi} [0 + \int_{0}^{\pi} x dx] = \frac{1}{\pi} (\frac{x^2}{2}) 0$ to $\pi = \frac{\pi}{2}$

$$an = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

$$= \frac{1}{\pi} \left[0 + \int_{0}^{\pi} x \cos nx \, dx \right] \qquad \square u = x, \qquad dv = uv - \square v \, du$$

$$= \frac{1}{\pi n^{2}} \left[(-1)^{n} - 1 \right] \qquad u = x, \qquad dv = \cos nx \, dx = 0, \text{ if n is even}$$

$$= -\frac{2}{\pi n^{2}}, \text{ if n is odd}$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

$$bn = \frac{1}{\pi} \left[0 + \int_{0}^{\pi} x \sin nx \, dx \right]$$

$$= \frac{1}{\pi} \left[\left(\frac{-\pi \cos n\pi}{n} \right) - \int_{0}^{\pi} \frac{-\cos nx}{n} \, dx \right] \qquad (apply 0 \text{ to } \pi)$$

$$= \frac{1}{\pi} \left[\left(\frac{-\pi \cos n\pi}{n} \right) + 0 + \frac{1}{n} \left(\frac{\sin nx}{n} \right) 0 \text{ to } \pi \right]$$

$$= \frac{1}{\pi} \left[\frac{-\pi(-1)^{n}}{n} + 0 + 0 = -\frac{(-1)^{n}}{n}$$

$$bn = \frac{1}{n}, \text{ if n is odd}$$

$$= -\frac{1}{n}, \text{ if n is even}$$

$$(1) \Rightarrow f(x) = \frac{1}{2} \frac{\pi}{2} - \frac{2}{\pi} \left[\left(\frac{\cos x}{1^{2}} + \frac{\cos 3x}{3^{2}} + \cdots \right) + \left(\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \cdots \right) - \cdots - (2) \right]$$

Put x = 0 on both sides $f(0) = 0$

 $(2) \Rightarrow 0 = \frac{\pi}{4} - \frac{2}{\pi} \left(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} - \dots \right)$ $\frac{2}{\pi} \left(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} - \dots \right) = \frac{\pi}{4}$ $\Rightarrow (\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} - \dots) = \frac{\pi^2}{9}$)+0 Problem (2) : Find Fourier series to represent the function f(x) given by f(x) = -k, for $-\pi < x < 0$ k, for $0 < x < \pi$ hence show that $1\frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ Solution : In - π< x < 0 i.e., $x \in (-\pi, 0)$, f(x) = -kf(-x) = -f(x) in (0, π) In $0 < x < \pi$ i.e., $x \in (0, \pi)$ f(x) = k f(-x) = k = -(-k) = - f(x) in (- π ,0) There fore f(x) is odd function in (- π , π) so $a_0 = 0$, an = 0 $bn = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$

$$= \frac{2}{\pi} \int_0^{\pi} k \sin nx \, dx$$
$$= \frac{2k}{\pi} \left(\frac{-\cos nx}{n} \right)$$
$$= \frac{2k}{\pi n} \left[(-1)^n - 1 \right]$$

bn

= 0, if n is even $= \frac{4k}{\pi n}, \text{ if n is odd}$ Now f(x) = $\sum_{n=1}^{\infty} bn \sin nx$ = b₁ sin 1x + b₂ sin 2x + b₃ sin 3x + b₄ sin 4x ------f(x) $\frac{4k}{\pi n} = \pi \sin x + 0 + \pi \qquad 3 \qquad + 0 + -----(1)$ The duction : put x = on both sides in (1) 2

$$(1) \Rightarrow k = \frac{4k}{\pi} (1) + \frac{4k}{\pi} (-\frac{1}{3}) + \frac{4k}{\pi} (\frac{1}{5}) + \dots$$
$$\Rightarrow k = \frac{4k}{\pi} [1 - \frac{1}{3} + \frac{1}{5} - \dots$$
$$\Rightarrow \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \dots$$

Parseval's Formula :-

Prove That $\int_{-l}^{l} [f(x)]^{2} dx = I\left[\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (an^{2} + bn^{2})\right]$ Proof :- We know that the Fourier series of f(x) in (-l,l) is f(x) $= \frac{a_{0}}{2} + \sum_{n=1}^{\infty} an \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} bn \sin \frac{n\pi x}{l} - \dots - (1)$ Multiplying on both sides of (1) by f(x) and integrate term by
term from -l to l we get $\int_{-l}^{l} [f(x)]^{2} dx =$ $\frac{a_{0}}{2} \int_{-l}^{l} f(x) dx + \sum_{n=1}^{\infty} an \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$ $+ \sum_{n=1}^{\infty} bn \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx - \dots - (2)$ Now $a_{0} = \frac{1}{l} \int_{-l}^{l} f(x) dx \Rightarrow \int_{-l}^{l} f(x) dx = Ia_{0}$ $a_{1} = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \Rightarrow \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx = Ian$ and bn $= \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \Rightarrow \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx = Ibn$

Substitute these in (2)

$$\frac{a_0}{2} \cdot l_{a_0} + \sum_{n=1}^{\infty} a_{n} + \sum_{n=1}^{\infty} b_n$$

$$(2) \Rightarrow \int_{-l}^{l} [f(x)]^2_{dx} = \exists \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (an^2 + bn^2)\right] \quad . |bn|$$

This is called parseval's formula.

Note 1): In (0,2I) the parseval's formula is

$$\int_{0}^{2l} [f(x)]^{2} dx = I \left[\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (an^{2} + bn^{2}) \right]$$

Note :2) If 0 < x < I (for half range cosine series of f(x)) parsevel's formula is

$$\int_0^l [f(x)]^2 dx = \frac{l}{2} \left[\frac{a_0^2}{2} + \sum_{n=1}^\infty an^2 \right]$$

Note :3) If 0 < x < I (for half range sine series of f(x)) parsevel's formula is

$$\int_{0}^{l} [f(x)]^{2} dx = \frac{l}{2} \left[\sum_{n=1}^{\infty} bn^{2} \right]$$
Problem : prove that in 0 < x < l, x = $\frac{l}{2} - \frac{4l}{\pi^{2}} \left(\frac{\cos \frac{\pi x}{l}}{1^{2}} + \frac{\cos \frac{3\pi x}{l}}{3^{2}} + \frac{\cos \frac{3\pi x}{l}}{3^{2}} + \frac{1}{3^{4}} + \frac{1}{5^{4}} + \frac{1}{5^{4}} + \frac{\pi^{2}}{5^{6}} \right]$
and hence

deduce that

Solution : Let f(X) = x, 0 < X < IThe Fourier cosine series for f(x) in (0, I) is $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} an \cos \frac{n\pi x}{l} - \dots$ (1) Here $a_0 = \frac{2}{l} \int_0^l f(x) dx$ $=\frac{2}{l}\int_0^l x dx$ $=\frac{2}{l}\left[\frac{l^2}{2}\right]=1$ $=\frac{2}{l}\left[\frac{x^2}{2}\right] \quad \text{apply limits 0 to I}$ an $\frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx$ = $=\frac{2}{l}\int_{0}^{l}x\cos\frac{n\pi x}{l}\,\mathrm{d}x$ $dv = \frac{\cos \frac{n\pi x}{l}}{l} dx$ u = x, $= \frac{2}{l} \left[\left\{ \frac{x \sin \frac{n\pi x}{l}}{\frac{n\pi}{l}} \right\} 0 \text{ to } \right] - \int_{0}^{l} \frac{\sin \frac{n\pi x}{l}}{\frac{n\pi}{l}}$ dx] $= \frac{2}{l} \cdot \frac{l}{n\pi} [(0-0) - \{\frac{-\cos\frac{n\pi x}{l}}{\frac{n\pi}{l}}\} 0 \text{ to } I]$ $=\frac{2}{n\pi} \cdot \frac{l}{n\pi} [\cos n\pi - \cos 0]$ $=\frac{2l}{n^2\pi^2}[[(-1)^n-1]]$ -4l - 4l = 0,

n is even $a_1 = \overline{\pi^2 \cdot 1^2}$, $a_3 = \overline{\pi^2 \cdot 3^2}$ $=\frac{-4l}{n^2\pi^2}$, n is odd $a_2 = 0$, $a_4 = 0$ Substitute a_0 , an in (1) $(1) \Rightarrow \frac{l}{2} \cdot \frac{-4l}{\pi^2} \left(\frac{\cos \frac{\pi x}{l}}{\frac{1^2}{2}} + \frac{\cos \frac{3\pi x}{l}}{\frac{2^2}{2}} + \cdots \right)$ Now $a_0 = l$, $a_1 = \frac{-4l}{\pi^2 \cdot 1^2}$, $a_3 = \frac{-4l}{\pi^2 \cdot 3^2}$ ------From parseval's formula, we have $\int_0^l [f(x)]^2 \, dx = \frac{l}{2} \left[\frac{a_0^2}{2} \right]^2$ $\Rightarrow \int_0^l x^2 \qquad \frac{l}{2} \left[\frac{l}{2} + \frac{16l}{\pi^4 \cdot 1^4} + a_1^2 + \frac{16l}{\pi^4 \cdot 3^4} + \dots \right]_{a_2^2 + a_3^2 + \dots} a_2^2 + a_3^2 + \dots$ $\Rightarrow \left(\frac{x^{3}}{3} \begin{array}{c} l \\ 0 \text{ to } l = . \end{array}\right) 0 \text{ to } l = .$ |² [2

 $\Rightarrow \frac{1}{3} (2l^{3}). \frac{2}{l^{3}} = \frac{1}{2} + \frac{16}{\pi^{4}.1^{4}} + \frac{16}{\pi^{4}.3^{4}} + \dots$ $\Rightarrow \frac{2}{3} - \frac{1}{2} = \frac{16}{\pi^{4}} \left(\frac{1}{1^{4}} + \frac{1}{3^{4}} + \dots \right)$ $\Rightarrow \frac{1}{6} \cdot \frac{\pi^{4}}{16} = \frac{1}{1^{4}} + \frac{1}{3^{4}} + \dots$ $\frac{1}{1^{4}} + \frac{1}{3^{4}} + \dots = \frac{\pi^{4}}{96}$ There fore

COMPLEX FOURIER SERIES in (-I,I) or (0,2I):-

The complex form of Fourier series of a periodic function f(x) of period 2l is defined by

 $f(x) = \sum_{n=-\infty}^{\infty} cn \ e^{\frac{in\pi x}{l}} \quad \dots \quad (1) \quad \text{where} \quad = \frac{1}{2l} \int_{-l}^{l} f(x) \ e^{\frac{-in\pi x}{l}} \\ \text{cndx} \quad , n=0,-1,1,2.\dots \\ \text{Note (1) : If period of function is } 2\pi, \text{ i.e., in } (-\pi, \pi) \text{ or } (0,2\pi) \text{ then} \\ \text{complex fourier series is } f(x) = \sum_{n=-\infty}^{\infty} cn \ e^{inx} \quad \dots \quad (2) \\ \text{Where cn} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \ e^{-inx} \\ \text{dx} \quad , n = 0,-1,1,-2,2 \quad \dots \quad \dots \\ \text{Problem : Find complex fourier series of } f(x) = e^x \text{ if } -\pi < x < \pi \text{ and } f(x) = f(x + 2\pi) \\ \end{array}$

Solution : Complex fourier series of $f(x) = e^x$ is $f(x) = \sum_{n=-\infty}^{\infty} cn \ e^{inx}$ ----(1)

(1 −*in*

$$= \frac{(-1)^n}{2\pi} \cdot \frac{1+in}{(1+n^2)} \cdot (2 \sin h \pi)$$
 (sin h π) sub in (1)

$$= (-1)^n \cdot \frac{1+in}{\pi(1+n^2)}$$
 (sin h π) e^{inx}
Therefore cn
(1) $\Rightarrow f(x) = \sum_{n=-\infty}^{\infty} (-1)^n \cdot \frac{1+in}{\pi(1+n^2)}$ series of f(x) = ,-1 x
here(l=1)
Solution : The complex fourier series of f(x) in (-1,1) is
f(x) = $\sum_{n=-\infty}^{\infty} cn e^{\frac{in\pi x}{l}} -....(1)$
Where cn = $\frac{1}{2} \int_{-1}^{1} e^{-x} e^{-in\pi x} dx = \frac{1}{2} \int_{-1}^{1} e^{-(1+in\pi)x} dx$

$$= \frac{1}{2} [\frac{e^{-(1+in\pi)x}}{-(1+in\pi)x}]$$

$$= -\frac{1}{2} \cdot \frac{1}{1+in\pi} [e^{-(1+in\pi)} - e^{(1+in\pi)}]$$

$$= \frac{1}{2} [\frac{1-in\pi}{1+\pi^2n^2}] [e^{(1+in\pi)} - e^{-(1+in\pi)}]$$

$$= \frac{1}{2} [\frac{1-in\pi}{1+\pi^2n^2}] [e \cdot e^{in\pi} - e^{-1} \cdot e^{-in\pi}]$$

$$= \frac{1}{2} [\frac{1-in\pi}{1+\pi^2n^2}] [(-1)^n (e - e^{-1})]]$$

$$= \frac{1}{2} (-1)^n [[\frac{1-in\pi}{1+\pi^2n^2}] 2 \sin h]$$
(1) $\Rightarrow f(x) = \sum_{n=-\infty}^{\infty} (-1)^n [\frac{1-in\pi}{1+\pi^2n^2}] \sin h \cdot e^{-in\pi x}$] limits(-1,1)

UNIT V

FOURIER TRANSFORMS &

Z-TRANSFORMS

• FOURIER TRANSFORMS

Fourier Integral Theorem:-

Statement : If f(x) is a given function defined in (-I,I) and satisfies Dirichlet's

condition then $f(x) = \frac{1}{\pi} \int_0^\infty \int_{-\infty}^\infty f(t) \cos \lambda(t_{-x}) dt d\lambda$.

The representation of f(x) is known as Fourier Integral of f(x)

Problems on integral theorem:

(1) Express the function f(x) = 1, $|x| \leq 1$

$$= 0, -\infty < x < -1 =$$

$$0, 1 < x < \infty$$
as fourier integral and hence evaluate (i)
$$\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$$
(ii) $d\mathbb{D} = x \quad dx = 2$
• Solution: The Fourier Integral theorem is given by f(x)
$$= \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \lambda(t_{-x}) dt d\lambda.$$

$$1 \quad \infty \quad 1$$

$$= -\pi \quad 0\mathbb{D} \left[1 \quad 1 - \mathbb{D} \cdot \cos \lambda(t - x) dt \right] d\lambda$$

$$= \frac{1}{\pi} \mathbb{D}_{0}^{\infty} \left[\frac{\sin \lambda(t - x)}{\lambda} \right] d\lambda \qquad \text{limits (-1 to 1) for t}$$

$$= \frac{1}{\pi} \mathbb{D}_{0}^{\infty} \left[\frac{\sin \lambda(1 - x) - \sin \lambda(-1 - x)}{\lambda} \right] d\lambda$$

$$= \frac{1}{\pi} \mathbb{D}_{0}^{\infty} \left[\frac{\sin (\lambda - \lambda x) + \sin (\lambda + \lambda x)}{\lambda} \right] d\lambda$$

$$= \frac{1}{\pi} \mathbb{D}_{0}^{\infty} 2. \left[\frac{\sin \lambda \cdot \cos \lambda x}{\lambda} \right] d\lambda$$
therefore $f(x) = \frac{2}{\pi} \mathbb{D}_{0}^{\infty} \left[\frac{\sin \lambda \cdot \cos \lambda x}{\lambda} \right] d\lambda - ----(1)$
Deduction :

(I)
$$\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda = \frac{\pi}{2} \qquad f(x)$$
$$= \frac{\pi}{2} \qquad , |x| \le 1$$
$$= 0, \qquad |x| > 1 \qquad (2)$$
Put x = 0
(2) $\Rightarrow \int_{0}^{\infty} \frac{\sin \lambda \cos 0}{\lambda} d\lambda = \frac{\pi}{2}$
$$\Rightarrow \int_{0}^{\infty} \frac{\sin \lambda}{\lambda} d\lambda = \frac{\pi}{2}$$
$$\Rightarrow \int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Fourier cosine & sine Integrals:

1) Fourier cosine Integral of f(x) is

$$f(x) = \frac{2}{\pi} \int_0^\infty \cos \lambda x \int_0^\infty f(t) \cos \lambda_t \, dt \, d\lambda$$

2) Fourier sine Integral of f(x) is

$$f(x) = \frac{2}{\pi} \int_0^\infty \sin \lambda x \int_0^\infty f(t) \sin \lambda_t dt d\lambda$$

Problems:-

2) Express f(x) = 1 , $0 \le x \le \pi$

0, $x > \pi$ as a fourier sine integral and Hence evaluate $\int_0^\infty (\frac{1-\cos\lambda\pi}{\lambda}) \sin\lambda x \, d\lambda$ **Solution** : Fourier sine integral of f(x) is given by $\frac{2}{\pi}\int_0^\infty \sin\lambda x \left[\int_0^\infty f(t)\sin\lambda t \, dt\right] d\lambda$ f(x) = $= \frac{2}{\pi} \int_0^\infty \sin \lambda x \left[\int_0^\pi \sin \lambda t \, dt \right] d\lambda$ $= \frac{2}{\pi} \int_0^\infty \sin \lambda x \left(\frac{-\cos \lambda t}{\lambda} \right) (0 \text{ to } \pi) \, d\lambda$ $\frac{2}{\pi}\int_0^\infty (\frac{1-\cos\lambda\pi}{\lambda})\sin\lambda x \,d\lambda$ f(x) = $\Rightarrow \int_0^\infty (\frac{1 - \cos \lambda \pi}{\lambda}) \sin \lambda x \, d\lambda \qquad \pi =$ f(x) . 2 $=\frac{\pi}{2}$. 1, $0 \le x \le \pi$ 0 , x > π **Problem** : 3) Using Fourier Integral show that

 $\int_0^\infty \frac{1 - \cos \lambda \pi}{\lambda} \sin x \, \lambda \, d\lambda = \frac{\pi}{2}, \, 0 < x < \pi$

0 , x > π

Solution : Let f(x) =1 , $0 \le x \le \pi$ 0 , x > π

then write above solution (problem.(2) solution).

Problem :4) Using Fourier Integral , show that
$$e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda$$

Solution : Let $f(x) = e^{-ax}$
The Fourier Cosine Integral is given by $f(x)$
 $= \frac{2}{\pi} \int_0^\infty \cos \lambda x \ [\int_0^\infty f(t) \cos \lambda t dt] d\lambda$
Now $f(t) = e^{-at}$
 $e^{-ax} = \frac{2}{\pi} \int_0^\infty \cos \lambda x \ [\int_0^\infty e^{-at} \cos \lambda t dt] d\lambda ----(1)$
 at
 $\int_0^\infty e^{-at} \cos \lambda t dt = [\frac{e^-}{a^2 + \lambda^2}($
 $= 0 - \frac{e^0}{a^2 + \lambda^2}($

Therefore

Now $-a \cos \lambda t + \lambda \sin \lambda t$ (0 to ∞)

а

 $-a.1+0) = \overline{a^2 + \lambda^2}$

sub in (1)

$$(1) \Rightarrow e^{-ax} = \frac{2}{\pi} \int_0^\infty \cos \lambda x \cdot \frac{a}{a^2 + \lambda^2} d\lambda$$
$$= \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{a^2 + \lambda^2} d\lambda$$
$$\frac{\pi}{2} e^{-x} = \int_0^\infty \frac{\cos \lambda x}{a^2 + \lambda^2} d\lambda$$
): Prove that , put a = 1 in

Problem 5

above problem(4)

Solution : Let $f(x) = e^{-x}$ **Problem 6):** Using Fourier Integral , show that

$$e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda$$
 (a,b > 0)
Solution : Let f(x) = e^{-ax}

The Fourier Sine integral is given by f(x)

$$\frac{2}{\pi} \int_0^\infty \sin \lambda x \left[\int_0^\infty f(t) \sin \lambda t \, dt \right] d\lambda_{f(x)} =$$

$$\frac{2}{\pi} \int_0^\infty \sin \lambda x \left[\int_0^\infty e^{-at} \sin \lambda t \, dt \right] d\lambda ----(1)$$

$$\int_0^\infty e^{-at} \sin \lambda t \, dt = \left[\frac{e^{-at}}{a^2 + \lambda^2} ($$

$$= 0 - \frac{1}{a^2 + \lambda^2} (-\lambda) = \frac{\lambda}{a^2 + \lambda^2} - a \sin \lambda t - \lambda \cos \lambda t (0 \text{ to } \infty) \right]$$

sub in (1)

$$(1) \Rightarrow f(x) = \frac{2}{\pi} \int_0^\infty \sin \lambda x \cdot \frac{\lambda}{a^2 + \lambda^2} d\lambda$$

$$\Rightarrow e^{-ax} = \frac{2}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{\lambda^2 + a^2} d\lambda - (2)$$

similarly,

$$e^{-bx} = \frac{2}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{\lambda^2 + b^2} d\lambda - (3)$$

$$(2) - (3) = e^{-ax} - e^{-bx} = \frac{2}{\pi} \int_0^\infty \lambda \sin \lambda x \left(\frac{1}{\lambda^2 + a^2} - \frac{1}{\lambda^2 + b^2}\right) d\lambda$$

$$= \frac{2}{\pi} \int_0^\infty \lambda \sin \lambda x \left[\frac{b^2 - a^2}{(\lambda^2 + a^2)(\lambda^2 + b^2)}\right] d\lambda$$

$$= \frac{2}{\pi} (b^2 - a^2) \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda$$

There fore,

$$e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda$$

FOURIER TRANSFORMATION:

JURIER TRANSFORMATION:

Definition : 1) The fourier transform of f(x) , $-\infty < x < \infty$ is denoted by f(s) or F{f(x)} and is defined as ,

$$F{f(x)} = \int_{-\infty}^{\infty} e^{isx} f(x) dx = f(s) -----(1)$$

The inverse fourier transform is given by
$$f(x) = F^{-1}{f(s)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-isx} f(s) ds -----(2) \qquad F{f(x)} = f(s)$$

Note 2): Some authors also defined as

$$F{f(x)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{isx} f(x) dx$$

and inverse fourier transform as $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-isx} f(s) ds$
Def : 3) : $F{f(x)} = \int_{-\infty}^{\infty} e^{-isx} f(x) dx$ and
Inverse Fourier Transform as $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{isx} f(s) ds$

Def: Fourier Sine Transform:-

The Fourier Sine Transform of f(x), $0 < x < \infty$ is denoted by fs(s) or $Fs{f(x)}$ and defined by

$$Fs{f(x)} = \int_0^\infty f(x) \sin_{sx} dx = fs(s) ----(3)$$

Fs{f(x)} = $\int_0^\infty f(x) \sin_{sx} dx = fs(s) ----(3)$ The

inverse Fourier Sine Transform is given by

$$f(x) = \frac{2}{\pi} \int_0^\infty fs(s) \sin_{sx} ds$$
 -----(4)

Note : Some authors also defined as

$$Fs{f(x)} = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(x) \sin x \, dx = fs(s)$$

and inverse fourier sine transform as $f(x) = \sqrt{\frac{2}{\pi^0 P} f_s(s) \sin sx} \, ds$

Def : Fourier Cosine Transform :-

The Fourier Cosine Transform of f(x), $0 < x < \infty$ is denoted by fc(s) or $Fc{f(x)}$ and defined by

Fc{f(x)} = $\int_0^{\infty} f(x) \cos_{sx} dx = fc(s)$ ----(5) and The inverse Fourier Cosine Transform is given by,

$$f(x) = \frac{2}{\pi} \int_0^\infty fc(s) \cos_{sx} ds -----(6)$$

Note : Some authors also defined as

$$Fc{f(x)} = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(x) \cos x \, dx$$

and inverse fourier cosine transform as $f(x) = \sqrt{\frac{2}{\pi^0 \mathbb{P}} f_c(s) \cos} sx ds}$ Linear Property: If f(s), g(s) are Fourier Transform of f(x) & g(x) then $F\{c_1 f(x) + c_2 g(x)\} = c_1 F\{f(x)\} + c_2 F\{g(x)\}$ $= c_1 f(S) + c_2 g(s)$

Proof:- The definition of Fourier Transform is

$$F\{f(x)\} = \int_{-\infty}^{\infty} e^{isx} f(x) dx = f(s) ----(1)$$
By definition $F\{c_1 f(x) + c_2 g(x)\} = \int_{-\infty}^{\infty} e^{isx} [c_1 f(x) + c_2 g(x)] dx$

$$= c_1 \int_{-\infty}^{\infty} e^{isx} f(x) dx + c_2 \int_{-\infty}^{\infty} e^{isx} g(x) dx$$

$$= c_1 f(s) + c_2 g(s) \text{ by (1) Note:-}$$

Linear Property:

(I)
$$Fs\{c_1 f(x) + c_2 g(x)\} = c_1 fs(s) + c_2 gs(s)$$

(II) $Fc\{c_1 f(x) + c_2 g(x)\} = c_1 fc(s) + c_2 gc(s)$
Proof:- (I) The definition of Fourier Sine Transform is
 $Fs\{f(x)\} = \int_0^\infty f(x) \sin_{sx} dx = fs(s) ----(1) \int_0^\infty [c_1 f(x) + c_2 g(x)] \sin sx dx$
By the definition, $Fs\{c_1 f(x) + c_2 g(x)\} = \int_0^\infty [c_1 f(x) + c_2 g(x)] \sin sx dx$
 $= c_1 \int_0^\infty f(x) \sin_{sx} dx + c_2 \int_0^\infty g(x) \sin_{sx} dx$
 $= c_1 fs(s) + c_2 gs(s)$ by (1) Change

of scale property:

Statement : If F{f(X)} = f(s) then F{f(ax)} = $\frac{1}{a} f(\frac{s}{a})$ Proof :- The definition of Fourier Transform of f(x) is F{f(x)} = $\int_{-\infty}^{\infty} e^{isx} f(x) dx = f(s)$ -----(1) By definition F{f(ax)} = $\int_{-\infty}^{\infty} e^{isx} f(ax) dx$ let ax = t x = t/a= $\int_{-\infty}^{\infty} e^{is\frac{t}{a}} 1$ 1 f(t) dt dx = dt $a = \frac{1}{a} \int_{-\infty}^{\infty} e^{i\left(\frac{s}{a}\right)t} f(t) dt$ $= \frac{1}{a} \int_{-\infty}^{\infty} e^{i\left(\frac{s}{a}\right)x} f(t) dt$ $=\frac{1}{a}\int_{-\infty}^{\infty}e^{i\left(\frac{s}{a}\right)x}$ f(x) dx (by property $= \frac{1}{a} f(\frac{s}{a})$ of def. integral) $\{f(ax)\} = \frac{1}{a} \frac{s}{fs(a)}$ fs(s) then Fs ax)} = $\frac{1}{a} \operatorname{fc}(\frac{s}{a})$ then Fc{f(2) If $Fc{f(x)} = fc(s)$ Proof: (I) The definition of Fourier Sine Transform is Fs{f(x)} $\int_{0}^{\infty} f(x) \sin \frac{1}{3} dx = fs(s) ----(1)$ $\{f(ax)\} = \int_0^\infty f(ax) \sin \theta$ = $= \int_0^\infty f(t) \frac{t}{\sin a} \cdot \frac{1}{a}$ Fssx dx By definition let ax =t 1 s(dt dx = dt а

)t. dt
$$= \frac{1}{a} \int_0^\infty f(t) \sin\left(\frac{s}{a}\right) x. dx =$$
$$= \frac{1}{a} \int_0^\infty f(x) \sin\left(\frac{s}{a}\right) \frac{1}{a} \operatorname{fs}(\frac{s}{a}) by(1)$$

Shifting Property:-

If F{f(x)} = f(s) then F{f(x-a)} =
$$e^{isa} f(s)$$

Proof: F{f(x)} $\int_{-\infty}^{\infty} e^{isx} f(x) dx = f(s) - --(1)$
= $\int_{-\infty}^{\infty} e^{isx} f(x)$
By definition $= \int_{-\infty}^{\infty} e^{is(t+a)}$ F{f(x-a)} = -a) dx let
x-a=t f(t) dt $= \int_{-\infty}^{\infty} e^{ist} e^{isa}$ x=t+a
 $= e^{isa} \int_{-\infty}^{\infty} e^{isx}$ f(t) dt dx= dt

f(x) dx

$$= e^{isa} f(s) by (1)$$

Modulation Theorem :-

If $F{f(x)} = f(s)$ then $F{f(x)}^{\cos ax} = \frac{1}{2} {f(s_{-a}) + f(s+a)}$

$$= \frac{1}{2} \left[\int_{-\infty}^{\infty} e^{i(s+a)x} \int_{-\infty}^{\infty} e^{i(s-a)x} \right]$$

Proof: The defination of Fourier
Transform is
$$\cos ax = \int_{-\infty}^{\infty} e^{isx} f(x) \cos ax dx$$
 $F\{f(x)\} = \int_{-\infty}^{\infty} e^{isx} f(x) dx$
 $=f(s)---(1)$ By $= \int_{-\infty}^{\infty} e^{isx} \frac{e^{iax}+e^{-iax}}{2}$ definition $F\{f(x)$
 $f(x) dx$
 $f(x) dx + f(x) dx$
 $= \frac{1}{2} \{f(s_{-a}) + f(s+a)\}$
Note: If Fs(s) & Fc(s) are Fourier Sine & Cosine Transform of f(x) respectively
Then (i) Fs{f(x) cos $ax\} = \frac{1}{2} \{Fs(s+a) + Fs(s_{-a})\}$
(ii) Fs{f(x) sin $ax\}$ $\frac{1}{2} \{Fs(s+a) - Fs(s_{-a})\}$
(iii) Fs{f(x) sin $ax\}$ $\frac{1}{2} \{Fc(s+a) - Fc(s_{-a})\}$
(iii) Fs{f(x) sin $ax\}$ $\frac{1}{2} \{Fc(s+a) - Fc(s_{-a})\}$
Proof: The definition of Fourier Sine Transform of f(x) is
Fs{f(x)} = $\int_{0}^{\infty} f(x) \sin xx dx = fs(s) ----(1)$
By definition Fs{f(x) cos $ax\} = \int_{0}^{\infty} f(x) \cos ax \sin x dx$
 $xx. Cos ax) dx$

$$= \int_{0}^{\infty} f(x) \cdot \frac{1}{2} \cdot (2 \cdot \sin \qquad \sin (s - a)x \, dx]$$

$$= \frac{1}{2} f(x) \int_{0}^{\infty} [\sin(sx + ax) + \sin(sx - ax)] dx$$

$$= \frac{1}{2} [\int_{0}^{\infty} f(x) \sin (s + a)_{x \, dx} + \int_{0}^{\infty} f(x)$$

$$= \frac{1}{2} [Fs(s + a) + Fs(s - a)]$$
Similarly we get (ii) & (iii) Problems:
1) Find Fourier Transform of $f(x) = e^{ikx}$, $a < x < b$
0, $x < a$, $x > b$
Solution : By definition, $F\{f(x)\} = \int_{-\infty}^{\infty} e^{isx} f(x) \, dx$ $-\infty \quad \infty$

$$= \int_{a}^{b} e^{i(s + k)x} dx$$

$$= \int_{a}^{b} e^{i(s + k)x} dx$$

$$= [\frac{e^{i(s + k)x}}{i(s + k)} dx$$
] (apply limits a to $= \frac{e^{i(s + k)b} - e^{i(s + k)a}}{i(s + k)}$

2) Find , $F{f(x)}$ if f(x) = x, |x| < a

 $0, |x| > a \qquad |x| < a \text{ means } -a < x < a$ Solution : By definition , $F{f(x)} = \int_{-\infty}^{\infty} e^{isx} f(x) dx$ $=\int_{-a}^{a}e^{isx} \mathrm{x}\,\mathrm{dx}$ use $= \int_{-a}^{a} x \cdot e^{isx} dx , \qquad \text{integration } b$ $dx ? udv = = \left(\frac{xe^{isx}}{is}\right) - \frac{1}{is} \int_{-a}^{a} e^{isx} uv - ? vdu$ integration by parts, use (apply –a to a) $dv = e^{isx} dx$ u=x, $=\frac{1}{is}(a. e^{ias} + a. e^{-ias}) - \frac{1}{is}(\frac{e^{isx}}{is})$ $=\frac{e^{isx}}{is}$ $=\frac{2a\cos as}{is}+\frac{1}{s^2}(e^{ias}-e^{-ias})$ $= \frac{-2ia\cos as}{s} + \frac{2i\sin as}{s^2}$) (apply -a to a) $du=dx, v= ?. e^{isx} dx$ 3) If f(x) = 1, |x| < a0 , |x| > a, Find Fourier Transform of f(x) Deduce that $\int_{-\infty}^{\infty} \frac{\sin as \cos sx}{s} ds$ (ii) $\int_{-\infty}^{\infty} \frac{\sin s}{s} ds$ $\int_{-\infty}^{\infty} e^{isx} f(x) \, dx$ (i) |x| < a means -a < x < a**Solution** : $F{f(X)} =$ = $\mathbb{P}_{-a} e_{isx} \cdot 1. dx$

 $=\frac{e^{isx}}{is}$ (-a to a)

$$= \frac{1}{is} (e^{ias} - e^{-ias})$$
$$= \frac{1}{is}$$
$$2 \sin as (2i \sin as)$$
$$f(s) = F{f(x)} = f(s)$$

Deduction :

Inverse Fourier Transform is defined by

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} (\cos sx - i \sin sx) \frac{2 \sin as}{s} ds = \int_{-\infty}^{\infty} ds = \int_{-\infty}^{\infty} e^{-isx} f(s) ds$$

$$= \frac{2}{2\pi} [\int_{-\infty}^{\infty} (\cos sx) \frac{\sin as}{s} ds - i \int_{-\infty}^{\infty} (\sin sx) \frac{\sin as}{s} ds]$$

$$= \int_{-\infty}^{\infty} (\cos sx) \frac{\sin as}{s} ds - i \int_{-\infty}^{\infty} (\sin sx) \frac{\sin as}{s} ds]$$

$$= \int_{-\infty}^{\infty} (\cos sx) \frac{\sin as}{s} ds - 0]$$

$$\Rightarrow f(x) = \frac{1}{\pi} [2 \int_{-\infty}^{\infty} (\cos sx) \frac{\sin as}{s} ds - 0]$$

$$(i) = \int_{-\infty}^{\infty} \frac{\sin as \cos sx}{s} ds = \frac{\pi}{2} \cdot f(x)$$

$$= \cdot \frac{\pi}{2} \int_{-\infty}^{\pi} |x| < a$$

$$0, |x| > a$$

(ii) Put a = 1, x = 0 in (i) we get

$$\begin{split} \mathbb{E}_{0}^{\infty} \frac{\sin s}{s} ds &= \frac{\pi}{2} \cdot 1 \\ \Rightarrow \mathbb{E}_{0}^{\infty} \frac{\sin s}{s} ds &= \frac{\pi}{2} \\ \textbf{4) Find Fourier Transform of } f(x) &= 1 - x^{2} , |x| \leq 1 \\ \int_{0}^{\infty} \left(\frac{x \cos x - \sin x}{x^{3}}\right) \cos \frac{x}{2} dx \\ & 0, |x| > 1 \\ \int_{0}^{\infty} \left(\frac{x \cos x - \sin x}{x^{3}}\right) \cos \frac{x}{2} dx \\ & Evaluate \\ \text{Solution:- } F\{f(x)\} &= \int_{-\infty}^{-\infty} e^{isx} f(x) dx \\ &= \int_{-1}^{1} e^{isx} (1 - x^{2}) dx \\ &= \int_{-1}^{1} e^{isx} (1 - x^{2}) dx \\ &= \int_{-1}^{1} (1 - x^{2}) e^{isx} dx \\ &= \left[\{(1 - x^{2}) \cdot \frac{e^{isx}}{is}\} - \int_{-1}^{1} \frac{e^{isx}}{is} (-2x) dx\right] \\ & (\text{limits -1 to 1)} \\ & u = (1 - x^{2}) dv = e^{isx} dx \\ & 0 + \frac{2}{is} \int_{-1}^{1} \frac{x}{is} e^{isx} \\ &= \left[0 - dx \quad du = -2x \\ dx, v = \mathbb{E} e^{isx} dx \\ &= \frac{e^{isx}}{is} \\ &= \frac{2}{is} \left[\left(\frac{xe^{isx}}{is}\right) (-1 \quad \text{to 1}) - \right] \end{split}$$

$$= is2 [1.(e_{is}+ise_{-is}) - is\underline{1} e_{isisx}] (-1 \text{ to } 1) \quad is - 2i \sin s)$$

$$= \frac{4}{s^3} [\sin s - s = is\overline{2} [2\cos is\underline{s} - is\underline{1} (e_{is}-ise_{-is})] \quad \cos s] = f(s)$$

Deduction: = $is2 \cdot is1$ (2 cos s 1 Inverse Fourier = $-s2^2 \cdot 2[\cos s - \frac{\sin s}{\sin s}]^{2\pi} \int_{-\infty}^{\infty} e^{-isx}$

Transform is defined by
$$f(x) = f(s) ds$$

$$\frac{4}{s^3} [\sin s - s \cos s] ds$$

$$= \frac{1}{2\pi} \cdot 4 \int_{-\infty}^{\infty} (\cos sx - i \sin sx) \frac{(\sin s - s \cos s)}{s^3} ds = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-isx} ds = \frac{2}{\pi} [\int_{-\infty}^{\infty} \cos sx \frac{(\sin s - s \cos s)}{s^3} ds - i \int_{-\infty}^{\infty} \sin sx \frac{(\sin s - s \cos s)}{s^3} ds]$$
(even function) (odd function)

$$f(x) = \frac{2}{\pi} [\int_{-\infty}^{\infty} \cos sx \frac{(\sin s - s \cos s)}{s^3} ds - 0$$

$$\Rightarrow \int_{-\infty}^{\infty} \cos sx \frac{(\sin s - s \cos s)}{s^3} ds - 0$$

$$\begin{aligned} & = \frac{\pi}{2} (1_{-x^{2}}), |x| \leq 1 \\ & = \frac{\pi}{2} (1_{-x^{2}}), |x| \leq 1 \\ & = 1 \end{aligned}$$
At $x = \frac{1}{2}$, $\Rightarrow \int_{-\infty}^{\infty} \cos \frac{s}{2} \frac{(\sin s - s \cos s)}{s^{3}} ds = \frac{\pi}{2} (1 - \frac{1}{4}) \text{put}$
 $s = x$

$$\Rightarrow \int_{-\infty}^{\infty} \cos \frac{x}{2} \frac{(\sin x - x \cos x)}{x^{3}} dx = \frac{\pi}{2} (1 - \frac{1}{4}) = \frac{3\pi}{8}$$

$$\Rightarrow 2 \int_{0}^{\infty} \cos \frac{x}{2} \frac{(\sin x - x \cos x)}{x^{3}} dx = \frac{3\pi}{8}$$

$$\int_{0}^{\infty} \cos \frac{x}{2} [\frac{(x \cos x - \sin x)}{x^{3}}]_{dx = -\frac{3\pi}{16}}$$
5) Find Fourier Transform of $f(x) = \frac{1}{2a} \text{ if } |x| \leq a$

Solution : By definition,

$$F{f(x)} = f(s) = \int_{-\infty}^{\infty} e^{isx} f(x) dx$$

= $\int_{-\infty}^{-a} e^{isx} f(x) dx + \int_{-a}^{a} e^{isx} f(x) dx + \int_{a}^{\infty} e^{isx} f(x) dx$
= $\int_{-a}^{a} \frac{1}{2a} e^{isx} dx = \frac{1}{2a} \frac{e^{isx}}{is} (apply limits) = \frac{1}{2a} \frac{(e^{isa} - e^{-isa})}{is}$
= $\frac{\sin as}{ias}$

6) Find Fourier Transform of $f(x) = \sin x$, if $0 < x < \pi$

0 , otherwise

Solution : By definition,

$$F{f(x)} = f(s) = \int_{-\infty}^{\infty} e^{isx} f(x) dx$$

= $\int_{-\infty}^{0} e^{isx} f(x) dx + \int_{0}^{\pi} e^{isx} f(x) dx + \int_{\pi}^{\infty} e^{isx} f(x) dx$
= $\int_{0}^{\pi} e^{isx} \sin x dx$
= $\frac{e^{isx}}{(is)^{2} + 1^{2}}$ [is sinx -
1.cosx] apply 0 to π
= $\frac{1}{1 - s^{2}} [e^{is\pi} (0 - \cos \pi) - e^{0} (0 - 1)]$
= $\frac{1}{1 - s^{2}} [e^{is\pi} (1) - 1(0 - 1)]$
= $\frac{e^{is\pi} + 1}{1 - s^{2}}$

7) Find Fourier Transform of $f(x) = xe^{-x}$, $0 < x < \infty$ Solution : By definition,

F{f(x)} =
$$\int_{-\infty}^{\infty} e^{isx} f(x) dx \qquad f(s) =$$
$$= \int_{0}^{\infty} e^{isx} xe^{-x} dx$$
$$= \int_{0}^{\infty} x e^{(is-1)x} dx$$
$$= \left[\frac{x e^{(is-1)x}}{is-1} - 1, \frac{e^{(is-1)x}}{(is-1)^2}\right] (0 \text{ to } \infty)$$
$$= \left[\frac{x \{e^{isx} - e^{-x}\}}{is-1}\right] (0 \text{ to } \infty) - \frac{1}{(is-1)^2} (e^{isx} - e^{-x})$$
$$= \left[(0 - 0) - \frac{1}{(is-1)^2} (0 - 1)\right]$$
$$= \frac{1}{(is-1)^2}$$
$$= \frac{1}{(is-1)^2} \cdot \frac{(is+1)^2}{(is+1)^2}$$
$$= \frac{(1 + is)^2}{(1 + s)^2}$$

 $-x^2$ $-x^2$

8) Find Fourier Transform of e_2 . Show that e_2 is reciprocal Solution : By definition,

$$F{f(x)} = f(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{isx} f(x) dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{isx} e^{\frac{-x^{2}}{2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{-1}{2}(x^{2} - 2isx)} dx \quad (x - is)^{2} / 2 = y^{2}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{-1}{2}[(x - is)^{2} + s^{2}} dx \quad x - is = 2y$$

$$= \sqrt{\frac{1}{2\pi}} e^{\frac{-s^{2}}{2}} \int_{-\infty}^{\infty} e^{-y^{2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} e^{\frac{-s^{2}}{2}} \int_{-\infty}^{\infty} e^{-y^{2}} dy$$

$$= \frac{1}{\sqrt{\pi}} e^{\frac{-s^{2}}{2}} \int_{-\infty}^{\infty} e^{-y^{2}} dy$$

$$= \frac{1}{\sqrt{\pi}} e^{\frac{-s^{2}}{2}} 2\int_{0}^{\infty} e^{-y^{2}} dy$$

$$= e^{\frac{-s^{2}}{2}} \cdot \frac{2}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{2}$$

$$= e^{\frac{-s^{2}}{2}} = f(s) \quad dy \quad dy$$

Therefore Function is self reciprocal

9) Find the inverse Fourier Transform of f(x) of $f(s) = e^{-|s|y|}$

Solution : We have |s| = -s, if s < 0

From inverse Fourier Transform, we have

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-isx} f(s) ds$$

$$= \frac{1}{2\pi} [\int_{-\infty}^{0} e^{-isx} f(s) ds + \int_{0}^{\infty} e^{-isx} f(s) ds]$$

$$= \frac{1}{2\pi} [\int_{-\infty}^{0} e^{-isx} e^{sy} f(s) ds + \int_{0}^{\infty} e^{-isx} e^{-sy} ds]$$

$$= \frac{1}{2\pi} [\int_{-\infty}^{0} e^{(y-ix)s} ds + \frac{1}{2\pi} \int_{0}^{\infty} e^{-(y+ix)s} ds + \int_{0}^{\infty} e^{-isx} e^{-sy} ds]$$

$$= \frac{1}{2\pi} [\frac{e^{(y-ix)s}}{y-ix}] (-\infty to 0) + \frac{1}{2\pi} [\frac{e^{-(y-ix)s}}{-(y+ix)}]$$

$$= \frac{1}{2\pi} [\frac{1}{y-ix}] + \frac{1}{2\pi} [\frac{1}{y+ix}]$$

$$= \frac{1}{2\pi} [\frac{y+ix+y-ix}{(y-ix)(y+ix)}] = \frac{1}{2\pi} \frac{2y}{y^2-i^2x^2}$$

$$= \frac{1}{\pi} \frac{y}{y^2+x^2}.$$
(5)

Problems on sine and cosine Transform:-

1) Find Fourier cosine Transform of f(x) defined by $f(x) = \cos x$, 0 < x < a

= 0, x > aSolution: Fc{f(x)} = $\int_{0}^{\infty} f(x) \cos sx \, dx$ $= \int_{0}^{a} \cos x \cos sx \, dx = \frac{1}{2} \int_{0}^{a} 2 \cos x \cos sx \, dx$ $= \frac{1}{2} \int_{0}^{a} [\cos(x + sx))$ $= \frac{1}{2} [\int_{0}^{a} \cos(1 + s)x \, dx + \int_{0}^{a} \cos(1 - s)x$ $= \frac{1}{2} [\frac{\sin(1+s)x}{1+s} + \frac{\sin(1-s)x}{1-s}] \text{ (apply 0 to a)}$ $= \frac{1}{2} [\frac{\sin(1+s)a}{1+s} + \frac{\sin(1-s)a}{1-s}]$ $2\cosAcosB=cos(A+B)+cos(A-B)$

+

cos (x-sx)]	dx
-------------	----

A=x, B=sx

dx]

2) Find Fourier cosine Transform of f(x) defined by f(x) = x, 0 < x < 1

2-x , 1 < x < 2

0 , x > 2

Solution : Fc{f(x)} =
$$\int_{0}^{\infty} f(x) \cos sx \, dx$$

$$= \int_{0}^{1} x \cos_{sx} \, dx + \int_{1}^{2} f(x) \cos sx \, dx$$

$$= \left[x \frac{\sin sx}{s} - 1 \left(- \frac{\cos sx}{s^{2}} \right) \right] (apply 0 to 1) + \left[(2^{-x}) \frac{\sin sx}{s} - (-1) \left(- \frac{\cos sx}{s^{2}} \right) \right] = \left(\frac{\sin s}{s} + \frac{\cos s}{s^{2}} - 0 - \frac{1}{s^{2}} \right) + \left(0 - \frac{\cos 2s}{s^{2}} - \frac{\sin s}{s} + \frac{\cos s}{s^{2}} \right)$$

$$= \frac{2\cos s - \cos 2s - 1}{s^{2}}$$

$$= \frac{2\cos s - (2\cos^{2} s - 1) - 1}{s^{2}}$$

$$= \frac{1}{s^{2}} (2\cos s - 2\cos^{2} s)$$

$$= \frac{1}{s^{2}} \cos s(1 - \cos s)$$

$$= \int_{0}^{1} f(x) \cos_{sx} \, dx + \frac{3x \, dx}{sx \, dx} + \int_{2}^{\infty} f(x) \cos_{sx} \, dx$$

3)Find Fourier sine & cosine Transform of $2e^{-5x} + 5e^{-2x}$ Solution : Given f(x) = $2e^{-5x} + 5e^{-2x}$

$$Fs{f(x)} = \int_{0}^{\infty} f(x) \sin_{sx} dx$$

= $\int_{0}^{\infty} (2e^{-5x} + 5e^{-2x}) \sin$
= $[2 \int_{0}^{\infty} e^{-5x} \sin_{sx} dx + 5 \int_{0}^{\infty} e^{-2x} \sin_{sx} dx$
= $[2 \{\frac{e^{-5x}}{25+s^{2}} (-5 \sin sx - s \cos sx)\}$ (apply 0 to ∞)} sx
dx

 $+ 5 \left\{ \frac{e^{-2x}}{4+s^{2}} \left(- 2 \sin sx - s \cos sx \right) \right\} \text{ (apply 0 to } \infty \text{)} \right\}$ $= \left[2 \left\{ 0 - \frac{e^{0}}{25+s^{2}} \left(0 - s \cos \frac{e^{0}}{-4+s^{2}} \left(-s \right) \right\} \right]$ $= \left[\frac{2s}{25+s^{2}} + \frac{5s}{4+s^{2}} \right]$ Similarly $\frac{10}{s^{2}+25} + \frac{10}{s^{2}+4} \text{]} \text{ (ii) Fc}\{f(x)\} = \left[4 \right] \text{ Find Fourier cosine Transform of (i) } e^{-ax}$

 $\cos ax$, (ii) $e^{-ax} \sin ax$ Solution

: Given
$$f(x) = e^{-ax} \cos ax(i)$$

Fc{f(x)}

$$= \int_{0}^{\infty} f(x) \cos sx dx$$

$$= \int_{0}^{\infty} e^{-ax} \cos ax \cos sx dx$$

$$= \frac{1}{2} \int_{0}^{\infty} e^{-ax} 2 \cos ax \cos sx dx$$

$$= \frac{1}{2} \left[\int_{0}^{\infty} e^{-ax} \cos(a+s)_{x} dx + \int_{0}^{\infty} e^{-ax} \cos(a-s) + \frac{1}{2} \frac{e^{-ax}}{a^{2}+(a+s)^{2}} \left\{ -a\cos(a+s)x + (a+s)\sin(a+s) + \frac{e^{-ax}}{a^{2}+(a-s)^{2}} \right\} \left\{ -a\cos(a) + \frac{1}{2} \left[\frac{e^{-ax}}{a^{2}+(a-s)^{2}} \left\{ -a\cos(a) + \frac{1}{2} \left[\frac{1}{a^{2}+(a+s)^{2}} + \frac{1}{a^{2}+(a-s)^{2}} \right]_{0} \right] + \left\{ 0 - \frac{e^{0}}{a^{2}+(a-s)^{2}} \left(-a\cos(a) + \frac{1}{2} \left[\frac{1}{a^{2}+(a+s)^{2}} + \frac{1}{a^{2}+(a-s)^{2}} \right]_{0} \right\} + \left\{ 0 - \frac{1}{a^{2}+(a-s)^{2}} \right\} \left\{ -a\cos(a) + \frac{1}{2} \left[\frac{1}{a^{2}+(a-s)^{2}} + \frac{1}{a^{2}+(a-s)^{2}} \right]_{0} \right\}$$

(ii) Similarly Fs{f(x)} = Fs<sup>{(e^{-ax} sin ax) =
$$\frac{1}{2} \left[\frac{a}{a^2 + (s-a)^2} - \frac{a}{a^2 + (a+s)^2} \right]$$</sup>

5) Find Fourier cosine & sine Transform of e^{-ax} , a > 0 hence

deduce (i) $\int_0^\infty \frac{\cos sx}{a^2+s^2} ds$ (ii) $\int_0^\infty \frac{s\sin sx}{a^2+s^2} ds$ Solution : Let $f(x) = e^{-ax}$ $Fc{f(x)} = \int_0^\infty f(x) \cos x \, dx$ $=\int_0^\infty e^{-ax}\cos x\,dx$ + s sin sx = $\left[\frac{e^{-ax}}{a^2+s^2}\right]$ (-a cos sx + s sin sx = $\left[\frac{a^2 + s^2}{a^2 + s^2}$ (-a cos sx)] (apply 0 to ∞) (- a + 0)] = $\left[0 - \frac{e^0}{a^2 + s^2}\right] = \frac{a}{a^2 + s^2} = Fc(s)$ -----(1) $Fs{f(x)} \int_0^\infty f(x) \sin_{sx \, dx} =$ $=\int_0^\infty e^{-ax} \sin_{\mathrm{sx}\,\mathrm{dx}}$ -a sin sx - = $\left[\frac{e^{-ax}}{a^2 + s^2}\right]$ s cos sx)] (apply 0 to $\infty) \frac{s}{a^2+s^2}$ -----(2) $Fs{f(x)} =$ By Inverse cosine Transform $f(x) = \frac{2}{\pi} \int_0^\infty fc(s) \cos sx \, ds$

 $= \frac{2}{\pi} \int_0^\infty \frac{a}{a^2 + s^2} \cos_{\text{sx ds}}$

$$\Rightarrow \int_{0}^{\infty} \frac{1}{a^{2} + s^{2}} \cos sx \, ds = -ax$$

By inverse sine Transform,

$$f(x) = \frac{2}{\pi} \int_0^\infty fs(s) \sin_{sx} ds$$
$$= \frac{2}{\pi} \int_0^\infty \frac{s}{a^2 + s^2} \sin_{sx} ds$$
$$\Rightarrow \int_0^\infty \frac{s}{a^2 + s^2} \sin_{sx} ds = \frac{\pi}{2} \cdot e^{-ax}$$

6) Find Fourier sine Transform of f(x) =

$$\int_{0}^{\infty} f(x) \sin_{sx} dx$$
$$= \int_{0}^{\infty} \frac{\sin sx}{x} dx ----(1)$$
Solution : Fs{f(x)} = $=\frac{\pi}{2}$

e-ax

7) Find Fourier sine Transform of , hence deduce that

x

Solution : Fs{f(x)} =
$$\int_0^\infty f(x) \sin_{sx} dx$$

$$= \int_0^\infty \frac{e^{-ax}}{x} \sin_{sx} dx = 1 - - (1)$$

$$\frac{dt}{ds} = \int_0^\infty \frac{e^{-ax}}{x} \cdot x \cdot \cos_{sx} dx$$

$$= \int_0^\infty e^{-ax} \cos_{sx} dx$$

$$= \left[\frac{e^{-ax}}{a^2 + s^2} (-a \cos sx) + \frac{e^{-ax}}{a^2 + s^2} (-a \cos sx) +$$

Integrate on both sides w.r.t. s we get

$$|= a \int \frac{1}{a^2 + s^2} ds = a \cdot \frac{1}{a} \cdot Tan^{-1} \frac{s}{a+c}$$
$$= Tan^{-1} (\frac{s}{a}) + c - (2)$$

put s = 0 on both sides we get {in (1) & (2)} 0 = $Tan^{-1}(0) + c \Rightarrow 0 = 0 + c \Rightarrow c=0$ $I = Tan^{-1}\left(\frac{s}{a}\right) = Fs\{f(x)\}$ 8)Find Fourier cosine Transform of $\frac{1}{1^2 + x^2}$, and
(ii) Fourier sine Transform of $\frac{x}{1^2 + x^2}$ Solution : Let $f(x) = \frac{1}{1^2 + x^2}$, We will find $Fc\{f(x)\} = Fc\{$ $= \int_0^{\infty} f(x) \cos_{sx} dx$ $= \int_0^{\infty} \frac{1}{1^2 + x^2} \cos_{sx} dx = 1$ Solution: Let $f(x) = \frac{1}{1^2 + x^2} + \frac{1}{1^2 + x^2}$

Differentiate on both sides w.r.t s

$$\frac{dI}{ds} = \int_0^\infty -\frac{x \sin sx}{1+x^2} \, dx - --(2)$$

= $-\int_0^\infty \frac{x^2 \sin sx}{x(1+x^2)} \, dx$
= $-\int_0^\infty \frac{(1+x^2-1) \sin sx}{x(1+x^2)} \, dx$
= $-[\int_0^\infty \frac{\sin sx}{s} \, dx - \int_0^\infty \frac{\sin sx}{x(1+x^2)}$
 $\frac{dI}{ds} = -\frac{\pi}{2} + \int_0^\infty \frac{\sin sx}{x(1+x^2)} \, dx - --(3) \, dx \text{ Diff}$

on both sides w.r.t 's'

We get
$$\frac{d^2 I}{ds^2} = \int_0^\infty \frac{x \cos sx}{x(1+x^2)} dx$$

$$\Rightarrow \frac{d^2 I}{ds^2 = 1} \text{ by } (1) \Rightarrow \frac{d^2 I}{ds^2} = 0$$

$$\Rightarrow (D^2 - 1)I = 0 \text{ This is D.E}$$

A.E. is m²-1 = 0
m = ±1
solution is I = c_1 e^s + c_2 e^{-s} ----- (4)

$$\frac{dI}{ds} = c_1 e^s - c_2 e^{-s} ----- (5)$$

From (1) & (4), $c_1 e^s + c_2 e^{-s} = \int_0^\infty \frac{1}{1 + x^2} \cdot \cos sx \, dx$

Put s = 0 on both sides

$$\Rightarrow c_{1} + c_{2} = \int_{0}^{\infty} \frac{1}{1+x^{2}} dx$$

= $(tan^{-1})(0 to \infty) = tan^{-1} \infty - tan^{-1} 0$
= $\frac{\pi}{2} - 0$
there fore, $c_{1} + c_{2} = \frac{\pi}{2} - ----(6)$
From (3) & (5), $c_{1}e^{s} - c_{2}e^{-s} = -\frac{\pi}{2} + \int_{0}^{\infty} \frac{\sin sx}{x(1+x^{2})} dx$
 $\Rightarrow c_{1} - c_{2} = -\frac{\pi}{2} - ---(7)$
solve (6) & (7) we get $c_{1} = 0$, $c_{2} = \frac{\pi}{2}$ sub in (4)
(4) $\Rightarrow I = \frac{\pi}{2} \cdot e^{-s}$
i.e., Fc {f(x)} = Fc{ $\frac{1}{1+x^{2}}$ } = $\frac{\pi}{2} \cdot e^{-s}$
Now $I = \frac{\pi}{2} \cdot e^{-s}$
 $\frac{dI}{ds} = -\frac{\pi}{2} \cdot e^{-s} - ----(8)$
From (2) & (8), we have
 $\int_{0}^{\infty} \frac{x \sin sx}{1+x^{2}} dx = -\frac{\pi}{2} \cdot e^{-s}$

$$\Rightarrow \int_0^\infty \left(\frac{x}{1+x^2}\right) \sin sx \, dx = \frac{\pi}{2} \cdot e^{-s}$$

There fore $\operatorname{Fs}^{\left\{\frac{x}{1+x^2}\right\} = \frac{\pi}{2}} \cdot e^{-s}$

9) Find the Inverse Fourier Cosine Transform of f(x) of $fc(s) = \frac{1}{2a}(a - \frac{s}{2})$, s < 2a0, $s \ge 2a$

Solution : From the inverse Fourier Cosine Transform , we have $f(X) = \frac{2}{\pi} \int_0^\infty fc(x) \cos_{sx} ds$ $= \frac{2}{\pi} \left[\int_0^{2a} fc(x) \cos_{sx} ds + \int_{2a}^\infty fc(x) \cos_{sx} ds \right]$ $= \frac{2}{\pi} \frac{1}{2a} \int_0^{2a} (a - \frac{s}{2}) \cos_{sx} ds$ $= \frac{1}{\pi a} \left[\left\{ (a - \frac{s}{2}) \cdot \frac{\sin sx}{x} \right\} \right\} (0 \text{ to } 2a) \int_0^{2a} \frac{\sin sx}{x} (-\frac{1}{2}) ds \right]$ $= \frac{1}{\pi a} \left[(0 - 0) + \frac{1}{2} \cdot \frac{1}{x^2} (-\cos sx) \right]$ $= \frac{1}{2\pi a x^2} (-\cos_{2ax} + \cos 0)$ $= \frac{1 - \cos 2ax}{2\pi a x^2} = \frac{\sin^2 ax}{\pi a x^2} (0 \text{ to } 2a) \right]$

10) Find f(x) if its Fourier Sine Transform is e^{-as}

Solution : Given $f(s) = e^{-as}$

By definition of inverse sine transform

$$f(x) = \frac{2}{\pi} \int_0^\infty fs(x) \sin_{sx} ds$$

$$= \frac{2}{\pi} \int_0^\infty e^{-as} \sin_{sx} ds$$

$$= \frac{2}{\pi} \left[\frac{e^{-as}}{a^2 + x^2} (-a \sin sx - x \cos sx)(0 \text{ to } \infty) \right]$$

$$= \frac{2}{\pi} \left[0 - \frac{1}{a^2 + x^2} (-a \sin sx - x \cos sx)(0 \text{ to } \infty) - \frac{2}{\pi} \left[x - \frac{2x}{\pi(a^2 + x^2)} - x \right] \right]$$

11) Find the Inverse Fourier Sine Transform f(x) of Fs $(s) = \frac{s}{1+s^2}$

(or)

Find f(x) if its Fourier sine Transform is $\frac{s}{1+s^2}$

Solution : By Fourier Inverse sine Transform $f(x) = f(x) = \frac{2}{\pi} \int_0^\infty f s(x) \sin_{sx} ds = 1$

$$f(x) = \frac{2}{\pi} \int_{0}^{\infty} \frac{s}{1+s^{2}} \sin sx \, ds = 1 - \dots - (1)$$

$$= \frac{2}{\pi} \int_{0}^{\infty} (\frac{1}{s} - \frac{1}{s(s^{2}+1)}) \sin sx \, as$$

$$= \frac{2}{\pi} \left[\left[\frac{2}{0} \right]_{0}^{\infty} \frac{\sin sx}{s} \, ds - \left[\frac{2}{0} \right]_{0}^{\infty} \frac{\sin sx}{s(s^{2}+1)} \, ds \right]$$

$$= \frac{2}{\pi} \left[\frac{\pi}{2} - \left[\frac{2}{0} \right]_{0}^{\infty} \frac{\sin sx}{s(s^{2}+1)} \, ds \right]$$

$$f(x) = 1 - \frac{2}{\pi} \int_{0}^{\infty} \frac{\sin sx}{s(s^{2}+1)} \, ds = 1 - \dots - (2)$$

diff on both sides w.r.t. X
We get $\frac{dI}{dx} = -\frac{2}{\pi} \int_{0}^{\infty} \frac{s \cos sx}{s(s^{2}+1)} \, ds - \dots - (3)$
Diff w.r.t. x

$$\frac{d^{2}I}{dx^{2}} = -\frac{2}{\pi} \int_{0}^{\infty} -s \frac{\cos sx}{(s^{2}+1)} \, ds$$

$$= \frac{2}{\pi} \int_{0}^{\infty} s \frac{\cos sx}{(s^{2}+1)} \, ds$$

$$\frac{d^{2}I}{dx^{2}} = 1 \text{ from } (1) \Rightarrow (D^{2} - 1)I = 0 - \dots - (4) \text{ is D.E.}$$

Solution of (4) is $I = c_{1}e^{x} + c_{2}e^{-x} - \dots - (5)$

$$\frac{dI}{dx} = c_{1}e^{x} - c_{2}e^{-x} - \dots - (6)$$

From (2) & (5) If x = 0, I = 1, \Rightarrow c₁ + c₂ = 1 (5) From Substitute in (5) (3) & (6) $(5) \Rightarrow f(x) =$ I = 0 + $\Rightarrow \frac{dI}{dx} = -\frac{2}{\pi} \int_0^\infty \frac{1}{1+s^2} ds$ $C_2 e^{-x}$ If x = 0, (3) \Rightarrow f(x) = e^{-x} if x = 0, (6) \Rightarrow c₁ - c₂ = - $\frac{2}{\pi}$ (tan⁻¹ s)(0 to ∞) $= -\frac{2\pi}{\pi^2} = -1$

Now solve $c_1 + c_2 = 1 \& c_1 - c_2 = -1$ we get $c_1 = 0 \& c_2 = 1$

<u>Convolution</u>: The convolution of two functions f(x) & g(x) over the interval

$$(-\infty,\infty)$$
 is defined as $f^*g = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) g(x-u) du$

<u>CONVOLUTION THEOREM</u>: If $F{f(x)}$ and $F{g(x)}$ are Fourier Transform of functions f(x) and g(x), then

$$F\{f(x) * g(x)\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{isx} \{f(x) * g(x)\} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{isx} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(u) g(x-u) du\right] dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(u) \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{isx} g(x-u) dx\right] du$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(u) \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{is(u+y)} g(y) dy\right] du$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{isu} f(u) du \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{isy} g(y) dy$$

$$= F\{f(x)\} * F\{g(x)\}$$
Relation between Fourier and Laplace Transform:

Statement: If $f(t) = e^{-xt} g(t)$, t > 0 then $F{f(t)} = L{g(t)}$ 0, t < 0Proof: $F{f(t)} = \int_{-\infty}^{\infty} e^{ist} f(t) dt$

$$= \int_{-\infty}^{0} e^{ist} f(t) dt + \int_{0}^{\infty} e^{ist} f(t) dt$$
$$= 0 + \int_{0}^{\infty} e^{ist} e^{-xt} g(t) dt$$
$$= \int_{0}^{\infty} e^{-(x-is)t} g(t) dt$$
$$= \int_{0}^{\infty} e^{\rho t} g(t) dt$$
$$= L\{g(t)\}$$

Fourier Transform of derivatives of a function:

Statement: If $F\{(f(x)\} = f(s) \text{ then } F\{f^n(x)\} = (-is)^n f(s), if \text{ the } 1^{st} (n-1) \text{ derivatives of } f(x) \text{ vanish identically as } x \to \pm \infty$ Proof: By definition $F\{f(x)\} = \int_{-\infty}^{\infty} e^{isx} f(x) \, dx \dots (1)$

$$F{f'(x)} = F{\frac{a}{dx} f(x)}$$

= $\int_{-\infty}^{\infty} e^{isx} f'(x) dx$
= $[e^{isx} f(x)](-\infty to \infty) - \int_{-\infty}^{\infty} f(x) dx$
= $0 - is \int_{-\infty}^{\infty} e^{isx} f(x) dx$

There fore
$$F{f'(x)} = -is F{f(x)}$$

 $F{f'(x)} = -is f(x) -----(2)$
Now $F{f''(x)} = \int_{-\infty}^{\infty} e^{isx} f''(x) dx$
 $= [e^{isx} f'(x)](-\infty to \infty) - \int_{-\infty}^{\infty} f'(x) . is. e^{isx} dx$
 $= 0 - is \int_{-\infty}^{\infty} e^{isx} f'(x) dx$
 $= -is . F{f'(x)}$
 $= -is (-is) f(s) ext{ by (2)}$
There fore $F{f''(x)} = (-is)^2 f(s)$
Similarly we can show that $F{f^n(x)} = (-is)^n f(s)$

Finite Fourier Transforms :-

Definition: The Finite Fourier sine Transform of f(x), 0 < x < l is defined by Fs{f(x)} = $\binom{s}{0} = \int_0^l f(x) \sin \frac{s\pi x}{l} dx$ fs If $0 < x < \pi$, $\binom{s}{0} = \int_0^{\pi} f(x) \sin \frac{s\pi x}{l} Fs{f(x)} = fs$ sx dx

The function f(x) is called the inverse finite Fourier sine transform of fs(s) and is

given by f(x) = ds

If $0 < x < \pi$, $f(x) = \frac{2}{l} \sum_{s=1}^{\infty} f(s) \sin \frac{s\pi x}{l} = sx$ **Definition**: $x < | is = \frac{2}{\pi} \sum_{s=1}^{\infty} f(s) \sin \frac{s\pi x}{l}$ The finite Fourier sine Transform of f(x), 0 < defined by $Fc{f(x)} = fc(s) = \int_0^l f(x) \cos \frac{s\pi x}{l} dx$ If $0 < x < \pi$, $Fc{f(x)} = \int_0^{\pi} f(x) \cos x dx$ The function f(x) is called inverse finite Fourier cosine transform of f(x) and is given

by
$$f(x) = Fc^{-1}{fc(s)} = \frac{1}{l}fc(0) + \frac{2}{l}\sum_{s=1}^{\infty} fc(s)\cos\frac{s\pi x}{l}ds f(x)$$

= $Fc^{-1}{fc(s)} = 1fc(0) + \pi^{\sigma} \sigma_{s=1}^{\infty} fc(s)\cos sx, (0, \pi)$

π

Problem :

1) Find the Fourier Finite cosine transform of f(x) = x, $0 < x < \pi$ **Solution** : Fc{f(x)}

$$= fc(s) = \int_0^{\pi} f(x) \cos_{sx} dx$$

= $\int_0^{\pi} x \cos_{sx} dx = (\frac{x \sin sx}{s}) (0 \text{ to } \pi) - \frac{1}{s} \int_0^{\pi} \sin sx dx$
= $(0-0)^{-\frac{1}{s}} (\frac{-\cos sx}{s}) (0 \text{ to } \pi)$

3) Find the Fourier Finite sine transform of $f(x) = x^3$ in (0, π) Solution : By definition the finite Fourier sine Transform is

 $Fs{f(x)} = \int_0^{\pi} f(x) \sin_{SX} dx$ $= \int_0^{\pi} x^3 \sin_{SX} dx$

$$\begin{aligned} u &= x^3 \, 3x^2 \, 6x \, 60 \, dv = \sin nx \, dx \, \frac{-\cos nx - \sin nx \cos nx}{n - n^2 - n^3} & \frac{\sin nx}{n^4} \\ &= \left[-x^3 \frac{\cos nx}{n} - 3x^2 \left(\frac{-\sin nx}{n^2} \right) + 6x \left(\frac{\cos nx}{n^3} \right) - 6 \left(\frac{\sin nx}{n^4} \right) \right] \left(0 \ to \ \pi \right) \\ &= \left[-\pi^3 \frac{\cos n\pi}{n} - 0 + 6\pi \frac{\cos n\pi}{n^3} - 0 \right] - 0 \\ &= \frac{-\pi^3}{n} \left(-1 \right)^n + \frac{6\pi}{n^3} \left(-1 \right)^n \\ &= \left(-1 \right)^n \frac{\pi}{n} \left[\frac{6}{n^2} - \pi_2 \right], \ n = 1, 2, 3..... \end{aligned}$$

4) Find Finite sine Transform of f(x) = x in 0 < x < 4

Solution : Let f(x) is Fs{f(x)} = $\int_0^4 f(x) \sin \frac{n\pi x}{4} dx$

$$-\cos \frac{n\pi x}{-} - \frac{n\pi x}{-} \sin \frac{\pi \pi x}{-} = \left[x \left(\frac{-\frac{4}{n\pi}}{-\frac{\pi}{4}} \right) (0 \text{ to } (-\frac{n^2 \pi^2}{4}) (0 \text{ to } 4) \right] \\ = -\frac{4}{n\pi} 4 \cdot \cos n \pi - 0 + \frac{16}{n^2 \pi^2} (0 - 0) \\ = -\frac{16}{n\pi} \cos n \pi = -\frac{16}{n\pi} (-1)^n$$

Similarly Fc{f(x)} = $\frac{16}{n^2 \pi^2} [(-1)^n - 1] = fc(n)$

if n = 0, fc(0) =
$$\int_0^4 x \, dx = \left(\frac{x^2}{2}\right) (0 \text{ to } 4) = 8$$

Parseval's Identity for Fourier Transforms :-

Statement : If f(s) & g(s) are Fourier Transform of f(x) & g(x) respectively then (i) $\frac{1}{2\pi} = \int_{-\infty}^{\infty} f(x) g(x) dx$ (ii) $\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(s)|_{2} ds = \int_{-\infty}^{\infty} |f(x)|_{2} dx$ Now (iii) $\frac{2}{\pi} \int_{-\infty}^{\infty} fc(s) gc(s) ds = \int_{0}^{\infty} f(x) g(x) dx$ **Proof** : By the inverse Fourier Transform we have $g(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(s) e^{-isx} ds$ -----(1) Taking cojugate Complex on both sides in (1) (1) \Rightarrow g(x) = $\frac{1}{2\pi} \int_{-\infty}^{\infty} g(s) e^{isx} ds$ $\int_{-\infty}^{\infty} f(x)_{g(x) dx} = \int_{-\infty}^{\infty} f(x) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} g(s) e^{isx}\right]$ ds $=\frac{1}{2\pi}\int_{-\infty}^{\infty}g(s)\left[\int_{-\infty}^{\infty}f(x)\,e^{isx}\right]$ $=\frac{1}{2\pi}\int_{-\infty}^{\infty}g(s)$ f(s) ds

dx dx]

ds

(ii) Putting g(x) = f(x) in (2) we get $\frac{1}{2\pi} \int_{-\infty}^{\infty} f(s) f(s) ds = \int_{-\infty}^{\infty} f(x) f(x) dx$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(s)|_{2} ds = \int_{-\infty}^{\infty} |f(x)|^{2} dx - \text{Therefore} \quad (3)$ For Sine Transform: (2) $\Rightarrow \frac{2}{\pi} \int_{0}^{\infty} fs(s) \quad gs(s) ds = \int_{0}^{\infty} f(x) g(x) dx$ $\frac{2}{\pi} \int_{0}^{\infty} |fs(s)| \, {}^{2} ds = \int_{0}^{\infty} |f(x)|_{2} dx$ Similarly for Cosine Problem 1):) If f(x) = 1, |x| < a 0, |x| > a, Find Fourier Transform of f(x) $\int_{0}^{\infty} \frac{\sin ax}{x^{2}} dx = \frac{\pi a}{2}$

Deduce that

Solution : F{f(X)} = $\int_{-\infty}^{\infty} e^{isx} f(x) dx$ |x| < a means –a < x < a

= $\mathbb{P}_a e_{isx}$.1. dx

$$= \frac{e^{isx}}{is} (-a \text{ to } a)$$

$$= \frac{1}{is} (e^{ias} - e^{-ias}) = \frac{1}{is} (2i \sin as)$$

$$= \frac{2 \sin as}{s} = f(s)$$

$$F\{f(x)\} = f(s)$$

By parseval's identity for Fourier Transform

$$\int_{-\infty}^{\infty} |f(x)|_{2} dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |f(s)|_{2} ds$$

$$\Rightarrow \int_{-a}^{a} 1_{dx} = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\frac{2 \sin as}{s})_{2} ds$$

$$\Rightarrow x(-a \text{ to } a) = \frac{1}{2\pi} 2^{2} \int_{-\infty}^{\infty} \frac{\sin^{2} as}{s^{2}} ds$$

$$\Rightarrow 2a = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{\sin^{2} as}{s^{2}} ds = a\pi$$

$$\Rightarrow \int_{-\infty}^{\infty} (\frac{\sin as}{s})_{2} ds = a\pi$$

$$\Rightarrow 2 \cdot \int_{0}^{\infty} \frac{\sin^{2} as}{s^{2}} ds = a\pi$$

$$\int_{0}^{\infty} \frac{\sin as}{s^{2}} ds = a\pi$$

Therefore ds =

2)Find Fourier Transform of f(x) = 1 - x² , $|x| \leq 1$

$$0, |x| > 1 \quad \text{is} \quad \frac{4}{s^3} [\sin s - s \cos s]$$
Using Parseval's
$$\int_{-\infty}^{\infty} e^{isx} f(x) \, dx \qquad \qquad \int_{0}^{\infty} \left[\frac{(\sin x - x \cos x)}{x^3}\right]^2 \, dx = \frac{\pi}{15}$$
Solution ::-
$$= \int_{-1}^{1} e^{isx} (1_{-x^2}) \, dx \qquad \qquad F\{f(x)\} =$$

$$= \int_{-1}^{1} (1 - x^2) e^{isx} \, dx$$

$$\mathbb{D}udv = uv - \mathbb{P} = \left[\{(1 - x^2), \frac{e^{isx}}{is}\} - \int_{-1}^{1} \frac{e^{isx}}{is} (-2x) dx\right] v du$$

$$u=(1-x^2) dv=e^{isx}dx$$

du =-2x dx, $v = 2 e^{isx} dx$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\frac{4}{s^3} (\sin_{s-s\cos s})\right]^2 ds = 2 \cdot \int_0^1 (1-x^2)^2 dx = \frac{1}{2\pi} \Rightarrow \int_0^\infty \left[\frac{(\sin s - s\cos s)}{s^3}\right]^2 ds = \frac{1}{15}$$

$$\Rightarrow \frac{16}{\pi} \int_0^\infty \left[\frac{(\sin s - s\cos s)}{s^3}\right]^2 ds = 2 \cdot - \Rightarrow \int_0^\infty \left[\frac{(\sin x - x\cos x)}{x^3}\right]^2 ds = 2 \cdot - \frac{\pi}{15}$$

Shifting Properties:-

1.<u>Shifting f(n) to the right :</u> If Z[f(n)]=F(Z) then Z[f(n-k)]=Z^{-k}F(Z) Proof: we know that Z[f(n)]= 0 (k,n are different forms) $= \sum_{n=k}^{\infty} f(n-k)Z^{-n} (k,n \text{ are different forms})$ $= \sum_{n=k}^{\infty} f(n-k)Z^{-n} (since we are shifting f(n) to right)$ $= f(0)z^{-k} + f(1)z^{-(k+1)} + f(2)z^{-(k+2)} + \dots + f(2)z^{-(k+2)} + \dots$

 $Z[f(n-k)]=Z^{-k}F(Z)$

NOTE :- $Z[f(n-k)]=Z^{-k}F(Z)$ putting k=1 ,we have	
$Z[f(n-1)]=Z^{-1}F(Z)$ putting k=2 ,we have $Z[f(n-2)]=Z^{-2}F(Z)$	
putting k=3 ,we have	
$Z[f(n-3)]=Z^{-3}F(Z)$ <u>2.Shifting f(n) to left :-</u>	
If Z[f(n)]=F(Z) then Z[f(n+k)]= Z^{k} [F(Z)-f(0)-f(1) Z^{-1} – f $2^{(Z)_{2}}$ – – – – –	f(k-1) $Z^{-(k-1)}$]
Proof: we know that $Z[f(n)] = \sum_{n=0}^{\infty} f(n)Z^{-n}$ $)] = \sum_{n=0}^{\infty} f(n+k)Z^{-n}$ consider $Z[f(n+k) = Z^k \sum_{n=k}^{\infty} f(n+k)Z^{-(n+k)}$ $= Z^k \sum_{n=k}^{\infty} f(n)Z^{-n}$ (replace (n+k) by n)	$[Z^{-n} = Z^k. Z^{-(n+k)}]$
$= Z^{k} [\sigma_{n=0}^{\infty} f(n) Z^{-n} - \sigma_{n=0}^{(k-1)} f(n) Z^{-n}]$	
$=Z^{k}[Z[f(n)] - \sigma_{n=0}^{(k-1)}f(n)Z^{-n}]$	0 k k+1 k+2 k+3∞
$Z[f(n+k)] = Z^{k}[F(Z)-f(0)-f(1)Z^{-1} - (f_{2})Z^{-2} $	which is Recurrence formula \therefore

In particular

(a)If k=1 then Z[f(n+1)]=Z[F(Z)-f(0)]

(b) If k=2 then $Z[f(n+2)]=Z^2[F(Z)-f(0)-f(1)Z^{-1}]$

(c) If k=3 then $Z[f(n+3)]=Z^{3}[F(Z)-f(0)-f(1)Z^{-1}-f(2)Z^{2}]$ ----- and so on.

Problems:1.Prove Z(

 $\frac{1}{(n+1)}$ =Zlog($\frac{Z}{Z-1}$)

-

We know that
$$Z[f(n)] = \sum_{n=0}^{\infty} f(n)Z^{-n}$$

 $\frac{1}{n+1}] = \sum_{n=0}^{\infty} \frac{1}{n+1}Z^{-n}$
 $= \sum_{n=0}^{\infty} \frac{1}{n+1} \cdot \frac{1}{Z^{n}}$
 $= \frac{1}{1} \cdot \frac{1}{1} + \frac{1}{2} \cdot \frac{1}{Z} + \frac{1}{3} \cdot \frac{1}{Z^{2}} + \cdots$
expansion needs 'Z' in

]

denominator's, for this, multiply & divide with 'Z'

$$\begin{aligned} &= Z[\frac{1}{Z} + \frac{1}{2} \cdot \frac{1}{Z^2} + \frac{1}{3} \cdot \frac{1}{Z^3} + \frac{1}{4} \cdot \frac{1}{Z^4} + \cdots \\ &= valuate (a)Z(\\ &= Z[\frac{1}{Z} + \frac{1}{2})^{-2} + \frac{(\frac{1}{2})^2}{2} + \frac{(\frac{1}{2})^3}{3} + \cdots \\ &= Z[\log(1 - \frac{1}{Z})] \\ &= Z[\log(1 - \frac{1}{Z})^{-1}] \\ &= Z[\log(1 - \frac{1}{Z})^{-1}] \\ &= Z\log(\frac{Z}{-1})^{-1} \\ &= Z\log(\frac{Z}{-1}) \\ &\therefore \text{ hence proved} \end{aligned}$$
2.Find $Z[\frac{1}{n!}]$ and using shifting theorem $\frac{1}{(n+1)!}$ and $(b)Z(\frac{1}{(n+2)!}) \\ &= 1 + \frac{1}{1!} Z^{-1} + \frac{1}{2!} Z^{-2} + \frac{1}{3!} Z^{-3} + \cdots \\ &= 1 + \frac{1}{Z} + \frac{(\frac{1}{Z})^2}{2!} + (\frac{\frac{1}{Z})^3}{3!} + \cdots \\ &= e^{\frac{1}{Z}} \\ &\qquad (e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots] \end{aligned}$

=F(Z) (say) By shifting theorem $= \sum_{n=1}^{\infty} Z[f(n+1)] = Z[F(Z)-F(0)]$ $= \sum_{n=1}^{2} [(n+1)] = Z[e^{\frac{1}{Z}} - 1] \qquad [f(0) = \frac{1}{0!} = 1]$ $= Z^{2}[e^{\frac{1}{Z}} - 1 - \frac{1}{1!}Z^{-1}]$ $= Z^{2}[e^{\frac{1}{Z}} - 1 - Z^{-1}] \qquad f(n) = \sum_{n=1}^{1} Z[f(n+2)] = ZFZ - F0 - F1Z$ $= \sum_{n=1}^{1} f(n + \frac{1}{n+1}) = \frac{1}{(n+2)}$ $= \sum_{n=1}^{1} F(n + \frac{1}{n+1}) = \frac{1}{(n+2)}$

$$(\mathsf{n})]=-\mathsf{Z}\frac{d}{dZ}[F(Z)]$$

Proof:- we know that $Z[f(n)] = \sum_{n=0}^{\infty} f(n)Z^{-n}$ \therefore Z[nf(n)]=-Z Z[nf(n)] = $\sigma_{n=0}^{\infty} nf(n)Z^{-n}$ $\frac{d}{dZ}[F(Z)]$ $= Z \sigma_{n=0}^{\infty} f(n)(-n) Z^{-n-1}$ $= Z \sigma_{n=0}^{\infty} \frac{d}{dz} [f(n)Z^{-n}]$ $= -Z \frac{d}{dz} \left[\sigma_{n=0}^{\infty} f(n) Z^{-n} \right]$ pb)If F(Z)=_____ $(Z-1)_4$ then find the values of f(2) and f(3) $= -Z_{dz}^{\underline{d}}[Zf(n)]$ $= -Z \frac{d}{dz} = \frac{(Z-1)^4}{Z^2(5+3Z^{-1}+12Z^{-2})} \frac{Z^2(5+3Z^{-1}+12Z^{-2})}{Z^4(1-Z^{-1})^4}$ F(Z) $=\frac{1}{Z^2}\frac{(5+3Z^{-1}+12Z^{-2})}{(1-Z^{-1})^4}$ Solution: Given F(Z)= By Intial value theorem we have $[Z^{-n} = Z^1.Z^{-n-1}]$ <u>Multiplication by 'n':</u>If Z[f(n)]=F(Z) then

 $\left[\frac{d}{dz}(Z^{-n}) = (-n)Z^{-n-1}\right]$

Z[nf

$$5Z^{2}+3Z+12$$

$$f(0) = \lim_{Z \to \infty} F(Z) = 0 \quad (\frac{1}{\infty} = 0) \longrightarrow 1$$

$$f(1) = \lim_{Z \to \infty} Z[f(Z) - f(0)] = 0$$

$$f(2) = \lim_{Z \to \infty} Z^{2}[F(Z) - f(0) - f(1)Z^{-1}]$$

$$= 5 - 0 - 0$$

$$= 5$$

$$f(3) = \lim_{Z \to \infty} Z^{3}[F(Z) - f(0) - f(1)Z^{-1} - f(2)Z^{-2}]$$

$$= \lim_{Z \to \infty} Z^{3}[F(Z) - (0) - (0.Z^{-1}) - 5Z^{-2}]$$

$$= \lim_{Z \to \infty} Z^{3}[\frac{5Z^{2}+3Z+12}{(Z-1)^{4}} - \frac{5}{Z^{2}}]$$

$$= \lim_{Z \to \infty} Z^{3}[\frac{5Z^{2}+3Z+12}{(Z-1)^{4}} - \frac{5}{Z^{2}}]$$

 $= \lim Z^{3} 23 - 18Z^{3-} [^{1}1 + -20Z - Z^{1-2}4 - 5Z^{-3}] \qquad z \to \infty \ z$

= 23

$$\rightarrow (Z-1)^4 = (z-1)^2 \cdot (z-1)^2 = (Z^2+1-2Z)(Z^2+1-2Z) = Z^4+Z^2-2Z^3+Z^2+1-2Z-2Z^3-2Z+4Z^2=Z^4+ 6Z^2-4Z^3-4Z+1$$

INVERSE Z-TRANSFORM

$$[g(0) + g(1)Z^{-1} + g 2 Z^{-2} + g 3 Z^{-3} + \dots + g(n)Z^{-n} + \dots -]$$

= $\sum_{n=0}^{\infty} [f(0)g(n) + f(1)g(n-1) + f(2)g(n-2) + \dots + f(n)g(0)]Z^{-n}$
*We have Z[f(n)]=F(Z) which can be also written as f(n)= $Z^{-1}[F(Z)]$.

Then f(n) is called inverse Z-transform of F(Z)

*Thus finding the sequence {f(n)} from F(Z) is defined as Inverse Z-Transform.

*The symbol
$$Z^{-1}$$
 is the Inverse Z – Transform.

If $Z^{-1}[F(Z)] = f(n)$ and $Z^{-1}[G(Z)] = g(n)$ then $Z^{-1}[F(Z), G(Z)] = f(n) * g(n) = \sum_{m=0}^{n} f(m)g(n-m)$ **CONVOLUTION** Proof:- We have $F(Z) = \sum_{n=0}^{\infty} f(n) Z^{-n}$ and $G(Z) = \sum_{n=0}^{\infty} g(n) Z^{-n}$ then THEOREM(v.v.imp):-

[where * is convolution operator]

 $F(Z).G(Z) = [f(0) + f(1)Z^{-1} + f 2 Z^{-2} + f 3 Z^{-3} + \dots + f(n)Z^{-n} + \dots + f(n)Z^{-n$

 $=Z[f(0)g(n)+f(n)g(n-1)+----+f(n)g(0)]Z^{-1}[F(Z).G(Z)]$ =f(0)g(n)+f(n)g(n-1)+----+f(n)g(0)

$$= \sum_{m=0}^{n} f(m)g(n-m)$$

$$\therefore Z^{-1}[F(Z), G(Z)] = f(n) * g(n) = \sum_{m=0}^{n} f(m)g(n-m)$$

Problems:-

1.Evaluate (a)
$$Z^{-1}\begin{bmatrix} \left(\frac{Z}{Z-a}\right)^2 \end{bmatrix}$$
 ()
 $b Z^{-1}\begin{bmatrix} \frac{Z^2}{(Z-a)(Z-b)} \end{bmatrix}$

Solution:-

(a) $Z_{-1} \begin{bmatrix} \left(\frac{Z}{Z-a} \right)^2 \end{bmatrix}$ = $Z^{-1} \xrightarrow{Z} Z^{-1}$ [] $Z^{-a} Z^{-a}$ []

$$G(Z) = \underbrace{Z = Z = Z = Z_{-1}}_{Z = a_n} Z = a_n$$

by convolution theorem , Z $\begin{bmatrix} () & () \end{bmatrix}$ $Z \cdot G Z = Z - 1 Z \cdot Z$

$$g((n)) = \sum_{m=0}^{n} Z_{-1}F$$

Z-*a Z*-*a*

=*σnm***=**0 *am***.** *an-m*

 $= \sigma_{nm=0} am \cdot bn-m$

= $\sigma_{nm=0} bn. (ab)m$

 $= bn \sigma nm = 0 (ab)m$

this is in geometric progression,

$$\begin{aligned} f'(n) * g(n) &= \sum_{m=0}^{n} f(m) g(n-m) \\ &= \sum_{m=0}^{n} \frac{1}{m!} \cdot \frac{1}{(n-m)!} \\ &= 1 \cdot \frac{1}{n!} + \frac{1}{1!} \cdot \frac{1}{(n-1)!} + \frac{1}{2!} \cdot \frac{1}{(n-2)!} + \dots + \frac{1}{n!} \cdot \frac{1}{(0)} \\ &= \frac{1}{n!} + \frac{1}{(n-1)!} + \frac{1}{2!} \cdot \frac{1}{(n-2)!} + \dots + \frac{1}{n!} \\ &= \frac{1}{n!} + \frac{1}{n!} \frac{n}{n!} + \frac{1}{2!} \frac{n(n-1)}{n!} + \dots + \frac{1}{n!} \\ &= \frac{1}{n!} \left[1 + \frac{n}{1!} + \frac{n(n-1)}{2!} + \dots \right] \end{aligned}$$

3. Evaluate
$$Z^{-1}\begin{bmatrix} Z^2 \\ (Z-4)(Z-5) \end{bmatrix}$$

Solution- Given $Z^{-1}\begin{bmatrix} Z \\ Z-4 \\ Z-5 \end{bmatrix}$
 $F(Z)=--=>f(n) = Z^{-1}\begin{bmatrix} Z \\ Z-4 \end{bmatrix} = 4^n [G(Z)] = f(n) * g(n) = \sum_{m=0}^n f(m)g(n-m)$
 $[(G(Z)_{\overline{(-)}}] => g(n) = Z^{-1}\begin{bmatrix} Z \\ Z-5 \end{bmatrix} = 5^n Z^{-1}F$
by convolution theorem, $Z^{-1}[F(Z)]$. $=\sigma_{nm=0} 4m \cdot 5n-m$
 $Z \cdot G Z = Z^{-1}\begin{bmatrix} Z \\ Z-4 \\ Z-4 \end{bmatrix}$
 $=\sigma_{nm=0} 5n. (45)m$
 $= 5n \sigma_{nm=0} (45)m$

$$=5^{n} \begin{bmatrix} 1 + \frac{4}{7} + \frac{4}{7}^{2} + \frac{4}{3}^{3} + \dots - - - - - + \frac{4}{7}^{n} \end{bmatrix}_{5}$$

this is in geometric progression,

$$a^{1}+ar^{3}+\cdots+ar^{n-1}+\cdots-a(1-r^{n})$$
, r<1 a+ar
 $1-r$
 $a(r^{n}-1)$

$$\therefore Z5_{n+1} - 4_{n+1}$$

, r>1

=

1-r

Partial Fractions Method:-

Solution:- let F(Z) = Z-1 Z2+11ZZ+24 = (Z+3)Z(Z+8)

$$\frac{F(Z)}{Z} = \frac{1}{(Z+3)(Z+8)} = \frac{A}{(Z+3)} + \frac{B}{(Z+8)} \to 1$$

$$= \frac{1}{(Z+3)(Z+8)} = \frac{A(Z+8) + B(Z+3)}{(Z+3)(Z+8)}$$

$$= 1 = A(Z+8) + B(Z+3) \to 2$$
put Z=-8 \Rightarrow 1 = A(-8 + 8) + B(-8 + 3)
1 = B(-5)
B= 5
put Z=-3 \Rightarrow 1 = A(-3 + 8) + B(-3 + 3)
1 = A(5)
1A=
5

$$Z + 8 = 0 \Rightarrow Z = -8 \& Z + 3 = 0 \Rightarrow Z = -3$$

now substitute A and B values in equation -1 we get

fractions directly as follows

$$F(Z) = Z[
[(Z-1)(Z-2)] = Z \begin{bmatrix} 1 & 1 \\ - & - \end{bmatrix} \\
= Z \begin{bmatrix} Z & -2 & Z - 1 \\ Z - 2 & Z - 1 \end{bmatrix} \\
F(Z) = \frac{Z}{Z-2} - \frac{Z}{Z-1} \\
= \frac{Z}{Z-2} - \frac{Z}{Z-1} \\
= 2n - 1n \qquad Z-2Z-1$$

$$\begin{bmatrix} \frac{1}{(5Z-1)(5Z+2)} \\ \frac{Z(3Z+1)}{(5Z-1)(5Z+2)} \end{bmatrix}$$
 then

$$\frac{F(Z)}{Z} = \frac{3Z+1}{(5Z-1)(5Z+2)} = \frac{A}{5Z-1} + \frac{B}{5Z+2} \rightarrow 1 \text{ (by partial fractions)} \\ \frac{3Z+1}{(5Z-1)(5Z+2)} = \frac{A(5Z+2)+B(5Z-1)}{(5Z-1)(5Z-2)} \\ 3Z+1 = A(5Z+2)+B(5Z-1) \\ \text{put } Z = \frac{-1}{5} \Rightarrow A = \frac{-1}{152} \\ \text{put } Z = \frac{-1}{5} \Rightarrow B = \frac{-1}{15} \\ \text{substituting A and B values in} \\ \text{equation-1 we get} \\ \frac{F(Z)}{Z} = \frac{-8}{15} \frac{-1}{5Z-1} + \frac{-1}{15} \frac{-1}{5Z+2} \\ \frac{F(Z)}{Z} = \frac{-8}{15} \frac{-1}{15} + \frac{-1}{15} \frac{-1}{(Z+\frac{2}{5})} \\ 3.\text{Find } Z - 1 \qquad 3Z + Z \end{bmatrix}$$

hence F(Z) =
$$\frac{8}{75} \cdot \frac{Z}{(Z-\frac{1}{5})} + \frac{1}{75} \cdot \frac{Z}{(Z+\frac{2}{5})}$$

 $Z^{-1}[F(Z)] = Z^{-1} \left[\frac{8}{75} \left(\frac{Z}{Z-0.2} \right) + \frac{1}{75} \left(\frac{Z}{Z+0.4} \right) \right]$
 $\frac{8}{75} Z^{-1} \left(\frac{Z}{Z-0.2} \right) + \frac{1}{75} Z^{-1} \left(\frac{Z}{Z-(-0.4)} \right)$
 $\frac{8}{75} (0.2)^n + \frac{1}{75} (-0.4)^n$
 $\therefore Z^{-1} \left[\frac{3Z^2 + Z}{(5Z-1)(5Z+2)} \right] = \frac{8}{75} (0.2)^n + \frac{1}{75} (-0.4)^n$
=

<u>Geometric Progression</u>:a)

Finite –

$$a^{+}ar^{+}ar^{2} + ar^{3} + \dots + ar^{n-1} + ar^{n} = \frac{a(1-r^{n+1})}{1-r}$$

b)

$$\begin{array}{c} + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + ar^{n} + \dots = \frac{a}{a-r} \\ + r + r^{2} + r^{3} + \dots + r^{n} + \dots + r^{n} + \dots = \frac{1}{1-r} \end{array}$$
Infinite –

eg; 1

4.Find
$$Z^{-1} \left[\frac{Z}{(Z+3)^2(Z-2)} \right]$$
 (repeated Linear factor of form (ax + b)2 times)
Solution:-let $F(Z) = \frac{Z}{(Z+3)^2(Z-2)}$
 $\frac{F(Z)}{Z} = \frac{1}{(Z+3)^2(Z-2)} = \frac{A}{Z-2} + \frac{B}{Z+3} + \frac{c}{(Z+3)^2} \rightarrow 1$
 $\frac{1}{(Z+3)^2(Z-2)} = \frac{A(Z+3)^2 + B(Z-2)(Z+3) + c(Z-2)}{(Z-2)(Z+3)^2}$
1 =A(Z+3)^2 + B(Z-2)(Z+3) + CZ^2 - 2) {Z-2} = 0 \Rightarrow Z = 2 & Z+3 = 0 \Rightarrow Z=3 } put Z=2 => 1=A(2 + 3)^2
1 =A(Z=5)
A = 25
put Z=-3 =>1=c(-3-2)
1 = -5c c= $\frac{-1}{5}$

now comparing the co-efficients of Z^2 on both sides

0=A+B

$$B = \frac{-1}{25}$$
 substituting A,B and C

values in equation-1, we get

$$\frac{F(Z)}{Z} = \frac{1}{(Z+3)^2(Z-2)} = \frac{1}{25} \cdot \frac{1}{Z-2} - \frac{1}{25} \cdot \frac{1}{Z+3} - \frac{1}{5} \cdot \frac{1}{(Z+3)^2}$$

$$F(Z) = \frac{1}{25} \cdot \frac{Z}{Z-2} - \frac{1}{25} \frac{Z}{Z+3} - \frac{1}{5} \cdot \frac{Z}{(Z+3)^2}$$

$$Z_{-1} \left[\frac{1}{(Z+3)^2(Z-2)^2} \right] Z_{-1} \left[25\overline{1 \cdot ZZ-2} - 25\overline{1 \cdot Z+z} - \overline{15 \cdot (Z+z3)^2} \right]$$

$$- - ()$$

$$\left[\frac{=12^n - 1}{(-25)(-25)} \right]_{25} - \frac{-3^n - 1n(-3)^n}{5}$$

$$\therefore Z_{-1} \quad Z_{+3} Z_{2} Z_{-2} = 251 2n - 25\overline{1} (-3)^n - -15 n(-3)n$$
Solutions Of Difference Equations

Difference Equations:-

Just as the Differential equations are used for dealing with continuous process in nature , the difference equations are used for dealing of discrete process.

Definition:-

A difference equation is a relation between the difference of an unknown function at one (or) more

general value of the argument.

thus $\Delta y_n + 2y_n = 0$ and $\Delta^2 y_n + 5\Delta y_n + 6y_n = 0$ are difference equations

Solution:-

The solution of a difference equation is an expression for y_n which satisfies the given difference equation

General Solution:-

The general solution of a difference equation is that in which the number of arbitrary constants is equal to the order of the difference equation.

Linear Difference Equation:-

The Linear difference equation is that in which y_{n+1} , y_{n+2} , y_{n+3} ----- etc occur to the 1^{st} degree only and are not multiplied together.

The difference equation is called Homogeneous if f(n)=0, Otherwise it is called as NonHomogeneous equation (i.e:- $f(n) \neq 0$)

Working rule (or) Working Procedure:-

To solve a given linear difference equation with constant co-efficient by Z-transforms. <u>Step-1</u> :- Let $Z(y_n)=Z[y(n)]=Y(Z)$

<u>Step-2</u> :-Take Z-Transform on bothsides of the given difference equation.

<u>Step-</u>3 :-Use the formulae $Z(y_n) = Y \left(\frac{1}{2} \right)$

$$Z[y_n + 1] = Z[Y(Z)-y_0]$$

$$Z[y_n + 2] = Z^2[Y(Z)-y_0 - y_1Z^{-1}]$$

<u>Step-</u>4:-Simplify and find Y(Z) by transposing the terms to the right and dividing by the co-efficient of y(Z). <u>Step-</u>5:-Take the Inverse Z-Transform of Y(Z) and find the solution y_n

This gives y_n as a function of n which is the desired solution. <u>Problems</u>:-

1.Solve $y_{n+1} - 2y_n = 0$ using Z – Transforms. Solution:-let $Z[y_n] = Y Z$ () $Z[y_{n+1}] = Z Y Z^{(-)}y_0$ taking Z-Transform of the given equation we get $Z[y_{n+1}] - 2Z y_n = 0$ $Z Y_n = 0$ [] $Z Y_Z - y_0 Z Z^{(-)}y_0 = 0$ $Z Y Z - y_0 Z Z^{(-)}y_0 = 0$ $Z Y Z - y_0 Z Z^{(-)}y_0 = 0$ $Z Y Z - y_0 Z Z^{(-)}y_0 = 0$ $Z Y Z - y_0 Z Z^{(-)}y_0 = 0$ $Z Y Z - y_0 Z Z^{(-)}y_0 = 0$ $Z Y Z - y_0 Z Z^{(-)}y_0 = 0$ $Z Y Z - y_0 Z Z^{(-)}y_0 = 0$

$$Y(Z) = \underline{z} - \underline{2} y_0$$

$$Z - \underline{1} \begin{bmatrix} y \\ Z \end{bmatrix} = Z - \underline{1} \begin{bmatrix} \overline{z} \\ \overline{z} \\ \overline{z} - 2 \end{bmatrix} y_0$$

$$y_n = 2ny_0$$

$$Z - \underline{1} \begin{bmatrix} y \\ Z \end{bmatrix} = y_n$$

2.Solve the difference equation using Z-Transforms

 $\mu_{n+2} - 3\mu_{n+1} + 2\mu_n = 0 \text{ Given that}$ $\mu_0 = 0 \ , \ \mu_1 = 1$ Solution:-let Z(μ_n) = μ Z() Z(μ_{n+1}) = Z[μ Q) - μ_0] Z(μ_{n+2}) = Z² μ [Z(-) $\mu_0 - \mu_{Z^1}$ now] taking Z-Transform on both sides of

the given equation we get

 $Z(\mu_{n+2}) - 3Z(\mu_{n+1}) + 2Z(\mu_n) = 0 Z_2 - \mu_0 - \mu_Z^1$ $\left[\mu(Z) - 3Z[\mu Z] + \mu_0\right] + 2\mu Z^2 = 0 \text{ using the given}$ $\left[\mu(Z) - 3Z[\mu Z] + 2\mu Z^2 = 0 \text{ using the given}\right]$ $Z^2 - 0 - 1 - 3Z\mu[\mu Z Z^2 = 2 - 2 0] - 3 + 2Z\mu + Z^2 = 0$ $Z^2 - (1) - Z^2 = Z^2 - 3 + 2Z^2 + 2Z^2 = 0$ $Z^2 - 3 + 2Z^2 + 2Z^2 + 2Z^2 = 0$ $Z^2 - 3 + 2Z^2 + 2Z^2 + 2Z^2 = 0$

$$\frac{Z \qquad Z}{= Z - 2 - Z - 1}$$

on taking Inverse Z-Transform on both sides we get

$$Z_{-1} \mu Z = Z_{-1} \left[\frac{z - z}{z - 1} \right]$$

$$\mu^{n} = Z_{-1} \left[\frac{z^{2} - z}{z - 1} - z_{-1} \right]$$

$$\mu^{n} = Z_{n-1} \left[\frac{z^{2} - 1}{z^{2} - 1} - z_{-1} \right]$$

$$\mu^{n} = 2n - 1$$

3.Solve the difference equation using Z-Transform

$$y_{n+2} - 4y_{n+1} + 3y_n = 0$$

Given that $y_0 = 2$ and $y_1 = 4$
Solution:- let $Z[y_n] = Y \not{Z}$
 $Z[y_{n+1}] = Z \not{Y} \not{Z} - y_0 \neg Z[y_{n+2}] = Z^2 Y Z - y_0 - y_1 Z^{-1}]$
taking Z-Transform of the given equation we get
 $Z(y_{n+2}) - 4Z(y_{n+1}) + 3Z(y_n) = 0$
 $Z^2 \not{Y} \not{Z} - y_0 - y_1 Z^{-1}] - 4Z Y Z - y_0 + 3Y(Z) = 0$ using
the given conditions it reduces to
 $Z^2 \not{Y} \not{Z} - 2 - 4Z^{-1}] - 4Z Y Z - 2 + 3Y(Z) = 0$

i.e:- $Y(Z)[Z^2 - 4Z + 3] - 2Z^2 - 4Z + 8Z = 0$

$$Y(Z)[Z^{2} - 4Z + 3] = Z(2Z-4)$$

$$\frac{Y Z}{Z} = \frac{2Z-4}{[Z^{2} - 4Z+3]}$$

$$= \frac{2Z-4}{(Z-1)(Z-3)}$$

$$\frac{Y(Z)}{Z} = \frac{1}{Z-1} + \frac{1}{Z-3}$$
 (reducing by partial fractions)

$$Y(Z) = \frac{Z}{Z-1} + \frac{Z}{Z-3}$$
on taking Inverse Z-Transform on both sides we obtain

$$Z_{-1}[Y(Z)] = Z_{-1} | \overline{Z} + Z_{-1} | \overline{Z}$$

$$Z_{-1} | Z_{-3}$$

 $y_n = 1 + 3^n$