
Complex Variables & Transforms 

(20A54302)

II - B.TECH & I- SEM

Prepared by:

Dr. B. NAGABHUSHANAM REDDY, Professor

Department of H &S

VEMU INSTITUTE OF TECHNOLOGY
(Approved By AICTE, New Delhi and Affiliated to JNTUA, Ananthapuramu)

Accredited By NBA( EEE, ECE & CSE) & ISO: 9001-2015 Certified Institution Near

Pakala, P.Kothakota, Chittoor- Tirupathi Highway

Chittoor, Andhra Pradesh-517 112 

Web Site: www.vemu.org

http://www.vemu.org/


Unit – 1 

Complex - analysis
• Function of Complex Variable/ Differentiation:
If for each value of the complex variable Z= X+iY in a given region ‘R’ , we have one or more values of 

w=f(z)=u+iv, Then W is said to be a function of ‘Z’ , and we have w=f(z)=u+iv.

Where u and v are real and imaginary parts of f(z). z=x+iy 

and

f(z)=u(x,y)+iv(x,y) is a complex function.

• Continuity of a Function:

Let f(z) is said to be continuous function at z=z if

• Differentiability of a Function:
A function f(z) is said to be differentiable at z=z if

exists. It is donated by fˡ(z₀)

• Analytical Function:
i.e. fˡ(z₀) =



The complex function f(z) is said to be analytical function at z=a if the function f(z) has derivative at z=a and 

neighbourhood of z=a.

Example:

1. Let f(z) = 𝑧2 fˡ(z) = 2z

At z=0, fˡ(z) = 2(0) = 0 (finite) f(z)

has derivative at z=0

Finally f(z) is called analytical function.
1

2. Let f(z) =
𝑧

−1

fˡ(z) = At z=0, fˡ(z) =

f(z) has no  

derivative at z=0

Finally f(z) is called not analytical function.

• Singular Point:

Let z=a is said to be singular point if the function f(z) is not analytical at z=a.

Example:

f(z) = z = 0 is called 

singular point.



• Cauchy – Riemann Equations in Cartesian co-ordinates:

• If f(z ) is continuous in some neighbourhood of z and differentiable at z then the first order partial

derivatives satisfy the equations and at the point z which are called the 

Cauchy-Riemann equations.

proof:

Let f(z) = u+iv be an analytical function

By definition of analytical function, f(z) has derivative.

i.e. fˡ(z) = exists (finite)

1) z = x+iy f(z) = u+iv f(z) = u(x,y)+iv(x,y)

2) z = x+iy △ z = △ x + i △ 𝑦 3) 𝑓 𝑧 +△ 𝑧 = ?

𝑧 +△ z = x+iy+ △x+ i△ y

𝑧 +△ z = (x+ △x)+i(y+ △ y)

𝑓 𝑧 +△ 𝑧 = u(x+ △x , y+ △ y) + iv(x+ △x , y+ △ y)

[u(x+ △x , y+ △y) + iv(x+ △x , y+ △y) ]−[u x,y +iv x,y ]

△x+ i△yfˡ(z) = lim

△x+ i△y→0

We know that △ x+i △y = 0+i0 △

x = 0,△ y = 0

→①



Case (1) If △ y = 0 , put △ y = 0 in①.

Case (2) If △ x = 0 , put △ x = 0 in①

[u(x,y+ △y)+iv(x,y+△y)) −[u x,y +iv x,y ]

fˡ(z) = △limy→0

fˡ(z) = -i△limy→0 △y + △limx→0 △y

fˡ(z) =- →③

Equate ② &③

Compare the real and imaginary parts

i△y

[u(x,y+△y)−u x,y ] i[v(x,y+△y)−u x,y ]



(If u𝑥 = 𝑣𝑦 and uy = −𝑣x)

These are Cauchy – Riemann Equations in Cartesian co-ordinate System.

Cauchy – Riemann Equations in Polar co-ordinates:
Let z=x+iy

We know that x=rcosθ ,

y=rsinθ z =

rcosθ+irsinθ z =

r(cosθ+isinθ) z = 𝑟𝑒𝑖θ

f(z)=u+iv f(𝑟𝑒𝑖θ) = u(r, θ)+iv(r, 

θ) →①

Differentiate①w.r.t  ‘r’,

fˡ ( →②

Differentiate①w.r.t  ‘θ’,

fˡ ( →③

Substitute② in③ , We get



ir

ir

Lets compare real and imaginary parts

It doesn't not satisfies C-R equations and hence its not an analytical function.

2) Show that f(z) = 2xy+i(𝑥2- 𝑦2) is not analytical function. Solution: Given f(z) = 2xy+i(𝑥2- 𝑦2)

These are Cauchy – Riemann Equations in Polar co-ordinate System. Examples

1) Show that f(z) = xy+iy is not analytical

Solution : Given , f(z) = xy+iy

f(z) = u+iv u= xy 

v= y

= y ,

= x ,



f(z) = u+iv 

u=2xy v= 𝑥2- 𝑦2

= 2y , = 2x

= 2x , 2y

&

It doesn't not satisfies C-R equations and hence its not an analytical function.

3) Test the analyticity f(z) = 𝑒𝑥(cosy-isiny) and also find the fˡ(z) Solution: Given

i𝑒𝑥siny

f(z) = 𝑒𝑥cosy -

f(z) = u+iv u = 𝑒𝑥cosy  

v = -𝑒𝑥siny

,

f(z) is not analytical function and the fˡ(z) does not exist.

4) Show that f(z) = z 𝑧 2 is not analytical function 

Solution : Given f(z) = z 𝑧 2

cosy ,

siny



f(z) = (x+iy) (x + iy) 2 = (x+iy) [ 𝑥2 + 𝑦2]2

f(z) = x(𝑥2 + 𝑦2)+iy(𝑥2 + 𝑦2) f(z) =

u+iv

u = x(x2 + y2) = x3 + xy2 V = y(x2 + y2) = x2y + y3

= 2xy

= 2xy,

f(z) is not analytical function

5) Show that w= logz is an analytical function and also find

Solution : Given w = logz

put z = 𝑟𝑒𝑖θ

𝑖θ = log r + log 𝑒𝑖θ w w

= log 𝑟𝑒

= log r + iθ log e

f(z) = w = log r +iθ = u+iv u

= log r v = θ



r &

r( ) = 1 & 0 = 0 It is an analytical function f(z)

= u+iv

f(reiθ) = u(r, θ)+iv(r, θ) 

differentiate on both sides w.r.t ‘r’

fˡ(

fˡ(z) (0)

fˡ(z) =

6) Show that f(x) = sinz is an analytical function everywhere in the complex plane 

Solution : Given f(x) = sinz

f(x) = sin(x+iy) f(x) = sinx 

cos(iy) + sin(iy) cosx f(X) = sinx 

coshy + isinhy cosx f(x) = u+iv

u = sinx coshy v= sinhy cosx



= cosx coshy , -sinx sinhy

& It is an analytical function= sinx sinhy, = coshy cosx

7) Test the analyticity of the function f(z) = 𝑒𝑥 (cosy+isiny) and find fˡ(z). Solution : Given , f(z) = 𝑒𝑥

(cosy+isiny) = u+iv

u = 𝑒𝑥 cosy v = 𝑒𝑥 siny

cosy ,

siny

& It is an analytical function

f(z) = u+iv

fˡ(z) = cosy + i 𝑒𝑥 siny

fˡ(z) = 𝑒𝑥(cosy+isiny)

fˡ(z) = 𝑒𝑥 i 𝑒𝑦= e(x+iy)

fˡ(z) = ez

8) Determine P such that the function f(z) =

Solution :

be an analytical function.



satisfies the C-R equation

similarly :

x y

Comparing the equations we get:

P = -1

y +p2x2

9) Prove that function f(z) defined by f(z) = -R equations are satisfied at the origin, yet fˡ(0) does not exist.

Solution : Given f(z) =

i) To show that f(z) is continuous at z=0

Given , f(z) =

It is an analytical function, It

) v = u =

2x,

2y

px (

)

,

By given f(z) is an analytical function, f(z) satisfies C-R equations.



let lim f(z) = ( given f(0) = 0)
𝑧→0

𝑦→0

3 f(z) = f(z) =

lim x(1+i) = 0 = f(0)

𝑥→0 f(z) is 

continuous

ii) To show that C-R equations are satisfied at origin

f(z) = f(z)

= u+iv

3

u

v =

= ,



R Equations are satisfied at origin iii) To

show that fˡ(z) does not exist at origin

fˡ(z) =
y→0 z

x3 1+i −y2 +3 y(1−i) 2 −

x

lim 0

= 1

1

C –



fˡ(z) = yx →→00 x x + iy

lim x

𝑥 →0 x

fˡ(z) =

x 1 +i 3 fˡ(z) 𝑥lim →0

= 1+i (Finite)

x 3 =

fˡ(z) Exists

At y = mx

fˡ(z)

=

y→mx

fˡ(z) =
y→mx

fˡ(z)

=

fˡ(z) = (Infinite) fˡ(z) depends upon the ‘m’ value, so that the fˡ(z) does not exist at origin

fˡ(z) =



Part – B
Laplace Equations

the equation of the form

Harmonic Function
The function u and v are said to be harmonic, if it satisfies Laplace Equations 

i.e

or

Milne – Thomson Method
When u is given find f(z) :

𝜕𝑢 𝜕𝑢

1) To find and

2) To find fˡ(z) = u+iv

Differentiate w.r.t ‘x’ we get



fˡ(z) = (From C-R equation)

(From C-R equation)

fˡ(z) =

,0)

,0) fˡ(z) =

∅1(z1,0) - i ∅2(z2,0)

Integrate w.r.t ‘z’ f(z) = 𝟏∅ (z𝟏,0) dz - i 𝟐∅ (z𝟐,0) dz

+ c When v is given find f(z):

𝜕𝑣 𝜕𝑣

1) To find and

2) To find f(z) = u+iv

Differentiate w.r.t ‘x’ , we get

fˡ(z) =

fˡ(z) =

,0)

,0)



fˡ(z) =  ∅1(z1,0) + i ∅2(z2,0)

Integrate w.r.t ‘z’ f(z) = (z𝟏,0)∅]𝟏 + i ∅𝟐(z𝟐,0)

]dz + c

1) Construct an analytical function f(z) when u = x3- 3x y2 + 3x + 1 is given

Solution: 6xy

By Milne Thomson Method

f(z) =u+iv

,0) = -

fˡ(z) =

6(z) (0) = 0

fˡ(z) = ,0)

Integrate w.r.t ‘z’ f(z) =

+ (𝑧,0)1∅] i ∅2(𝑧,0) ] dz + c f(z)

3z2 +3) = − 0 ) dz + c f(z)

= + 3z + c

f(z) = 𝒛𝟑+ 3z + c

(z,0) = 3 z2+3

&



2) Construct an analytical function f(z) when u = sinx coshy is given

Solution: = cosx sinhy

= sinx sinhy

By Milne Thomson Method

f(z) =u+iv

(z,0) = sinz(0)

fˡ(z) =

= 0

fˡ(z) = ,0)

Integrate w.r.t ‘z’ f(z) =

(z,0)1∅] - i ∅2(z,0) ] dz + c f(z) =

cosz dz + c f(z) = sinz + c

3) Find the analytical function f(z) = u+iv if u+v
sin2x

Solution: u+v =

f(z) = u+iv

if(z) = ui-v

(1 + i)f(z) = (u-v)+i(u+v) 

f(z) = u+iv

,0) = cosz(1) = cosz

&



Where F(z) = (1+i)f(z) 

u+v = V

𝜕𝑽,0) = −𝐜𝐨𝐬𝐞𝐜𝟐𝐳

,0) =

∅1(z,0) =

,0)



f(z) = u+iv

fˡ(z) =

fˡ(z) =

f(z) = (z,0)1∅] + i ∅2(z,0) ] dz + c 

f(z) = cosec2z− (i) dz+ c

f(z) = -i(-cotz) + c = i cotz + c

f(z) = i cot z + c

(1+i) f(z)
i

f(z) =

=icotz + c

cotz f(z) =

cotz + c1

𝐢+𝟏

f(z) = 𝟐 cotz + c𝟏

4) Find the

ex [(x2-

Solution: u = ex x2

analytical function , whose real part is u =

y2)(cosy − 2xysiny)]

cosy - ex y2 cosy – 2xy ex siny

x 2 cosy – 2y ex siny – 2xy ex siny

cosy + 2x ex cosy - e y

x 2

= 0 + 0 - 0 – 0 = 0



cos(0) + 2z ez cos(0) – 0 – 0 – 0

siny + e siny y - 2y ex cosy – 2x ex siny – 2xy ex cosy 

f(z) = u+iv

fˡ(z)

=

fˡ(z) =

f(z) = ,0) ] dz + c z( i -,0) ( 

f(z) = (ez z2 + 2z ez - 0) dz + c f(z)

ez = (z2 +2z)dz + c f(z) = ez z2

dz + zez 2 dz

u = z2 dv = ez dz du = 2z dz v= ez f(z) = 𝐞𝐳

𝐳𝟐 - z 2 dz ez dz + z 2 ez dz + c f(z) = 𝐞𝐳

𝐳𝟐+ c



5) The analytical function whose imaginary part is v(x,y) = 2xy Solution:

v = 2xy

= 2y = (z,0) = 2(0) = 0

= 2x = (z,0) = 2(z) = 2z f(z)

= f(z) ,0) ] dz + cz(

= z dz + c

2

f(z) = 2 + c

f(z) = 𝐳𝟐+ 𝐜

,0) + i z( 

6) Find harmonic conjugate at u = 𝐞𝐱𝟐−𝐲𝟐cos2xy and also find f(z)

Solution : u = 𝐞𝐱𝟐−𝐲𝟐cos2xy

cos2xy (2x) - 𝐞𝐱𝟐−𝐲𝟐sin2xy (2y)

∅1(z,0) = 𝐞𝐳𝟐−𝟎cos0 (2z) - 𝐞𝐱𝟐−𝐲𝟐(0)

∅𝟏(𝐳,0) = 𝐞𝐳𝟐2z

𝐞𝐱𝟐−𝐲𝟐sin2xy (2x)

cos2xy (-2y) -



∅2(z,0) = 0 – 0

∅𝟐(𝐳,0) = 𝟎 f(z)

= u+iv fˡ(z) =

fˡ(z) =

fˡ(z) = ∅1(z,0) - i ∅2(z,0)

f(z) = (z,0)1∅] - i ∅2(z,0) ] dz + c f(z) = ez22z

dz + c (put 𝐳𝟐= t => 2z dz = dt) f(z) = et dt +  

c = et + c

f(z) = 𝐞𝐳𝟐+ c f(z) = e(x+iy)2 f(z) =

ex2−y2+2xyi + c f(z) = ex2−y2 e2xyi + c u+iv =

ex2−y2[cos2xy+isin2xy] + c u+iv = ex2−y2

cos2xy + i e ex2−y2 (sin2xy) + c

v = 𝐞𝐱𝟐−𝐲𝟐sin2xy + c

7) Find the analytical function f(z) such that Re[fˡ(z)] = 3 x2 - 4y -3 y2 and f(1+i) = 0.



Solution : Re[fˡ(z)] = 3 x2 - 4y -3 y2

f(z) = u+iv

fˡ(z) =

Re[fˡ(z)] =

Integrate w.r.t ‘x’ we get & u = x + f(y) v = 3

v = 3 𝐱𝟐y - 𝐲𝟑 -2 𝐲𝟐+ f(x)u = 𝐱𝟑 - 4xy -3 𝐲𝟐x + f(y)

Differentiate w.r.t ‘y’ we get Differentiate w.r.t ‘x’ we get

6xy + fˡ(y) = 6xy + fˡ(x)

From C-R equations

- 4x - 6xy + fˡ(y) = - 6xy - fˡ(x)

-4x + fˡ(y) = - fˡ(x )

Compare equation on both sides

i.e fˡ(x) = 4x , fˡ(y ) = 0

f(x) = xdx 4 f(y) = c f(x)

Integrate w.r.t  ‘y’ we get



= + c

f(x) = 2 𝐱𝟐+ c f(y) = c

f(z) = u+iv f(z) = [x3 - 4xy -3 y2x] + i [3 x2y - y3 -2 y2] +

2 x2 + c

given f(1+i) = 0 f(z) = u+iv

z = x+iy = (1+i)

put x = 1, y = 1 f(z) = [1-4-3] + i[3-2-1]

+2 +c f(1+i) = 0 = -6 +2i +c c

= 6 – 2i

f(z) = [𝐱𝟑 - 4xy -3 𝐲𝟐x] + i [3 𝐱𝟐y - 𝐲𝟑 -2 𝐲𝟐] + 2 𝐱𝟐+ 6 – 2i

8) Find the analytic function f(z) = u+iv if u-v = ex (cosy – siny) Solution:

f(z) = u+iv i f (z) = iu-v 

(1+i) f(z) = (u-v) + i (u+v) 

f(z) = u+iv u = u-v = 𝐞𝐱

(cosy – siny)



F(z) = (1+i) f(z) cosy - ex siny =

∅1(z,0) = ez - 0 = ez siny - ex

cosy = ∅2(z,0) = 0 - ez = - ez

fˡ(z) =

f(z) = (z,0)1∅] - i ∅2(z,0) ] dz + c 

f(z) = (ez + i ez ) dz + c

f(z) =( 𝐞𝐳+ i 𝐞𝐳 ) + c (1+i) 

f(z) = ez +i ez + c

f(z) = f(z)

= 𝒆𝐳+ c

Harmonic Conjugate
1) Show that function u= 2xy+3y is harmonic and find harmonic conjugate.

Solution: u= 2xy+3y



= 0 u satisfies laplace equation

‘u’ is a Harmonic function

𝜕𝑣 𝜕𝑣

dv = dx + dy

dv = -(2x+3) dx + 2y dy v

dx (2x+3)- = + 2y dy
2 2

v = -+ c

v = - 𝒙𝟐+ 𝐲𝟐 - 3x + c

2) Show that u = 2log (𝑥2+ y2) is harmonic and find its harmonic conjugate.

Solution: u = 2log (𝑥2+ y2)



d x

3) Find f(z) if the imaginary part is r2 cos2θ + r sinθ Solution:

V = r2 cos2θ + r sinθ

2x 2y

dv = dx + dy

𝜕𝑢

dv = - dx + dy

dv = dx + dy

dv = (y dx – x dy)

v = - v

= -

v = - ) + c



→②

Solution: f(z) = u+iv

real f(z) = u 

[real f(z)]2 = u2

→①

Similarly ,

→②

d d

→①

r

- r [2r cos2

Integrate w.r.t ‘ r’ , we get u =
d = 2r cos2θ + sinθ

-

) →③

②&③

fˡ( ) = 0

sin2

sin2 cos2

4) Show that [ ] [real f(z)]2 = 2 fˡ(z) 𝟐



Add 

equation

②

① &

2 2

] + 2u [

{ f(z) = u+iv => fˡ(z) =

[real 𝐟(𝐳)]𝟐= 2 fˡ(z) 𝟐

5) If f(z) is analytical function with constant modulus ,then show that f(z) is constant.

Solution:

let f(z) is constant modulus

f(z) = u+iv

f(z) = 𝑢2 + 𝑣2 = constant

𝑢2 + 𝑣2 = c

𝑢2 + 𝑣2 = 𝑐2 = c1

Differentiate w.r.t ‘x’

= 0 →①

2 fˡ(z)



Differentiate w.r.t ‘y’

By C-R= 0 →②

equations

① = 0 →③

= 0 →④

Multiply ③ * v uv = 0

④ * u

then

= 0

Subtract uv



u =

u = c

Similarly

= c
v = c f(z) is

constant

Conformal Mapping :
A transformation w = f (z) is said to be conformal if it preserves angel between 

oriented curves in magnitude as well as in orientation.

Bilinear Transformation :

is called the bilinear transformation or 

mobius transformation. Where a,b,c,d are complex constants.

The method to find the bilinear transformation if three points and their images are given 

as follows:

We know that we need four equations to find 4 unknowns. To find a bilinear 

transformation we need three points and their images.



in cross ration, three are four points (w,w1, w2,w3,) = (z,z1, z2, z3,)

(w−w1)(w2−w3) (z − z1) ( z2−z3)

=

(w1−w2) (w3−w) ( z1−z2) (z3−z)

az+b

Since we have to get w = , we take one point as ‘z’ and its image as ‘w’

Problems about bilinear transformation:
1) Find the bilinear transformation on which maps the points (-1, 0, 1) into the points (0,i,3i) in w-plane

Solution : In z-plane, z1 = -1, z2 = 0, z3 = 1 

In w-plane, w1 = 0, w2 = i, w3 = 3i

In cross ration,

(w,0,i,3i) = (z,-1,0,1)

(w−w1)(w2−w3) (z − z1) ( z2−z3)

=

-2wi(1-z) = (z+1) [ - [i(3i-w)]]

-2wi + 2wiz = -[-3-wi](z+1)

-2wi + 2wiz = 3z + wiz + 3 +wi



w 
=

-3wi + wiz = (3z + 3)- w[i(3-z)] = z(z+1) w

=

2) Find the bilinear transformation which 

the z-plane into (0,i,α) in the w-plane.

maps the points (α,i,0) in

Solution: In z-plane, z

In w-plane,

(w−w1)

(w −w ) ( (− w) − z ) (z z )1 2 w3ˡ =

z1ˡ 2 3− ((ww−w1−w2) ( w𝑤3) ( −𝑍1z2) (z3−z) w3ˡ z1ˡ

3) Find the bilinear transformation that maps the points (0,i,α) respectively into (0,1, α).

1 1

= 0], z2 = i, z3 = 0



az+b

The transformation w =

The roots of this transformation are called fixed points or invariant points.

z = ( we know that w = f(z) ) z(cz+d) = 

az+b c z2 +dz = az+b c 𝐳𝟐+(d-a)z – b = 0  

Problems:

the transformation w =1) Find the fixed points of

Solution: The roots of above transformation are called fixed points



put w

= z z = z(z+1)

= z-1 z2 +z – z +1

= 0 z2

+1 = 0 z2 = -1 z = ±

i fixed points ± i

2) The fixed points of the transformation w =

Solution: put w = z

z =
z(z+2) = (z-i+1)

z2 +2z = z-i+I

z2+z+i-I = 0

( a =1, b =1, c =1-i)

−𝐛 ± 𝐛𝟐 −𝟒𝐚𝐜 −1 ± 1 +4 (1 −i )

z = 𝟐𝐚 = 2

−1 ± 3 −4−1 ± 1+ 4 − 4 i

i z = 2 = 2

−𝟏 + 𝟑− 𝟒𝐢 −𝟏 − 𝟑− 𝟒𝐢

𝟐 𝟐 &

3) Determine the bilinear transformation whose fixed points are 1,-1 Solution:

Given fixed points are z = 1,-1



az+b

The roots of the transformation is w = are called fixed points put w = z cz+d 

az+b

z =

cz2+(d-a)z – b = 0 (z+1)(z-

1) = 0

z2 -1= 0 (c =1, d =0, a =0, b =1)

w =

Problems on images:
1) Write the image of the triangle with vertices (i,1+i,1) in the z-plane under the transformation w = 3z+4-2i

Solution: y

(x,y) = (1,0)

In w-plane:



y

x+iy = 0+i w= 3z+4-2i (x,y) = (0,1) w=
in z-plane Transformation z =i 

3(x+iy)+4-2i z= 1+i x+iy = 1+i u+iv = w

(x,y) = (1,1) u = 3x+4, v= 3y-2

x z- plane

(1,0)

z =1 x+iy = 1



i) (x,y) = (0,1) (u,v) = (4,1) ii) (x,y) =

(1,1)  (u,v) = (7,1) iii) (x,y) = (1,0) (u,v) = (7,-2)

Conclusion:

The image of the triangle whose vertices (i,1+i,1) is mapped as triangle 

whose vertices (4,1) ,(7,1), (7,-2) in w-plane under the transformation

w=3z+4-2i

1 1

2) Find the image of the infinite strip 0 < y < under the transformation w =
z2

Solution: In z –plane

the infinite strip between the lines y =0, y = .

Transformation:

1

w = z

1 z =

y

𝑤 x+iy =
𝑢−𝑖𝑣

x+iy =

x

=

(1,1)

(7,1)

(7,-2)

(0,1)

(4,1)

x

w-plane

x
Y = 0

1

y = 2

0
, y =



In w –plane z - plane

i) y = 0 ii) y =

0 = -v u2 + v2 = -2v v = 0 Conclusion: 1

is transferred as straight line (v=0) or circle under the transformation w =The image of infinite strip 0 < y <
2

π z

3) Find the image of the region in the z-

= e 2

Solution: In z –plane

plane between the lines y = 0 and y = under the transformation w

The lines are y =0, y =

Transformation

w = ez

u+iv = ex+iy = ex eiy y = 0 u+iv = ex

[cosy+isiny] u = ex cosy v = e𝑥 siny

In w-plane

i) y =0

π

ii) y =

u = ex, v = 0

x

u = 0, v = e



2

v = 0

Conclusion:
π

The image of the region lines y = 0 & y = are transferred as first quadrant in the w-plane under the
2

transformation w = ez

1

4) Show that transformation w = z + maps the circle z = c into the eclipse u = (c + , v = (c - . Also 

discuss the z case when c = 1 in detail.

y

π

y = 2

0
x

0

w - plane

u

z - plane
u = 0

v



Solution: Z –plane Transformation
1

circle z = c

w

= z

+
z

x + iy = c

x2 +y2 = c u+iv = r(rcos 𝐱𝟐 +𝐲𝟐=𝐜𝟐u+iv =

(r+

w –plane

u = (r+ v = (r-

z = c y

z = r ( r =c)

we know that 𝐜𝐨𝐬𝟐θ +

𝐬𝐢𝐧𝟐θ = 1

When c = 1

z = 1 ,

u =2 cosθ , v = 0

Case:

r = 1

The

w = r

x

z = c



u+iv = 2 cosθ + i (0) 2 sinθx u = 2 v = 0 

Conclusion:
𝟐

The image of circle z = c is transferred as eclipse = 1

plane and also the image of circle z = 1 when

c = 1 is transferred as straight lines u =2 & v = 0 in w –

plane under the transformation w = z + .

in w –

5) Discuss the transformation of w = sinz using example. 𝐚𝟐

+
𝐛

Solution: Transformation w = sinz

w = sin (x+iy) w =

sinxcosiy + cosxsiniy

u+iv = sinxcoshy + icosxsinhyx

u = sinxcoshy v =

cosxsinhy

Example: In z –plane In w –plane

u v z = 1 ,

coshy = , sinhy = 
sinx

x = c
cosx

𝐱𝟐+ 𝐲𝟐= 1

𝐮 𝐯𝟐

𝟐
1

z

y

0

u2 v2

a2 + b2 = 1

y

0

X =c



put x = c

cos 2 hy - sinh 2 y = 1Conclusion:

The image line x

= c is transferred as hyperbola = 1

in w – plane under 

the transformation w = sinz.

6) Discuss the transformation of w = cosz

Solution: Transformation on w = cosz

w = cos(x+iy) w = cosxcosiy – sinxsiniy u+iv =

cosxcoshy – isinxsinhyx u = cosxcoshy

sinxsinhy In

z- plane In w-plane y = c cosx = sinx = -

put y = c y

v = -

,

y

0
x

𝐮𝟐

𝐚𝟐

𝐯𝟐

- 𝐛𝟐 = 1

y

0

y =c



Conclusion:

The image of line y = c is transferred as ellipse under the transformation w = cosz.

x

a2

u2 v2

+ b2 = 1



Unit – 2 

Complex Integration

Line Integral:
suppose f(z) is a complex function in the region R, and C is a smooth curve in R. Consider an interval

x1 < x2 … < xn < b are points in (a, b). y
(a, b) and a <

∆ xr = xr - xr−1 are chord vectors, then

r=1n ∆ xr = ab f z dz

Where the summation tends to a limit and independent of the points choice. The 

limit exists if f(z) is continuous along the path.

Evaluation of the integrals: f z dz = (u + iv)(dx + idy) = udx − vdy +

i(udy + vdx) where u and v are functions of x.

x



Problems:
1) Evaluate cx2 + ixydz from A(1, 1) to B(2, 8) along x = t and y = t3.

cSolution: Along x = t, y = t3 , dx = dt, dy = 3 t2 dt , The limits for t are 1 and 2

x2 +ixy (dx+idy) =  c x2dx−xydy)+i(xy dx+x2dy

2 2 dt - 3 t6 dt + i4 t4 dt = 𝒕^𝟑-3 𝒕^𝟕+i4 𝒕^𝟓(a

= 1 t 𝟑 𝟕 𝟓

pply the lower

and upper limit)
𝟏𝟎𝟗𝟒 𝟏𝟐𝟒𝐢

= - +
𝟐 𝟓

1+i 2 dz along y = x2

2) Evaluate 0 z

1+i 2 dz along y = x2 , dy = 2x dx

Solution: 0 z

1+i 2- y2+2ixy)(dx+ idy)

0 (x=

1 2- x4) dx - 2 x3 2x dx + i(x2- x42xdx+2 x3dx)



= 0 (x
𝟐 𝟐

= - +i
𝟑 𝟑

2+i

1−i3) Evaluate 2x + 1 + iy dz along (1-i) to (2+i).

Solution: Along (1-i) to (2+i) is the straight line AB joining (1,-1) to (2,1).

The equation of AB is y-1 = -

-3, y = 2x-3, dy = 2dx

X varies from 1 to 2
2+i2

(x-2) y-2x =

1−i 2x+1+iy dz = 1 2x+1 dx – (2x-3)2dx + i[2x-3]dx + (2x+1)2dx]
2

= 1 −2x+7 dx + i(6x-1)dx

x2 x2

= -2 +7x+i(6 -x)|(apply the lower
2 2

and upper limit)
𝟐+𝐢

𝟏−𝐢 𝟐𝐱+𝟏+𝐢𝐲 dz = 4+8i

(1,1) 2 +5y+i(x2 −y2)]dz along y2 = x.

4) Evaluate (0,0) [3 x

A(1,-1)

B (2,1)



Solution: Along 𝐲𝟐 =x, 2ydy = dx, y varies from 0 to 1.

(0(1,0),3)[3 x2 +5y+i(x2 −y2)][dx+idy] = 01 3 y42ydy+5y2y - (y4 −y2)dy + i[(3y4+5y)dy+ (y4 −y2)2ydy]

y6 y5 y3 y6 y5 y4 y2

= 5 - + 11. + i(2 +3 -2 +5 ) (apply the lower
6 5 3 6 5 4 2

and upper limit)
𝟏𝟐𝟗 𝟒𝟒𝐢

= +
𝟑𝟎 𝟏𝟓

(1,3) 2ydx+(x2 −y2)dy along a) y = 3 x2 b) y =3x.

5) Evaluate (0,0) x

Solution: a) y = 3 𝐱𝟐 , dy = 6xdx, x varies from 0 to 1.

(0(1,0),3) x2ydx+(x2 −y2)dy = 01 3 x4dx+ (x2 −9x4)6xdx



(1,3) 5 4

(0,0) x2ydx +(x2 − y2)dy = 3

x5 + 6 x4 -54 x66

𝟔𝟗

= -
𝟏𝟎

b) y = 3x , dy = 3dx, x varies from 0 to 1.
(1,3)

(0,0) x2ydx +(x2 − y2)dy =

01 3 x3dx + (x2 − 9x2)3dx

𝑥4 𝑥3

= 3 - 24 (apply the lower
4 3

and upper limit)
𝟐𝟗

= -
𝟒

c6) Evaluate 3z + 1 dz where C is the boundary of the square with vertices at the points z = 0, z = 1, z =1+I,

z = i and the orientation of C is anti-clockwise. Solution: C is the square OABC



c 3z + 1 dz = c1 3z + 1 dz

+ c2 3z + 1 dz + c3

Along C𝟏= OA

y =0,

dy =0 C(0,1)

1 x2

x+1)dx = 3
X varies from 0 to 1 c1 3z+1 dz = 0 (3 2 + x(apply

the lower and upper limit)

Z=0 0 Z=1

A(1,0)
𝟓

=
𝟐

Along 𝒄𝟐= AB

3z +1 dz + 3z +1c4
dz

B(1,1)



x =1, dx =0 y

varies from 0 to 1

1 𝟑 c2 3z + 1 dz = i 0 [3 (1+iy)+1]dy = 4i - 𝟐

Along 𝒄𝟑= BC y =1, dy=0 x 

varies from 1 to 0

0 𝟑

i)+1]dx = - 𝟐 -3i-1

Along 𝒄𝟒= CO x =0, dx=0 y 

varies from 1 to 1

1 𝟑

c3 3z + 1 dz = 1 [3 (x +

c4 3z + 1 dz = 1

[3𝑖𝑦 + 1]idx = 𝟐 -i

𝟓 𝟑 𝟓 𝟑

−𝟑𝐢−𝐢+ 𝟐=𝟎

c 3z+1 dz= =𝟐+𝟒𝒊− 𝟐− 𝟐

c 3z+1 dz=0



(1,1) 2 +4xy+ix2]dz along y = x2 7)

(0,0) [3 xEvaluate

Solution: y = 𝐱𝟐, dy = 2xdx,

(0(1,0),1)[3 x2 +4xy+ix2] = 01(3 x2+4 x3+i x2)(dx+i2xdx)

1 2+4 x3-2 x3)dx + i(6 x3+8 x4+ x2)dx

= 0 (3 x

=1+1 - + i( + - ) (apply the lower

and upper limit)

𝟏𝟎𝟑𝐢𝟑

= +
𝟐 𝟑𝟎

c8) Evaluate y2 + 2xy dx + x2 − 2xy dy , where is the boundary of the region by y = x2 and x = y2

Solution:

C1: Along OA, y = x2, dy = 2xdx X varies from 0 to 1 c1 y2 + 2xy dx + x2 − 2xy dy = 01( x4+2 x3)dx + (x2

3)2xdx = 𝟐𝟓 C2: Along ABO, x = y2, dx = 2ydy y varies from 1 to 0 -

2 x

c2 y2 +2xy dx + x2 −2xy dy  =



1 2+2 y3)2ydy + (y4 - 2 y3)dy = -1
= 0 ( y

𝐜 𝐲𝟐+ 𝟐𝐱𝐲 𝐝𝐱+ 𝐱𝟐− 𝟐𝐱𝐲 𝐝𝐲 = -1 + 𝟐 𝟓 = - 𝟑 𝟓

Cauchy’s theorem

If f(z) is analytical and fˡ(z) is continuous inside and cˡ on a simple

closed curve C, then c f(z)dz = 0.

Proof: Suppose R is the region bounded by C f(z) = u+iv z =

x+iy

Where C

= c udx − vdy + i(udyc f(z)dz = c(u + iv)(dx + idy)

+ vdx)

 ߲ . u  ߲ . u  ߲ . v  ߲ . v

Since fˡ(z) is continuous,  ߲ . x ,  ߲ . y,  ߲ . x ,  ߲ . y exist and are continuous in
R.

According to Green’s theorem

 ߲ . v  ߲ . u

Y = x2 ,

y2 = x

0

B
A

c

R



c udx + vdy = . R(  ߲ . x −  ߲ . y) dxdy

 ߲ . v  ߲ . u  ߲ . V  ߲ . U

c f z dz =  . R(−  ߲ . x −  ߲ . y) dxdy + i . R(  ߲ . Y −  ߲ . X) dxdy

 ߲ . 𝑈  ߲ . u  ߲ .  V

 ߲ .  𝑉

Since f(z) is analytic

 ߲ . u  ߲ . v

c f z dz = .
R(  ߲ . 𝑌 −  ߲ . y) dxdy + i . R(  ߲ . Y −  ߲ . 𝑌)

dxdy

 ߲ . u  ߲ . v

 ߲ . x =  ߲ . y and  ߲ . y  = -

 ߲ . x

𝐜 𝐟 𝐳 𝐝𝐳 = 0

Cauchy’s Integral Formula
If f(z) is analytical within and on a simple closed curve and cˡ a is any point inside C, then

1 f(z)dz

f(a) = 𝟐𝛑𝐢 c (𝐳−𝐚)

proof: C is a closed curve and a is any point inside C, Enclose a within a circle C whose radius is r and the 

centre is at a. Now C is inside C.

f(z) is not analytical

inside C.
(𝐳−𝐚)



By Cauchy’s theorem for multiple connected region c g z dz = cˡ g z dz

g(z) = (𝐳−𝐚) C

Where cˡ is z−a = r

z – a = reiθ, z = a + reiθ

dz = rieiθdθ

θ varies from 0 to 2π in cˡ

c cˡ f(𝐳−𝐚z dz) = c f(𝐳−𝐚z dz) = 02π f(a + r(erie
θ

i)θ r)eiθdθ = i 02π f(a + rei
θ)d

As r → 0,cˡ → 0

𝐟 𝐳 𝐝𝐳 2π

𝐜 (𝐳−𝐚) = i 𝟎 f(a) dθ = f(a) 2π i
f z dz 

c (𝐳−𝐚)f(a) =

2πi

Cauchy’s integral formula for the derivatives
f z dz 1

f(z)

.a

cˡ

z



f(a) = c (𝐳−𝐚)

2πi

Differentiating with respect to a successively
f z dz 1

fˡ(a) = 2πi
f z dz

c (z−a)2

2

fˡˡ(a) = c (z−a)3

2πi

f iv (a) = 2.3.42πi c (fz−az dz)5

.

.

.

f n(a) = 2n!πi c (z−af z )dzn+1

We can evaluate easily the integrals of complex functions using this formula.

Problems:
𝐳ezdz

2πi

f iii (a) = 2.3 c (fz−az dz)4



1) Evaluate c (z+2)3 where C is 𝐳 = 3. Solution:

z = -2 lies inside z = 3

According to Cauchy’s integral formula

1 f z dz z a = -2] fˡˡ(a) =

πi2

fˡˡ(z) = z ez +

c (z−a)3 ,

[f(z) = z e

fˡ(z) = z ez + ez

2ez fˡˡ(-2) = - 2e−2 + 2e−2=0

𝐳𝐞𝐳𝐝𝐳

𝐜 (𝐳+𝟐)𝟑 = 0.
dz

2) Evaluate c z3(𝐳+𝟒) where C is 𝐳 = 2 using Cauchy’s integral formula.

Solution: z = 0 lies inside C and z = -4 lies outside.

According to Cauchy’s integral formula
1

and f(z)= (𝐳+𝟒) ] fˡ(z)= − fˡˡ(z) =fˡˡ(a) = 2πi c (z−a)3 [a=0

and fˡˡ(0) =

𝐝𝐳 𝐢𝛑

𝐜 𝐳𝟑(𝐳+𝟒) = 𝟑𝟐

f z dz2



(z3−sin3z)dz

3) Evaluate c where C is 𝐳 = 2 using Cauchy’s integral formula.

Solution: According to Cauchy’s integral formula

1 f z dz 3 − sin3z] fˡˡ(a) = c (z−a)3 [a= and f(z) = z

πi

<2, z = lies inside C: 𝐳 = 2 fˡ(z)= 3z2-

3cos3z fˡˡ(z) = 6z+9 sin3z fˡˡ( ) = 3π-9
𝐟 𝐳 𝐝𝐳

𝐜 (𝐳−𝐚)𝟑 = πi(3π-9 )
𝑑𝑧

4) Evaluate 𝑐 𝑒𝑧(z−1)3 where C is 𝐳 = 2 using Cauchy’s integral formula.

𝑑𝑧 𝑒−𝑧𝑑𝑧

Solution: 𝑐 𝑒𝑧(z−1)3 = 𝑐 (z−1)3

z = 1 lies inside C i.e|z|=2 

f(z) = 𝑒−𝑧

According to Cauchy’s integral formula

f(a), [ a =1]

(z−2 )
π 3

1 f z dz c (𝒛−𝒂) =



2πi

1 f z dz fˡˡ(a) = πi c (z−a)3

fˡ(z)=- 𝑒−𝑧 fˡˡ(z) = 𝑒−𝑧, fˡˡ(1) = 𝑒−1

𝑒−𝑧𝑑𝑧 𝐢𝛑

𝑐 (z−1)3 = 𝐞

5) Using Cauchy’s integral formula evaluate 𝑧4𝑑𝑧 where C is ellipse and 9 𝑥2+4 𝑦2 = 𝑐

(z+1)(z−𝑖)2

36.

Solution:

𝑧4𝑑𝑧

𝑐 (z+1)(z−𝑖)2

= 𝑐 (z+1)(1+𝑖)2 - 𝑐 (z−i)(1+𝑖)2 + 𝑐

(z−𝑖)2 Splitting into partial fractions z = -1 and z = i lie inside 9 𝑥2+4 𝑦2 = 36

f z dz

1

2πi c (𝐳−𝐚)

f(a) =
f z dz 1

c (z−a)2 = fˡ(a)

2πi

f(z) =z4, a = -1, f(-1) = 1, a=I, f(i)

fˡ(z) = 4z3 and fˡ(i) = -4i

= 1

𝑧4𝑑𝑧 𝑧4𝑑𝑧 𝑧4𝑑𝑧



z4dz

c (z+1)(z−i)2 = 2πi - 2πi + 2πi (-4i)

= = 4π(1-i)

logzdz1

6) Evaluate

Solution:
c (z−1)3 where C is 𝐳−𝟏 = 𝟐 using Cauchy’s integral formula

According to Cauchy’s integral formula

1 f z dz fˡˡ(a)

2 c (z−a)3 = 2! [

a =1] πi 1

𝐳 − 𝟏 = is a circle whose centre is (1,0)
𝟐

.
(1,0)

.
1

(𝟐,0)



and1

radius is , a=1 lies inside C
𝟐

1 f(z) =

, fˡˡ(z) = - , fˡˡ(1) = -1logz, fˡ(z)=
𝐳

1

fˡˡ(a) =πi c (z−a)3

𝐥𝐨𝐠𝐳𝐝𝐳

= - πi 
𝐜 (𝐳−𝟏)𝟑

(z2−z−1)dz 1

c z(z−i)2 where C is 𝐳 − 𝟐 = 17) Evaluate

Solution:

According to Cauchy’s integral formula

f z dz c (z−a) = 2πif(a)

z =0 inside C and z=i is outside C

2 f(z) = , [a=0, f(0) =1]

2

(𝐳𝟐−𝐳−𝟏)𝐝𝐳

𝐜 𝐳(𝐳−𝐢)𝟐 = 2π𝐢

(3z2+7z+1)dz

z2

f z dz



9) If F(a) = c (z−a) using Cauchy’s integral formula where C is 𝐳 = 2, F(1), F(3), fˡˡ(1−i) .

(3z2+7z+1)dz

Solution: Suppose F(a) = c (z−a)

(3z2+7z+1)dz

F(1) =  
c (z−1)

, [z=1 lies inside C]

f(z)dz

c (z−a) = 2πi f(a)

[f(z) = 3z2 +7z+1, f(1) = 3+7+1 =11]

2 c =

2πi 11 = 22 πi = F(1)

= 0 = F(3)

a = 1-i is inside C

F(a) = 2πi(3 a2+7a+1)

Fˡ(a) = 2πi(6a+7)

2

F(z) = c dz, [z=3 is outside C]

2 c



Fˡˡ(a) = 12πi

Fˡˡ(1-i) = 12πi

Complex Power Series
Taylor’s Theorem:

If f(z) is analytic inside and a simple closed circle C with centre at a, then for z inside C

fˡ(a) (z-a) + fˡˡ(a) (z − a)2+ fˡˡˡ(a) (z − a)3+...

2! 3!

f(z) = f(a) +

Proof: Let Z be any point inside C, then enclose z with a circle cˡ , with centre at a , let w be a point on cˡ ,

then
1 1 1 z−a −1

converges

uniformly 

multiplying

both sides by f(w) and integrating with respect to w on cˡ cˡ 𝑓(w−zw dw) = cˡ 𝑓(w−aw dw) +(z-a) cˡ 𝑓(w−aw dw)2 + (z −

a)2 cˡ 𝑓(w−aw dw)3 +…+ (z − a)𝑛 cˡ (w−a𝑓 w )dw𝑛+1

f(w) is analytic on cˡ



f(z) = (f)𝑛

(a) 𝑓w dw

and n! = 2πi cˡ (w−a)𝑛+1 Dividing by 2πi

1 𝑓 w dw 1 𝑓 w dw (𝑧−𝑎 ) 𝑓 w dw ( z−a ) 2 𝑓 w dw ( z−a ) 𝑛 𝑓 w dw cˡ (w−z) = 2πi cˡ (w−a) + 2πi cˡ (w−a)2 + 2πi (w−a)3 +…+ 2πi cˡ

(w−a)𝑛+1+…

2πi

2𝑛 f(z) =

f(a)+(z-a) fˡ(a)+ fˡˡ(a)+…+ (f)𝑛(a)+…

2! !

This is Taylor’s series of f(z)

if z-a = h

h2 h𝑛

f(a+h)=f(a) + h fˡ(a)+  fˡˡ(a)+…+ n! (a)+… 2! (f)𝑛 if

a=0, h=z

z2 z𝑛 𝑛

f(z)=f(0) + z fˡ(0)+ 2! fˡˡ(a)+…+ n!

1

1

𝑓w dw

cˡ (w−z)

2πi

n



f(z) = a0 + a1 (z-a)+ a2 (z − a)2+…+ b + b + …P

1

𝑓w dw

(f) (a)+…

This is a Maclaurin’s series of f(z)

Laurent series
If f(z) is analytic in a ring R bounded by two concentric circles C1and C2 of radii r1 and r2,

(r1 > r2) with centre at a then for all z in R
2

(z−a )2 C1

Where a𝑛 = 2πi C1 (w−a)𝑛+1

𝑓 w dw1

and b𝑛 = 2πi C2 (w−a)−𝑛+1

Where cˡ is any curve in R encircling C𝟐

Proof: Consider cross cut PQ and f(z) is analytic in the region Rˡ bounded by PQ, z is any point in Rˡ.
𝑓 𝑤 𝑑𝑤 𝑓 w dw 𝑓 𝑤 𝑑𝑤 𝑓 w dw

f(z) = [ PQ (w−z) - C2

dw

(𝑤−𝑧) - QP (w−z) + C1 (𝑤−𝑧) ]

2πi
𝑓 w dw 𝑓 w

f(z) = [ C1 (𝑤−𝑧) - C2 (𝑤−𝑧) ] Equation 1

2πi

1

(z−a)

Q a. 

C2

Rˡ

Cˡ



For C2, w-a < z-a

1 f w dw

Consider C2 (w−z)

2πi

Where C1 and C2 are described anticlockwise

Consider

(z−a ) 𝑛 𝑓w dw

+…+ 2πi

C1 (w−a)𝑛+1 +…

(w−a)2

= 𝒏=𝟎(𝐳− 𝐚)𝒏 a𝒏  Equation 2
f w dw

1

Where an = 2πi C1 (w−a)n+1

1 1 (𝑧−𝑎 )

2πi C
∞

𝑓w dw

1   (𝑤−𝑧 )  

(z−a )
𝑛

𝑓w dw 𝑓w dw

=
2πi C1 (𝑤−𝑎)

+
2πi C1

𝑓w dw

= 𝑛=0 2πi C 𝑛+1



1

bn = 2πi C2 w−a −n+1

f(z) = 𝐧=𝟎(𝐳− 𝐚)𝐧 a𝐧 +

= + +…]

f w dw 1 f w dw f w dw

C 2πi C2 (z−a) + 2πi C2 (w−a)−1 +

𝑐2 2πi (w−a)−3

2πi

= ∑ b 𝐧  equation 3 Where
f w dw

Substituting equations 2 & 3 in 1, we get 𝐧=𝟏𝐳− 𝐚 −𝐧 b𝐧 This is called the Laurent series of f(z)

The first part 𝐧=𝟎(𝐳 − 𝐚)𝐧a𝐧 is called the analytic part and the second part

𝐧=𝟏𝐳 − 𝐚 −𝐧 b𝐧 is called the principal part. If the principal part is zero, the series reduces to the Taylor’s series

Problems
1) Expand log z by Taylor’s series about z = 1.

ˡˡˡ(a)
3! (z − a)3+...+

( a)
fnn ! (z

a=1, f(1)

− a)n+…

0

Solution: The given function is f(z) = log z f
Taylor’s series is

fˡˡ(a)

f(z) = f(a) + fˡ(a) (z-a) + 2! (z − a)2+ =

1



1

fˡ(z) = z , fˡ(1) = 1,

1

fˡˡ(z) = - z2 , fˡˡ(1) = -1,

2
fˡˡˡ(z) = z3 , fˡˡˡ(1) = 2, f iv(z) =

−3!
z4 , f iv(1) = -3!

log z = (z-1) - (𝐳 − 𝟏)𝟐+ 13 (𝐳− 𝟏)𝟑- 14 (𝐳 − 𝟏)𝟒+…+ (−𝟏)𝐧−𝟏n(𝐳−𝟏)𝐧+…

7𝑧−2

2) Obtain all the Laurent series of the function

Solution: f(z) =

about z = -1
𝑧+1 𝑧(𝑧−2) 7𝑧−2

𝑧+1 𝑧(𝑧−2)

put z+1 = u , z = u-1 z-

2 = u-3
7z−2 7 u−1 −2 A B C

z+1 z(z−2) = u u−1 (u−3) = u + u−1 + u−3

7u−9



A = lim = -3
u→0 u−1 (u−3) 7u−9

B = lim = 1
u→1 u (u−3)

7u−9 C

= lim = 2 u→3 u−1 u

- 3 + 1 + 2 = - 3 - 1 − u −1 - 2 1 − u −1 u

u−3 u3 3

= - 3 - (1+u+ u2+ u3+… ) - (1+ u + u2 +…) u 3 9

u−1

= - 𝐮𝟑 - 𝟓𝟑 -(1 + 𝟑𝟐𝟐 )(z+1) -(1 + 𝟑𝟐𝟐 ) (𝐳 + 𝟏)𝟐−(1 + 𝟑𝟐𝟒 ) (𝐳+ 𝟏)𝟑+…

3) Expand is the region

(i) 0 < z − 1 < 1 (ii) 1 < z < 2 (iii) z > 2

Solution:

(i) = -

z − 1 < 1

2

3



(ii)

1 1 - = - -
(z−2)

−𝟏 𝐳

(z−1)

𝐳𝟐

= 𝟐 (1+ 𝟐 + 𝟒 + 𝟖 +…) - 𝐳 ( 1 + 𝐳

2

𝟏 + 𝟏 + ⋯ )

𝐳𝟐

(iii) |z|>2,2<|Z|, <1, z

(z−2)

(z−1) ) z

z

= 1  1− 2 −1 - 1 1− 1 −1

z z z z

(1+ + …) - z z z z z z

n−1

- = -

= - - = - 1 − z − 1

= - (1+(z-1) + 𝐳 − 𝟏 𝟐+ 𝐳 − 𝟏 𝟑+ ⋯ ) − 𝟏

(𝐳−𝟏)

1

2
1−

z 

2

1

1 < z , z <2, z < 1, <1
z 2

−1 1

z
1−

1

z

−1

𝐳𝟑 𝟏



= n=1

𝟏 𝐧−𝟏-1) (𝟐

𝐳

(z2−1) 4) Find the 

Laurent series expansion of the function if 2< z <3.
(z+2)(z+3)

Solution:

(z2−1)

f(z) = = 1 -
(z+2)(z+3)

3 8 = 1+

-
(z+2) (z+3)

= 1+ +…)

zn - n=1 zn

= 1 +

-

z
3

= 1+
3

z
1+

2

z

−1 8
- 3 1+

z 

3



= 1+ 𝐧=𝟏 𝐳𝐧 + 𝟑𝐧 )

e2z

5) Expand f(z) = (z−1)3 about z=1 as Laurent series. Also indicate the region of convergence of the series.

e2z

Solution:
3

f(z) =

= = (1+2u+ +…)

=

z

6) Express f(z) = in a series of positive and negative powers of z-1.
(z−1)(z−3) z

Solution: f(z) =
(z−1)(z−3)

z A B

(z−1)

put z-1 =u, z= 1+u

e2z

n−1n−1zn−1 n

= 1+3 n=1 + 8 n=1 n

𝟖𝐳𝐧−𝟏

zn

𝐧−𝟏

−𝟏 𝐧(−
𝟐

𝐞𝟐( + + + ⋯ )

=

𝟏 𝟏 𝟐

𝐳−𝟏 𝟑 𝐳−𝟏𝟐 𝐳−𝟏



=
(z−1) (z−3)

+
(z−1)(z−3)

1z

A = lim = -
z→1 (z−3) 2 z 3

B = lim = z→3 (z−1) 2

=

− 1 z−1 2 +…) -= - 3 (1

= 𝟐(𝐳−𝟏) - 𝟒 𝐧=𝟎

Contour Integration
Singular points

Singular point: A point at which f(z) ceases to be analytic is called a singular point.

Isolated singular point: Suppose z=a is a singular point of a function f(z) and no other singular point of f(z) exists in a 

circle with centre at a, then z=a is said to be an isolated singular point.

f(z) = - = -
1

z−1 - 2(z−1)

2

z−1)−1 -
2

𝟑

4

𝟏

3

2(z−1) - 4 (1+ 2 +
(z−1) 3

22

𝐳−𝟏

𝟐

𝐧



In such a case f(z) can be expanded by Laurent series around z=a

Pole:  If the principal part of f(z) consists of a finite number of terms b1, b2... bn bn≠

0 then (z-a) is said to be a pole of order n.

if n=1, z=a is said to be a simple pole.(note: if f(z) has a pole at z=a, then

Removable singularity: If a single valued function f(z) is not defined at z=a and f z exists, then

z=a is said to be a sin z removable singularity f(z) = , z=0 is a removable

singularity. z

Essential singularity: If the principal part of f(z) consists of an infinite number of terms, then z=a is said to be an essential 

singularity

e z = z=0 is an essential singularity.

Singularity at infinity: Suppose we substitute z= 1 , f(1 ) = F(w) (say), then the singularity at w=0 of F(w) is called the w

w

singularity at infinity. ez has an

essential singularity at z =∞, since e z has an essential singularity at z=0.

Entire function: A function which is analytic everywhere in the finite plane is called an entire function or integral function.

Examples: ez , sin z, cos z are entire functions.

Note: An entire function can be represented by a Taylor series which has an infinite radius of convergence. Conversely, if a 

power series has an infinite radius of convergence, it represents an entire function.



Liouville’s theorem: If f(z) is analytic and bounded, i.e f(z) < m for some constant m in the entire complex plane, then f(z) is 

a constant.

Residue: We know that c (z−adz ) = 2πi where C is z − a = R and c (z−adz) = 0, if n ≠ -1.

f z dz = 2πi b1where C is the circle with centre at a and f(z) is expanded in Laurent series. b1is saidc

to be the residue of f(z) at z=a [ the coefficient of 

f(z)].

Cauchy’s Residue Theorem:

in the principal part of the Laurent series of

Statement: If f(z) is an analytic function inside and on a closed curve ‘C’ except at a finite number of points, inside C, then

c f z dz = 2πi ( sum of the residues at the points where f(z) is not analytic and which lie inside C).

If the poles of order one and n then the residues are

d dn−1 nf(z)]

limz→a dz [(z−a) f(z)], lim dzn−1!n−1[(z−a) z→a eiz 1) Find the poles of the function and the

corresponding residues at each pole, f(z) = (z2+1)

eiz

Solution: The given function is f(z) = (z2+1) , f(z) is not analytic at z = i and z = -i

Therefore, the poles of f(z) are i and -i, both are simple poles If  

z=a is a simple pole, then the residue at z= a is lim(z−a)f z z→a

Res z=i= lim(z−i)f z = lim(z−i) eiz 𝐢 −𝟏

= - 𝐞



𝟐
z→iz→i (z+i)(z−i)

eiz 𝐢

Res z= -i= lim(z+i)f z = lim(z+i) = 𝐞. z→−iz→−i  (z−i)(z+i) 𝟐

2𝑧

2) Find the poles of the function and the corresponding residues at each pole, f(z) = 𝜋 .

6

2𝑧 𝜋

is a double pole
6

Solution: The given function is f(z) = 𝜋 , z-

6

2 𝜋

dzd 𝑧(z−𝜋 6)26𝜋 lim𝜋

Res at z = =

z→ 6 6

𝝅 𝝅 𝟏 𝟑

= 𝒍𝒊𝒎 2 sinz cosz =2 Sin Cos =𝟐 =
𝐳→𝝅

𝟔 𝟔 𝟐 𝟐 𝟐
𝟔

z sinz

3) Find the residue of (z−π)3 at z = π.

z sinz

The given function is f(z) = (z−π)3 , z = π is a pole of order 3Solution:

If z = a is a pole of order 3, then residue at z = a is

𝟑



[(z − a)

(a = π )limz→an−1! dz dn−1n−1

1 d2

nf(z)]

= lim (z  

cosz + sinz) z→π dz lim (cosz

– z sinz + cosz ) = -1.

(cosπz2+sinπz2)dz

4) Evaluate c z−1 2(z−2)

Solution: The given function 

and z = 2 is a simple pole,

is f(z) = , z = 1 is a double pole 

both lie inside C. z−1

Res at z = 1 = lim d [ z − 1 2f(z)] = lim d (cosπz2+sinπz2)

z→1

=

lim =

Res at z = π = z→πlim dz2 (z sinz)

d

2(z−2)

=

z→π

where C is z = 3.
2 2

z→1 dzz→1 dz (z−2)

2+2zcosπz2)−cosπz2 2

3

z−2 2

(cosπz 2+sinπz 2)

z→2 z−1 2 = 1



Res at z = 2 = lim z −

2 f(z) = lim z→2

According to residue theorem

(cosπz2+sinπz2)dz

= 2 𝛑i(sum of the residues) = 2 𝛑i(3+1) =8 𝛑𝐢 c z−1

2(z−2)

z secz dz 2+9 y2=9

5) Evaluate c 1−𝑧2 where C is 4 x

The given function is f(z) = 1−𝑧2

z secz Solution:

z=1 and -1 are simple poles and 4 x2+9 y2=9 is a ellipse whose semi minor and

major axes are 1 and .1 and -1 both

lie inside C. y z secz sec1

Res at z=1 = lim (z-1)f(z) = lim - = -
z→1 z→1 z+1 2 z secz sec1

Res at z= - 1 = lim (z+1)f(z) = lim - = -
z→−1 z→−1 z−1 2

z secz dz c 1−𝑧2 = 2 πi (sum of the residues, by residue

theorem) x

= 2 πi (-sec 1) = - 2 𝛑i ( sec 1)

ezdz

(0,1)

Z=-1 0 Z=1 3

(2,0)



6) Evaluate
c (z+2)(z−1) Where C is the circle z − 1= 1.

ezdz

Solution: The given function is f(z) = c (z+2)(z−1) , z =-2 and 1 are simple poles , z=1 

lies inside C and z =-2 lies outside C.

ez e Res at z=1 = lim

(z1)f(z) = lim = z→1 z→1 z+2 3

𝐜 𝐟(𝐳) dz = 2 𝛑i

(sum of residues at the poles which lie inside C)

𝐞𝐳𝐝𝐳2 𝛑i𝐞

𝐜 (𝐳+𝟐)(𝐳−𝟏) = 𝟑

Evaluation of real integrals in unit circle

2π

We can evaluate the integrals of the type 

theorem.
0 f( cos θ, sin θ)dθ where f(cos θ, sin θ) is a rational function, using residue

iθ, we can write cos θ =

eiθ+e−iθ we know that if z = e
2

1 eiθ−e−iθ cos θ =
2i

(z+ ) and sin θ = 
z

1

(1,0)

z−1 = 1



sin θ = (z- ) 2i z

i

eiθ

dθ = 

dz 

and 

dθ =

dz

iz

By this substitution we can change the integral into a function of z.

We know that c f(z)dz = 2πi (sum of the integrals) 

take C is z =1, then θ varies from 0 to 2π

We

2π

0 f(cosθ, sinθ)dθ = c g(z)dz where C is z =1

1 1 1 dz g(z) = f [ 2 (z+ ) , (z- ) ] z 2i z iz

We can evaluate using residue theorem

Problems
2π dθ 2π



1) Show that

Solution:

0

1 1

a+bsinθ = a2−b2 , a>b>0 using residue theorem.

Consider C = z =1, z = eiθ

cos θ = (z+ ) , sin θ = (z- )
z 2i z

2π dθ dz

0 a+bsinθ = c iz[a+2b i(z− 1z )]

2

f(z) = [ bz2+2aiz−b ]

2 dz

−ai−i a2−b2

α = and β = b b

α <1 and β >1 α lies in C c f(z) dz= 2π i Res Z = α

2

Res Z = α = lim (Z -α ) f(z) = lim 

z→α z→α b(z−β)

c f(z)dz = c bz2+2aiz−bdz

bz2 + 2aiz −b = b(z-α)(z-β)

2ai

where (α+β) = - , αβ = -1

b

−ai+i a2−b2



= 

b(α−β)

2π dθ

𝟐𝛑

𝟎 𝟐

2) Evaluate 0 (6−3cosθ)2 using residue theorem

2π dθ

olution: 0 (6−3cosθ)2

Substitute z =eiθ

S

1 1 cos θ = (z+ ) , sin θ = (z- ) z

2i z

dz = i eiθdθ and dθ = dz

iz

2π dθ dz 4zdz



0 (6−3cosθ)2 = c

The poles are α and β where α = 2 - 3 and β = 2 + 3 and both are double poles, among which α lies inside C.

d 2f(z) ]

Res at z = α = lim [(Z −α) z→α dz

d z α + β)

= z→limα dz[(Z −β)2 ] = (α − β)

(α + β) = 4, α – β = -2 3 Res at z= α = =

4zdz𝟒𝛑

c 9 i(z 2 −4z+1) 2 = 9i 2πi 6 3 = 𝟐𝟕𝟑

2π dθ

3) Evaluate 0 (a+bcosθ)2 , a>b>0 using residue theorem

Solution:

(a+bcosθ)2

put z = eiθ, 

dθ dz =dθ

(z+ 1 ) izz

0 2π

dz = eiθ

cos θ =

dθ

2π dθ 4zdz

0 (a+bcosθ)2 = c i(2az+bz2+b)2 The poles are α and β, both are double poles

−a+ a2−b2 −a− a2−b2

iz[6−
( z+ 1z

)]2

= c



Where

= b b

α = and β

a lies inside C

d z

Residue at z = α = z→limα dz [b2(Z −β)2 ]

1(α + β)

= - ( )

2π dθ

0 (a+bcosθ)2 = 2πi (Res z = α by residue theorem)

2πia4 𝟐𝛑a

= 3 = 𝟑

4i(a2−b2)(𝐚𝟐−𝐛𝟐)𝟐

Contour integration when the poles lie on imaginary axis
f(x)

We can evaluate integrals of the type

= h(x), using residue theorem. g(x)

= - b( b8(a2−b2)32) = 4(a2−b2)
3
2

b(α − β)

1−2ab3 a



Consider c h(z) dz when the poles of h(z) lie on imaginary axis. We take positive imaginary axis. Integration is taken over the 

semicircle and the line – R to R. The poles lie on upper half plane. If the poles lie on real axis

R c h(z) dz = −R h

z dz + r h(z) dz

We know that by residue theorem 

plane)
R

c h(z) dz = 2πi (sum of the residues of h(z) at its poles which lie on upper half

−R h z dz + r h(z) dz = i (sum of the residues )

In the limiting case R → ∞ we get

∞

∞ h x dx ( if r h(z) dz = 0)

-R R

Problems:
∞ dx 1)

Evaluate by contour integration
dz

Solution: Consider c 1+z2 where C is the contour consisting of semicircle ┌ and the line (diameter) from –R to 

R.

r



cdz dz dz

r

∞ dx dz= 0

= c

-R RThe poles of f(z) are i , i lie on upper half plane.

Solution: ∞ f x dx

+ r f z dz [ r f z dz = 0]−R f z dz

Res at z=i= (z-i) f(z) = lim = z → i z → i

dz c πi
(residue at z=i)

=

∞ dx ∞ dx

[ f(x) is even]
π

=
1+x 1+z

∞

2) Evaluate using residue theorem.

−R 1+z2 + r 1+z2

R  

=1+z2

dz

┌

∞

R

=



= c f Z dz

The poles of f(z) = are i, -i, 2i,-2i.

f 𝑧 dz = c f Z dz

All are simple poles i and 

Res at z=i= lim (z-i)f(z) z → i

2i lie on upper half plane.

𝑧2 𝟏

= z lim→ i (i+z )(4+z2)= - 𝟔𝐢

Res at  

z=2i = lim (z-

2i)f(z) z → 2i

𝑧2 4 𝟏

= z lim→ 2i (𝑧+2𝑖)(1+z2)= - = 𝟑𝒊 According to residue theorem c f Z dz

2 (sum of residues)

𝟏 𝟏 π

= 2 (- + ) =
𝟔𝐢 𝟑𝒊 𝟑

π

= 𝟑

∞ x dx

∞

−∞
𝑧2

∞

∞



3) Evaluate using residue theorem.

∞ Solution: ∞ f x dx
R

= −R f z dz + r f z dz

= c f z dz

[ r f z dz = 0]

When n = 0, 1, 2 i.e , e 6 , e , e lie on upper half plane.
πi πi

Res at z → e 6 = lim (z- e 6 )f(z) form

πi z →e 6 πi

z2(z− e 6 )

= lim
πi

z →e 6

= lim

πi

πi

z →e 6 πi

R

−R f z dz = c f z dz

The poles are , e 2n+1 π𝑖/6 where n=0,1,2,3,4,5

[-1=cosπ+isinπ= e πi =cos(2n+1)π+isin 2n+1 π
sin(2n+1)π

(−1) = + i
πi

= e 2n+1 π𝑖/66

36πi 56πi

┌

-R R



−

= lim

πi z →eπi 6

−3πi 1

2

π π 𝐢

= = e 6 = (cos  -i sin ) = -
2 𝟔

6e

3πi πi

Res at z → e = (z- e 2 )f(z) form
3πi

z →e πi

z2(z− e 2 )

= lim
πi

z →e 2

= lim

πi

πi

z →e 2 πi

= lim
πi

z →e 32π 1 3π 3π 𝐢

1

= e 2= (c6o s 2 -i sin ) =

𝟔

5πi 5πi

2πi 
3

6

e 6 1



Res at z → e = (z- e)f(z) form
5πi

z →e

5πi

z2(z− e 6 )

=

5πi z →e

5πi

→e

15π 𝐢

= = (cos
5πi

z →e

According to residue theorem 

2πi (sum of residues) c f Z dz =

= 2 ( - - ) =
𝟔 𝟔 𝟔 𝟑

π

π

2−2z e 6 )

= z

5πi
6

(3z

lim

1
lim 6 e

6z5

−15πi

6
1

6

15π

6



𝐢 𝐢 𝐢
π

∞ xdx

∞ = 𝟑

∞ xdx

=
𝟔

-i sin ) = -
𝟔



R

= −R f z dz + r f z dz

= c f z dz

R

−R f z dz = c f z dz

∞ dx

4) Evaluate using residue theorem.

∞

Solution: ∞ f x dx

[ r f z dz = 0]

The function is f(z) = -R R

The poles are i and –i of order 3, z=i lies on upper half plan and inside the semicircle

Res at z=i = lim 1 𝑑𝑧𝑑22 [(𝑧− 𝑖)3𝑓(𝑧)] z → i

1 𝑑2

= lim

1

𝑑𝑧2( )

┌

z → 2i

=

lim
→ i

z

𝟑

= = 𝐢



𝟏𝟔

According to residue theorem c f Z dz = 2

(residue at z = i)

3 𝟑π

= 2πi =
16𝑖 𝟖

∞ 𝐝𝐱 𝟑𝝅

𝟑 = 𝟖

Evaluation of the integrals of the type
∞ imxf(x) dx

∞ e Jordan’s

Lemma

If f(z) is a function of z satisfying the following properties:

(i)

(ii)

(iii)

f(z) is analytic in upper half plane except at a finite number of poles 

f(z) → 0 uniformly as z → ∞ with 0 ≤ arg z ≤ π

a is a positive integer, then

r ∞ c f z eiazdz = 0
→

Where C is a semicircle with radius r and centre at the origin

∞



∞ imxf(x) dx =

∞ e

c eimxf z dz = 2πi

(sum of the residues which lie on upper half plane)

Problems

using residue theorem.1) Evaluate

Solution: c f z eimzdz = 𝑟eimxf z dz + RR eimxf(z) dz

=> 𝑟eimxf z dz = 0 (Jordan’s Lemma)

∞ imxf(x) dx = c eimxf z dz = 2πi -R R

∞ e

(sum of the residues which lie on upper half plane)

𝑒𝑖𝑧𝑑𝑧

c (𝑧2+16)(𝑧2+9) z=3i , -3i, 4i and -4i are simple poles. 3i and 4i lie on upper half

plane.

R →∞



Res at z = 

3i = lim (z-

3i)f(z) z → 3i
𝑒𝑖𝑧

= z lim→ 3i (𝑧2+16)(𝑧+3𝑖)

𝑒−3 −𝒊𝒆−𝟑 = =
(−9+16)(6𝑖) 𝟒𝟐

Res at z = 

4i = lim (z-

4i)f(z) z → 4i
𝑒𝑖𝑧

= z lim→ 4i (𝑧+4𝑖)(𝑧2+9)

𝑒−4 𝒊𝒆−𝟒 = =
(9−16)(8𝑖) 𝟓𝟔

𝑒𝑖𝑧𝑑𝑧 −𝑖

(𝑧2+16)(𝑧2+9) = 2πi (

𝑖 π(𝟒𝒆−𝟑−𝟑𝒆−𝟒)

c + 56𝑒4) = 𝟖𝟒

𝑒𝑖𝑧𝑑𝑧 𝑐𝑜𝑠𝑧 𝑑𝑧

R.P c = c



∞ xsinx dx

r eimxf

2) Evaluate

Solution: : c f z eimzdz =

R
R eimxf(z) dz

→∞ z dz +

=> r eimxf z dz = 0

z

f(z) = (a2+𝑧2)

-R R
z = ai and –ai are simple poles.

Res at z =

ai = lim (zai)f(z)

z → ai
zeiz

R



=

e−a −𝐚c

−𝐚

i 𝐞

0 𝟐 −𝐚

=

z ai

−𝒂

=
𝟐

zsinx dz =

∞ xsinx dx



Unit -3

LAPLACE TRANSFORMS
LAPLACE TRANSFORM

Definition:
Let f(t) be a function of t, defined t≥0. If the integral

ꝏ −𝒔𝒕 f(t) dt exists, then it is called the Laplace Transform of

𝒆𝟎

f(t ) and it is denoted by L{f(t)} or f(s).

Here s is parameter, real or complex.L is called Laplace 

Transform operator.



Def: Piece-wise Continuous Function:
Afunction is said to be piece-wise continuous (or) Sectionally 

Continuous) over the closed interval [a,b] if it is defined on that interval 
and is such that the interval can be divided into a finite number of sub 
intervals, in each of which f(t) is continuous and both right and left 
hand limits at every end point if the sub intervals.

Def:Functions of Exponential Order:

A function f(t) is said to be of exponential order as t →ꝏ if

If for a given positive integer T, 

Such that 𝒇 𝒕 < M𝒆𝒂𝒕 𝑻,

a positive number M

ꝏ −𝒔𝒕L{f(t)} = 𝟎 𝒆 f(t) dt



Sufficient Conditions for existence of Laplace Transform are 1)

f(t) is Piece-wise Continuous Function in [a, b] where a>0, 2) 

f(t) is of Exponential Order function.

Linear Property:

Theorem: If c₁, c₂ are constants and f₁, f₂ are functions of t, then 

L[c₁ f₁(t) + c₂ f₂(t)]=c₁ L[f₁(t)]+ c₂ L[f₂(t)]

Proof: The definition of Laplace Transform is

L[f(t)] )]= f(t) dt -----(1)

By definition

L[c₁ f₁(t) + c₂ f₂(t)]= [c₁ f₁(t)+ c₂ f₂(t)] dt

t) dt



=c₁ L[f₁(t)] +c₂ L[f(t)]

Laplace Transform (L.T)  of some Standard Functions:
𝟏

1)Show that L{1}= 
𝒔

Solution: By definition of L.T L[f(t)]= f(t) 

Put f(t)=1 o.b.s L[1] =

dt----------(1)

.1. dt

−𝟏 = = (0-1) =

1/s

−𝒔 𝒔o

2) L[c] = L[c.1] =c. L[1]= c.(1/s) = c/s

3) Show that L[

Solution: By definition of L.T , 

L[f(t

∞
𝒆−𝒔𝒕



Put f(t) = 𝒆𝒂𝒕o.b.s in (1) L[

Note: L[

𝒔

4) Show that L[ Cos at]= and

𝒂

L[ Sin at] = =

Solution: W.k.t 𝒆𝒊𝜽= cos 𝜽 + i sin𝜽

𝒆𝒊𝒂𝒕= cos at + i sin at 

L[𝒆𝒊𝒂𝒕] = L[cos at + i sin at ]

L[cos at + i sin at]= L[𝒆𝒊𝒂𝒕]

Equte real and imaginary parts we get
𝒔

L[ Cos at]= and L[ Sin at] = =

5) Find L [ Sin hat ]

𝒂



Solution: L [ Sin hat ] = L [ ] = ½ [ L {𝒆𝒂𝒕} –L {𝒆−𝒂𝒕} ]

= ½ [

6) Find L [ Cos hat ]

𝒂𝒕 𝒂𝒕

Solution: L [ Cos hat ] = L [] = ½ [ L {𝒆𝒂𝒕} +L {𝒆−𝒂𝒕} ]

𝒔

= ½ [ ] = =

L [𝒕𝒏] = 𝜌(n+1)/𝒔𝒏+𝟏, n>-17) Show that

(ii)

(i) )

L [𝒕𝒏] = n!/𝒔𝒏+𝟏, n is +ve integer



Solution: : By definition of L.T

L[f(t)] = 

L [

f(t) dt--------(1)

dt put st =x i.e t = x/s

dt

dx

(n+1) , for  

L [𝒕𝒏] = 𝜌(n+1)/𝒔𝒏+𝟏, n>-1

(n+1) >0

L [𝒕𝒏]= n!/𝒔𝒏+𝟏, n is +ve integer FORMULAE
𝟏

1) L{1}=
𝒔

𝒄

2) L{c}=  
𝒔

3) L [ , L[𝒆−𝒂𝒕 ] =𝒔+𝟏𝒂



𝒔

4) L[ Cos at]=
𝒂

5) L[ Sin at] =

6) L[ Sin hat] =

7) L[ Cos hat]=

8) L(tn)=𝜌(n+1)/𝒔𝒏+𝟏, n>-1

9) L(tn)= n!/𝒔𝒏+𝟏, n is +ve integer
PROBLEMS

1.Find the Laplace Transformation (L.T) of 𝒕𝟐+ 𝟐𝒕 +3

Solution: L [𝒕𝟐+ 𝟐𝒕 +3] = L[𝒕𝟐] + 𝟐𝑳[𝒕] + 𝑳[3]

𝟐𝟏 𝟑



2. Find

3. Find L[

Solution: L[𝒆𝟑𝒕+ 3𝒆−𝟐𝒕]= L[𝒆𝟑𝒕] +

3L[𝒆−𝟐𝒕]

4. Find L[Sin 3t +

Solution: L[Sin 3t +𝐶𝑜𝑠𝟐𝟐𝒕]=L[Sin 3t] + L[𝐶𝑜𝑠𝟐𝟐𝒕]

𝟑 𝟏 𝑪𝒐𝒔𝟒𝒕

]

{ L[1] + L[Cos 4t] }

5.Find L[f(t)] if f(t)= 0, 0< 𝒕 < 𝟐

= 3, t> 𝟐

Solution: By definition of L.T

L[
𝟓

Solution: L [



ꝏ −𝒔𝒕 f(t) dt 

L[f(t)]= 𝒆𝟎

2 𝒆 = 0
𝒆−𝟐𝒔

= 3
𝒔

First shifting Theorem (F.S.T):
If L[f(t)]=f (s) then L[𝒆𝒂𝒕 f(t)]= f(s-a)

Proof : By definition of L.T

ꝏ

𝟐

ꝏ −𝒔𝒕 f(t) dt 

f(t) dt + 𝟐 𝒆

= 0 +  𝒆−𝒔𝒕 .3. dt

∞

= 3
𝒆−𝒔𝒕

−𝒔



L[f(t)]= f(t) dt = f(s)--------(1)

f(t)dtL[𝒆𝒂𝒕f(t)]=

f(t) dt Put s-a=p f(t)

dt

= f(p) = f(s-a)

Note: L[𝒆−𝒂𝒕 f(t)] = f(s+a)

Problems:
1) Find L[t³ 𝒆−𝟑𝒕 ]

Solution :  let f(t) = t³

L[ f(t)] = L[ t³] =

By F.S.T , L[𝒆−𝒂𝒕 f(t)] = f(s+a)

f(t)] = f(s+3)

a=3 L[𝒆−𝟑𝒕

L[𝒆−𝟑𝒕 t³] =



2) Find L [ 𝒆−𝒕(3 sin 2t – 5 cosh 2t)]
Solution : Let f(t) = (3 sin 2t – 5 cosh 2t) L  

[f(t)] = L[(3 sin 2t – 5 cosh 2t)]

By F.S.T , L[𝒆−𝒂𝒕 f(t)] = f(s+a)

L[𝒆−𝟏𝒕 f(t)] = f(s+1)

a=1

L [ 𝒆−𝒕(3 sin 2t – 5 cosh 2t)]

Second Shifting Theorem (S.S.T)

STATEMENT:- If L[f(t)]=f(s) and g(t)=f(t-a), t>a

= 0, t<a then L{g(t)}=𝒆−𝒂𝒔 f(s)

PROOF:- By definition of L.T



L[f(t)]= f(t) dt = f(s)--------(1)

L[g(t)]= g(t) dt = 

g(t) dt

-a) dt put t-a=x

g(t)

dt

f(x) dx= 0 +

t=a+x

f(x) dx

= 𝒆−𝒂𝒔 f(s)

Example :

dt=dx, (x=0 to ∞)

𝟐𝝅

) , if t >
𝟑 𝟐𝝅

if t < 
𝟑

Find Laplace Transform of g( t ) =

= 0,

𝟐𝝅

a =
𝟑

Solution: Let f ( t ) = cos t ,



f ( t-a ) = cos ( t-a ) f ( t

L [f(t)] = L 

[

By S.S.T L [g(t)] = 𝒆−𝒂𝒔 f(s)

Change of scale property:

If L[f(t)] = f(s) then  L [f(at)] =

NOTE: L [f( )] = a f(as)

-



Example: If L [f(t)] = then find L [f(3t)]

Solution: Given

L[f(t)] = by Change of 

scale property, L [f(at)]

=

Laplace transformof the derivative of f(t)

If f(t)is continousfor all t 0 and f (t)is piecewisecontinous, then

L{f (t)}exists,providedlim e stf(t) 0 and 

L{f (t)} sL{f(t)}-f(0) sf(s)-f(0)

L{f n (t)} snf(s)-sn-1f(0)-sn-2f (0)....fn-1(0)

L [f(3t)] =



Example Derivelaplace transformof sin at

Let f(t) sinat thenf’(t) = a cosat and f’’( t ) -a2sinat

Also f(0) = 0, f’ (0) = a from this also f”(0) = 0, also from this

By derivative formula,

L[f’’(t)] = s2 L[f(t)] – s f(0) – f’(0)-------(1)

L{-a2sinat} s2 L(sin at)–a

(−𝑎2) L(Sin at) + a = s2 L(sin at) a =

(s2 + 𝑎2) L(sin at)

Laplace transform of the integration of f(t)

If L[f(t)]=f(s) then L[

Example:



Find L.T. of Solution:  

Let

sin at

= f(s)

L[

Multiplication by t :

If L[f(t)]=f(s) then L[t f(t)] = -

L[𝒕𝟐 f(t)]

=

L[𝒕𝒏 f(t)] =

𝑎 f(t) =
L[f(t)] = L[sin at] = 𝑠2+𝑎2



Example : Find L[t 𝒔𝒊𝒏𝟐t] 

Solution: Let f(t) = 𝒔𝒊𝒏𝟐𝒕

let L[f(t)] = L[

By theorem L[t f(t)]

] (3s²+4) Division

by t:

( L[1] – L[ Cos 2t] ) =

(s³+4s)



, provided
𝟑𝒕 𝟒𝒕

exists.If L[f(t)]=f(s) then L[

Problems: (1) Find 

L[

Solution: Let f(t) = 𝒆−𝟑𝒕− 𝒆−𝟒𝒕

L[f(t)] = L[ w.k.t

, L[

𝟑𝒕 𝟒𝒕

L[

∞

= log (s+3) - log (s+4)

∞s

𝒔+𝟑

∞

=  log ( ) = log

𝑺+𝟒 s

𝟑

𝒔 ( 𝟏 + 𝒔 )

𝟒

s𝒔 ( 𝟏 + 𝒔 )

= log 1 - log ( )

=  0 - log ( ) = log ( )

(2). Find L.T of

,



Solution: Let f(t) = cos at – cos bt

L[f(t)] = L[cos at – cos bt]

L[

∞

1 2 + 𝑎2) – log (𝑠2 + 𝑏2)]

= [ log (𝑠
2

∞ s

1 = 𝑠𝑠 2 ² + +𝑎 𝑏 ² 2

) log ( 2

s

f(s) =

w.k.t , L[



Evaluation of integrals by Laplace transforms:

(1). Using L.T. Evaluate

𝑡 2𝑡

] dt

Solution: First we will find L[ let

f(t) = 𝑒−𝑡− 𝑒−2𝑡

= = log (

s s

∞
= log

s

log (s+1) - log (s+2)

∞∞

)

L[f(t)] = L[𝑒−𝑡− 𝑒−2𝑡]

w.k.t , L[ ,

L[



= log 1 - log ( )

) = log (

)

−𝑡

L[

L[f(t f(t) dt

−2𝑡

] =

Put s=0 on both sides

] dt = log ( )

] dt = log ( ) = log 2

2. Using LT find

Solution: First we find

: Let f(t) = cos at – cos bt

L[ ]

L[f(t)] = L [cos at – cos bt] f(s)

=

] = log (
therefore, L [

The definition of Laplace Transform is

1
𝑠(1+𝑠)

2
𝑠(1+𝑠)

- log (

) dt



w.k.t ,  

L [

L  

[

𝟏 𝟐+𝒂𝟐) – log (𝒔𝟐+𝒃𝟐)]

By definition of LT,

Put s=0 o.b.s

) = log (b/a)

= = log (3/5) Note: put a=5, b=3 in above problem

Laplace Transform of Periodic Function:
Definition : A function f(t) is said to be periodic with period T , if

𝑡 , f(t+T) = f(t) where T is positive constant.

The least value of T > 0 is called the periodic function of f(t).

= [ log (𝒔
𝟐

∞ s
𝟏 𝒔²+𝒂²

= 𝟐 log (𝒔𝟐+𝒃𝟐 ) s



Example: sin t = sin (2𝜋 + 𝑡) = sin 4𝜋 + 𝑡 =−−−− − Here  

sint is periodic function with period 2𝜋.

Formula :- If f(t) is periodic function with period T 𝑒𝑛

L[f(t)] = f(t) dt

Problem : Find the L. T of the function f(t) = 𝑒𝑡, 0< 𝑡 <5 and f(t)=f(t+5)

Solution : Here T=5 L[f(t)=

The unit step function or Heaviside’s unit function :
It is denoted by u(t-a) or H(t-a) and is defined as H(t-a) = 0, t<a

=1, t>a L.T.

of unit step function:
𝒆−𝒂𝒔

L[H(t-a)] =
𝒔

Prove that



Solution : L[H(t- a)] =

-a) dt

-a) dt

-a) dt

. dt

Inverse Laplace Transform :
Definition : If f(s) is the Laplace Transform of f(t) then f(t) is called the inverse 

Laplace Transform of f(s) and is denoted by 𝐿−1𝑓 𝑠 . i.e., f(t) =

𝐿−1𝑓 𝑠

𝐿−1 is called inverse Laplace Transform operator, but not reciprocal.

Example : If L [ then

Linear Property :

If f₁(s) and f₂(s) are L.T. of f₁(t) and f₂(t) respectively then



𝐿−1[c₁ f₁(s) + c₂ f₂(s)] = c₁ 𝐿−1[f₁(s) ] + c₂ 𝐿−1[f₂(s) ] where c₁

, c₂ constants.

Standard Formulae :
𝟏

(1) L

[1] =
𝒔

(4) L [sin at] =

(5) L [ Cos

5) L [ Sin hat]

6) L [ Cos

sin at

at]=

= at

hat]= ] = cosh at
𝒏

𝒔

at



7) L (tn)=𝝆(n+1)/𝒔𝒏+𝟏, n
𝒏

8) L (tn)= 𝒏!/𝒔𝒏+𝟏, n is +ve integer Problems:

(1) Find

solution :

(2)Find solution

:

(3) Find
𝟓

sin 2t + cosh 3t.

]



solution :

] }

= ¾ Cos 

(¼ x 8 x t

a=5/2 𝟐𝟓 )

Sin 𝟓

𝟐 𝟓

= ¾ Cos 4/5 Sin t
𝟐

FIRST SHIFTING THEOREM OF INVERSE L.T:

If 𝑳−𝟏[ f(s) ] = f(t) then 𝑳−𝟏[ f(s-a) ] = 𝒆𝒂𝒕𝒇 𝒕

= 𝒆𝒂𝒕𝑳−𝟏[ f(s) ]

PROOF: By definition of  L.T 

L[f(t)]=

solution :

(4) Find

(5) Find

solution: ]

f(t) dt = f(s)--------(1)

f(t)dtf(t)]=



L[𝒆𝒂𝒕

f(t) dt Put s-a=p f(t)

dt

= f(p) = f(s-a)

L[𝒆𝒂𝒕f(t)]= f(s-a)

⇒ 𝐿−1[ f(s-a) ] = 𝑒𝑎𝑡𝑓 𝑡 (or) 𝑳−𝟏[ f(s-a) ] = = 𝒆𝒂𝒕𝑳−𝟏[ f(s) ]

Note: 𝑳−𝟏[ f(s+a) ] = = 𝒆−𝒂𝒕𝑳−𝟏[ f(s) ]

PROBLEMS

1) Find

Solution

= 𝒆−𝟑𝒕

Cos 8t.

: ] by F.S.T

2) Find

Solution : ½ Sin 2t

]

]

]

t



3) Find

Solution :
𝒔

4) Find Inverse L.T of

Solution :

5) Find

Solution :

] (By F.S.T)

]

]

]

] }



= 𝒆𝟓𝒕 [ Cos 2t + 8 x ½ x Sin 2t ] a=2

[ Cos 2t + 4 Sin 2t ]

If 𝑳−𝟏[ f(s) ] = f(t) then 𝑳−𝟏[ 𝒆−𝒂𝒔 f(s) ] = 𝐠 𝒕 𝒘𝒉𝒆𝒓𝒆 g(t) = f(t-a), t>a

=0, t<a

Proof: By S.S.T of L.T , L [g(t)] = 𝒆−𝒂𝒔 f(s) (write proof of SST)

⇒ 𝑳−𝟏[ 𝒆−𝒂𝒔 f(s) ] = 𝐠 𝒕

⇒ 𝑳−𝟏[ 𝒆−𝒂𝒔 f(s) ] = f(t-a), t>a

=0, t<a Note:  

We can also written as 𝑳−𝟏[ 𝒆−𝒂𝒔 f(s) ] = f(t-a) H(t-a) 

Problem:
−𝝅𝒔

Find

𝝅𝒔

Solution:
𝟏

Let f(s) =

𝑳−𝟏 [ f(s)] = = Sin t = f(t)



by S.S.T 𝑳−𝟏[ 𝒆−𝒂𝒔 f(s) ] = f(t-a), t>a

=0, t<a

𝑺𝒐 𝑳−𝟏[ 𝒆−𝝅𝒔 f(s) ] = f(t-𝝅), t>𝝅

=0, t<𝝅

] = Sin (t-𝝅), t>𝝅=0,  

t<𝝅

Chang of scale property :

If 𝐿−1[f(s)] = f(t) then )] = a f(at)

( or ) 𝐿−1[f(as)] =

Proof : By the change of scale property,

L[f(at)] =

)] = a f(at)



(or)

𝐿−1[f(as)] = )

] = t cost , then findProblem(1): If ]
𝟐

] = t cost

𝑳−𝟏[f(s)] = f(t)

f(t) = t cost

Now

= 𝑳−𝟏[ f(3s) ]

] = ]

By change of scale property ,

𝑳−𝟏[f(as)] = a = 3

Inverse Laplace Transform of partial fractions :

Solution : Given

i.e.,

, Here f(s) =



Proof : By theorem of

L.T. L[𝑡𝑛 f(t)]

= f(s)  

f(s)] = (−1)𝑛

𝑡𝑛 f(t) Note:- 𝐿−1[f’(s)] =

- t f(t)

Problem (1):- Find

Solution : Let f(s) =  

( ) = log (s+3) – log 

(s+4)

log

1 1 f’(s) =

Problems : (1) Find

Solution : Given

]

= 1 – t +

f(s) =(2). Find

reduce into partial

solution : Here 

fractions

f(s) =

Inverse Laplace Transform of derivatives :-
𝑛

If 𝐿−1[f(s)] = f(t) then f(s)] = (−1)𝑛 𝑡𝑛 f(t)
𝑛



𝐿 −1[f’(s)] =

= 𝑒−3𝑡 - 𝑒−4𝑡

𝑒−4𝑡H.W. FindBy theorem, - t f(t) = 𝑒−3𝑡 -

f(t) = Ans: 𝐿−1[f(s)] =

[replace 3 by 1 and 4 by (-1)]

(2) Find ]

Solution: W.K.T sin at

i.e 𝐿−1[ f(s) ] = f(t) 1 Let f(s)

= , f(t) = sin at
𝑎

4𝑡𝑡so,

⇒ 𝐿−1[f(s)] =



Inverse L.T. of integrals :-

If 𝐿−1[f(s)] = f(t) then  

Proof : We have L[

exist

provided

-

We have 𝐿−1[f’(s)] = - t f(t)

sin at

sin at

𝑡

𝑎 sin at
𝐿−1 [

−2𝑠
] = -

(𝑠²+𝑎²)2



If 𝐿−1[f(s)] = f(t) and f(0) = 0, then 𝐿−1[s f(s)] = f’(t) Proof :

W.K.T. L[f’(t)] = s L[f(t)] – f(0)

= s f(s) – 0

⇒ 𝐿−1[s f(s)] = f’(t)

In general we have, ⇒ 𝐿−1 [𝑠𝑛 f(s) ] = 𝑓𝑛 (t)

Problems :

if = 𝑓𝑛 (0) = 0

(1) Find
²

solution :
𝒔

Let f(s) =



𝑳−𝟏[f(s)] = f’(t) =

[ sin 

We have

at + t a cos at ]

𝑳−𝟏[s f(s)] = f’(t)

( sin at + at cos at )
𝒔

Solution

:

Let f(s) = 𝑳−𝟏

(2) Find

f(t) =

[f(s)] =



] by F.S.T.

Now f’(t) = = 𝒆𝒕 (t + t² +

By theorem 𝑳−𝟏[s f(s)] = f’(t)

(t + t² + Division
by power of S : 

Theorem: If 𝑳−𝟏𝒇 𝒔 = 𝒇 𝐭 , then 𝑳−𝟏

𝒔 = 𝒕𝒇𝟎 𝒕 𝒅𝒕

Prof: we have by LT,

𝒇 𝒔



L [

Note: 

Problem:

1) Find
𝟏

solution: Let f (s) =

By theorem , 𝑳−𝟏 𝟏𝒔 . 𝒇 𝒔 = 𝒕𝒇(t)dt𝟎

2) Find
𝟏

Solution : let f(s) = [f(s)] = sinat = f(t)
𝒂

(t) dt] =

⇒ 𝑳−𝟏 = 𝒕𝒇𝟎 𝒕 𝒅𝒕

𝒕 𝒕

𝑳= 𝒇𝟎]𝟎 𝒕 𝒅𝒕]dt

𝒇 𝒔

𝒔

−𝟏 𝒇 𝒔

𝒔𝟐



By 

theorem

-cos at )
)

3) Find

𝟏 𝟏 solution : let f(s)

= , f (t) = sin at
𝒂

theorem, f(s)] =by

(t)dt
𝒕

𝟏

f(s)] = (t)dt

𝒕

= 𝟎 [ 𝟎

at ) dt

𝒂 sin at dt ]dt



Convolution : -

If f(t) and g(t) are two functions defined for t

.

* g)(t). Note:- The convolutionf(t) * g(t) can also be written as (f  

operation is commutation

i.e. , ( f * g ) (t) = (g * t) (t)

.

If L[f(t)] = f(s) and L[g(t)] = g(s) then L[ f(t) * g(t)] = L[f(t)] .  L[g(t)]

(or)

= f(s). g(s)

So, L[( f * g) (t)] = f(s) . g(s)

Corollary :- [f(s). g(s)] = (f * g) t

.

Problems:

(1). Find ] by using convolution theorem.



𝟏 𝟏 solution: Let f(s) =

, g(s) =

𝑳−𝟏 [f(s)] =

By convolution theorem ,

[g(s)] = ] = sin t

2 sin u –

cos u)]

2 sin t –

2 sin t – cos t) +
𝟓

𝑳−𝟏[f(s). g(s)] =



2) Find
1

Solution : Let f(s) = ,
𝑠

1

g(s) =

𝐿−1[f(s)] = ] = 1 = f(t) , 𝐿−1[g(s)] =

at = g(t) By convolution theorem ,

𝐿−1[f(s). g(s)] =

] , (apply limits o to t) 

(cosh at – 1)

Application of L . T to Ordinary Differential Equations :

2 sin t – cos t]



The L . T method is easier , time – saving and excellent tool for 

solving O.D.Es

Working rule for finding solution of D . E by L . T:

1) Write down the given equation and apply L . T O . B . S

2)Use the given conditions 

3) Re arrange the given equation to given transformation of the 

solution

4) Take inverse L.T O. B. S to obtain the desireds obesve Sali 

stying the given conditions

The formulae to be used in this process are: 

L [ f¹ (t) ] = s f (s) – f(0)

L [ f¹¹ (t) ] = s² f (s) – s f(0)-f¹(0)

L [ f¹¹¹ (t)] = s³ f (s) - s² f(0) – sf (0) – f¹¹ (0) 

Note : let f(t) = y (t) and f (s) = y (s) Problems :

1) Solve 4 y¹¹+ y = 0 , y (0) = 2 , y¹ (0)= 0



Solution : Here y = y (t)

Given D . E ²y (t) = 0 Let L . T O.B.S

² L [ y (t)

] = L [0] ²  

L [y]= 0

Let O . B . S, we get y (t) = 8

]

2. cos is solution of

gven D.E

3) Solve y¹¹¹+2y¹¹- y¹- 2y = 0 with y (0)= y¹ (0) = 0 , y¹¹ (0) = 6 

Solution : given D . E

4 y¹¹ (t)+

4 L [ y¹¹ (t)] +

4s(2) – 0 = 0

]



Let L . T On Both Sides

L[ y¹¹¹ ] + 2 L [ y¹¹ ]- L [ y¹ ] – 2 L [ y ] = 0

-L [y] = _ _ _ _ _ (1)

6= A (s + 1 ) (s +2 ) + B (s - 1 ) (s + 2) + C (s – 1 ) (s+1) _ _ _

_(2) Put s = 1 in _ _ _ (2) 6 = A (2) (3)



Substitute A , B , C in (1)

is the solution of given D . E

HW: Solve the D.E + 5y = 

Ans: y(t) = (sin t – 2 sin 2t)

sin t

UNIT – IV



FOURIER SERIES
Periodic Function :
Definition : A function f(x) is said to be periodic with period T , if

𝒙 , f(x+T) = f(x) where T is positive constant.

The least value of T > 0 is called the periodic function of f(x). 

Example: sin x = sin (2𝝅 + 𝒙) = 𝐬𝐢𝐧 𝟒𝝅 + 𝒙 =−−−− −

Here sinx is periodic function with period 2𝝅. Def:

Piecewise Continuous Function:
A function is said to be piece-wise continuous (or) Sectionally

Continuous) over the closed interval [a,b] if it is defined on that

interval and is such that the interval can be divided into a finite

number of sub intervals, in each of which f(x) is continuous and both

right and left hand limits at every end point if the sub intervals.

Dirichlet Conditions:

A function f(x) satisfies Dirichlet conditions if

(1) f(x) is well defined and single valued except at a finite no. of points

in (-l,l)



(2) f(x) is periodic function with period 2l

(3) f(x) and f’(x) are piece wise continuous in (-l,l)

Fourier Series: If f(x) satisfies Dirichlet conditions , then it can be

represented by an infinite series called Fourier Series in an interval (-l,l) as

f(x) =

(1) where

calle Euler’s formula.

Note (1): If x 𝝅, 𝝅

Then f(x)

=

Where a₀ =

bn

Here 𝒂₀ , an and bn are called Fourier coefficients. 

These are also

(𝒊. 𝒆. , 𝒊𝒏𝒕𝒆𝒗𝒂𝒍 𝒊𝒔 (−𝝅, 𝝅)

, an =



Note (5) : At  x= , f(x) =
𝟐

Even and odd functions:

here x 𝝅,𝝅)

Case (1): If the function f(x) is an even function in the interval (-l,l)

i.e., f(-x) = f(x) then a₀ = 𝑙 0 𝑓𝑥 dx2 𝑙

bn

Note (2): In interval (0,2

Where a₀ = , an =

bn

Note (3): The Fourier Series in (-l,l) , (-𝝅, 𝝅) , 𝒐, 𝟐𝝅 , (𝒄, 𝒄 + 𝟐𝝅) are called Full 

range expansion series

Note (4): The above series (1) converges to f(x) if x is a point of continuity

The above series (1) converges to if x is a 

point of discontinuity

f(𝝅−𝟎)+𝒇(−𝝅+𝟎)



an = dx (since f(x) & are even functions)

is odd function)bn

Therefore, in this case we get (only) Fourier cosine series only.

Case (2):  If function f(x) is odd i.e., f(-x) = - f(x) then 

an = 0 (since f(x) is odd) (a₀=0 also) 

And bn

In this case we get fourier sine series only.

[only for intervals (-l,l) , (- Problems

:

1)Find Fourier series for the function f(x) = 𝒆𝒂𝒙 in (0,2𝝅) Solution : Given 

function f(x) = 𝒆𝒂𝒙 in (0,2𝝅)

𝒂𝒙a₀ = ) apply limits 0

to 2𝝅

1)



an =

(a + 0)] apply limits 0 to 2𝝅

(a cos nx + n sin nx)] apply limits 0 to 2𝝅

(a sin nx + n cos nx)] apply limits 0 to 2𝝅

- n)]



bn

Now the fourier series is f(x) =

cosnx

in (0,2𝝅)(2): Find Fourier series for the function f(x) = 𝒆𝒙

Solution : Given function f(x) = 𝒆𝒙 in (0,2𝝅) a₀ =



apply limits 0 to 2𝝅

bn

( sin nx + n cos nx)] apply limits 0 to 2𝝅

- n)]

) apply limits 0 to 2𝝅

1)

an =

nx + n sin nx)]



Now the fourier series is f(x) =

Problem (3): H.W

Find Fourier series for the function f(x) = 𝒆−𝒙 in (0,2𝝅)

(Hint:- put a = - 1 in problem (1) we get the solution.)

(4) Express f(x) = x - 𝝅 as Fourier Series in the interval 

Given function f(x) = x - 𝝅 a₀

- 𝝅 < x < 𝝅Solution:

=

= 0 – [x] with limits - 𝝅 to 𝝅

= 0 – [𝝅 + 𝝅] = 2𝝅 an =



dx  

even)

(since

(even) (odd)

dx – 0 ( since sin nx is odd)

dx ]

)] apply limits 0 to 𝜋

cos n 

Now the Fourier Series of f(x) is f(x)

, n=1,2,3…………

(0) (since x cosnx is odd) + 2

= 0 + 2 [ ] 0 to 𝝅 limits apply we get an = 

0+0 = 0

bn



(5)Obtain the 

interval [-𝜋, 𝜋]

Fourier series for f(x) = x - x² in the

2

Hence show

that (or)

𝜋2

+ …………. =
12

Solution : Given function is f(x) = x - x² in [-𝜋, 𝜋]

f(x)

a₀ =

= 0 (odd)
1

- 𝜋 /3

𝑥3

[ 3 ] = -2𝜋²



an =

(odd) (even)

u = x² , dv = cos nx dx

] du = 2x dx , dv = cos 𝑛𝑥

𝑑𝑥

apply limits 0 to 𝜋

= -𝜋2 [ 0 - 𝜋2 {( − x cos𝑛 𝑛𝑥 𝜋0 + ( cos𝑛 𝑛𝑥= 𝑛 sin 𝑛𝑥dx

apply limits 0 to 𝜋

( sin nx )] 𝑢𝑑𝑣 =

a1 =

𝑢𝑣 𝑣𝑑𝑢 −

an = if n is odd



𝑛²

- if n is even a2 =

a3 =

(even) (odd)

sin nx )] b1 = 2/1 = 2 

b2

if n is(

odd

= - 2/2 = -1

b3 = 2/3

Now

, f(x)

in 

(1)

bn =

if n is even

substitute



put x = 0 in (2)

…….)f(0) = 0 =
𝜋²

where

Note :2) The half range sine series in (0,𝜋) is  f(x) = where

bn

+ ……..=
12

Half range series

(1) The half range cosine series in (0,l) is f(x) =

(2)The half range sine series in (0,l) is f(x) = 

where bn

Note :1) The half range cosine series in (0,𝜋) is f(x) =



………(1)

(apply o to 𝜋)

Now (1) ⇒ : f(x) =

H.W.) Express f(x) = 𝜋-x as fourier sine series in (o, 𝜋 Ans : 2 (bn =

2) Find the half range sine series of f(x) = x in the range 0 < x < 𝝅
𝝅𝟐

(1)Express f(x) = 𝜋-x  as Fourier cosine and sine series in (0, 𝜋) 

Solution :

The half range cosine series for f(x) is f(x) = 

where a₀= dx = −x dx

] apply limits o to 𝜋

an =

)] apply o to 𝜋



Hence deduce that + …………. =
𝟖

Solution : The half range cosine series for f(x) is

= ………(1)

f(x)

where a₀= x dx ] apply limits o to 𝜋

= 𝜋

dx =



if n is odd

Now  

(1)

⇒  0 = 𝜋− 4

2

( ² + ² + ² − … … . .)
𝜋

⇒ 4 ( ² + 3 ² + 5 ² − … … . . ) = 𝜋2

𝜋

⇒ + + + …………. = 𝜋

3) Express f(x) = , 0 < x < in half range sine series

: f(x) = if n is odd

x =

Put x=0 on both sides



] (n not equal to 1)
Solution : The half range sine series in (0, ) is f(x) = where

] apply limits o to 𝜋



bn

]

] , n is not equal to 1

bn = 0 if n is odd.

if n is even b1 = b3 = b5 = -------- = 0

(1) ⇒ f(x) = , for n is even

4)Find half range sine series for f(x) = x(𝝅 −x) , in 0 < x < 𝝅
𝝅𝟑

Deduce that +…….=
𝟑𝟐



Solution : Fourier series is f(x) = bn

=

(apply

0 to 𝜋)

(apply

o to 𝜋)



bn

(1) ⇒ f(x) =

(1)⇒ f(x) = b1 sin x + b2 sin 2x + b3 sin 3x + …..

(2) sin 3x + …… Put

x = π/2 on both sides

𝜋 𝜋 [ − ³ + …..] ⇒

( 2 ) =
³

2

⇒ 𝜋4 ² (𝜋 8 ) = [ ³ − ³ + 5 ³ …..]

⇒ [ − ³ + 5 ³ …..] = 𝜋

³

• FOURIER SERIES IN AN ARBITRARY INTERVAL I,e in (-l,l) & (0,2l)



(1) ⇒ f(x)=

• Problem : 1) Obtain the half range sine series for 𝒆𝒙 in 0<x<1 Solution : Given 

f(x) = 𝑒𝑥 in (0,l)

The half range sine series for f(x) in (0,l) is f(x)= ……(1)

l=1 Where bn

bn

dx

( sin n𝜋𝑥 - n𝜋 . cos n𝜋𝑥 ) apply limits 0 to 1

. cos n𝜋) - 𝑒0(0 - n𝜋 . cos 0)]

. cos n𝜋 + 𝑛𝜋]

bn



2) Find the half 

range sine 

series of f(x) =

1 in (0,l) Solution : The half range sine series in 

(0,l) is f(x) =

where bn

if n is odd

…….(1)



Now (1) , if n is odd
3)Find the half range cosine series of f(x) = x(2-x) in the range 0 ⪯ x ⪯ 𝟐

+ ………….Hence find sum of series

Solution : Given function f(x) = x(2-x) = 2x - x²

The half range cosine series for f(x) is f(x) =

where a₀ = dx =

………(1)

dx

] apply 0 to

an =

]

apply limits 0 to 2

an =

dx (using integration by parts)

= [(2x -

when n is even



= 0 when n is odd

Substitute the values of a₀ and an in (1) we get

(1) ⇒ 2x - x² =

⇒ 2x - x² = 

Putting x = 1 

in (2) we get

- ………….)

+ ………….)
𝜋2

+ ………….) =
12

(4) Expand f(x) = 𝒆−𝒙𝒂𝒔 𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝒔𝒆𝒓𝒊𝒆𝒔 in (-1,1)



Solution : Here l = 1

)apply limits -1 to 1

an =

dx

. sin n𝜋𝑥 ) apply limits -1 to 1



- sin n𝜋𝑥 -

n𝜋 . cos 

n𝜋𝑥 ) 

apply 

limits -1

to 1bn bn

bn

dx

Now Fourier series of f(x) 

in (-l,l) is

. cos n𝜋) - 𝑒1(0 - n𝜋 . cos n𝜋)] f(x) =

. cos n𝜋 (e − 𝑒−1)

………..(1)



x}]⇒ f(x) = 2 sinh1 + [

• Functions having points of discontinuity : Problems:

(1) If f(x) is a function with period 2𝝅 is defined by f(x) = 

0 , for - 𝝅 < x ⪯ 0

= x , for 0 ⪯ x < 𝝅 then write the fourier series for f(x)
𝝅𝟐

Hence deduce that + …………. =

Solution : The Fourier series in (- 𝜋, 𝜋) is f(x) =

𝟖

f(x) =

Where a₀ =



an =

Put x = 0 on both sides f(0) = 0

] 𝑢 𝑑𝑣 = uv - 𝑣 𝑑𝑢

u = x , dv = cos nx dx = 0 ,  if n is even

, if n is odd

bn

(apply 0 to 𝜋)

) 0 to 𝜋]

+ 0 + 0 = -

= -

bn , if n is odd
1

𝑛 , if n is even



) + 0
Problem (2) : Find Fourier series to represent the function f(x) given by 

f(x) = - k , for - 𝝅 < x < 0

k , for 0 < x < 𝝅 hence show

that 1 Solution : In

- < x < 0

i.e., x − 𝝅,0) , f(x) = - k

f(-x) = - f(x) in (0, 𝝅)

In 0 < x < 𝝅 i.e., x ) f(x)

= k f(-x) = k = -

(-k)

= - f(x) in (−

𝝅,0) There fore f(x) is odd function in (- 𝝅, 𝝅)

so a₀ = 0 , an = 0

bn



bn

) apply limits 0 to 𝝅

= 0 , if n is even

, if n is odd

Now f(x) =

= b₁ sin 1x + b₂ sin 2x + b₃ sin 3x + b₄ sin 4x --------f(x)

𝟒𝒌 𝟒𝒌 sin 3x

3= 𝝅 sinx + 0 + 𝝅 + 0 + ---------(1)

𝜋

Deduction : put x = on both sides in (1) 2



Parseval’s Formula :-

Prove That dx = l [

Proof :- We know that the Fourier series of f(x) in (-l,l) is f(x)

=

Multiplying on both sides of (1) by f(x) and integrate term by

term from -l to l we get dx =

Now

an = = l an

and bn = l bn



Substitute these in (2)

dx =

This is called parseval’s formula.

Note 1): In (0,2l) the parseval’s formula is

. l bn

𝟒

deduce that

dx= l [

Note :2) If 0 < x < l (for half range cosine series of f(x)) parsevel’s formula is

dx=

Note :3) If 0 < x < l (for half range sine series of f(x)) parsevel’s formula is

dx =

Problem : prove that in 0 < x < l, x =

) and hence

a₀ + . l an +



Solution : Let f(X) = x , 0 < X < l

The Fourier cosine series for f(x) in (0,l) is

f(x) =

an =

dv = dxu = x,

dx]

−4𝑙 −4𝑙 an = 0 ,

Here a₀ = dx

dx

] apply limits 0 to l
] = l

} 0 to l -

} 0 to l]



n is even a₁ = , a₃ =

, n is odd

Substitute a₀,an in (1)

a₂ = 0 , a₄ = 0 …………

+ a₁² +
2

a₂² + a₃² + -------]
² 2

dx = + 0² +

𝑙

) 0 to l = .

l² [ 2

Now a₀ = l, a₁ = , a₃ =

From parseval’s formula , we have

dx =



COMPLEX FOURIER SERIES in (-l,l) or (0,2l):-

The complex form of Fourier series of a periodic function f(x) of period 2l 

is defined by
𝑖𝑛𝜋𝑥

f(x) = (1) where cndx , n=0,-1,1,2….

Note (1) : If period of function is 2𝜋, i.e., in (- 𝜋 , 𝜋 ) or (0,2 𝜋 ) then 

complex fourier series is f(x) =

Where cn dx , n = 0,-1,1,-2,2 ………

Problem : Find complex fourier series of f(x) = 𝑒𝑥 if - 𝜋 < x < 𝜋 and f(x) = f(x

+ 2 𝜋)

Solution : Complex fourier series of f(x) = 𝑒𝑥 is f(x) =

There fore



] 𝑒 = cos n

sin n 𝜋

𝜋 + I

) 1 +𝑖𝑛 *(1 −𝑖𝑛

When cn = dx

cn dx =

] limits (

±𝑖𝑛𝜋



(sin h 𝜋) sub in (1)

(sin h 𝜋) 𝑒𝑖𝑛𝑥

Problem : Find the complex form of the fourier 

series of f(x) = ,-1 x

] limits(-1,1)

f(x) =

Where cn = dx = dx

] 2 sin h)

. (2 sin h 𝜋)

Therefore cn



UNIT V

FOURIER TRANSFORMS

&

Z- TRANSFORMS
•

• FOURIER TRANSFORMS

Fourier Integral Theorem:-

Statement : If f(x) is a given function defined in (-l,l) and satisfies Dirichlet’s

condition then f(x) = -x) dt dλ.

The representation of f(x) is known as Fourier Integral of f(x)

Problems on integral theorem:
(1) Express the function f(x) = 1 , |x|



< x < -1 = 

0 , 1 < x <

as fourier integral and hence evaluate (i)
∞ sin 𝑥

(ii) 0
𝜋

𝑥 𝑑𝑥= 2

• Solution: The Fourier Integral theorem is given by f(x)

= -x) dt dλ.

Deduction :



f(x)

, |x|

|x|> 1 --------

(2)

Put x = 0

Fourier cosine & sine Integrals:

1) Fourier cosine Integral of f(x) is

t dt dλf(x) =

2) Fourier sine Integral of f(x) is

t dt dλf(x) =

Problems:-

2) Express f(x) = 1 , 0 ⪯ x ⪯ 𝜋



0 , x > 𝜋 as a fourier sine integral and

Hence evaluate

Solution : Fourier sine integral of f(x) is given by

f(x) =

0 , x >

) (0 to 𝜋) dλ

f(x) =

𝜋 =
f(x) .

2

. 1 , 0 ⪯ x ⪯ 𝜋

0 , x > 𝜋

Problem : 3) Using Fourier Integral show that



Solution : Let f(x) =1 , 0

0 , x >

then write above solution (problem.(2) solution).

Problem :4) Using Fourier Integral , show that

Solution : Let f(x) =

The Fourier Cosine Integral is given by f(x)

=

Now f(t) = 𝑒−𝑎𝑡

Therefore

Now -a cos λt + λ sin λt)(0 to ∞)]
𝑎

-a.1 + 0 ) =



sub in (1)

): Prove thatProblem 5

above problem(4)

Solution : Let f(x) = 𝑒−𝑥

Problem 6): Using Fourier Integral , show that

, put a = 1 in

The Fourier Sine integral is given by f(x)

=

-a sin λt - λ cos λt)(0 to

Solution : Let f(x) =

f(x) =



sub in (1)

There fore ,
FOURIER TRANSFORMATION:

Definition : 1)The fourier transform of f(x) , is denoted by f(s) or

F{f(x)} and is defined as ,

F{f(x)} = f(x) dx = f(s) -------(1)

The inverse fourier transform is given by

f(x) = 𝐹−1{f(s)} = f(s) ds -----(2) F{f(x)} = f(s)

similarly ,



Note 2): Some authors also defined as

F{f(x)} = f(x) dx

and inverse fourier transform as f(x) = 

Def : 3) : F{f(x)} = f(x) dx and  

Inverse Fourier Transform as f(x) =

f(s) ds

f(s) ds

Def: Fourier Sine Transform:-

The Fourier Sine Transform of f(x), 0 < x < 

defined by

is denoted by fs(s) or Fs{f(x)} and

Fs{f(x)} = sx dx = fs(s) -----(3)

sx dx = fs(s) -----(3) TheFs{f(x)} =

inverse Fourier Sine Transform is given by

f(x) = sx ds -------(4) 

Note : Some authors also defined as

Fs{f(x)} = sx dx = fs(s)

2 ∞

𝜋 0 𝑓(𝑥) sin



2 ∞

𝜋 𝑓𝑠0 (𝑠 )sin sx dsand inverse fourier sine transform as f(x) = 

Def : Fourier Cosine Transform :-

The Fourier Cosine Transform of f(x) , 0 < x < ∞ is denoted by fc(s) or Fc{f(x)} and 

defined by

Fc{f(x)} = sx dx = fc(s) -----(5) and

The inverse Fourier Cosine Transform is given by,

f(x) = sx ds -------(6) 

Note : Some authors also defined as

Fc{f(x)} = sx dx

2 ∞

and inverse fourier cosine transform as f(x) = 𝜋 𝑓𝑐0 (𝑠 )cos sx ds  

Linear Property: If f(s) , g(s) are Fourier Transform of f(x) & g(x) then 

F{c₁ f(x) + c₂ g(x)} = c₁ F{f(x)} + c₂ F{g(x)}

= c₁ f(S) + c₂ g(s)

2 ∞

𝜋 0 𝑓(𝑥) cos



Proof:- The definition of Fourier Transform is 

F{f(x)} = f(x) dx = f(s) -----(1)

By definition F{c₁ f(x) + c₂ g(x)} = [c₁ f(x) + c₂ g(x)] dx 

f(x) dx  + c₂ g(x) dx

= c₁ f(s) + c₂ g(s) by (1) Note:-

Linear Property:

(I) Fs{c₁ f(x) + c₂ g(x)} = c₁ fs(s) + c₂ gs(s)

(II) Fc{c₁ f(x) + c₂ g(x)} = c₁ fc(s) + c₂ gc(s)

Proof:- (I) The definition of Fourier Sine Transform is

Fs{f(x)} = sx dx = fs(s) -----(1)

By the definition , Fs{c₁ f(x) + c₂ g(x)} = [c₁ f(x) + c₂ g(x)] sin sx dx 

sx dx + c₂ sx dx

= c₁ fs(s) + c₂ gs(s) by (1) Change

of scale property:

Statement : If F{f(X)} = f(s) then F{f(ax)} =

Proof :- The definition of Fourier Transform of f(x) is

F{f(x)} = f(x) dx = f(s) --------(1)



f(ax) dx let ax =t
1

f(t) dt dx = dt

x = t/aBy definition F{f(ax)}

f(x) dx ( by property of def. integral)

Note : 1) If Fs{f(x)} = fs(s) then Fs

2) If Fc{f(x)} = fc(s) then Fc{f( 

Proof: (I) The definition of Fourier Sine Transform is

Fs{f(x)}

=

By definition Fssx dx let ax =t
1

s( dt dx = dt
𝑎

=
1

𝑎 𝑎 f(t) dt

fs(

sx dx = fs(s) -----(1)

sin



)t. dt

)x. dx =

Shifting Property:-

If F{f(x)} = f(s) then F{f(x-a)} = 𝑒𝑖𝑠𝑎𝑓(𝑠)

Proof : F{f(x)}

=

By definition

x-a=t f(t) dt

F{f(x-a)} = -a) dx let  

x=t+a

f(t) dt dx= dt 

f(x) dx

= 𝑒𝑖𝑠𝑎 f(s) by (1)

Modulation Theorem :-

If F{f(x)} = f(s) then F{f(x) -a) + f(s+a)}

f(x) dx =f(s)----(1)



Proof: The defination of Fourier

F{f(x)} = f(x) dxTransform

=f(s)----(1)

is  

By definition F{f(x)

f(x) dx

f(x) dx + f(x) dx

-a) + f(s+a)}

Note: If Fs(s) & Fc(s) are Fourier Sine & Cosine Transform of f(x) respectively

Then (i) Fs{f(x) cos ax} = -a)}

(ii) Fs{f(x) sin ax} = -a)}

(iii) Fs{f(x) sin ax} = -a)}  

Proof: The definition of Fourier Sine Transform of f(x) is

Fs{f(x)} = sx dx = fs(s) -----(1)

By definition Fs{f(x) cos ax} = sx dx 

sx. Cos ax) dx

f(x) cos ax dx



sin (s-a)x dx ]

-∞ ∞

2) Find , F{f(x)} if f(x) = x, |x| < a

)]dx

)x dx +

-a)]
Similarly we get (ii) & (iii) Problems:

1) Find Fourier Transform of f(x) = 𝑒𝑖𝑘𝑥 , a < x < b 

0 , x <a , x > b

Solution : By definition , F{f(x)} = f(x) dx

dx

dx

] (apply limits a to 

b)



0 , |x| > a 

F{f(x)} =

|x| < a means –a < x < a

Solution : By definition , f(x) dx

x dx

use integration by parts ,

dx 𝑢𝑑𝑣= 𝑢𝑣 − 𝑣𝑑𝑢

(apply –a to a) u=x, dv= 𝑒𝑖𝑠𝑥dx

) (apply –a to a) du=dx, v= . 𝑒𝑖𝑠𝑥dx

3) If f(x) = 1 , |x| < a

0

Deduce that  

(i)

, |x| > a , Find Fourier Transform of f(x)

Solution : F{f(X)} = |x| < a means –a < x < a

= 𝑎− 𝑒𝑖𝑠𝑥 .1. dx

-a to a)

dx ,

f(x) dx



f(s) = F{f(x)} = f(s)
𝑠

Deduction :

Inverse Fourier Transform is defined by f(x) = f(s) ds

f(x) =

ds]

(even) (odd)

1, |x| < a

0, |x| > a

(2i sin as)

ds - 0]

(x)(i) 0

∞ sin 𝑎𝑠 cos 𝑠𝑥

𝑠

𝜋
𝑑𝑠 = 2 . f

ds

ds – i



(ii) Put a = 1 , x = 0 in (i) we get

4) Find Fourier Transform of f(x) = 1 - x² , |x| ⪯ 1

0, |x| > 1

Evaluate

𝑢𝑑𝑣 = 𝑢𝑣 𝑣𝑑𝑢 −

(limits -1 to 1) u= (1 − x²) dv= 𝑒𝑖𝑠𝑥dx

= [ 0 – dx du =-2x

dx, v= 𝑒𝑖𝑠𝑥dx .

1 to 1) -

0

∞ sin 𝑠 𝜋

𝑠
𝑑𝑠 = 2.1

⇒ 0

∞ sin 𝑠

𝑠
𝑑𝑠

𝜋

= 2

Solution:- F{f(x)} =

dx  

f(x) dx

- x² ) dx

dx

dx]



= 𝑖𝑠2 [1.( 𝑒 𝑖𝑠+𝑖𝑠𝑒 −𝑖𝑠 ) - 𝑖𝑠1 𝑒 𝑖𝑠𝑖𝑠𝑥 ] (- 1 to 1) 𝑖𝑠 - 2i sin s)

[ sin s – s = 𝑖𝑠2 [ 2 cos𝑖𝑠 𝑠 - 𝑖𝑠1 (𝑒 𝑖𝑠−𝑖𝑠𝑒 −𝑖𝑠 ) ] cos s] = f(s)

Deduction : = 𝑖𝑠2 . 𝑖𝑠1 (2 cos s 1 Inverse

= - 𝑠2 ² . 2[ cos s - sin𝑠 𝑠 ]Fourier

Transform is defined by f(x) = f(s) ds

. [ sin s – s cos s] ds

ds =

ds]

(even function) (odd function)

0
𝜋

ds = f(x)

f(x) =



2

- x²) , |x| ⪯ 1

0, |x| > 1

At x =

s = x

ds = put

dx =

dx =

dx = -

5) Find Fourier Transform of f(x) = if |x|



F{f(x)} = f(s) = f(x) dx

if 0 < x <6) Find Fourier Transform of f(x) = sin x ,

0 , otherwise

Solution : By definition,

F{f(x)} = f(s) = f(x) dx

sin x dx

1.cosx] apply 0 to 𝜋



7) Find Fourier Transform of f(x) = x𝑒

Solution : By definition,  

f(s) =F{f(x)} =

] (0 to )

−𝑥² −𝑥²

f(x) dx

dx

dx



8) Find Fourier Transform of 𝑒 2 . Show that 𝑒 2 is reciprocal Solution : By

definition,

dy

Therefore Function is self reciprocal

dy

dy

F{f(x)} = f(s) = f(x) dx

dx

dx (x-is)² /2= y²

dx x-is = 2y

dx dx = 2dy=
1

2𝜋
𝑒

−𝑠² 

2
∞

∞− 𝑒 2

−1
𝑥−𝑖𝑠 2



9) Find the inverse Fourier Transform of f(x) of f(s) = 𝑒−|𝑠|𝑦

Solution : We have |s| = -s , if s < 0

s , if s > 0

From inverse Fourier Transform, we have

f(x) = f(s) ds 

f(s) ds + f(s) ds]

ds + 

ds

ds]

] (0 to ∞)

ds +



Problems on sine and cosine Transform:-

1) Find Fourier cosine Transform of f(x) defined by f(x) = cos x , 0 < x < a

= 0  , x > a

Solution : Fc{f(x)} = sx dx

sx dx sx dx

dx +

] (apply 0 to a)

2cosAcosB=cos(A+B)+cos(A-B)

+ cos (x-sx)] dx A=x, B=sx

dx]



sx dxsx dx

sx dx + 0

2) Find Fourier cosine Transform of f(x) defined by f(x) = x ,  0 < x < 1

2-x , 1 < x < 2

0 , x > 2

Solution : Fc{f(x)} = sx dx

sx dx +

)] ( apply 0 to 1) + [(2

) + ( 0 -

2 cos² s)

s) 

sx dx +



)] (1to 2)

3)Find Fourier sine & cosine Transform of 

Solution : Given f(x) = 2𝑒−5𝑥 + 5𝑒−2𝑥

Fs{f(x)} = sx dx

2𝑒−5𝑥 + 5𝑒−2𝑥

sx dx + 5 sx dx

5 sin sx – s cos sx )} (apply 0 to ∞)} sx

dx



2 sin sx – s cos sx )} (apply 0 to ∞)}

-0 )} + 5 {0

Similarly (ii) Fc{f(x)} = [

4) Find Fourier cosine Transform of (i) 𝑒−𝑎𝑥

cos ax , (ii) 𝑒−𝑎𝑥 sin ax Solution

= [ 2 { 0 -



:  Given f(x) = 𝑒−𝑎𝑥 cos ax (i)

Fc{f(x)}

=

x dx]

)x} (apply 

0 to ∞)

0)}]

(ii) Similarly Fs{f(x)} = Fs ]

5) Find Fourier cosine & sine Transform of 𝑒−𝑎𝑥 , a > 0 hence

sx dx

sx dx

sx dx

x dx +

-s)x + (a-s) sin (a-s)x} (apply 0 to ∞)

0 )} + {0 -



deduce (i) ds 

Solution : Let f(x) = 𝑒−𝑎𝑥

(ii) ds

+ s sin sx )] (apply 0 to ∞)

= Fc(s)-----------(1)=( – a + 0)]

Fs{f(x)} =

-a sin sx -

∞)

s cos sx )] (apply 0 to

Fs{f(x)} =

By Inverse cosine Transform

f(x) = sx ds

sx ds

Fc{f(x)} = sx dx

sx dx

sx dx

sx dx



−𝑎𝑥

sx ds =

By inverse sine Transform ,

f(x) = sx ds

sx ds

1

6) Find Fourier sine Transform of f(x) =
𝑥

sx dx

Solution : Fs{f(x)} =

𝑒−𝑎𝑥

7) Find Fourier sine Transform of 

that

, hence deduce

𝑥

sx ds =



Solution : Fs{f(x)} = sx dx

sx dx = I ---(1)

sx dx

sx dx

+

to

s sin sx )] (apply 0

∞)

Integrate on both sides w.r.t. s we get

I= a + c

put s = 0 on both sides we get {in (1) & (2)} 

0 = (0) + c

ds = a .

( – a + 0)]



) = Fs{f(x)}

8)Find Fourier cosine Transform of , and

(ii) Fourier sine Transform of

, We will find Fc{f(x)} = Fc{
Solution : Let f(x) =

sx dx
Fc{f(x)}

sx dx = I -------(1)

Differentiate on both sides w.r.t s



dx Diff

on both sides w.r.t ‘s’

We get dx

dx

dx



Put s = 0 on both sides

= I by (1) - I = 0

dx



i.e., Fc {f(x)} = Fc{ 

Now I =

From (2) &  (8) , we have

-

dx

there fore ,

From (3) & (5) , dx

solve (6) & (7) we get sub in (4)

dx = -



) , s < 2a

0 , s  

Fourier Cosine Transform , we have

sx ds]

sx ds

}(0 to 2a) -

2ax + cos 0)

)(0 to 2a)]

10) Find f(x) if its Fourier Sine Transform is 𝑒−𝑎𝑠

Solution : Given f(s) = 𝑒−𝑎𝑠

dx =

There fore Fs

9) Find the Inverse Fourier Cosine Transform of f(x) of fc(s) =

f(X) = sx ds

sx ds +



By definition of inverse sine transform

f(x) = sx ds

sx ds

-a sin sx – x cos sx)(0 to ∞)

-x)]

11) Find the Inverse Fourier Sine Transform f(x) of Fs

(or)

Find f(x) if its Fourier sine Transform is

Solution : By Fourier Inverse sine Transform f(x) = f(x) = sx ds = I



We get

Diff w.r.t. x

= I from (1)

Solution of (4) is I = -----------(5)



From (2) & (5)

If x = 0 ,I = 1 ,

Substitute in
(5) ⇒ f(x) = 

c₂𝑒−𝑥

⇒ f(x) =

(5)

I = 0 +

𝑒 −𝑥

(5)

(3) & (6)

From

If x = 0 , (3)

if x = 0 , (6) ⇒ c₁ - c₂ = -
2

𝜋
(𝑡𝑎𝑛−1 s)(0 to ∞)

2 𝜋
= - 𝜋 2 = -1

Now solve c₁ + c₂ = 1 &

c₁ - c₂ = -1 we get c₁ = 0 & c₂ = 1



Relation between Fourier and Laplace Transform:

Statement: If f(t) = g(t) , t > 0 then F{f(t)} = L{g(t)}

0 , t < 0

Proof : F{f(t)} =



f(x)](-

= 0 – is



Finite Fourier Transforms :-

Definition : The Finite Fourier sine Transform of f(x) , 0 < x < l is defined by

fsFs{f(x)} =

If 0 < x < 𝜋 , Fs{f(x)} = fs sx dx

The function f(x) is called the inverse finite Fourier sine transform of fs(s) and is

given by f(x) = ds

dx



If 0 < x < 𝜋, f(x)

Definition :

= sx

The finite Fourier sine Transform of f(x) , 0 < 

defined byx < l is

Fc{f(x)} = fc(s) =

If 0 < x < 𝜋 , Fc{f(x)} =

dx 

sx dx

The function f(x) is called inverse finite Fourier cosine transform of f(x) and is 

given

by f(x) = 𝐹𝑐−1{fc(s)} = fc(0) + ds f(x)

sx , (0, 𝜋)

1) Find the Fourier Finite cosine transform of f(x) = x , 0 < x < 𝜋 Solution : Fc{f(x)}

= fc(s) = sx dx

dx

2

= 𝐹𝑐−1{fc(s)} = 1 fc(0) + 𝜋

𝜋

Problem :

sx dx = ( ) (0 to

= (0 – 0)

𝑠= 1σ ∞ 𝑓𝑐(𝑠) cos



s = 1,2,3,……..

If s = 0 , fc(s) =

Therefore fc(s) =

𝑥

2) Find the Fourier

= , 0 < x < 𝜋

Finite sine transform of f(x)

𝜋

Fs{f(x)} = sx dx 

sx dx

nx dx

)

cos n

3) Find the Fourier Finite sine transform of f(x) = x³ in (0 , 𝜋) Solution : By definition 

the finite Fourier sine Transform is

Solution : Fs(n) = 0

𝜋 𝑥
sin nx dx =𝜋

dx =

] , s > 0

, s =0



)

Similarly Fc{f(x)} = 1] = fc(n)

²] , n = 1,2,3……

4) Find Finite sine Transform of f(x) = x in 0 < x < 4

Solution : Let f(x) is Fs{f(x)} = dx

u = x³ 3x² 6x 6 0 dv= sin nx dx

) + 6x (

sin )(0 to

4) –

. 4 . Cos n 

cos n



if n = 0 , fc(0) = dx = ) ( 0 to 4 ) = 8

Parseval’s Identity for Fourier Transforms :-

Statement : If f(s) & g(s) are Fourier Transform of f(x) & g(x) respectively then

g(x) dx

Proof : By the inverse Fourier Transform we have

g(x) =

Taking cojugate Complex on both sides in (1)

ds

ds

]

g(x) dx

² ds = ² dx

Now (iii) gc(s) ds =

g(x) dx =

f(s) ds

g(s) ds = g(x) dx ---------(2)



dx dx ]

ds

Therefore (3)

gs(s) ds =

² ds =

g(x) dx

² dx

Similarly for Cosine

Problem 1):) If f(x) = 1 , |x| < a

0 , |x| > a , Find Fourier Transform of f(x)

²

Deduce that

Solution : F{f(X)} = f(x) dx |x| < a means –a < x < a

𝑎𝑒𝑖𝑠𝑥− = .1. dx

(ii) Putting g(x) = f(x) in (2) we get

f(s) ds = f(x) dx

² ds =

For Sine Transform:



-a to a)

(2i sin as)

F{f(x)} = f(s)

ds

ds

ds = a

² ds = a

ds = a

a

Therefore ds =

f(s)

By parseval’s identity for Fourier Transform

² dx = ² ds

dx = ² ds



2)Find Fourier Transform of f(x) = 1 - x² , |x| ⪯ 1

0, |x| > 1 is [ sin s – s cos s] 

Identity Prove ThatUsing Parseval’s

dx =

Solution : :- F{f(x)} =

𝑢𝑑𝑣 = 𝑢𝑣 −  𝑣𝑑𝑢

(limits -1 to 1) u= (1 − x²) dv= 𝑒𝑖𝑠𝑥dx

du =-2x dx, v= 𝑒𝑖𝑠𝑥dx .

f(x) dx

- x² ) dx

dx



]

By parseval’s identity for

Fourier Transform

dx =² dx = ² ds



]²

ds =
15

8

]² ds = 2 .
15

𝜋
𝜋

]² dx =
15

s – s cos 𝑠)]² ds dx =

. 2. 16 ]² ds



-

If Z[f(n)]=F(Z) then Z[f(n-k)]=𝑍−𝑘F(Z)

Proof: we know that

Z[f(n)]=

0

consider Z[f(n-

k k+1 k+2 k+3 - - - - - - - ∞

are different forms) 

(since we are shifting f(n) to right)

-

Z[f(n-k)]=𝑍−𝑘𝐹(𝑍)



NOTE :- Z[f(n-k)]=𝑍−𝑘F(Z) putting k=1 ,we have

Z[f(n-1)]=𝑍−1𝐹(𝑍) putting k=2 ,we have Z[f(n-2)]=𝑍−2𝐹(𝑍) 

putting k=3 ,we have

Z[f(n-3)]=𝑍−3𝐹(𝑍)

2.Shifting f(n) to left :-

If Z[f(n)]=F(Z) then Z[f(n+k)]=𝑍𝑘[F(Z)-f(0)-f(1)𝑍−1 − f 2 𝑍−2 − −−−−−− − f(k-1)𝑍−(𝑘−1)]

In particular

(a)If k=1 then Z[f(n+1)]=Z[F(Z)-f(0)]

(b) If k=2 then Z[f(n+2)]=𝑍2[F(Z)-f(0)-f(1)𝑍−1]



(c) If k=3 then Z[f(n+3)]=𝑍3[F(Z)-f(0)-f(1)𝑍−1-f(2)𝑍2]

Problems:1.Prove Z(

- - - - - - - - - - - - - - and so on.

Solution- let f(n)=Z(

Z[

- expansion needs ‘Z’ in

denominator’s, for this,multiply &divide with ’Z’

] [x + -x) ]

we know that Z[f(n)]=



evaluate (a)Z(

Solution- we know that Z[f(n)]=
1

let f(n)= for n=0,1,2,3 - - -
𝑛!

Z[

=F(Z) (say) By  

shifting theorem

-

2.Find Z[ ] and using shifting theorem

and (b)Z(



-> Z[f(n+1)]=Z[F(Z)-F(0)]

2

- >Z[f(n+2)]=𝑍 𝐹 𝑍 − 𝐹 0 − 𝐹 1 𝑍

f(n+

! f(n+
!

−1

1

f(n)=
𝑛!



Multiplication by ‘n’:If Z[f(n)]=F(Z) then 

Z[nf



5𝑍2+3𝑍+12

5𝑍2+3𝑍+12

1

= lim 𝑍35𝑍4+3𝑍3+2(12𝑍−𝑍12)−45 𝑍−1 4

-f(0)] = 0



= lim 𝑍323−18𝑍3−[11+−20𝑍−𝑍1−24−5𝑍−3

= 23

𝑧 𝑧

→ (𝑍 − 1)4= (𝑧 − 1)2.(𝑧 − 1)2

=(𝑍2 + 1 − 2𝑍)(𝑍2 + 1 − 2𝑍)

=𝑍4 + 𝑍2 − 2𝑍3 + 𝑍2 + 1 − 2𝑍 − 2𝑍3 − 2𝑍 + 4𝑍2 =𝑍4 + 

6𝑍2 − 4𝑍3 − 4𝑍 + 1

INVERSE Z-TRANSFORM

𝑧→∞ 𝑍

= lim 𝑍35𝑍4+3𝑍3+12𝑍2−25((𝑍𝑍−41−)44𝑍3+6𝑍2−4𝑍+1)

𝑧→∞ 𝑍

= lim 𝑍35𝑍4+3𝑍3+12𝑍2−52𝑍(𝑍4+−201)4𝑍3−30𝑍2+20𝑍−5

𝑧→∞ 𝑍

= lim 𝑍323𝑍23.−𝑍184 1𝑍−2𝑍+−201 𝑍4−5

𝑧→∞ 𝑍



The symbol 𝑍−1 is the Inverse Z −

Transform.

CONVOLUTION 

THEOREM(v.v.imp):-

[where * is convolution operator]

F(Z).G(Z) = [f(0) + f(1)𝑍−1 + f 2 𝑍−2 + f 3 𝑍−3 + - - - - - +f(n)𝑍−𝑛+ - - - - -]

=Z[f(0)g(n)+f(n)g(n-1)+ - - - - - - -+f(n)g(0)]𝑍−1[F(Z).G(Z)]

=f(0)g(n)+f(n)g(n-1)+ - - - - - - -+f(n)g(0)

If 𝑍−1 𝐹 𝑍 = 𝑓 𝑛 and

We have Z[f(n)]=F(Z) which can be also written as f(n)=𝑍−1[𝐹(𝑍)]. 

Then f(n) is called inverse Z-transform of F(Z)

Thus finding the sequence {f(n)} from F(Z) is defined as Inverse Z-Transform.

𝑍−1𝐺 𝑍 = 𝑔 𝑛 then

Proof:- We have F(Z)=

[g(0) + g(1)𝑍−1 + g 2 𝑍−2 + g 3 𝑍−3 + - - - - - +g(n)𝑍−𝑛+ - - - - -]



Solution:-

(a)𝑍−1

[ ]

F(Z)= 𝑍=> f n
𝑍−𝑎

G(Z)= 𝑍=> g n
𝑍−𝑎

= 𝑍−1 𝑍

𝑍−𝑎

= 𝑍−1 𝑍

𝑍−𝑎

= 𝑎𝑛

= 𝑎𝑛

by convolution theorem , 𝑍 𝑔 𝑍−1𝐹

𝑍 . 𝐺 𝑍 = 𝑍−1 𝑍 . 𝑍

𝑍−𝑎 𝑍−𝑎

=σ𝑛𝑚=0𝑎𝑚. 𝑎𝑛−𝑚

Problems:-

1.Evaluate (a)𝑍−1 𝑏 𝑍−1

𝑍

𝑍−𝑎

2

𝑍

𝑍−𝑎

=𝑍−1  𝑍
.
𝑍

𝑍−𝑎 𝑍−𝑎

2



=σ𝑛𝑚=0𝑎𝑛

σ𝑛𝑚=0 1 

(n+1)times

=𝑎𝑛

=𝑎𝑛[1 + 1 + 1 + - - - - -+1]

=(n+1)𝑎𝑛

𝑏 𝑍−1 𝑍2

𝑍−𝑎 𝑍−𝑏

=𝑍−1 𝑍 . 𝑍

= 𝑍−1

𝑍−𝑎 𝑍−𝑏

F(Z)= 𝑍 => f n 𝑍 = 𝑎𝑛
𝑍−𝑎 𝑍−𝑎

𝑓𝑚 𝑔(𝑛 − 𝑚)

G(Z)= 𝑍=> g n = 𝑍−1

𝑍−𝑏 𝑍−𝑏by convolution

= 𝑏𝑛

theorem ,

𝑍−1𝐹 𝑍 . 𝐺 𝑍 = 𝑍−1

𝑍−𝑎 𝑍−𝑏

= σ𝑛𝑚=0𝑎𝑚 . 𝑏𝑛−𝑚

−1𝐹 𝑍 . 𝐺 𝑍 = 𝑓 𝑛 ∗

𝑍

𝑍 . 𝑍



= σ𝑛𝑚=0 𝑏𝑛. ( 𝑎𝑏)𝑚

= 𝑏𝑛 σ𝑛𝑚=0 (𝑎𝑏)𝑚

= 𝑏𝑛[(𝑎)0 + ( 𝑎)1 + ( 𝑎)2 + (𝑎)3 + - - - - - - - - +(𝑎)𝑛]
𝑏 𝑏 𝑏

this is in geometric progression,

2+a𝑟3+ - - - -+a𝑟𝑛−1+ - - - -

𝑏 𝑏

=𝑎(1−𝑟𝑛) , r<1 a+a𝑟
1−𝑟

𝑎(𝑟𝑛−1)

= , r>1
1−𝑟

𝑏𝑛1− 𝑎 𝑛+1

= 𝑏𝑎

1−
𝑏

𝑏𝑛1−𝑎𝑏𝑛𝑛++11



= 𝑏−𝑎

Put a=3 and b=4 we get

𝑍−1 𝑍2 = 4𝑛+1−3𝑛+1 = 4𝑛+1 − 3𝑛+1 𝑍−3 𝑍−4 4−3

2.Using Convolution theorem

2𝑛where ∗ is convolution operatorshow that

1

Solution: f(n)= g(n)=
𝑛! 𝑛!

𝑍−1 1 ∗ 1 =

𝑛! 𝑛! 𝑛!



!

- to (n+1) terms]



= 5𝑛σ𝑛𝑚=0 (45)𝑚

=5𝑛[(4)0 + (4)1 + (4)1 + ( 4)3 + - - - - - - - - +(4)𝑛]
5 5 5 5 5

=5𝑛 [1 + 4 + (4)2 + (4)3 + − − − − − − − − +(4)𝑛]
5 5 5 5

this is in geometric progression,

1 +a𝑟3+ - - - -+a𝑟𝑛−1+ - - - - =𝑎(1−𝑟𝑛) , r<1 a+a𝑟
1−𝑟

𝑎(𝑟𝑛−1)



= , r>1
1−𝑟

Partial Fractions Method:-

𝑍2+11𝑍𝑍+24 (non repeated linear factors) 𝑣. 𝑖𝑚𝑝

1.Find 𝑍−1



{ 𝑍 + 8 = 0 ⇒ 𝑍 = −8 & 𝑍 + 3 = 0 ⇒ 𝑧 = −3}

1 A=
5

now substitute A and B values in equation -1 we get



𝑍−1𝐹 𝑍 (𝑍−1 𝑎𝑛= 𝑍

𝑍−𝑎

⇒ 𝑍−1

𝑍−𝑎

𝑍 =𝑎𝑛)

2.Find the Inverse Z-Transform of
(𝑍−1)(𝑍−2)
𝑍

here we can resolve F(Z) into partialSolution:- let F(Z) = 

fractions directly as follows
1 1 1

F(Z) = Z[ ] = 𝑍
(𝑍−1)(𝑍−2)

𝑍

F(Z) =

𝑍−2 𝑍−1

𝑍

hence 𝑍−1𝐹 𝑍 = 𝑍−1 − 𝑍−1

𝑍−2 𝑍−1

= 2𝑛− 1𝑛

−

𝑍 𝑍



3.Find 𝑍−1 3𝑍2+𝑍



Geometric Progression:a) 

Finite –

a

b) Infinite –

eg; 1

a



put Z=-3 =>1=c(-3-2)

1 = -5c c=

now comparing the co-efficients of 𝑍2 on both sides

0=A+B



Difference Equations:-

Just as the Differential equations are used for dealing with continuous process in nature , the 

difference equations are used for dealing of discrete process.

Definition:-

A difference equation is a relation between the difference of an unknown function at one (or) 

more

general value of the argument.

B= substituting A,B and C 

values in equation-1,we get
𝐹(𝑍) 1 1 1 1 1

𝑍+3 𝑍2 𝑍−2 = 251 2𝑛 − 251 −3 𝑛 − 15𝑛(−3)𝑛

Solutions Of Difference Equations

1 1

F(Z) =

𝑍−1 𝑍+3 𝑍2 𝑍−2 = 𝑍−1[251 . 𝑍𝑍−2 − 251 𝑍+𝑧 3 − 15 . (𝑍+𝑧3)2]

= 1 2𝑛− 1

25 25

−3 𝑛− 1𝑛(−3)𝑛

5

∴ 𝑍−1



thus ∆𝑦𝑛+ 2𝑦𝑛= 0 𝑎𝑛𝑑

.

The solution of a difference equation is an expression for 𝑦𝑛which satisfies the given

.

The general solution of a difference equation is that in which the number of arbitrary constants is 

equal to the order of the difference equation.

Linear Difference Equation:-

The Linear difference equation is that in which 𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+3− − − − − − − etc occur to the 1𝑠𝑡

degree only and are not multiplied together.

The difference equation is called Homogeneous if f(n)=0,Otherwise it is called as 

NonHomogeneous equation (i.e:-f(n)

Working rule (or) Working Procedure:-

To solve a given linear difference equation with constant co-efficient by Z-transforms.

Step-1 :- Let Z(𝑦𝑛)=Z[y(n)] =Y(Z)

Step-2 :-Take Z-Transform on bothsides of the given difference equation.



Step-3 :-Use the formulae Z(𝑦𝑛) = 𝑌 𝑍

Z[𝑦𝑛+ 1] =Z[Y(Z)-𝑦0]

Z[𝑦𝑛+ 2] = 𝑍2[Y(Z)-𝑦0 − 𝑦1𝑍−1]

Step-4:-Simplify and find Y(Z) by transposing the terms to the right and dividing by the co-efficient of y(Z). 

Step-5:-Take the Inverse Z-Transform of Y(Z) and find the solution 𝑦𝑛

This gives 𝑦𝑛as a function of n which is the desired solution. Problems:-

1.Solve 𝑦𝑛+1 − 2𝑦𝑛 = 0 using Z −Transforms. 

Solution:-let Z[𝑦𝑛] = 𝑌 𝑍

Z[𝑦𝑛+1] = 𝑍 𝑌 𝑍 − 𝑦0 taking Z-Transform of the given equation we get Z[𝑦𝑛+1] −

2𝑍 𝑦𝑛= 0

𝑍 𝑌 𝑍 − 𝑦0 - 2Y(Z) = 0 

Y(Z)[Z-

Y(Z) = 𝑍−2𝑦0

𝑍−1𝑌 𝑍 = 𝑍−1 𝑍𝑍−2𝑦𝑜

𝑦𝑛=2𝑛𝑦𝑜

=> Z[Y(n)]=Y(Z)

𝑍−1𝑌 𝑍 = 𝑦𝑛

2.Solve the difference equation using Z-Transforms



𝜇𝑛+2 − 3𝜇𝑛+1 + 2𝜇𝑛= 0 Given that

𝜇0=0 , 𝜇1 = 1

Solution:-let Z(𝜇𝑛) = 𝜇 𝑍

Z(𝜇𝑛+1) = 𝑍[𝜇 𝑍 − 𝜇0]

Z(𝜇𝑛+2) = 𝑍2 𝜇 𝑍 − 𝜇0 − 𝜇𝑍1 now taking Z-Transform on both sides of 

the given equation we get

𝑍(𝜇𝑛+2) − 3𝑍(𝜇𝑛+1) + 2𝑍(𝜇𝑛) = 0𝑍2− 𝜇0 − 𝜇𝑍1

- 3𝑍[𝜇 𝑍− 𝜇0] +2𝜇 𝑍= 0 using the given𝜇 𝑍

conditions it reduces to
𝜇 𝑍

𝑍2− 0 − 1 - 3𝑍𝜇[𝜇𝑍 𝑍[ 𝑍−2 0] − 3+2𝑍𝜇+ 𝑍2 ] = 0

𝑍 𝑍

𝜇
𝑍= 𝑍 2 −3 𝑍 +2 = Z (or)

= ( 𝑍 −1 )𝑍 ( 𝑍 −2 )

= Z [ 𝑍 − 𝑍 ]



𝑍𝑍− − 𝑍−1 𝑍𝑍−1

𝑍 𝑍

= 𝑍−2 − 𝑍−1

on taking Inverse Z-Transform on both sides we get

𝑍−1𝜇 𝑍 = 𝑍−1 𝑍− 𝑍

𝑍−2 𝑍−1

𝜇𝑛=𝑍−1 2

𝜇𝑛= 2𝑛− 1

3.Solve the difference equation using Z-Transform

𝑦𝑛+2 − 4𝑦𝑛+1 + 3𝑦𝑛= 0

Given that 𝑦0 = 2 𝑎𝑛𝑑 𝑦1 = 4

Solution:- let Z[𝑦𝑛] = 𝑌 𝑍

Z[𝑦𝑛+1] = 𝑍 𝑌 𝑍 − 𝑦0 Z[𝑦𝑛+2] = 𝑍2 𝑌 𝑍 − 𝑦0 − 𝑦1𝑍−1

taking Z-Transform of the given equation we get

Z(𝑦𝑛+2) − 4𝑍(𝑦𝑛+1) + 3𝑍(𝑦𝑛) = 0

𝑍2𝑌 𝑍 − 𝑦0 − 𝑦1𝑍−1  - 4 𝑍 𝑌 𝑍 − 𝑦0 +3Y(Z) = 0 using  

the given conditions it reduces to

𝑍2𝑌 𝑍 − 2 − 4𝑍−1 - 4 𝑍 𝑌 𝑍 − 2 +3Y(Z) = 0



i.e:- Y(Z)[𝑍2 − 4𝑍 + 3] − 2𝑍2 − 4𝑍 + 8𝑍 =0

Y(Z)[𝑍2 − 4𝑍 + 3] =Z(2Z-4)

𝑍−1 𝑍−3

𝑦𝑛= 1+3𝑛

𝑍 + 𝑍−1 𝑍

sides we obtain

𝑍−1[𝑌 𝑍 ] = 𝑍−1

( )

Y(Z)= on taking Inverse Z-Transform on both


