Complex Variables \& Transforms (20A54302)

II - B.TECH \& I- SEM

Prepared by:

Dr. B. NAGABHUSHANAM REDDY, Professor
Department of H \&S

VEMU INSTITUTE OF TECHNOLOGY
(Approved By AICTE, New Delhi and Affiliated to JNTUA, Ananthapuramu) Accredited By NBA(EEE, ECE \& CSE) \& ISO: 9001-2015 Certified Institution Near

Pakala, P.Kothakota, Chittoor- Tirupathi Highway
Chittoor, Andhra Pradesh-517 112
Web Site: www.vemu.org

Unit - 1

Complex - analysis

- Function of Complex Variable/ Differentiation:

If for each value of the complex variable $Z=X+i Y$ in a given region ' R ', we have one or more values of $\mathrm{w}=\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$, Then W is said to be a function of ' Z ', and we have $\mathrm{w}=\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$.

Where u and v are real and imaginary parts of $f(z) . z=x+i y$
and
$f(z)=u(x, y)+i v(x, y)$ is a complex function.

- Continuity of a Function:

Let $f(z)$ is said to be continuous function at $z=z$ if $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$

- Differentiability of a Function:

A function $f(z)$ is said to be differentiable at $z=z$ if
exists. It is donated by $\left.\lim _{\Delta \mathrm{z} \rightarrow 0}\left(\frac{\mathrm{f}(\mathrm{z}+\Delta \mathrm{z})-\mathrm{f}(\mathrm{z})}{\Delta \mathrm{z}}\right)\right)$
i.e. $\left.f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0}\left(\frac{f(z+\Delta z)-f(z)}{\Delta z}\right)\right)$

- Analytical

Function:

The complex function $f(z)$ is said to be analytical function at $z=a$ if the function $f(z)$ has derivative at $z=a$ and neighbourhood of $z=a$.

Example:

$$
\begin{aligned}
& \text { 1. Let } f(z)=z^{2} f^{\prime}(z)=2 z \\
& \text { At } z=0, f^{\prime}(z)=2(0)=0 \text { (finite) } f(z) \\
& \text { has derivative at } z=0 \\
& \text { Finally } f(z) \text { is called analytical function. } \\
& 1 \\
& \text { 2. Let } f(z)= \\
& z \\
& \frac{f^{\prime}(z)=z^{-1}}{(0)^{2}}=\infty \quad \text { At } z=0, f^{\prime}(z)= \\
& \text { derivative at } z=0 \\
& \text { Finally } f(z) \text { is called not analytical function. no }
\end{aligned}
$$

- Singular Point:

Let $\mathrm{z}=\mathrm{a}$ is said to be singular point if the function $\mathrm{f}(\mathrm{z})$ is not analytical at $\mathrm{z}=$ a.

Example:

$$
f(z)=\frac{1}{z}, f^{\prime}(z)=\infty_{z=0} \text { is called }
$$

singular point.

- Cauchy - Riemann Equations in Cartesian co-ordinates:

- If $f(z)$ is continuous in some neighbourhood of z and differentiable at z then the first order partial derivatives satisfy the equations $\frac{\partial \mathrm{u}}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial \mathrm{u}}{\partial y}=-\frac{\partial v}{\partial x}$ at the point z which are called the Cauchy-Riemann equations.
proof:
Let $f(z)=u+i v$ be an analytical function
By definition of analytical function, $f(z)$ has derivative.
i.e. $\left.f^{\prime}(z)=\lim _{\Delta z \rightarrow 0}\left(\frac{f(z+\Delta z)-f(z)}{\Delta z}\right)\right)$ exists (finite)

1) $z=x+i y f(z)=u+i v f(z)=u(x, y)+i v(x, y)$
2) $z=x+i y \Delta z=\Delta x+i \Delta y$ 3) $f z+\Delta z=$?
$z+\Delta z=x+i y+\Delta x+i \Delta y$

$f(z+\Delta z)=u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)$
$f^{\prime}(z)=\quad \lim \left(\frac{[u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)]-[y(x, y)+i v x, y])}{\Delta x+i \Delta y}\right) \rightarrow(1)$
$\Delta x+i \Delta y \rightarrow 0$
We know that $\Delta x+i \Delta y=0+i 0 \Delta$

$$
x=0, \Delta y=0
$$

Case (1) If $\Delta y=0$, put $\Delta y=0$ in (1).

$$
\begin{aligned}
& f^{\prime}(z) \quad \operatorname{lx}^{(x \rightarrow 0}\left(\frac{[u(x+\Delta x, y)+i v(x+\Delta x, y))-[u(x, y)+i v(x, y)]}{\Delta x}\right)=\lim \\
& f^{\prime}(z)\left(\lim _{\Delta x \rightarrow 0} \frac{[u(x+\Delta x, y)-u(x, y)]}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{i[v(x+\Delta x, y)-u(x, y)]}{\Delta x}\right) \\
& = \\
& f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \rightarrow \text { (2) }
\end{aligned}
$$

Case (2) If $\Delta x=0$, put $\Delta x=0$ in (1)
$f^{\prime}(z)=\Delta$ lim $y \rightarrow 0$

$$
\begin{aligned}
& \left.f^{\prime}(z)=-i \Delta \lim y \rightarrow 0 \quad \Delta y \quad \frac{[u(x, y+\Delta y)-u(x, y]}{} \quad \frac{i[v(x, y+\Delta y)-u(x, y)}{}\right) \\
& f^{\prime}(z)=-\frac{i}{i} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \rightarrow(3)
\end{aligned}
$$

Equate (2) \& (3)
Compare the real and imaginary parts

$$
\begin{array}{ll}
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{i} \frac{\partial \mathrm{v}}{\partial \mathrm{x}}=-\mathrm{i} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}+\frac{\partial \mathrm{v}}{\partial \mathrm{y}} \\
\left\{\frac{\partial \mathrm{u}}{\partial x}=\frac{\partial v}{\partial y}\right. & \\
\left.\left.\frac{\partial \mathrm{u}}{\partial y}=-\frac{\partial v}{\partial x}\right\} \quad \text { (If } \mathrm{u} x=v y \text { and } u y=-v \mathrm{x}\right)
\end{array}
$$

These are Cauchy - Riemann Equations in Cartesian co-ordinate System.

Cauchy - Riemann Equations in Polar co-ordinates:

Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
We know that $x=r \cos \theta$,
$y=r \sin \theta z=$
$r \cos \theta+i r \sin \theta z=$
$r(\cos \theta+i \sin \theta) z=r e^{i \theta}$
$f(z)=u+i v f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r$,
$\theta) \rightarrow$ (1)
Differentiate (1) w.r.t ' r ',
$\mathrm{f}^{\prime}\left({ }^{r} e^{i \theta}\right) e^{i \theta}=\frac{\partial \mathrm{u}}{\partial r}+\mathrm{i} \frac{\partial v}{\partial r} \rightarrow(2)$
Differentiate (1) w.r.t ' θ ',
$f^{\prime}(\rightarrow$ (3)
Substitute (2) in (3), We get

$$
\begin{aligned}
& \left.\quad\left[\frac{\partial \mathrm{u}}{\partial r}+\mathrm{i} \frac{\partial v}{\partial r}\right]=\frac{\partial \mathrm{u}}{\partial \theta}+\mathrm{i} \frac{\partial v}{\partial \theta} r e^{i \theta}\right) \text { rie } e^{i \theta}=\frac{\partial \mathrm{u}}{\partial \theta}+\mathrm{i} \frac{\partial v}{\partial \theta} \\
& \frac{\partial \mathrm{u}}{\partial r}-\mathrm{r} \frac{\partial v}{\partial r}=\frac{\partial \mathrm{u}}{\partial \theta}+\mathrm{i} \frac{\partial v}{\partial \theta} \\
& \text { ir } \\
& \text { ir }
\end{aligned}
$$

Lets compare real and imaginary parts

$$
\begin{aligned}
& \frac{\partial \mathrm{u}}{\partial \theta}=-\mathrm{r} \frac{\partial v}{\partial r} \\
& \frac{\partial v}{\partial \theta}=r \frac{\partial \mathrm{u}}{\partial r}
\end{aligned}
$$

These are Cauchy - Riemann Equations in Polar co-ordinate System. Examples

1) Show that $f(z)=x y+i y$ is not analytical

$$
\begin{aligned}
& \text { Solution : Given }, \mathrm{f}(\mathrm{z})=\mathrm{xy}+\mathrm{iy} \\
& \mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv} \mathrm{u}=\mathrm{xy} \\
& \mathrm{v}=\mathrm{y} \\
& \frac{\partial u}{\partial x}=\mathrm{y}, \quad \frac{\partial v}{\partial x}=0 \\
& \frac{\partial u}{\partial y}=\mathrm{x}, \quad \frac{\partial v}{\partial y}=1 \\
& \frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} \\
& \frac{\partial u}{\partial y} \neq-\frac{\partial v}{\partial x}
\end{aligned}
$$

It doesn't not satisfies C-R equations and hence its not an analytical function.
2) Show that $\mathrm{f}(\mathrm{z})=2 \mathrm{xy}+\mathrm{i}\left(x^{2}-y^{2}\right)$ is not analytical function. Solution: Given $\mathrm{f}(\mathrm{z})=2 \mathrm{xy}+\mathrm{i}\left(x^{2}-y^{2}\right)$
$f(z)=u+i v$

$$
\begin{array}{ll}
u=2 \mathrm{xy} & \mathrm{v}=x^{2}-y^{2} \\
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\
\frac{\partial u}{\partial y}=2 \mathrm{y}, & \frac{\partial v}{\partial y}=2 \mathrm{x} \\
\stackrel{\partial \pi}{\partial x} \mathrm{x}, & \frac{\partial v}{\partial y} \quad \frac{\partial \chi_{l}}{\partial y} \neq-\frac{\partial v}{\partial x}
\end{array}
$$

It doesn't not satisfies C-R equations and hence its not an analytical function.
3) Test the analyticity $f(z)=e^{x}\left(\cos y\right.$-isiny) and also find the $f^{\prime}(z)$ Solution: Given $f(z)=e^{x} \cos y$ iexsiny

$$
\begin{aligned}
& \quad f(z)=u+i v u=e^{x} \cos y \\
& v=-e^{x} \sin y
\end{aligned}
$$

$f(z)$ is not analytical function and the $f^{\prime}(z)$

$$
\frac{\partial u}{\partial x}=e_{\text {cosy },}^{x} \frac{\partial v}{\partial x}=-e^{x} \sin y
$$

4) Show that $f(z)=z z^{2}$

$$
\begin{aligned}
& \frac{\partial u}{\partial y}=-\rho^{x} \quad \text { siny } \\
& \frac{\partial v}{\partial y}=-e^{x} \operatorname{cosy} \\
& \frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} \& \frac{\partial u}{\partial y} \neq-\frac{\partial v}{\partial x}
\end{aligned}
$$

does not exist. is not analytical function Solution: Given $f(z)=z Z^{2}$
$f(z)=(x+i y)^{\mid}(x+i y)^{2}=(x+i y)\left[\sqrt{\left.x^{2}+y^{2}\right]^{2}}\right.$

$$
\mathrm{f}(\mathrm{z})=\mathrm{x}\left(x^{2}+y^{2}\right)+\mathrm{iy}\left(x^{2}+y^{2}\right) \mathrm{f}(z)=
$$

u+iv

$$
\begin{gathered}
\mathrm{u}=\mathrm{x}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=\mathrm{x}^{3}+\mathrm{xy}^{2} \quad \mathrm{~V}=\mathrm{y}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=\mathrm{x}^{2} \mathrm{y}+\mathrm{y}^{3} \\
\frac{\partial u}{\partial x}=3 \mathrm{x}^{2}+\mathrm{y}^{2}, \quad \frac{\partial v}{\partial x}=2 \mathrm{xy} \\
\frac{\partial u}{\partial y}=2 \mathrm{xy}, \quad \frac{\partial v}{\partial y}=\mathrm{x}^{2}+3 \mathrm{y}^{2} \\
\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} \& \frac{\partial u}{\partial y} \neq-\frac{\partial v}{\partial x}
\end{gathered}
$$

$f(z)$ is not analytical function
5) Show that $w=\log z$ is an analytical function and also find $\frac{d w}{d z}$
Solution: Given w = logz

$$
\begin{gathered}
\text { put } z=r e^{i \theta} \\
\begin{array}{l}
i \theta=\log r+\log e^{i \theta} \mathrm{w} w \\
=\log r e \\
=\log r+i \theta \log e \\
f(z)=w=\log r+i \theta=u+i v u \\
=\log r \quad v=\theta
\end{array}
\end{gathered}
$$

f'
6) Show that $\mathrm{f}(\mathrm{x})=\operatorname{sinz}$ is an analytical function everywhere in the complex plane

Solution: Given $f(x)=\sin z$

$$
\begin{aligned}
& f(x)=\sin (x+i y) f(x)=\sin x \\
& \cos (i y)+\sin (i y) \cos x f(X)=\sin x \\
& \cosh y+i \sinh y \cos x f(x)=u+i v
\end{aligned}
$$

$$
u=\sin x \cosh y \quad v=\sinh y \cos x
$$

$$
\begin{aligned}
& \frac{\partial \mathrm{u}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}^{\prime}} \quad \frac{\partial \mathrm{v}}{\partial \mathrm{r}}=\theta \\
& \frac{\partial u}{\partial \theta}=0, \frac{\partial v}{\partial \theta}=1 \\
& \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta} \& \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r} \\
& r\left(\frac{1}{r}\right)=1 \quad \& \quad 0=0 \quad \text { It is an analytical function } f(z) \\
& =u+i v \\
& f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta) \\
& \text { differentiate on both sides w.r.t ' } r \text { ' } \\
& \left.r e^{i \theta}\right) e^{i \theta}=\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r} \\
& f^{\prime}(z) e^{i \theta}=\frac{1}{r}+{ }_{(0)} \\
& f^{\prime}(z)=\frac{1}{r \mathrm{re}^{i} \theta}=\frac{1}{z}
\end{aligned}
$$

$\overline{\partial x}=\cos x \cosh y, \overline{\partial x}-\sin x \sinh y$
$=\sin x \sinh y, \quad=\cosh y \cos x$
\& $\frac{\partial u}{\mathrm{I}^{\prime} \gamma_{s} \text { an analytical } \frac{\partial v}{f u h} \text { ction }}$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

7) Test the analyticity of the function $f(z)=e^{x}(\operatorname{cosy}+i \operatorname{siny})$ and find $f^{\prime}(z)$. Solution: Given, $f(z)=e^{x}$ (cosy+isiny) $=u+i v$

$$
\begin{aligned}
& \mathrm{u}=e^{x} \cos y \quad \mathrm{v}=e^{x} \sin y \\
& \frac{\partial u}{\partial x}=e^{x} \quad \frac{\partial v}{\partial x}=e^{x} \sin y \\
& \frac{\partial u}{\partial y}=-e^{x} \quad \frac{\partial v}{\partial y}=e^{x} \cos y \\
& \text { \& It is an analytical function } \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \\
& f(z)=u+i v \\
& f^{\prime}(\mathrm{z})=\frac{\partial u}{\partial x}+\mathrm{i} \frac{\partial v}{\partial y}=e^{x} \text { cosy }+\mathrm{i} e^{x} \sin y \\
& f^{\prime}(\mathrm{z})=e^{x}(\text { cos } y+i s i n y) \\
& \mathrm{f}^{\prime}(\mathrm{z})=e_{x} \mathrm{i} e_{y}=\mathrm{e}(\mathrm{x}+\mathrm{iy}) \\
& f^{\prime}(z)=e^{z}
\end{aligned}
$$

8) Determine P such that the function $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{p x}{y}\right)$ be an analytical function. Solution :

Given,$f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{p x}{y}\right)$
It is an analytical function, It satisfies the C-R equation

By given $f(z)$ is an analytical function, $f(z)$ satisfies $C-R$ equations.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
& \frac{x}{{ }^{2}+{ }^{2}}=\frac{-p x}{2} \quad x \quad y \quad y+p^{2} x^{2}
\end{aligned}
$$

Comparing the equations we get:

$$
P=-1
$$

9) Prove that function $f(z)$ defined by $f(z)=-R$ equations are satisfied at the origin, yet $f^{\prime}(0)$ does not exist.

Solution : Given $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}$
i) To show that $f(z)$ is continuous at $z=0$
let $\quad \lim f(z)=\lim _{x \rightarrow 0} \frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}($ given $f(0)=0) \frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, z \neq 0$ and $f(0)$ is continues and C

$$
\begin{gathered}
y \rightarrow 0 \\
\lim _{x \rightarrow 0} \frac{\mathrm{x}(1+i)}{\mathrm{x}^{2}} \\
{ }^{z} \mathrm{f}(\mathrm{z})=\mathrm{f}(\mathrm{z})= \\
\lim \mathrm{x}(1+\mathrm{i})=0=\mathrm{f}(0) \\
x \rightarrow 0 \mathrm{f}(\mathrm{z}) \text { is } \\
\text { continuous }
\end{gathered}
$$

ii) To show that $\mathrm{C}-\mathrm{R}$ equations are satisfied at origin

$$
\begin{gathered}
f(z)=\frac{\frac{x^{3}+x^{3} i-y^{3}+i y^{3}}{x^{2}+y^{2}}=\frac{x^{3}-y^{3}}{x^{2}+y^{2}} \frac{i\left(x^{3}+y^{3}\right)}{x^{2}+y^{2}} f(z)}{=u+i v} \\
=\frac{x^{3}-y}{x^{2}+y^{2}}=, \frac{x^{3}+y^{3}}{x^{2}+y^{2}} \\
v=
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\lim _{x \rightarrow 0} \frac{\mathrm{u}(\mathrm{x}, 0)-\mathrm{u}(0,0)}{x} \\
& \frac{\partial u}{\partial x}=\lim _{x \rightarrow 0} \frac{x-0}{x}=>\lim _{x \rightarrow 0} \\
& \frac{\partial u}{\partial x}=1 \\
& \begin{array}{c}
=1 \\
\frac{\partial u}{\partial y}=\lim _{y \rightarrow 0} \frac{u(0, y)-u(0,0)}{y}
\end{array} \\
& \frac{\partial u}{\partial y}=\lim _{y \rightarrow 0} \frac{-y-0}{y}=>\lim _{y \rightarrow 0}-1=- \\
& \frac{\partial u}{\partial y}=-1 \\
& \frac{\partial \mathrm{v}}{\partial \mathrm{x}}=\lim _{\mathrm{x} \rightarrow 0} \frac{\mathrm{v}(\mathrm{x}, 0)-\mathrm{v}(0,0)}{\mathrm{x}} \\
& \frac{\partial v}{\partial x}=\lim _{x \rightarrow 0} \frac{x-0}{x}=\lim _{x \rightarrow 0} 1=1 \\
& \frac{\partial v}{\partial \mathrm{x}}=1 \\
& \frac{\partial v}{\partial y}=\lim _{y \rightarrow 0} \frac{v(0, y)-v(0,0)}{y} \\
& \frac{\partial v}{\partial y}=\lim _{y \rightarrow 0} \frac{y-0}{y}=\lim _{x \rightarrow 0} 1=1 \\
& \frac{\partial v}{\partial y}=1 \\
& c-\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y_{x}} \quad \& \quad \frac{\partial u}{\partial v} \overline{\partial y}=-\frac{\overline{\partial x}}{\partial x} \\
& \text { lim } 0 \\
& \text { R Equations are satisfied at origin iii) To } \\
& \text { show that } f^{\prime}(z) \text { does not exist at origin } \\
& \lim \underline{f(z)-f(0)} \\
& f^{\prime}(z)= \\
& \mathrm{y} \rightarrow 0 \mathrm{z} \\
& x^{3} 1+i-y 2+3 y(1-i) 2
\end{aligned}
$$

$$
x \rightarrow 0 \quad x
$$

$f^{\prime}(z)=$

$$
\begin{aligned}
& \quad \times 1+i^{3} f^{\prime}(z) x^{\lim _{\rightarrow 0 \times 3}=} \\
& =1+\mathrm{i} \quad \text { (Finite) }
\end{aligned}
$$

$f^{\prime}(z)$ Exists

At $y=m x$

$$
\begin{aligned}
& f^{\prime}(z)=\lim _{z \rightarrow 0} \frac{t(z)-t(0)}{z} \\
& \lim _{x \rightarrow 0} \frac{\frac{x^{3}(1+i)-m^{3} x^{3}(1-i)}{x^{2}+x^{2} m^{2}}}{x+i m x} \quad f^{\prime}(z) \\
& \\
& y \rightarrow m x \\
& f^{\prime}(z)=\lim _{x \rightarrow 0} \frac{x^{3}\left[(1+i)-m^{3}(1-i)\right]}{x^{2}\left(1+m^{2}\right) x(1+i m)} \\
& y \rightarrow m x \\
& f^{\prime}(z) \quad \lim _{x \rightarrow 0} \frac{\left[(1+i)-m^{3}(1-i)\right]}{\left(1+m^{2}\right)(1+i m)} \\
& =\quad \frac{\left[(1+i)-m^{3}(1-i)\right]}{\left(1+m^{2}\right)(1+i m)}
\end{aligned}
$$

$f^{\prime}(z)=\quad$ (Infinite) $f^{\prime}(z)$ depends upon the ' m ' value, so that the $f^{\prime}(z)$ does not exist at origin

Part - B

Laplace Equations

the equation of the form $\frac{\partial^{2} \emptyset}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \emptyset}{\partial \mathrm{y}^{2}}=0$ or $\frac{\partial^{2} \varphi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \varphi}{\partial \mathrm{y}^{2}}=0$

Harmonic Function

The function u and v are said to be harmonic, if it satisfies Laplace Equations
i.e

$$
\begin{gathered}
\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}=0 \\
\text { or } \\
\frac{\partial^{2} \mathrm{v}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{v}}{\partial \mathrm{y}^{2}}=0
\end{gathered}
$$

Milne - Thomson Method
When u is given find $f(z)$:

1) To find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$
2) To find $f^{\prime}(z)=u+i v$

Differentiate w.r.t ' x ' we get

$$
\begin{array}{r}
\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
f^{\prime}(z)=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}
\end{array}
$$

$f^{\prime}(z)=$
,0)

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\emptyset_{1}\left(\mathrm{z}_{1}\right. \\
& \frac{\partial u}{\partial y}=\emptyset_{2}\left(\mathrm{z}_{2} \quad, 0\right) \quad \mathrm{f}^{\prime}(\mathrm{z}) \quad= \\
& \emptyset_{1}\left(\mathrm{z}_{1}, 0\right)-\mathrm{i} \emptyset_{2}\left(\mathrm{z}_{2}, 0\right)
\end{aligned}
$$

$+c$ When v is given find $f(z)$:

1) To find $\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}$
2) To find $f(z)=u+i v$

Differentiate w.r.t ' x ', we get

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{z})=\frac{\partial u}{\partial x}+\mathrm{i} \frac{\partial v}{\partial x} \\
& \mathrm{f}^{\prime}(\mathrm{z})=\frac{\partial v}{\partial y}+i \frac{\partial v}{\partial x} \\
& \frac{\partial v}{\partial y}=\emptyset_{1}\left(\mathrm{z}_{1}, 0\right) \\
& \frac{\partial v}{\partial \mathrm{x}}=\emptyset_{2}\left(\mathrm{z}_{2}, 0\right) \quad \text { (From C-R equation) }
\end{aligned}
$$

$$
f^{\prime}(z)=\emptyset_{1}\left(z_{1}, 0\right)+i \emptyset_{2}(z 2,0)
$$

Integrate w．r．t＇$z^{\prime} f(z)=1\left[\varnothing ⿴ 囗 ⿱ 一 一 \mathbf{z}_{1}, 0\right)+i \emptyset_{2}\left(z_{2}, \mathbf{0}\right)$

Jdz＋c

1）Construct an analytical function $f(z)$ when $u=x^{3}-3 x y^{2}+3 x+1$ is given

$$
\begin{array}{ll}
& \frac{\partial u}{\partial x}=3 \mathrm{x}^{2}-3 \mathrm{y}^{2}+3 \\
\text { Solution: } & \frac{\partial u}{\partial y}=-6 \mathrm{xy}
\end{array}
$$

By Milne Thomson Method

$f(z)=u+i v$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\emptyset_{1}(z, 0)=3 \mathrm{z}^{2}+3 \\
& \frac{\partial u}{\partial y}=\emptyset_{2}(z \quad, 0)=-\quad \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{i} \frac{\partial \mathrm{v}}{\partial \mathrm{x}} \\
& 6(z)(0)=0 \\
& \frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}=\emptyset_{1}(z, 0)-i \emptyset_{2}\left(z f^{\prime}(z)=\frac{\partial u}{\partial \mathrm{x}}=\frac{\partial \mathrm{v}}{\partial \mathrm{y}} \quad \& \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=-\frac{\partial \mathrm{v}}{\partial \mathrm{x}}\right. \\
& \left.f^{\prime}(z)=, 0\right) \\
& \text { Integrate w.r.t ' } z^{\prime} f(z)= \\
& \text { [} \left.\text { 耳 }_{1}(z, 0)+i \emptyset_{2}(z, 0)\right] d z+c f(z) \\
& =\text { (}\left(3 z^{2}+3-0\right) d z+c f(z) \\
& =\frac{3 z^{3}}{3}+3 z+c \\
& f(z)=z^{3}+3 z+c
\end{aligned}
$$

2) Construct an analytical function $f(z)$ when $u=\sin x$ coshy is given

$$
\begin{array}{ll}
\text { Solution: }=\operatorname{cosx} \sinh y & \frac{\partial u}{\partial x} \\
=\sin x \sinh y & \frac{\partial u}{\partial y}
\end{array}
$$

By Milne Thomson

Method

$\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$

$$
\begin{aligned}
& \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\emptyset_{1}(\mathrm{z}, 0)=\cos z(1)=\cos z \\
& \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=\emptyset_{2} \\
& (z, 0)=\sin z(0) \quad \frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
& \frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}=\emptyset_{1}(z, 0)-i \emptyset_{2}\left(z \quad f^{\prime}(z)=\quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \& \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}\right. \\
& f^{\prime}(z)= \\
& \text {,0) } \\
& \text { Integrate w.r.t } \quad z^{\prime} f(z)= \\
& \text { T[} \left.\varnothing_{1}(\mathrm{z}, \mathrm{O})-\mathrm{i} \emptyset_{2}(\mathrm{z}, 0)\right] \mathrm{dz}+\mathrm{c} \mathrm{f}(\mathrm{z})= \\
& \text { 玉osz } d z+c f(z)=\boldsymbol{s i n} z+c
\end{aligned}
$$

3) Find the analytical function $f(z)=u+i v$ if $u+v=\frac{\sin 2 x}{(\cosh 2 y-\cos 2 x)}$

Solution: $\quad u+v=\frac{\sin 2 x}{(\cosh 2 y-\cos 2 x)}$

$$
\begin{aligned}
f(z) & =u+i v \\
i f(z) & =u i-v \\
(1+i) f(z) & =(u-v)+i(u+v) \\
f(z) & =u+i v
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial v}{\partial x}=\frac{[\operatorname{coh} 2 y-\cos 2 x] 2 \cos 2 x-\sin 2 x[0+2 \sin 2 x]}{} \\
& \frac{\partial v}{\partial \mathrm{x}}=\frac{2 \cos 2 \mathrm{x} \operatorname{coshy}-2 \cos ^{2} 2 \mathrm{x}-2 \sin ^{2} 2 \mathrm{x}}{[\cosh 2 \mathrm{y}-\cos 2 \mathrm{x}]^{2}} \\
& \frac{\partial \mathrm{v}}{\partial \mathrm{x}}=\frac{2 \cos 2 \mathrm{x} \operatorname{coshy}-2}{[\cosh 2 \mathrm{y}-\cos 2 \mathrm{x}]^{2}} \\
& \frac{\partial \mathrm{v}}{\partial \mathrm{x}}=\emptyset_{2}(\mathrm{z}, \mathrm{o}) \\
& \frac{\partial \mathrm{v}}{\partial \mathrm{x}}=\frac{2 \cos 2 \mathrm{z} \cosh 0-2}{[\cosh 0-\cos 2 z]^{2}}=\frac{2[\cos 2 \mathrm{z}-1]}{[1-\cos 2 z]^{2}}=\frac{-2[1-\cos 2 z]}{[1-\cos 2 z]^{2}} \\
& \frac{\partial v}{\partial x}=\frac{-2}{2 \sin ^{2} z} \\
& \text { Where } F(z)=(1+i) f(z) \\
& u+v=v \\
& \overline{\partial \mathrm{x}}=\emptyset_{2}\left(\mathrm{z}_{\partial v, 0}\right)=-\operatorname{cosec} 2 \mathrm{z} \\
& \frac{\partial \mathrm{v}}{\partial \mathrm{y}}=\emptyset_{1}\left(\mathrm{z},{ }_{, 0}\right)=\frac{[\operatorname{coh} 2 \mathrm{y}-\cos 2 \mathrm{x}] 0-\sin 2 \mathrm{x}[\sinh 2 \mathrm{y}(2)]}{[\cosh 2 \mathrm{y}-\cos 2 \mathrm{x}]^{2}} \\
& \emptyset_{1(z, 0)}=\frac{\partial \mathrm{v}}{\partial \mathrm{y}}=\frac{-2 \sin 2 \mathrm{xsinh} y}{[\cosh 2 \mathrm{y}-\cos 2 \mathrm{x}]^{2}} \\
& \frac{\partial v}{\partial y}=\frac{-0 \sin 2 z}{[\cosh 2 y-\cos 2 z]^{2}}=0
\end{aligned}
$$

$$
\begin{aligned}
& f(z)=u+i v \\
& f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
& \frac{\partial v}{\partial y}+\mathrm{i} \frac{\partial \mathrm{v}}{\partial \mathrm{x}} \\
& f^{\prime}(z)= \\
& \mathrm{f}(\mathrm{z})=\left[\emptyset_{1}(\mathrm{z}, \mathrm{O})+\mathrm{i} \emptyset_{2}(\mathrm{z}, 0)\right] \mathrm{dz}+\mathrm{c} \\
& f(z)=0-\operatorname{cosec}^{2} z \text { (i) } d z+c \\
& f(z)=-i(-\cot z)+c=i \cot z+c \\
& \mathrm{f}(\mathrm{z})=\mathrm{i} \cot \mathrm{z}+\mathrm{c} \\
& \text { (1+i) } \mathrm{f}(\mathrm{z}) \underset{\mathrm{i}}{1+\mathrm{i}}+=\frac{\mathrm{c}}{1+\mathrm{i}}=\mathrm{i} \operatorname{cotz}+\mathrm{c} \\
& f(z)=\frac{i(1-i)}{2} \\
& \operatorname{cotz} f(z)= \\
& \operatorname{cotz}+\mathrm{C}_{1} \\
& \text { i+1 } \\
& f(z)= \\
& 2 \operatorname{cotz}+c_{1} \\
& \frac{\partial u}{\partial x}=e^{x} x^{2} \cos y+2 x \text { ex cosy-e } y \\
& \emptyset_{1}(\mathrm{z}, 0)=\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\mathrm{e}^{\mathrm{z}} \mathrm{z}^{2} \\
& \emptyset_{1}(\mathrm{z}, 0)=\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\mathrm{e}^{\mathrm{z}} \mathrm{z}^{2}+2 \mathrm{z} \mathrm{e}^{\mathrm{z}} \\
& \text { Solution: } u=e^{x} x^{2} \\
& \frac{\partial u}{\partial y}=-e^{x} x^{2} \\
& \emptyset_{2}(\mathrm{z}, 0)=\frac{\partial \mathrm{u}}{\partial \mathrm{y}}=0+0-0-0=0 \\
& \text { 4) Find the } \\
& \text { ex[(x2- } \\
& \mathrm{y}^{2} \text {) (cosy - } 2 \mathrm{xysiny} \text {)] } \\
& \text { cosy - } \mathrm{e}^{\mathrm{y}} \mathrm{y}^{2} \text { cosy }-2 \mathrm{xy} \text { ex siny } \\
& x^{2} \text { cosy }-2 y e^{x} \sin y-2 x y ~ e x s i n y
\end{aligned}
$$

$$
\begin{aligned}
& \sin y+e \sin y y-2 y e^{x} \cos y-2 x e^{\mathrm{x}} \sin y-2 x y e^{\mathrm{x}} \cos y \\
& f(z)=u+i v \\
& f^{\prime}(z) \quad \frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
& =\frac{\partial u}{\partial x}-i \frac{\partial v}{\partial y} \\
& f^{\prime}(z)= \\
& f(z)=, 0)] d z+c z\left(\emptyset_{2} \quad-, 0\right) z\left(\left[\emptyset_{1}\right.\right. \text { ? } \\
& f(z)=\left(e^{z} z^{2}+2 z e^{z}-0\right) d z+c f(z) \\
& =\text { ? } \mathrm{e}^{\mathrm{z}}\left(\mathrm{z}^{2}+2 \mathrm{z}\right) \mathrm{dz}+\mathrm{cf}(\mathrm{z})=\text { ? } \mathrm{e}^{\mathrm{z}} \mathrm{z}^{2} \\
& \mathrm{dz}+2 \mathrm{ze}^{\mathrm{z}} \mathrm{dz} \\
& u=z^{2} d v=e^{z} d z d u=2 z d z \quad v=e^{z} f(z)=\mathbf{e}^{\mathbf{z}}
\end{aligned}
$$

$$
\begin{aligned}
& z^{2}+c
\end{aligned}
$$

5) The analytical function whose imaginary part is $v(x, y)=2 x y$ Solution:

$$
\begin{aligned}
& v=2 x y \\
& =2 y=\emptyset_{2}(\mathrm{z}, 0)=2(0)=0 \\
& \frac{\partial v}{\partial y}=2 x=\emptyset_{1}(z, 0)=2(z)=2 z f(z)
\end{aligned}
$$

$$
\begin{aligned}
& =\text { e } d z+c \\
& f(z)=2^{\frac{2}{z}}+c \\
& \mathrm{f}(\mathrm{z})=\mathrm{z}^{2}+\mathbf{c}
\end{aligned}
$$

6) Find harmonic conjugate at $u=e^{x 2-y 2} \cos 2 x y$ and also find $f(z)$

$$
\begin{aligned}
& \text { Solution : } \\
& \qquad \begin{array}{l}
u=\mathbf{e}^{x 2-y 2} \cos 2 x y \\
\frac{\partial u}{\partial x}=\mathbf{e}^{x^{2}-y^{2}} \cos 2 x y(2 x)-\mathbf{e}^{x 2-y 2} \sin 2 x y(2 y) \\
\\
\emptyset_{1}(z, 0)=\mathbf{e}^{z 2-0} \cos 0(2 z)-\mathbf{e}^{\mathrm{x} 2-\mathrm{y} 2}(0) \\
\\
\emptyset_{1}(\mathrm{z}, 0)=\mathbf{e}^{\mathrm{z} 2} 2 \mathrm{z} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=\mathbf{e}^{\mathrm{x}^{2}-\mathrm{y}^{2}} \cos 2 x y(-2 y)- \\
\mathbf{e}^{\mathrm{x} 2-\mathrm{y} 2} \sin 2 x y(2 x)
\end{array}
\end{aligned}
$$

```
    \(\emptyset_{2}(\mathrm{z}, 0)=0-0\)
    \(\emptyset_{2}(z, 0)=0 f(z)\)
        \(=u+i v f^{\prime}(z)=\)
    \(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial \mathrm{x}}\)
    \(\frac{\partial \mathrm{u}}{\partial \mathrm{x}}-\mathrm{i} \frac{\partial u}{\partial \mathrm{y}} \mathrm{f}^{\prime}(\mathrm{z})=\)
    \(f^{\prime}(z)=\emptyset_{1}(z, 0)-i \emptyset_{2}(z, 0)\)
\(f(z)=\) [ \(\left.\varnothing_{1}(z, 0)-i \emptyset_{2}(z, 0)\right] d z+c f(z)=\) ?ezz \(2 z\)
\(d z+c \quad\) (put \(\left.z^{2}=\mathbf{t}=>2 z d z=d t\right) f(z)=\) ?et \(d t+\)
\(c=e^{t}+c\)
            \(f(z)=\mathbf{e}^{\mathbf{z} 2}+\mathbf{c} f(z)=e(x+i y)_{2} f(z)=\)
        \(\mathrm{e}_{\mathrm{x} 2}-\mathrm{y}_{2}+2 \mathrm{xyi}+\mathrm{cf}(\mathrm{z})=\mathrm{e}_{\mathrm{x} 2}-\mathrm{y}_{2} \mathrm{e} 2 \mathrm{xyi}+\mathrm{c} u+\mathrm{iv}=\)
        \(\mathrm{e}^{\mathrm{x} 2-\mathrm{y} 2}[\cos 2 \mathrm{xy}+\mathrm{isin} 2 \mathrm{xy}]+\mathrm{c} u+\mathrm{iv}=\mathrm{e}^{\mathrm{x} 2-\mathrm{y} 2}\)
\(\cos 2 x y+i e e^{x 2-y 2}(\sin 2 x y)+c\)
    \(v=e^{x 2-y 2} \sin 2 x y+c\)
```

7) Find the analytical function $f(z)$ such that $\operatorname{Re}\left[f^{\prime}(z)\right]=3 x^{2}-4 y-3 y^{2}$ and $f(1+i)=0$.
$f^{\prime}(z)=$

$$
\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \quad x^{2} y-\frac{4 y^{2}}{2}-\frac{3 y^{3}}{3}+f(x)
$$

$$
\operatorname{Re}\left[f^{\prime}(z)\right]=\quad \frac{\partial u}{\partial x}
$$

$$
\frac{\partial u}{\partial x}=3 x^{2}-4 y-3 y^{2} \quad \frac{\partial v}{\partial y}=3 x^{2}-4 y-3 y^{2}
$$

Integrate w.r.t ' x ' we get \& $u=\frac{3 x^{3}}{3}-4 x y-3 y^{2} x+f(y) \quad v=3$

$$
u=x^{3}-4 x y-3 y^{2} x+f(y) \quad v=3 x^{2} y-y^{3}-2 y^{2}+f(x)
$$

Differentiate w.r.t ' y ' we get Differentiate w.r.t ' x ' we get $\frac{\partial u}{\partial y}=-4 x-6 x y+f^{\prime}(y) \quad \frac{\partial v}{\partial x}=6 x y+f^{\prime}(x)$

From C-R equations

$$
\begin{gathered}
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \\
-4 x-6 x y+f^{\prime}(y)=-6 x y-f^{\prime}(x) \\
-4 x+f^{\prime}(y)=-f^{\prime}(x)
\end{gathered}
$$

Compare equation on both sides

$$
\begin{gathered}
\text { i.e } f^{\prime}(x)=4 x, f^{\prime}(y)=0 \\
f(x)=4{ }^{2 x d x} \quad f(y)=c f(x)
\end{gathered}
$$

$=\frac{4 x^{2}}{2}+c$

$$
\begin{gathered}
f(\mathbf{x})=\mathbf{2} \mathbf{x}^{2}+\mathbf{c} \quad \mathbf{f}(\mathbf{y})=\mathbf{c} \\
f(z)=u+i v f(z)=\left[x^{3}-4 x y-3 y^{2} x\right]+i\left[3 x^{2} y-y^{3}-2 y^{2}\right]+ \\
2 x^{2}+c \\
\text { given } f(\mathbf{1}+i)=\mathbf{0} f(z)=u+i v \\
z=x+i y=(1+i) \\
\text { put } \mathbf{x}=\mathbf{1}, \mathbf{y}=\mathbf{1} f(z)=[1-4-3]+i[3-2-1] \\
+2+c f(1+i)=0=-6+2 i+c \mathbf{c} \\
=\mathbf{6}-\mathbf{2 i}
\end{gathered}
$$

8) Find the analytic function $f(z)=u+i v$ if $u-v=e^{x}$ (cosy $\left.-\sin y\right)$ Solution:

$$
\begin{aligned}
& f(z)=u+i v \text { if }(z)=i u-v \\
& (1+i) f(z)=(u-v)+i(u+v) \\
& f(z)=u+i v u=u-v=e^{x} \\
& (\text { cosy }-\sin y)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=e^{x} \quad F(z)=(1+i) f(z) \cos y-e^{x} \sin y= \\
& \frac{\partial u}{\partial y}=-e^{x} \quad \emptyset_{1}(z, 0)=e^{z}-0=e^{z} \sin y-e^{x} \\
& f^{\prime}(z)=\frac{\partial u}{\partial x}-i \frac{\partial v}{\partial y} \\
& f(z)=\text { 设 }\left[\emptyset_{1}(z, 0)-i \emptyset_{2}(z, 0)\right] d z+c \\
& f(z)=\emptyset_{2}(z, 0)=0-e^{z}=-e^{z} \\
& f(z)=\left(e^{z}+i e^{z}\right) d z+c \\
& f(z)=e^{z}+i e^{z}+c \\
& f(z)=\frac{e^{z}(1+i)}{(1+i)}+\frac{c}{1+i} f(z) \\
& =e^{z}+c
\end{aligned}
$$

Harmonic Conjugate

1) Show that function $u=2 x y+3 y$ is harmonic and find harmonic conjugate.

Solution:

$$
\begin{array}{ll}
u=2 x y+3 y & \\
\frac{\partial u}{\partial x}=2 y & \frac{\partial u}{\partial y}=2 x+3 \\
\frac{\partial^{2} u}{\partial x^{2}}=0 & \frac{\partial^{2} u}{\partial y^{2}}=0
\end{array}
$$

' \mathbf{u} ' is a Harmonic function

$$
\begin{aligned}
& \mathrm{dv}=\frac{\partial v}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial v}{\partial y} \mathrm{dy} \\
& d v=-(2 x+3) d x+2 y d y v \\
& =\text { ? } 2-(2 x+3) d x+2 y d y \\
& v=-+c^{\left(\frac{2 x}{2}+3 x\right)+\frac{2 y}{2} 2^{2}} \\
& v=-x^{2}+y^{2}-3 x+c
\end{aligned}
$$

2) Show that $\mathrm{u}=2 \log \left(x^{2}+y^{2}\right)$ is harmonic and find its harmonic conjugate.
Solution:

$$
\mathrm{u}=2 \log \left(x^{2}+y^{2}\right)
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=2 \frac{1}{\mathrm{x}^{2}+\mathrm{y}^{2}} 2 \mathrm{x} \quad \frac{\partial u}{\partial y}=2 \frac{1}{\mathrm{x}^{2}+\mathrm{y}^{2}} 2 \mathrm{y} \\
& \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=\frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)(4)-4 x(2 x)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}} \quad \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}=\frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)(4)-4 y(2 y)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}} \\
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{4 x^{2}+4 y^{2}-8 x^{2}+4 x^{2}+4 y^{2}-8 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \\
& \mathrm{dv}=\frac{\partial v}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial v}{\partial y} \mathrm{dy} \\
& \frac{\partial u}{\partial y}-\overline{\partial x} \quad \partial u \\
& \mathrm{dv}=-{ }^{\partial y} \mathrm{dx}+\overline{\partial x} \mathrm{dy} \\
& d v=\frac{-4 y}{x^{2}+y^{2}} d x+\frac{4 x}{x^{2}+y^{2}} d y \\
& d v=\frac{-4}{x^{2}+y^{2}}(y d x-x d y) \\
& v=-4 \int\left[\frac{x d y-y d x}{x^{2}+y^{2}}\right] v \\
& =-4 \int \mathrm{~d} \mathrm{tan}^{-1}\left(\frac{\mathrm{y}}{\mathrm{x}}\right) \\
& v=-4 \tan ^{-1}\left(\frac{\mathrm{y}}{\mathrm{x}}\right)+\mathrm{c} \\
& d^{\tan ^{-1}\left(\frac{y}{x}\right)}=\frac{1}{1+\left(\frac{y}{y}\right)^{2}}\left[\frac{x d y-y d x}{x^{2}}\right]
\end{aligned}
$$

3) Find $f(z)$ if the imaginary part is $r^{2} \cos 2 \theta+r \sin \theta$ Solution:

$$
V=r^{2} \cos 2 \theta+r \sin \theta
$$

Integrate w. 自tan ${ }^{-1}\left(\frac{y}{2}\right)$ we $\left.g^{2} e^{2} t u \neq \frac{x d y-y d \underline{x}}{v^{2}}\right]$

Compare th $\frac{\partial u \text { uquatipns }}{\partial r}$ (28) \& (B) θ $\begin{array}{cc}\partial \mathrm{r} \\ \mathrm{f}^{\prime}(\theta) & =0 \quad \partial \mathrm{v}\end{array}$
 $\sin 2$
$\mathrm{f}(2 \mathrm{za})=-\left(-[2 r \cos 2 \theta+\sin \cos \theta+\mathrm{c})+\mathrm{i}\left(r^{2}\right.\right.$
$\sin 2$
\rightarrow (2) 4) Show that [$\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2} \partial u}{\partial y^{2} \bar{\eta} \theta}\left[\text { real }=-2 r^{2}(z)\right]^{2}=2 \operatorname{fr}^{2}(z)^{2} 2 \theta$
Solution:

$$
f(z)=u+i v
$$

$$
\begin{aligned}
& \text { real } f(z)=u \\
& \text { [real } f(z)]^{2}=u^{2} \\
& \frac{\partial\left(u^{2}\right)}{\partial x}=2 u \frac{\partial u}{\partial x} \\
& \frac{\partial^{2}\left(u^{2}\right)}{\partial x^{2}}=2 u \frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} \rightarrow \text { (1) }
\end{aligned}
$$

Similarly,

$$
\rightarrow \text { (2) }
$$

Add
equation $\left[\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}\right] \mathrm{u}^{2}=2\left[\left(\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\right)^{2}+\left(\frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right)^{2}\right.$
(1) $\left.\frac{\partial u}{\partial x^{2}}+\frac{\partial u}{\partial y^{2}}\right] \frac{\partial^{2}\left(u^{2}\right)}{\partial y^{2}}=2 u \frac{\partial^{2} u}{\partial y^{2}}+2 \frac{\partial u}{\partial y} \frac{\partial u}{\partial y}$ \&
(2)
] $+2 u$ [$\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right] u^{2}=2\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right]$

2

$$
\left\{f(z)=u+i v=>f^{\prime}(z)=\right.
$$

$$
\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}
$$

$$
\left.\left.\left.\right|_{2 f^{\prime}(z)}\right|_{2}=\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right\}
$$

$$
\left.\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right] u_{[\text {real } f(z)]^{2}=}^{\mid}\right|_{2 f^{\prime}(z)^{2}}
$$

5) If $f(z)$ is analytical function with constant modulus, then show that $f(z)$ is constant.

Solution:

let $f(z)$ is constant modulus

$$
\begin{aligned}
& \mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv} \\
& \left.\left.\right|_{\mathrm{f}(\mathrm{z})}\right|_{=u^{2}+v^{2}=\mathrm{constant}} \\
& \sqrt{u_{2}+v_{2}}=\mathrm{c} \\
& u_{2}+v_{2}=c_{2}=\mathrm{c}_{1}
\end{aligned}
$$

Differentiate w.r.t ' \mathbf{x} '

$$
2 u \frac{\partial u}{\partial \mathrm{x}}+2 \mathrm{v} \frac{\partial v}{\partial \mathrm{x}}=0 \rightarrow \text { (1) }
$$

$$
\begin{aligned}
& 2 \mathrm{u} \frac{\partial \mathrm{u}}{\partial y}+2 \mathrm{v} \frac{\partial v}{\partial y}{ }_{\text {Differentiate }}^{\text {Dis. }} \text { w.r.t ' } \mathrm{y} \text { ' } \\
& \text { equations } \quad 2 \mathrm{u} \frac{\partial v}{\partial y}-2 \mathrm{v} \frac{\partial u}{\partial y} \\
& \text { (1) © } 2 \mathrm{u} \frac{\partial u}{\partial y}+2 \mathrm{v} \frac{\partial v}{\partial y} \quad=0 \rightarrow \text { (3) } \\
& =0 \rightarrow \text { (4) } \frac{\partial v}{\partial y}-v^{2} \frac{\partial u}{\partial y} \\
& \text { Multiply (3) }{ }^{*} \mathrm{v} \boldsymbol{9} \text { uv } u^{2} \frac{\partial u}{\partial y}+u v \frac{\partial v}{\partial y}=0 \\
& \text { (4) } * u 9=0 \\
& \text { Subtract } \\
& \text { then }
\end{aligned}
$$

$$
u=\frac{\partial v}{\partial y}-v^{2} \frac{\partial u}{\partial y}-u^{2} \frac{\partial u}{\partial y}-u v \frac{\partial v}{\partial y}=0
$$

$$
\text { Similarly } \begin{aligned}
& -\frac{\partial u}{\partial y}\left(u^{2}+v^{2}\right)=0 \\
& u^{2}+v^{2} \neq 0 \\
& \frac{\partial u}{\partial y}=0 \\
& \quad \int \frac{\partial u}{\partial y}=c \\
& v=c f(z) \text { is } \\
& \text { constant }
\end{aligned}
$$

Conformal Mapping :

A transformation $\mathrm{w}=\mathrm{f}(\mathrm{z})$ is said to be conformal if it preserves angel between oriented curves in magnitude as well as in orientation.

Bilinear Transformation :
The transformation $\mathrm{w}=\mathrm{f}(\mathrm{z})=\frac{\mathrm{az}+\mathrm{b}}{\mathrm{cz}+\mathrm{d}}$ is called the bilinear transformation or mobius transformation. Where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are complex constants.

The method to find the bilinear transformation if three points and their images are given as follows:

We know that we need four equations to find 4 unknowns. To find a bilinear transformation we need three points and their images.
in cross ration, three are four points $\left(\mathrm{w}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3},\right)=\left(\mathrm{z}, \mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3},\right)$

$$
\begin{gathered}
\frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{=}\left(z-z_{1}\right)\left(z_{2}-z_{3}\right) \\
\left(w_{1}-w_{2}\right)\left(w_{3}-w\right) \quad\left(z_{1}-z_{2}\right)\left(z_{3}-z_{2}\right) \\
\text { Since we have to get } w={ }^{-a z+b}{ }^{c z+d} \text {, we take one point as ' } z^{\prime} \text { ' and its image as ' } w \text { ' }
\end{gathered}
$$

Problems about bilinear transformation:

1) Find the bilinear transformation on which maps the points ($-1,0,1$) into the points ($0, i, 3 i$) in w-plane Solution:

$$
\text { In z-plane, } z_{1}=-1, z_{2}=0, z_{3}=1
$$

In w -plane, $\mathrm{w}_{1}=0, \mathrm{w}_{2}=\mathrm{i}, \mathrm{w}_{3}=3 \mathrm{i}$

In cross ration,

$$
(w, 0, i, 3 i)=(z,-1,0,1)
$$

$$
\begin{aligned}
& \frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w_{1}-w_{2}\right)\left(w_{3}-w\right)} \quad \frac{\left(z-z_{1}\right)}{\left(z_{1}-z_{2}\right)} \frac{\left(z_{2}-z_{3}\right)}{\left(z_{3}-z\right)} \\
& \frac{(w-0)(i-3 i)}{(0-i)(3 i-w)}=\frac{(z+1)(0-1)}{(-1-0)(1-z)} \\
& \frac{(w)(-2 i)}{(-i)(3 i-w)}=\frac{-(z+1)}{-(1-z)}
\end{aligned}
$$

$$
-2 w i(1-z)=(z+1)[-[i(3 i-w)]]
$$

$$
-2 w i+2 w i z=-[-3-w i](z+1)
$$

$$
-2 w i+2 w i z=3 z+w i z+3+w i
$$

$$
\begin{aligned}
& \frac{(w-0)(0-1)}{(0-i)(1-0)}=\frac{(0-1)(i-0)}{(1-0)(0-z)} \\
& \frac{-w}{-i}=\frac{-i}{-z} \quad w \quad \frac{i^{2}}{z}=\frac{-1}{z} \quad w=\frac{-\mathbf{1}}{z} \\
& \text { = }
\end{aligned}
$$ the z-plane into $(0, i, \alpha)$ in the w-plane. $\left(w_{2}-\stackrel{1}{\longrightarrow}\right)\left(z-\frac{1}{)}\left(z_{2}-z_{3}\right)\right.$

Solution: In z-plane, z
 $\frac{\left.{ }_{1}\right)\left(w_{3}^{\prime} w_{2}-1\right)}{1-}=\frac{\left(z z_{1}^{\prime}-1\right)\left(\mathrm{z}_{2}-\mathrm{z}_{3}\right)}{1}$

$$
\begin{aligned}
& (w-w)(\quad-w) \quad(\quad-z)\left(\begin{array}{ll}
z & z)_{12} W_{3}{ }^{1}= \\
=
\end{array}\right.
\end{aligned}
$$

3) Find the bilinear transformation that maps the points $(0, i, \alpha)$ respectively into $(0,1, \alpha)$.

Solution:
In z-plane, $z^{1}=0, z_{2}=\mathrm{i}, \mathrm{z}_{3}==\frac{1}{0}=\frac{1}{\alpha}=\frac{1}{\mathrm{z}_{3}{ }^{\prime}}\left[\mathrm{z}_{3}{ }^{1}=0\right]$

$$
\mathrm{w}_{1}=0, \mathrm{w}_{2}=1, \mathrm{w}_{3}=\frac{1}{\mathrm{w}_{3}{ }^{\prime}}=\frac{1}{0}=\alpha\left[\mathrm{w}_{3}{ }^{\prime}=0\right]
$$

In w-plane,
1

$$
\begin{aligned}
& \frac{(w-0)(0-1)}{(0-1)(1-0)}=\frac{(z-0)(i(0)-0)}{(0-i)(1-0)} \\
& \frac{-\mathrm{w}}{-1}=\frac{-\mathrm{z}}{-\mathrm{i}} \\
& \mathrm{w}=-\mathrm{iz}
\end{aligned}
$$

Fixed point :

The transformation $w=\frac{a z+b}{c z+d}$
The roots of this transformation are called fixed points or invariant points.

$$
\begin{aligned}
& z=\frac{a z+b}{c z+d}(\text { we know that } w=f(z)) z(c z+d)= \\
& a z+b c z^{2}+d z=a z+b c z^{2}+(d-a) z-b=0
\end{aligned}
$$

Problems:

1) Find the fixed points of the transformation $w=$

Solution: The roots of above transformation are called fixed points

$$
\begin{aligned}
& \frac{z-1+i}{z+2} \text { put w } \\
= & z z=\frac{z-1}{z+1} z(z+1) \\
= & z-1 z^{2}+z-z+1 \\
= & 0 z^{2} \\
+ & 1=0 z^{2}=-1 z= \pm
\end{aligned}
$$

i fixed points $\pm \mathrm{i}$
2) The fixed points of the transformation $w=$

Solution:

$$
\begin{aligned}
& \text { put } \mathbf{w}=\mathbf{z} \\
& \mathbf{z}=\frac{\mathrm{z}-1+\mathrm{i}}{\mathrm{z}+2} \\
& z(z+2)=(z-i+1) \quad(a=1, b=1, c=1-i) \\
& z^{2}+2 z=z-i+1 \\
& z^{2}+z+i-I=0 \\
& \mathbf{z}=\frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^{2}} \frac{-\mathbf{4 a c}}{\mathbf{2 a}}=\frac{\sqrt{ }-1}{2} \pm 1+4(1-\mathrm{i})}{} \\
& -1 \underset{\mathrm{iz}=}{+1+\sqrt{4-4 \mathrm{i}}} \frac{-1+\sqrt{3-4}}{=} \\
& \begin{array}{cc}
-1+\sqrt{3-4} & \sqrt{-1-3-4 i} \\
2 & 2
\end{array}
\end{aligned}
$$

3) Determine the bilinear transformation whose fixed points are $1,-1$ Solution:

Given fixed points are $z=1,-1$

The roots of the transformation is $w=$ \qquad are called fixed points put $\mathbf{w}=\mathbf{z c z}+\mathrm{d}$

$$
\begin{aligned}
& z=\frac{\frac{a z+b}{c z+d}}{} \\
& \mathrm{cz}^{2}+(\mathrm{d}-\mathrm{a}) \mathrm{z}-\mathrm{b}=0(\mathrm{z}+1)(\mathrm{z}- \\
& 1)=0 \\
& \mathrm{z}^{2}-1=0 \\
& \mathbf{w}=\frac{0 \mathrm{z}+1}{1 \mathrm{z}+\mathbf{0}}=\frac{1}{\mathrm{z}} \quad(\mathrm{c}=1, \mathrm{~d}=0, \mathrm{a}=0, \mathrm{~b}=1)
\end{aligned}
$$

Problems on images:

1) Write the image of the triangle with vertices $(i, 1+i, 1)$ in the z-plane under the transformation $w=3 z+4-2 i$

Solution:

y

$$
\begin{aligned}
& (x, y)=(1,0) \\
& \text { In w-plane: }
\end{aligned}
$$

in z-plane Transformation $\mathrm{z}=\mathrm{i} \boldsymbol{0}$
$x+i y=0+i w=3 z+4-2 i(x, y)=(0,1) w=$ $3(x+i y)+4-2 i z=1+i$ © $\quad x+i y=1+i u+i v=w$

$$
(x, y)=(1,1) \quad u=3 x+4, v=3 y-2
$$

z- plane

$$
\begin{aligned}
& (1,0) \\
& z=1 \boldsymbol{\Theta} \quad x+i y=1
\end{aligned}
$$

$$
\begin{array}{lll}
\text { i) }(x, y)=(0,1) \text { © } & (u, v)=(4,1) & \text { ii) }(x, y)=
\end{array}
$$

$$
(1,1) \ominus \quad(u, v)=(7,1) \text { iii) }(x, y)=(1,0) \ominus \quad(u, v)=(7,-2)
$$

Conclusion:

The image of the triangle whose vertices ($\mathrm{i}, 1+\mathrm{i}, 1$) is mapped as triangle whose vertices (4,1),(7,1), (7,-2) in w-plane under the transformation $\mathbf{w = 3 z + 4 - 2 i}$

2) Find the image of the infinite strip $0<y<{ }_{2}^{1}$ under the transformation $\underset{z}{=}=$

Solution: In z-plane
the infinite strip between the lines $y=0, y=$.

Transformation:

$$
\begin{aligned}
& 1 \\
& \mathrm{w}=\mathrm{z} \\
& 1 \mathrm{z}= \\
& w \mathrm{x}+\mathrm{iy}=\frac{1}{u+i v} \frac{u-i v}{u-i v} \\
& u-i v \\
& \overline{u^{2}+\mathrm{v}^{2}} \quad x+i y= \\
& \begin{array}{l}
\mathrm{x} \\
=\frac{u}{\mathrm{u}^{2}+\mathrm{v}^{2}}, \mathrm{y}=\frac{-v}{\mathrm{u}^{2}+\mathrm{v}^{2}}
\end{array}
\end{aligned}
$$

In w-plane
z-plane
i) $\mathrm{y}=\rightarrow 0=\frac{-v}{\mathrm{u}^{2}+\mathrm{v}^{2} \mathrm{O}}$
ii) $\mathrm{y}=\frac{1}{2} \rightarrow \frac{1}{2}=\frac{-v}{\mathrm{u}^{2}+\mathrm{v}^{2}}$
$0=-v \quad u^{2}+v^{2}=-2 v \mathbf{v}=0$ Conclusion: 1
The image of infinite strip $0<y<\quad$ is transferred as straight line $(v=0)$ or circle under the transformation $w=$
3) Find the image of the region in the $z-\frac{1}{2}$ plane between the lines $y=0$ and $y=$ under the transformation w = e 2

Solution: In z-plane
The lines are $y=0, y=\frac{\pi}{2}$
Transformation

$$
\begin{aligned}
& w=e^{z} \\
& \text { u+iv = ex+iy }=e_{x} e_{i y} y=0 \quad u+i v=e^{x} \\
& \text { [cosy+isiny] u = e } x \cos y \quad v=e^{x} \sin y
\end{aligned}
$$

In w-plane
i) $y=0$ © $u=e^{x}, \quad v=0$
$\pi \quad x$
ii) $y=9 \quad u=0, \quad v=e$

Conclusion:

The image of the region lines $y=0 \& y=$ are transferred as first quadrant in the w-plane under the transformation $w=e^{z}$
4) Show that transformation $w=z+\ldots$ maps the circle $z=c$ into the eclipse $\left.u=\left(c+\frac{1}{c}\right) \cos \theta, v=\frac{1}{c}\right) \sin \theta$ ($c-\quad$. Also discuss the z case when $\mathrm{c}=1$ in detail.

Transformation

Z-plane

The | | circle $z \quad=\quad \mathrm{c}$
| 1

```\(=\mathrm{Z}\)
                                    1
The || circle \(z \quad=\quad \mathrm{c}\)
    | 1 w
    \(\sqrt{ }=\)
                                    \(+\)
    \(x+i y=c \quad w=e^{i \theta}+\frac{1}{r e^{i \theta}}\)
    \(x^{2}+y^{2}=c \quad u+i v=r\left(r \cos x^{2} \theta+i \sin \theta\right)+\frac{1}{r}(r \cos \theta-i \sin \theta)+y^{2}=c^{2} u+i v=\)
    \(\left(r+\frac{1}{r}\right) \cos \theta+i\left(r-\frac{1}{r}\right) \sin \theta \quad u=\left(r+\frac{1}{r}\right) \cos \theta \quad v=\left(r-\frac{1}{r}\right) \sin \theta\)
w-plane
```

 \(\left\lvert\, \begin{aligned} & \mid \\ & l\end{aligned}=c\right.\)
 \(\left.\right|_{z} \mid=r(r=c)\)
 \(\sin ^{2} \theta=1 \frac{\mathbf{u}^{2}}{\left(c+\frac{1}{c}\right)^{2}}+\frac{\mathbf{v}^{2}}{\left(c-\frac{1}{c}\right)^{2}}=1\)
 we know that

Case: When $\mathrm{c}=1$

$$
\begin{aligned}
& \text { Vhen } \mathbf{c}=1 \\
& \left.\left.\right|_{z}\right|_{1}, \quad \frac{u^{2}}{\mathbf{a}^{2}}+\frac{\mathbf{v}^{2}}{\mathbf{b}^{2}}=1 \\
& u=2 \cos \theta, v=0
\end{aligned}
$$

Conclusion:

The image of circle $z=c$ is transferred as eclipse $=\mathbf{1}$ plane and also the image of circle $z=1$ when $c=1$ is transferred as straight lines $u=2 \& v=0$ in $w-$ plane under the transformation $w=z+$.

$\begin{array}{ll}\underline{\mathbf{u}} & \mathbf{v}^{\mathbf{2}} \\ -\mathrm{z}\end{array}$
5) Discuss the transformation of $w=\operatorname{sinz}$ using example. ${ }^{+}{ }_{b}$
Solution:

$$
\begin{aligned}
& \text { Transformation } w=\sin z \\
& \qquad \begin{array}{l}
w=\sin (x+i y) w= \\
\sin x \cos i y+\cos x \sin i y
\end{array}
\end{aligned}
$$

$$
u+i v=\sin x \cosh y+i \cos x \sinh y x
$$

$$
u=\sin x \cosh y \quad v=
$$

cosxsinhy

Example: In z-plane		In w-plane	
\|			$u \mathrm{v}=1$
$\mathrm{x}=\mathrm{c}$	coshy $=\ldots$ _ , sinhy $=$		
		$\sin x$	
$\mathrm{x}^{2}+\mathrm{y}^{2}=1$			

Conclusion
put $\mathbf{x}=\mathbf{c}, \quad \frac{\mathrm{u}^{2}}{\sin ^{2} x}-\frac{\mathrm{v}^{2}}{\cos ^{2} x}$

The image line x
$=c$ is transferred as hyperbola
$\frac{u^{2}}{a^{2}}-\frac{\mathbf{v}^{2}}{\mathbf{b}^{2}}=\mathbf{1}$ in w - plane under
the transformation $w=\operatorname{sinz}$.
6) Discuss the transformation of $w=\operatorname{cosz}$

Solution: Transformation on $w=\operatorname{cosz}$
$\mathrm{w}=\cos (\mathrm{x}+\mathrm{iy}) \mathrm{w}=\cos x \cos i \mathrm{y}-\sin x \sin i y \mathrm{u}+\mathrm{iv}=$
cosxcoshy - isinxsinhyx u = cosxcoshy
z- $\overline{\sinh y}$

sinxsinhy ln

plane $\ln w$-plane $y=c \cos x=\sin x=-$

$$
\begin{aligned}
& \cos ^{2} x+\sin ^{2} x=1 \\
& \frac{\mathrm{u}^{2}}{\cosh ^{2} y}+\frac{\mathrm{v}^{2}}{\sinh ^{2} y}=1
\end{aligned}
$$

put $\mathrm{y}=\mathrm{c}$

Conclusion:

The image of line $\mathrm{y}=\mathrm{c}$ is transferred as ellipse $\frac{\mathrm{u}^{2}}{\mathrm{a}^{2}}+\frac{\mathbf{v}^{2}}{\mathrm{~b}^{2}}=1$ under the transformation $\mathrm{w}=\cos z$.

Unit - 2

Complex Integration

Line Integral:

suppose $f(z)$ is a complex function in the region R, and C is a smooth curve in R. Consider an interval
$\mathrm{x}_{1}<\mathrm{X}_{2} \ldots<\mathrm{X}_{\mathrm{n}}<\mathrm{b}$ are points in (a, b).
(a, b) and a <
$\Delta \mathrm{X}_{\mathrm{r}}=\mathrm{X}_{\mathrm{r}}-\mathrm{Xr}_{\mathrm{r}}-1$ are chord vectors, then

$$
\lim _{\mathrm{n} \rightarrow \infty} \quad \stackrel{()}{\mathrm{r}=1^{\mathrm{n}}} \quad \Delta \mathrm{x}_{\mathrm{r}}=\mathrm{a}^{\mathrm{b}} \mathrm{f} \mathrm{z} \mathrm{dz}
$$

Where the summation tends to a limit and independent of the points choice. The limit exists if $f(z)$ is continuous along the path.

Evaluation of the integrals: $\mathrm{fzdz}=(\mathrm{u}+\mathrm{iv})(\mathrm{dx}+\mathrm{idy})=(\mathrm{udx}-\mathrm{vdy}+$ $i(u d y+v d x$) (Where u and v are functions of x.)

Problems:

1) Evaluate $c^{2}+$ ixydz from $A(1,1)$ to $B(2,8)$ along $x=t$ and $y=t^{3}$.

Solution: Along $x=t, y=t^{3}, d x=d t, d y=3 t^{2} d t$, The limits for t are 1 and $2 \quad c($
$\left.\mathrm{x}^{2}+\mathrm{ixy}(\mathrm{dx}+\mathrm{idy})={ }_{c} \mathrm{x}^{2} \mathrm{dx}-\mathrm{xydy}\right)+\mathrm{i}\left(\mathrm{xy} \mathrm{dx}+\mathrm{x}^{2} \mathrm{dy}\right.$
$2{ }^{2} \mathrm{dt}-3 \mathrm{t}^{6} \mathrm{dt}+\mathrm{i} 4 \mathrm{t}^{4} \mathrm{dt}=\boldsymbol{t}^{\wedge} \mathbf{3}-3 \quad t^{\wedge} \mathbf{7}+\mathrm{i} 4 \boldsymbol{t}^{\wedge} \mathbf{5}$ (apply the lower
$=1 \mathrm{t}$
$\begin{array}{lll}3 & 7 & 5\end{array}$
and upper limit)
$=-\frac{1094}{2}+\frac{124 i}{5}$
$1+\mathrm{i} \quad 2 \mathrm{dz}$ along $\mathrm{y}=\mathrm{x}^{2}$
2) Evaluate $0 \quad \mathrm{Z}$
$1+i \quad 2 d z$ along $y=x^{2}, d y=2 x d x$

Solution: 0 Z

$$
\begin{aligned}
& \left.1+i \quad 2-y^{2}+2 i x y\right)(d x+i d y) \\
= & 0(x
\end{aligned}
$$

$2+i$

3) Evaluate ${ }_{1-\mathrm{i}}(2 \mathrm{x}+1+\mathrm{iy}) \mathrm{dz}$ along $(1-\mathrm{i})$ to $(2+\mathrm{i})$.

Solution: Along (1-i) to (2+i) is the straight line AB joining ($1,-1$) to $(2,1)$.

$$
\text { The equation of } A B \text { is } y-1=-\frac{(-1-1)}{(1-2)}(x-2) \quad y-2 x=
$$

$-3, y=2 x-3, d y=2 d x$
X varies from 1 to 2
2+i2 $\left.\left.{ }_{1-\mathrm{i}}(2 \mathrm{x}+1+\mathrm{iy}) \mathrm{dz}={ }_{2} 2 \mathrm{x}+1 \mathrm{dx}\right)(2 \mathrm{x}-3) 2 \mathrm{dx}+\mathrm{i}[2 \mathrm{x}-3] \mathrm{dx}+(2 \mathrm{x}+1) 2 \mathrm{dx}\right]$
$={ }_{1}(-2 x+7 d x+i(6 x-1) d x$
$=-2+7 x+i(6-x) \mid$ (apply the lower
and upper limit)
2+i

$$
{ }_{1-i}(2 x+1+i y) d z=4+8 i
$$

$\left.(1,1) \quad{ }^{2}+5 y+i\left(x^{2}-y^{2}\right)\right] d z$ along $y^{2}=x$.
4) Evaluate $(0,0)[3 x$

Solution: Along $\mathrm{y}^{2}=\mathrm{x}, 2 \mathrm{ydy}=\mathrm{dx}, \mathrm{y}$ varies from 0 to 1.
$(0(1,0), 3)\left[3 x^{2}+5 y+i\left(x^{2}-y^{2}\right)\right][d x+i d y]=0^{1} 3 y^{4} 2 y d y+5 y 2 y-\left(y^{4}-y^{2}\right) d y+i\left[\left(3 y^{4}+5 y\right) d y+\left(y^{4}-y^{2}\right) 2 y d y\right]$

$(1,3) \quad{ }^{2} y d x+\left(x^{2}-y^{2}\right) d y$ along a) $y=3 x^{2}$ b) $y=3 x$.
5) Evaluate $(0,0) x$

Solution: a) $\mathrm{y}=3 \mathrm{x}^{2}, \mathrm{dy}=6 \mathrm{xdx}, \mathrm{x}$ varies from 0 to 1.
$(0(1,0), 3) x^{2} y d x+\left(x^{2}-y^{2}\right) d y=0^{1} 3 x^{4} d x+\left(x^{2}-9 x^{4}\right) 6 x d x$
\qquad

```
x5 + 6 x4-54 x66
6 9
    =-
1 0
                                    b) y=3x,dy=3dx, x varies from 0 to 1.
                                    (1,3)
0}\mp@subsup{0}{}{1}3\mp@subsup{x}{}{3}dx+(\mp@subsup{x}{}{2}-9\mp@subsup{x}{}{2})3d
```

```
                                    \((0,0) x^{2} y d x+\left(x^{2}-y^{2}\right) d y=\)
```

 \((0,0) x^{2} y d x+\left(x^{2}-y^{2}\right) d y=\)
    ```
                    \(=3\) _ - 24 (apply the lower
```

 \(=3\) _ - 24 (apply the lower
 43
 43
 and upper limit)
 and upper limit)
 \(x^{4} \quad x^{3}\)
 \(x^{4} \quad x^{3}\)
 - -
 - -
 4

```
4
```

6) Evaluate $c(3 z+1) d z$ where C is the boundary of the square with vertices at the points $z=0, z=1, z=1+1$, $z=i$ and the orientation of C is anti-clockwise. Solution: C is the square OABC
```
\(\left.{ }_{c}(3 z+1) d z=c_{1}(3 z+3 z+1) d z+{ }_{c 4}(3 z+1) d z \quad 1\right) d z\)
\(+\mathrm{c}^{2}(3 \mathrm{z}+1) \mathrm{dz}+\mathrm{c}^{3}(\)
    Along \(\mathrm{C}_{1}=\mathrm{OA}\)
\(d y=0 \quad C(0,1)\)
1
\(X\) varies from 0 to \(1 c 13 z+1 d z={ }_{0}\left(3^{x+1) d x=3} ـ_{2}+x\right.\) (apply the lower and upper limit)
\[
Z=0 \quad 0 \quad Z=1
\]
\(\mathrm{A}(1,0)\)
\[
=
\]
\(x=1, d x=0 y\)
varies from 0 to 1
1
3
\[
\mathrm{c}_{2}(3 \mathrm{z}+1) \mathrm{dz}=\mathrm{i}_{0}[3(1+\mathrm{i} y)+1] \mathrm{d} y=4 \mathbf{i}-2
\]

Along \(c_{3}=B C \quad y=1, d y=0 x\)
varies from 1 to 0
\[
0 \quad 3
\]
\[
\mathrm{c}_{3}(3 \mathrm{z}+1) \mathrm{dz}={ }_{1}[3(\mathrm{x}+
\]
i) +1\(] d x=-\ldots 2-3 i-1\)

Along \(\boldsymbol{c}_{4}=\mathrm{CO} \quad \mathrm{x}=0, \mathrm{dx}=0 \mathrm{y}\)
varies from 1 to 1
\[
\begin{aligned}
& 1 \quad 3 \quad \mathrm{c}_{4}(3 \mathrm{z}+1 \mathrm{dz}=1
\end{aligned}
\]
\[
\begin{aligned}
& -3 \mathbf{i}-\mathbf{i}+\__{2}=\mathbf{0} \\
& \text { c }(3 z+1) d z=0
\end{aligned}
\]

Evaluate \({ }_{(0,0)}[3 \mathrm{x}\)
Solution: \(y=x^{2}, d y=2 x d x\),
\[
\begin{aligned}
& (0(1,0), 1)\left[3 x^{2}+4 x y+i x^{2}\right]=0^{1}\left(3 x^{2}+4 x^{3}+i x^{2}\right)(d x+i 2 x d x) \\
& \left.1 \quad 2+4 x^{3}-2 x^{3}\right) d x+i\left(6 x^{3}+8 x^{4}+x^{2}\right) d x \\
& ={ }_{0}(3 \mathrm{x} \\
& \frac{1}{=} 2+1 \frac{3}{-2}+i\left(\frac{8}{5}+\frac{1}{3}\right) \text { (apply the lower } \\
& \text { and upper limit) } \\
& 3 \text { 103i } \\
& =-+\quad \xrightarrow[30]{ }
\end{aligned}
\]
8) Evaluate \(c_{c}\left(y^{2}+2 x y\right) d x+\left(x^{2}-2 x y\right) d y\), where is the boundary of the region by \(y=x^{2}\) and \(x=y^{2}\)

\section*{Solution:}
\(C_{1}\) : Along \(O A, y=x^{2}, d y=2 x d x X\) varies from 0 to \(1 \quad C_{1}\left(y^{2}+2 x y\right) d x+\left(x^{2}-2 x y\right) d y=0_{0}^{1}\left(x^{4}+2 x^{3}\right) d x+\left(x^{2}\right.\)
\(\left.{ }^{3}\right) 2 x d x=-25 \quad C_{2}\) : Along \(A B O, x=y^{2}, d x=2 y d y \quad y\) varies from 1 to \(0-\)
2 x
\(\mathrm{c}_{2}\left(\mathrm{y}^{2}+2 \mathrm{xy}\right) \mathrm{dx}+\left(\mathrm{x}^{2}-2 \mathrm{xy}\right) \mathrm{dy}=\)
\[
\begin{aligned}
& \left.\quad{ }^{1} \quad{ }^{2}+2 y^{3}\right) 2 y d y+\left(y^{4}-2 y^{3}\right) d y=-\mathbf{- 1} \\
& \left(\mathbf{y}^{2}+\mathbf{2 x y}\right) \mathbf{d x}+\left(\mathbf{x}^{2}-\mathbf{2 x y}\right) \mathbf{d y}=\mathbf{- 1 + 2} \mathbf{5}_{5}=-\mathbf{3}_{5}-
\end{aligned}
\]

\section*{Cauchy's theorem}

If \(f(z)\) is analytical and \(f^{\prime}(z)\) is continuous inside and \(c^{\prime}\) on a

simple closed curve C, then \({ }_{\mathrm{c}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0\).

Proof: Suppose \(\mathbf{R}\) is the region bounded by C \(f(z)=u+i v\) \(x+i y\)
```

Where C

```
    \({ }_{c} f(\mathrm{z}) \mathrm{dz}=\mathrm{c}(\mathrm{u}+\mathrm{iv})(\mathrm{dx}+\mathrm{idy})\)
\(+\operatorname{vd} \mathrm{x})\)


Since \(f^{\prime}(z)\) is continuous, Q. \(x\), . \(y\), . \(x\), . \(y\) exist and are continuous in R.

According to Green's theorem
```

 cudx + vdy = .r(%.x-q. y) dxdy
 ()
 O.vou
 O.vo.
 U
 cfzdz = .R(-&.x-%.y)dxdy + i.r(.. y - . x) dxdy
 ()
    ```

\(\qquad\)

```

 dxdy
    ```
\(\qquad\)

\(\qquad\)
``` v
```

```
O.x =. y and Q.4.0.
```

O.x =. y and Q.4.0.
9.x()
9.x()
cf zdz=0

```
cf zdz=0
```


## Cauchy's Integral Formula

If $f(z)$ is analytical within and on a simple closed curve and $c^{\prime} a$ is any point inside $C$, then
1
$\mathrm{f}(\mathrm{z}) \mathrm{dz}$
$f(a)=$ $\qquad$
$\qquad$ $\mathbf{2 \pi i c}(\mathrm{z}-\mathrm{a})$
proof: $C$ is a closed curve and $a$ is any point inside $C$, Enclose a within a circle $C$ whose radius is $r$ and the centre is at a. Now C is inside C .
$\mathrm{f}(\mathrm{z}) \quad$ is not analytical
inside C.
( $\mathbf{z}-\mathbf{a}$ )

By Cauchy's theorem for multiple connected region

$$
\begin{align*}
& ()_{f(z)}()  \tag{}\\
& \quad \mathrm{g}(\mathrm{z}) \quad=(\mathrm{z}-\mathbf{a}) \mathrm{C}
\end{align*}
$$

Where

$$
\begin{gathered}
c^{\prime} \text { is } z-a=r \\
z-a=r e^{i} \theta, z=a+r e^{i} \theta \\
d z=\operatorname{rie}^{i}{ }^{\theta} d \theta \\
\theta \text { varies from } 0 \text { to } 2 \pi \text { in } c^{\prime}
\end{gathered}
$$

c $\mathrm{C}^{\prime} \mathrm{f}(\mathbf{z}-\mathbf{a z d z})=() \quad()$ $\qquad$ $c f(\mathbf{z}-\mathbf{a z d z})=02 \pi f\left(a+r\left(\right.\right.$ erie $\left.\left.^{\mathrm{i}} \mathrm{\theta}_{\mathrm{i}}\right) \theta \mathrm{r}\right) \mathrm{e}^{\mathrm{i}} \theta^{\theta} \mathrm{d} \theta=\mathrm{i} \quad 02 \pi f\left(\mathrm{a}+\mathrm{re}_{\mathrm{i}}{ }^{\theta}\right) \mathrm{d}$

$$
\begin{aligned}
& \text { As } \mathbf{r} \rightarrow \mathbf{0 , c} \rightarrow \mathbf{0} \\
& \begin{array}{c}
\text { () } \\
\text { fzdz }
\end{array} \\
& 2 \pi \\
& c(z-a)=i \underset{f z d z}{ } f(a) d \theta=f(a) 2 \pi i \\
& f(a)=\quad c(\mathbf{z}-\mathbf{a}) \\
& 2 \pi i
\end{aligned}
$$

## Cauchy's integral formula for the derivatives

(z)dz 1

$$
\begin{gathered}
f(a)=-\overline{c(z-a)} \\
2 \pi i
\end{gathered}
$$

Differentiating with respect to a successively

$$
\begin{aligned}
& \text { (z)dz1 } \\
& f^{\prime}(a)=2 \pi i \quad c(z-a)^{2} \\
& 2 \mathrm{fzdz} \\
& f^{\prime \prime}(a)=\quad c(z-a) 3 \\
& \text { Zतi () } \\
& \mathrm{f}_{\text {iii }}(\mathrm{a})=2 . \overline{\mathrm{c}} \mathrm{c}(\mathrm{fz}-\mathrm{az} \mathrm{dz})^{4} \\
& \text { 2пi } \\
& \text { () } \\
& \mathrm{f}_{\text {iv }}(\mathrm{a})=2.3 .42 \pi \mathrm{i} \quad \mathrm{c}(\mathrm{fz}-\mathrm{az} \mathrm{dz}) 5
\end{aligned}
$$

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{a})=2 \overline{\mathrm{n}!\mathrm{mi}} \frac{()}{\mathrm{c}(\mathrm{z}-\mathrm{afz}) \mathrm{dzn}+1}
$$

We can evaluate easily the integrals of complex functions using this formula.

## Problems:

$z^{\text {z }} \mathrm{dz}$

1) Evaluate $\qquad$ $(\mathrm{z}+2)^{3}$ where C is $\mathbf{z}=3$. Solution:
$z=-2$ lies inside $z=3$

## According to Cauchy's integral formula

$4 f \mathrm{zd} \frac{()}{\left.z^{2} d=-2\right]} \quad f^{\prime \prime}(a)=c(z-a) 3$,
[f(z) $=\mathrm{ze}$
$\pi i 2$

$$
f^{\prime}(z)=z^{z}+e^{z} \quad f^{\prime \prime}(z)=z^{z}+
$$

$2 e^{z}$

$$
f^{\prime \prime}(-2)=-2 e^{-2}+2 e^{-2}=0
$$

$\mathbf{z e}^{\mathbf{Z}} \mathbf{d z}$
$\qquad$
dz
2) Evaluate $\qquad$ ${ }^{z 3(\mathbf{z}+4)}$ where $d$ is $\mathbf{z}=2$ using Cauchy's integral formula.

Solution: $z=0$ lies inside $C$ and $z=-4$ lies outside.
According to Cauchy's integral formula

$$
\begin{aligned}
& f^{\prime \prime}(a)=2 \pi i^{c}(z-a) 3 \quad[a=0 \quad \underline{\underline{2}} \quad \underline{(z) d z} \text { and } f(z)=\quad(z+4)] \quad f^{\prime}(z)=-\frac{1}{(z+4)^{2}} f^{\prime \prime}(z)= \\
& \frac{2}{(z+4)^{3}} \text { and } f^{\prime \prime}(0)=\frac{1}{32} \\
& \text { dz } \quad i \pi \\
& c^{3}(\mathrm{z}+4)=32
\end{aligned}
$$

3) Evaluate $c^{\frac{\left(z^{3}-\sin 3 z\right) d z}{\left(z-\frac{\pi}{2}\right)^{3}}}$ where C is $\mathbf{z}=2$ using Cauchy's integral formula.

Solution: According to Cauchy's integral formula


```
 \(\pi i\)
\[
2
\]
 2
```

$$
\begin{gathered}
\frac{\pi}{2}<2, z=\frac{\pi}{2} \text { lies inside C: } \mathbf{z}=2 \\
3 \cos 3 z f^{\prime \prime}(z)=6 z+9 \sin 3 z \quad f^{\frac{\pi}{\prime \prime}\left(\frac{\pi}{2}\right)=3 \pi-9}
\end{gathered}
$$

$$
c(z-a)^{3}=\pi i(3 \pi-9)
$$

$d z$
4) Evaluate $c \quad e z(\mathbf{z}-1) 3$ where $\mathbf{C}$ is $\mathbf{z}=2$ using Cauchy's integral formula.

$z=1$ lies inside C i.e|z|=2
$\mathrm{f}(\mathrm{z})=e^{-z}$

According to Cauchy's integral formula
$1 \quad \mathrm{f}\} \mathrm{dz} \quad \mathrm{c}(\mathbf{z}-\boldsymbol{a})=$
$f(a),[a=1]$
$-\quad$ ()

$$
\begin{aligned}
& f^{\prime}(\mathrm{z})=-e^{-z} \mathrm{f}^{\prime \prime}(\mathrm{z})=e^{-z}, \mathrm{f}^{\prime \prime}(1)=e^{-1} \\
& e^{-z d z} \quad \mathbf{i \pi} \\
& \overline{c(\mathrm{z}-1) 3}=-
\end{aligned}
$$

5) Using Cauchy's integral formula evaluate $\qquad$ $z 4 d z$ where C is ellipse and $9 x 2+4 y 2=c$ $(\mathrm{z}+1)(\mathrm{z}-i) 2$
36. 

$$
z^{4} d z
$$

Solution: $\quad c \overline{(\mathrm{z}+1)(\mathrm{z}-i)^{2}}$
$=c(\mathrm{z}+1)(1+i)^{2}-c(\mathrm{z}-\mathrm{i})(1+i)^{2}+(1+\mathrm{i}) \quad-\quad-\quad c$
$(\mathrm{z}-i)^{2}$ Splitting into partial fractions $\mathrm{z}=-1$ and $\mathrm{z}=\mathrm{i}$ lie inside $9 x^{2}+4 y^{2}=36$

$$
\frac{1}{2 \pi i} \frac{()}{c(z-\mathbf{a})}
$$

$$
f(a)=
$$

$2 \pi i$

$$
\begin{aligned}
& f(z)=z^{4}, a=-1, f(-1)=1, a=1, f(i) \quad \frac{1}{(1+i)^{2}} \quad=1 \\
& =4 z^{3} \text { and } f^{\prime}(i)=-4 i
\end{aligned}
$$

$$
\begin{aligned}
c(z+1)(z-i) 2= & \frac{z^{4} d z}{(1+i)^{2}} 2 \pi i-2 \pi i+2 \pi i(-4 i) \\
= & =4 \pi(1-i) \frac{8 \pi}{(1+i)}
\end{aligned}
$$

## 6) Evaluate $\left.{ }_{c} \quad \underset{(z-1) 3}{\text { logzdz1 }}\right|_{\text {where-C }}$ is $\mathbf{z}-\mathbf{1}=2$ using Cauchy's integral formula Solution:

According to Cauchy's integral formula
1
$\mathrm{fzdz} \quad \mathrm{f}^{\prime \prime}(\mathrm{a})$
$\mathrm{c}(\mathrm{z}-\mathrm{a})^{3}=2$ !
( )
|
$\mathrm{a}=1$ ] $\pi \mathrm{i} 1$
$z-1=$ is a circle whose centre is $(1,0)$
radius is , $\mathrm{a}=1$ lies inside C

$$
2 \quad \overline{z^{2}}
$$

$1 \quad f(z)=$
$\log z, f^{\prime}(z)=, f^{\prime \prime}(z)=-, f^{\prime \prime}(1)=-1$
Z
1
$f^{\prime \prime}(a)=\pi i \quad$ c $(z-a)^{3}$
logzdz

$$
=-\pi i
$$

$$
c(z-1) 3
$$

7) Evaluate
$\left(z^{2}-z-1\right) d z$

## Solution:

## According to Cauchy's integral formula


9) If $F(a)=$ ( $\mathbf{z}-\mathrm{a}$ ) using Cauchy's integral formula where C is $\mathbf{z}=2, F(1), F(3), f^{\prime \prime}(1-\mathrm{i})$.
$\left(3 z^{2}+7 z+1\right) d z$
Solution: $\quad$ Suppose $\mathrm{F}(\mathrm{a})=$ $\qquad$ (z-a)
$\left(3 z^{2}+7 z+1\right) d z$


$$
(z-a)=2 \pi i f(a)
$$

$$
\begin{aligned}
& {\left[\mathrm{f}(\mathrm{z})=3 \mathrm{z}^{2}+7 \mathrm{z}+1, \mathrm{f}(1)=3+7+1=11\right]} \\
& (3 \mathrm{z}+7 \mathrm{z}+1)
\end{aligned}
$$

$2 \pi \mathrm{i} 11=22 \pi \mathrm{i}=\mathrm{F}(1)$

$$
=0=F(3)
$$

$$
\begin{aligned}
& a=1-i \text { is inside } C \\
& F(a)=2 \pi i\left(3 a^{2}+7 a+1\right) \\
& F^{\prime}(a)=2 \pi i(6 a+7)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (z-3) } \\
& \mathrm{F}(\mathrm{z})=\mathrm{c} \frac{{\left.\stackrel{\left(3 z^{2}\right.}{ }{ }^{2} 7 \mathrm{z}+1\right)}_{(\mathrm{z}-3)}^{\mathrm{d}} \mathrm{dz}, \quad[\mathrm{z}=3 \text { is outside } \mathrm{C}]}{} \\
& (3 z+7 z+1) \\
& \text { (z-3) }
\end{aligned}
$$

## Complex Power Series

## Taylor's Theorem:

If $f(z)$ is analytic inside and a simple closed circle $C$ with centre at $a$, then for $z$ inside $C$

$$
f(z)=f(a)+
$$ $f^{\prime}(a)(z-a)+\underline{f^{\prime \prime}(a)}(z-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{}(z-a)^{3}+\ldots$

$$
2!\quad 3!
$$

Proof: Let $Z$ be any point inside $C$, then enclose $z$ with a circle $c^{\prime}$, with centre at a, let $w$ be a point on $c^{\prime}$, then

$$
==(1-\ldots) \quad \begin{array}{cccc}
1 & 1 & 1 & \mathrm{w}-\mathrm{zw}-\mathrm{a}-(\mathrm{z}-\mathrm{a}) \mathrm{w}-\mathrm{a} \\
\mathrm{w}-\mathrm{a} & -1
\end{array}
$$

converges
uniformly
multiplying


a) $2 c^{\prime} f(\mathrm{w}-\mathrm{aw} d w) 3+\ldots+(\mathrm{z}-\mathrm{a}) n \mathrm{c}^{\prime}(\mathrm{w}-\mathrm{af} \mathrm{w}) \mathrm{dw} n+1$
$f(w)$ is analytic on $c^{\prime}$

$$
\begin{aligned}
& 1 \quad \frac{f(\mathrm{wdw}}{c^{\prime}(\mathrm{w}-\mathrm{z})} \\
& f(z)=\underline{(f)^{n} \quad 2 \pi i \quad 1 \quad()} \\
& \text { (a) } \\
& f \mathrm{wdw}
\end{aligned}
$$

and $n!\quad=2 \pi \mathrm{C}^{\prime}(\mathrm{w}-\mathrm{a})_{n+1}$
Dividing by $2 \pi i$
 $(\mathrm{w}-\mathrm{a})_{n+1}+\ldots$
$2 \pi i$

$$
{ }_{2 n}^{(z-a)} \quad(\mathrm{z}-\mathrm{a}) \quad \mathrm{f}(\mathrm{z})=
$$

$f(a)+(z-a) f^{\prime}(a)+\ldots f^{\prime \prime}(a)+\ldots+\quad(f)^{n}(a)+\ldots$

This is Taylor's series of $f(z)$
if $\quad z-a=h$

$$
\left.f(a+h)=f(a)+h f^{\prime}(a)+f^{\prime \prime}(a)+\ldots+n_{!}(a)+\ldots 2 m^{h 2} \quad-\quad-\quad \text { (f) }\right)^{n} \quad \text { if }
$$

$a=0, h=z$

Z2 $\quad$ Zn

$$
f(z)=f(0)+z f^{\prime}(0)+\ldots 2!f^{\prime \prime}(a)+\ldots+n!
$$

(f) (a) $+\ldots$

This is a Maclaurin's series of $f(z)$

## Laurent series

If $f(z)$ is analytic in a ring $R$ bounded by two concentric circles $C_{1}$ and $C_{2}$ of radii $r_{1}$ and $r_{2}$, $\left(r_{1}>r_{2}\right)$ with centre at a then for all $z$ in $R \quad P \quad f(z)=a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+\ldots+b+\underline{b}+\ldots$


Where $\mathrm{a} n=2 \pi \mathrm{i} \mathrm{C}_{1}\left(\mathrm{w}-(\mathrm{a})_{n+1}\right.$
$f \mathrm{wdw}{ }^{1}$
and $\quad \mathrm{b}_{n}=2 \pi \mathrm{i} \mathrm{C}_{2(\mathrm{w}-\mathrm{a})-n+1}$
Where $\mathrm{c}^{\prime}$ is any curve in R encircling $\mathrm{C}_{2}$


Where $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are described anticlockwise

## Consider



For $\mathrm{C}_{2}, \mathrm{w}-\mathrm{a}<\mathrm{z}-\mathrm{a}$
$c 22 \pi \mathrm{i}(\mathrm{w}-\mathrm{a})-3$

$$
\ldots, \ldots
$$

Substituting equations 2 \& 3 in 1 , we get $\left.f(z)=n=0(z-a)^{n} a_{n}+n=1 z-a\right)^{-n} b_{n}^{\infty}$ This $($ is called the Laurent series of $f(z)$
$\infty$
The first part $\mathbf{n = 0}(\mathbf{z}-\mathbf{a})^{\mathbf{n}} \mathbf{a}_{\mathbf{n}}$ is called the analytic part and the second part
$\infty$ $\mathbf{n}=\mathbf{1}(\mathbf{z}-\mathbf{a})^{-\mathbf{n}} \mathbf{b}_{\mathbf{n}}$ is called the principal part. If the principal part is zero, the series reduces to the Taylor's series Problems

1) Expand $\log z$ by Taylor's series about $z=1$.

Solution: $\quad$ The given function is $f(z)=\log z$ Taylor's series is

$$
{ }^{\text {filI }}(a)_{3!}(z-a)^{3}+\ldots+
$$

$f^{\prime \prime}(\mathrm{a})$

$$
\left.f(z)=f(a)+f^{\prime}(a)(z-a)+\quad 2!(z-a)^{2+} \overline{=0}-a\right)^{n+\ldots}
$$

$$
\begin{aligned}
& \left.\right|^{w-a} 1_{z-a} \\
& \frac{1}{(w-z)}=\frac{1}{w-a-(z-a)}=\frac{1}{(z-a)\left(1-\frac{w-a}{z-a}\right)} \\
& =\frac{1}{(z-a)}\left[1-\frac{w-a}{z-a}\right]^{-1} \\
& =\sum \mathbf{b} \quad \begin{array}{ll}
\frac{1}{(z-a)}\left[1+\frac{w-a}{z-a}\right. & \frac{(w-a)^{2}}{(z-a)^{2}}+\frac{(w-a)^{3}}{(z-a)^{3}}
\end{array} \quad \begin{array}{l}
2 \pi i \\
n(z-a)^{-} \mathbf{n} \quad(7 \text { equation } 3
\end{array} \text { Where } \\
& \begin{array}{c}
-\frac{1}{-}=\frac{f(w) d w}{(w-z)} \frac{1}{(z-a)^{2}} \frac{()}{()} \frac{1}{(w d w} \\
b^{n}=2 \pi i C_{2} \\
(w-a)-n+1
\end{array} \\
& \begin{array}{c}
-\frac{1}{-}=\frac{f(w) d w}{(w-z)} \frac{1}{(z-a)^{2}} \frac{()}{()} \frac{1}{(w d w} \\
b^{n}=2 \pi i C_{2} \\
(w-a)-n+1
\end{array} \\
& =+\quad+. .] \\
& \text { fwdw } \\
& \text { C } \\
& 2 \pi \mathrm{iC}_{2}(\mathrm{z}-\mathrm{a})+\quad 2 \pi i \mathrm{C}_{2}(\mathrm{w}-\mathrm{a})-1+ \\
& 7 \text { equation } 3 \text { Where } \\
& 2 \pi i C_{2}(z-a)+\quad 2 \pi i C_{2}(w-a)-1
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(z)=\stackrel{1}{z}, f^{\prime}(1)=1, \\
& 1 \\
& f^{\prime \prime}(z)=-z_{2}, f^{\prime \prime}(1)=-1, \\
& \underline{2} \\
& f^{\prime \prime \prime}(z)=z 3, f^{\prime \prime \prime}(1)=2, \quad \underline{2} \quad f^{i v}(z)= \\
& \frac{-3!}{z 4}, f i v(1)=-3! \\
& \log z=(z-1)-\frac{1}{2}(z-1)^{2}+\frac{1}{3}(z-1)^{3-1} 4(z-1)^{4+\ldots+} \longrightarrow^{(-1) n-1 n(z-1) n+\ldots} \\
& 7 z-2
\end{aligned}
$$

2) Obtain all the Laurent series of the function about $z=-1$
Solution:

$$
f(z)=\frac{1}{(z+1 z(z-2)}
$$

$$
\text { put } z+1=u, z=u-1 \quad z-
$$

$2=u-3$

$$
\begin{aligned}
& A=\lim =-3 \\
& u \rightarrow 0 u \overline{\mathcal{S}_{1}\left(u^{2}{ }^{2}\right) \underline{7}-9} \\
& B=\lim \quad=1 \\
& u \rightarrow 1 u(u-3) \\
& 7 \mathrm{u}-9 \mathrm{C} \\
& =\lim =2 u \rightarrow 3 u-1 u \\
& \begin{array}{c}
-3+1+-z=-3-1-u-1(21)-u-1 u \\
u-3 \text { u } 303
\end{array} \\
& =-3-\left(1+u+u^{2}+u^{3}+\ldots\right)-(1+u+u 2+\ldots) u 39 \\
& =-u 3-53-(1+\ldots 322)(z+1)-(1+\quad- \\
& \left.3_{22}\right)(\mathrm{z}+1)^{2}-\left(1+\text { _ }^{2}{ }_{4}\right)(\mathrm{z}+1)^{3}+\ldots \\
& \text { 3) Expand } \frac{1}{{\left(z^{2}-i i^{2}+t t^{2}\right.}^{2}} \text { region } \\
& \text { (i) } 0<\left.\left.\right|_{z-1}\right|_{<1} \\
& \text { (ii) } 1<\left.\right|_{\mathrm{Z}}<2 \\
& \text { (iii) }\left.\right|^{\prime} \mid>2 \\
& \text { (i) } \\
& \frac{1}{\left(z^{2}-3 z+2\right)} \frac{1}{(z-2)} \frac{1}{(z-1)}= \\
& |z-1|<1
\end{aligned}
$$

$\frac{1}{(z-2)}-\frac{1}{(z-1)}=\frac{1}{(z-1-1)}-\frac{1}{(z-1)}$

$$
\begin{aligned}
& =-\frac{1}{-11-(z-1) \mid} \frac{1}{(z-1)}=(1-(z-1))^{-1}-\frac{1}{(z-1)} \\
& =-(1+(z-1)+\left(z-1^{2}+(z-13)+\cdots\right)-\underbrace{1}_{(z-1)}
\end{aligned}
$$

(ii)
11

(iii)

$$
2
$$

$$
\bar{\pi}
$$

$$
(1++\ldots)-\operatorname{z~z~z~z~z~}^{2}
$$

$$
\begin{aligned}
& |z|>2,2<|z|,<1, z
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
1 & 1-2
\end{array}\right)-1-1(1-1)_{1}
\end{aligned}
$$

$\frac{2}{-}+\frac{2^{2}}{2}$
$\underline{1}\left(1+\frac{1}{2}+\frac{1}{2}+\cdots\right)$
$=\frac{1}{}$

$$
\left(2=\sum_{n=1}^{\infty}-\right.
$$

z

$$
\underbrace{\infty} \underbrace{}_{\mathrm{zn}} \mathrm{~m}_{\mathrm{n}=1 \mathrm{zn}}
$$

$\left(z^{2}-1\right)$ 4) Find the
Laurent series expansion of the function $\qquad$ if $2<z<3$.
$(\mathrm{z}+2)(\mathrm{z}+3)$

## Solution:

$$
\begin{aligned}
& f(z)=\frac{\left(z^{2}-1\right)}{(z+2)(z+3)}=1-\frac{(5 z+7)}{\left(z^{2}+5 z+6\right)} \\
& \overline{38}=\overline{=1+} \\
& (\mathrm{z}+2) \quad(\mathrm{z}+3) \\
& \frac{3}{\frac{3\left(1+\frac{2}{-}\right)}{}}=1+ \\
& \frac{8}{3\left(1++^{2}\right)} \text { z } \\
& =1+\frac{3}{z}\left(1+\frac{\underline{2}}{z}\right)^{-1}-\frac{8}{3}\left(1+\frac{\underline{z}}{3}\right)^{-1} \\
& -\left(1-\frac{2}{z}+\frac{2^{2}}{z^{2}}-\frac{2^{3}}{z^{3}}+\ldots\right)-\frac{z}{3}\left(1-\frac{z}{3}+\frac{z^{2}}{3^{2}}-{\frac{z^{3}}{3^{3}}}=1++\ldots\right)
\end{aligned}
$$

    \(=1+3 \mathrm{n}=1 \frac{\mathrm{z}^{\mathrm{n}}}{\infty}+8 \mathrm{n}=1 \quad 3 \prod_{\mathrm{n}}\)
    \({ }^{\infty} \quad(-1)^{n}\left(-2^{n-1}\right.\)
    $=1+\mathrm{n}=1 \quad \mathrm{zn}+\ldots \quad 3 \mathrm{n})$
e2z
5) Expand $f(z)=$ $\qquad$ (z-1)3 about $\mathrm{z}=1$ as Laurent series. Also indicate the region of convergence of the series.

```
Solution:
 \(f(z)=\)
\(3 \quad-(z-1)\)
 put \(z-1=u, z=1+u\)
 \(\begin{array}{ccc}\mathrm{e} 2 \mathrm{z} & \mathrm{e}^{2(1+\mathrm{u})} & \mathrm{e}^{2} \mathrm{e}^{2 \mathrm{u}} \\ (\mathrm{z}-1)^{3} & & \\ & & =\frac{(2 \mathrm{u})^{2}}{(\mathrm{u})^{3}} \frac{}{(\mathrm{u})^{3}} \frac{\mathrm{u}^{3}}{2!} \quad=\quad=\quad(1+2 \mathrm{u}++\ldots)\end{array}\)
 \(=\frac{e^{2}}{(z-1)^{3}}\left(1+2(z-1)+\frac{(2(z-1))^{2}}{2!}+\ldots\right)\)
 \(=e^{2}\left(\frac{1}{(z-1)_{3}}+\frac{1}{(z-1)_{2}}+\frac{2}{z-1}+\cdots\right)\)
```

    z
    6) Express $f(z)=$ $\qquad$ in a series of positive and negative powers of $z-1$.

## Solution:

$$
f(z)=\overline{(z-1)(z-3)}
$$

$$
)^{=}
$$ 1

$=$
Z

$$
\begin{aligned}
& A=\lim \\
& \text { = - } \\
& \mathrm{z} \rightarrow 1 \text { ( } \mathrm{z}-3 \text { ) } 2 \mathrm{z} 3 \\
& B=\lim =z \rightarrow 3 \quad(z-1) \quad 2 \\
& f(z)=\frac{3}{2(z-3)}-\frac{1}{2(z-1)}=\frac{3}{2(z-1-2)}-\frac{1}{2(z-1)} \\
& =\frac{3}{-4\left(1-\frac{z-1}{2}\right)}-\frac{1}{2(z-1)}
\end{aligned}
$$

$$
\begin{aligned}
& =2(\mathrm{z}-1)-4 \mathrm{n}=0
\end{aligned}
$$

## Contour Integration

## Singular points

Singular point: A point at which $f(z)$ ceases to be analytic is called a singular point.
Isolated singular point: Suppose $z=a$ is a singular point of a function $f(z)$ and no other singular point of $f(z)$ exists in a circle with centre at $a$, then $z=a$ is said to be an isolated singular point.

In such a case $f(z)$ can be expanded by Laurent series around $z=a$
Pole: If the principal part of $f(z)$ consists of a finite number of terms $b_{1}, b_{2} \ldots b_{n} \quad b_{n} \neq$
0 then $(z-a)$ is said to be a pole of order $n$.
if $n=1, z=a$ is said to be a simple pole.(note: if $f(z)$ has a pole at $z=a$, then $\lim _{z \rightarrow a} f(z)=\infty$ )
Removable singularity: If a single valued function $f(z)$ is not defined at $z=a \quad \lim _{z \rightarrow \infty}() \quad$ and $f z$ exists, then $z=a$ is said to be $a \sin z$ removable singularity $f(z)=\_, z=0$ is a removable singularity. z

Essential singularity: If the principal part of $f(z)$ consists of an infinite number of terms, then $z=a$ is said to be an essential singularity
$e_{z}=1+\frac{1}{z}+\frac{1}{2!z^{2}}+{\frac{1}{3!z^{3}}}^{1}+\cdots \quad z=0$ is an essential singularity.
Singularity at infinity: Suppose we substitute $z={ }^{1}, f\left(1_{-}-f=F(w)\right.$ (say), then the singularity at $w=0$ of $F(w)$ is called the $w$ w
${ }_{1}$ singularity at infinity. $e^{z}$ has an
essential singularity at $z=\infty$, since $e_{z}$ has an essential singularity at $z=0$.
Entire function: A function which is analytic everywhere in the finite plane is called an entire function or integral function.
Examples: $\mathrm{e}^{\mathrm{z}}, \sin \mathrm{z}, \cos \mathrm{z}$ are entire functions.
Note: An entire function can be represented by a Taylor series which has an infinite radius of convergence. Conversely, if a power series has an infinite radius of convergence, it represents an entire function.

Liouville's theorem: If $f(z)$ is analytic and bounded, i.e $f(z)<m$ for some constant $m$ in the entire complex plane, then $f(z)$ is a constant.

Residue: We know that $\qquad$ ${ }_{\left(z-a^{d z}\right)=2 \pi i}$ where $C$ is $z-a l=R$ and $\qquad$ $\left(\mathrm{z}-\mathrm{a}^{\mathrm{dz}}\right)_{\mathrm{n}}=0$, if $\mathrm{n} \neq-1$.
c
( ) $\quad \mathrm{fz} \mathrm{dz}=2 \pi \mathrm{i}$ biwhere C is the circle with centre at a and $\mathrm{f}(\mathrm{z})$ is expanded in Laurent series. biis said to be the residue of $f(z)$ at $\mathrm{z}=\mathrm{a}$ [ the coefficient of $\frac{1}{(\mathrm{z}-\mathrm{a})}$ in the principal part of the Laurent series of $f(z)]$.

## Cauchy's Residue Theorem:

Statement: If $f(z)$ is an analytic function inside and on a closed curve ' $C$ ' except at a finite number of points, inside $C$, then ${ }_{\mathrm{c}} \mathrm{fz} \mathrm{dz}=2 \pi \mathrm{i}$ ( sum of the residues at the points where $\mathrm{f}(\mathrm{z})$ is not analytic and which lie inside C ).

If the poles of order one and n then the residues are

corresponding residues at each pole, $f(z)=$ $\qquad$ ( z2 $\left.^{2}+1\right)$

Solution:

$$
\text { The given function is } f(z)=
$$

$\qquad$ $(\mathrm{zz}+1), \mathrm{f}(\mathrm{z})$ is not analytic at $\mathrm{z}=\mathrm{i}$ and $\mathrm{z}=-\mathrm{i}$

Therefore, the poles of $f(z)$ are $i$ and $-i$, both are simple poles If
$\mathrm{z}=\mathrm{a}$ is a simple pole, then the residue at $\mathrm{z}=\mathrm{a}$ is $\lim (\mathrm{z}-\mathrm{a}) \mathrm{f} \mathrm{z}_{\mathrm{z} \rightarrow \mathrm{a}} \quad()$

$$
\begin{array}{r}
\text { Res } z=i=\lim (z-i) f z=\lim (z-i) \quad \begin{array}{r}
\text { eiz } \\
=-\mathbf{e}
\end{array} \quad=\mathbf{1}
\end{array}
$$

$$
\operatorname{Res} z=-i=\lim (z+i) f z=\lim (z+i)
$$

() eiz i
2) Find the poles of the function and the corresponding residues at each pole, $f(z)=\frac{\pi-7}{(z--)^{2}}$
Solution: The given function is $f(z)=\frac{\sin ^{2} z}{(z--)_{2}} \frac{\pi}{6}, z-\quad$ is a double pole

$$
\begin{aligned}
& \sin \quad 2, \\
& \text { — } 6 \pi \lim _{\pi}-\operatorname{dzd} z(\mathrm{z}-\pi 6) 2 \\
& \text { Res at } \mathrm{z}== \\
& \begin{array}{lllllll}
\mathrm{z} \rightarrow 6 & (\mathrm{z}--)^{2} \\
& \pi \quad \pi & \\
& \pi & \pi & -\underline{3}^{-} & \sqrt{3}
\end{array} \\
& =\lim 2 \operatorname{sinz} \operatorname{cosz}=2 \operatorname{Sin} \operatorname{Cos}=2= \\
& 6
\end{aligned}
$$

z sinz
3) Find the residue of $\qquad$ $(\mathrm{z}-\pi) 3$ at $\mathrm{z}=\pi$.
$z \sin z$
Solution:
The given function is $f(z)=$ $\qquad$ $(z-\pi) 3, z=\pi$ is a pole of order 3

If $z=a$ is a pole of order 3 , then residue at $z=a$ is

```
 \([(z-a)\)
\(\left.\lim _{z \rightarrow(\overline{(n-1)})} d z d n-1_{n} \quad n f(z)\right] \quad(a=\pi)\)
1 d 2
```

Res at $z=\pi=z \rightarrow \pi \lim d z 2(z \sin z)$
2
$=\lim _{-}(z \quad 2$
$\cos z+\sin z) z \rightarrow \pi d z \lim (\cos z$
1
$-z \sin z+\cos z)=-1 . \quad z \rightarrow \pi{ }^{2}$
$\left(\cos \pi z^{2}+\sin \pi z^{2}\right) d z \quad$ where $C$ is $|z|=3$.
4) Evaluate $c \quad x-12\left(\frac{z}{z}-2\right)$

Solution: The given function and $z=2$ is a simple pole,

$$
\begin{aligned}
& \left(\cos \pi z^{2}+\sin \pi z^{2}\right) \\
& (\quad)^{2}(z-2) \\
& -)\left({ }_{z \rightarrow 1 \text { dzz } 1 \mathrm{dz}}-{ }_{(z-2)}\right.
\end{aligned}
$$

$\frac{(\mathrm{z}-2)\left(-2 \mathrm{z} \sin \pi z_{2}+2 \mathrm{zcos} \pi z^{2}\right)-\cos \pi z^{2}-\sin \pi z^{2}}{\left(\mathrm{z}-2^{2}\right.}$

$$
3 \quad\left(\quad{ }_{z \rightarrow 2} \frac{\left(\cos \pi z^{2}+\sin \pi z^{2}\right)}{(z-1)^{2}}=1\right.
$$

is $f(z)=, z=1$ is a double pole both lie inside C. $\mathrm{z}-1$
$d[z-12 f(z)]=\lim d\left(\cos \pi z^{2}+\sin \pi z^{2}\right)$
$\lim =$

Res at $z=2=\lim z-$

$$
2 \mathrm{f}(\mathrm{z})=\lim _{\mathrm{z} \rightarrow 2}
$$

According to residue theorem

```
\(\left(\cos \pi z^{2}+\sin \pi z^{2}\right) d z\)
 \(-(\quad)=\mathbf{2} \boldsymbol{\pi i}(\) sum of the residues \()=\mathbf{2} \boldsymbol{\pi} \mathbf{i}(3+1)=8 \boldsymbol{\pi} \mathbf{i}_{\mathrm{c}} \quad \mathrm{z}-1\)
2(z-2)
\(z\) secz dz \(\quad 2+9 y^{2}=9\)
```

5) Evaluate c $\quad 1-z^{2}$ where $C$ is $4 x$ z secz Solution:
The given function is $f(z)=$ $\qquad$ 1-z2
$z=1$ and -1 are simple poles and $4 x^{2}+9 y^{2}=9$ is a ellipse whose semi minor and major axes are 1 and $\frac{3}{2} .1$ and -1 both
lie inside C.
Y z secz
sec1
z secz dz $\qquad$ $1-z^{2}=2 \pi i$ (sum of the residues, by residue
theorem) x

$$
=2 \pi i(-\sec 1)=-2 \pi i(\sec 1)
$$


$e^{z d z}$
6) Evaluate
c $\quad(z+2)(z-1)$ Where $C$ is the circle $z-1=1$.
Solution: The given function is $f(z)=c \_e^{z d z}(z+2)(z-1), z=-2$ and 1 are simple poles, $z=1$ lies inside $C$ and $z=-2$ lies outside $C$.
en $\quad e^{z} \quad$ Res at $z=1=\lim$


$$
c f(z) d z=2 \pi i
$$


(sum of residues at the poles which lie inside C)

```
 \(\mathrm{e}^{\mathrm{z}} \mathrm{dz} \underline{2} \boldsymbol{\pi} \boldsymbol{i}\)
\(\mathrm{c}(\mathrm{z}+2)(\mathrm{z}-1)=3\)
```


## Evaluation of real integrals in unit circle

$2 \pi$
We can evaluate the integrals of the type ${ }_{o} f(\cos \theta, \sin \theta) d \theta$ where $f(\cos \theta, \sin \theta)$ is a rational function, using residue theorem.
${ }^{\mathrm{i}} \theta$, we can write $\cos \theta$ $\qquad$ $=$
$e_{i \theta}+e-i \theta$ we know that if $z=e$
$\square$

1 $e_{i} \theta-e-i \theta$
$\cos \theta=\frac{1}{2} \quad(z+\ldots)$ and $\sin \theta=$ $1 \quad 1$
$\sin \theta=(z-) 2 i z$
$\quad \mathrm{i}$
$\mathrm{e}_{\mathrm{i} \theta}$
$\mathrm{d} \theta=$
dz
and
$\mathrm{d} \theta=$
$\overline{\mathrm{dz}}$
iz

By this substitution we can change the integral into a function of $z$.

$$
\text { We know that }{ }_{c} f(z) d z=2 \pi i \text { (sum of the integrals) We }
$$

take C is $\mathrm{z}=1$, then $\theta$ varies from 0 to $2 \pi$
$2 \pi$
$0 \mathrm{f}(\cos \theta, \sin \theta) \mathrm{d} \theta={ }_{\mathrm{c}} \mathrm{g}(\mathrm{z}) \mathrm{dz}$ where C is $\mathrm{z}=1$


## Problems

$2 \pi \quad d \theta \quad 2 \pi$

1) Show that $0 \quad a+b \sin \theta=\frac{\sqrt{2} 2-b 2, a>b>0 \text { using residue theorem } . ~ . ~}{a}$.

## Solution:

$1 \quad 1 \quad 1$

Consider $C=z=1, z=e^{i \theta}$
$\cos \theta=\underset{z}{\frac{1}{2}}(z+), \sin \theta=\underset{2 i}{ } \quad(z-)_{z}$
$2 \pi \quad d \theta$
$\mathrm{d}_{\mathrm{z}}$
$0 \quad a+b \sin \theta=c i z[a+2 b i(z-1 z)]$
2
$f(z)=$ $\qquad$ bz2+2aiz-b ]
$\mathrm{c} f(\mathrm{z}) \mathrm{dz}=\mathrm{c}$ $\qquad$ bz2 $+2 a i z-b d z$ $b z^{2}+2 a i z-b=b(z-\alpha)(z-\beta)$
where

$$
(\alpha+\beta)=-, \alpha \beta=-1
$$


$\alpha=$ and $\beta=\mathrm{b}$ b
$\alpha<1$ and $\beta>1 \quad \alpha$ lies inh $C \quad{ }^{c} f(z) d z=2 \pi i \operatorname{Res} Z=\alpha$

$$
\operatorname{Res} Z=\alpha=\lim _{z \rightarrow \alpha}(Z-\alpha) f(z)=\lim _{z \rightarrow \alpha b(z-\beta)}
$$

$$
\begin{aligned}
& \left.=\frac{2}{b\left[\frac{\left[a i+i \sqrt{a^{2}-b^{2}}\right.}{b}\right.}+\frac{a i+i \sqrt{a^{2}-b^{2}}}{b}\right] \\
& =\frac{1}{i \sqrt{a^{2}-b^{2}}} \\
{ }^{c} f(z) d z=\frac{1}{i} & \frac{2 d z}{b z^{2}+2 a i z-b}=\frac{2 \pi i}{i \sqrt{a^{2}-b^{2}}} \\
\frac{d \theta}{a+b \sin \theta} & =\frac{\sqrt{a 2-b}}{\sqrt{a^{2}-b}}
\end{aligned}
$$

2) Evaluate 0 $\qquad$ $(6-3 \cos \theta))^{2}$ using residue theorem $2 \pi \quad d \theta$

## S olution:

$(6-3 \cos \theta) 2$
Substitute $z=e^{i \theta}$
$\begin{array}{lll}1 & 1 & 1\end{array}$
$\cos \theta=\frac{1}{2}(z+\ldots), \sin \theta=\_\left(z-L_{z}\right.$

$$
\mathrm{dz}=\mathrm{i} \mathrm{e}^{\mathrm{i} \theta} \mathrm{~d} \theta \text { and } \mathrm{d} \theta=\frac{\mathrm{dz}}{}
$$

iz
dz
4 zd

The poles are $\alpha$ and $\beta$ where $\alpha=2-3$ and $\beta=2+3$ and both are double poles, among which $\alpha$ lies inside $C$.

$$
\begin{aligned}
& \left.\underline{d}^{2 f}(z)\right] \\
& \text { Res at } z=\alpha=\lim \quad[(Z-\alpha) z \rightarrow \alpha d z \\
& \underline{d} \quad \underline{\bar{\alpha}+\beta} \\
& =\mathrm{z} \rightarrow \lim \alpha \mathrm{dz}[(Z-\beta) 2]=(\alpha-\beta)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \pi \quad d \theta \\
& \text { 3) Evaluate } 0 \\
& (a+b \cos \theta)^{2}, a>b>0 \text { using residue theorem } \\
& \text { put } z=e^{i \theta}, \quad \frac{1}{2} \quad-\quad 02 \pi d \theta \\
& d \theta d z=d \theta \quad d z=e^{i \theta} \\
& \cos \theta= \\
& (z+1) \mathrm{izz} \\
& 4 \mathrm{zdz}
\end{aligned}
$$

$$
=\mathrm{bb}
$$

a lies inside C

$$
\underline{\mathrm{d}} \quad \mathrm{z}
$$

Residue at $\mathrm{z}=\alpha=\mathrm{z} \rightarrow \lim \alpha \mathrm{dz}\left[\overline{\mathrm{b} 2(\mathrm{Z}-\beta)^{2}}\right]$
$\underline{1}(\underline{\alpha+\beta})$

$$
\begin{aligned}
& =-\left(\begin{array}{ll}
) & 2
\end{array}\right. \\
& b(\alpha-\beta) \\
& =\frac{1-2 a b^{3}}{a} \frac{a}{4(a 2-b 2)^{\frac{3}{2}}} \\
& =-\mathrm{b}(\mathrm{~b} 8(\mathrm{a} 2-\mathrm{b} 2) \underline{32})=4(\mathrm{a} 2-\mathrm{b} 2) \frac{3}{2} \\
& 2 \pi \\
& 0 \\
& (a+b \cos \theta)^{2}=2 \pi i(\text { Res } z=\alpha \text { by residue theorem }) \\
& 2 \pi \mathrm{ia}^{4} \\
& \text { 2па } \\
& 2=\underline{3}=\underline{3} \\
& 4 i\left(a^{2}-b^{2}\right)(a 2-b 2) 2
\end{aligned}
$$

## Contour integration when the poles lie on imaginary axis

$\mathrm{f}(\mathrm{x})$
We can evaluate integrals of the type
$\ldots \quad h(x)$, using residue theorem. $g(x)$

Consider $\mathrm{ch}(\mathrm{z}) \mathrm{dz}$ when the poles of $\mathrm{h}(\mathrm{z})$ lie on imaginary axis. We take positive imaginary axis. Integration is taken over the semicircle and the line $-R$ to $R$. The poles lie on upper half plane. If the poles lie on real axis

R ( ) ${ }_{c} h(z) d z=-R h$
$\mathrm{zdz}+\mathrm{rh}(\mathrm{z}) \mathrm{dz}$
We know that by residue theorem ${ }_{c h} h(z) d z=2 \pi i$ (sum of the residues of $h(z)$ at its poles which lie on upper half plane)

$$
{ }_{-\mathrm{R}}^{\mathrm{R}}(\mathrm{z}) \mathrm{dz}+{ }_{\mathrm{r}} \mathrm{~h}(\mathrm{z}) \mathrm{dz}=2 \pi \mathrm{i} \text { (sum of the residues ) }
$$

In the limiting case $R \rightarrow \infty$ we get

$$
-\infty{ }^{-\infty}(\mathrm{x}) \mathrm{dx}(\text { if } \mathrm{rh}(\mathrm{z}) \mathrm{dz}=0)
$$



## Problems:

Evaluate by contour integration
dz $\frac{\infty \mathrm{dx}}{} \begin{aligned} & 1 \text { ) } \\ & 1+\mathrm{x}^{2}\end{aligned}$
Solution: Consider c $\quad 1+\mathrm{z} 2$ where C is the contour consisting of semicircle $\Gamma$ and the line (diameter) from -R to R.

$$
\begin{aligned}
& \overline{1+z^{2}}=-\mathrm{R} 1+\mathrm{z}^{2}+\mathrm{r} 1+\mathrm{z}^{2} \\
& \frac{\mathrm{dz}}{1+\mathrm{z}^{2}}=0 \\
& -\infty \overline{1+\mathrm{x}^{2}}={ }_{\mathrm{c}}-1+\mathrm{z}^{2}
\end{aligned} \infty \quad \infty \quad \mathrm{dx} \quad \mathrm{dz} .
$$

The poles of $f(z)$ are $\ddagger$, $i$ lie on upper half plane.

Solution: $\quad \infty$ f x dx

$$
\infty \mathrm{fxdx}
$$

$$
-\mathrm{Rfzdz}=\int^{\mathrm{R}}()+{ }_{\mathrm{rfz}} \mathrm{fdz} \quad[\mathrm{rfz} \mathrm{z} \mathrm{dz}=0]
$$

$$
\begin{aligned}
& \text { (residue at } z=i \text { ) } \\
& =2 \pi i-\frac{1}{(2 i)}=\pi \\
& 2 \int_{0}^{\infty} \frac{d x}{1+x^{2}}=\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}[f(x) \text { is even }]
\end{aligned}
$$

The poles of $f(z)=$ are $i,-i, 2 i,-2 i$.

$z^{2}$

All are simple poles $i$ and $\left(1+z^{2}\right)\left(4+z^{2}\right) \quad$ $\quad$ i lie on upper half plane.
Res at $z=i=\lim (z-i) f(z) z \rightarrow i$

$$
=\mathrm{z} \lim \underset{z^{2}}{\frac{z^{2}}{(i+z)(4+z 2)}=}=\frac{\mathbf{1}}{-6 \mathbf{i}}
$$

Res at
$z=2 i=\lim (z-$
$2 i) f(z) z \rightarrow 2 i$
$=z \lim \rightarrow 2 i(z+2 i)(1+z 2)=-4 i(-3)=3 i \quad$ According to residue theorem $\quad{ }_{\mathrm{f}} \mathrm{f} \mathrm{Z} \mathrm{dz}$
2 (s\#mTbif residues)


#### Abstract

( )


1

$\infty_{\mathrm{x} 2 \mathrm{dx}}$
3) Evaluate $0 \quad \overline{1+x^{6}}$ using residue theorem.


$$
\begin{aligned}
& =\int_{-R} f()_{d z}+{ }_{r f z}()^{2} \quad[r f z d z=0] \\
& \text { () } \\
& =\underset{()}{\mathrm{cfzg}} \mathrm{dz} \\
& -\mathrm{Rfzdz}={ }_{\mathrm{c}} \mathrm{fz} \mathrm{dz}
\end{aligned}
$$

The poles are , ${ }^{2 n+1} \hat{1}^{2 / 6}$ where $n=0,1,2,3,4,5$
$[-1=\cos \pi+i \sin \pi=e-\pi i=\cos (2 n+1) \pi+i \sin (2 n+1 \pi)$

When $\mathrm{n}=0,1$, 2 i.e , $\mathrm{e} 6, \mathrm{e}$, e lie on upper half plane.

$$
\begin{aligned}
& \text { Res at } z \rightarrow e_{6}=\lim (z-e \quad 6) f(z) \quad \text { form } \frac{0}{0} \\
& \pi i Z^{2} \quad \mathrm{e}^{6} \quad \text { ii } \\
& \begin{array}{l}
=\lim _{\pi i} \frac{z^{2}(z-e 6)}{\left(1+z^{6}\right)} \\
z \rightarrow e 6 \\
=\lim \frac{\left(3 z^{2}-2 z e^{\overline{6}}\right)}{6 z^{5}}
\end{array} \\
& Z \rightarrow e 6
\end{aligned}
$$

$\frac{\left(3 z-2 e^{\overline{6}}\right)}{6 z^{4}}=\lim$

$$
\begin{array}{ccccc}
\frac{e^{6}}{2 \frac{\pi i}{3}} & 1 & 6
\end{array} \quad=\quad \begin{gathered}
\pi \\
6
\end{gathered}=\mathrm{e}_{6}=\left(\cos -\mathrm{i} \sin \_\right)=-
$$

6e
form

III

$$
\begin{array}{lll}
\mathrm{z} \rightarrow \mathrm{e} 32 \pi 1 & 3 \pi & 3 \pi \\
\frac{1}{=} \frac{-}{\mathrm{e}} \frac{\mathrm{e}}{=}(\mathrm{c} 6 \theta \mathrm{~s} & -2 & -\mathrm{i} \sin )= \\
\frac{2}{2} & 6
\end{array}
$$

$5 \pi i 5 \pi i$

$$
\begin{aligned}
& Z \rightarrow \mathrm{e} \quad \mathrm{mi} \\
& z^{2}(z-e 2) \\
& =\lim _{\underline{\pi i}} \frac{}{\left(1+z^{6}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& z \rightarrow e 2 \pi i \quad \frac{\left(3 z-2 e^{\overline{2}}\right)}{6 z^{4}} \\
& =\lim
\end{aligned}
$$

Res at $z \rightarrow e=\left(z-\frac{\bar{\sigma}}{} \quad \lim \quad \overline{6} e\right) f(z) \quad 0$ form

$=z^{2}\left(z-\lim \frac{5 \pi i}{\left(1+z^{6}\right)}\right.$ e 6)
riz $\rightarrow$

$\lim _{6} \frac{1}{6} \mathrm{e}^{\frac{-15 \pi \mathrm{i}}{6}} 1 \begin{aligned} & 6\end{aligned}$
$=\mathrm{Z}$
$15 \pi \quad$ i
$5 \pi i$
6

$$
Z \rightarrow \mathrm{e}
$$

According to residue theorem
$2 \pi i$ (sum of residues)


## $\infty$ xdx <br> $\infty=3$ <br> $\infty \mathrm{xdx}$

$-i \sin )=-$
4) Evaluate $-\infty \frac{d x}{\left(x^{2}+1\right)^{3}}$ using residue theorem.

$$
\infty()
$$

Solution: $\quad \infty \mathrm{fxdx}$

$$
\begin{aligned}
& =-{ }_{-R}(z) d z+{ }_{r} f\left(z d z \quad[r f z)_{z}=0\right] \\
& ={ }_{c} f(z) d z \\
& \text { R () } \\
& { }_{-R} f z d z={ }_{c} f z d z \\
& \frac{1}{\left(z^{2}+1\right)} \text { fe function is } f(z)=-R
\end{aligned}
$$



R

The poles are $i$ and $-i$ of order $3, z=i$ lies on upper half plan and inside the semicircle

Res at $\mathrm{z}=\mathrm{i}=\lim$ $\qquad$ $1^{d z} d^{2} 2[(z-i) 3 f(z)] \mathrm{z} \rightarrow \mathbf{i} 2$ $1 d^{2} \quad 1$

$$
=\lim
$$




## Evaluation of the integrals of the type

$\infty \quad \operatorname{imxf}(x) d x$
$\infty$ e Jordan's

## Lemma

If $f(z)$ is a function of $z$ satisfying the following properties:
(i) $f(z)$ is analytic in upper half plane except at a finite number of poles
(ii) $\mathrm{f}(\mathrm{z}) \rightarrow 0$ uniformly as $\boldsymbol{z} \rightarrow \infty$ with $0 \leq \arg z \leq \pi$
(iii) a is a positive integer, then

$$
r \lim \infty{ }_{c}\left(f z e^{i a z} d z=0\right.
$$

$$
\rightarrow
$$

Where C is a semicircle with radius $r$ and centre at the origin
(sum of the residues which lie on upper half plane)

## Problems

$$
\cos _{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+16\right)\left(x^{2}+9\right)}
$$

1) Evaluate () using residue theorem.


$R_{R} \operatorname{eim}^{\operatorname{imf}(z)} \mathrm{dz}$
=> $r \mathrm{e}^{\mathrm{imxf}} \mathrm{z} \mathrm{dz}=0$ (Jordan's Lemma)
$\infty \quad \operatorname{imxf}(x) d x={ }_{c} e^{\operatorname{imxf}}(d z=2 \pi i$
-R
R
$\infty \mathrm{e}$
(sum of the residues which lie on upper half plane)

$$
e^{i z} d z
$$

$\mathrm{c}\left(z_{2}+16\right)(z 2+9) \quad \mathrm{z}=3 \mathrm{i},-3 \mathrm{i}, 4 \mathrm{i}$ and -4 i are simple poles. 3 i and 4 i lie on upper half plane.
$3 i=\lim (z-$
$3 i) f(z) \quad z \rightarrow 3 i$
eiz

$$
=\mathrm{z} \lim \rightarrow 3 i\left(z_{2}+16\right)(z+3 i)
$$

$e-3 \quad-i e-3$ $\qquad$ $=$

Res at $\mathrm{z}=$
$4 i=\lim (z-$
$4 i) f(z) z \rightarrow 4 i$
eiz

$$
=z \lim \rightarrow 4 i(z+4 i)(z 2+9)
$$

$e-4 \quad i \boldsymbol{e}-4$

$$
=\frac{}{(9-16)(8 i)} \quad \frac{}{56}=
$$

$$
e^{i z} d z \quad-i \quad i \quad \pi\left(4 \boldsymbol{e}^{-3}-3 \boldsymbol{e}^{-4}\right)
$$

$$
\text { C } \quad\left(z^{2}+16\right)\left(z^{2}+9\right)=\overline{2 \pi i}\left(4 \overline{2 e^{3}}+56 e^{4}\right)=\mathbf{8 4}
$$

$$
\text { R.P } \quad \mathrm{c}^{\left(z^{2}+16\right)\left(z^{2}+9\right)}=\mathrm{C} \xrightarrow{\cos z d z}\left(z^{2}+16\right)\left(z^{2}+9\right)
$$

$$
\cos _{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+16\right)\left(x^{2}+9\right)}=\frac{\pi\left(4 e^{-3}-3 e^{-4}\right)}{84}
$$

$\int_{0}^{\infty} \frac{x \sin x d x}{\left(a^{2}+x^{2}\right)}$

## 2) Evaluate ()

Solution: : $\mathrm{cfze}^{\text {eimz }} \mathrm{dz}={ }_{\mathrm{r}} \mathrm{e}^{\mathrm{emmf}} \quad \mathrm{R}_{\mathrm{R}} \lim _{\rightarrow \infty} \int_{-\mathrm{zdz}} \mathrm{d}$
R
()
$R \operatorname{eimxf}^{\mathrm{im}}(\mathrm{z}) \mathrm{dz}$

$$
\Rightarrow \text { reimxf } z d z=0
$$

Z
$f(z)=$ $\qquad$ (a2+zz)
群
-R
R
$z=$ ai and -ai are simple poles.

$$
\begin{aligned}
& \quad \text { Res at } z= \\
& \text { ai }=\lim (\text { zai }) f(z) \\
& z \rightarrow \text { ai } \\
& \lim _{\rightarrow}
\end{aligned}
$$

$$
\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)
$$

$$
-\infty \frac{x \sin x d x}{\left(a^{2}+x^{2}\right)}=\pi
$$

$$
\begin{aligned}
& \overline{(z+a i)} z \text { ai }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2ai) } 2
\end{aligned}
$$

## Unit -3

## LAPLACE TRANSFORMS LAPLACE TRANSFORM

## Definition:

Let $f(t)$ be a function of $t$, defined $\forall t \geq 0$. If the integral
$\infty-s t f(t) d t$ exists, then it is called the Laplace Transform of

0 ? ${ }^{2}$
$f(t)$ and it is denoted by $L\{f(t)\}$ or $f(s)$.
Here $s$ is parameter, real or complex.L is called Laplace
Transform operator.

$$
\mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\cos ^{\infty} e^{-s t} \mathrm{f}(\mathrm{t}) \mathrm{dt}
$$

## Def: Piece-wise Continuous Function:

Afunction is said to be piece-wise continuous (or) Sectionally Continuous) over the closed interval $[a, b]$ if it is defined on that interval and is such that the interval can be divided into a finite number of sub intervals, in each of which $f(t)$ is continuous and both right and left hand limits at every end point if the sub intervals.

## Def:Functions of Exponential Order:

A function $f(t)$ is said to be of exponential order as $t \rightarrow \infty$ if $\lim _{t \rightarrow \infty}(e)^{-a t} f(t)=$ finite quantity
(or)

If for a given positive integer $T, \quad \ni$ a positive number $M$ Such that $|f(t)|<M e^{a t} \quad \forall t \geq T$,

Sufficient Conditions for existence of Laplace Transform are 1)
$f(t)$ is Piece-wise Continuous Function in [a, b] where $a>0,2$ )
$f(t)$ is of Exponential Order function.

## Linear Property:

Theorem: If $c_{1}, c_{2}$ are constants and $f_{1}, f_{2}$ are functions of $t$, then $L\left[c_{1} f_{1}(t)+c_{2} f_{2}(t)\right]=c_{1} L\left[f_{1}(t)\right]+c_{2} L\left[f_{2}(t)\right]$
Proof: The definition of Laplace Transform is

$$
\mathrm{L}[\mathrm{f}(\mathrm{t})])]=\int_{0}^{\infty} e^{-s t} f(\mathrm{t}) \mathrm{dt}----(1)
$$

By definition

$$
\begin{aligned}
& \mathrm{L}\left[\mathrm{c}_{1} \mathrm{f}_{1}(\mathrm{t})+\mathrm{c}_{2} \mathrm{f}_{2}(\mathrm{t})\right]=\int_{0}^{\infty} e^{-s t}\left[c_{1} \mathrm{f}_{1}(\mathrm{t})+\mathrm{c}_{2} \mathrm{f}_{2}(\mathrm{t})\right] \mathrm{dt} \\
&\left.=\bar{J}_{0}^{\alpha_{1}} e^{\infty} \int^{\infty} e^{-s t} c_{1} f_{1}(\mathrm{t}) \mathrm{t}\right) \mathrm{dt} \mathrm{dt}+\mathrm{c}_{2} \int_{0}^{\infty} \int_{0}^{\infty} e^{-s t} e^{-s t} f_{2}\left(\mathrm{t} \mathrm{c}_{2} f_{2}(\mathrm{dt}\right. \\
&\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

$$
=c_{1} L\left[f_{1}(t)\right]+c_{2} L[f(t)]
$$

## Laplace Transform (L.T) of some Standard Functions:

1
1)Show that $L\{1\}=$

Solution: By definition of L.T $L[f(t)]=f(t) \int_{0}^{\infty} e^{-s t} \quad d t-------(1)$

$$
\begin{aligned}
& \text { Put } f(t)=1 \quad \text { o.b.s } \\
& \mathrm{L}[1]=\int_{0}^{\infty} e^{-s t} .1 . \mathrm{dt} \\
& -1==\quad \ldots(0-1)=[\underline{e-s t}]^{\infty} \\
& \text { 1/s } \\
& -s \quad s 0
\end{aligned}
$$

2) $L[c]=L[c .1]=c . L[1]=c .(1 / s)=c / s$
3) Show that $L\left[e^{a t}\right]=\frac{1}{s-a}$

Solution: By definition of L.T, $\quad J=\int_{0}^{\infty} e^{-s t} f(t) d t--------(1)$ L[ft

$$
\begin{aligned}
\left.e^{a t}\right] & =\int_{0}^{\infty} e^{-s t} e^{a t} \mathrm{dt} \\
& =\int_{0}^{\infty} e^{-(s-a) T} \mathrm{dt} \\
& =\left[\left.\frac{e^{-(s-a) t}}{-(s-a)} \right\rvert\,\right.
\end{aligned} \quad \begin{array}{ll} 
& \left(e^{-\infty}=0\right) \\
& =\frac{1}{s-a} \quad 0
\end{array}
$$

Put $f(t)=e^{a t}$ o.b.s in (1)
Note: $\mathrm{L}\left[e^{-a t}\right]=\frac{1}{s+a}$
$s$
$a$
4) Show that $\mathrm{L}[\operatorname{Cos}$ at $]=\overline{s^{2}+a^{2}}$ and $\mathrm{L}[$ Sin at $]==\overline{s^{2}+a^{2}}$

Solution: W.k.t $\quad e^{i \theta}=\cos \theta+i \sin \theta$

$$
e^{i a t}=\cos a t+i \sin a t
$$

$$
\mathrm{L}\left[e^{i a t}\right]=\mathrm{L}[\cos a t+i \sin \text { at }]
$$

$\mathrm{L}[\cos a t+i \sin a t]=\mathrm{L}\left[e^{i a t}\right]$

Equte real and imaginary parts we get
$\mathrm{L}[$ Cos at $]=\frac{s}{s^{2}+a^{2}} \quad$ and $\mathrm{L}[\operatorname{Sin}$ at $]==\frac{a}{s^{2}+a^{2}}$
5) Find L[ Sin hat ]

$$
\begin{aligned}
& =\frac{1}{s-i a} \quad\left(\mathrm{~L}\left[e^{a t}\right]=\frac{1}{s-a}\right) \\
& =\frac{s+i a}{(s-i a)(s+i a)} \\
& =\frac{s+i a}{s^{2}+a^{2}} \\
& =\frac{s}{s^{2}+a^{2}}+\mathrm{i} \frac{a}{s^{2}+a^{2}}
\end{aligned}
$$

$$
\frac{e^{a t}-e^{-a t}}{2}
$$

Solution: $\mathrm{L}[$ Sin hat $]=\mathrm{L}\left[=1 / 2\left[\frac{1}{s-a}-\frac{1}{s+a}\right]\right]=1 / 2\left[\mathrm{~L}\left\{e^{a t}\right\}-\mathrm{L}\left\{e^{-a t}\right\}\right]$

$$
\begin{aligned}
& =1 / 2\left[\frac{s+a-s+a}{s^{2}-a^{2}}\right] \\
& =\frac{a}{s^{2}-a^{2}}
\end{aligned}
$$

6) Find L [ Cos hat ]

$$
\frac{e+e^{-}}{2} \text { at at }
$$

Solution: $\mathrm{L}[$ Cos hat $]=\mathrm{L}[]=1 / 2\left[\mathrm{~L}\left\{e^{a t}\right\}+\mathrm{L}\left\{e^{-a t}\right\}\right]$

$$
=1 / 2\left[\frac{1}{s-a}+\frac{1}{s+a}\right]
$$

$$
=1 / 2\left[\frac{s+a+s-a}{s^{2}-a^{2}}\right]==\overline{s^{2}-a^{2}}
$$

7) Show that (i)) $L\left[t^{n}\right]=\rho(n+1) / s^{n+1}, n>-1$
(ii) $\mathrm{L}\left[t^{n}\right]=\mathrm{n}!/ s^{n+1}, \quad \mathrm{n}$ is +ve integer

Solution: : By definition of L.T

$$
\begin{array}{rlrl}
\mathrm{L}[\mathrm{f}(\mathrm{t})] & =\int_{0}^{\infty} e^{-s t} \mathrm{f}(\mathrm{t}) \mathrm{dt}-\cdots---(1) & \\
\mathrm{L}\left[t^{n}\right] & =\int_{0}^{\infty} e^{-s t} t^{n} \mathrm{dt} \quad \text { put st }=\mathrm{x} & \text { i.e } \mathrm{t}=\mathrm{x} / \mathrm{s} \\
& =\int_{0}^{\infty} e^{-x}\left(\frac{x}{s}\right)^{n} \frac{d x}{s} & \mathrm{dt}=\frac{d x}{s} \\
& =\frac{1}{s^{n+1}} \int_{0}^{\infty} e^{-x} x^{n} \mathrm{dx} \\
& =\frac{1}{s^{n+1}} \rho_{(\mathrm{n}+1)}, \quad \text { for }(\mathrm{n}+1)>0 \\
\mathrm{~L}\left[t^{n}\right] & =\rho(\mathrm{n}+1) / s^{n+1}, \quad \mathrm{n}>-1
\end{array}
$$

$$
\mathrm{L}\left[t^{n}\right]=\mathrm{n}!/ s^{n+1}, \mathrm{n} \text { is +ve integer } \quad \text { FORMULAE }
$$

1

1) $L\{1\}=$
$s$
c
2) $L\{c\}=$
3) $\left.\mathrm{L}^{a t}\right]=\frac{1}{s-a}[\quad, \mathrm{~L}[e-a t \quad]=s+\underline{1} a$
4) $\mathrm{L}[$ Cos $a t]=\overline{s^{2}+a^{2}}$
5) L[Sin at] $\overline{s^{2}+a^{2}}=$
6) $\mathrm{L}[\operatorname{Sin}$ hat $] \frac{s^{2}-a^{2}}{s^{2}-a^{2}}=$
7) $L\left[\operatorname{Cos} \quad \overline{s^{2}-a^{2}}\right.$ hat $]=$
8) $L\left(t^{n}\right)=\rho(\mathbf{n}+1) / \mathbf{s}^{n+1}, \quad \mathbf{n}>-1$
9) $L\left(t^{n}\right)=\mathrm{n}!/ \boldsymbol{s}^{n+1}, \quad \mathrm{n}$ is +ve integer
PROBLEMS
1.Find the Laplace Transformation (L.T) of $t^{2}+2 t+3$

Solution: $\mathrm{L}\left[t^{2}+2 t+3\right]=\mathrm{L}\left[t^{2}\right]+2 L[t]+L[3]$

$$
=\frac{s^{3}}{}+2 \cdot \overline{s^{2}}+\overline{s 21} \quad 3
$$

$$
\left.t^{\frac{5}{2}}+4\right]_{5} L[\quad \text { 2. Find }
$$

Solution: $\mathrm{L}\left[\mathrm{t}^{\overline{2}}+4\right]=\mathrm{L}\left[t^{\overline{2}}\right]+\mathrm{L}^{5}[4]$

$$
\left.e^{3 t}+3 e^{-2 t}\right]=\frac{\rho\left(\frac{7}{2}\right)}{s^{7 / 2}}+\frac{4}{s}
$$

3. Find L [

Solution: $\quad \mathrm{L}\left[e^{3 t}+3 e^{-2 t}\right]=\mathrm{L}\left[e^{3 t}\right]+$
$3 \mathrm{~L}\left[e^{-2 t}\right]$

$$
=\frac{1}{s-3}+3 \frac{1}{s+2}
$$

4. Find $L\left[\operatorname{Sin} 3 t+\operatorname{Cos}^{2} 2 t\right]$

Solution: $\mathrm{L}\left[\operatorname{Sin} 3 t+\operatorname{Cos}^{2} 2 t\right]=\mathrm{L}[\operatorname{Sin} 3 t]+\mathrm{L}\left[\operatorname{Cos}^{2} 2 t\right]$

$$
\begin{aligned}
& =\frac{}{s^{2}+9}+L\left[\frac{+}{2}{ }^{3} \quad 1 \quad \begin{array}{ccc}
\operatorname{Cos} 4 t
\end{array}\right. \\
& =\frac{3}{s^{2}+9}+\frac{1}{2}\{\mathrm{~L}[1]+\mathrm{L}[\operatorname{Cos} 4 \mathrm{t}]\} \\
& =\frac{3}{s^{2}+9}+\frac{1}{2}\left[\frac{1}{s}+\frac{s}{s^{2}+16}\right]
\end{aligned}
$$

5. Find L[f(t)] if $f(t)=0, \quad 0<t<2$

$$
=3, \quad t>2
$$

Solution: By definition of L.T

$$
\infty^{-s t} f(t) d t
$$

$\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{d}!\boldsymbol{e}$

$$
\begin{aligned}
& =\int_{0}^{2} e^{-s t} \quad \infty^{-s t} f(t) d t \\
& \mathrm{f}(\mathrm{t}) \mathrm{dt} \quad+\quad 2 \text { 回 } \quad \text { } \\
& =0+{ }_{2} \quad e^{-s t} .3 . d t \\
& =3\left(\frac{e^{-s t}}{-s}\right)^{\infty} \\
& 2 \\
& \infty \\
& e-2 s \\
& =3 \\
& s
\end{aligned}
$$

$$
e_{-\infty}=0
$$

First shifting Theorem (F.S.T):
If $L[f(t)]=f(s)$ then $L\left[e^{a t} f(t)\right]=f(s-a)$
Proof : By definition of L.T

$$
\begin{aligned}
\mathrm{L}[\mathrm{f}(\mathrm{t})]= & \int_{0}^{\infty} e^{-s t} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\mathrm{f}(\mathrm{~s})--\cdots---(1) \\
\mathrm{L}\left[e^{a t f}(\mathrm{t})\right] & =\int_{0}^{\infty} e^{-s t} e^{a t} \mathrm{f}(\mathrm{t}) \mathrm{dt} \\
& =\int_{0}^{\infty} e^{-(s-a) t} \mathrm{f}(\mathrm{t}) \mathrm{dt} \text { Put } \mathrm{s}-\mathrm{a}=\mathrm{p}=\int_{0}^{\infty} e^{-p t} \mathrm{f}(\mathrm{t}) \\
& \mathrm{dt} \\
& =\mathrm{f}(\mathrm{p})=\mathrm{f}(\mathrm{~s}-\mathrm{a})
\end{aligned}
$$

Note: $L\left[e^{-a t} f(t)\right]=f(s+a)$
Problems:

1) Find $L\left[t^{3} e^{-3 t}\right]$

Solution: let $\mathrm{f}(\mathrm{t})=\mathrm{t}^{\mathbf{3}}$

$$
\begin{array}{ll}
L[f(t)]=L\left[t^{3}\right]=\frac{3!}{s^{3+1}}=\frac{6}{s^{4}}=f(s) \\
\text { By F.S.T }, & \\
{\left[e^{-a t} f(t)\right]=f(s+a)} & a=3 L\left[e^{-3 t}\right. \\
f(t)]=f(s+3) \\
L\left[e^{-3 t} t^{3}\right]=\frac{6}{(s+3)^{4}}
\end{array}
$$

2) Find L [ $\left.e^{-t}(3 \sin 2 t-5 \cosh 2 t)\right]$

Solution : Let $f(t)=(3 \sin 2 t-5 \cosh 2 t) L$

$$
\begin{aligned}
{[f(t)] } & =[[(3 \sin 2 t-5 \cosh 2 t)] \\
& =3 \frac{2}{s^{2}+4}-5 \frac{s}{s^{2}-4}=f(s)
\end{aligned}
$$

$$
\begin{aligned}
& \text { By F.S.T , } L\left[e^{-a t} f(t)\right]=f(s+a) \\
& a=1 \\
& L\left[e^{-1 t} f(t)\right]=f(s+1) \\
& =\frac{6}{(s+1)^{2}+4}-\frac{5(s+1)}{(s+1)^{2}-4} \\
& \left.\mathbf{L}\left[\boldsymbol{e}^{-\boldsymbol{t}} \mathbf{( 3 \operatorname { s i n } 2 t - 5} \cosh \mathbf{2 t}\right)\right]=\frac{6}{s^{2}+2 s+5}-\frac{5 s+5}{s^{2}+2 s-3}
\end{aligned}
$$

## Second Shifting Theorem (S.S.T)

$$
\begin{aligned}
& \text { STATEMENT:- If } L[f(t)]=f(s) \text { and } g(t)=f(t-a), t>a \\
& =0, \quad t<a \quad \text { then } L\{g(t)\}=e^{-a s} f(s)
\end{aligned}
$$

PROOF:- By definition of L.T

$$
\begin{aligned}
& \mathrm{L}\left[\mathrm{f}(\mathrm{t}) \mathrm{l}=\quad \int_{0}^{\infty} e^{-s t} \quad \mathrm{f}(\mathrm{t}) \mathrm{dt}=\mathrm{f}(\mathrm{~s})------(1)\right. \\
& \\
& \mathrm{dt} \quad \int_{0}^{\omega} e^{-s t} \quad \mathrm{~L}[\mathrm{~g}(\mathrm{t})]=\mathrm{g}(\mathrm{t}) \mathrm{dt}==\int_{0}^{u} e^{-s t} \mathrm{~g}(\mathrm{t}) \\
& =0+\int_{a}^{\infty} e^{-s t} \mathrm{~g}(\mathrm{t}) \mathrm{dt} \\
& \mathrm{t}=\mathrm{a}+\mathrm{x} \\
& \left.=e^{-a s} \int_{0}^{\infty} e^{-s t} \mathrm{f}(\mathrm{t}-\mathrm{a}) \mathrm{dt} \text { put } \mathrm{t}-\mathrm{a}=\mathrm{x}=\int_{0}^{\omega} e^{-s(a+x)} \mathrm{f}(\mathrm{x}) \mathrm{dx}\right) \mathrm{dx} \\
& = \\
& =e^{-a s} \mathrm{f}(\mathrm{~s})
\end{aligned}
$$

## Example :

Find Laplace Transform of $g(t)=\begin{gathered}\cos \left(t-\frac{2 \pi}{3}\right. \\ 32 \pi\end{gathered}$, if $t>$

$$
=0, \quad \text { if } t<\frac{}{3}
$$

$$
2 \pi
$$

Solution: Let $f(t)=\cos t, \quad a=$ $\overline{3}$
$f(t-a)=\cos ($

$$
\left.\frac{2 \pi}{-3}\right)=\cos \left(t-\frac{2 \pi}{3}\right)
$$

$L[f(t)]=L$

$$
\cos \mathrm{t}]=\frac{s}{s^{2}+1}=\mathrm{f}(\mathrm{~s})
$$

[
By S.S.T $\quad \mathrm{L}[\mathrm{g}(\mathrm{t})]=\boldsymbol{e}^{-a s} \mathrm{f}(\mathrm{s})$

$$
=\left(e^{-\frac{2 \pi}{3} s}\right) \frac{s}{s^{2}+1}
$$

Change of scale property:
If $L[f(t)]=f(s)$ then $L[f(a t)]=\frac{1}{a} f\left(\frac{s}{a}\right)$
NOTE: $\mathrm{L}\left[\mathrm{f}\left(\frac{t}{a}\right)\right]=\mathrm{af}(\mathrm{as})$

Example: If $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\frac{9 s^{2}-12 s+15}{(s-1)^{3}}$
Solution: Given
$L[f(t)]=$ by Change of
scale property, L [f(at)]

$$
\begin{aligned}
& \frac{9 s^{2}-12 s+15}{(s-1)^{3}}=\mathrm{f}(\mathrm{~s}) \\
& \frac{\frac{1}{a} \mathrm{f}\left(\frac{s}{a}\right)}{\mathrm{L}[\mathrm{f}(3 \mathrm{t})]} \mathrm{=} \\
& =\frac{\mathrm{f}}{3} \mathrm{f}\left(\frac{s}{3}\right) \\
& = \\
& \frac{1}{3}\left[\frac{9\left(\frac{s}{3}\right)^{2}-12\left(\frac{s}{3}\right)+15}{\left(\frac{s}{3}-1\right)^{3}}\right] \\
& = \\
& \frac{1}{3}\left[\frac{s^{2}-4 s+15}{(s-3)^{3} / 27}\right] \\
& =
\end{aligned}
$$

## Laplace transformof the derivative of $f(t)$

$\square$ If $f(t)$ is continousfor all $t \mathbb{D})$ and $f(t) i s$ piecewisecontinous, then
$L\{f(t)\} e x i s t s, p r o v i d e d l i m e ~ e ~ s t f(t) ~ 母 ~ a n d ~$
प
$L\{f(t)\} \oiint\{f(t)\}-f(0) s f(\mathbb{S})-f(0)$
$L\left\{f^{n}(t)\right\} \mathrm{G}^{\mathrm{n}} \mathrm{f}(\mathrm{s})-\mathrm{s}^{\mathrm{n}-1} \mathrm{f}(0)-\mathrm{s}^{\mathrm{n}-2} \mathrm{f}(0) \ldots . . \mathrm{f}^{\mathrm{n}-1}(0)$

ExampleDerivelaplace transformof $\sin$ at
Let $f(t)$ inat then $f^{\prime}(t)=$ a cosat and $f^{\prime \prime}(t)-a$ inat Also $f(0)=0, f^{\prime}(0)=$ a from this also $f^{\prime \prime}(0)=0$, also from this By derivative formula,

$$
\begin{equation*}
L\left[f^{\prime \prime}(t)\right]=s^{2} L[f(t)]-s f(0)-f^{\prime}(0)- \tag{1}
\end{equation*}
$$

$\mathrm{L}\left\{-\mathrm{a}^{2} \sin \mathrm{a}^{2}\right\} \mathrm{D}^{2} \mathrm{~L}(\sin \mathrm{at})-\mathrm{a}$
$\left(-a^{2}\right) \mathrm{L}(\operatorname{Sin} a t)+a=s^{2} \mathrm{~L}(\sin \mathrm{at}) \mathrm{a}=$ $\left(s^{2}+a^{2}\right) L(\sin a t)$
$\mathrm{L}(\sin \mathrm{at})=\frac{a}{\mathrm{~s}^{2}+a^{2}}$

## Laplace transform of the integration of $f(t)$

If $\mathrm{L}[f(\mathrm{t})]=\mathrm{f}(\mathrm{s})$ then $\mathrm{L}\left[\int_{0}^{t} f(t) d t\right]=\frac{f(s)}{s}$

## Example:

Find L.T. of $\int_{0}^{t} \sin a t d t_{\text {Solution: }}$

$$
\begin{array}{ll} 
& \begin{array}{l}
\text { Let } \\
\\
\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{L}[\sin \mathrm{at}]=\frac{a}{s^{2}+a^{2}} \\
\mathrm{f}
\end{array} \mathrm{t}(\mathrm{t})= \\
\left.\int_{0}^{t} f(t) d t\right]=\frac{f(s)}{s} &
\end{array}
$$

$$
=f(s)
$$

L!

$$
\int_{0}^{t} \sin a t d t=\frac{1}{s}\left(\frac{a}{s^{2}+a^{2}}\right)
$$

Mutiofiction but:

$L\left[t^{n f(t)}\right]=$

## Example : Find $\mathrm{L}\left[\mathrm{t} \boldsymbol{\operatorname { s i n }}^{2} \mathrm{t}\right]$

## Solution: Let

$f(t)=\sin ^{2} t$

$$
\text { let } \begin{aligned}
&\left.\sin ^{2} t\right]=\mathrm{L}\left[\frac{1-\cos 2 t}{2}\right] \\
& \frac{1}{2}(\mathrm{~L}[1]-\mathrm{L}[\operatorname{Cos} 2 \mathrm{t}])=2\left(\frac{1}{2}\left(\frac{1}{s}-\frac{s}{s^{2}+4}\right)=\frac{2}{s\left(s^{2}+4\right)}=\mathrm{f}(\mathrm{~s})\right. \\
&=-\frac{d}{d s}[\mathrm{f}(\mathrm{~s})] \\
&=-\frac{d}{d s}\left[\frac{2}{s\left(s^{2}+4\right)}\right] \\
&=-2\left[\frac{-1}{\left\{s\left(s^{2}+4\right)\right\}^{2}}\right] \frac{d}{d s}\left(\mathrm{~s}\left(s^{2}+4\right)\right) \\
&= {\left[\frac{2}{\left\{s\left(s^{2}+4\right)\right\}^{2}}\right] \frac{d}{d s}\left(s^{3}+4 s\right) }
\end{aligned}
$$

By theorem $L[t f(t)]$

$$
\begin{aligned}
& =\left[\frac{2}{\left\{s\left(s^{2}+4\right)\right\}^{2}}\right. \\
& \left.=\frac{6 s^{2}+8}{s^{2}\left(s^{2}+4\right)^{2}} \quad\right]\left(3 s^{2}+4\right) \text { Division }
\end{aligned}
$$

byt:

If $L[f(t)]=f(s)$ then $L\left[\frac{f(t)}{t}\right]=\int_{s}^{\infty} f(s) d s$, provided $\lim _{t \rightarrow 0} \frac{f(t)}{t}$ exists.
Problems: (1) Find
L[
Solution: Let $\mathrm{f}(\mathrm{t})=e^{-3 t}-e^{-4 t}$

$$
\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{L}\left[e^{-3 t}-e^{-4 t}\right]=\frac{1}{S+3}-\frac{1}{S+4}=\mathrm{f}(\mathrm{~s}) \text { w.k.t }
$$

, $\mathrm{L}\left[\frac{f(t)}{t}\right]=\int_{s}^{\infty} f(s) d s$

$$
\left.\frac{e^{-}-e^{-}}{t}\right]=\int_{S}^{\infty}\left(\frac{1}{S+3}-\frac{1}{S+4}\right) d s \quad 3 t \quad 4 t
$$

$\infty$

$=\log 1-\log \left({ }^{\frac{s+3}{s+4}}\right)$

$$
=0-\log \left(\frac{s+3}{s+4}\right)=\log \left(\frac{s+4}{s+3}\right)
$$

(2). Find L.T of $\frac{\cos a t-\cos b t}{t}$

Solution: Let $f(t)=\cos$ at $-\cos b t$

$$
L[f(t)]=L[\cos a t-\cos b t]
$$

$$
\mathrm{f}(\mathrm{~s})=\frac{s}{s^{2}+a^{2}}-\frac{s}{s^{2}+b^{2}}
$$

w.k.t, $\left.\quad \frac{f(t)}{t}\right]=\int_{s}^{\infty} f(s) d s$

$$
\left.\frac{\cos a t-\cos b t}{t}\right]=\int_{s}^{\infty}\left(\frac{s}{s^{2}+a^{2}}-\frac{s}{s^{2}+b^{2}}\right) d s_{\mathrm{L}[ }
$$

$$
=\int_{2}\left[\log \left(s a^{2}+a^{2}\right)-\log \left(s^{2}+b^{2}\right)\right]
$$

$$
\left(\underline{1}=s \underline{s} 2^{2} \underline{+}+\underline{a} b^{2}\right)^{\infty}
$$

s

$$
=\frac{1}{2} \log \left(\frac{s^{2}+b^{2}}{s^{2}+a^{2}}\right)
$$

(1). Using L.T. Evaluate

$$
\int_{0}^{\infty}\left[\frac{e^{-}-e^{-}}{t}{ }^{t}\right] \mathrm{dt}
$$

Solution: First we will find $\mathrm{L}\left[\frac{e^{-t}-e^{-2 t}}{t}\right]$ let

$$
\mathrm{f}(\mathrm{t})=e_{-t}-e_{-2 t}
$$

$$
\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{L}\left[e^{-t}-e^{-2 t}\right]
$$

$$
=\frac{1}{S+1}-\frac{1}{S+2}=f(s)
$$

w.k.t , $\left.\frac{f(t)}{t}\right]=\int_{s}^{\infty} f(s) d s$,

$$
\mathrm{L}\left[\frac{e^{-t}-e^{-2 t}}{t}\right]=\int_{s}^{\infty}\left(\frac{1}{s+1}-\frac{1}{s+2}\right) d s
$$


$\mathrm{s} \quad \mathrm{s}$
$\infty$

$$
\begin{array}{r}
\left(\begin{array}{rl}
\frac{s\left(1+\frac{1}{s}\right)}{s\left(1+\frac{2}{s}\right)}
\end{array}\right)^{s+1}=\log 1-\log \left(\frac{s+1}{s+2}\right) \\
= \\
\left.\frac{-\log \left(\frac{t}{s+2}\right.}{e^{-}-e^{-}}{ }^{2 t}\right]=\log \left(\frac{s+2}{s+1}\right)
\end{array}
$$

therefore, L[
The definition of Laplace Transform is

$$
\mathrm{L}[\mathrm{f}(\mathrm{t})]=\int_{0}^{\infty} e^{-s t} f(\mathrm{t}) \mathrm{dt}
$$

$$
\mathrm{L}\left[\frac{e^{-t}-e^{-2 t}}{t}\right]=\int_{0}^{\infty} e^{-s t}\left[\frac{e^{-t}-e^{-2 t}}{t}\right] \mathrm{dt}=\log \left(\frac{s+2}{s+1}\right)
$$

Put s=0 on both sides
2. Using LT find

$L[f(t)]=L[\cos a t-\cos b t] f(s)$

$$
=\frac{s}{s^{2}+a^{2}} \cdot \frac{s}{s^{2}+b^{2}}
$$

w.k.t $\left.\quad \frac{f(t)}{t}\right]=\int_{s}^{\infty} f(s) d s$
$\mathrm{L}\left[\quad \frac{\cos a t-\cos b t}{t}\right]=\int_{s}^{\infty}\left(\frac{s}{s^{2}+a^{2}}-\frac{s}{s^{2}+b^{2}}\right) d s$
[
$\infty$

$$
\begin{aligned}
& ={ }_{2}[[\log (s \\
& =1 \quad\left(\frac{s^{2}+a^{2}}{\left(\log \left(s 2+b^{2}\right) s\right.}\right)^{\infty} \\
& =\frac{1}{2} \log \left(\frac{s^{2}+b^{2}}{s^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\left.\left.2+a^{2}\right)-\log \left(s^{2}+b^{2}\right)\right]
$$

By definition of LT, $\quad \int_{0}^{\infty} e^{-s t}\left(\frac{\cos a t-\cos b t}{t}\right) \mathrm{dt}=\frac{1}{2} \log \left(\frac{s^{2}+b^{2}}{s^{2}+a^{2}}\right)$
Put s=0 o.b.s $\quad \int_{0}^{\infty}\left(\frac{\cos a t-\cos b t}{t}\right) \mathrm{dt}=\frac{1}{2} \log \left(\frac{b^{2}}{a^{2}}\right)$

$$
=\log \sqrt{\left(\frac{b^{2}}{a^{2}}\right)}=\log (\mathrm{b} / \mathrm{a})
$$

3. ST $\int_{0}^{\infty}\left(\frac{\cos 5 t-\cos 3 t}{t}\right) d t==\log (3 / 5) \quad$ Note: put $\mathrm{a}=5, \mathrm{~b}=3$ in above problem

## Laplace Transform of Periodic Function:

Definition: A function $f(t)$ is said to be periodic with period $T$, if $\forall t, \mathrm{f}(\mathrm{t}+\mathrm{T})=\mathrm{f}(\mathrm{t})$ where T is positive constant.
The least value of $T>0$ is called the periodic function of $f(t)$.

Example: $\sin t=\sin (2 \pi+t)=\sin (4 \pi+t)=-----$ Here sint is periodic function with period $2 \pi$.

Formula :- If $f(t)$ is periodic function with period $T \forall t$ then

$$
\mathrm{L}[\mathrm{f}(\mathrm{t})]=\frac{1}{1-e^{-s t}} \quad \int_{0}^{T} e^{-s t} \mathrm{f}(\mathrm{t}) \mathrm{dt}
$$

Problem : Find the L . T of the function $\mathrm{f}(\mathrm{t})=e^{t}, 0<t<5$ and $\mathrm{f}(\mathrm{t})=\mathrm{f}(\mathrm{t}+5)$

$$
\begin{array}{ll}
\frac{1}{1-e^{-s 5}} & \int_{0}^{5} e^{-s t} \mathrm{f}(\mathrm{t}) \mathrm{dt} \\
=\frac{1}{1-e^{-s 5}} & \int_{0}^{5} e^{-s t} e^{t} \mathrm{dt}
\end{array}
$$

Solution : Here $\mathrm{T}=5 \quad \mathrm{~L}\left[\mathrm{f}(\mathrm{t})==\frac{1}{1-e^{-5 s}}\left[\frac{e^{(1-s) t}}{1-s}\right]=\frac{1}{1-e^{-5 s}}\left[\frac{e^{5(1-s)}}{1-s}\right]\right.$

## The unit step function or Heaviside's unit function:

It is denoted by $u(t-a)$ or $H(t-a)$ and is defined as $H(t-a)=0, t<a$

$$
=1, \quad t>a \text { L.T. }
$$

of unit step function:

$$
e-a s
$$

Prove that $\mathrm{L}[\mathrm{H}(\mathrm{t}-\mathrm{a})]=$ $\qquad$

$$
\text { Solution: } \begin{aligned}
\mathrm{L}[\mathrm{H}(\mathrm{t}- & \int_{0}^{\infty} e^{-s t} \mathrm{H}(\mathrm{t} \\
-\mathrm{a}) \mathrm{dt} & \mathrm{a})]= \\
= & \int_{0}^{a} e^{-s t} \mathrm{H}\left(\mathrm{t}{ }_{-\mathrm{a}}\right) \mathrm{dt}+\int_{a}^{\infty} e^{-s t} \mathrm{H}(\mathrm{t}-\mathrm{a}) \mathrm{dt} \\
= & \int_{0}^{a} 0+\int_{a}^{\infty} e^{-s t} \cdot 1 \\
= & \left(\frac{e^{-s t}}{-s}\right) \\
& =\left(\frac{\left(\frac{e^{-s a}}{s}\right)}{} \quad . \mathrm{dt}\right.
\end{aligned}
$$

## Inverse Laplace Transform:

Definition : If $f(s)$ is the Laplace Transform of $f(t)$ then $f(t)$ is called the inverse Laplace Transform of $f(s)$ and is denoted by $L^{-1} f s$. i.e., $\left.\left.f(t)=\right)\right]$
$L_{-1} f s \quad[()]$
$L^{-1}$ is called inverse Laplace Transform operator, but not reciprocal.

Example : If $\left.\mathrm{L}^{a t}\right]=\frac{1}{s-a\left[\text { then } e^{a t}=L^{-1}\left[\frac{1}{s-a}\right]\right.}$

Linear Property:
If $f_{1}(s)$ and $f_{2}(s)$ are L.T. of $f_{1}(t)$ and $f_{2}(t)$ respectively then
$L^{-1}\left[c_{1} f_{1}(s)+c_{2} f_{2}(s)\right]=c_{1} L^{-1}\left[f_{1}(s)\right]+c_{2} L^{-1}\left[f_{2}(s)\right]$ where $c_{1}$
, $\mathrm{C}_{2}$ constants.

## Standard Formulae :

$$
1 \quad \Rightarrow L^{-1}\left[\frac{1}{s}\right]=1
$$

$\begin{array}{ll}\text { (2) } \mathrm{L}\left[e^{a t}\right]=\frac{1}{s-a} & \text { (1) } \mathrm{L}\end{array} \Rightarrow L^{-1}\left[\frac{1}{s-a}\right]=e^{a t}$
(3) $\mathrm{L}\left[e^{-a t}\right]=\frac{1}{s+a}^{s} \Rightarrow L^{-1}\left[\frac{1}{s+a}\right]=e^{-a t}$
(4) L [sin at $]=\overline{s^{2}+a^{2}} \Rightarrow L^{-1}\left[\frac{1}{s^{2}+a^{2}}\right]=\frac{1}{a} \sin$ at
(5) $\mathrm{L} \quad\left[\quad \operatorname{Cos} \frac{s}{s^{2}+a^{2}}\right.$ at $\Rightarrow L^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos \quad$ at $]=$
5) L [Sinhat] $\frac{a}{s^{2}-a^{2}} \Rightarrow L^{-1}\left[\frac{1}{s^{2}-a^{2}}\right]=\frac{1}{a} \sinh =$ at
6) $\mathrm{L}\left[\operatorname{Cos} \frac{s}{s^{2}-a^{2}} \quad \Rightarrow L^{-1}\left[\frac{s}{s^{2}-a^{2}} \quad\right.\right.$ hat $\left.]=\right]=\cosh$ at
7) $L\left(t^{n}\right)=\rho(\mathrm{n}+1) / s^{n+1}, \quad \mathrm{n}^{>-1} \quad \Rightarrow L^{-1}\left[\frac{1}{s^{n+1}}\right]=\frac{t}{\rho(\mathrm{n}+1)}$
8) $L\left(t^{n}\right)=n!/ s^{n+1}, \quad n$ is +ve integer $\Rightarrow L^{-1}\left[\frac{1}{s^{n+1}}\right]=\frac{t^{n}}{n}$ PProblems:

$$
\begin{equation*}
L^{-1}\left[\frac{1}{s^{2}}+\frac{1}{s+4}+\frac{1}{s^{2}+4}+\frac{s}{s^{2}-9}\right] \tag{1}
\end{equation*}
$$

Find
solution :

$$
L^{-1}\left[\frac{1}{s^{2}}\right]+L^{-1}\left[\frac{1}{s+4}\right]+L^{-1}\left[\frac{1}{s^{2}+4}\right]+L^{-1}\left[\frac{s}{s^{2}-9}\right]
$$

$$
=t+e^{-4 t}+\frac{1}{2} \sin 2 t+\cosh 3 t .
$$

$$
\begin{aligned}
& L^{-1}\left[\frac{1}{s^{2}+25}\right] \\
& L^{-1}\left[\frac{1}{s^{2}+25}\right]=L^{-1}\left[\frac{1}{s^{2}+5^{2}}\right]=\frac{1}{5} \sin 5 t \\
& L^{-1}\left[\frac{1}{2 s-5}\right]
\end{aligned}
$$

(2) Find solution
(3) Find
solution : $L^{-1}\left[\frac{1}{2 s-5}\right]=\frac{1}{2} L^{-1}\left[\frac{1}{s-5 / 2}\right]=\frac{1}{2} e^{-t}$

$$
L^{-1}\left[\frac{2 s+1}{s(s+1)}\right]
$$

(4) Find

$$
L^{-1}\left[\frac{2 s+1}{s(s+1)}\right]=L^{-1}\left[\frac{s+s+1}{s(s+1)}\right]=L^{-1}\left[\frac{1}{s+1}+\frac{1}{s}\right]=e^{-t}+1
$$

(5) Find $L^{-1}\left[\frac{3 s-8}{4 s^{2}+25}\right]$

$$
\begin{array}{rlrl}
L^{-1}\left[\frac{3 s-8}{4 s^{2}+25}\right] & =1 / 4 L^{-1}\left[\frac{3 s-3^{8}}{s^{2}+2 \overline{2} / 4}\right]_{s} & & =3 / 4 \operatorname{Cos} \\
& =1 / 4\left\{3 L^{-1} \frac{s}{5} \frac{s}{2} \frac{-}{2+(5 / 2)^{2}}\right]-8 L^{-1}\left[\frac{1}{s^{2}+(5 / 2)^{2}}\right. & (1 / 4 \times 8 \times t \\
& \left.a=5 / 2 \frac{2}{5}\right)
\end{array}
$$

Sin ${ }^{5}$

$$
=3 / 4 \operatorname{Cos} 4 / 5 \operatorname{Sin} t
$$

$$
2
$$

FIRST SHIFTING THEOREM OF INVERSE L.T:
If $L^{-1}[f(s)]=f(t)$ then $L^{-1}[f(s-a)]=e^{\text {at }} f t()$

$$
=e^{a t} L^{-1}[f(s)]
$$

PROOF:

## By definition of L.T

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s t} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\mathrm{f}(\mathrm{~s})-\cdots----(1) \quad \mathrm{l}[\mathrm{f}(\mathrm{t})]= \\
& \mathrm{f}(\mathrm{t})]=\int_{0}^{\infty} e^{-s t} e^{a t} \mathrm{f}(\mathrm{t}) \mathrm{dt} \\
& \quad=\int_{0}^{\infty} e^{-(s-a) t}
\end{aligned}
$$

$\mathrm{L}\left[\boldsymbol{e}_{\text {at }}\right.$
$f(t) d t$ Put $s-a=p=\int_{0}^{\infty} e^{-p t} f(t)$

$$
\begin{aligned}
& \quad \mathrm{dt} \\
& =\mathbf{f}(\mathrm{p})=\mathrm{f}(\mathrm{~s}-\mathrm{a}) \\
& \mathrm{L}\left[e^{a t \mathrm{f}}(\mathrm{t})\right]=\mathrm{f}(\mathrm{~s}-\mathrm{a}) \\
& \Rightarrow \quad L^{-1}[\mathrm{f}(\mathrm{~s}-\mathrm{a})]=e^{a t} f(f) \\
& \text { (or) } L^{-1}[f(s-a)]==e^{a t} L^{-1}[f(s)]
\end{aligned}
$$

Note: $L^{-1}[f(s+a)]==e^{-a t} L^{-1}[f(s)]$
PROBLEMS

$$
L^{-1}\left[\frac{s+3}{(s+3)^{2}+8^{2}}\right] \quad \text { 1) Find }
$$

Solution $\quad L^{-1}\left[\frac{s+3}{(s+3)^{2}+8^{2}}\right]=e^{-3 t} L^{-1}\left[\frac{s}{s^{2}+8^{2}}:\right] \quad$ by F.S.T
$=e^{-3 t}$

$$
L^{-1}\left[\frac{1}{s^{2}+2 s+5}\right]
$$

$$
L^{-1}\left[\frac{1}{s^{2}+2 s+5}\right]=L^{-1}\left[\frac{1}{(s+1)^{2}+4}\right]=e^{-t} L^{-1}\left[\frac{1}{s^{2}+2^{2}}\right]=e^{-t}
$$

$$
\begin{aligned}
& L^{-1}\left[\frac{1}{(s+1)^{2}}\right] \\
& \quad L^{-1}\left[\frac{1}{(s+1)^{2}}\right]=L^{-1}\left[\frac{1}{(s+1)^{2}}\right]=e^{-t} L^{-1}\left[\frac{1}{s^{2}}\right]=e^{-t}
\end{aligned}
$$

2) Find

## Solution :

3) Find

Solution :
4) Find Inverse L.T of $\frac{s}{(s+3)^{2}}$

$$
\begin{aligned}
& L^{-1}\left[\frac{s}{(s+3)^{2}}\right]=L^{-1}\left[\frac{s+3-3}{(s+3)^{2}}\right]=e^{-3 t} L^{-1}\left[\frac{s-3}{s^{2}}\right] \\
&=e^{-3 t}\left\{L^{-1}\left[\frac{1}{s}\right]-3 L^{-1}\left[\frac{1}{s^{2}}\right]\right\}=e^{-3 t}(1-3 t) \\
& \begin{aligned}
& L^{-1}\left[\frac{s+3}{s^{2}-10 s+29}\right] \\
& L^{-1}\left[\frac{s+3}{s^{2}-10 s+29}\right]=L^{-1}\left[\frac{s+3}{(s-5)^{2}+4}\right]=L^{-1}\left[\frac{(s-5)+5+3}{(s-5)^{2}+4}\right] \\
&=e^{5 t} L^{-1}\left[\frac{s+8}{s^{2}+4}\right. \\
&=e^{5 t}\left\{L^{-1}\left[\frac{s}{s^{2}+4}\right]+8 L^{-1}\left[\frac{1}{s^{2}+4}\right]\right\} \\
&=e^{5 t}\left\{L^{-1}\left[\frac{s}{s^{2}+2^{2}}\right]+8 L^{-1}\left[\frac{1}{s^{2}+2^{2}}\right]\right\}
\end{aligned}
\end{aligned}
$$

5) Find

Solution :

```
= e}\mp@subsup{e}{}{5t}[\operatorname{Cos}2t+8\times1/2\times\operatorname{Sin}2t
\[
=e^{5 t}
\]
```

SECOND SHIFTING THEOREM: [ Cos $2 \mathrm{t}+4$ Sin 2 t$]$
If $L^{-1}[f(s)]=f(t)$ then $L^{-1}\left[e^{-a s} f(s)\right]=g()$ where $g(t)=f(t-a), t>a$

$$
=0, \quad t<a
$$

Proof: By S.S.T of L.T, $L[g(t)]=e^{-a s} f(s) \quad$ (write proof of SST)

$$
\begin{aligned}
& \Rightarrow L^{-1}\left[e^{-a s} f(s)\right]=g t() \\
& \Rightarrow L^{-1}\left[e^{-a s} f(s)\right]=f(t-a), t>a
\end{aligned}
$$

$$
\text { =0, } \quad t<a \text { Note: }
$$

We can also written as $L^{-1}\left[e^{-a s} f(s)\right]=f(t-a) H(t-a)$
Problem:
Find $L^{-1}\left[\frac{e^{-\pi s}}{s^{2}+1}\right]$

$$
L^{-1}\left[\frac{e^{-}}{s^{2}+1}\right]=L^{-1}\left[e^{-\pi s} \frac{1}{s^{2}+1}\right]_{\pi s}
$$

Solution:

$$
\begin{aligned}
& \text { Let } f(s)=\frac{1}{s^{2}+1} \\
& L^{-1}[f(s)]=L^{-1}\left[\frac{1}{s^{2}+1}\right]=\operatorname{Sin} t=f(t)
\end{aligned}
$$

by S.S.T $L^{-1}\left[e^{-a s f(s)]=f(t-a), t>a, ~}\right.$

$$
=0, \quad t<a
$$

$$
\text { So } \quad \begin{aligned}
& L^{-1}\left[e^{-\pi s} f(s)\right]=f(t-\pi), t>\pi \\
&=0, \quad t<\pi \\
& L^{-1}\left[e^{-\pi s} \frac{1}{s^{2}+1}\right]=\operatorname{Sin}(t-\pi), t>\pi=0, \\
& t<\pi
\end{aligned}
$$

Chang of scale property :

$$
\begin{aligned}
& \text { If } L^{-1}[\mathrm{f}(\mathrm{~s})]=\mathrm{f}(\mathrm{t}) \text { then } L^{-1}\left[\mathrm{f}\left(\frac{s}{a}\right)\right]=\mathrm{af}(\mathrm{at}) \\
& \qquad \text { (or ) } L^{-1}[\mathrm{f}(\mathrm{as})]=\frac{1}{a} \mathrm{f}\left(\frac{t}{a}\right)
\end{aligned}
$$

Proof: By the change of scale property,

$$
\begin{aligned}
& L[f(a t)]=\frac{1}{a} f\left(\frac{s}{a}\right) \\
\Rightarrow & L^{-1}\left[f\left(\frac{s}{a}\right)\right]=a f(a t)
\end{aligned}
$$

$$
L^{-1}[\mathrm{f}(\mathrm{as})]=\frac{1}{a} \mathrm{f}\left(\frac{t}{a}\right)
$$

Problem(1): If $L^{-1}\left[\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\right]=t$ cost , then find $L^{-1}\left[\frac{9 s^{2}-1}{\left(9 s^{2}+1\right)^{2}}\right]$
Solution : Given $L^{-1}\left[\frac{s-1}{\left(s^{2}+1\right)^{2}}\right]=\mathrm{t}$ cost

$$
\text { i.e., } \quad L^{-1}[f(\mathrm{~s})]=\mathrm{f}(\mathrm{t})
$$

, Here $f(s)=\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}} f(t)=t$ cost

$$
\begin{aligned}
L^{-1}\left[\frac{9 s^{2}-1}{\left(9 s^{2}+1\right)^{2}} \begin{array}{c}
\text { Now }]=
\end{array}\right. & L^{-1}\left[\frac{(3 s)^{2}-1}{\left\{(3 s)^{2}+1\right\}^{2}}\right] \\
=L^{-1}[f(3 s)] & \text { By change of scale property, } \\
& =\frac{1}{3} f\left(\frac{t}{3}\right) \\
L^{-1}[\mathrm{f}(\mathrm{as})]=\frac{1}{a} \mathrm{f}\left(\frac{t}{a}\right)= & \frac{1}{3} \frac{t}{3} \cos \frac{t}{3} \quad \text { a }=3
\end{aligned}
$$

Inverse Laplace Transform of partial fractions :

Problems : (1) Find $L^{-1}\left[\frac{\left(s^{2}+1\right)(s-1)}{s^{4}}\right]$
Proof : By theorem of L.T. $L\left[\begin{array}{ll}t n & f(t)\end{array}\right]$

Solution : Given

$$
L^{-1}\left[\frac{\left(s^{2}+1\right)(s-1)}{s^{4}}\right]=L^{-1}\left[\frac{\left(s^{3}-s^{2}+s-1\right)}{s^{4}}\right]
$$

$$
(-1)^{n} \frac{d}{d s^{n}}=\mathrm{f}(\mathrm{~s})
$$

$$
\begin{aligned}
& =L^{-1}\left[\frac{1}{s}\right]-L^{-1}\left[\frac{1}{s^{2}}\right]+L^{-1}\left[\frac{1}{s^{3}}\right]-L^{-1}\left[\frac{1}{s^{4}}\right] \\
& =1-t+\frac{1}{2} t^{2}-\frac{t^{3}}{6}
\end{aligned}
$$

$$
\Rightarrow L^{-1}\left[\frac{d^{n}}{d s^{n}} \mathrm{f}(\mathrm{~s})\right]=(-1)^{n}
$$

$$
\operatorname{tn}^{n} \mathrm{f}(\mathrm{t}) \text { Note:- } L^{-1}\left[\mathrm{f}^{\prime}(\mathrm{s})\right]=
$$

$$
-t f(t)
$$

(2). Find $L^{-1}\left[\frac{s+5}{s^{2}-3 s+2}\right] \log \left(\frac{s+3}{s+4}\right)$ blution : Here $f(s)=\overline{s^{2}-3 s+2}$

Problem (1):- Find reduce into partial $\frac{s+3}{s+4}_{s+5}^{s+4}$ fractions

$$
\mathrm{f}(\mathrm{~s})=\frac{s+5}{s^{2}-3 s+2}=\frac{s+5}{(s-1)(s-2)}=\frac{A}{s-1}+\frac{B}{s-2}----(1)
$$

$$
\text { Solution : Let } f(s)=
$$

()$=\log (s+3)-\log$

$$
\Rightarrow s+5=A(s-2)+B(s-1)
$$

$(s+4)$
put $s=1$ on both sides $\Rightarrow A=-6$
put $s=2$ on both sides $\Rightarrow B=7$
Therefore $(1) \Rightarrow \mathrm{f}(\mathrm{s})=\frac{-6}{s-1}+\frac{7}{s-2}$

$$
L^{-1}[\mathrm{f}(\mathrm{~s})]=L^{-1}\left[\frac{-6}{s-1}+\frac{7}{s-2}\right]=-6 e^{t}+7 e^{2 t}
$$

Inverse Laplace Transform of derivatives :-

$$
\text { If } L^{-1}[\mathrm{f}(\mathrm{~s})]=\mathrm{f}(\mathrm{t})_{n} \quad L^{-1}\left[\frac{d_{d s^{n}}^{n}}{n} \text { then } \mathrm{f}(\mathrm{~s})\right]=(-1)^{n} t^{n} \mathrm{f}(\mathrm{t})
$$

$$
\begin{gathered}
L^{-1}\left[\mathrm{f}^{\prime}(\mathrm{s})\right]=L^{-1}\left[\frac{1}{s+3}-\frac{1}{s+4}\right] \\
=e-3 t-e-4 t
\end{gathered}
$$

$$
L^{-1}\left[\log \left(\frac{s+1}{s-1}\right)\right]
$$

$$
\text { By theorem, } \quad-\mathrm{t} \mathrm{f}(\mathrm{t})=e^{-3 t}-\quad \frac{e^{-3 t}-e^{-}}{-t} \quad e^{-4 t} \mathrm{H} . \mathrm{W} . \text { Find } \quad 4 t t \mathrm{so}, \quad \frac{e^{t}-e^{-}}{t}
$$

$$
\mathrm{f}(\mathrm{t})=\mathrm{Ans}: L^{-1}[\mathrm{f}(\mathrm{~s})]=
$$

[replace 3 by $\Rightarrow L^{-1}[\mathrm{f}(\mathrm{s})]=\frac{e^{-4 t}-e^{-3 t}}{t} 1$ and 4 by $(-1)$ ]
(2) Find $L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right.$ ]

Solution: W.K.T $\quad L^{-1}\left[\frac{1}{\left(s^{2}+a^{2}\right)}\right]=\frac{1}{a} \sin$ at
i.e $L^{-1}[f(s)]=f(t) 1$ Let $f(s)$
$=, \quad f(t) \frac{1}{\left(s^{2}+a^{2}\right)} \quad-=\sin a t$

We have $L^{-1}\left[f^{\prime}(s)\right]=-t f(t)$

$$
\begin{aligned}
& L^{-1}\left[\frac{d}{d s}\left(\frac{1}{\left(s^{2}+a^{2}\right)}\right)\right]=-\mathrm{t} \frac{1}{a} \sin \text { at } \\
& L^{-1}\left[\frac{-2 s}{\left(s^{2}+a^{2}\right)^{2}}\right]=-\frac{t}{a} \sin \text { at } \\
& \Rightarrow L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]=\frac{t}{2 a} \sin \text { at }
\end{aligned}
$$

## Inverse L.T. of integrals :-

If $L^{-1}[f(s)]=f(\mathrm{t})$ then $L^{-1}\left[\int_{s}^{\infty} f(s) d s\right]=\frac{f(t)}{t}$
Proof: We have $L\left[\frac{f(t)}{t}\right]=\int_{s}^{\infty} f(s) d s \quad$ provided exist

$$
\Rightarrow L^{-1}\left[\int_{s}^{\infty} f(s) d s\right]=\frac{f(t)}{t}
$$

Multiplication by powers of $s$ :-

If $L^{-1}[f(s)]=f(t)$ and $f(0)=0$, then $L^{-1}[s f(s)]=f^{\prime}(t)$ Proof:
W.K.T. $\quad L\left[f^{\prime}(t)\right]=s L[f(t)]-f(0)$

$$
\begin{gathered}
=\mathrm{sf}(\mathrm{~s})-0 \\
\Rightarrow L^{-1}[\mathrm{sf}(\mathrm{~s})]=\mathrm{f}^{\prime}(\mathrm{t})
\end{gathered}
$$

In general we have, $\Rightarrow L^{-1}\left[s^{n} f(s)\right]=f^{n}(\mathrm{t}) \quad$ if $=f^{n}(0)=0$

## Problems :

(1) Find

$$
L^{-1}\left[\frac{s^{2}}{\left(s^{2}+a^{2}\right)^{2}}\right]
$$

$$
L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]=L^{-1}\left[s . \frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]
$$

## solution :

Let $\mathrm{f}(\mathrm{s})=$
$L^{-1}[f(s)]=\overline{\left(s^{2}+a^{2}\right)^{2}} f(t)=f^{\prime}(t)=$
$\frac{1}{2 a}\left[\sin \quad L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]\right.$ at + t a cos at $]$
We have $\quad L^{-1}[s f(s)]=f^{\prime}(t)$
$\Rightarrow L^{-1}\left[\frac{s^{2}}{\left(s^{2}+a^{2}\right)^{2}}\right]=\frac{1}{2 a}$
(2) Find $L^{-1}\left[\frac{s^{2}}{(s-1)^{4}}\right]$ ( sin at + at cos at )

Solution $\quad \frac{s}{(s-1)^{4}}$
$: \quad[f(\mathrm{~s})]=L^{-1}\left[\frac{s}{(s-1)^{4}}\right]$
$=L^{-1}\left[\frac{s-1+1}{(s-1)^{4}}\right]$
$=e^{t} L^{-1}\left[\frac{s+1}{s^{4}}\right.$
$=e^{t} L^{-1}\left[\frac{1}{s^{3}}+\frac{1}{s^{4}}\right]$
$=e^{t}\left(\frac{t^{2}}{2}+\frac{t^{3}}{6}\right)=\mathrm{f}(\mathrm{t})$
Let $\mathbf{f}(\mathrm{s})=\boldsymbol{L} \mathbf{- 1}$

$$
e^{t}\left(\frac{t^{2}}{2}+\frac{t^{3}}{6}\right)+e^{t}\left(\mathrm{t}+\frac{t^{2}}{2}\right)
$$

Now $f^{\prime}(t)=e^{t}\left(t+t^{2}+\frac{t^{3}}{6}\right)$

$$
\begin{aligned}
& \text { By theorem } \quad L^{-1}[\mathrm{sf}(\mathrm{~s})]=\mathrm{f}^{\prime}(\mathrm{t}) \\
& \\
& L^{-1}\left[\mathrm{~s} \frac{s}{(s-1)^{4}}\right]=e^{t}\left(\mathrm{t}+\mathrm{t}^{2}+\frac{t^{3}}{6}\right) \underline{\text { Division }}
\end{aligned}
$$

## by power of $S$ :

() $\quad=f t$, then $L^{-1}$

$$
s=0^{W} f t d t
$$

Prof: we have by LT,

$$
\begin{aligned}
& \int_{0}^{t} f_{(t) d t]}=\frac{f(s)}{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Problem: }
\end{aligned}
$$

1) Find $L^{-1}\left[\frac{1}{s(s+3)}\right]$
solution: Let $\mathrm{f}(\mathrm{s})=\frac{1}{s+3}$

$$
L^{-1}[f(s)]=L^{-1}\left[\frac{1}{s+3}\right]=e^{-3 t}=f(\mathrm{t})
$$

By theorem , $L^{-1}\left[\mathbf{1}_{s} . f(s)\right]=0$ 团 $f(t) \mathrm{dt}$

$$
\left.\left.\Rightarrow L^{-1}\left[\frac{1}{s(s+3)}\right]=\int_{0}^{t} e^{-3 t} d t=\frac{e^{-3 t}}{-3}\right]\right]_{0}^{t}=\frac{1-e^{-3 t}}{3}
$$

2) Find $L^{-1}\left[\frac{1}{s\left(s^{2}+a^{2}\right)}\right]$

Solution : let $\mathrm{f}(\mathrm{s})^{\frac{1}{s^{2}+a^{2}}, L^{-1}}=[f(\mathrm{~s})]=\operatorname{sinat}=\mathrm{f}(\mathrm{t})$

By

$$
\begin{aligned}
& L^{-1}\left[\frac{1}{s} \mathrm{f}(\mathrm{~s})\right]=\int_{0}^{t} f_{(\mathrm{t}) \mathrm{dt}} \\
& \Rightarrow L^{-1}\left[\frac{1}{s\left(s^{2}+a^{2}\right)}\right]=\int_{0}^{t} \frac{1}{a} \sin a t=\frac{1}{a}\left(-\frac{\cos a t}{a}\right. \\
&=\frac{1}{a^{2}}(1-\cos \text { at })
\end{aligned}
$$

3) Find $L^{-1}\left[\frac{1}{s^{2}\left(s^{2}+a^{2}\right)}\right]$

$$
\begin{aligned}
& \overline{s^{2}+a^{2}} \\
& \quad 11 \text { solution : let } \mathrm{f}(\mathrm{~s})
\end{aligned}
$$

$$
=\quad, f(t)=\_\sin a t
$$

$a$
theorem, $L^{-1}\left[\begin{array}{ll}\frac{1}{s^{2}} & f(s)]\end{array}\right]=$
by

$=\int_{0}^{t} \frac{1}{a^{2}}(1-\cos$ at $) \mathrm{dt}{\underset{\underline{1}}{a^{2}}\left(\mathrm{t}-\frac{\sin a t}{a}\right)}^{t}$

If $f(t)$ and $g(t)$ are two functions defined for $t \geq 0$, then the convolution of $f(t)$ and $g(t)$ is defined as, $\quad f(t){ }^{*} g(t)=\int_{0}^{t} f(u) g(t-u) d u$. $f(t){ }^{*} g(t)$ can also be written as (f $\left.\quad * \mathrm{~g}\right)(\mathrm{t})$. Note:- The convolution operation is commutation
i.e., $\left(f{ }^{*} g\right)(t)=\left(g^{*} t\right)(t)$
$\Rightarrow \int_{0}^{t} f(u) g(t-u) d u=\int_{0}^{t} f(t-u) g(u) d u$

## Convolution theorem :-

If $L[f(t)]=f(s)$ and $L[g(t)]=g(s)$ then $L[f(t) * g(t)]=L[f(t)] . L[g(t)]$
(or)
$=f(s) . g(s)$
So, $\quad L[(f * g)(t)]=f(s) . g(s)$
Corollary :- $L^{-1}[f(s) . g(s)]=(f * g) t$

$$
\begin{aligned}
& =\int_{0}^{t} f(u) g(t-u) d u \\
& =\int_{0}^{t} f(t-u) g(u) d u
\end{aligned}
$$

Problems:
(1). Find $L^{-1}\left[\frac{1}{(s-2)\left(s^{2}+1\right)}\right]$ by using convolution theorem.

$$
\begin{aligned}
& \overline{s-2}, \mathrm{~g}(\mathrm{~s})=\overline{s^{2}+1} \\
& L^{-1}[\mathrm{f}(\mathrm{~s})]=L^{-1}\left[\frac{1}{s-2}\right]=e^{2 t}, L^{-1}[\mathrm{~g}(\mathrm{~s})]=L^{-1}\left[\frac{1}{s^{2}+1}\right]=\sin \mathrm{t}
\end{aligned}
$$

By convolution theorem,

$$
\begin{aligned}
L^{-1}[f(\mathrm{~s}) \cdot \underset{\mathrm{g}(\mathrm{~s})]}{ } & =\int_{0}^{t} f(t-u) g(u) d u \\
\Rightarrow L^{-1}\left[\frac{1}{(s-2)\left(s^{2}+1\right)}\right. & =\int_{0}^{t} e^{2(t-u)} \sin u d u \\
& =e^{2 t} \int_{0}^{t} e^{-2 u} \sin u d u \\
& =e^{2 t}\left[\frac{e^{-2 u}}{(-2)^{2}+1^{2}}(-\right.
\end{aligned}
$$

$$
\sin u-
$$

$$
\cos u)]
$$

$$
\left.\cos t)-\frac{e^{0}}{5}(-1)\right]
$$

$2 \sin t-\cos t)+=\frac{1}{5}(-$

$$
=\frac{1}{5}\left[e^{2 t}-2 \sin t-\cos t\right]
$$

2) Find $L^{-1}\left[\frac{1}{s\left(s^{2}-a^{2}\right)}\right]$ by convolution theorem
Solution: Let $\mathrm{f}(\mathrm{s})=$ = $\quad \mathrm{g}(\mathrm{s})=\frac{1}{s^{2}-a^{2}}$

$$
\begin{gathered}
\begin{array}{c}
L^{-1}[\mathrm{f}(\mathrm{~s})]=L^{-1}\left[\frac{1}{s}\right]=1=\mathrm{f}(\mathrm{t}), \quad L^{-1}[\mathrm{~g}(\mathrm{~s})]=L^{-1}\left[\frac{1}{s^{2}-a^{2}}\right] \\
\\
\quad=\frac{1}{a} \sinh \text { at }=\mathrm{g}(\mathrm{t}) \text { By convolution theorem }, \\
\Rightarrow L^{-1}[\mathrm{f}(\mathrm{~s}) \cdot \mathrm{g}(\mathrm{~s})]
\end{array}=\int_{0}^{t} f(t-u) g(u) d u \\
L^{-1}\left[\frac{1}{s\left(s^{2}-a^{2}\right)}\right] \\
=\frac{1}{a}\left[\frac{\int_{0}^{t} 1 \frac{1}{a} \cosh a u}{a}\right],(\text { apply limits o to } \mathrm{t}) \\
\\
=\frac{1}{a^{2}}(\cosh \text { at }-1)
\end{gathered}
$$

Application of L. T to Ordinary Differential Equations:

The L.T method is easier, time - saving and excellent tool for solving O.D.Es
Working rule for finding solution of D.E by L. T:

1) Write down the given equation and apply L.T O.B.S
2)Use the given conditions
2) Re arrange the given equation to given transformation of the solution
3) Take inverse L.T O. B. S to obtain the desireds obesve Sali stying the given conditions
The formulae to be used in this process are:
$L\left[f^{1}(t)\right]=s f(s)-f(0)$
$L\left[f^{11}(t)\right]=s^{2} f(s)-s f(0)-f^{1}(0)$
$L\left[f^{111}(t)\right]=s^{3} f(s)-s^{2} f(0)-s f(0)-f^{11}(0)$
Note: let $f(t)=y(t)$ and $f(s)=y(s)$ Problems:
4) Solve $4 y^{11}+\pi^{2} y=0, y(0)=2, y^{1}(0)=0$

Solution: $\quad$ Here $y=y(t)$

$$
\begin{array}{lll}
\text { Given D. E } & 4 y^{11}(t)+\pi^{2} y(t)=0 & \text { Let L.T } \\
& 4 L\left[y^{11}(t)\right]+\pi & { }^{2} L[y(t)
\end{array}
$$

Let $L^{-1}$ O.B.S, we get $\quad \mathrm{y}(\mathrm{t}) \quad L^{-1}\left[\frac{s}{4\left(s^{2}+\pi^{2} / 4\right)}\right]=8$

$$
=\frac{8}{4} L^{-1}\left[\frac{s}{s^{2}+\left(\pi^{2} / 2\right)^{2}}\right.
$$

$$
\mathrm{J}=2 \cdot \cos \pi / 2 t
$$

$$
\Rightarrow y(t)=2 \cdot \cos ^{\pi} / 2 t \quad \text { is solution of }
$$

gven D.E
3) Solve $y^{111}+2 y^{11}-y^{1}-2 y=0$ with $y(0)=y^{1}(0)=0, y^{11}(0)=6$

Solution : given D. E

Let L. T On Both Sides
$L\left[y^{111}\right]+2 L\left[y^{11}\right]-L\left[y^{1}\right]-2 L[y]=0$

$$
\begin{equation*}
\left.y^{1}(0)\right] \tag{0}
\end{equation*}
$$

$$
-s L[y]-y(0)-2 L[y]=0
$$

$\Rightarrow \mathrm{L}[\mathrm{y}]\left(\mathrm{s}^{3}+2 \mathrm{~s}^{2}-\mathrm{s}-2\right)-6=0$
$\Rightarrow \mathrm{L}[\mathrm{y}]=\frac{6}{s^{3}+2 s^{2}-s-2}$
$\Rightarrow s^{3} \mathrm{~L}[\mathrm{y}] \mathrm{s}^{2} \mathrm{y}(0) \mathrm{sy}^{1}(0) \mathrm{y}^{11}(0)+2\left[\mathrm{~s}^{2} \mathrm{~L}[\mathrm{y}]\right.$
$\mathrm{L}[\mathrm{y}]=\frac{6}{(s-1)(s+1)(s+2)}=\frac{A}{s-1}+\frac{B}{s+1}+\frac{C}{s+2}$

$$
\begin{align*}
& 6=A(s+1)(s+2)+B(s-1)(s+2)+C(s-1)(s+1)  \tag{1}\\
& \text { (2) Put } s=1 \text { in }
\end{align*}
$$

$$
\text { Put } s=-1 \text { in (2) }
$$

$$
\Rightarrow 6=B(-2)(1) \quad \Rightarrow B=-3
$$

$$
\text { Put } s=-2 \text { in (2) }
$$

$$
\Rightarrow 6=C(-3)(-1) \quad \Rightarrow C=2
$$

Substitute A, B, C in (1)
$\Rightarrow \mathrm{L}[\mathrm{y}]=\frac{1}{S-1}-\frac{3}{S+1}+\frac{2}{S+2}$
$\Rightarrow \mathrm{y}=L^{-1}\left[\frac{1}{s-1}-\frac{3}{s+1}+\frac{2}{s+2}\right]$
$\Rightarrow \mathrm{y}(\mathrm{t})=e^{t}-3 e^{-t}+2 e^{-2 t}$
is the solution of given $D . E$
HW: Solve the D.E $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=e^{-t} \sin t$
Ans: $\mathrm{y}(\mathrm{t})=\frac{e^{-t}}{3}(\sin \mathrm{t}-2 \sin 2 \mathrm{t})$

## UNIT - IV

## FOURIER SERIES

## Periodic Function :

Definition: A function $f(x)$ is said to be periodic with period $T$, if $\forall$ $x, f(x+T)=f(x)$ where $T$ is positive constant.

The least value of $\mathrm{T}>0$ is called the periodic function of $\mathrm{f}(\mathrm{x})$.
Example: $\sin x=\sin (2 \pi+x)=\sin (4 \pi+x)=----$
Here sinx is periodic function with period $2 \pi$. Def:

## Piecewise Continuous Function:

A function is said to be piece-wise continuous (or) Sectionally Continuous) over the closed interval [a,b] if it is defined on that interval and is such that the interval can be divided into a finite number of sub intervals, in each of which $f(x)$ is continuous and both right and left hand limits at every end point if the sub intervals.

## Dirichlet Conditions:

A function $f(x)$ satisfies Dirichlet conditions if
(1) $f(x)$ is well defined and single valued except at a finite no. of points in ( $-1,1$ )
(2) $f(x)$ is periodic function with period $2 \mid$
(3) $f(x)$ and $f^{\prime}(x)$ are piece wise continuous in ( $-1, I$ )

Fourier Series: If $f(x)$ satisfies Dirichlet conditions, then it can be represented by an infinite series called Fourier Series in an interval ( $-1,1$ ) as

$$
\begin{aligned}
& f(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \text { an } \cos \frac{n \pi x}{l}++\sum_{n=1}^{\infty} b n \sin \frac{n \pi x}{l} \cdots-\cdots \\
& a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x, \text { an }=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} \mathrm{dx} \\
& \quad \text { bn }=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx}
\end{aligned}
$$

Here $\quad a_{0}$, an and bn are called Fourier coefficients.
These are also
calle Euler's formula. (i.e., inteval is $(-\pi, \pi)$
Note (1): If $x \in\left(-\pi, \pi \quad \frac{a_{0}}{2}+\sum_{n=1}^{\infty}(a n \cos n x+b n \sin n x)\right.$
Then $\mathrm{f}(\mathrm{x}) \quad \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x$, an $=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x$
=
Where $\mathrm{a}_{\mathrm{o}}=$

$$
\mathrm{bn}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
$$

Note (2): In interval (0,2 $\pi$ ), $\mathrm{f}(\mathrm{x})=\frac{\mathrm{a}_{\mathbf{0}}}{2}+\sum_{n=1}^{\infty}($ an $\cos n x+b n \sin n x)$
Where $\mathrm{a}_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x$, an $=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x$

$$
\mathrm{bn}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x
$$

Note (3): The Fourier Series in $(-1, I),(-\pi, \pi), 6,2 \pi,(c, c+2 \pi)$ are called Full range expansion series
Note (4): The above series (1) converges to $f(x)$ if $\mathbf{x}$ is a point of continuity The above series (1) converges to $\frac{f(x+0)+f(x-0)}{2}$ if x is a point of discontinuity

$$
\mathbf{f}(\pi-\mathbf{0})+\boldsymbol{f}(-\pi+\mathbf{0})
$$

Note (5): At $\mathbf{x}= \pm \pi, f(x)=$ $\qquad$ here $\mathbf{x} \in(-\pi, \pi)$
2

## Even and odd functions:

Case (1): If the function $f(x)$ is an even function in the interval ( $-1, I$ )

$$
\text { i.e., } \mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x}) \text { then } \mathbf{a}_{\mathbf{o}}=-\overline{2}_{2 l} 0_{l}^{[0} f_{l} x^{x} \mathrm{dx}
$$

$\mathrm{an}=\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n \pi x}{l} \mathrm{dx} \quad\left(\right.$ since $\mathrm{f}(\mathrm{x}) \& \cos \frac{n \pi x}{l}$ are even functions)
$\mathrm{bn}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx} \Rightarrow \mathrm{bn}=0 \quad$ (since $\mathrm{f}(\mathrm{x}) \cdot \sin \frac{n \pi x}{l}$ is odd function) Therefore, in this case we get (only) Fourier cosine series only.

Case (2): If function $f(x)$ is odd i.e., $f(-x)=-f(x)$ then
an $=0$ (since $\mathrm{f}(\mathrm{x}) \cos \frac{n \pi x}{l}$ is odd) ( $\mathrm{a}_{\mathrm{o}}=0$ also)
And $\quad \mathrm{bn}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx}$
In this case we get fourier sine series only.
[only for intervals (-I,I), $(-\pi, \pi)$ ]Problems
:
1)Find Fourier series for the function $f(x)=e^{a x}$ in $(0,2 \pi)$ Solution : Given
function $f(x)=e^{a x}$ in $(0,2 \pi)$

$$
\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x=\frac{1}{\pi} \int_{0}^{2 \pi} e^{a x} d x=\frac{1}{\pi}\left(\frac{e}{a}{ }_{\left.a x a_{0}=\right) \text { apply limits } 0}\right.
$$

to $\mathbf{2 \pi}$

$$
=\frac{1}{a \pi}\left(e^{2 \pi a}-1\right)
$$

$$
\begin{aligned}
&=\frac{1}{\pi} \int_{0}^{2 \pi} e^{a x} \cos n x d x \\
&=\frac{1}{\pi}\left[\frac{e^{a x}}{a^{2}+n^{2}}(a \cos n x+n \sin n x)\right] \quad \text { apply limits } 0 \text { to } 2 \pi \\
&=\frac{1}{\pi}\left[\frac{e^{2 \pi a}}{a^{2}+n^{2}}(a \cos 2 n \pi+0)-\frac{e^{0}}{a^{2}+n^{2}}\right. \\
&=\frac{1}{\pi} \frac{1}{a^{2}+n^{2}}\left[e^{2 \pi a} a-1 . a\right] \\
&=\frac{a}{\pi\left(a^{2}+n^{2}\right)}\left(e^{2 \pi a}-1\right) \\
&=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x \\
&=\frac{1}{\pi} \int_{0}^{2 \pi} e^{a x} \sin n x d x \\
&=\frac{1}{\pi}\left[\frac{e^{2}}{a^{2}+n^{2}}(a \sin n x+n \cos n x)\right] \\
&=\frac{1}{\pi}\left[\frac{e^{2 a \pi}}{a^{2}+n^{2}}(0-n \cos 2 n \pi)-\frac{e^{0}}{a^{2}+n^{2}}(0-n)\right] \\
&=\frac{1}{\pi} \frac{n}{a^{2}+n^{2}}\left(1-e^{2 \pi a}\right)=\frac{-n}{\pi\left(a^{2}+n^{2}\right)}\left(e^{2 \pi a}-1\right) \\
& \frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x(a+0)] \quad \text { apply limits } 0 \text { to } 2 \pi
\end{aligned}
$$

Now the fourier series is $f(x)=$

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \text { an } \cos n x+\sum_{n=1}^{\infty} \text { bn } \sin n x
$$

$$
=\frac{\frac{1}{a \pi}\left(e^{2 \pi a}-1\right)}{2}+\sum_{n=1}^{\infty} \frac{a}{\pi\left(a^{2}+n^{2}\right)}\left(e^{2 \pi a}-1\right)
$$

$$
\frac{-n}{\pi\left(a^{2}+n^{2}\right)}\left(e^{2 \pi a}-1\right) \sin n x
$$

(2): Find Fourier series for the function $f(x)=e^{x} \quad$ in $(0,2 \pi)$

Solution : Given function $\mathrm{f}(\mathrm{x})=e^{x}$ in $(0,2 \pi) \mathrm{a}_{0}=$
apply $\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x=\frac{1}{\pi} \int_{0}^{2 \pi} e^{x} d x$
limits 0 to $2 \pi$

$$
\begin{aligned}
&=\frac{1}{\pi}\left(e^{x}\right) \quad \text { apply limits } 0 \text { to } 2 \pi \\
&=\frac{1}{\pi}\left(e^{2 \pi}-1\right) \\
& \text { an }=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x \\
&=\frac{1}{\pi} \int_{0}^{2 \pi} e^{x} \cos n x d x \\
&=\frac{1}{\pi}\left[\frac{e^{x}}{1+n^{2}}\left(1 \cos { }_{n x}+n \sin n x\right)\right] \\
&=\frac{1}{\pi}\left[\frac{e^{2 \pi}}{1+n^{2}}(\cos 2 n \pi+0)-\frac{e^{0}}{1+n^{2}}(\cos 0+0)\right] \\
&=\frac{1}{\pi} \frac{1}{1+n^{2}}\left[e^{2 \pi}-1\right] \\
&=\frac{1}{\pi\left(1+n^{2}\right)}\left(e^{2 \pi}-1\right) \\
&=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x \\
&=\frac{1}{\pi} \int_{0}^{2 \pi} e^{x} \sin n x d x \\
&=\frac{1}{\pi}\left[\frac{e^{x}}{1+n^{2}}(\sin n x+n \cos n x)\right] \quad \text { apply limits } 0 \text { to } 2 \pi \\
&=\frac{1}{\pi}\left[\frac{e^{2 \pi}}{1+n^{2}}(0-n \cos 2 n \pi)-\frac{e^{0}}{1+n^{2}}(0, n)\right] \\
&=\frac{1}{\pi} \frac{n}{1+n^{2}}\left(1-e^{2 \pi}\right)=\frac{-n}{\pi\left(1+n^{2}\right)}\left(e^{2 \pi}-1\right)
\end{aligned}
$$

Now the fourier series is $f(x)=$
$\frac{a_{0}}{2}+\sum_{n=1}^{\infty}$ an $\cos n x+\sum_{n=1}^{\infty} b n \sin n x$
$=\frac{\frac{1}{\pi}\left(e^{2 \pi}-1\right)}{2}+\sum_{n=1}^{\infty} \frac{1}{\pi\left(1+n^{2}\right)}\left(e^{2 \pi}-1\right) \cos n x+\sum_{n=1}^{\infty}$
Problem (3): H.W
Find Fourier series for the function $\mathrm{f}(\mathrm{x})=\boldsymbol{e}^{-x} \quad$ in $(0,2 \pi)$
(Hint:- put $a=-1$ in problem (1) we get the solution.)
(4) Express $f(x)=x-\pi$ as Fourier Series in the interval $-\pi<x<\pi$ Solution:

Given function $f(x)=x-\pi \mathbf{a}_{0}$

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi}(x-\pi) d x \\
& \quad=\frac{1}{\pi} \int_{-\pi}^{\pi} x d x-\frac{1}{\pi} \int_{-\pi}^{\pi} \pi d x \\
& \quad=0-[x] \text { with limits }-\pi \text { to } \pi \\
& \quad=0-[\pi+\pi]=2 \pi \text { an }=
\end{aligned}
$$

$\mathrm{dx} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi}(x-\pi) \cos n x d x$
(since
even) $\begin{aligned} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x \cos n x d x-\frac{1}{\pi}(-\pi) \int_{-\pi}^{\pi} \cos n x d x \\ & =\frac{1}{\pi}(0)\left(\text { since } x \cos n x \text { is odd) }+2 \int_{0}^{\pi} \cos n x\right.\end{aligned}$
$=0+2\left[\frac{\sin n x}{n}\right] 0$ to $\pi$ limits apply we get an = $0+0=0$
$\mathrm{bn}^{=}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi}(x-\pi) \sin n x d x$
$=\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin n x d x-\frac{1}{\pi}(-\pi) \int_{-\pi}^{\pi} \sin n x d x$
$\begin{array}{cc}\begin{array}{c}\text { (even) } \\ = \\ 2\end{array} \int_{0}^{\pi} x \sin n x & \text { (odd) } \\ \mathrm{dx}-0 \quad \text { ( since } \sin \mathrm{nx} \text { is odd) }\end{array}$
$=\frac{2}{\pi}\left[\left\{\mathrm{x}\left(-\frac{\cos n x}{n}\right)\right\}-\int_{0}^{\pi} \frac{-\cos n x}{n} \mathrm{dx}\right]$
$=\frac{2}{\pi}\left[-\pi \frac{\cos n \pi}{n}+0+\frac{1}{n}\left(\frac{\sin n x}{n}\right.\right.$
)] apply limits 0 to $\pi$
$=\frac{2}{\pi}\left[-\pi \frac{\cos n \pi}{n}+0+\frac{1}{n}(0)\right]=-\frac{2}{n} \cos \mathrm{n}^{\pi}=-\frac{2}{n}(-1)^{n}=\frac{2}{n}(-1)^{n+1}, \mathrm{n}=1,2,3$.
Now the Fourier Series of $f(x)$ is $f(x)$
$=\frac{\mathrm{a}_{\mathrm{o}}}{2}+\sum_{n=1}^{\infty}(\text { an } \cos n x+b n \sin n x)_{\mathrm{f}(\mathrm{x})}$
$=\frac{2 \pi}{2}+\sum_{n=1}^{\infty}\left[(0) \cos n x+\frac{2}{n}(-1)^{n+1} \sin n x\right]$
$=\pi+\sum_{n=1}^{\infty}\left[\frac{2}{n}(-1)^{n+1} \sin n x\right]$
(5)Obtain the

Fourier series for $f(x)=x-x^{2}$ in the interval $[-\pi, \pi]_{2} \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=\frac{n}{1^{2}}$

Hence show
that (or)
$\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+$ $\qquad$
12
Solution : Given function is $f(x)=x-x^{2}$ in $[-\pi, \pi]$

$$
\begin{aligned}
\mathrm{a}_{\mathrm{o}}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x d x-\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} d x \\
& =0 \text { (odd) }-\frac{1}{\pi}\left[\frac{x^{3}}{3}\right]=-2 \pi^{2} / 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { an }=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(\mathrm{x}-\mathrm{x}^{2}\right) \cos n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x \cos n x d x-\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos n x d x \\
& u==0-\frac{1}{\pi} 2 \int_{0}^{\pi} x^{2} \cos n x d x \\
& \text { (odd) (even) } \\
& x^{2}, \quad d v=\cos n x d x \\
& =-\frac{2}{\pi}\left[\left(\frac{\mathrm{x}^{2} \sin n x}{n}\right) \quad-\frac{2}{n} \int_{0}^{\pi} \mathrm{x} \sin n x d x \quad \mathrm{du}=2 \mathrm{xdx}, \mathrm{dv}=? \cos n x\right. \\
& d x \\
& \text { apply limits } 0 \text { to } \pi \\
& =-\pi \underline{2}[0-\pi \underline{2}\{(\overline{-x \cos n n x})+0 \text { 国 } \underline{\cos n} \underline{n x}= \\
& n \\
& \text { apply limits } 0 \text { to } \pi \\
& =\frac{4}{\pi n}\left[-\pi \frac{(-1)^{n}}{n}+\frac{1}{n^{2}}\right. \\
& =\frac{4}{n^{2}}(-1)^{n+1} \\
& \begin{array}{cl}
4 \\
\text { an }= & \text { if } \mathrm{n} \text { is odd } \quad(\sin \mathrm{nx})] \text { a1 } u d v=\frac{4}{1^{2}}=4
\end{array} \quad u v-\text { ? } v d u
\end{aligned}
$$

$-\frac{4}{n^{2}}$ if n is even $\quad \mathrm{a} 2=\frac{4}{2^{2}}=1$

$$
a 3=\frac{4}{3^{2}}=4 / 9
$$

$\mathrm{bn}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(\mathrm{x}-\mathrm{x}^{2}\right) \cos n x d x$
$=\frac{1}{\pi}\left[\int_{-\pi}^{\pi} \mathrm{x} \sin n x d x-\int_{-\pi}^{\pi} \mathrm{x}^{2} \sin n x d x\right.$
$=\frac{2}{\pi}\left[\left(\frac{-\mathrm{x} \cos n x}{n}\right)+\frac{1}{n} \int_{0}^{\pi} \cos n x d x\right]$
(even) (odd)

$$
=\frac{2}{n}\left[-\pi \frac{(-1)^{n}}{n}+\frac{1}{n^{2}}\right.
$$

$\sin n x)] b 1=2 / 1=2=\frac{2}{n}(-1)^{n+1}=\frac{2}{n}$ if $n$ is
b2

$$
2 / 2=-1
$$

$$
b 3=2 / 3 \quad=-\frac{2}{n} \text { if } n \text { is even }
$$

$$
=\frac{\mathrm{a}_{\mathrm{o}}}{2}+\sum_{n=1}^{\infty}(\text { an } \cos n x+b n \sin n x)-----(1) \text { substitute }
$$

$$
, \mathrm{f}(\mathrm{x}) \Rightarrow \mathrm{f}(\mathrm{x})=\frac{-\pi^{2}}{3}+4\left(\frac{\cos x}{1^{2}}-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}-\ldots \ldots .\right)
$$

in

$$
+2\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}+\ldots \ldots .\right)-\cdots-\cdots--(2)
$$

(1)

```
put \(x=0\) in (2)
```

$f(0)=0=\frac{-\pi^{2}}{3}+4\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}} \ldots \ldots ..\right)$
$\pi^{2}$
$\Rightarrow \frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}+$ $\qquad$ .. $=$

$$
12
$$

## Half range series

(1) The half range cosine series in $(0, \mathrm{I})$ is $\mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}$ an $\cos \frac{n \pi x}{l}$ $a_{0}=\frac{2}{l} \int_{0}^{l} f(x) d x$, an $=\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n \pi x}{l} \mathrm{dx}$
(2)The half range sine series in (0,I) is $\mathrm{f}(\mathrm{x})=\sum_{n=1}^{\infty} b \sin \frac{n \pi x}{l}$
where $\mathrm{bn}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx}$
Note :1) The half range cosine series in $(0, \pi)$ is $f(x)=\frac{u_{0}}{2}+\sum_{n=1}^{\infty}$ an $\cos n x$

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x, \text { an }=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n \pi \mathrm{dx}
$$

where

Note :2) The half range sine series in $(0, \pi)$ is $\mathrm{f}(\mathrm{x})=\sum_{n=1}^{\infty} b n \sin n x_{\text {where }}$ $b \mathrm{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin \mathrm{nx} \mathrm{dx}$

## (1) Express $f(x)=\pi$-x as Fourier cosine and sine series in $(0, \pi)$

## Solution :

The half range cosine series for $f(x)$ is $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}$ an $\cos n x$ $\qquad$
where $\quad \mathrm{a}_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \mathrm{dx}=\frac{2}{\pi} \int_{0}^{\pi} \pi \pi_{-\mathrm{xdx}}$

$$
=\frac{2}{\pi}\left[\pi x-\frac{x^{2}}{2}\right] \text { apply limits o to } \pi
$$

$$
=\frac{2}{\pi}\left[\pi^{2}-\frac{\pi^{2}}{\cos ^{2}} n \pi-(0-0)\right]=\frac{2}{\pi}\left(\frac{\pi^{2}}{2}\right)=\pi
$$

$\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n \pi \mathrm{dx} \quad\left[\pi^{2}-\frac{\pi^{2}}{2}-(0-0)\right]=\frac{2}{\pi}\left(\frac{\pi^{2}}{2}\right)=$
$\mathrm{an}=$
$=\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \cos n \pi \mathrm{dx}$
$=\frac{2}{\pi}\left[\left\{(\pi-\mathrm{x}) \frac{\sin n x}{n}\right\}+\int_{0}^{\pi \sin n x} \frac{\mathrm{dx}}{n}\right]$
(apply o to $\pi$ )

$$
=\frac{2}{\pi}\left[(0-0)+\frac{1}{n}\left(-\frac{\cos n x}{n}\right.\right.
$$

$$
=-\frac{2}{\pi n^{2}}[\cos n \pi-\cos 0]
$$

$$
\left.=-\frac{2}{\pi n^{2}}[\cos n \pi-\cos 0]_{2}\right] \text { apply o to } \pi
$$

$$
=-\frac{2}{\pi n^{2}}\left[\left[(-1)^{n}-1\right]=\frac{2}{\pi n^{2}}\left[\left[1-(-1)^{n}\right]\right.\right.
$$

Now $(1) \Rightarrow \quad \frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2}{\pi n^{2}}\left[\left[1-(-1)^{n}\right] \cos n x: f(x)=\right.$
H.W.) Express $f(x)=\pi-x$ as fourier sine series in ( $0, \pi$

$$
\text { Ans : } 2^{\sum_{n=1}^{\infty} \frac{\sin n x}{n}} \quad\left(\mathrm{bn}=\frac{2}{n}\right)
$$

2) Find the half range sine series of $f(x)=x$ in the range $0<x<\pi$

Hence deduce that $\quad \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . . . . . . . . .=$

## 8

Solution : The half range cosine series for $f(x)$ is $f(x)$

$$
=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \text { an } \cos n x \text {.........(1) }
$$

where $\begin{aligned} \mathrm{a}_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \mathrm{dx} & =\frac{2}{\pi} \int_{0}^{\pi} \mathrm{xdx}=\frac{2}{\pi}\left[\frac{x^{2}}{2}\right] \text { apply limits } 0 \text { to } \pi \\ & =\pi\end{aligned}$

$$
\mathrm{an}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x \mathrm{dx}
$$

$=\frac{2}{\pi} \pi_{0}^{\pi}(x) \cos n x \mathrm{dx}$
$=\frac{2}{\pi}\left[\left\{(\mathrm{x}) \frac{\sin n x}{n}\right\}-\pi_{0}^{\pi} \frac{\sin n x}{n} \mathrm{dx}\right]$
(apply o to $\pi$ )
$=\frac{2}{\pi}\left[(0-0)-\frac{1}{n}\left(-\frac{\cos n x}{n}\right.\right.$
$=\frac{2}{\pi n^{2}}[\cos n \pi-\cos 0]$
$\left.=\frac{2}{\pi n^{2}}\left[\left[(-1)^{n}-1\right]\right)\right]$ apply o to $\pi$
an $=0$ if $n$ is even

$$
=-\frac{4}{\pi n^{2}}
$$

Now
(1) $\quad \Rightarrow$ : $f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{-4}{\pi n^{2}} \cos n x$ if $n$ is odd

$$
\mathrm{x}=\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}-\ldots \ldots . .\right)
$$

Put $x=0$ on both sides

$$
\begin{aligned}
& \begin{array}{c}
\left.\Rightarrow 0=\frac{\pi}{2}-4 \quad{ }_{\pi} \quad{ }^{2}{ }^{2}+{ }^{2}+{ }^{2}-\ldots \ldots . .\right) \\
1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1}{ }^{2}+\frac{1}{3^{2}}+\frac{1}{5^{4}} \ldots \ldots . . . . . . .=\pi \quad{ }_{8}^{2}
\end{aligned}
$$

3) Express $f(x)=\cos x, 0<x<\pi$ in half range sine series

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} \cos x \sin n x \mathrm{dx} \\
& =\frac{2}{\pi} \frac{1}{2} \int_{0}^{\pi}[\sin (\mathrm{n}+1) \mathrm{x}+\sin (\mathrm{n}-1) \mathrm{x}] \mathrm{dx} \\
& \quad=\frac{1}{\pi}\left[\frac{-\cos (n+1) x}{n+1}-\frac{\cos (n-1) x}{n-1}\right] \text { apply limits o to } \pi \\
& \quad=\frac{1}{\pi}\left[\frac{-\cos (n+1) \pi}{n+1}-\frac{\cos (n-1) \pi}{n-1}+\frac{1}{n+1}+\frac{1}{n-1}\right. \\
& \quad=\frac{1}{\pi}\left[\frac{-(-1)^{n+1}}{n+1}+\frac{(-1)^{n}}{n-1}+\frac{1}{n+1}+\frac{1}{n-1}\right. \\
& \quad=\frac{1}{\pi}\left[\left(\frac{(-1)^{2}(-1)^{n}}{n+1}+\frac{(-1)^{n}}{n-1}+\frac{1}{n+1}+\frac{1}{n-1}\right]\right. \\
& \quad=\frac{1}{\pi}\left[(-1)^{n}\left\{\frac{1}{n+1}+\frac{1}{n-1}\right\}+\left\{\frac{1}{n+1}+\frac{1}{n-1}\right\}\right] \\
& \quad=\frac{1}{\pi}\left[\left\{(-1)^{\left.n+1\}\left(\frac{1}{n+1}+\frac{1}{n-1}\right)\right]}\right.\right. \\
& \quad=\frac{2 n}{\pi}\left[\frac{1+(-1)^{n}}{\left.n^{2}-1\right](n \text { not equal to } 1)}\right.
\end{aligned}
$$

Solution : The half range sine series in ( 0, ) is $f(x)=$
where
], n is not equal to 1
$b n=0$ if $n$ is odd.
$=\frac{4 n}{\pi\left(n^{2}-1\right)}$ if $n$ is even

$$
\text { b1 = b3 = b5 = -------- = } 0
$$

(1) $\Rightarrow f(x)=\sum_{n=2}^{\infty} \frac{4 n}{\pi\left(n^{2}-1\right)} \sin n x$, for $n$ is even
4) Find half range sine series for $f(x)=x(\pi-x)$, in $0<x<\pi$

$$
\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}} \text { Deduce that }+\ldots . . . .=
$$

Solution: Fourier series is $\mathrm{f}(\mathrm{x})=\sum_{n=1}^{\infty} b n \sin n x \ldots(1) \mathrm{bn}$

$$
\begin{aligned}
\frac{2}{\pi} & \int_{0}^{\pi} f(x) \sin n \mathrm{xdx} \\
& =\frac{2}{\pi} \int_{0}^{\pi} \mathrm{x}(\pi-\mathrm{x}) \sin \mathrm{nxdx} \\
\quad & =\frac{2}{\pi} \pi \int_{0}^{\pi} \mathrm{x} \sin \mathrm{nxdx}-\frac{2}{\pi} \int_{0}^{\pi} \mathrm{x}^{2} \sin \mathrm{nxdx} \\
= & 2\left[\left(\frac{-x \cos n x}{n}\right)-\int_{0}^{\pi-\cos n x} \frac{n}{n} \mathrm{dx}\right]-\frac{2}{\pi}\left[\left(\frac{-x^{2} \cos n x}{n}\right)-\int_{0}^{\pi-\cos n x}\right. \\
n & \mathrm{x} d \mathrm{dx}]
\end{aligned}
$$

$$
\begin{aligned}
& \text { (apply } \\
& 0 \text { to } \pi)=2\left[\left(\frac{-\pi \cos n \pi}{n}\right)+0+\frac{1}{n}\left(\frac{\sin n x}{n}\right) 0 \text { to } \pi\right]-\frac{2}{\pi}\left[\left(\frac{-\pi^{2} \cos n \pi}{n}\right)+0+\frac{2}{n} \int_{0}^{\pi} x \cos n x \mathrm{dx}\right] \\
& \begin{array}{l}
\text { (apply } \\
\text { o to } \pi \text { ) }=2\left[-\pi \frac{(-1)^{n}}{n}+0\right]+\frac{2}{\pi} \cdot \pi^{2} \frac{(-1)^{n}}{n}-\frac{4}{\pi n}\left[\left(\frac{x \sin n x}{n}\right) 0 \text { to } \pi-\pi_{0}^{\pi} \frac{\sin n x}{n} \mathrm{dx}\right.
\end{array} \\
& =2\left[-\pi \frac{(-1)^{n}}{n}\right]+2 \pi \frac{(-1)^{n}}{n}+\frac{4}{\pi \mathrm{n}^{2}}\left(\frac{-\cos n x}{n}\right. \\
& =\frac{4}{\pi \mathrm{n}^{3}}[-\cos \mathrm{n} \pi+\cos 0] \\
& \text { ) } 0 \text { to } \pi \\
& =\frac{4}{\pi \mathrm{n}^{3}}\left[\left[1-(-1)^{n}\right] \quad\right. \text { sub in (1) }
\end{aligned}
$$

(1) $\Rightarrow \mathrm{f}(\mathrm{x})=\sum_{n=1}^{\infty} \frac{4}{\pi n^{3}}\left[\left[1-(-1)^{n}\right] \sin n x\right.$
(1) $\Rightarrow f(x)=b 1 \sin x+b 2 \sin 2 x+b 3 \sin 3 x+\ldots .$.

$$
=\frac{4}{\pi}(2) \sin x+0+\frac{4}{\pi \cdot 3^{3}}
$$

$\Rightarrow \mathrm{x}(\pi-x)=\frac{8}{\pi}\left[\frac{\sin x}{1^{3}}+\frac{\sin 3 x}{3^{3}}+\ldots ..\right](2) \sin 3 \mathrm{x}+\ldots \ldots$. Put
$x=\pi / 2$ on both sides

$$
\begin{array}{ccc}
\underline{\pi \pi} \\
(2)^{=} & {\left[\begin{array}{c}
3 \\
\end{array}\right.} & {[\ldots . .] \Rightarrow} \\
&
\end{array}
$$

- FOURIER SERIES IN AN ARBITRARY INTERVAL I,e in (-I,I) \& (0,2l)
- Problem : 1) Obtain the half range sine series for $e^{x}$ in $0<x<1$ Solution : Given $\mathrm{f}(\mathrm{x})=e^{x}$ in ( $\left.0, \mathrm{l}\right)$
The half range sine series for $\mathrm{f}(\mathrm{x})$ in $(0, \mathrm{I})$ is $\mathrm{f}(\mathrm{x})=\sum_{n=1}^{\infty}$ bn $\sin \frac{n \pi x}{l}$.

$$
\begin{equation*}
\mathrm{I}=1 \text { Where bn }=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx} \tag{1}
\end{equation*}
$$

$$
=\frac{2}{1} \int_{0}^{1} f(x) \sin n \pi x \mathrm{dx}
$$

$=2 \int_{0}^{1} e^{x} \sin (n \pi x) \mathrm{dx}$
$=2 \frac{e^{x}}{(1)^{2}+(n \pi)^{2}}(\sin \mathrm{n} \pi x-\mathrm{n} \pi . \cos \mathrm{n} \pi x)$ apply limits 0 to 1
$=\frac{2}{1+n^{2} \pi^{2}}\left[e^{1}(0-\mathrm{n} \pi \cdot \cos \mathrm{n} \pi)-e^{0}(0-\mathrm{n} \pi \cdot \cos 0)\right]$
$=\frac{2}{1+n^{2} \pi^{2}}[-n \pi \cdot e . \cos n \pi+n \pi]$
$=\frac{2}{1+n^{2} \pi^{2}}\left[-\mathrm{n} \pi e(-1)^{n}+\mathrm{n} \pi\right]$
$=\frac{2 n \pi}{1+n^{2} \pi^{2}}\left[1-e(-1)^{n}\right]$
bn
(1) $\Rightarrow \quad \sum_{n=1}^{\infty} \frac{2 n \pi}{1+n^{2} \pi^{2}}\left[1-e(-1)^{n}\right] \sin n \pi x \quad \mathrm{f}(\mathrm{x})=$
2)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} b n \sin \frac{n \pi x}{l} \ldots \ldots .(1) \text { Find the half } \\
&=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx} \mathrm{range} \text { sine } \\
& \text { series of } \mathrm{f}(\mathbf{x})=
\end{aligned}
$$

1 in $(0, I)$ Solution: The half range sine series in $(0, I)$ if $f(x)=$
where bn

$$
\begin{aligned}
& =\frac{2}{l} \operatorname{l}_{0}^{l} 1 \sin \frac{n \pi x}{l} \mathrm{dx} \\
& =\frac{2}{l}\left[\frac{-\cos \left(\frac{n \pi x}{l}\right)}{\frac{n \pi}{l}}\right] \text { apply limits o to } \mathrm{l} \\
& =-\frac{2}{l} \cdot \frac{l}{n \pi}[\cos n \pi-\cos 0] \\
& =-\frac{2}{n \pi}\left[(-1)^{n}-1\right]
\end{aligned}
$$

$$
\mathrm{bn}=0 \text { if } \mathrm{n} \text { is even }
$$

if $n$ is odd

Now (1) $\Rightarrow \sum_{\text {if }} \bar{n} 1 \sin \bar{d} d d$
3)Find the half range cosine series of $f(x)=x(2-x)$ in the range $0 \leq x \leq 2$ Hence find sum of series $\quad \frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+$
Solution : Given function $f(x)=x(2-x)=2 x-x^{2}$
The half range cosine series for $f(x)$ is $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}$ an $\cos \frac{n \pi x}{l}$
where $\left.\left.\mathrm{a}_{\mathrm{o}}=\frac{2}{2} \int_{0}^{2} f(x)\right) \mathrm{dx}=\frac{2}{2} \int_{0} \int_{0}^{2} f(x) 2 \mathrm{x}-\mathrm{x}^{2}\right) \mathrm{dx}$ $=\frac{2}{2}\left[\frac{2 x^{2}}{2}-\frac{2 x^{3}}{3}\right]$ apply 0 to $2=-\frac{4}{3}$

$$
\begin{aligned}
\text { an } & =\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n \pi x}{l} \mathrm{dx} \\
& =\frac{2}{2} \int_{0}^{2} f(x) \cos \frac{n \pi x}{2} \mathrm{dx} \quad(\mathrm{l}=2) \\
& =\int_{0}^{2}\left(2 \mathrm{x}-\mathrm{x}^{2}\right) \cos \frac{n \pi x}{2} \mathrm{dx} \quad \quad \text { (using integration by parts) } \\
& =\left[\left(2 \mathrm{x}-\mathrm{x}^{2}\right) \frac{2}{n \pi}\left\{\sin \frac{n \pi x}{2}+(2-2 \mathrm{x}) \frac{4}{n^{2} \pi^{2}} \cos \frac{n \pi x}{2}+(2) \frac{8}{n^{3} \pi^{3}} \sin \frac{n \pi x}{2}\right]\right.
\end{aligned}
$$

apply limits 0 to 2
$=\frac{-8}{n^{2} \pi^{2}} \cos n \pi-\frac{8}{n^{2} \pi^{2}}=\frac{-8}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right]$
$\frac{-16}{n^{2} \pi^{2}}$ when $n$ is even $\mathrm{an}=$

## $=0 \quad$ when n is odd

Substitute the values of $a_{0}$ and an in (1) we get

Putting $x=1$
in (2) we get

$$
\begin{array}{ll} 
& 2-1=\frac{2}{3}-\frac{4}{\pi^{2}}\left(\cos \pi+\frac{1}{2} \cos 2 \pi+\frac{1}{3^{2}} \cos 3 \pi+\frac{1}{4^{2}} \cos 4 \pi+\ldots-----\right) \\
\Rightarrow & 1-\frac{2}{3}=-\frac{4}{\pi^{2}}\left(-1+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{4^{2}}\right. \\
\Rightarrow & \frac{1}{3}=\frac{4}{\pi^{2}}\left(1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}\right. \\
-\ldots \ldots \ldots . . . . . .)
\end{array}
$$

$$
+\Rightarrow \frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}
$$

$$
\text { ............. })=
$$

$$
12
$$

(4) Expand $f(x)=e^{-x}$ as Fourier series in (-1,1)

$$
\begin{align*}
& \text { (1) } \Rightarrow 2 \mathrm{x}-\mathrm{x}^{2}=\frac{2}{3}-\frac{16}{\pi^{2}} \sum_{n=2,4,6}^{\infty}\left(\frac{1}{n^{2}} \cos \frac{n \pi x}{2}\right) \\
& =\frac{2}{3}-\frac{16}{\pi^{2}}\left(\frac{1}{2^{2}} \cos \pi x+\frac{1}{4^{2}} \cos 2 \pi x+\frac{1}{6^{2}} \cos 3 \pi x+\cdots----\right) \\
& =\frac{2}{3}-\frac{16}{\pi^{2}} \cdot \frac{1}{2^{2}}\left(\cos \pi x+\frac{1}{2^{2}} \cos 2 \pi x+\frac{1}{3^{2}} \cos 3 \pi x+\cdots-----\right)  \tag{2}\\
& \Rightarrow 2 \mathrm{x}-\mathrm{x}^{2}=\quad \frac{2}{3}-\frac{4}{\pi^{2}}\left(\cos \pi x+\frac{1}{2^{2}} \cos 2 \pi x+\frac{1}{3^{2}} \cos 3 \pi x+\right.
\end{align*}
$$

Solution: Here I = 1

$$
\begin{aligned}
& \begin{array}{l}
a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x \\
=\frac{1}{1} \int_{-1}^{1} e^{-x} d x=\left(\frac{e^{-x}}{-1}\right) \text { apply limits }-1 \text { to } 1 \\
=-e^{-1}+e^{1}=\mathrm{e}-\frac{1}{e}=2 \sinh 1 \\
\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} \mathrm{dx} \quad \text { an }= \\
= \\
= \\
= \\
\int_{-1}^{1} e^{-x} \cos (n \pi x) \\
(-1)^{2}+(n \pi)^{2} \\
(-\cos \mathrm{n} \pi x+\mathrm{n} \pi
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{1+n^{2} \pi^{2}}\left[e^{-1}\left\{-(-1)^{n}+0\right\}-e^{1}\left\{-(-1)^{n}+0\right\}\right] \\
& =\frac{1}{1+n^{2} \pi^{2}}(-1)^{n}\left(\mathrm{e}-e^{-1}\right) \\
& =\frac{1}{1+n^{2} \pi^{2}}(-1)^{n} 2 \sinh 1 \\
& \mathrm{bn}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx} \mathrm{bn} \\
& =\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx}_{\mathrm{bn}} \\
& =\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx} \quad(\mid=1) \\
& =\int_{-1}^{1} e^{-x} \sin (n \pi x) \mathrm{dx} \\
& =\frac{e^{-x}}{(-1)^{2}+(n \pi)^{2}}( \\
& =\frac{1}{1+n^{2} \pi^{2}}\left[e^{-1}(0-\mathrm{n} \pi \quad . \cos \mathrm{n} \pi)-e^{1}(0-\mathrm{n} \pi \cdot \cos \mathrm{n} \pi)\right] \mathrm{f}(\mathrm{x})= \\
& =\frac{1}{1+n^{2} \pi^{2}} \mathrm{n} \pi . \cos n \pi\left(e-e^{-1}\right) \\
& =\frac{1}{1+n^{2} \pi^{2}} \mathrm{n} \pi(-1)^{n} 2 \sinh 1 \\
& \frac{a_{0}}{2}+\sum_{n=1}^{\infty} \text { an } \cos n \pi x++\sum_{n=1}^{\infty} b n \sin n \pi x \\
& \text { Now Fourier series of } f(x) \\
& \text { in }(-1, I) \text { is }
\end{aligned}
$$

$f(x)=\frac{2 \sinh 1}{2}+\sum_{n=1}^{\infty} \frac{1}{1+n^{2} \pi^{2}}(-1)^{n} 2 \sinh 1 \cos n \pi x+\sum_{n=1}^{\infty}$ $\frac{1}{1+n^{2} \pi^{2}} \mathrm{n} \pi(-1)^{n} 2 \sinh 1 \sin n \pi x$
$\Rightarrow \mathrm{f}(\mathrm{x})=2 \sinh 1+\left[\frac{1}{2}+\sum_{n=1}^{\infty} \frac{1}{1+n^{2} \pi^{2}}(-1)^{n}\left\{\cos n \pi x+\mathrm{n} \pi \sin n \pi_{\mathrm{x}\}}\right]\right.$

- Functions having points of discontinuity: Problems:
(1) If $f(x)$ is a function with period $2 \pi$ is defined by $f(x)=$

0 , for $-\pi<x \leq 0$
$=x$, for $0 \leq x<\pi \quad$ then write the fourier series for $f(x)$
Hence deduce that $\quad \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . . . . . . . .=$

Solution: The Fourier series in $(-\pi, \pi)$ is $\mathbf{f}(\mathbf{x})=$

$$
\begin{aligned}
& \frac{a_{0}}{2}+\sum_{n=1}^{\infty}(a n \cos n x+b n \sin n x) \cdots--\cdots(1) \\
& \begin{aligned}
\text { Where } a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x & =\frac{1}{\pi} \int_{-\pi}^{0} f(x) d x+\int_{0}^{\pi} f(x) d x \\
& =\frac{1}{\pi}\left[0+\int_{0}^{\pi} x d x\right]=\frac{1}{\pi}\left(\frac{x^{2}}{2}\right) 0 \text { to } \pi=\frac{\pi}{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{align*}
& \text { an }=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =\frac{1}{\pi}\left[0+\int_{0}^{\pi} x \cos n x d x\right] \quad ~ T u d v=u v-T v d u \\
& =\frac{\mathbf{1}}{\boldsymbol{\pi} n^{2}}\left[(-1)^{n}-1\right] \quad \mathrm{u}=\mathrm{x}, \quad \mathrm{dv}=\cos \mathrm{nx} d \mathrm{x}=0 \text {, if } \mathrm{n} \text { is even } \\
& =-\frac{2}{\pi n^{2}} \text {, if } n \text { is odd } \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \\
& \mathrm{bn}=\frac{1}{\pi}\left[0+\int_{0}^{\pi} x \sin n x d x\right] \\
& =\frac{1}{\pi}\left[\left(\frac{-x \cos n x}{n}\right)-\int_{0}^{\pi} \frac{-\cos n x}{n} \mathrm{dx}\right] \quad \text { (apply } 0 \text { to } \pi \text { ) } \\
& =\frac{1}{\pi}\left[\left(\frac{-\pi \cos n \pi}{n}\right)+0+\frac{1}{n}\left(\frac{\sin n x}{n}\right) 0 \text { to } \pi\right] \\
& =\frac{1}{\pi}\left[\frac{-\pi(-1)^{n}}{n}+0+0=-\frac{(-1)^{n}}{n}\right. \\
& \mathrm{bn}=\frac{1}{n} \text {, if } \mathrm{n} \text { is odd } \\
& =-\frac{1}{n} \text {, if } n \text { is even } \\
& (1) \Rightarrow \mathrm{f}(\mathrm{x})=\frac{1}{2} \frac{\pi}{2}-\frac{2}{\pi}\left[\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\cdots---\right)+\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}\right.\right. \tag{2}
\end{align*}
$$

Put $x=0$ on both sides $\quad f(0)=0$

$$
\begin{aligned}
& \text { (2) } \Rightarrow 0=\frac{\pi}{4}-\frac{2}{\pi}\left(\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}} \cdots-\right. \\
& \frac{2}{\pi}\left(\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}----\right)=\frac{\pi}{4} \\
& \left.\Rightarrow\left(\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}-\cdots-\cdots\right)=\frac{\pi^{2}}{8} \quad\right)+0
\end{aligned}
$$

Problem (2) : Find Fourier series to represent the function $f(x)$ given by $\mathrm{f}(\mathrm{x})=-\mathrm{k}$, for $-\pi<\mathrm{x}<0$
$k$, for $0<x<\pi$ hence show
that $1 \frac{1}{3}+\frac{1}{5}-\frac{1}{7}+-----=\frac{\pi}{4}$ Solution : In
$-\pi<x<0$
i.e., $x \in(-\pi, 0), f(x)=-k$
$f(-x)=-f(x)$ in $(0, \pi)$
In $0<x<\pi$ i.e., $x \in(0, \pi) f(x)$
$=k f(-x)=k=-$
(-k)

$$
=-f(x) \quad \text { in }(-
$$

$\pi, 0)$ There fore $f(x)$ is odd function in $(-\pi, \pi)$
so $a_{0}=0, a n=0$
$\mathrm{bn}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x$

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi} k \sin n x d x \\
& =\frac{2 k}{\pi}\left(\frac{-\cos n x}{n}\right. \\
& =\frac{2 k}{\pi n}\left[(-1)^{n}-1\right]
\end{aligned}
$$

bn

$$
\text { ) apply limits } 0 \text { to } \pi
$$

$$
\begin{aligned}
= & 0, \text { if } n \text { is even } \\
& =\frac{4 k}{\pi n}, \text { if } n \text { is odd } \\
\text { Now } f(x) & =\quad \sum_{n=1}^{\infty} b n \sin n x \\
& =b_{1} \sin 1 x+b_{2} \sin 2 x+b_{3} \sin 3 x+b_{4} \sin 4 x-\cdots-\cdots--f(x) \\
& \underline{4 \boldsymbol{k}} \quad \underline{4 k \sin 3 x} \\
= & \pi \sin x+0+\pi \quad 3+0+\cdots-\cdots---(1)
\end{aligned}
$$

Deduction : put $x=$ on both sides in (1) 2

$$
\begin{aligned}
(1) & \Rightarrow \mathrm{k}=\frac{4 k}{\pi}(1)+\frac{4 k}{\pi}\left(-\frac{1}{3}\right)+\frac{4 k}{\pi}\left(\frac{1}{5}\right)+ \\
& \Rightarrow \mathrm{k}=\frac{4 k}{\pi}\left[1-\frac{1}{3}+\frac{1}{5}-\cdots---\right. \\
& \Rightarrow \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}
\end{aligned}
$$

## Parseval's Formula :-

Prove That $\int_{-l}^{l}[f(x)]^{2} \mathrm{dx}=\mathrm{I}\left[\frac{a_{0}{ }^{2}}{2}+\sum_{n=1}^{\infty}\left(a n^{2}+b n^{2}\right)\right.$
Proof:- We know that the Fourier series of $f(x)$ in $(-I, I)$ is $f(\mathbf{x})$
$=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}$ an $\cos \frac{n \pi x}{l}+\sum_{n=1}^{\infty}$ bn $\sin \frac{n \pi x}{l}$
Multiplying on both sides of (1) by $f(x)$ and integrate term by term from -I to I we get $\int_{-l}^{l}[f(x)]^{2} \mathrm{dx}=$ $\frac{a_{0}}{2} \int_{-l}^{l} f(x) d x+\sum_{n=1}^{\infty} a n \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x$ $+\sum_{n=1}^{\infty} b n \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x$
Now $a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x \Rightarrow \int_{-l}^{l} f(x) d x=\mid a_{0}$
$\mathrm{an}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} \mathrm{dx} \Rightarrow \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} \mathrm{dx} \quad=I \mathrm{an}$
and $b n$ $=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx} \Rightarrow \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{dx}=\mathrm{l}$ bn

Substitute these in (2)

$$
\text { (2) } \Rightarrow \int_{-l}^{l}[f(x)]_{\mathrm{dx}}^{2}=\frac{a_{0}}{2} \cdot \mathrm{l}\left[\frac{a_{a_{0}}{ }^{2}+\sum_{n=1}^{\infty} a n . \mid \mathrm{lan}+\sum_{n=1}^{\infty} b n}{2}+\sum_{n=1}^{\infty}\left(a n^{2}+b n^{2}\right)\right] .
$$

. I bn
This is called parseval's formula.
Note 1$)$ : $\ln (0,21)$ the parseval's formula is

$$
\int_{0}^{2 l}[f(x)]^{2} \mathrm{dx}=\mathrm{I}\left[\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a n^{2}+b n^{2}\right)\right]
$$

Note :2) If $0<x<1$ (for half range cosine series of $f(x)$ ) parsevel's formula is

$$
\int_{0}^{l}[f(x)]^{2} \mathrm{dx}=\frac{l}{2}\left[\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty} a n^{2}\right]
$$

Note :3) If $0<x<1$ (for half range sine series of $f(x)$ ) parsevel's formula is

$$
\int_{0}^{l}[f(x)]^{2} \mathrm{dx}=\frac{l}{2}\left[\sum_{n=1}^{\infty} b n^{2}\right]
$$

Problem : prove that in $0<\mathrm{x}<\mathrm{I}, \mathrm{x}=\frac{l}{2}-\frac{4 l}{\pi^{2}}\left(\frac{\operatorname{\operatorname {cos}_{l}}}{1^{2}}+\frac{\cos \frac{3 \pi x}{5}}{3^{2}}+\cdots-\cdots\right.$

$$
\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+----=\frac{\pi}{96}
$$

) and hence

## deduce that

Solution : Let $f(X)=x, 0<X<1$
The Fourier cosine series for $f(x)$ in $(0, l)$ is

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \text { an } \cos \frac{n \pi x}{l} \\
& \text { Here } \mathrm{a}_{\mathrm{o}}=\frac{2}{l} \int_{0}^{l} f(x) \mathrm{S}_{\mathrm{dx}} \\
& =\frac{2}{l} \int_{0}^{l} x \mathrm{dx} \\
& =\frac{2}{l}\left[\frac{x^{2}}{2}\right] \quad \text { apply limits } 0 \text { to । } \\
& \text { = } \\
& =\frac{2}{l} \int_{0}^{l} x \cos \frac{n \pi x}{l} \mathrm{dx} \\
& \mathrm{u}=\mathrm{x}, \quad n \pi x \\
& \mathrm{dv}=\cos \frac{n \pi x}{l} \mathrm{dx} \\
& \mathrm{dx}] \quad=\frac{2}{l}\left[\left\{\frac{x \sin \bar{l}}{\frac{n \pi}{l}}\right\} 0 \text { tol - } \int_{0}^{l} \frac{\sin \frac{n \pi x}{l}}{\frac{n \pi}{l}}\right. \\
& =\frac{2}{l} \cdot \frac{l}{n \pi}\left[(0-0)-\left\{\frac{-\cos \frac{n \pi x}{l}}{\frac{n \pi}{l}}\right\} 0\right. \text { to I] } \\
& =\frac{2}{n \pi} \cdot \frac{l}{n \pi}[\cos n \pi-\cos 0] \\
& =\frac{2 l}{n^{2} \pi^{2}}\left[\left[(-1)^{n}-1\right]\right. \\
& -4 l-4 l \mathrm{an}=0,
\end{aligned}
$$

n is even $\quad \mathrm{a}_{1}=\overline{\pi^{2} .1^{2}}, a_{3}=\overline{\pi^{2} .3^{2}}$
$=\frac{-4 l}{n^{2} \pi^{2}}, \mathrm{n}$ is odd

$$
a_{2}=0, a_{4}=0 \ldots \ldots \ldots \ldots
$$

Substitute $\mathrm{a}_{\mathrm{o}}$, an in (1)
(1) $\Rightarrow \frac{l}{2} \cdot \frac{-4 l}{\pi^{2}}\left(\frac{\cos \frac{\pi x}{l}}{1^{2}}+\frac{\cos \frac{3 \pi x}{l}}{3^{2}}+\cdots \cdots-\cdots\right)$

Now $a_{0}=I, \quad a_{1}=\frac{-4 l}{\pi^{2} \cdot 1^{2}}, \quad a_{3}=\frac{-4 l}{\pi^{2} \cdot 3^{2}} \cdots \cdots$
From parseval's formula , we have

$$
\begin{aligned}
& \int_{0}^{l}[f(x)]^{2} \mathrm{dx}=\frac{l}{2}\left[\frac{a_{0}^{2}}{2}\right. \\
\Rightarrow & \int_{0}^{l} x^{2} \quad \frac{l}{2}\left[\frac{l}{2}+\frac{16 l}{\pi^{4} \cdot 1^{4}}+\mathrm{a}_{1}^{2}+\frac{16 l}{\pi^{4} .3^{4}}+\cdots-\cdots\right] \\
2 & \mathrm{a}_{2}^{2}+\mathrm{a}_{3}^{2}+\cdots-\cdots--\cdots \\
& \mathrm{dx}=+0^{2}+ \\
\Rightarrow & \left(\frac{x^{3}}{3} l\right. \\
& ) 0 \text { to } l=.
\end{aligned}
$$

$\Rightarrow \frac{1}{3}\left(\left.2\right|^{3}\right) \cdot \frac{2}{l^{3}}=\frac{1}{2}+\frac{16}{\pi^{4} \cdot 1^{4}}+\frac{16}{\pi^{4} \cdot 3^{4}}+$
$\Rightarrow \frac{2}{3}-\frac{1}{2}=\frac{16}{\pi^{4}}\left(\frac{1}{1^{4}}+\frac{1}{3^{4}}+-----\right)$
$\Rightarrow \frac{1}{6} \cdot \frac{\pi^{4}}{16}=\frac{1}{1^{4}}+\frac{1}{3^{4}}+----$
There fore $\quad \frac{1}{1^{4}}+\frac{1}{3^{4}}+----=\frac{\frac{4}{4}}{96}$
COMPLEX FOURIER SERIES in (-I,I) or (0,21):-
The complex form of Fourier series of a periodic function $f(x)$ of period 21 is defined by
$\mathrm{f}(\mathrm{x})=\sum_{n=-\infty}^{\infty}$ cn $e^{\frac{i n \pi x}{l}}---(1)$ where $=\frac{1}{2 l} \int_{-l}^{l} f(x) e^{\frac{-i n \pi x}{l}} \mathrm{cndx}, \mathrm{n}=0,-1,1,2 \ldots$.
Note (1) : If period of function is $2 \pi$, i.e., in $(-\pi, \pi)$ or $(0,2 \pi)$ then
complex fourier series is $\mathrm{f}(\mathrm{x})=\sum_{n=-\infty}^{\infty} c n e^{i n x}$
Where $\mathrm{cn}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} \mathrm{dx}, \mathrm{n}=0,-1,1,-2,2$
Problem : Find complex fourier series of $\mathrm{f}(\mathrm{x})=e^{x}$ if $-\pi<\mathrm{x}<\pi$ and $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}$ $+2 \pi$ )
Solution : Complex fourier series of $\mathrm{f}(\mathrm{x})=e^{x}$ is $\mathrm{f}(\mathrm{x})=\sum_{n=-\infty}^{\infty}$ cn $e^{i n x}$

> When $\mathrm{cn}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} \mathrm{dx}$
> $\mathrm{cn}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x} e^{-i n x} \mathrm{dx}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{(1-i n) x}$
> $=\frac{1}{2 \pi}\left[\frac{e^{(1-i n) x}}{1-i n}\right] \operatorname{limits}(-\pi, \pi)=\frac{1}{2 \pi(1-i n)}\left[e^{(1-i n) \pi}-e^{(1-i n)(-\pi)}\right]$
> $=\frac{1}{2 \pi(1-i n)}\left[e^{\pi} \cdot e^{-i n \pi}-e^{-\pi} \cdot e^{i n \pi}\right]$
> $=\frac{1}{2 \pi} \cdot \frac{1}{(1-i n)}\left[e^{\pi} \cdot(-1)^{n}-e^{-\pi} \cdot(-1)^{n}\right.$
> $=\frac{1}{2 \pi(1-i n)}(-1)^{n}\left(e^{\pi}-e^{-\pi}\right)$
> $\begin{array}{ll} \pm i n \pi & =(-1)^{n}+-0 \\ & 1\end{array}$
> ] $e=\cos n \quad \pi+1$
> (1-in

$$
=\frac{(-1)^{n}}{2 \pi} \cdot \frac{1+i n}{\left(1+n^{2}\right)} \cdot(2 \sin \mathrm{~h} \pi)
$$

Therefore $\mathrm{cn}=(-1)^{n} \cdot \frac{1+i n}{\pi\left(1+n^{2}\right)}$
$(\sin \mathrm{h} \pi) e^{i n x}$
(1) $\Rightarrow \mathrm{f}(\mathrm{x})=\sum_{n=-\infty}^{\infty}(-1)^{n} \cdot \frac{1+i n}{\pi\left(1+n^{2}\right)}$ Problem : Find the compdex form $\mathrm{f}(\mathrm{x})=,-1 \mathrm{x}$ here $(\mathrm{l}=1)$
Solution : The complex fourier series of $f(x)$ in $(-1,1)$ is
$\mathrm{f}(\mathrm{x})=\sum_{n=-\infty}^{\infty} c n e^{\frac{i n \pi x}{l}}----(1)$
Where $\mathrm{cn}=\frac{1}{2} \int_{-1}^{1} e^{-x} e^{-i n \pi x} \mathrm{dx}=\frac{1}{2} \int_{-1}^{1} e^{-(1+i n \pi) x} \mathrm{dx}$

$$
=\frac{1}{2}\left[\frac{e^{-(1+i n \pi) x}}{-(1+i n \pi) x}\right.
$$

$$
=-\frac{1}{2} \cdot \frac{1}{1+i n \pi}\left[e^{-(1+i n \pi)}-e^{(1+i n \pi)}\right.
$$

$$
=\frac{1}{2}\left[\frac{1-i n \pi}{1+\pi^{2} n^{2}}\right]\left[e^{(1+i n \pi)}-e^{-(1+i n \pi)}\right]
$$

$$
=\frac{1}{2}\left[\frac{1-i n \pi}{1+\pi^{2} n^{2}}\right]\left[\text { e. } e^{i n \pi}-e^{-1} \cdot e^{-i n \pi}\right]
$$

$$
=\frac{1}{2}\left[\frac{1-i n \pi}{1+\pi^{2} n^{2}}\right]\left[(-1)^{n}\left(\mathrm{e}-e^{-1}\right)\right]
$$

$$
=\frac{1}{2}(-1)^{n}\left(\left[\frac{1-i n \pi}{1+\pi^{2} n^{2}}\right] 2 \sin h\right)
$$

(1) $\Rightarrow \mathrm{f}(\mathrm{x})=\sum_{n=-\infty}^{\infty}(-1)^{n}\left[\frac{1-i n \pi}{1+\pi^{2} n^{2}}\right] \sinh . e^{-i n \pi x}$

## UNIT V

## FOURIER TRANSFORMS

\&

## Z- TRANSFORMS

## FOURIER TRANSFORMS

## Fourier Integral Theorem:-

Statement: If $f(x)$ is a given function defined in $(-I, I)$ and satisfies Dirichlet's
condition then $\mathrm{f}(\mathrm{x})=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \lambda\left(\mathrm{t}_{-\mathrm{x}}\right) \mathrm{dt} \mathrm{d} \lambda$.
The representation of $f(x)$ is known as Fourier Integral of $f(x)$

## Problems on integral theorem:

(1) Express the function $f(x)=1,|x| \leq 1$

$$
\begin{gathered}
=0,-\infty<x<-1= \\
0,1<x<\infty
\end{gathered}
$$

as fourier integral and hence evaluate
(i) $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d \lambda$
$\infty \underline{\sin x} \quad \underline{\pi}$
(ii) $d$ ? $x \quad d x=2$

- Solution: The Fourier Integral theorem is given by $f(x)$
$=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \lambda\left(\mathrm{t}_{-\mathrm{x}}\right) \mathrm{dt} \mathrm{d} \lambda$.
$1 \infty 1$
$=-\pi \pi_{0}\left[1_{1-}\right.$ 回. $\left.\cos \lambda(t-x) d t\right] d \lambda$
$=\frac{1}{\pi} 0_{0}^{\infty}\left[\frac{\sin \lambda(t-x)}{\lambda}\right] d \lambda \quad$ limits ( -1 to 1 ) for t
$=\frac{1}{\pi} \overbrace{0}^{\infty}\left[\frac{\sin \lambda(1-x)-\sin \lambda(-1-x)}{\lambda}\right] d \lambda$
$=\frac{1}{\pi} 0^{\infty}\left[\frac{\sin (\lambda-\lambda x)+\sin (\lambda+\lambda x)}{\lambda}\right] d \lambda$
$=\frac{1}{\pi} 0_{0}^{\infty} 2 \cdot\left[\frac{\sin \lambda \cdot \cos \lambda x}{\lambda}\right] d \lambda$
therefore $f(x)=\frac{2}{\pi} 0_{0}^{\infty}\left[\frac{\sin \lambda \cdot \cos \lambda x}{\lambda}\right] d \lambda \cdots---(1)$
Deduction :
(I) $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d \lambda=\frac{\pi}{2}$

$$
\begin{array}{ll}
=\frac{\pi}{2} & \quad,|x| \leq 1  \tag{2}\\
=0, & |x|>1 \quad
\end{array}
$$

Put $x=0$

$$
\text { (2) } \begin{aligned}
& \Rightarrow \int_{0}^{\infty} \frac{\sin \lambda \cos 0}{\lambda} d \lambda=\frac{\pi}{2} \\
& \Rightarrow \int_{0}^{\infty} \frac{\sin \lambda}{\lambda} d \lambda=\frac{\pi}{2} \\
& \Rightarrow \int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
\end{aligned}
$$

## Fourier cosine \& sine Integrals:

1) Fourier cosine Integral of $f(x)$ is

$$
\mathrm{f}(\mathrm{x})=\frac{2}{\pi} \int_{0}^{\infty} \cos \lambda \mathrm{x} \int_{0}^{\infty} f(t) \cos \lambda_{\mathrm{t}} \mathrm{dt} \mathrm{~d} \lambda
$$

2) Fourier sine Integral of $f(x)$ is
$\mathrm{f}(\mathrm{x})=\frac{2}{\pi} \int_{0}^{\infty} \sin \lambda \mathrm{x} \int_{0}^{\infty} f(t) \sin \lambda_{\mathrm{t}} \mathrm{dt} \mathrm{d} \lambda$

## Problems:-

2) Express $f(x)=1,0 \leq x \leq \pi$

$$
0, x>\pi \quad \text { as a fourier sine integral and }
$$

Hence evaluate $\int_{0}^{\infty}\left(\frac{1-\cos \lambda \pi}{\lambda}\right) \sin \lambda x d \lambda$

## Solution : Fourier sine integral of $f(x)$ is given by

$$
\begin{aligned}
\mathrm{f}(\mathrm{x})= & \frac{2}{\pi} \int_{0}^{\infty} \sin \lambda \mathrm{x}\left[\int_{0}^{\infty} f(t) \sin \lambda \mathrm{tdt}\right] \mathrm{d} \lambda \\
= & \frac{2}{\pi} \int_{0}^{\infty} \sin \lambda \mathrm{x}\left[\int_{0}^{\pi} \sin \lambda t \mathrm{dt}\right] \mathrm{d} \lambda \\
= & \frac{2}{\pi} \int_{0}^{\infty} \sin \lambda x\left(\frac{-\cos \lambda t}{\lambda}\right)(0 \text { to } \pi) \mathrm{d} \lambda \\
& \frac{2}{\pi} \int_{0}^{\infty}\left(\frac{1-\cos \lambda \pi}{\lambda}\right) \sin \lambda \mathrm{xd} \lambda \quad \mathrm{~d}(\mathrm{x})= \\
= & \int_{0}^{\infty}\left(\frac{1-\cos \lambda \pi}{\lambda}\right) \sin \lambda \mathrm{xd} \lambda \quad \pi=
\end{aligned}
$$

$$
f(x)
$$

$$
=\frac{\pi}{2} \cdot 1,0 \leq \mathrm{x} \leq \pi
$$

$$
0, x>\pi
$$

Problem : 3) Using Fourier Integral show that
$\int_{0}^{\infty} \frac{1-\cos \lambda \pi}{\lambda} \sin x \lambda d \lambda=\frac{\pi}{2}, 0<x<\pi$

$$
0, x>\pi
$$

Solution : Let $\mathrm{f}(\mathrm{x})=1,0 \leq \mathrm{x} \leq \pi$

$$
0, x>\pi
$$

then write above solution (problem.(2) solution).

Problem :4) Using Fourier Integral, show that $e^{-a x}=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+a^{2}} \mathrm{~d} \lambda$
Solution : Let $\mathrm{f}(\mathrm{x})=e^{-a x}$
The Fourier Cosine Integral is given by $f(x)$
$=\frac{2}{\pi} \int_{0}^{\infty} \cos \lambda x\left[\int_{0}^{\infty} f(t) \cos \lambda t \mathrm{dt}\right] \mathrm{d} \lambda$
Now $\mathrm{f}(\mathrm{t})=e^{-a t}$

$$
e^{-a x}=\frac{2}{\pi} \int_{0}^{\infty} \cos \lambda x\left[\int_{0}^{\infty} e^{-a t} \cos \lambda t \mathrm{dt}\right] \mathrm{d} \lambda---(1)
$$

at

$$
\int_{0}^{\infty} e^{-a t} \cos \lambda \mathrm{tdt}=\left[\frac{e^{-}}{a^{2}+\lambda^{2}}(\right.
$$

Therefore

$$
=0-\frac{e^{0}}{a^{2}+\lambda^{2}}(
$$

Now $-\mathrm{a} \cos \lambda t+\lambda \sin \lambda t)(0$ to $\infty)]$

$$
-a \cdot 1+0)=\overline{a^{2}+\lambda^{2}}
$$

sub in (1)
(1) $\Rightarrow e^{-a x}=\frac{2}{\pi} \int_{0}^{\infty} \cos \lambda x \cdot \frac{a}{a^{2}+\lambda^{2}} \mathrm{~d} \lambda$

$$
=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{a^{2}+\lambda^{2}} \mathrm{~d} \lambda
$$

## Problem 5

$$
\left.\frac{\pi}{2} e^{-x}=\int_{0}^{\infty} \frac{\cos \lambda x}{a^{2}+\lambda^{2}} \mathrm{~d} \lambda\right): \text { Prove that } \quad, \text { put } \mathrm{a}=1 \mathrm{in}
$$

above problem(4)
Solution : Let $\mathrm{f}(\mathrm{x})=e^{-x}$
Problem 6): Using Fourier Integral , show that
$e^{-a x}-e^{-b x}=\frac{2\left(b^{2}-a^{2}\right)}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\left(\lambda^{2}+a^{2}\right)\left(\lambda^{2}+b^{2}\right)} \mathrm{d} \lambda \quad(\mathrm{a}, \mathrm{b}>0)$
Solution : Let $\mathrm{f}(\mathrm{x})=e^{-a x}$
The Fourier Sine integral is given by $f(x)$
$\frac{2}{\pi} \int_{0}^{\infty} \sin \lambda \mathrm{x}\left[\int_{0}^{\infty} f(t) \sin \lambda \mathrm{tdt}\right] \mathrm{d} \lambda_{\mathrm{f}}(\mathrm{x})==$
$\frac{2}{\pi} \int_{0}^{\infty} \sin \lambda x\left[\int_{0}^{\infty} e^{-a t} \sin \lambda t \mathrm{dt}\right] \mathrm{d} \lambda---(1)$
$\int_{0}^{\infty} e^{-a t} \sin \lambda t \mathrm{dt}=\left[\frac{e^{-a t}}{a^{2}+\lambda^{2}}(\right.$

$$
\left.\left.=0-\frac{1}{a^{2}+\lambda^{2}}(-\lambda)=\frac{\lambda}{a^{2}+\lambda^{2}} \quad-a \sin \lambda t-\lambda \cos \lambda t\right)(0 \text { to } \infty)\right]
$$

sub in (1)
(1) $\Rightarrow \mathrm{f}(\mathrm{x})=\frac{2}{\pi} \int_{0}^{\infty} \sin \lambda \mathrm{x} \cdot \frac{\lambda}{a^{2}+\lambda^{2}} \mathrm{~d} \lambda$
$\Rightarrow e^{-a x}=\frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\lambda^{2}+a^{2}} d \lambda$
similarly, $e^{-b x}=\frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\lambda^{2}+b^{2}} d \lambda$

$$
\text { (2) } \begin{align*}
-(3)=e^{-a x}-e^{-b x} & =\frac{2}{\pi} \int_{0}^{\infty} \lambda \sin \lambda x\left(\frac{1}{\lambda^{2}+a^{2}}-\frac{1}{\lambda^{2}+b^{2}}\right) \mathrm{d} \lambda  \tag{3}\\
& =\frac{2}{\pi} \int_{0}^{\infty} \lambda \sin \lambda x\left[\frac{b^{2}-a^{2}}{\left(\lambda^{2}+a^{2}\right)\left(\lambda^{2}+b^{2}\right)}\right] \mathrm{d} \lambda \\
& =\frac{2}{\pi}\left(b^{2}-a^{2}\right) \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\left(\lambda^{2}+a^{2}\right)\left(\lambda^{2}+b^{2}\right)} \mathrm{d} \lambda
\end{align*}
$$

There fore, $e^{-a x}-e^{-b x}=\frac{2\left(b^{2}-a^{2}\right)}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\left(\lambda^{2}+a^{2}\right)\left(\lambda^{2}+b^{2}\right)} \mathrm{d} \lambda$

## FOURIER TRANSFORMATION:

Definition : 1) The fourier transform of $\mathrm{f}(\mathrm{x}),-\infty<x<\infty$ is denoted by $\mathrm{f}(\mathrm{s})$ or $\mathrm{F}\{\mathrm{f}(\mathrm{x})\}$ and is defined as ,
$\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{f}(\mathrm{s})$
The inverse fourier transform is given by
$\mathrm{f}(\mathrm{x})=F^{-1}\{\mathrm{f}(\mathrm{s})\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i s x} \mathrm{f}(\mathrm{s}) \mathrm{ds}----(2) \quad \mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\mathrm{f}(\mathrm{s})$

Note 2): Some authors also defined as
$\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
and inverse fourier transform as $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i s x} \mathrm{f}(\mathrm{s}) \mathrm{ds}$
Def : 3): $\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\int_{-\infty}^{\infty} e^{-i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}$ and
Inverse Fourier Transform as $f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i s x} f(s) d s$

## Def: Fourier Sine Transform:-

The Fourier Sine Transform of $\mathrm{f}(\mathrm{x}), 0<\mathrm{x}<\infty$ is denoted by $\mathrm{fs}(\mathrm{s})$ or $\operatorname{Fs}\{\mathrm{f}(\mathrm{x})\}$ and defined by

$$
\begin{aligned}
& \operatorname{Fs}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\infty} f(x) \sin _{\mathrm{sx}} \mathrm{dx}=\mathrm{fs}(\mathrm{~s})-\cdots--(3) \\
\mathrm{Fs}\{\mathrm{f}(\mathrm{x})\}= & \int_{0}^{\infty} f(x) \sin _{\mathrm{sx}} \mathrm{dx}=\mathrm{fs}(\mathrm{~s})----(3) \text { The }
\end{aligned}
$$

inverse Fourier Sine Transform is given by
$f(x)=\frac{2}{\pi} \int_{0}^{\infty} f s(s) \sin _{\text {sx }}$ ds -------(4)
Note : Some authors also defined as
$\operatorname{Fs}\{f(x)\}=\sqrt{\frac{2}{\pi}}$ 䀢 $^{\infty} f(x) \sin \quad s x d x=f s(s)$
and inverse fourier sine transform as $f(x)={\sqrt{\underline{\underline{2}}}{ }_{\pi}^{\underline{2}} \infty}_{\infty}(s) \sin s x d s$
Def : Fourier Cosine Transform :-
The Fourier Cosine Transform of $f(x), 0<x<\infty$ is denoted by $f c(s)$ or $\operatorname{Fc}\{f(x)\}$ and defined by

$$
\operatorname{Fc}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\infty} f(x) \cos _{\mathrm{sx}} \mathrm{dx}=\mathrm{fc}(\mathrm{~s})----(5) \text { and }
$$

The inverse Fourier Cosine Transform is given by,

$$
\mathrm{f}(\mathrm{x})=\frac{2}{\pi} \int_{0}^{\infty} f c(s) \cos _{\mathrm{sx}} \mathrm{ds} \text {------(6) }
$$

Note : Some authors also defined as

$$
\operatorname{Fc}\{\mathrm{f}(\mathrm{x})\}=\sqrt{\frac{2}{\pi}} \mathfrak{Q}^{\infty} f(x) \cos \mathrm{sxdx}
$$

and inverse fourier cosine transform as $\mathrm{f}(\mathrm{x})={\sqrt{\underline{\underline{2}}}{ }_{\pi} \quad \infty}^{\infty} c(s) \cos \mathrm{sx}$ ds
Linear Property: If $f(s), g(s)$ are Fourier Transform of $f(x) \& g(x)$ then

$$
\begin{aligned}
\mathrm{F}\left\{\mathrm{c}_{1} \mathrm{f}(\mathrm{x})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{x})\right\} & =\mathrm{c}_{1} \mathrm{~F}\{\mathrm{f}(\mathrm{x})\}+\mathrm{c}_{2} \mathrm{~F}\{\mathrm{~g}(\mathrm{x})\} \\
& =\mathrm{c}_{1} \mathrm{f}(\mathrm{~S})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{~s})
\end{aligned}
$$

Proof:- The definition of Fourier Transform is
$\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{f}(\mathrm{s})-\cdots--(1)$
By definition $\mathrm{F}\left\{\mathrm{c}_{1} \mathrm{f}(\mathrm{x})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{x})\right\}=\int_{-\infty}^{\infty} e^{i S x}\left[\mathrm{c}_{1} \mathrm{f}(\mathrm{x})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{x})\right] \mathrm{dx}$

$$
\begin{aligned}
& =c_{1} \int_{-\infty}^{\infty} e^{i s x} f(x) d x+c_{2} \int_{-\infty}^{\infty} e^{i s x} g(x) d x \\
& =c_{1} f(s)+c_{2} g(s) \text { by (1) Note:- }
\end{aligned}
$$

## Linear Property:

(I) $\operatorname{Fs}\left\{\mathrm{c}_{1} \mathrm{f}(\mathrm{x})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{x})\right\}=\mathrm{c}_{1} \mathrm{fs}(\mathrm{s})+\mathrm{c}_{2} \mathrm{gs}(\mathrm{s})$
(II) $\mathrm{Fc}\left\{\mathrm{c}_{1} \mathrm{f}(\mathrm{x})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{x})\right\}=\mathrm{c}_{1} \mathrm{fc}(\mathrm{s})+\mathrm{c}_{2} \mathrm{gc}(\mathrm{s})$

Proof:- (I) The definition of Fourier Sine Transform is
$\operatorname{Fs}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\infty} f(x) \sin _{\mathrm{sx}} \mathrm{dx}=\mathrm{fs}(\mathrm{s})-\cdots--(1)_{\infty}$
By the definition, $\mathrm{Fs}\left\{\mathrm{c}_{1} \mathrm{f}(\mathrm{x})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{x})\right\}=\int_{0}^{\infty}\left[\mathrm{c}_{1} \mathrm{f}(\mathrm{x})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{x})\right] \sin \mathrm{sx} d \mathrm{x}$

$$
\begin{aligned}
& =c_{1} \int_{0}^{\infty} f(x) \sin _{\mathrm{sx} \mathrm{dx}}+\mathrm{c}_{2} \int_{0}^{\infty} g(x) \sin _{\mathrm{sx}} \mathrm{dx} \\
= & \mathrm{c}_{1} \mathrm{fs}(\mathrm{~s})+\mathrm{c}_{2} g \mathrm{~s}(\mathrm{~s}) \quad \text { by (1) Change }
\end{aligned}
$$

## of scale property:

Statement: If $\mathrm{F}\{\mathrm{f}(\mathrm{X})\}=\mathrm{f}(\mathrm{s})$ then $\mathrm{F}\{\mathrm{f}(\mathrm{ax})\}=\frac{1}{a} \mathrm{f}\left(\frac{s}{a}\right)$
Proof :- The definition of Fourier Transform of $f(x)$ is
$\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{f}(\mathrm{s})$

$$
\begin{aligned}
) t . \mathrm{dt} & =\frac{1}{a} \int_{0}^{\infty} f(t) \sin \left(\frac{s}{a}\right. \\
& =\frac{1}{a} \int_{0}^{\infty} f(x) \sin \left(\frac{s}{a}\right.
\end{aligned}
$$

x. dx =

$$
\frac{1}{a} \mathrm{fs}\left(\frac{s}{a}\right) \text { by (1) }
$$

## Shifting Property:-

If $\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\mathrm{f}(\mathrm{s})$ then $\mathrm{F}\{\mathrm{f}(\mathrm{x}-\mathrm{a})\}=\operatorname{en}^{\text {isa }} \mathrm{f}(\mathrm{s})$
Proof : $\mathrm{F}\{\mathrm{f}(\mathrm{x})\} \int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{f}(\mathrm{s})---(1)$
$=$
By definition $\left.\quad=\int_{-\infty}^{\infty} e^{i s(t+a)} \quad \mathrm{F}\{\mathrm{f}(\mathrm{x}-\mathrm{a})\}=-\mathrm{a}\right) \mathrm{dx}$ let
$\mathrm{x}-\mathrm{a}=\mathrm{t} \quad \mathrm{f}(\mathrm{t}) \quad \mathrm{dt} \quad=\int_{-\infty}^{\infty} e^{i s t} e^{i s a} \quad \mathrm{x}=\mathrm{t}+\mathrm{a}$
$=e^{i s a} \int_{-\infty}^{\infty} e^{i s x} \quad \mathrm{f}(\mathrm{t}) \mathrm{dt} \mathrm{dx}=\mathrm{dt}$
$f(x) d x$
$=e^{i s a f(s) \text { by (1) }}$

## Modulation Theorem :-



$$
=\frac{1}{r}\left[\int_{-\infty}^{\infty} e^{i(s+a) x} \quad \int_{-\infty}^{\infty} e^{i(s-a) x}\right.
$$

Proof:
The
defination of Fourier
Transform is $\cos a \mathrm{x}\}=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \cos \mathrm{ax} \mathrm{dx} \quad \mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}$ $=\mathrm{f}(\mathrm{s})---(1) \quad$ By $\quad=\int_{-\infty}^{\infty} e^{i s x} \frac{e^{i a x}+e^{-i a x}}{2}$ definition $\mathrm{F}\{\mathrm{f}(\mathrm{x})$
$f(x) d x$
$f(x) d x+f(x) d x$

$$
=\frac{1}{2}\left\{\mathrm{f}\left(\mathrm{~s}_{-\mathrm{a}}\right)+\mathrm{f}(\mathrm{~s}+\mathrm{a})\right\}
$$

Note: If Fs(s) \& Fc(s) are Fourier Sine \& Cosine Transform of $f(x)$ respectively
Then
(i) $\operatorname{Fs}\{f(x) \cos a x\}=\frac{1}{2}\{F s(s+a)+F s(s$
$-a)\}$
$\begin{array}{lll}\text { (ii) } F s\{f(x) \sin a x\} & \frac{1}{2}\{F s(s+a)-F s(s & \\ & \frac{1}{2}\{F c(s+a)-F c(s & \\ F s\{f(x) \sin a x\} & & -a)\} \\ & & -a)\}\end{array}$
Proof: The definition of Fourier Sine Transform of $f(x)$ is

$$
\mathrm{Fs}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\infty} f(x) \sin _{\mathrm{sx}} \mathrm{dx}=\mathrm{fs}(\mathrm{~s})----(1)
$$

By definition $\operatorname{Fs}\{\mathrm{f}(\mathrm{x}) \cos \mathrm{ax}\}=\int_{0}^{\infty} f(x) \cos \mathrm{ax} \sin \mathrm{sx} \mathrm{dx}$
$s x . \operatorname{Cos} a x) d x$

$$
=\int_{0}^{\infty} f(x) \cdot \frac{1}{2} \cdot(2 \cdot \sin
$$

$$
=\frac{1}{2} f(x) \int_{0}^{\infty}[\sin (s x+a x)+\sin (s x-a x)] d x
$$

$$
=\frac{1}{2}\left[\int_{0}^{\infty} f(x) \sin (s+a) x d x+\int_{0}^{\infty} f(x)\right.
$$

$$
=\frac{1}{2}[F s(s+a)+F s(s-a)]
$$

Similarly we get (ii) \& (iii) Problems:

1) Find Fourier Transform of $f(x)=e^{i k x}, a<x<b$

$$
0, x<a, x>b
$$

Solution : By definition , $\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}$

$$
=\int_{a}^{b} e^{i s x} e^{i k x} \mathrm{dx}
$$

$$
=\int_{a}^{b} e^{i(s+k) x} \mathrm{dx}
$$

$$
=\left[\frac{e^{i(s+k) x}}{i(s+k)}\right.
$$

] (apply limits a to

$$
=\frac{e^{i(s+k) b}-e^{i(s+k) a}}{i(s+k)}
$$

b)
2) Find, $F\{f(x)\}$ if $f(x)=x,|x|<a$

$$
0,|x|>a
$$

$|x|<a$ means $-a<x<a$
Solution ：By definition， $\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}$

$$
=\int_{-a}^{a} e^{i s x} \mathrm{xdx}
$$

$$
\begin{aligned}
& \text { use } \quad=\int_{-a}^{a} x . e^{i s x} \mathrm{dx}, \quad \text { integration by parts, } \\
& \mathrm{dx} \text { ■udv }==\left(\frac{x e^{i s x}}{i s}\right)-\frac{1}{i s} \int_{-a}^{a} e^{i s x} u v-\text { ®vdu } \\
& \text { (apply-a to a) } \\
& \mathrm{u}=\mathrm{x}, \quad \mathrm{dv}=e^{i s x} \mathrm{dx} \\
& =\frac{1}{i s}\left(\mathrm{a} \cdot e^{i a s}+\mathrm{a} \cdot e^{-i a s}\right)-\frac{1}{i s}\left(\frac{e^{i s x}}{i s}\right. \\
& =\frac{2 a \cos a s}{i s}+\frac{1}{s^{2}}\left(e^{i a s}-e^{-i a s}\right) \\
& =\frac{-2 i a \cos a s}{s}+\frac{2 i \sin a s}{s^{2}} \\
& \text { ) (apply-a to a) } \mathrm{du}=\mathrm{dx}, \mathrm{v}=\text { 团 } e^{i s x} \mathrm{dx} \\
& =\frac{e^{i s x}}{i s}
\end{aligned}
$$

3）If $f(x)=1,|x|<a$
，$|x|>a$ ，Find Fourier Transform of $f(x)$
Deduce that $\int_{-\infty}^{\infty} \frac{\sin a s \cos s x}{s} d s$
（ii） $\int_{-\infty}^{\infty} \frac{\sin s}{s} d s$
（i）$\quad \int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
Solution ： $\mathrm{Fff}(\mathrm{X})\}=$

$$
|x|<a \text { means }-a<x<a
$$

$$
\begin{aligned}
& =\text { 国 } e_{i s x} .1 . \mathrm{dx} \\
& =\frac{e^{i s x}}{i s} \text { (-a to a) }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{i s}\left(e^{i a s}-e^{-i a s}\right) \\
& =\frac{1}{i s} \\
2 & \sin a s(2 i \sin \text { as }) \\
\mathrm{f}(\mathrm{~s})= & \mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\mathrm{f}(\mathrm{~s})
\end{aligned}
$$

## Deduction:

Inverse Fourier Transform is defined by $\mathrm{f}(\mathrm{x})=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i s x} \mathrm{f}(\mathrm{s}) \mathrm{ds}$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\infty}^{\infty}(\cos s x-i \sin s x) \frac{2 \sin a s}{s} d s \\
= & \frac{2}{2 \pi}\left[\int_{-\infty}^{\infty}(\cos s x) \frac{\sin a s}{s} d s-i \int_{-\infty}^{\infty}(\sin s x) \frac{\sin a s}{s}\right.
\end{aligned}
$$

$$
\mathrm{ds}]
$$

(even)
(odd)
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{1}{\pi}\left[2 \int^{\infty}(\cos s x) \frac{\sin a s}{s} \mathrm{ds}-0\right]$
(i) $\operatorname{ma}^{\infty} \underline{\sin } \underline{a s} \frac{\cos }{s} \underline{s x} d s=\frac{\pi}{2} \cdot \mathrm{f}(\mathrm{x})$

$$
=\cdot \frac{\pi}{2} 1,|x|<a
$$

$0,|x|>a$
(ii) Put $a=1, x=0$ in (i) we get
$4^{\infty} \frac{\sin s}{s} d s=\frac{\pi}{2} .1$
$\Rightarrow \quad 0_{0}^{\infty} \frac{\sin s}{s} d s=\frac{\pi}{2}$
4) Find Fourier Transform of $f(x)=1-x^{2},|x| \leq 1$

$$
0,|x|>1
$$

$$
\int_{0}^{\infty}\left(\frac{x \cos x-\sin x}{x^{3}}\right) \cos \frac{x}{2} \mathrm{dx}
$$

## Evaluate

Solution:- $\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}$

$$
\begin{aligned}
& =\int_{-1}^{1} e^{i s x}\left(1-\mathrm{x}^{2}\right) \mathrm{dx} \\
& =\int_{-1}^{1}\left(1-\mathrm{x}^{2}\right) e^{i s x} \mathrm{dx} \\
& =\left[\left\{\left(1-\mathrm{x}^{2}\right) \cdot \frac{e^{i s x}}{i s}\right\}-\int_{-1}^{1} \frac{e^{i s x}}{i s}(-2 \mathrm{x}) \mathrm{dx}\right]
\end{aligned}
$$

$$
=\int_{-1}^{1}\left(1-\mathrm{x}^{2}\right) e^{i s x} \mathrm{dx} \quad \quad \quad \mathrm{a} v \mathrm{dv}=u v-⿴ 囗 d u
$$

$$
\text { (limits -1 to } 1 \text { ) }
$$

$$
0+\frac{2}{i s} \int_{-1}^{1} x \cdot e^{i s x}
$$

$$
\begin{aligned}
& u=\left(1-x^{2}\right) d v=e^{i s x} d x \\
& =[0-d x \quad d u=-2 x
\end{aligned}
$$

$$
=\frac{e^{i s x}}{i s}
$$

$$
=\frac{2}{i s}\left[\left(\frac{x e^{i s x}}{i s}\right)\left(-1 \quad \int_{-1}^{1} \frac{e^{i s x}}{i s} \mathrm{dx}\right] \text { to } 1\right)-
$$

$\mathrm{dx}, \mathrm{v}=\mathrm{J}^{i s x} \mathrm{dx}$
$=\frac{4}{s^{3}}$

$$
[\sin \mathrm{s}-\mathrm{s}=i s \overline{2}[\underline{2 \cos i s \underline{s}-i s \underline{1}(\overline{e \text { is }-i s e}-i s)] \quad \cos \mathrm{s}]=\mathrm{f}(\mathrm{~s}) .}
$$

Deduction: = is2. is $1(2 \cos s 1$ Inverse
Fourier $=-s \underline{s}^{2} .2[\cos s-\underline{\sin s} s]^{\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i s x}}$

Transform is defined by $f(x)=f(s) d s$
$\frac{4}{s^{3}}[\sin s-s \cos s] d s$
$=\frac{1}{2 \pi} \cdot 4 \int_{-\infty}^{\infty}(\cos s x-\mathrm{i} \sin \mathrm{sx}) \frac{(\sin \mathrm{s}-\mathrm{s} \cos \mathrm{s})}{s^{3}} \mathrm{ds}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i s x}$
$=\frac{2}{\pi}\left[\int_{-\infty}^{\infty} \cos s x \frac{(\sin \mathrm{~s}-\mathrm{s} \cos \mathrm{s})}{s^{3}} \mathrm{ds}-\mathrm{i} \int_{-\infty}^{\infty} \sin \mathrm{sx} \frac{(\sin \mathrm{s}-\mathrm{s} \cos \mathrm{s})}{s^{3}} \mathrm{~d} \mathrm{~s}\right]$
$\begin{array}{ccc} & \text { (even function) } & \text { (odd functior } \\ & f(x)=\frac{2}{\pi}\left[\int_{-\infty}^{\infty} \cos s x \frac{(\sin s-s \cos \mathrm{~s})}{s^{3}} \mathrm{ds}-\right. \\ \Rightarrow \int_{-\infty}^{\infty} \cos s x \frac{(\sin s-s \cos \mathrm{~s})}{s^{3}} & \pi & \mathrm{ds}=\mathrm{f}(\mathrm{x})\end{array}$

$$
\begin{gathered}
=\frac{\pi}{2}\left(1_{-} x^{2}\right),|x| \leq 1 \\
0,|x|>1
\end{gathered}
$$

$$
\begin{aligned}
& \text { At } \mathrm{x}=\frac{1}{2}, \Rightarrow \int_{-\infty}^{\infty} \cos \frac{s}{2} \frac{(\sin \mathrm{~s}-\mathrm{s} \cos \mathrm{~s})}{s^{3}} \mathrm{ds}=\frac{\pi}{2}\left(1-\frac{1}{4}\right) \text { put } \\
& \mathrm{s}=\mathrm{x} \\
& \Rightarrow \int_{-\infty}^{\infty} \cos \frac{x}{2} \frac{(\sin \mathrm{x}-\mathrm{x} \cos \mathrm{x})}{x^{3}} \mathrm{dx}=\frac{\pi}{2}\left(1-\frac{1}{4}\right)=\frac{3 \pi}{8} \\
& \Rightarrow 2 \int_{0}^{\infty} \cos \frac{x}{2} \frac{(\sin \mathrm{x}-\mathrm{x} \cos \mathrm{x})}{x^{3}} \mathrm{dx}=\frac{3 \pi}{8} \\
& \int_{0}^{\infty} \cos \frac{x}{2}\left[\frac{(\mathrm{x} \cos \mathrm{x}-\sin \mathrm{x})}{x^{3}}\right] \mathrm{dx}=-\frac{3 \pi}{16}
\end{aligned}
$$

5) Find Fourier Transform of $f(x)=\begin{array}{r}\frac{1}{2 a} \text { if }|x| \leq a \\ 0, \text { if }|x|>a\end{array}$

Solution : By definition,

$$
\begin{aligned}
\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\mathrm{f}(\mathrm{~s}) & =\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& =\int_{-\infty}^{-a} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{-a}^{a} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{a}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& =\int_{-a}^{a} \frac{1}{2 a} e^{i s x} \mathrm{dx}=\frac{1}{2 a} \frac{e^{i s x}}{i s} \quad \text { (apply limits) }=\frac{1}{2 a} \frac{\left(e^{i s a}-e^{-i s a}\right)}{i s} \\
& =\frac{\sin a s}{i a s}
\end{aligned}
$$

6) Find Fourier Transform of $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}, \quad$ if $0<\mathrm{x}<\pi$

0 , otherwise
Solution : By definition,

$$
\begin{aligned}
\mathrm{F}\{\mathrm{f}(\mathrm{x})\} & =\mathrm{f}(\mathrm{~s})=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& =\int_{-\infty}^{0} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{0}^{\pi} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{\pi}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& =\int_{0}^{\pi} e^{i s x} \sin \mathrm{x} \mathrm{dx} \\
& =\frac{e^{i s x}}{(i s)^{2}+1^{2}}[\text { is } \sin \mathrm{x}-1 \cdot \operatorname{cosx}] \text { apply } 0 \text { to } \pi \\
& =\frac{1}{1-s^{2}}\left[e^{i s \pi}(0-\cos \pi)-e^{0}(0-1)\right] \\
& =\frac{1}{1-s^{2}}\left[e^{i s \pi}(1)-1(0-1)\right] \\
& =\frac{e^{i s \pi}+1}{1-s^{2}}
\end{aligned}
$$

7) Find Fourier Transform of $f(x)=x e^{-x}, 0<x<\infty$

Solution: By

$$
\begin{aligned}
& \mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\quad \begin{array}{l}
\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx} \quad \mathrm{f}(\mathrm{~s})= \\
=\int_{0}^{\infty} e^{i s x} \mathrm{xe}^{-x} \mathrm{dx} \\
\quad=\int_{0}^{\infty} x e^{(i s-1) x} \mathrm{dx} \\
\quad=\left[\frac{x e^{(i s-1) x}}{i s-1}-1 \cdot \frac{e^{(i s-1) x}}{(i s-1)^{2}}\right. \\
\left.=\left[\frac{x\left\{e^{i s x}-e^{-x}\right\}}{i s-1}\right](0 \text { to } \infty)-\frac{1}{(i s-1)^{2}}\left(e^{i s x}-e^{-x}\right) \quad\right](0 \text { to } \infty) \\
=\left[(0-0)-\frac{1}{(i s-1)^{2}}(0-1)\right. \\
=\frac{1}{(i s-1)^{2}} \\
=\frac{1}{(i s-1)^{2}} \cdot \frac{(i s+1)^{2}}{(i s+1)^{2}} \\
=\frac{(1+i s)^{2}}{(1+s)^{2}}
\end{array}
\end{aligned}
$$

$\qquad$ 2. Show that $e$ $\qquad$ 2 is reciprocal Solution : By definition,

$$
\begin{aligned}
& \mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\mathrm{f}(\mathrm{~s})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s x} e^{\frac{-x^{2}}{2}} \mathrm{dx} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\frac{-1}{2}\left(x^{2}-2 i s x\right)} \mathrm{dx} \quad(x-i s)^{2} / 2=y^{2} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\frac{-1}{2}\left[(x-i s)^{2}+s^{2}\right.} \quad \mathrm{dx} \quad \sqrt{-i s} \equiv 2 \mathrm{y} \\
& =\frac{1}{\sqrt{2 \pi}} e^{\frac{-s^{2}}{2}}\left[7_{\infty}^{\infty} e^{\frac{-1}{2}(x-i s) 2} \quad \mathrm{dx} \quad \mathrm{dx}=2 \mathrm{dy}\right. \\
& =\frac{1}{\sqrt{2 \pi}} e^{\frac{-s^{\star}}{2}} \int_{-\infty}^{\infty} e^{-y 2} \sqrt{2} \\
& =\frac{1}{\sqrt{\pi}} e^{\frac{-s^{2}}{2}} \int_{-\infty}^{\infty} e^{-y^{2}} \mathrm{dy} \\
& =\frac{1}{\sqrt{\pi}} e^{\frac{-s^{2}}{2}} 2 \int_{0}^{\infty} e^{-y^{2}} \\
& =e^{\frac{-s^{2}}{2}} \cdot \frac{2}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{2} \\
& =e^{\frac{-s^{2}}{2}}=\mathrm{f}(\mathrm{~s}) \quad \mathrm{dy} \mathrm{dy}
\end{aligned}
$$

Therefore Function is self reciprocal
9) Find the inverse Fourier Transform of $f(x)$ of $f(s)=e^{-|s| y}$

Solution: We have $|s|=-s$, if $s<0$

$$
s, \text { if } s>0
$$

From inversse Fourier Transform, we have

$$
\begin{align*}
\mathrm{f}(\mathrm{x})= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i s x} \quad \mathrm{f}(\mathrm{~s}) \mathrm{ds} \\
& =\frac{1}{2 \pi}\left[\int_{-\infty}^{0} e^{-i s x} \quad \mathrm{f}(\mathrm{~s}) \mathrm{ds}+\int_{0}^{\infty} e^{-i s x} \mathrm{f}(\mathrm{~s}) \mathrm{ds}\right] \\
& =\frac{1}{2 \pi}\left[\int_{\theta \infty}^{0} e^{-i s x} e^{s y}\right. \\
& \left.=\frac{1}{2 \pi} \int_{-\infty}^{\theta} e^{(y-i x) s} \mathrm{ds}+\frac{1}{2 \pi} \int_{0}^{\infty} e^{-(y+i x) s} \mathrm{ds}+\int_{0}^{\infty} e^{-i s x} e^{-s y} \mathrm{ds}\right] \\
& =\frac{1}{2 \pi}\left[\frac{e^{(y-i x) s}}{y-i x}\right](-\infty \text { to } 0)+\frac{1}{2 \pi}\left[\frac{e^{-(y-i x) s}}{-(y+i x)}\right. \\
& =\frac{1}{2 \pi}\left[\frac{1}{y-i x}\right]+\frac{1}{2 \pi}\left[\frac{1}{y+i x}\right] \\
& =\frac{1}{2 \pi}\left[\frac{y+i x+y-i x}{(y-i x)(y+i x)}\right]=\frac{1}{2 \pi} \frac{2 y}{y^{2}-i^{2} x^{2}} \\
& =\frac{1}{\pi} \frac{y}{y^{2}+x^{2}} .
\end{align*}
$$

## Problems on sine and cosine Transform:-

1) Find Fourier cosine Transform of $f(x)$ defined by $f(x)=\cos x, 0<x<a$

$$
=0, x>a
$$

Solution : $\operatorname{Fc}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\infty} f(x) \cos _{\mathrm{sx} \mathrm{dx}}$

$$
=\int_{0}^{a} \cos x \cos _{\mathrm{sx} \mathrm{dx}}=\frac{1}{2} \int_{0}^{a} 2 \cos x \cos \mathrm{sxdx}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{a}[\cos (x+s x) \\
& =\frac{1}{2}\left[\int_{0}^{a} \cos (1+s) x \mathrm{dx}+\int_{0}^{a} \cos (1-s) x\right. \\
& =\frac{1}{2}\left[\frac{\sin (1+s) x}{1+s}+\frac{\sin (1-s) x}{1-s}\right] \quad \text { (apply } 0 \text { to a) } \\
& =\frac{1}{2}\left[\frac{\sin (1+s) a}{1+s}+\frac{\sin (1-s) a}{1-s}\right] \\
& \quad 2 \cos \mathrm{~A} \cos \mathrm{~B}=\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})
\end{aligned}
$$

$$
+\cos (x-s x)] d x
$$

$$
A=x, B=s x
$$

2) Find Fourier cosine Transform of $f(x)$ defined by $f(x)=x, 0<x<1$

$$
\begin{gathered}
2-x, 1<x<2 \\
0, x>2
\end{gathered}
$$

Solution : $\operatorname{Fc}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\infty} f(x) \cos \mathrm{sxdx}$

$$
\begin{aligned}
& =\int_{0}^{1} x \cos _{\mathrm{sx} \mathrm{dx}}+\int_{1}^{\int_{1}^{2} \mathrm{f}(\mathrm{x}) \cos }(2-\mathrm{x}) \cos \\
& =\left[\mathrm{x} \frac{\sin s x}{s}-1\left(-\frac{\cos s x}{s^{2}}\right)\right](\text { apply } 0 \text { to } 1)+\left[\left(2^{-\mathrm{x}) \frac{\sin s x}{s}-(-1)\left(-\frac{\cos s x}{s^{2}}\right) ~}\right.\right. \\
& =\left(\frac{\sin s}{s}+\frac{\cos s}{s^{2}}-0-\frac{1}{s^{2}}\right)+\left(0-\frac{\cos 2 s}{s^{2}}-\frac{\sin s}{s}+\frac{\cos s}{s^{2}}\right) \\
& =\frac{2 \cos s-\cos 2 s-1}{s^{2}} \\
& =\frac{2 \cos s-\left(2 \cos ^{2} s-1\right)-1}{s^{2}} \\
& =\frac{1}{s^{2}}\left(2 \cos s-2 \cos ^{2} s\right) \\
& =\frac{2}{s^{2}} \cos \mathrm{~s}\left(1-\cos _{\mathrm{s}}\right) \\
& =\int_{0}^{1} f(x) \cos _{\mathrm{sx}} \mathrm{dx}+\quad \mathrm{sx} \mathrm{dx}+\int_{2}^{\infty} f(x) \cos _{\mathrm{Sx} \mathrm{dx}} \\
& s x d x+0
\end{aligned}
$$

3)Find Fourier sine \& cosine Transform of $2 e^{-5 x}+5 e^{-2 x}$

Solution: Given $\mathrm{f}(\mathrm{x})=2 e^{-5 x}+5 e^{-2 x}$

$$
\begin{gathered}
\operatorname{Fs}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\infty} f(x) \sin _{\mathrm{sx}} \mathrm{dx} \\
=\int_{0}^{\infty}\left(2 e^{-5 x}+5 e^{-2 x}\right) \sin \\
=\left[2 \int_{0}^{\infty} e^{-5 x} \sin _{\mathrm{sx} \mathrm{dx}}+5 \int_{0}^{\infty} e^{-2 x} \sin _{\mathrm{sx} \mathrm{dx}}\right. \\
\left.=\left[2\left\{\frac{e^{-5 x}}{25+\mathrm{s}^{2}}(--5 \sin \mathrm{sx}-\mathrm{s} \cos \mathrm{sx})\right\} \text { (apply } 0 \text { to } \infty\right)\right\} \mathrm{sx} \\
\mathrm{dx}
\end{gathered}
$$

$+5\left\{\frac{e^{-2 x}}{4+s^{2}}(-\right.$
$2 \sin s x-s \cos s x)\}($ apply 0 to $\infty)\}$
$\begin{aligned}0)\}+5\{0 & =\left[2\left\{0-\frac{e^{0}}{25+s^{2}}\left(0-s \cos \quad \frac{e^{0}}{-4+s^{2}}(-s)\right\}\right]\right.\end{aligned}$

$$
=\left[2 \left\{0-\frac{25+s^{2}}{2 s} 5 s .\right.\right.
$$

$$
=\left[\frac{2 s}{25+s^{2}}+\frac{5 s}{4+s^{2}}\right]
$$

$$
\begin{array}{lll}
\text { Similarly } & \left.\frac{10}{s^{2}+25}+\frac{10}{s^{2}+4}\right] \begin{array}{l}
\text { (ii) Fc }\{f(x)\}=[ \\
\text { 4) Find Fourie }
\end{array}
\end{array}
$$

4) Find Fourier cosine Transform of (i) $e^{-a x}$
$\cos \mathrm{ax}$, (ii) $e^{-a x} \sin$ ax Solution
: Given $\mathrm{f}(\mathrm{x})=e^{-a x} \cos \mathrm{ax}(\mathrm{i})$
$\operatorname{Fc}\{\mathrm{f}(\mathrm{x})\} \quad \int_{0}^{\infty} f(x) \cos { }_{\mathrm{sx}} \mathrm{dx}$
$\operatorname{Fc}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\infty} e^{-a x} \cos \mathrm{ax} \cos _{\mathrm{Sx} \mathrm{dx}}$
$=\frac{1}{2} \int_{0}^{\infty} e^{-a x} 2 \cos \mathrm{ax} \cos \mathrm{sxdx}$
$=\frac{1}{2}\left[\int_{0}^{\infty} e^{-a x} \cos (\mathrm{a}+\mathrm{s}) \mathrm{xdx}+\int_{0}^{\infty} e^{-a x} \cos (\mathrm{a}-\mathrm{s})\right.$
$x d x]$

$$
=\frac{1}{2} \cdot \frac{e^{-a x}}{a^{2}+(a+s)^{2}}\{-\mathrm{a} \cos (\mathrm{a}+\mathrm{s}) \mathrm{x}+(\mathrm{a}+\mathrm{s}) \sin (\mathrm{a}+\mathrm{s}
$$

$$
) \mathrm{x}\}\left(\text { apply }+\frac{e^{-a x}}{a^{2}+(a-s)^{2}}\{-\mathrm{a} \cos (\mathrm{a}-\mathrm{s}) \mathrm{x}+(\mathrm{a}-\mathrm{s}) \sin (\mathrm{a}-\mathrm{s}) \mathrm{x}\} \text { (apply } 0 \text { to } \infty\right. \text { ) }
$$

0 to $\infty)=\frac{1}{2}\left[\left\{0-\frac{e^{0}}{a^{2}+(a+s)^{2}}(-a \cos \right.\right.$

$$
\left.\left.=\frac{1}{2}\left[\frac{a}{a^{2}+(a+s)^{2}}+\frac{a}{a^{2}+(a-s)^{2}}\right] 0\right)\right\}+\left\{0-\frac{e^{0}}{a^{2}+(a-s)^{2}}(-\mathrm{a} \cos \right.
$$

$$
0)\}]
$$

(ii) Similarly $\operatorname{Fs}\{\mathrm{f}(\mathrm{x})\}=\mathrm{Fs}^{\left\{\left(e^{-a x} \sin \mathrm{ax}\right)\right.}=\frac{1}{2}\left[\frac{a}{a^{2}+(s-a)^{2}}-\frac{a}{\left.a^{2}+(a+s)^{2}\right]}\right.$
5) Find Fourier cosine \& sine Transform of $e^{-a x}, a>0$ hence
deduce (i) $\int_{0}^{\infty} \frac{\cos s x}{a^{2}+s^{2}}$ ds (ii) $\int_{0}^{\infty} \frac{s \sin s x}{a^{2}+s^{2}} \mathrm{ds}$
Solution : Let $\mathrm{f}(\mathrm{x})=e^{-a x}$

$$
\infty) \quad \frac{s}{a^{2}+s^{2}}-\cdots---(2)
$$

$$
\operatorname{Fs}\{f(x)\}=
$$

By Inverse cosine Transform

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\frac{2}{\pi} \int_{0}^{\infty} f c(s) \cos _{\mathrm{sx}} \mathrm{ds} \\
& =\frac{2}{\pi} \int_{0}^{\infty} \frac{a}{a^{2}+s^{2}} \cos _{\mathrm{sx}} \mathrm{ds}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Fc}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\infty} f(x) \cos \mathrm{sx} \mathrm{dx} \\
& =\int_{0}^{\infty} e^{-a x} \cos \mathrm{sxdx} \\
& =\left[\frac{e^{-a x}}{a^{2}+s^{2}}(-\mathrm{a} \cos \mathrm{sx}\right. \\
& =\left[0-\frac{e^{0}}{a^{2}+s^{2}} \quad=\frac{a}{a^{2}+s^{2}}=\mathrm{Fc}(\mathrm{~s})\right. \\
& \text { Fs }\{\mathrm{f}(\mathrm{x})\} \quad \int_{0}^{\infty} f(x) \sin _{\mathrm{sx} \mathrm{dx}}= \\
& =\int_{0}^{\infty} e^{-a x} \sin _{\mathrm{sx}} \mathrm{dx} \\
& =\left[\frac{e^{-a x}}{a^{2}+s^{2}}( \right. \\
& s \cos s x \text { )] (apply } 0 \text { to }
\end{aligned}
$$

$\Rightarrow \int_{0}^{\infty} \frac{1}{a} \cdot \frac{\pi}{2}$
$\frac{a^{2}+s^{2}}{2}$
$\mathrm{sxds}=$
By inverse sine Transform ,
$\mathrm{f}(\mathrm{x})=\frac{2}{\pi} \int_{0}^{\infty} f s(s) \sin _{\mathrm{sx}} \mathrm{ds}$

$$
=\frac{2}{\pi} \int_{0}^{\infty} \frac{s}{a^{2}+s^{2}} \sin \quad \mathrm{sx} \quad \mathrm{ds}
$$

$\Rightarrow \int_{0}^{\infty} \frac{s}{a^{2}+s^{2}} \sin \mathrm{sx} \mathrm{ds}=\frac{\pi}{2} \cdot e^{-a x}$
6) Find Fourier sine Transform of $f(x)=$

$$
\begin{aligned}
& \int_{0}^{\infty} f(x) \sin _{\mathrm{sx} \mathrm{dx}} \\
= & \int_{0}^{\infty} \frac{\sin s x}{x} \mathrm{dx}---(1)
\end{aligned}
$$

Solution : $\operatorname{Fs}\{f(x)\}==\frac{\pi}{2}$

$$
e-a x
$$

7) Find Fourier sine Transform of , hence deduce that

$$
\begin{aligned}
& \text { Solution : } \mathrm{Fs}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\infty} f(x) \sin _{\mathrm{sx}} \mathrm{dx} \\
& =\int_{0}^{\infty} \frac{e^{-a x}}{x} \sin \mathrm{sx} \mathrm{dx}=\mathrm{I}-- \text {-(1) } \\
& \frac{d t}{d s}=\int_{0}^{\infty} \frac{e^{-a x}}{x} \cdot \mathrm{x} \cdot \cos _{\mathrm{sx} \mathrm{dx}} \\
& =\int_{0}^{\infty} e^{-a x} \cos _{\mathrm{sx} \mathrm{dx}} \\
& =\left[\frac{e^{-a x}}{a^{2}+s^{2}}(-\mathrm{a} \cos \mathrm{sx}\right. \\
& \text { to } \quad=\left[0-\frac{e^{0}}{a^{2}+s^{2}}\right. \\
& s \sin s x)] \quad \text { (apply } 0 \\
& \left.\Rightarrow \frac{d t}{d s}=\frac{a}{a^{2}+s^{2}} \quad(-\mathrm{a}+0)\right]
\end{aligned}
$$

Integrate on both sides w.r.t. s we get

$$
\begin{aligned}
& \mathrm{I}=\mathrm{a} \frac{1}{a^{2}+\mathrm{s}^{2}} \mathrm{ds}=\mathrm{a} \cdot \frac{1}{a} \cdot \operatorname{Tan}^{-1} \frac{s}{a}+\mathrm{c} \\
& =\operatorname{Tan}^{-1}\left(\frac{s}{a}\right)+\mathrm{c}-----(2)
\end{aligned}
$$

put $s=0$ on both sides we get $\{$ in (1) \& (2) \}
$0=\operatorname{Tan}^{-1}(0)+c \Rightarrow 0=0+c \Rightarrow c=0$

$$
\mathrm{I}=\operatorname{Tan}^{-1}\left(\frac{s}{a}\right)=\operatorname{Fs}\{\mathrm{f}(\mathrm{x})\}
$$

8)Find Fourier cosine Transform of $\frac{1}{1^{2}+x^{2}}$, and
(ii) Fourier sine Transform of $\frac{x}{1^{2}+x^{2}}$

Solution : Let $\mathrm{f}(\mathrm{x}) \mathrm{a}^{1} \overline{1^{2}+x^{2}} \quad$, We will find $\operatorname{Fc}\{\mathrm{f}(\mathrm{x})\}=\mathrm{Fc}\{$

$$
=\int_{0}^{\infty} f(x) \cos _{s x ~ d x}
$$

$$
=\int_{0}^{\infty} \frac{1}{1^{2}+x^{2}} \cos \quad \operatorname{Fc}\{f(x)\}
$$

sx dx = I -------(1)

Differentiate on both sides w.r.t s

$$
\begin{aligned}
\frac{d I}{d s} & =\int_{0}^{\infty}-\frac{x \sin s x}{1+x^{2}} \mathrm{dx}---(2) \\
& =-\int_{0}^{\infty} \frac{x^{2} \sin s x}{x\left(1+x^{2}\right)} \mathrm{dx} \\
& =-\int_{0}^{\infty} \frac{\left(1+x^{2}-1\right) \sin s x}{x\left(1+x^{2}\right)} \mathrm{dx} \\
& =-\left[\int_{0}^{\infty} \frac{\sin s x}{s} \mathrm{dx}-\int_{0}^{\infty} \frac{\sin s x}{x\left(1+x^{2}\right)}\right. \\
\frac{d I}{d s} & =-\frac{\pi}{2}+\int_{0}^{\infty} \frac{\sin s x}{x\left(1+x^{2}\right)} \mathrm{dx}---(3) \quad \mathrm{dx} \text { Diff }
\end{aligned}
$$

on both sides w.r.t ' $s$ '
We get $\frac{d^{2} I}{d s^{2}}=\int_{0}^{\infty} \frac{x \cos s x}{x\left(1+x^{2}\right)} \mathrm{dx}$

$$
\begin{aligned}
& \Rightarrow \frac{d^{2} I}{d s^{2}}=I \text { by (1) } \Rightarrow \frac{d^{2} I}{d s^{2}}-I=0 \\
& \Rightarrow\left(D^{2}-1\right) I=0 \text { This is D.E }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A.E. is } \mathrm{m}^{2}-1=0 \\
& \mathrm{~m}= \pm 1
\end{aligned}
$$

solution is $\mathrm{I}=\mathrm{c}_{1} e^{s}+\mathrm{c}_{2} e^{-s}----(4)$

$$
\frac{d I}{d s}=\mathrm{c}_{1} e^{s}-\mathrm{c}_{2} e^{-s} \ldots---(5)
$$

From (1) \& (4) , $\mathrm{c}_{1} e^{s}+\mathrm{c}_{2} e^{-s}=\int_{0}^{\infty} \frac{1}{1+x^{2}} \cdot \cos s x \mathrm{dx}$
Put $s=0$ on both sides
$\Rightarrow \mathrm{c}_{1}+\mathrm{c}_{2}=\int_{0}^{\infty} \frac{1}{1+x^{2}} \mathrm{dx}$

$$
\begin{align*}
=\left(\tan ^{-1}\right)(0 \text { to } \infty) & =\tan ^{-1} \infty-\tan ^{-1} 0 \\
& =\frac{\pi}{2}-0 \tag{6}
\end{align*}
$$

there fore, $\mathrm{c}_{1}+\mathrm{c}_{2}=\frac{\pi}{2}$
From (3) \& (5) , $\mathrm{c}_{1} e^{s}-\mathrm{c}_{2} e^{-s}=-\frac{\pi}{2}+\int_{0}^{\infty} \frac{\sin s x}{x\left(1+x^{2}\right)} \mathrm{dx}$
$\Rightarrow \mathrm{c}_{1}-\mathrm{c}_{2}=-\frac{\pi}{2}----(7)$
solve (6) $\&$ (7) we get $c_{1}=0, c_{2}=\frac{\pi}{2}$ sub in (4)
(4) $\Rightarrow \mathrm{I}=\frac{\pi}{2} . e^{-s}$
i.e., $\operatorname{Fc}\{\mathrm{f}(\mathrm{x})\}=\operatorname{Fc}\left\{\frac{1}{1+x^{2}}\right\}=\frac{\pi}{2} \cdot e^{-s}$

Now $I=\frac{\pi}{2} \cdot e^{-s}$

$$
\frac{d I}{d s}=-\frac{\pi}{2} \cdot e^{-s}
$$

From (2) \& (8) , we have

$$
-\int_{0}^{\infty} \frac{x \sin s x}{1+x^{2}} \mathrm{dx}=-\frac{\pi}{2} \cdot e^{-s}
$$

$$
\Rightarrow \int_{0}^{\infty}\left(\frac{x}{1+x^{2}}\right) \sin s x d \mathrm{dx}=\frac{\pi}{2} \cdot e^{-s}
$$

There fore Fs $\left\{\frac{x}{1+x^{2}}\right\}=\frac{\pi}{2} \cdot e^{-s}$
9) Find the Inverse Fourier Cosine Transform of $f(x)$ of $f(s)=\frac{1}{2 a}\left(a-\frac{s}{2}\right), s<2 a$

$$
0, s \geq 2 a
$$

Solution : From the inverse Fourier Cosine Transform, we have

$$
\begin{aligned}
& \mathrm{f}(\mathrm{X})=\frac{2}{\pi} \int_{0}^{\infty} f c(x) \cos \mathrm{sx} \mathrm{ds} \\
& =\frac{2}{\pi}\left[\int_{0}^{2 a} f c(x) \cos _{\mathrm{sx} \mathrm{ds}}+\quad \int_{2 a}^{\infty} f c(x) \cos _{\mathrm{sx} \mathrm{ds}}\right] \\
& =\frac{2}{\pi} \frac{1}{2 a} \int_{0}^{2 a}\left(\mathrm{a}-\frac{s}{2}\right) \cos \mathrm{sxds} \\
& =\frac{1}{\pi a}\left[\left\{\left(\mathrm{a}-\frac{s}{2}\right) \cdot \frac{\sin s x}{x} \quad\right\}(0 \text { to } 2 \mathrm{a}) \int_{0}^{2 a} \frac{\sin s x}{x}\left(-\frac{1}{2}\right) d s\right] \\
& =\frac{1}{\pi a}\left[(0-0)+\frac{1}{2} \cdot \frac{1}{x^{2}}(-\cos s x\right. \\
& =\frac{1}{2 \pi a x^{2}}\left(-\cos _{2 \mathrm{ax}}+\cos 0\right) \\
& \left.=\frac{1-\cos 2 a x}{2 \pi a x^{2}}=\frac{\sin ^{2} a x}{\pi a x^{2}} \quad\right)(0 \text { to } 2 \mathrm{a}) \text { ] }
\end{aligned}
$$

10) Find $f(x)$ if its Fourier Sine Transform is $e^{-a s}$

Solution : Given $\mathrm{f}(\mathrm{s})=e^{-a s}$

## By definition of inverse sine transform

$$
\begin{aligned}
f(\mathrm{x}) & =\frac{2}{\pi} \int_{0}^{\infty} f s(x) \sin _{\mathrm{sx}} \mathrm{ds} \\
& =\frac{2}{\pi} \int_{0}^{\infty} e^{-a s} \sin \\
& =\frac{2}{\pi}\left[\frac{e^{-a s}}{a^{2}+x^{2}}( \right. \\
& -\mathrm{a} \sin \mathrm{sx}-\mathrm{x} \cos \mathrm{sx})(0 \text { to } \infty) \\
& =\frac{2}{\pi}\left[0-\frac{1}{a^{2}+x^{2}}( \right. \\
& =\frac{2 x}{\pi\left(a^{2}+x^{2}\right)} \\
& -\mathrm{x})]
\end{aligned}
$$

11) Find the Inverse Fourier Sine Transform $f(x)$ of Fs $(s)=\frac{s}{1+s^{2}}$ (or)
Find $f(x)$ if its Fourier sine Transform is $\frac{s}{1+s^{2}}$
Solution : By Fourier Inverse sine Transform $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})=\frac{2}{\pi} \int_{0}^{\infty} f s(x) \sin _{\mathrm{sx}} \mathrm{ds}=1$

$$
\begin{aligned}
f(x) & =\frac{2}{\pi} \int_{0}^{\infty} \frac{s}{1+s^{2}} \sin s x d s=1 \cdots(1) \\
& =\frac{2}{\pi} \int_{0}^{\infty}\left(\frac{1}{s}-\frac{1}{s\left(s^{2}+1\right)}\right) \sin s x \text { as } \\
& =\frac{2}{\pi}\left[?_{0}^{\infty} \frac{\sin s x}{s} d s-?_{0}^{\infty} \frac{\sin s x}{s\left(s^{2}+1\right)} d s\right. \\
& =\frac{2}{\pi}\left[\frac{\pi}{2}-?_{0}^{\infty} \frac{\sin s x}{s\left(s^{2}+1\right)} d s\right] \\
f(x) & =1-\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin s x}{s\left(s^{2}+1\right)} d s=1 \cdots(2)
\end{aligned}
$$

$$
\begin{equation*}
\text { diff on both sides w.r.t. } X \tag{3}
\end{equation*}
$$

We get $\frac{d I}{d x}=-\frac{2}{\pi} \int_{0}^{\infty} \frac{s \cos s x}{s\left(s^{2}+1\right)} d s$
Diff w.r.t. x
$\frac{d^{2} I}{d x^{2}}=-\frac{2}{\pi} \int_{0}^{\infty}-s \frac{\cos s x}{\left(s^{2}+1\right)} d s$
$=\frac{2}{\pi} \int_{0}^{\infty} s \frac{\cos s x}{\left(s^{2}+1\right)} d s$
$\frac{d^{2} I}{d x^{2}}=I$ from $(1) \Rightarrow\left(D^{2}-1\right) I=0$
(4) is D.E.

Solution of $(4)$ is $I=\mathrm{c}_{1} e^{x}+\mathrm{c}_{2} e^{-x}$

$$
\begin{equation*}
\frac{d I}{d x}=\mathrm{c}_{1} e^{x}-\mathrm{c}_{2} e^{-x} \tag{5}
\end{equation*}
$$

From (2) \& (5)

$$
\begin{aligned}
& \text { If } x=0, I=1 \\
& \Rightarrow c_{1}+c_{2}=1
\end{aligned}
$$

Substitute in

$$
\begin{aligned}
& (5) \Rightarrow \mathrm{f}(\mathrm{x})= \\
& \mathrm{c}_{2} e^{-x} \\
& \quad \Rightarrow \mathrm{f}(\mathrm{x})=
\end{aligned}
$$

## From

$$
(3) \&(6)
$$

(5)
$\Rightarrow \frac{d I}{d x}=-\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{1+s^{2}} \mathrm{ds}$

$$
\begin{aligned}
& \text { If } x=0,(3) \\
& \text { if } x=0,(6) \Rightarrow c_{1}-c_{2}
\end{aligned}=-\frac{2}{\pi}\left(\tan ^{-1} s\right)(0 \text { to } \infty) ~ 子 \begin{aligned}
\pi & \frac{2}{\pi}=-1 \\
& =-
\end{aligned}
$$

Now solve $c_{1}+c_{2}=1 \&$

$$
c_{1}-c_{2}=-1 \text { we get } c_{1}=0 \& c_{2}=1
$$

Convolution: The convolution of two functions $\mathrm{f}(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ over the interval $(-\infty, \infty)$ is defined as $\mathrm{f}^{*} \mathrm{~g}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \mathrm{g}(\mathrm{x}-\mathrm{u}) \mathrm{du}$
CONVOLUTION THEOREM: If $\mathrm{F}\{\mathrm{f}(\mathrm{x})\}$ and $\mathrm{F}\{\mathrm{g}(\mathrm{x})\}$ are Fourier Transform of functions $f(x)$ and $g(x)$, then

$$
\begin{aligned}
& \mathrm{F}\{\mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x})\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s x}\left\{\mathrm{f}(\mathrm{x})^{*} \mathrm{~g}(\mathrm{x})\right\} \mathrm{dx} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s x}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{f}(\mathrm{u}) \mathrm{g}(\mathrm{x}-\mathrm{u}) \mathrm{du}\right] \mathrm{dx} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{f}(\mathrm{u})\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s x} \mathrm{~g}(\mathrm{x}-\mathrm{u}) \mathrm{dx}\right] \mathrm{du} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{f}(\mathrm{u})\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s(u+y)} \mathrm{g}(\mathrm{y}) \mathrm{dy}\right] \mathrm{du} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s u} \mathrm{f}(\mathrm{u}) \mathrm{du} \cdot \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s y} \mathrm{~g}(\mathrm{y}) \mathrm{dy} \\
& =\mathrm{F}\{\mathrm{f}(\mathrm{x})\}^{*} \mathrm{~F}\{\mathrm{~g}(\mathrm{x})\}
\end{aligned}
$$

## Relation between Fourier and Laplace Transform:

Statement: If $\mathrm{f}(\mathrm{t})=e^{-x t} \mathrm{~g}(\mathrm{t}), \mathrm{t}>0$ then $\mathrm{F}\{\mathrm{f}(\mathrm{t})\}=\mathrm{L}\{\mathrm{g}(\mathrm{t})\}$

$$
0, t<0
$$

Proof: $\mathrm{F}\{\mathrm{f}(\mathrm{t})\}=\int_{-\infty}^{\infty} e^{i s t} \mathrm{f}(\mathrm{t}) \mathrm{dt}$

$$
\begin{aligned}
& =\int_{-\infty}^{0} e^{i s t} \mathrm{f}(\mathrm{t}) \mathrm{dt}+\int_{0}^{\infty} e^{i s t} \mathrm{f}(\mathrm{t}) \mathrm{dt} \\
& =0+\int_{0}^{\infty} e^{i s t} e^{-x t} \mathrm{~g}(\mathrm{t}) \mathrm{dt} \\
& =\int_{0}^{\infty} e^{-(x-i s) t} \mathrm{~g}(\mathrm{t}) \mathrm{dt} \\
& =\int_{0}^{\infty} e^{\rho t} \mathrm{~g}(\mathrm{t}) \mathrm{dt} \\
& =\mathrm{L}\{\mathrm{~g}(\mathrm{t})\}
\end{aligned}
$$

Fourier Transform of derivatives of a function:
Statement: If $\mathrm{F}\left\{(\mathrm{f}(\mathrm{x})\}=\mathrm{f}(\mathrm{s})\right.$ then $\mathrm{F}\left\{f^{n}(\mathrm{x})\right\}=(- \text { is })^{n} f(s)$, if the $1^{\text {st }}(\mathrm{n}-1)$ derivatives of $\mathrm{f}(\mathrm{x})$ vanish identically as $\mathrm{x} \rightarrow \pm \infty$ Proof: By definition $\mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}------(1)$

$$
\begin{aligned}
& \mathrm{F}\left\{\mathrm{f}^{\prime}(\mathrm{x})\right\}=\mathrm{F}\left\{\frac{d}{d x} \mathrm{f}(\mathrm{x})\right\} \\
&=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx} \\
&=\left[e^{i s x} \mathrm{f}(\mathrm{x})\right]\left(-^{\infty} \text { to } \infty\right)-\int_{-\infty}^{\infty} f(x) . \text { is. } e^{i s x} \mathrm{dx} \\
&=0-\text { is } \int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx}
\end{aligned}
$$

There fore $\quad \mathrm{F}\left\{\mathrm{f}^{\prime}(\mathrm{x})\right\}=-$ is $\mathrm{F}\{\mathrm{f}(\mathrm{x})\}$

$$
\begin{equation*}
\mathrm{F}\left\{\mathrm{f}^{\prime}(\mathrm{x})\right\}=-\mathrm{is} \mathrm{f}(\mathrm{x}) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
\text { Now } \mathrm{F}\left\{\mathrm{f}^{\prime \prime}(\mathrm{x})\right\} & =\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}^{\prime \prime}(\mathrm{x}) \mathrm{dx} \\
& =\left[e^{i s x} \mathrm{f}^{\prime}(\mathrm{x})\right](-\infty \text { to } \infty)-\int_{-\infty}^{\infty} f^{\prime}(x) . \text { is. } e^{i s x} \mathrm{dx} \\
& =0-\text { is } \int_{-\infty}^{\infty} e^{i s x} \mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx} \\
& =- \text { is. } \mathrm{F}\left\{\mathrm{f}^{\prime}(\mathrm{x})\right\} \\
& =- \text { is (-is) } \mathrm{f}(\mathrm{~s}) \quad \text { by (2) }
\end{aligned}
$$

There fore $\mathrm{F}\left\{\mathrm{f}^{\prime \prime}(\mathrm{x})\right\}=(-\mathrm{is})^{2} \mathrm{f}(\mathrm{s})$
Similarly we can show that $\mathrm{F}\left\{f^{n}(\mathrm{x})\right\}=(-i s)^{n} f(s)$

## Finite Fourier Transforms :-

Definition: The Finite Fourier sine Transform of $f(x), 0<x<1$ is defined by Fs $\{\mathrm{f}(\mathrm{x})\}=(\mathrm{s})=\int_{0}^{l} f(x) \sin \frac{s \pi x}{l} \mathrm{dx} \quad$ fs
If $0<x<\pi$,

$$
(\mathrm{s})=\int_{0}^{\pi} f(x) \sin \mathrm{Fs}\{\mathrm{f}(\mathrm{x})\}=\mathrm{fs} \quad \mathrm{sxdx}
$$

The function $f(x)$ is called the inverse finite Fourier sine transform of $f s(s)$ and is
given by $f(x)=d s$

If $0<\mathrm{x}<\pi, \mathrm{f}(\mathrm{x}) \frac{2}{l} \sum_{s=1}^{\infty} f s(s) \sin \frac{s \pi x}{l}=\mathrm{sx}$
Definition : $\quad 2 \sum^{\infty}$ The finite Fourier sine Transform of $\mathrm{f}(\mathrm{x}), 0<$ $\mathrm{x}<1$ is $\frac{2}{\pi} \sum_{s=1}^{\infty} f s(s) \sin$ defined by

$$
\mathrm{Fc}\{\mathrm{f}(\mathrm{x})\}=\mathrm{fc}(\mathrm{~s})=\int_{0}^{l} f(x) \cos \frac{s \pi x}{l} \mathrm{dx}
$$

If $0<\mathrm{x}<\pi, \operatorname{Fc}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{\pi} f(x) \cos _{\mathrm{sx}} \mathrm{dx}$
The function $f(x)$ is called inverse finite Fourier cosine transform of $f(x)$ and is given
by $\mathrm{f}(\mathrm{x})=F c^{-1}\{\mathrm{fc}(\mathrm{s})\}=\frac{1}{l} \mathrm{fc}(0)+\frac{2}{l} \sum_{s=1}^{\infty} f c(s) \cos \frac{s \pi x}{l} \mathrm{ds} \mathrm{f}(\mathrm{x})$
$=F c^{-1}\{\mathrm{fc}(\mathrm{s})\}=1 \mathrm{fc}(0)+\frac{\underline{2}}{\pi} \sigma_{s=1}^{\infty} f c(s) \cos \mathrm{sx},(0, \pi)$

## $\pi$

## Problem :

1) Find the Fourier Finite cosine transform of $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<\pi$ Solution: $\operatorname{Fc}\{\mathrm{f}(\mathrm{x})\}$

$$
\begin{aligned}
&=\mathrm{fc}(\mathrm{~s})=\int_{0}^{\pi} f(x) \cos _{\mathrm{sx} \mathrm{dx}} \\
&=\int_{0}^{\pi} x \cos _{\mathrm{sx} \mathrm{dx}}
\end{aligned}=\left(\frac{x \sin s x}{s}\right)(0 \text { to } \pi)-\frac{1}{s} \int_{0}^{\pi} \sin s x \mathrm{dx} ~(0-0)^{-\frac{1}{s}\left(\frac{-\cos s x}{s}\right)(0 \text { to } \pi)} \begin{aligned}
& =(0)
\end{aligned}
$$

$s=1,2,3, \ldots \ldots .$.

$$
=\frac{1}{s^{2}}[\cos s \pi-1]
$$

If $\mathrm{s}=0, \mathrm{fc}(\mathrm{s})=$
Therefore

$$
\begin{aligned}
& \int_{0}^{\pi} x \mathrm{dx}=\frac{x^{2}}{2}(0 \text { to } \pi)=\frac{\pi}{2} \\
& \frac{1}{s^{2}}\left[\left[(-1)^{s}-1\right], \quad \mathrm{s}>0\right.
\end{aligned}
$$

2) Find the Fourier

$$
\frac{\pi^{2}}{2}, \quad s=0
$$

$=, 0<x<\pi$

Solution: $\mathrm{Fs}(\mathrm{n})=0^{\pi \underline{x}} \pi \sin _{\mathrm{nx} \mathrm{dx}}=\frac{1}{\pi} \int_{0}^{\pi} x \sin _{\mathrm{nx} \mathrm{dx}}$

$$
\begin{aligned}
& \frac{1}{\pi}\left[x\left(\frac{-\cos n x}{n}\right)\right](0 \text { to } \pi)-1\left(\frac{-\sin n x}{n^{2}}\right)(0 \text { to } \pi) \\
= & \frac{1}{\pi}\left[-\frac{\pi}{n} \cos n \pi+0-0-0\right]=-\frac{1}{n} \cos n \pi=-\frac{1}{n}(-1)^{n}=\frac{(-1)^{n+1}}{n}
\end{aligned}
$$

3) Find the Fourier Finite sine transform of $f(x)=x^{3}$ in $(0, \pi)$ Solution: By definition the finite Fourier sine Transform is

$$
\begin{aligned}
\operatorname{Fs}\{\mathrm{f}(\mathrm{x})\} & =\int_{0}^{\pi} f(x) \sin _{\mathrm{sx}} \mathrm{dx} \\
& =\int_{0}^{\pi} \mathrm{x}^{3} \sin _{\mathrm{Sx}} \mathrm{dx}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{u} & =\mathrm{x}^{3} 3 \mathrm{x}^{2} 6 \mathrm{x} 60 \mathrm{dv}=\sin \mathrm{nx} \mathrm{dx} \frac{-\cos n x}{n} \frac{-\sin n x}{n^{2}} \frac{\cos n x}{n^{3}} \quad \frac{\sin n x}{n^{4}} \\
& =\left[-\mathrm{x}^{3} \frac{\cos n x}{n}-3 \mathrm{x}^{2}\left(\frac{-\sin n x}{n^{2}}\right)+6 \mathrm{x}\left(\frac{\cos n x}{n^{3}}\right)-6\left(\frac{\sin n x}{n^{4}}\right)\right](0 \text { to } \pi \\
& =\left[-\pi^{3} \frac{\cos n \pi}{n}-0+6 \pi \frac{\cos n \pi}{n^{3}}-0\right]-0 \\
& =\frac{-\pi^{3}}{n}(-1)^{n}+\frac{6 \pi}{n^{3}}(-1)^{n} \\
& =(-1)^{n} \frac{\pi}{n}\left[\frac{6}{n^{2}}-\pi_{2}\right], \mathrm{n}=1,2,3 \ldots \ldots .
\end{aligned}
$$

4) Find Finite sine Transform of $f(x)=x$ in $0<x<4$

Solution : Let $\mathrm{f}(\mathrm{x})$ is $\operatorname{Fs}\{\mathrm{f}(\mathrm{x})\}=\int_{0}^{4} f(x) \sin \frac{n \pi x}{4} \mathrm{dx}$

$$
\begin{aligned}
& -\cos \frac{n \pi x}{}-\frac{n \pi x}{} \sin =\left[x\left(\frac{n \pi}{4}\right)(0 \text { to }\right. \\
& \left.\left.4)-\frac{n^{2} \pi^{2}}{16}\right)(0 \text { to } 4)\right]
\end{aligned}
$$

Similarly $\operatorname{Fc}\{\mathrm{f}(\mathrm{x})\}=\frac{16}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right]=\mathrm{fc}(\mathrm{n})$
if $\mathrm{n}=0, \mathrm{fc}(0)=\int_{0}^{4} x_{\mathrm{dx}}=\left(\frac{x^{2}}{2}\right)(0$ to 4$)=8$

## Parseval's Identity for Fourier Transforms :-

Statement : If $f(s) \& g(s)$ are Fourier Transform of $f(x) \& g(x)$ respectively then (i) $\frac{1}{2 \pi}=\int_{-\infty}^{\infty} f(x) g(x) \mathrm{dx}$
(ii) $\left.\frac{1}{2 \pi} \int_{-\infty}^{\infty}|f(s)|_{2} \mathrm{ds}=\int_{-\infty}^{\infty} \right\rvert\, f(x) k_{\mathrm{dx}}$

Now (iii) $\frac{2}{\pi} \int_{-\infty}^{\infty} f c(s) \mathrm{gc}(\mathrm{s}) \mathrm{ds}=\int_{0}^{\infty} f(x) \mathrm{g}(\mathrm{x}) \mathrm{dx}$
Proof : By the inverse Fourier Transform we have
$\mathrm{g}(\mathrm{x})=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s) e^{-i s x} \mathrm{ds}$
Taking cojugate Complex on both sides in (1)

$$
(1) \Rightarrow \mathrm{g}(\mathrm{x})=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s) e^{i s x} \mathrm{ds}
$$

$$
\int_{-\infty}^{\infty} f(x) \mathrm{g}(\mathrm{x}) \mathrm{dx}=\int_{-\infty}^{\infty} f(x)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s) e^{i s x}\right.
$$

ds

$$
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s)\left[\int_{-\infty}^{\infty} f(x) e^{i s x}\right.
$$

]

$$
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(s)_{\mathrm{f}(\mathrm{~s}) \mathrm{ds}}
$$

$$
\begin{equation*}
\Rightarrow \frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) \mathrm{g}(\mathrm{~s}) \mathrm{d} s=\int_{-\infty}^{\infty} f(x) \mathrm{g}(\mathrm{x}) \mathrm{dx} \tag{2}
\end{equation*}
$$

(ii) Putting $g(x)=f(x)$ in (2) we get

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) \\
& \quad \frac{1}{2 \pi}(\mathrm{~s}) \mathrm{ds}=\int_{-\infty}^{\infty} f(x)_{\mathrm{f}(\mathrm{x})} \mathrm{dx}  \tag{3}\\
& \\
& \left.\frac{1}{2 \pi}(s)\right|_{2} \mathrm{ds}=\int_{-\infty}^{\infty}|f(x)|^{2} \mathrm{dx} \text {-------- Therefore }
\end{align*}
$$

For Sine Transform:

$$
\begin{aligned}
(2) \Rightarrow & \frac{2}{\pi} \int_{0}^{\infty} f s(s) \quad \mathrm{gs}(\mathrm{~s}) \mathrm{ds}=\int_{0}^{\infty} f(x) \mathrm{g}(\mathrm{x}) \mathrm{dx} \\
& \frac{2}{\pi} \quad \int_{0}^{\infty}|f s(s)|^{2} \mathrm{ds}=\int_{0}^{\infty}|f(x)|^{2} \mathrm{dx}
\end{aligned}
$$

Similarly for Cosine
Problem 1): If $f(x)=1,|x|<a$
$0,|x|>a$, Find Fourier Transform of $f(x)$

$$
\int_{0}^{\infty} \frac{\sin a x}{x^{2}} d \mathrm{x}=\frac{\pi a}{2}{ }^{2}
$$

Deduce that
Solution : $\mathrm{F}\{\mathrm{f}(\mathrm{X})\}=\int_{-\infty}^{\infty} e^{i s x} \mathrm{f}(\mathrm{x}) \mathrm{dx} \quad|\mathrm{x}|<$ a means $-\mathrm{a}<\mathrm{x}<\mathrm{a}$
$={ }^{\text {R }}{ }_{a} e_{i s x} .1 \mathrm{dx}$

$$
\begin{aligned}
=\frac{e^{i s x}}{i s} & (-a \text { to a) } \\
=\frac{1}{i s}\left(e^{i a s}-e^{-i a s}\right)=\frac{1}{i s} \quad & (2 i \sin \mathrm{as}) \\
& =\frac{2 \sin a s}{s}=\mathrm{f}(\mathrm{~s}) \quad \mathrm{F}\{\mathrm{f}(\mathrm{x})\}=\mathrm{f}(\mathrm{~s})
\end{aligned}
$$

By parseval's identity for Fourier Transform

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|f(x)|_{2} \mathrm{dx}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|f(s)|_{2} \mathrm{ds} \\
& \Rightarrow \int_{-a}^{a} 1 \mathrm{dx}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{2 \sin a s}{s}\right)_{2} \mathrm{ds} \\
& \Rightarrow \mathrm{x}(-\mathrm{a} \text { to } \mathrm{a})=\frac{1}{2 \pi} 2^{2} \int_{-\infty}^{\infty} \frac{\sin ^{2} a s}{s^{2}} \mathrm{ds} \\
& \Rightarrow 2 \mathrm{a}=\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{\sin ^{2} a s}{s^{2}} \mathrm{ds} \\
& \Rightarrow \int_{-\infty}^{\infty} \frac{\sin ^{2} a s}{s^{2}} \mathrm{ds}=\mathrm{a} \pi \\
& \Rightarrow \int_{-\infty}^{\infty}\left(\frac{\sin ^{2} a s}{s}\right)_{2} \mathrm{ds}=\mathrm{a} \pi \\
& \Rightarrow 2 \cdot \int_{0}^{\infty} \frac{\sin ^{2} a s}{s^{2}} \mathrm{ds}=\mathrm{a} \pi \\
& \int_{0}^{\infty} \frac{\sin a s}{s^{2}}
\end{aligned}
$$

Therefore $\mathrm{ds}=$
2) Find Fourier Transform of $f(x)=1-x^{2},|x| \leq 1$

$$
0,|x|>1 \quad \text { is } \frac{4}{s^{3}}[\sin s-s \cos s]
$$

Using Parseval's

$$
\begin{array}{llrl}
\text { Using Parseval's } & & \begin{array}{l}
\text { Identity Prove That }
\end{array} \\
& & \int_{0}^{\infty}\left[\frac{(\sin \mathrm{x}-\mathrm{x} \cos \mathrm{x})}{x^{3}}\right]^{2} \mathrm{dx}=\frac{\pi}{15} \\
\text { Solution : :- } & =\int_{-1}^{1} e^{i s x}\left(1-\mathrm{x}^{2}\right) \mathrm{dx} & \mathrm{~F}\{\mathrm{f}(\mathrm{x})\}= \\
& =\int_{-1}^{1}\left(1-\mathrm{x}^{2}\right) e^{i s x} \mathrm{dx} & & \\
\text { 团 } u d v=u v-\text { 回 } & =\left[\left\{\left(1-\mathrm{x}^{2}\right) \cdot \frac{e^{i s x}}{i s}\right\}-\int_{-1}^{1} \frac{e^{i s x}}{i s}(-2 \mathrm{x}) \mathrm{dx}\right] v d u
\end{array}
$$

$$
\text { (limits }-1 \text { to } 1 \text { ) }
$$

$\mathrm{d} \mathrm{u}=-2 \mathrm{x} \mathrm{dx}, \mathrm{v}=3 e^{i s x} \mathrm{dx}$

$$
\begin{align*}
=\left[0-0+\frac{2}{i s} \int_{-1}^{1} x \cdot e^{i s x} \mathrm{dx}\right. & ] \\
=\frac{e^{i s x}}{i s} & \text { By parseval's identity for } \\
& \text { Fourier Transform }
\end{align*}
$$

$$
\begin{array}{lll}
\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\frac{4}{s^{3}}(\sin s-s \cos s)\right]^{2} d s & 2 \cdot \int_{0}^{1}\left(1-x^{2}\right)^{2} d x=\frac{1}{2 \pi} & \Rightarrow \int_{0}^{\infty}\left[\frac{(\sin s-s \cos s)}{s^{3}}\right]^{2} \\
.2 .16 \int_{0}^{\infty}\left[\frac{(\sin s-s \cos s)}{s^{3}}\right]^{2} d s & d s= \\
\Rightarrow \frac{16}{\pi} \int_{0}^{\infty}\left[\frac{(\sin s-s \cos s)}{s^{3}}\right. & 8 & 15 \\
]^{2} d s=2 .- & \Rightarrow \int_{0}^{\infty}\left[\frac{(\sin x-x \cos x)}{x^{3}}\right. \\
\pi & \\
\pi & ]^{2} \mathrm{dx}= &
\end{array}
$$

## Shifting Properties:-

1. Shifting $f(n)$ to the right:-

If $Z[f(n)]=F(Z)$ then $Z[f(n-k)]=Z-k F(Z)$
Proof: we know that


$$
\begin{aligned}
& \text { Z[f(n)]= } \\
& \mathrm{k})]=\sum_{n=0}^{\infty} f(n-k) Z^{-n} \quad \text { ( } \mathrm{k}, \mathrm{n} \text { are different forms) } \\
& =\sum_{n=k}^{\infty} f(n-k) Z^{-n} \quad \text { (since we are shifting } \mathrm{f}(\mathrm{n}) \text { to right) } \\
& =\mathrm{f}(0) z^{-k}+\mathrm{f}(1) z^{-(k+1)}+\mathrm{f}(2) z^{-(k+2)}+\cdots-\cdots-\cdot \\
& =Z^{-k}\left[f(0)+f(1) z^{-1}+f(2) z^{-2}+-----\right] \\
& =Z^{-k} \sum_{n=0}^{\infty} f(n) Z^{-n} \\
& =Z^{-k} F(Z) \\
& \sum_{n=0}^{\infty} f(n) Z^{-n} \text { consider } Z[f(n-
\end{aligned}
$$

$$
\mathrm{Z}[\mathrm{f}(\mathrm{n}-\mathrm{k})]=Z^{-k} F(Z)
$$

NOTE :- $Z[f(n-k)]=Z-k F(Z)$ putting $k=1$, we have
$Z[f(n-1)]=Z^{-1} F(Z)$ putting $\mathrm{k}=2$, we have $Z[f(n-2)]=Z^{-2} F(Z)$
putting $\mathrm{k}=3$, we have

$$
Z[f(n-3)]=Z^{-3} F(Z)
$$

## 2.Shifting $\mathrm{f}(\mathrm{n})$ to left :-

If $Z[f(n)]=F(Z)$ then $Z[f(n+k)]=Z^{k}\left[F(Z)-f(0)-f(1) Z^{-1}-\mathrm{f} 2^{( } Z^{-2}-------\quad \quad \mathrm{f}(\mathrm{k}-1) Z^{-(k-1)}\right]$
Proof: we know that $Z[f(n)]=\sum_{n=0}^{\infty} f(n) Z^{-n}$

$$
\left[Z^{-n}=Z^{k} \cdot Z^{-(n+k)}\right]
$$

$$
\begin{aligned}
)] & =\sum_{n=0}^{\infty} f(n+k) Z^{-n} \\
\text { consider } Z[\mathrm{f}(\mathrm{n}+\mathrm{k} & =Z^{k} \sum_{n=k}^{\infty} f(n+k) Z^{-(n+k)} \\
& =Z^{k} \sum_{n=k}^{\infty} f(n) Z^{-n} \quad(\text { replace }(\mathrm{n}+\mathrm{k}) \text { by } \mathrm{n}) \\
& =Z^{k}\left[\sigma_{n=0}^{\infty} f(n) Z^{-n}-\sigma_{n=0}^{(k-1)} f(n) Z^{-n}\right] \\
& =Z^{k}\left[Z[f(n)]-\sigma_{n=0}^{(k-1)} f(n) Z^{-n}\right]
\end{aligned}
$$


$Z[f(n+k)]=Z^{k}\left[F(Z)-f(0)-f(1) Z^{-1}-\left(f 2 Z^{-2}-------f(k-1) Z^{-(k-1)}\right] \quad\right.$ which is Recurrence formula
In particular
(a)If $k=1$ then $Z[f(n+1)]=Z[F(Z)-f(0)]$
(b) If $k=2$ then $Z[f(n+2)]=Z^{2}\left[F(Z)-f(0)-f(1) Z^{-1}\right]$
(c) If $\mathrm{k}=3$ then $\mathrm{Z}[f(\mathrm{n}+3)]=Z^{3}\left[\mathrm{~F}(\mathrm{Z})-\mathrm{f}(0)-\mathrm{f}(1) Z^{-1}-\mathrm{f}(2) \mathrm{Z}^{2}\right]$

Problems:1.Prove $Z($
$\left.\frac{1}{(n+1}\right)=Z \log \left(\frac{Z}{Z-1}\right)$

$$
\begin{aligned}
& \text { Solution- let } \mathrm{f}(\mathrm{n})=\mathrm{Z}\left(\frac{1}{n+1}\right) \\
& \text { we know that } Z[f(n)]=\sum_{n=0}^{\infty} f(n) Z^{-n} \\
& \begin{aligned}
\left.\frac{1}{n+1}\right] & =\sum_{n=0}^{\infty} \frac{1}{n+1} Z^{-n} \quad \mathrm{Z}[ \\
& =\sum_{n=0}^{\infty} \frac{1}{n+1} \cdot \frac{1}{Z^{n}} \\
& =\frac{1}{1} \cdot \frac{1}{1}+\frac{1}{2} \cdot \frac{1}{Z}+\frac{1}{3} \cdot \frac{1}{Z^{2}}+\cdots-\cdots \text { expansion needs ' } Z \text { ' in }
\end{aligned}
\end{aligned}
$$

denominator's, for this, multiply \&divide with ' $Z$ '

$$
\left[\mathrm{x}+\frac{x^{2}}{2}+\frac{x^{3}}{3}+-\cdots--=-\log (1-\mathrm{x})\right]
$$

$$
\begin{aligned}
& =Z\left[\frac{1}{Z}+\frac{1}{2} \cdot \frac{1}{Z^{2}}+\frac{1}{3} \cdot \frac{1}{Z^{3}}+\frac{1}{4} \cdot \frac{1}{Z^{4}}+\cdots-e^{-}\right. \text {evaluate (a)Z( } \\
& =Z\left[\frac{1}{\frac{Z}{Z}}+\frac{\left(\frac{1}{z}\right)^{2}}{2}+\frac{\left(\frac{1}{Z}\right)^{3}}{3}+\cdots \cdots----\right] \quad \text { Solution- we know that } \mathrm{Z}[\mathrm{f}(\mathrm{n})]=\sum_{n=0}^{\infty} f(n) Z^{-n} \\
& =Z\left[-\log \left(1-\frac{1}{z}\right)\right] \quad \text { let } f(n)=\text { for } n=0,1,2,3 \ldots \\
& =Z\left[\log \left(1-\frac{1}{z}\right)^{-1}\right] \\
& =Z \log \left(\frac{Z-1}{Z}\right)^{-1} \\
& =Z \log \left(\frac{Z}{z-1}\right) \\
& n \text { ! } \\
& \mathrm{Z}\left[\frac{1}{n!}\right]=\sum_{n=0}^{\infty} \frac{1}{n!} Z^{-n}
\end{aligned}
$$

$\therefore$ hence proved
2.Find $Z\left[\frac{1}{n!}\right]$ and using shifting theorem

$$
\begin{aligned}
& \begin{aligned}
&(\mathrm{n}+1)! \\
& \text { and }(\mathrm{b}) Z\left(\begin{array}{l}
(\mathrm{n}+2)!
\end{array}\right) \\
&=1+\frac{1}{1!} Z^{-1}+\frac{1}{2!} Z^{-2}+\frac{1}{3!} Z^{-3}+\cdots \cdots \\
&=1+\frac{1}{Z}+\frac{\left(\frac{1}{Z}\right)^{2}}{2!}+\frac{\left(\frac{1}{Z}\right)^{3}}{3!}+\cdots \cdots \cdots \cdots-\cdots-\cdots \\
&=e^{\frac{1}{Z}} \\
&=F(Z)(\text { say }) \text { By }
\end{aligned}
\end{aligned}
$$

shifting theorem
$->Z[f(n+1)]=Z[F(Z)-F(0)]$
2[()
( )
(1])
(1) $Z\left[\frac{1}{(n+1)!}\right]=Z\left[e^{\frac{1}{Z}}-1\right] \quad\left[f(0)=\frac{1}{0!}=1\right]$
(2) $\mathrm{Z}\left[\frac{1}{(n+2)!}\right]=Z^{2}\left[e^{\frac{1}{Z}}-1-\frac{1}{1!} Z^{-1}\right]$

$$
=Z^{2}\left[e^{\frac{1}{Z}}-1-Z^{-1}\right]
$$

$$
\mathrm{f}(\mathrm{n})={ }_{n!}^{1}>\mathrm{Z}[\mathrm{f}(\mathrm{n}+2)]=Z F Z-F 0-F 1 Z
$$

$\mathrm{f}(\mathrm{n}+$

1) $=\frac{1}{(n+1)}$
$!f(n+\quad 2)=\frac{1}{(n+2)}$

$$
(\mathrm{n})]=-\mathrm{z} \frac{d}{d Z}[F(Z)]
$$

Proof:- we know that $\mathrm{Z}[\mathrm{f}(\mathrm{n})]=\sum_{n=0}^{\infty} f(n) Z^{-n}$

$$
\begin{aligned}
\therefore \mathrm{Z}[\mathrm{nf}(\mathrm{n})]=-\mathrm{Z} \quad \mathrm{Z}[\mathrm{nf}(\mathrm{n})] & =\sigma_{n=0}^{\infty} n f(n) Z^{-n} \\
\frac{d}{d Z}[F(Z)] \quad & =-\mathrm{Z} \sigma_{n=0}^{\infty} f(n)(-n) Z^{-n-1} \\
& =-\mathrm{Z} \sigma_{n=0}^{\infty} \frac{d}{d z}\left[f(n) Z^{-n}\right]
\end{aligned}
$$

pb) If $F(Z)=$ $\qquad$

$$
\begin{aligned}
& =-Z \frac{d}{d z}\left[\sigma_{n=0}^{\infty} f(n) Z^{-n}\right] \\
& =-z \frac{d}{d z}[Z f(n)]
\end{aligned}
$$

$$
F(Z)
$$

$$
\begin{aligned}
&=-Z \frac{d}{d z} \frac{(Z-1)^{4}}{} \\
&=\frac{Z^{2}\left(5+3 Z^{-1}+12 Z^{-2}\right)}{Z^{4}\left(1-Z^{-1}\right)^{4}} \\
&=\frac{1}{Z^{2}} \frac{\left(5+3 Z^{-1}+12 Z^{-2}\right)}{\left(1-z^{-1}\right)^{4}}
\end{aligned}
$$

By Intial value theorem we have Multiplication by ' $n$ ': If $Z[f(n)]=F(Z)$ then Z[nf

$$
\begin{aligned}
& {\left[Z^{-n}=Z^{1} \cdot Z^{-n-1}\right]} \\
& {\left[\frac{d}{d z}\left(Z^{-n}\right)=(-n) Z^{-n-1}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\mathrm{f}(0) & =\lim _{Z \rightarrow \infty} F(Z)=0 \quad\left(\frac{1}{\infty}=0\right) \\
\mathrm{f}(1) & =\lim _{Z \rightarrow \infty} Z[f(Z)-\mathrm{f}(0)]=0 \\
\mathrm{f}(2) & =\lim _{Z \rightarrow \infty} Z^{2}\left[F(Z)-f(0)-f(1) Z^{-1}\right] \\
& =5-0-0 \\
& =5
\end{array}\right\} \begin{aligned}
& \mathrm{f}(3)=\lim _{Z \rightarrow \infty} Z^{3}\left[\mathrm{~F}(\mathrm{Z})-\mathrm{f}(0)-\mathrm{f}(1) Z^{-1}-\mathrm{f}(2) Z^{-2}\right] \\
& \\
& =\lim _{Z \rightarrow \infty} Z^{3}\left[\mathrm{~F}(Z)-(0)-\left(0 . Z^{-1}\right)-5 Z^{-2}\right] \\
& = \\
& =\lim _{Z \rightarrow \infty} Z^{3}\left[\frac{5 Z^{2}+3 Z+12}{(Z-1)^{4}}-\frac{5}{Z^{2}}\right] \\
& =\lim Z^{3} 5 Z^{4}+3 Z^{3}+^{2}\left(12 Z-Z 1^{2}\right)-45 Z-1^{4}
\end{aligned}
$$


$=\lim Z^{3} 23-18 Z 3^{-}\left[{ }^{1} 1+-20 Z-Z 1^{-2} 4-5 Z^{-3}\right.$
$Z \rightarrow \infty \quad Z$
$=23$

$$
\begin{aligned}
\rightarrow(Z-1)^{4}= & (z-1)^{2} \cdot(z-1)^{2} \\
= & \left(Z^{2}+1-2 Z\right)\left(Z^{2}+1-2 Z\right) \\
= & Z^{4}+Z^{2}-2 Z^{3}+Z^{2}+1-2 Z-2 Z^{3}-2 Z+4 Z^{2}=Z^{4}+ \\
& 6 Z^{2}-4 Z^{3}-4 Z+1 \\
& \quad \text { INVERSE Z-TRANSFORM }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{g}(0)+\mathrm{g}(1) Z^{-1}+\mathrm{g} \ell Z^{-2}+\mathrm{g} 3 Z^{-b}+\cdots--+\mathrm{g}(\mathrm{n}) Z^{-n}+\cdots--\right] } \\
= & \sum_{n=0}^{\infty}[\mathrm{f}(0) \mathrm{g}(\mathrm{n})+\mathrm{f}(1) \mathrm{g}(\mathrm{n}-1)+\mathrm{f}(2) \mathrm{g}(\mathrm{n}-2)+\cdots-+\mathrm{f}(\mathrm{n}) \mathrm{g}(0)] Z^{-n}
\end{aligned}
$$

*We have $Z[f(n)]=F(Z)$ which can be also written as $f(n)=Z^{-1}[F(Z)]$.
Then $f(n)$ is called inverse $Z$-transform of $F(Z)$
*Thus finding the sequence $\{f(\mathrm{n})\}$ from $\mathrm{F}(\mathrm{Z})$ is defined as Inverse Z -Transform.

$$
\text { If } Z^{-1}[F(z)]=f(n) \text { and } Z^{-1}[G(Z)]=g(n \text { then }
$$

*The symbol $Z^{-1}$ is the Inverse Z -

$$
Z^{-1}[F(Z) \cdot G(Z)]=f(n) * g(n)=\sum_{m=0}^{n} f(m) g(n-m)
$$

Proof:- We have $\mathrm{F}(\mathrm{Z})=\sum_{n=0}^{\infty} \mathrm{f}(\mathrm{n}) Z^{-n}$ and $G(Z)=\sum_{n=0}^{\infty} g(n) Z^{-n}$ then Transform.
[where * is convolution operator]

$$
\begin{aligned}
& F(Z) \cdot G(Z)=\left[f(0)+f(1) Z^{-1}+f 2 Z^{-2}+f 3 Z^{-3}+-----+f(n) Z^{-n}+-----\right] \\
& =Z[f(0) g(n)+f(n) g(n-1)+-------+f(n) g(0)] Z^{-1}[F(Z) . G(Z)] \\
& =f(0) g(n)+f(n) g(n-1)+------+f(n) g(0)
\end{aligned}
$$

$$
\begin{aligned}
& \quad=\sum_{m=0}^{n} f(m) g(n-m) \\
& \therefore Z^{-1}[F(Z) \cdot G(Z)]=f(n) * g(n)=\sum_{m=0}^{n} f(m) g(n-m)
\end{aligned}
$$

Problems:-
1.Evaluate (a) $Z^{-1}\left[\binom{\underline{Z}}{Z-a}^{2}\right]$
$(\mathrm{)}$
$b Z^{-1}\left[\frac{Z^{2}}{(Z-a)(Z-b)}\right]$

## Solution:-

(a) $Z_{-1}\left[\binom{\underline{Z}}{Z-a}^{2}\right]$

$$
=Z^{-1} \underset{Z-a \quad Z-a}{Z} \quad[\quad]
$$

$$
\begin{aligned}
& \mathrm{F}(\mathrm{Z})={\underset{Z-a}{Z-a}}^{Z}=\mathrm{fn}=Z_{-1} \quad \begin{array}{l}
Z-a
\end{array}=a_{n} \\
& \mathrm{G}(\mathrm{Z})=\frac{Z-a}{Z-a} Z=>\mathrm{gn}=Z_{-1} \underset{Z-a}{Z}=a_{n}
\end{aligned}
$$

$$
g((n))=\sum_{m=0}^{n} Z-1 F
$$

by convolution theorem, $Z$


$$
Z-a \quad Z-a
$$

$=\sigma n m=0 a_{m} . a_{n-m}$

$$
f m g(n-m)()
$$

$$
(b) \quad Z-1 \quad Z 2
$$

$$
=Z-1 \quad \mathrm{~F}(\mathrm{Z})=Z \quad=>\mathrm{f}(\mathrm{n})
$$

$$
\begin{array}{ll}
\mathrm{n}) & - \\
\text { ( ) } & {[Z-a]_{]}}
\end{array}
$$

$$
\mathrm{G}(\mathrm{Z})=
$$

$$
Z=>\mathrm{gn}=Z^{-1}
$$

$$
\left[\begin{array}{c}
z
\end{array}\right]=b^{n}
$$

$$
Z-b \quad Z-b \text { by convolution }
$$

$$
\text { theorem }, \quad Z^{-1}[F(Z) \cdot G(Z)]=f(n) * g(n)=\sum_{m=0}^{n} f(m) g(n-m)
$$

$$
\begin{gathered}
\text { theorem , } \\
Z-[F(Z) \cdot G z)]=Z-1
\end{gathered} \begin{gathered}
{[\bar{Z} \cdot \bar{Z}]} \\
Z-a \quad Z-b
\end{gathered}
$$

$$
=\sigma n_{m=0} a m \cdot b_{n-m}
$$

$$
\begin{aligned}
& =a^{n}[1+1+1+----+1] \quad(n+1) \text { times } \\
& =(\mathrm{n}+1) a^{n}
\end{aligned}
$$

$$
=\sigma n m=0 b n .(a b) m
$$

$$
=b_{n} \sigma_{n m=0}(a b)_{m}
$$

$$
\left.=\underset{b}{b^{n}\left[(a)^{0}\right.}+\underset{b}{\left(-^{a}\right)^{1}}+\underset{b}{\left(-^{a}\right)^{2}}+\underset{b}{(a)}+------+\left({ }^{a}\right)^{n}\right]
$$

this is in geometric progression,

$b n[-d(n+) 1]$
$=\quad b a$
1-

$$
\frac{b n[-a \varpi n n++] 11}{}
$$

$$
=\quad b-a
$$

## Put $a=3$

$Z-1\left[\frac{\left.=\frac{b^{n}\left[\frac{b^{n+1}-a^{n+1}}{n+1}\right]}{\ell(2)}\right] \frac{\frac{b-a}{b}}{n}}{}\right.$

$$
=b^{n} \cdot \frac{b^{n+1}-a^{n+1}}{b_{n+1}^{n+1}} \cdot \frac{b}{b-a}
$$

show that

$$
\frac{b^{n+1}-a^{n+1}}{b-a}
$$

Solution: $f(n)=g(n)=$

$$
\begin{aligned}
& f(n) * g(n)=\sum_{m=0}^{n} f(m) g(n-m) \\
&=\sum_{m=0}^{n} \frac{1}{m!} \cdot \frac{1}{(n-m)!} \\
&=1 \cdot \frac{1}{n!}+\frac{1}{1!} \cdot \frac{1}{(n-1)!}+\frac{1}{2!} \cdot \frac{1}{(n-2)!}+\cdots-++\frac{1}{n!} \cdot \frac{1}{(0)} \\
&=\frac{1}{n!}+\frac{1}{(n-1)!}+\frac{1}{2!} \cdot \frac{1}{(n-2)!}+\cdots+\frac{1}{n!} \quad\left[\frac{1}{(n-1)!}=\frac{n}{n(n-1)!}=\frac{1}{(n-1)!}\right] \\
&=\frac{1}{n!}+\frac{1}{1!} \frac{n}{n!}+\frac{1}{2!} \frac{n(n-1)}{n!}+\cdots-\cdots+\frac{1}{n!} \quad! \\
&=\frac{1}{n!}\left[1+\frac{n}{1!}+\frac{n(n-1)}{2!}+\cdots-\cdots\right. \\
&=\frac{1}{n!}(1+1)^{n} \\
&=\frac{2^{n}}{n!}\quad-\text { to }(\mathrm{n}+1) \text { terms }]
\end{aligned}
$$

3. Evaluate $\quad Z^{-1}\left[\frac{Z^{2}}{(Z-4)(z-5)}\right]$

Solution- Given $Z^{-1}\left[\frac{Z}{Z-4} \cdot \frac{Z}{Z-5}\right] \quad \begin{aligned} & Z \\ & Z-5\end{aligned}$

$$
\begin{aligned}
& \mathrm{F}(\mathrm{Z})=-\Rightarrow \mathrm{f}(\mathrm{n})=Z^{-1}\left[\frac{Z}{Z-4}\right]=4^{n}[\quad G(Z)]=f(n) * g(n)=\sum_{m=0}^{n} f(m) g(n-m) \\
& {[(G(Z) \neq)]=>\mathrm{g}(\mathrm{n})=Z^{-1}\left[\frac{Z}{Z-5}\right]=5^{n} Z_{-1} F} \\
& z-5 \\
& \text { by convolution theorem, } Z^{-1}[F(Z) .=\sigma n m=04 m .5 n-m \\
& Z . G Z=Z^{-1}\left[\frac{Z}{Z-4}, \frac{Z}{Z}\right] \\
& =\sigma n m=05 n \text {. (45) } m \\
& =5 n \sigma n m=0(45) m \\
& =5_{5}^{n}\left[\left({ }^{4}\right)^{0}+\underset{5}{\left({ }^{4}\right)^{1}}+\underset{5}{\left({ }^{(4}\right)}{ }_{5}^{1}+\underset{5}{\left({ }^{4}\right)^{3}}+-\cdots-\cdots+\left({ }_{5}^{4}\right)^{n}\right] \\
& =5^{n}\left[\begin{array}{c}
{\left[1+{ }^{4}+\left({ }^{4}\right)^{2}+\left({ }^{4}\right)^{3}+------+\left({ }^{4}\right)^{n}\right]} \\
5
\end{array}\right.
\end{aligned}
$$

this is in geometric progression,

$$
1+\mathrm{a} r^{3}+---+\mathrm{a} r^{n-1}+--\frac{}{1-r}=a\left(1-r^{n}\right), \mathrm{r}<1 \mathrm{a}+\mathrm{ar}
$$

$$
=\quad, r>1
$$

$$
=\frac{5^{n}\left[1-\left(\frac{4}{5}\right)^{n+1}\right]}{1-{ }_{5}^{4}}
$$

$$
=\frac{5^{n}\left[1-\frac{4^{5}+1}{n+1}\right]}{\frac{5-4}{5}}
$$

$$
=\frac{5^{n}\left[\frac{5^{n+1}-4^{n+1}}{n+1}\right]}{\frac{5-4}{5}}
$$

$$
=5^{n} \cdot \frac{5^{n+1}-4^{n+1}}{5^{n+1}-4^{n+1}} \frac{5}{1}
$$

$$
-1\left[\frac{Z^{2}}{(z-4)(z-5)}\right]
$$

=

$$
=\quad \therefore Z 5 n+1-4 n+1
$$

## Partial Fractions Method:-

$$
\text { A2 } 2+11^{Z} Z+24(n) \text { ren repeated linear factors) }(v . i m p)
$$

1.Find $Z^{-1}$


Solution:- let $\mathrm{F}(Z)=Z-1 Z 2+11 Z Z+24=(Z+3) Z(Z+8)$

$$
\begin{aligned}
& \text { then } \frac{F(Z)}{Z}=\frac{1}{(Z+3)(Z+8)}=\frac{A}{(Z+3)}+\frac{B}{(Z+8)} \rightarrow 1 \\
& =\frac{1}{(Z+3)(Z+8)}=\frac{A(Z+8)+B(Z+3)}{(Z+3)(Z+8)} \\
& =1=\mathrm{A}(\mathrm{Z}+8)+\mathrm{B}(\mathrm{Z}+3) \rightarrow 2 \\
& \text { put } \mathrm{Z}=-8 \Rightarrow 1=A(-8+8)+B(-8+3) \\
& 1=B(-5) \\
& \text {-1 } \\
& B=5 \\
& \text { put } Z=-3 \Rightarrow 1=A(-3+8)+B(-3+3) \\
& 1=A(5) \\
& \{Z+8=0 \Rightarrow Z=-8 \& Z+3=0 \Rightarrow z=-3\}
\end{aligned}
$$

now substitute $A$ and $B$ values in equation -1 we get
2.Find $\therefore Z^{-1}\left[\frac{Z}{Z^{2}+11 Z+24}\right]=\frac{1}{5}\left[(-3)^{n}--8^{n}\right]$ the Inverse Z-Transform of $\qquad$ Z

$$
{ }_{Z}^{(Z-1)(Z-2)}
$$

Solution:- let $F(Z)=\overline{(Z-1)(Z-2)}$ here we can resolve $F(Z)$ into partial fractions directly as follows

$$
\begin{aligned}
\mathrm{F}(\mathrm{Z})=\mathrm{Z}\left[\begin{array}{c}
1 \\
(Z-1)(Z-2) \\
\mathrm{F}(Z)
\end{array}\right. & =Z\left[-\frac{1}{{ }^{Z}}-\frac{1}{{ }^{Z-2}}\right] \\
& =\frac{Z-1}{Z-2}-\frac{Z^{2}}{Z-1}
\end{aligned}
$$

$$
\text { hence } \left.Z^{-1}[F(Z)]=Z^{-1}-\left|\begin{array}{l}
Z \\
Z_{-1}
\end{array}\right| \begin{aligned}
& Z \\
&
\end{aligned} \right\rvert\,
$$

$$
=2_{n}-1_{n}
$$

$$
\begin{aligned}
& {\left[\frac{(F) \nmid)}{Z}=\frac{1}{5(Z+3)}-\frac{1}{5(Z+8)}\right.} \\
& Z-\left[F \underset{Z-a}{Z} \underset{Z-a}{Z-A_{n}}=Z \quad \underset{Z-a}{F} \quad Z=a_{n}\right) \\
& \mathrm{F}(\mathrm{Z})=\frac{Z}{5(Z+3)}-\frac{Z}{5(Z+8)} \\
& =Z^{-1}\left[\frac{Z}{5(Z+3)}-\frac{Z}{5(Z+8)}\right] \\
& \left.=\frac{1}{5}\left[Z^{-1}\left[\frac{Z}{Z+3}\right]-Z^{-1}\left[\frac{Z}{Z+8}\right\}\right]\right) \\
& =\frac{1}{5}\left[(-3)^{n}-(-8)^{n}\right]
\end{aligned}
$$

$$
[\overline{(5 Z-1)(5 Z+2)}]
$$

Solution:- let $\mathrm{F}(Z)=\frac{Z(3 Z+1)}{(5 Z-1)(5 Z+2)}$ then

$$
\begin{aligned}
& \frac{F(Z)}{Z}= \frac{3 Z+1}{(5 Z-1)(5 Z+2)}=\frac{A}{5 Z-1}+\frac{B}{5 Z+2} \rightarrow 1 \text { (by partial fractions) } \\
& \frac{3 Z+1}{(5 Z-1)(5 Z+2)}=\frac{A(5 Z+2)+B(5 Z-1)}{(5 Z-1)(5 Z-2)} \\
& \text { put } Z= \frac{-}{5} \Rightarrow A=\frac{1}{152} \quad 8 \\
& \text { put } Z=\frac{1}{5} \Rightarrow B=\frac{1}{15} \text { substituting } A \text { and } B \text { values in } \\
& \text { equation- }-1 \text { we get } \\
& \frac{F(Z Z-1)}{Z}= \frac{8}{15} \frac{1}{5 Z-1}+\frac{1}{15} \frac{1}{5 Z+2} \\
& \frac{F(Z)}{Z}= \frac{8}{15} \frac{1}{\left(Z-\frac{1}{5}\right)}+\frac{1}{15} \frac{1}{\left(Z+\frac{2}{5}\right)}
\end{aligned}
$$

3.Find $Z-1$
$3 Z 2+Z$

$$
\begin{aligned}
& \text { hence } F(Z)= \\
& \left.\begin{array}{rl}
Z^{-1}[F(Z)]= & \frac{8}{75} \cdot \frac{Z}{\left(Z-\frac{1}{5}\right)}+\frac{1}{75} \cdot \frac{Z}{\left(Z+\frac{2}{5}\right)} \\
& \left.\frac{8}{75}\left(\frac{Z}{Z-0.2}\right)+\frac{1}{75}\left(\frac{Z}{Z+0.4}\right)\right] \\
& \frac{8}{75}\left(\frac{Z}{Z-0.2}\right)+\frac{1}{75} Z^{-1}\left(\frac{Z}{Z-(-0.4)}\right) \\
\therefore Z^{-1}\left[\frac{3 Z^{2}+Z}{75}(-0.4)^{n}\right. \\
= & \\
(5 Z-1)(5 Z+2)
\end{array}\right]=\frac{8}{75}(0.2)^{n}+\frac{1}{75}(-0.4)^{n} \\
& =
\end{aligned}
$$

## Geometric Progression: $a$ )

Finite -

$$
\mathrm{a}+\mathrm{ar}+\mathrm{ar} r^{2}+a r^{3}+------+\mathrm{ar} r^{n-1}+a r^{n}=\frac{a\left(1-r^{n+1}\right)}{1-r}
$$

b)

$$
\begin{aligned}
& +\mathrm{ar}+\mathrm{ar}^{2}+a r^{3}+----+\mathrm{ar} r^{n-1}+a r^{n}+--=\frac{a}{a-r} \\
& +\mathrm{r}+r^{2}+r^{3}+-----+r^{n}+------\frac{1}{1-r}
\end{aligned}
$$

eg; 1

$$
\text { 4.Find } Z^{-1}\left[\frac{Z}{(Z+3)^{2}(Z-2)}\right] \text { (repeated Linear factor of form }(\mathrm{ax}+\mathrm{b}) 2 \text { times) }
$$

Solution:-let $\mathrm{F}(Z)=\frac{Z}{(Z+3)^{2}(Z-2)}$
$\frac{F(Z)}{Z}=\frac{1}{(Z+3)^{2}(z-2)}$
$\frac{F(Z)}{Z}=\frac{1}{(Z+3)^{2}(z-2)}=\frac{A}{Z-2}+\frac{B}{Z+3}+\frac{c}{(Z+3)^{2}} \quad \rightarrow 1$

$$
\frac{1}{(Z+3)^{2}(Z-2)}=\frac{A(Z+3)^{2}+B(z-2)(Z+3)+c(Z-2)}{(z-2)(z+3)^{2}}
$$

1

$$
=A(Z+3)^{2}+B(Z-2)(Z+3+c Z-2)\{Z-2=0 \Rightarrow Z=2 \& Z+3=0 \Rightarrow Z=-3\} \text { put } Z=2 \Rightarrow 1=\mathrm{A}(2+
$$ 3) ${ }^{2}$

$$
\begin{aligned}
& 1=\begin{array}{l}
\mathrm{A}(25) \\
1
\end{array} \\
& \mathrm{~A}=\begin{array}{l}
25
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { put } \mathrm{Z}=-3=>1=c(-3-2) \\
1=-5 \mathrm{c} c= \\
\frac{-1}{5}
\end{gathered}
$$

now comparing the co-efficients of $Z^{2}$ on both sides
$0=A+B$

$$
B=\frac{-1}{25} \text { substituting } A, B \text { and } C
$$

values in equation-1, we get

$$
\begin{aligned}
& \frac{F(Z)}{Z}=\frac{1}{(Z+3)^{2}(Z-2)}=\frac{1}{25} \cdot \frac{1}{Z-2}-\frac{1}{25} \cdot \frac{1}{Z+3}-\frac{1}{5} \cdot \frac{1}{(Z+3)^{2}} \\
& \mathrm{~F}(\mathrm{Z})=\frac{1}{25} \cdot \frac{Z}{Z-2}-\frac{1}{25} \frac{Z}{Z+3}-\frac{1}{5} \cdot \frac{Z}{(Z+3)^{2}} \\
& Z-1[\overline{(Z+3) Z(Z-2)}] Z-1[25 \overline{1 . Z} \overline{Z-2}-251 \overline{Z+z} 3-\overline{15} \cdot \overline{(Z+z 3)} 2] \\
& {\left[\frac{=12^{n}-1}{(25()}\right]_{5}-\left(3^{n}\right)} \\
& \therefore Z-1 \quad Z+3 Z 2 Z-2=2512 n-\overline{251}(-3 h--15 n(-3) n
\end{aligned}
$$

## Difference Equations:-

Just as the Differential equations are used for dealing with continuous process in nature , the difference equations are used for dealing of discrete process.

Definition:-
A difference equation is a relation between the difference of an unknown function at one (or) more
general value of the argument.
thus $\Delta y_{n}+2 y_{n}=0$ and
$\Delta^{2} y_{n}+5 \Delta y_{n}+6 y_{n}=0$ are difference equations

## Solution:-

The solution of a difference equation is an expression for $y_{n}$ which satisfies the given difference equation

## General Solution:-

The general solution of a difference equation is that in which the number of arbitrary constants is equal to the order of the difference equation.

## Linear Difference Equation:-

The Linear difference equation is that in which $y_{n+1}, y_{n+2}, y_{n+3}-------$ etc occur to the $1^{\text {st }}$ degree only and are not multiplied together.

The difference equation is called Homogeneous if $f(n)=0$, Otherwise it is called as
NonHomogeneous equation (i.e:-f(n) $\neq 0$ )

## Working rule (or) Working Procedure:-

To solve a given linear difference equation with constant co-efficient by Z-transforms.
Step-1 :- Let $\mathrm{Z}\left(y_{n}\right)=\mathrm{Z}[\mathrm{y}(\mathrm{n})]=\mathrm{Y}(\mathrm{Z})$

Step-2 :-Take Z-Transform on bothsides of the given difference equation.

Step-3:-Use the formulae $Z\left(y_{n}\right)=Y$ Z $)$

$$
\begin{aligned}
& \mathrm{Z}\left[y_{n}+1\right]=\mathrm{Z}\left[\mathrm{Y}(\mathrm{Z})-y_{0}\right] \\
& \mathrm{Z}\left[y_{n}+2\right]=Z^{2}\left[\mathrm{Y}(\mathrm{Z})-y_{0}-y_{1} Z^{-1}\right]
\end{aligned}
$$

Step-4:-Simplify and find $Y(Z)$ by transposing the terms to the right and dividing by the co-efficient of $y(Z)$.
Step-5:-Take the Inverse $Z$-Transform of $Y(Z)$ and find the solution $y_{n}$
This gives $y_{n}$ as a function of $n$ which is the desired solution. Problems:-
1.Solve $y_{n+1}-2 y_{n}=0$ using $Z$-Transforms.

Solution:-let $\mathrm{Z}\left[y_{n}\right]=Y$ ( )

$Y(Z)[Z-$

$$
\begin{array}{rlrl}
Y(Z) & =Z-2 y_{0} & \\
Z-1[Y()]=Z-1[\overline{Z Z-2}] y_{o} & & \Rightarrow Z[Y(n)]=Y(Z) \\
y_{n} & =2 n y_{o} & & Z-1[Y(Z)]=y_{n}
\end{array}
$$

2.Solve the difference equation using Z-Transforms
$\mu_{n+2}-3 \mu_{n+1}+2 \mu_{n}=0$ Given that
$\mu_{0}=0, \mu_{1}=1$
Solution:-let $Z\left(\mu_{n}=\mu Z()\right.$
$Z\left(\mu_{n+1}\right)=Z\left[\mu(Z)-\mu_{0}\right]$
$Z\left(\mu_{n}+2\right)=Z^{2} \mu\left[Z\left(-\mu_{0}-\mu_{Z^{1}}\right.\right.$ nowy taking Z-Transform on both sides of
the given equation we get

$$
\begin{aligned}
& Z\left(\mu_{n+2}\right)-3 Z\left(\mu_{n+1}\right)+2 Z\left(\mu_{n}\right)=0 Z 2-\mu_{0}-\mu Z^{1} \\
& {\left[\mu(Z)-3 Z[\mu Z] \mu_{0}\right]+2 \mu Z Z=0 \text { using the given }} \\
& {\left[\mu(Z) \xrightarrow{\text { conditigns it reduces to }}{ }_{( }\right) \text {() }} \\
& Z 2-0-1-3 Z \mu[\mu Z Z[Z-20]-3+2 Z \mu+Z 2]=0 \\
& \text { Z } \\
& \text { ( ) } \frac{Z}{Z} \\
& \mu \\
& Z=Z 2{ }_{2}^{-3_{1} Z}+2 \frac{1}{-1} \quad=Z \quad \text { (or) } \\
& =(Z-1)^{Z}(Z-2) \\
& =Z\left[\begin{array}{lll}
Z & -Z
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\underline{Z} Z \\
= \\
Z-2-Z-1
\end{gathered}
$$

on taking Inverse $Z$-Transform on both sides we get

$$
\begin{aligned}
& \underset{[()]}{Z-1 \mu Z}=Z-1\left[\begin{array}{c}
\frac{Z}{Z-2} \\
\frac{Z-1}{Z-1}
\end{array}\right] \\
& \mu^{n}=Z_{-1} \backslash Z^{Z}-\left|-Z_{-1}\right| \overline{Z^{Z}-1} \\
& \mu_{n}=2 n-1
\end{aligned}
$$

3.Solve the difference equation using Z-Transform

$$
y_{n+2}-4 y_{n+1}+3 y_{n}=0
$$

Given that $y_{0}=2$ and $y_{1}=4$
Solution:- let $\mathrm{Z}\left[y_{n}\right]=Y$ \& )
$\left.\left.\mathrm{Z}\left[y_{n+1}\right]=Z Y Z()_{y_{0}}\right] Z\left[y_{n+2}\right]=Z^{2} Y Z-y_{0}-y_{1} Z^{-1}\right]$
taking $Z$-Transform of the given equation we get
$Z\left(y_{n+2}\right)-4 Z\left(y_{n+1}\right)+3 Z\left(y_{n}\right)=0$
$\left.Z^{2} Y Z-y_{0}-y_{1} Z^{-1}\right]-4 Z Y Z\left[-Y_{0} l_{+3 Y(Z)=0 \text { using }}\right.$


$$
\text { i.e:- } \quad Y(Z)\left[Z^{2}-4 Z+3\right]-2 Z^{2}-4 Z+8 Z=0
$$

$$
\mathrm{Y}(\mathrm{Z})\left[Z^{2}-4 Z+3\right]=\mathrm{Z}(2 \mathrm{Z}-4)
$$

$$
\frac{Y Z}{Z}=\frac{2 Z-4}{\left[Z^{2}-4 Z+3\right]}
$$

$$
=\frac{2 Z-4}{(Z-1)(Z-3)}(\quad)
$$

$\frac{Y(Z)}{Z}=\frac{1}{Z-1}+\frac{1}{Z-3}$ (reducing by partial fractions)
$Y(Z)=\frac{Z}{Z-1}+\frac{Z}{Z-3}$ on taking Inverse Z-Transform on both
sides we obtain

$$
Z-1\left[Y(Z)=Z-1|\bar{Z}|+Z-1|\bar{Z}|_{Z-1 \quad} \quad{ }_{Z-3}\right.
$$

$$
y_{n}=1+3^{n}
$$

