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Iterative Algorithms: Measures of Progress and 

Loop Invariants

• An iterative algorithm to solve a computational problem is a 
bit like following a road, possibly long and difficult, from your 
start location to your destination. 

• With each iteration, you have a method that takes you a single 
step closer. 

• To ensure that you move forward, you need to have a measure 
of progress telling you how far you are either from your 
starting location or from your destination. 
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• You cannot expect to know exactly where the algorithm will go, 

so you need to expect some weaving and winding. 

• On the other hand, you do not want to have to know how to 
handle every ditch and dead end in the world.

• A compromise between these two is to have a loop invariant,
which defines a road (or region) that you may not leave. 

• As you travel, worry about one step at a time. 
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• You must know how to get onto the road from any start 
location. 

• From every place along the road, you must know what actions 
you will take in order to step forward while not leaving the 
road. 

• Finally, when sufficient progress has been made along the 
road, you must know how to exit and reach your destination in 
a reasonable amount of time. 

IFETCE/M.E(CSE)/IYEAR/I SEM/ADS/UNIT-I/PPT/VER 1.2

4



A Paradigm Shift: A Sequence of Actions vs a 

Sequence

of Assertions
• Iterative algorithms requires understanding the difference between a 

loop invariant, which is an assertion or picture of the computation at 

a particular point in time, and the actions that are required to 

maintain such a loop invariant.

• One of the first important paradigm shifts that programmers struggle 

to make is from viewing an algorithm as a sequence of actions to 

viewing it as a sequence of snapshots of the state of the computer.
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• Programmers tend to fixate on the first view, because code is a 

sequence of instructions for action and a computation is a 

sequence of actions.
• Imagine stopping time at key points during the computation and 

taking still pictures of the state of the computer.
• Then a computation can equally be viewed as a sequence of such 

snapshots. 

• Having two ways of viewing the same thing gives one both more 

tools to handle it and a deeper understanding of it.
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The Challenge of the Sequence-of-Actions View

• Suppose one is designing a new algorithm or explaining an 

algorithm to a friend.

• If one is thinking of it as sequence of actions, then one will 

likely start at the beginning: Do this. Do that. Do this. 

• Shortly one can get lost and not know where one is.

• To handle this, one simultaneously needs to keep track of how 

the state of the computer changes with each new action.

IFETCE/M.E(CSE)/I YEAR/I SEM/ADS/UNIT-I/PPT/VER 1.2 7



• In order to know what action to take next, one needs to have a 

global plan of where the computation is to go. 

• To make it worse, the computation has many IFs and LOOPS 

so one has to consider all the various paths that the 

computation may take.

Advantages of the Sequence of Snapshots View:

• This new paradigm is useful one from which one can think 

about, explain, or develop an algorithm.
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Steps to Develop an Iterative Algorithm

Iterative Algorithms:

• A good way to structure many computer programs is to store 

the key information you currently know in some data structure

• And then have each iteration of the main loop take a step 

towards your destination by making a simple change to this 

data.

IFETCE/M.E(CSE)/I YEAR/I SEM/ADS/UNIT-I/PPT/VER 1.2

9



Loop Invariant:

• A loop invariant expresses important relationships among the 

variables that must be true at the start of every iteration and 

when the loop terminates.

• If it is true, then the computation is still on the road. 

• If it is false, then the algorithm has failed.
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The Code Structure:

• The basic structure of the code is as follows.
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Proof of Correctness: 

• Naturally, you want to be sure your algorithm will work on all 

specified inputs and give the correct answer.

Running Time:

• You also want to be sure that your 

algorithm completes in a reasonable

amount of time.

The Most Important Steps:

• If you need to design an algorithm, do not start by typing in code 

without really knowing how or why the algorithm works.

• Instead, first accomplishing the following tasks. 
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Steps to Develop an Iterative Algorithm:

1.Specifications

2.Basic Steps

3.Measure of Progress

4.The Loop Invariant

5.Main Steps

6.Make Progress

7.Maintain Loop Invariant

8.Establishing the Loop Invariant

9.Exit Condition

10.Ending
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11. Termination and Running Time

12. Special Cases

13. Coding and Implementation Details

14. Formal Proof
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Different Types of Iterative Algorithms

• More of the Output—Selection Sort

1) Specifications: 

The goal is to rearrange a list of n values in no decreasing order.

2) Basic Steps: 

We will repeatedly select the smallest unselected element.

3) Measure of Progress:

The measure of progress is the number k of elements selected.
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4)The Loop Invariant:

The loop invariant states that the selected elements are the k 

smallest of the elements and that these have been sorted. The 

larger elements are in a set on the side.

5) Main Steps:

The main step is to find the smallest element from among those 

in the remaining set of larger elements and to add this newly 

selected element to the end of the sorted list of elements.

6) Make Progress: 

Progress is made because k increases.
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7) Maintain Loop Invariant:

• We must prove that loop-invariant & not exit−cond & codeloop

⇒ loop-invariant .

• By the previous loop invariant, the newly selected element is at 

least the size of the previously selected elements.

• By the step, it is no bigger than the elements on the side. 

• It follows that it must be the k + 1st element in the list. 

• Hence, moving this element from the set on the side to the end of 

the sorted list ensures that the selected elements in the new list are 

the k + 1 smallest and are sorted.
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8) Establishing the Loop Invariant: We must prove that pre-

cond & codepre-loop ⇒loop-invariant Initially, k = 0 are sorted 

and all the elements are set aside.

9) Exit Condition: 

Stop when k = n.

10) Ending: We must prove loop-invariant & exit-cond & 

codepost-loop ⇒post-cond . By the exit condition, all the 

elements have been selected, and by the loop invariant these 

selected elements have been sorted.
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11) Termination and Running Time: We have not considered 

how long it takes to find the next smallest element or to handle 

the data structures.

Typical Errors:

Be Clear: 

• The code specifies the current subinterval A[i.. j ]with two 

integers i and j .

• Clearly document whether the sublist includes the end points i 

and j or not. It does not  matter which, but you must be 

consistent. Confusion in details like this is the cause of many 

bugs.
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Math Details:

• Small math operations like computing the index of the middle 

element of the subinterval A(i.. j ) are prone to bugs. 

• Check for yourself that the answer is mid = [i+j/2]
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Recursion-Forward versus Backward

Recursion

• Recursion is more than just a programming technique. It has two 

other uses in computer science and software engineering, namely: 

• a way of describing, defining, or specifying things. 

• a way of designing solutions to problems (divide and conquer). 
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Stack of Stack Frames:

• Recursive algorithms are executed using a stack of stackframes.

Tree of Stack Frames:

• This is a useful way of viewing the entire computation at once. 

• It is particularly useful when computing the running time of the 

algorithm.

• However, the structure of the computation tree may be very 

complex and difficult to understand all at once.
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Friends, on Strong Induction:

• You construct for each friend an instance of the same 

computational problem that is smaller then your own.This is 

referred as subinstances. 

• Your friends magically provide you with the solutions to these. 

• You then combine these subsolutions into a solution for your 

original instance.

• I refer to this as the friends level of abstraction.

• If you prefer, you can call it the strong induction level of 

abstraction and use the word “recursion” instead of “friend.”
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Forward vs. Backward

• Recursion involves designing an algorithm by using it as if it 

already exists. At first this looks paradoxical. 

• Suppose, for example, the key to the

• house that you want to get into is in that same house. If you 

could get in, you could get the key. 

• Then you could open the door, so that you could get in. This is 

a circular argument.

• It is not a legal recursive program because the subinstance is 

not smaller.
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Working Forward vs. Backward

• An iterative algorithm works forward. 

• It knows about house i − 1. It uses a loop invariant to show 

that this house has been opened.

• It searches this house and learns that the key within it is that 

for house i. 

• Because of this, it decides that house i would be a good one to 

go to next.

IFETCE/M.E(CSE)/I YEAR/I SEM/ADS/UNIT-I/PPT/VER 1.2

25



• A recursion algorithm works backward. It knows about house i. It wants 

to get it open.

• It determines that the key for house i is contained in house i − 1. 

• Hence, opening house i − 1 is a subtask that needs to be accomplished.

Advantages of recursive algorithms over iterative ones: 

• The first is that sometimes it is easier to work backward than forward.

• The second is that a recursive algorithm is allowed to have more than 

one subtask to be solved. 

• This forms a tree of houses to open instead of a row of houses.
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Towers of Hanoi

• The towers of Hanoi is a classic puzzle for which the only 

possible way of solving it is to think recursively.

• Specification: The puzzle consists of three poles and a stack of 

N disks of different sizes.

• Precondition: All the disks are on the first of the three poles.

• Postcondition: The goal is to move the stack over to the last 

pole. See the first and the last parts of figure.
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• You are only allowed to take one disk from the top of the stack 

on one pole and place it on the top of the stack on another 

pole.

• Another rule is that no disk can be placed on top of a smaller 

disk.
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Checklist for Recursive Algorithms

• Writing a recursive algorithm is surprisingly hard when you 

are first starting out and surprisingly easy when you get it. 

• This section contains a list of things to think about to make 

sure that you do not make any of the common mistakes.
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1) Specifications

2) Variables

2.1) Your Input

2.2) Your Output

2.2.1) Every Path

2.2.2) Type of Output

2.3) Your Friend’s Input

2.4) Your Friend’s Output

2.5) Rarely Need New Inputs or

Outputs

2.6) No Global Variables or Global

Effects

2.7) Few Local Variables
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3)Tasks to Complete

3.1) Accept Your Mission

3.2) Construct Subinstances

3.3) Trust Your Friend

3.4) Construct Your Solution

3.5) Base Cases

The Stack Frame

• Tree of Stack Frames:

• Tracing out the entire computation of a recursive algorithm, 

one line of code at a time, can get incredibly complex. 
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• This is why the friends level of abstraction, which considers one 

stack frame at a time, is the best way to understand, explain, and 

design a recursive algorithm

• However, it is also useful to have some picture of the entire 

computation.

• For this, the tree-of-stack-frames level of abstraction is best.

• The key thing to understand is the difference between a particular 

routine and a particular execution of a routine on a particular 

input instance. 
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• A single routine can at one moment in time have many 

executions going on. Each such execution is referred to as a stack 

frame.

Stack of Stack Frames:

• The algorithm is actually implemented on a computer by a stack 

of stack frames. What is stored in the computer memory at any 

given point in time is only a single path down the tree. 

• The tree represents what occurs throughout time.
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Using a Stack Frame:

• Recall that a stack is a data structure in which either a new 

element is pushed onto the top or the last element to have been 

added is popped off

• Let us denote the top stack frame by A. When the execution of A 

makes a subroutine call to a routine with some input values, a 

stack frame is created for this new instance.

• This frame denoted B is pushed onto the stack after that for A. 
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• In addition to a separate copy of the local variables for the 

routine, it contains a pointer to the next line of code that A must 

execute when B returns.

• When B returns, its stack frame is popped, and A continues to 

execute at the line of code that had been indicated within B. 

• When A completes, it too is popped off the stack.
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Proving Correctness with

Strong Induction

Strong Induction:

• Strong induction is similar to induction, except that instead of 

assuming only S(n − 1) to prove S(n), you must assume all of 

S(0), S(1), S(2), . . . ,S(n − 1).

A Statement for Each n: 

For each value of n ≥ 0, let S(n) represent a Boolean statement. 

For some values of n this statement may be true, and for others it 

may be false.
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Goal: 

Our goal is to prove that it is true for every value of n, namely that ∀n 

≥0, S(n).

Proof Outline:

Proof by strong induction on n.

Induction Hypothesis: For each n ≥ 0, let S(n) be the statement that . . 

. . (It is important to state this clearly.)

Base Case:

Prove that the statement S(0) is true.

Induction Step: For each n ≥ 0, prove S(0), S(1), S(2), . . . , S(n − 1) ⇒
S(n).

Conclusion:

By way of induction, we can conclude that ∀n ≥ 0, S(n).
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Examples of Recursive Algorithms

Sorting and Selecting Algorithms:

• The classic divide-and-conquer algorithms are merge sort and 

quick sort. They bothhave the following basic structure.

General Recursive Sorting Algorithm:

• Take the given list of objects to be sorted (numbers, strings, 

student records, etc.).

• Split the list into two sublists.
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• Recursively have friends sort each of the two sublists.

• Combine the two sorted sublists into one entirely sorted list.

• This process leads to four different algorithms, depending on the 

following factors,

• Sizes

• Work

Operations on Integers:

• Raising an integer to a power bN, multiplying x × y, and matrix 

multiplication each have surprising divide-and-conquer 

algorithms.
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Ackermann’s Function

• If you are wondering just how slowly a program can run, 

consider the algorithm below.

• Assume the input parameters n and k are natural numbers.

Recurrence Relation: 

• Let Tk (n) denote the value returned by A(k, n). This gives 

T0(n) = 2 +n, T1(0) = 0, Tk (0) = 1 for k ≥ 2, and Tk (n) = 

Tk−1(Tk (n − 1)) for k > 0 and n > 0.
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Running Time: 

• The only way that the program builds up a big number is by 

continually incrementing it by one.

• Hence, the number of times one is added is at least ashuge as 

the value Tk (n) returned.

Recursion on Trees:

• One key application of recursive algorithms is to perform 

actions on trees, because trees themselves have a recursive 

definition
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Recursive Definition of Tree: A tree is either:

– an empty tree (zero nodes) or

– a root node with some subtrees as children.

– A binary tree is a special kind of tree where each node has 

a right and a left subtree

Tree Traversals:

A task one needs to be able to perform on a binary tree is to 

traverse it, visiting each node once, in one of three defined 

orders.
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• Before one becomes familiar with recursive programs, one 

tends to think about computation iteratively, “I visit this node 

first, then this one, then this one, and so on.” 

• Each iteration, the program says “I just visited this node, so 

now let me find the next node to visit.” Surprisingly, such a 

computation is hard to code.

• The reason is that binary trees by their very nature have a 

recursive structure.
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Examples

• Here is a list of problems involving binary trees.

• 1. Return the maximum of data fields of nodes.

• 2. Return the height of the tree.

• 3. Return the number of leaves in the tree. (A harder one.)

• 4. Copy the tree.
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Generalizing the Problem

• When writing a recursive algorithm for a problem it is easier to 

solve a more general version of the problem, providing more 

information about the original instance or asking for more 

information about subinstances.

Subinstance:

• It is better to combine the IsBSTtree and the Min and Max 

routines into one routine so that the tree only needs to be 

traversed once.
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Original Instance:

• Another elegant algorithm for the IsBST problem generalizes 

the problem in order to provide your friend more information 

about your subinstance. 

• Here the more general problem, in addition to the tree, will 

provide a range of values [min,max] and ask whether the tree 

is a BST with values within this range. 

• The original problem is solved using

• IsBSTtree(tree, [−∞,∞]).
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Heap Sort and Priority Queues

• Heap sort is a fast sorting algorithm that is easy to implement. 

• Like quick sort, it has the advantage of being done in place in 

memory, whereas merge and radix–counting sorts require an 

auxiliary array of memory to transfer the data to.

Completely Balanced Binary Tree:

• The values being sorted as stored in a binary tree that is 

completely balanced, i.e., every level of the tree is completely 

full except for the bottom level, which is filled in fromthe left.
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Definition of a Heap:

• A heap imposes a partial order on the set of values, requiring 

that the value of each node be greater than or equal to that of 

each of the node’s children.

• There are no rules about whether the left or the right child is 

larger.

Maximum at Root:

• An implication of the heap rules is that the root contains the 

maximum value. 

• The maximum may appear repeatedly in other places as well.
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The Heapify Problem:

Specifications:

• Precondition: The input is a balanced binary tree such that its 

left and right subtrees are heaps. (That is, it is a heap except that 

its root might not be larger than that of its children)

• Postcondition: Its values are rearranged in place to make it 

complete heap.
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Iterative Algorithm: 

• A good loop invariant would be “The entire tree is a heap except 

that nodei might not be greater or equal to both of its children.

• As well, the value of i’s parent is at least the value of i and of i’s 

children.”

• When i is the root, this is the precondition.

• The algorithm proceeds as in the recursive algorithm.

• Node i follows one path down the tree to a leaf.

• When i is a leaf, the whole tree is a heap.
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The MakeHeap Problem:

Specifications:

• Precondition: The input is an array of numbers, which can be 

viewed as a balanced binary tree of numbers.

• Postcondition: Its values are rearranged in place to make it 

heap.

The Heap Sort Problem:

Specifications:

• Precondition: The input is an array of numbers.

• Postcondition: Its values are rearranged in place to be in 

sorted order.
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Priority Queues

• Like stacks and queues, priority queues are an important ADT.

• Definition: A priority queue consists of:

– Data: A set of elements, each of which is associated with 

an integer that is referred to as the priority of the element.
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Operations:

Insert an Element: 

An element, along with its priority, is added to the queue. 

Change Priority:

The priority of an element already in the queue is changed. The 

routine is passed a pointer to the element within the priority 

queue and its new priority. Remove an Element: Removes and 

returns an element of the highest priority fromthe queue.

IFETCE/M.E(CSE)/I YEAR/I SEM/ADS/UNIT-I/PPT/VER 1.2 58



Representing Expressions with Trees

• consider how to represent multivariate expressions using binary 

trees.

• We will develop the algorithms to evaluate, copy, differentiate, 

simplify, and print such an expression. 

• Though these are seemingly complex problems, they have 

simplerecursive solutions.
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Recursive Definition of an Expression:

• Single variables x, y, and z and single real values are themselves 

expressions.

• If f and g are expressions, then f + g, f − g, f ∗ g, and f/g are also 

expressions.

Tree Data Structure: The recursive definition of an expression 

directly mirrors that of a binary tree. Because of this, a binary tree is 

a natural data structure for storing an expression. (Conversely, you 

can use an expression to represent a binary tree.)
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Non-Linear Data Structure 
Tree Part-3

Data Structures (DS)
GTU # 3130702

 Height/Weight – Balanced Tree
 Multiway Search Tree (B-Tree)



Balanced Tree

 Binary Search Tree gives advantage of Fast Search, but sometimes in few cases we are not able
to get this advantage. E.g. look into worst case BST

 Balanced binary trees are classified into two categories
 Height Balanced Tree (AVL Tree)

 Weight Balanced Tree
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Height Balanced Tree (AVL Tree)

 AVL tree is a height-balanced binary search tree.

 AVL tree is also a binary search tree but it is a balanced tree. A binary tree is said to be balanced
if, the difference between the heights of left and right subtrees of every node in the tree is either -
1, 0 or +1.

 In other words, a binary tree is said to be balanced if the height of left and right children of every
node differ by either -1, 0 or +1.

 In an AVL tree, every node maintains an extra information known as balance factor.

 The AVL tree was introduced in the year 1962 by G.M. Adelson-Velsky and E.M. Landis.

 An AVL tree is defined as follows...
An AVL tree is a balanced binary search tree. In an AVL tree, balance factor of every node is either -1, 0 or +1.
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Balance Factor

 Balance factor of a node is the difference between the heights of the left and right subtrees of
that node.

 The balance factor of a node is calculated either height of left subtree - height of right
subtree (OR) height of right subtree - height of left subtree.

In the following explanation, we calculate as follows...

Balance factor = heightOfLeftSubtree – heightOfRightSubtree
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Example of AVL Tree
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Example of AVL Tree
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Example of AVL Tree - Unbalanced
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AVL Tree Rotations

 In AVL tree, after performing operations like insertion and deletion

 we need to check the balance factor of every node in the tree.

 If every node satisfies the balance factor condition then we conclude the operation otherwise we
must make it balanced.

 Whenever the tree becomes imbalanced due to any operation we use rotation operations to make 
the tree balanced.

Rotation operations are used to make the tree balanced.

 Rotation is the process of moving nodes either to left or to right to make the tree balanced.
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AVL Tree Rotations

There are basically four types of rotations which are as follows:

1. L L rotation: Inserted node is in the left subtree of left subtree of A

2. R R rotation : Inserted node is in the right subtree of right subtree of A

3. L R rotation : Inserted node is in the right subtree of left subtree of A

4. R L rotation : Inserted node is in the left subtree of right subtree of A
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AVL Tree Rotations
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Single Left Rotation (LL Rotation)

In LL Rotation, every node moves one position to left from the current position. To understand LL Rotation, let us consider the following 
insertion operation in AVL Tree...
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Single Right Rotation (RR Rotation)

In RR Rotation, every node moves one position to right from the current position. To understand RR Rotation, let us consider the
following insertion operation in AVL Tree...
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Left Right Rotation (LR Rotation)
 The LR Rotation is a sequence of single left rotation followed by a single right rotation. 

 In LR Rotation, at first, every node moves one position to the left and one position to right          
from the current position. 

 To understand LR Rotation, let us consider the following insertion operation in AVL Tree...
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Right Left Rotation (RL Rotation)
The RL Rotation is sequence of single right rotation followed by single left rotation. 
In RL Rotation, at first every node moves one position to right and one position to left from the 
current position.
 To understand RL Rotation, let us consider the following insertion operation in AVL Tree...



Construct AVL Search Tree
Construct AVL Search tree by inserting following elements in order of 

their occurrence 6, 5, 4, 3, 2, 1
Insert 6

Insert 5

B

B

L

Critical Node

L

6

6

5

Insert 4

6

5

4B

Case 1
Right Rotation 

of Node 6

5

4 6B B

B

Insert 3

5

4 6

B 3

L B

L

Insert 2
5

6

3

2

4

B

L

Critical Node Case 1
Right Rotation 

of Node 4

3

2 4

5

6

B B

B B

L

Insert 1

2

3

2 4

5

6

L B

L B

Critical Node

1B

Case 1
Right Rotation 

of Node 54

3

2

1

5

64B B B

L B

B



Construct AVL Search Tree
Construct AVL Search tree by inserting following elements in order of 

their occurrence 64, 1, 44, 26, 13, 110, 98, 85
Insert 64

Insert 1

B

B

L

64

64

1

Insert 44

Critical Node 64

1

44B

R

Case 2: Left Right Rotation
Left Rotation of Left Child 1

Followed By
Right Rotation of Parent 64

Left Rotation of Left Child 1

44

1

64

Right Rotation 
of Parent 64

44

1 64B B

B

Insert 26

44

1 64

, 13

26

13

B

R

B

L

B’

L’

Critical 
Node

Case 3: Right Left Rotation
Right Rotation of Right Child 26

Followed By
Left Rotation of Parent 1

Right Rotation 
of Right Child 26 13

26

1

44

64
Left Rotation 

of Parent 1

13

261

44

64

B

B B

L



Construct AVL Search Tree
Construct AVL Search tree by inserting following elements in order of 

their occurrence 64, 1, 44, 26, 13, 110, 98, 85
Insert 110

13

261

44

64

B 110

, 98

98

BB

RB

B

B’

L’

Critical Node

Case 3: Right Left Rotation
Right Rotation of Right Child 110

Followed By
Left Rotation of Parent 64

Right Rotation 
of Right Child 110

13

261

44

64

98

110

Left Rotation 
of Parent 64

13

261

44

98

64 110B B B B

BB

B

Insert 85

13

261

44

98

64

85

110

B

BRBB

B L

R



Construct AVL Search Tree
Construct AVL Search tree by inserting following elements in order of 

their occurrence 60,73,75,76,79,81,82,300,0,5,73
Insert 60

B 60

Insert 73

60

73B

R

Insert 75

60

73

75B

R

Critical Node

Case 4
Left Rotation 

of Node 60

73

7560
B B

B

73

7560

Insert 76

76B

RB

R

,79

79 B’

R’

Critical

Case 4
Left Rotation 

of Node 75

73

60 76

7975B B

BB

R

Insert 81

73

60 76

7975

81B

RB

RB

Critical Node

Case 4
Left Rotation 

of Node 73

75

76

79

81

73

60 75B B

B

B

R

B

Insert 82

76

79

81

73

60 75

82B

R

Critical 

Case 4
Left Rotation 

of Node 79

76

81

82

73

60 75 79
B B B B

B B

B



Construct AVL Search Tree
Construct AVL Search tree by inserting following elements in order of 

their occurrence 60,73,75,76,79,81,82,300,0,5,73
Insert 300

76

81

82

73

60 75 79

3000

, 0

B B

L
B B

R

L R

B
Insert 5

76

81

82

73

60 75 79

3000

5B

R

Critical
Case 2: Left Right Rotation,
Left Rotation of Left Child 0, 

Followed By
Right Rotation of Parent 60

76

81

82

73

5 75 79

3000 60

Insert 73

Can not Insert 73 as duplicate key found



Deleting node from AVL Tree

 If element to be deleted does not have empty right sub-tree, then element is replaced with its In-
Order successor and its In-Order successor is deleted instead

 During winding up phase, we need to revisit every node on the path from the point of deletion up
to the root, rebalance the tree if require

28

23

22 26

27

32

30 34

31 36B B B

B R R R

R B

B



Deleting node from AVL Tree
28

23

22 26

27

32

30 34

31 36

In-Order Traversal
22, 23, 26, 27, 28, 30, 31, 32, 34, 36 

Delete 28
28

23

22 26

27

32

30 34

31 36

30

31

B B

B R R R

R R

B

Delete 30
30

23

22 26

27

32

31 34

36

31

B

R

Critical Node

Case 4: 
Left Rotation of

Node 32

31

23

22 26

27

34

32 36

B

B R B B

R B

L

B



Deleting node from AVL Tree
73

13

10 28

75

74 89

5

Delete 73, 74

In-Order Traversal
5, 10, 13, 28, 73, 74, 75, 89

73

13

10 28

75

74 89

5

Delete 73

74

B

L B B

L R

L

Delete 74

74

13

10 28

75

89

5

75

89

B

L B

L B

Critical
Case 1: Right Rotation 

of Node 75 

13

10 75

5 892828 B B B

L B

B



Weight Balanced Tree

 In a weight balanced tree, the nodes are arranged on the basis of the knowledge available on the
probability for searching each node

 The node with highest probability is placed at the root of the tree

 The nodes in the left sub-tree are less in ranking as well as less in probability then the root node

 The nodes in the right sub-tree are higher in ranking but less in probability then the root node

 Each node of such a Tree has an information field contains the value of the node and count
number of times node has been visited



Weight Balanced Tree

P

E

K

G M

T

S V

23

2120

15

11 10

14 13

Probability



Weight Balanced Tree

M 2

G 4

D 4 L 5

T 3

P 6 Z 1

Ordered Tree

P 6

P

D G
LM

T
Z

L 5

G 4

D 4

M 2

T 3

Z 1



Multiway Search Tree (B - Tree)

 The nodes in a binary tree like AVL tree contains only one record

 AVL tree is commonly stored in primary memory

 In database applications where huge volume of data is handled, the search tree can not be
accommodated in primary memory

 B-Trees are primarily meant for secondary storage

 B-Tree is a M-way tree which can have maximum of M Children

10,  15,  20

2, 3 11, 14 16 21

4 – way Tree



Multiway Search Tree (B - Tree)

 An M- way tree contains multiple keys in a node

 This leads to reduction in overall height of the tree

 If a node of M-way tree holds K keys then it will have k+1 children

K1,  K2,  K3

No of Keys = 3

No of Ways or children = 4



Multiway Search Tree (B - Tree)

 A tree of order M is a M-way search tree with the following properties
1. The Root can have 1 to M-1 keys

2. All nodes (except Root) have (M-1)/2 to (M-1) keys

3. All leaves are at the same level

4. If a node has ‘t’ number of children, then it must have ‘t-1’ keys

5. Keys of the nodes are stored in ascending order

K0, K1,  K2, ……… ,Kn-1

P0 P1 P2 Pn-1 Pn



Multiway Search Tree (B - Tree)

 K0, K1, K2, ……… ,Kn-1 are keys stored in the node

 Sub-Trees are pointed by P0, P1, P2, ……… ,Pn then
 K0 >= all keys of sub-tree P0

 K1 >= all keys of sub-tree P1

 ………..

 ………..

 Kn-1 >= all keys of sub-tree Pn-1

 Kn-1 < all keys of sub-tree Pn

K0, K1,  K2, ……… ,Kn-1

P0 P1 P2 Pn-1 Pn



Multiway Search Tree (B - Tree)

20

10,  15 25,  40,  50

2,  8 11 16,  18 22 30,  35 42,  44 55,  60

B-Tree of Order 4 (4 way Tree)



Insertion of Key in B-Tree

1. If Root is NULL, construct a node and insert key

2. If Root is NOT NULL
I. Find the correct leaf node to which key should be added

II. If leaf node has space to accommodate key, it is inserted and sorted

III. If leaf node does not have space to accommodate key, we split node into two parts



Split Node (5 way Tree, max 4 Keys)

5,  10,  15,  20
P

Insert - 3

3,  5,  10,  15,  20
Overflow

10

3,  5 15,  20

1,  5,  9,  11

Insert - 3

1,  3,  5,  9,  11
Overflow

5

1,  3 9,  11



Split Node (5 way Tree, max 4 Keys)

10,  20,  30,  40

3,  5,  6,  8 12,  14 21,  25,  27 31,  35 42,  45,  48

10,  20,  30,  40

3,  5,  6,  8 12,  14 21,  25,  27 31,  35 42,  45,  48

Insert - 38

,38



Split Node (5 way Tree, max 4 Keys)

10,  20,  30,  40

3,  5,  6,  8 12,  14 21,  25,  27 31,  35,  38 42,  45,  48

Insert 7

10,  20,  30,  40

3, 5, 6,   , 8 12,  14 21,  25,  27 31,  35,  38 42,  45,  487

Overflow



Split Node (5 way Tree, max 4 Keys)

10,  20,  30,  40

3, 5 12,  14 21,  25,  27 31,  35,  38 42,  45,  48

6, Overflow

12,  14 21,  25,  27 31,  35,  38 42,  45,  48

6,  10 30, 40

20

7, 8

3, 5 7, 8



Construct M-Way Tree
Construct 5 Order (5 Way) Tree from following data

1, 7, 6, 2, 11, 5, 10, 13, 12, 20, 16, 24, 3, 4, 18, 19, 14, 25

We are asked to create 5 Order Tree (5 Way Tree) maximum 4 records can be accommodated in a node

Insert 1

1

Insert 7

1,  7

Insert 6

1,  6,  7

Insert 2

1,  2,  6,  7

Insert 11

1,  2,  6,  7, 11

Overflow 1,  2 7,  11

6

Insert 5

1,2,5 7,11

6

Insert 10

1,2,5 7,10,11

6

Insert 13

1,2,5 7,10,11,13

6



Construct M-Way Tree
Construct 5 Order (5 Way) Tree from following data

1, 7, 6, 2, 11, 5, 10, 13, 12, 20, 16, 24, 3, 4, 18, 19, 14, 25

Insert 12

1,2,5 7,10,11,12,13

6
Overflow

1,2,5

6, 11

7,10 12,13

Insert 20, 16, 24

1,2,5

6, 11

7,10 12,13,16,20,24
Overflow

6, 11, 16

1,2,5 7,10 12,13 20,24

Insert 3,4

6, 11, 16

1,2, 3,4,5 7,10 12,13 20,24

Overflow

3,  6,  11,  16

7,10 12,13 20,244,51,2



Construct M-Way Tree
Construct 5 Order (5 Way) Tree from following data

1, 7, 6, 2, 11, 5, 10, 13, 12, 20, 16, 24, 3, 4, 18, 19, 14, 25

Insert 18,19,14
3,  6,  11,  16

7,10 12, 13, 14 18, 19, 20, 244,51,2

Insert 25
3,  6,  11,  16

7,10 12, 13, 14 18, 19, 20, 24, 254,51,2
Overflow

3,  6,  11,  16, 20 Overflow

11

3, 6 16, 20

7,10 12, 13, 144,51,2 18, 19 24, 25
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Deletion is also performed at the leaf nodes.
The node which is to be deleted can either be a leaf node or an internal node.

Following algorithm needs to be followed in order to delete a node from a B tree.
1. Locate the leaf node.
2. If there are more than m/2 keys in the leaf node then delete the desired key from the
node.
3. If the leaf node doesn't contain m/2 keys then complete the keys by taking the element
from right or left sibling.

3.1 If the left sibling contains more than m/2 elements then push its largest element
up to its parent and move the intervening element down to the node where the
key is deleted.

3.2 If the right sibling contains more than m/2 elements then push its smallest
element up to the parent and move intervening element down to the node where
the key is deleted.

Deletion - M-Way Tree



Data Structures (DS)
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4. If neither of the sibling contain more than m/2 elements then create a new leaf node by
joining two leaf nodes and the intervening element of the parent node.

5. If parent is left with less than m/2 nodes then, apply the above process on the parent too.

If the the node which is to be deleted is an internal node, then replace the node with its in-
order successor or predecessor. Since, successor or predecessor will always be on the leaf
node hence, the process will be similar as the node is being deleted from the leaf node

Deletion - M-Way Tree



Data Structures (DS)
GTU # 3130702Deletion in B-Tree

For deletion in b tree we wish to remove from a leaf. T
There are three possible case for deletion in b tree.

Let k be the key to be deleted, x the node containing the key. 

Then the cases are:



Data Structures (DS)
GTU # 3130702Case-I

If the key is already in a leaf node, and removing it doesn’t cause that leaf node to have too
few keys, then simply remove the key to be deleted. key k is in node x and x is a leaf, simply
delete k from x.



Data Structures (DS)
GTU # 31307026 deleted
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Case-II
If key k is in node x and x is an internal node, there are three cases to consider:

Case-II-a

If the child y that precedes k in node x has at least t keys (more than the 

minimum), then find the predecessor key k' in the subtree rooted at y. 

Recursively delete k' and replace k with k' in x



Data Structures (DS)
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Case-II-b

Symmetrically, if the child z that follows k in node x has at least t keys, 

find the successor k' and delete and replace as before. Note that 

finding k' and deleting it can be performed in a single downward pass.
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Time and Space complexity of Binary Search Tree (BST)

OPERATION WORST CASE AVERAGE CASE BEST CASE SPACE

Search O(N) O(logN) O(1) O(N)

Insert O(N) O(logN) O(1) O(N)

Delete O(N) O(logN) O(N) O(N)
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Time & Space Complexity of AVL Tree operations

OPERATION BEST CASE AVERAGE 

CASE

WORST CASE

Insert O (log n) O (log n) O (log n)

Delete O (log n) O (log n) O (log n)

Search O (1) O (log n) O (log n)

Traversal O (log n) O (log n) O (log n)
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B-Tree : Searching and Insertion

Complexity

•Worst case search time complexity: Θ(logn)

•Average case search time complexity: Θ(logn)

•Best case search time complexity: Θ(logn)

•Average case Space complexity: Θ(n)

•Worst case Space complexity: Θ(n)
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Non-Linear Data Structure 
Tree Part-2

Data Structures (DS)
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Red - Black Tree
 We can d

 Red Black Tree is a Binary Search Tree in which every node is colored either RED or BLACK.

Define a Red Black Tree as follows...

Red Black Tree is a Binary Search Tree in which every node is colored either RED or BLACK.



Preorder Traversal

 Preorder traversal of a binary tree is defined as follow
1. Process the root node

2. Traverse the left subtree in preorder

3. Traverse the right subtree in preorder

 If particular subtree is empty (i.e., node has no left or
right descendant) the traversal is performed by doing
nothing.

 In other words, a null subtree is considered to be fully
traversed when it is encountered.

A

B

C E

D

G

F

A B C D E F G

Preorder traversal of a given tree as

✓

✓

✓

✓

✓

✓

✓



Inorder Traversal

 Inorder traversal of a binary tree is defined as follow
1. Traverse the left subtree in Inorder

2. Process the root node

3. Traverse the right subtree in Inorder

A

B

C E

D

G

F

ABC DE F G

Inorder traversal of a given tree as

✓

✓

✓

✓

✓

✓

✓



Postorder Traversal

 Postorder traversal of a binary tree is defined as follow
1. Traverse the left subtree in Postorder

2. Traverse the right subtree in Postorder

3. Process the root node

A

B

C E

D

G

F

ABC DEF G

Postorder traversal of a given tree as

✓

✓

✓

✓

✓

✓

✓



Converse Traversal

 If we interchange left and right words in the preceding definitions, we obtain three new traversal
orders which are called
 Converse Preorder Traversal: A D G E F B C

 Converse Inorder Traversal: G D F E A B C

 Converse Postorder Traversal: G F E D C B A



Write Pre/In/Post Order Traversal

1

2 3

4

5

50

25 75

22 40

15 30

60 80

90

15

3 1

6 22

455

23 65

7834



Linked Representation of Binary Tree

A

B

C E

D

G

F

DATALPTR RPTR

Typical node of Binary Tree A

B D

C E G

F

T



Algorithm of Binary Tree Traversal

 Preorder Traversal - Procedure: RPREORDER(T)

 Inorder Traversal - Procedure: RINORDER(T)

 Postorder Traversal - Procedure: RPOSTORDER(T)



Procedure: RPREORDER(T)

 This procedure traverses the tree in preorder, in a recursive manner.

 T is root node address of given binary tree

 Node structure of binary tree is described as below

DATALPTR RPTR

Typical node of Binary Tree

1. [Check for Empty Tree]
IF    T = NULL
THEN write (‘Empty Tree’)

return
ELSE write (DATA(T))

2. [Process the Left Sub Tree]
IF LPTR (T) ≠ NULL
THEN RPREORDER (LPTR (T))

3. [Process the Right Sub Tree]
IF RPTR (T) ≠ NULL
THEN RPREORDER (RPTR (T))

4. [Finished]
Return



Procedure: RINORDER(T)

 This procedure traverses the tree in InOrder, in a recursive manner.

 T is root node address of given binary tree.

 Node structure of binary tree is described as below.

DATALPTR RPTR

Typical node of Binary Tree

1. [Check for Empty Tree]
IF T = NULL
THEN write (‘Empty Tree’)

return
2. [Process the Left Sub Tree]

IF LPTR (T) ≠ NULL
THEN RINORDER (LPTR (T))

3. [Process the Root Node]
write (DATA(T))

4. [Process the Right Sub Tree]
IF RPTR (T) ≠ NULL
THEN RINORDER (RPTR (T))

5. [Finished]
Return



Procedure: RPOSTORDER(T)

 This procedure traverses the tree in PostOrder, in a recursive manner.

 T is root node address of given binary tree.

 Node structure of binary tree is described as below.

DATALPTR RPTR

Typical node of Binary Tree

1. [Check for Empty Tree]
IF T = NULL
THEN write (‘Empty Tree’)

return
2. [Process the Left Sub Tree]

IF LPTR (T) ≠ NULL
THEN RPOSTORDER (LPTR (T))

3. [Process the Right Sub Tree]
IF RPTR (T) ≠ NULL
THEN RPOSTORDER (RPTR (T))

4. [Process the Root Node]
write (DATA(T))

5. [Finished]
Return



Construct Binary Tree from Traversal
Construct a Binary tree from the given Inorder and Postorder traversals

Inorder     : D G B A H E I C F 
Postorder : G D B H I E F C A

• Step 1: Find the root node 
• Preoder Traversal – first node is root node 
• Postoder Traversal last node is root node

• Step 2: Find Left & Right Sub Tree
• Inorder traversal gives Left and right sub tree

A

H,E,I,C,FD,G,B

Inorder     : D G B A H E I C F 

Postorder : G D B H I E F C AA

A A

B

D,G

C

H,E,I F

A

B C

FD

G

E

H I



Construct Binary Tree from Traversal
Inorder   : Q B K C F A G P E D  H RPreorder : G B Q A C K F P D  E R HG G

G

Q B K C F A P E D  H R

G

K C F A

B

Q E D  H R

P

G

B

Q

P

K C F

A

H R

D

G

B

Q

P

A D

C

K F

E E R

H



Linked Representation of Binary Tree

A

B

C E

D

G

F

DATALPTR RPTR

Typical node of Binary Tree A

B D

C E G

F

T



Threaded Binary Tree

 The wasted NULL links in the binary tree storage representation can be replaced by threads

 A binary tree is threaded according to particular traversal order. e.g.: Threads for the inorder
traversals of tree are pointers to its higher nodes, for this traversal order

 In-Threaded Binary Tree
 If left link of node P is null, then this link is replaced by the address of its predecessor

 If right link of node P is null, then this link is replaced by the address of its successor

 Because the left or right link of a node can denote either structural link or a thread, we must
somehow be able to distinguish them



Threaded Binary Tree

 Method 1:- Represent thread a Negative address

 Method 2:- To have a separate Boolean flag for each of left and right pointers, node structure for
this is given below

DATALTHREAD RPTR

Typical node of Threaded Binary Tree

LPTR RTHREAD

• LTHREAD = true = Denotes leaf thread link
• LTHREAD = false = Denotes leaf structural link
• RTHREAD = true = Denotes right threaded link
• RTHREAD = false = Denotes right structural link

Head node is simply another node which serves as the predecessor and 
successor of first and last tree nodes. 

Tree is attached to the left branch of the head node.

HEAD



Threaded Binary Tree

A

B

C E

D

G

F

A

B D

C E G

F
C  B  A  E  F  D  G

Inorder Traversal

HEAD

Fully In-Threaded Binary Tree



Threaded Binary Tree

A

B

C F

E

H

G

C B D A F G E H
Inorder Traversal
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Advantages of Threaded Binary Tree

 Inorder traversal is faster than unthreaded version as stack is not required.

 Effectively determines the predecessor and successor for inorder traversal, for unthreaded tree
this task is more difficult.

 A stack is required to provide upward pointing information in binary tree which threading
provides without stack.

 It is possible to generate successor or predecessor of any node without having over head of
stack with the help of threading.



Disadvantages of Threaded Binary Tree

 Threaded trees are unable to share common sub trees.

 If Negative addressing is not permitted in programming language, two additional fields are
required.

 Insertion into and deletion from threaded binary tree are more time consuming because both
thread and structural link must be maintained.



Binary Search Tree (BST)

 A binary search tree is a binary tree in which each node possessed a key that satisfy the
following conditions
1. All key (if any) in the left sub tree of the root precedes the key in the root

2. The key in the root precedes all key (if any) in the right sub tree

3. The left and right sub trees of the root are again search trees



Construct Binary Search Tree (BST)
Construct binary search tree for the following data

50 , 25 , 75 , 22 , 40 , 60 , 80 , 90 , 15 , 30 

50

25 75

22 40 60 80

9015 30

Construct binary search tree for the following data
10, 3, 15, 22, 6, 45, 65, 23, 78, 34, 5



Search a node in Binary Search Tree

 To search for target value.

 We first compare it with the key at root of the tree.

 If it is not same, we go to either Left sub tree or Right sub tree as appropriate and repeat the
search in sub tree.

 If we have In-Order List & we want to search for specific node it requires O(n) time.

 In case of Binary tree it requires O(Log2n) time to search a node.



Delete node from Binary Search Tree

a

Delete node a

Delete from Leaf Node

b

a Delete node a b

Delete from Non Terminal (Empty Left Sub Tree)



Delete node from BST

C

a

b

Delete node a

C

b

Delete from Non Terminal (Neither Sub Tree is Empty)
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Red - Black Tree
 Red Black Tree is a Binary Search Tree in which every node is colored either RED or BLACK.

We can define a Red Black Tree as follows...

Red Black Tree is a Binary Search Tree in which every node is colored either RED or BLACK.

 Every Red Black Tree has the following properties.

Properties of Red Black Tree

 Property #1: Red - Black Tree must be a Binary Search Tree.

 Property #2: The ROOT node must be colored BLACK.

 Property #3: The children of Red colored node must be colored BLACK. (There should not be two consecutive RED nodes).

 Property #4: In all the paths of the tree, there should be same number of BLACK colored nodes.

 Property #5: Every new node must be inserted with RED color.

 Property #6: Every leaf (e.i. NULL node) must be colored BLACK.
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Introduction 

 Many algorithms (divide and conquer) are recursive in nature.

 When we analyze them, we get a recurrence relation for time complexity.

 We get running time as a function of 𝒏 (input size) and we get the running time on inputs of
smaller sizes.

 A recurrence is a recursive description of a function, or a description of a function in terms of
itself.

 A recurrence relation recursively defines a sequence where the next term is a function of the
previous terms.



Methods to Solve Recurrence

 Substitution

 Homogeneous (characteristic equation)

 Inhomogeneous

 Master method

 Recurrence tree

 Intelligent guess work

 Change of variable

 Range transformations



Substitution Method – Example 1 

 We make a guess for the solution and then we use mathematical induction to prove the guess
is correct or incorrect.

 Replacing 𝑛 by 𝑛 − 1 and 𝑛 − 2, we can write following equations.

 Substituting equation 3 in 2and equation 2 in 1we have now,

Example 1:

𝑻(𝒏) = 𝑻(𝒏 − 𝟏) + 𝒏

Time to solve the 
instance of size 𝑛

Time to solve the 
instance of size 𝑛 − 1

𝑻 𝒏 − 𝟏 = 𝑻 𝒏 − 𝟐 + 𝒏 − 𝟏

𝑻 𝒏 − 𝟐 = 𝑻 𝒏 − 𝟑 + 𝒏 − 𝟐

1

2

3

𝑻(𝒏) = 𝑻(𝒏 − 𝟑) + 𝒏 − 𝟐 + 𝒏 − 𝟏 + 𝒏 4



Substitution Method – Example 1 

 From above, we can write the general form as,

 Suppose, if we take 𝑘 = 𝑛 then,

𝑻(𝒏) = 𝑻(𝒏 − 𝟑) + 𝒏 − 𝟐 + 𝒏 − 𝟏 + 𝒏 4

𝑻 𝒏 = 𝑻 𝒏 − 𝒌 + (𝒏 − 𝒌 + 𝟏) + (𝒏 − 𝒌 + 𝟐) + …+ 𝒏

𝑻 𝒏 = 𝑻 𝒏 − 𝒏 + (𝒏 − 𝒏 + 𝟏) + (𝒏 − 𝒏 + 𝟐) + …+ 𝒏

𝑻 𝒏 = 𝟎 + 𝟏 + 𝟐 + …+ 𝒏

𝑻 𝒏 =
𝒏 𝒏 + 𝟏

𝟐
= 𝑶 𝒏𝟐



Substitution Method – Example 2 

𝑡 𝑛 = ቊ
𝑐1 𝑖𝑓 𝑛 = 0

𝑐2 + 𝑡 𝑛 − 1 𝑜/𝑤

 Rewrite the equation, 𝑡 𝑛 = 𝑐2 + 𝑡(𝑛 − 1)

 Now, replace 𝐧 by 𝐧 – 𝟏 and 𝐧 − 𝟐
𝑡 𝑛 − 1 = 𝑐2 + 𝑡(𝑛 − 2)
𝑡 𝑛 − 2 = 𝑐2 + 𝑡(𝑛 − 3)

 Substitute the values of 𝐧 – 𝟏 and 𝐧 − 𝟐
𝑡 𝑛 = 𝑐2 + 𝑐2 + 𝑐2 + 𝑡(𝑛 − 3)

 In general,
𝑡 𝑛 = 𝑘𝑐2 + 𝑡(𝑛 − 𝑘)

 Suppose if we take 𝑘 = 𝑛 then,
𝑡 𝑛 = 𝑛𝑐2 + 𝑡 𝑛 − 𝑛 = 𝑛𝑐2 + 𝑡 0

𝑡(𝑛) = 𝑛𝑐2 + 𝑐1 = 𝑶 𝒏

∴ 𝑡 𝑛 − 1 = 𝑐2 + 𝑐2 + 𝑡(𝑛 − 3)



Substitution Method Exercises

 Solve the following recurrences using substitution method.

1. T n = ቊ
1 if n = 0 or 1

T n − 1 + n − 1 o/w

2. T (n) = T (n − 1) + 1 and T (1) = θ (1).



Homogeneous Recurrence 

 Recurrence equation
𝑎0𝑡𝑛 + 𝑎1𝑡𝑛−1 + 𝑎2𝑡𝑛−2 +⋯+ 𝑎𝑘𝑡𝑛−𝑘 = 0

 The equation of degree 𝑘 in 𝑥 is called the characteristic equation of the recurrence,
𝑝 𝑥 = 𝑎0𝑥

𝑘 + 𝑎1𝑥
𝑘−1 +⋯+ 𝑎𝑘 𝑥

0

 Which can be factorized as,

𝑝 𝑥 =ෑ

𝑖=1

𝑘

𝑥 − 𝑟𝑖

 The solution of recurrence is given as, 

𝒕𝒏 =

𝒊=𝟏

𝒌

𝒄𝒊𝒓𝒊
𝒏



Homogeneous Recurrence – Example 1 : Fibonacci Series

 Fibonacci series Iterative Algorithm

 Analysis of Iterative Algorithm: If we count all arithmetic operations at unit cost; the
instructions inside for loop take constant time 𝑐. The time taken by the for loop is bounded
above by 𝑛, 𝑖. 𝑒., 𝒏𝒄 = 𝛉(𝒏)

Function fibiter(n)

i ← 1; j ← 0;

for k ← 1 to n do

j ← i + j;

i ← j – i;

return j

Case 1



Homogeneous Recurrence – Example 1 : Fibonacci Series

 If the value of 𝒏 is large, then time needed to execute addition operation increases linearly with
the length of operand.

 At the end of 𝑘𝑡ℎ iteration, the value of 𝒊 and 𝒋 will be 𝒇𝒌−𝟏 and 𝒇𝒌.

 As per De Moivre’s formula the size of 𝒇𝒌 is in 𝜽(𝒌).

 So, 𝒌𝒕𝒉 iteration takes time in 𝜽(𝒌). let 𝒄 be some constant such that this time is bounded
above by 𝒄𝒌 for all 𝒌 ≥ 𝟏.

 The time taken by fibiter algorithm is bounded above by,



𝑘=1

𝑛

𝑐. 𝑘 = 𝑐.

𝑘=1

𝑛

𝑘 = 𝑐.
𝑛 𝑛 + 1

2

𝑻 𝒏 = 𝜽 𝒏𝟐

Case 2



Homogeneous Recurrence – Example 1 : Fibonacci Series

 Recursive Algorithm for Fibonacci series,

 The recurrence equation of above algorithm is given as,

𝑻(𝒏) = ቊ
𝒏 𝒊𝒇 𝒏 = 𝟎 𝒐𝒓 𝟏

𝑻 𝒏 − 𝟏 + 𝑻 𝒏 − 𝟐 𝒐/𝒘

 The recurrence can be re-written as,

𝑇 𝑛 − 𝑇 𝑛 − 1 − 𝑇 𝑛 − 2 = 0

 The characteristic polynomial is,
𝑥2 − 𝑥 − 1 = 0

Function fibrec(n)

if n < 2 then return n

else return fibrec (n – 1) + fibrec (n – 2)



Homogeneous Recurrence – Example 1 : Fibonacci Series

 Find the roots of characteristic polynomial,
𝑥2 − 𝑥 − 1 = 0

 The roots are,

𝑟1 =
1+ 5

2
and 𝑟2 =

1− 5

2

 The general solution is therefore of the form,
𝑻𝒏 = 𝒄𝟏𝒓𝟏

𝒏 + 𝒄𝟐𝒓𝟐
𝒏

 Substituting initial values 𝑛 = 0 and 𝑛 = 1
𝑇0 = 𝑐1 + 𝑐2 = 0 1
𝑇1 = 𝑐1𝑟1 + 𝑐2𝑟2 = 1 (2)

 Solving these equations, we obtain

𝑐1 =
1

5
and 𝑐2 = −

1

5

𝑻𝒏 =

𝒊=𝟏

𝒌

𝒄𝒊𝒓𝒊
𝒏

𝒙 =
−𝒃± 𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂
Here, 𝒂 = 𝟏, 𝒃 = 𝟏 and 

𝒄 = 𝟏



Homogeneous Recurrence – Example 1 : Fibonacci Series

 Substituting the values of roots and constants in general solution,

𝑻𝒏 = 𝒄𝟏𝒓𝟏
𝒏 + 𝒄𝟐𝒓𝟐

𝒏

𝑇𝑛 =
1

5

1 + 5

2

𝑛

−
1 − 5

2

𝑛

………de Moivre′s formula

 Time taken for recursive Fibonacci algorithm grows Exponentially.

𝑻𝒏 ∈ 𝑶 ∅ 𝒏



Example 2 : Tower of Hanoi

tower 1 tower 2 tower 3

tower 1 tower 2 tower 3



Example 2 : Tower of Hanoi

 The number of movements of a ring required in the tower of Hanoi problem is given by,

𝒕 𝒎 = ቊ
𝟎 𝒊𝒇𝒎 = 𝟎

𝟐𝒕 𝒎 − 𝟏 + 𝟏 𝒐/𝒘

 The equation can be written as,

𝒕 𝒎 − 𝟐𝒕 𝒎− 𝟏 = 𝟏 (𝟏)

 To convert it into a homogeneous equation, multiply with −𝟏 and replace 𝐦 by 𝐦− 𝟏,

−𝒕 𝒎− 𝟏 + 𝟐𝒕 𝒎 − 𝟐 = −𝟏 (𝟐)

 Solving equations (1) and (2), we have now

𝒕 𝒎 − 𝟑𝒕 𝒎 − 𝟏 + 𝟐𝒕(𝒎− 𝟐) = 𝟎

Inhomogeneous equation



Example 2 : Tower of Hanoi

 The characteristic polynomial is,
𝒙𝟐 − 𝟑𝒙 + 𝟐 = 𝟎

 Whose roots are,

𝒓𝟏 = 𝟐 and 𝒓𝟐 = 𝟏

 The general solution is therefore of the form,
𝒕𝒎 = 𝒄𝟏𝟏

𝒎 + 𝒄𝟐𝟐
𝒎

 Substituting initial values 𝒎 = 𝟎 and 𝒎 = 𝟏

𝒕𝟎 = 𝒄𝟏 + 𝒄𝟐 = 𝟎 𝟏

𝒕𝟏 = 𝒄𝟏 + 𝟐𝒄𝟐 = 𝟏 (𝟐)

 Solving these linear equations we get 𝒄𝟏 = −𝟏 and 𝒄𝟐 = 𝟏.

 Therefore, time complexity of tower of Hanoi problem is given as,

𝒕 𝒎 = 𝟐𝒎 − 𝟏 = 𝑶 𝟐𝒎

𝒕 𝒎 − 𝟑𝒕 𝒎 − 𝟏 + 𝟐𝒕(𝒎 − 𝟐) = 𝟎



Homogeneous Recurrence Exercises

 Solve the following recurrences

1. 𝑡𝑛 = ቊ
𝑛 𝑖𝑓 𝑛 = 0 𝑜𝑟 1
5𝑡𝑛−1 − 6𝑡𝑛−2 𝑂/𝑊

2. 𝑡𝑛 = ቊ
𝑛 𝑖𝑓 𝑛 = 0, 1 𝑜𝑟 2
5𝑡𝑛−1 − 8𝑡𝑛−2 + 4𝑡𝑛−3 𝑜/𝑤



Master Theorem 

 The master theorem is a cookbook method for solving recurrences.

 Suppose you have a recurrence of the form
𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑓(𝑛)

 This recurrence would arise in the analysis of a recursive algorithm.

 When input size 𝒏 is large, the problem is divided up into 𝒂 sub-problems each of size 𝒏/𝒃.
Sub-problems are solved recursively and results are recombined.

 The work to split the problem into sub-problems and recombine the results is 𝒇(𝒏).

Number of sub-
problems

Time required to 
solve a sub-problem

Time to divide & 
recombine



Master Theorem – Example 1

 There are three cases:

1. 𝑐𝑎𝑠𝑒 1: 𝑖𝑓 𝑓 𝑛 𝑖𝑠 𝑖𝑛 𝑶 𝑛𝑙𝑜𝑔𝑏𝑎 𝑓 𝑛 ≤ 𝑛log𝑏 𝑎 𝑡ℎ𝑒𝑛 𝑇 𝑛 = 𝜃 𝑛𝑙𝑜𝑔𝑏𝑎

2. 𝑐𝑎𝑠𝑒 2: 𝑓 𝑛 𝑖𝑠 𝑖𝑛 𝜽 𝑛𝑙𝑜𝑔𝑏𝑎 𝑓 𝑛 = 𝑛log𝑏 𝑎 𝑡ℎ𝑒𝑛 𝑇 𝑛 = 𝜃 𝑛𝑙𝑜𝑔𝑏𝑎 𝑙𝑔𝑛

3. 𝑐𝑎𝑠𝑒 3: 𝑓 𝑛 𝑖𝑠 𝑖𝑛Ω 𝑛𝑙𝑜𝑔𝑏𝑎 𝑓 𝑛 ≥ 𝑛log𝑏 𝑎 𝑡ℎ𝑒𝑛 𝑇 𝑛 = 𝜃 𝑓(𝑛)

 Example 1: 𝑇(𝑛) = 2𝑇(𝑛/2) + θ(𝑛)

 Here 𝑎 = 2, 𝑏 = 2. So, 𝑛𝑙𝑜𝑔𝑏𝑎= 𝑛

 Also, 𝑓(𝑛) = 𝜃(𝑛) = c𝑛

 Case 2 applies: 𝑻 𝒏 = 𝜽 𝒏 𝒍𝒈𝒏

𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑓(𝑛)

Merge sort 



Master Theorem – Example 2

 There are three cases:

1. 𝑐𝑎𝑠𝑒 1: 𝑖𝑓 𝑓 𝑛 𝑖𝑠 𝑖𝑛 𝑶 𝑛𝑙𝑜𝑔𝑏𝑎 𝑓 𝑛 ≤ 𝑛log𝑏 𝑎 𝑡ℎ𝑒𝑛 𝑇 𝑛 = 𝜃 𝑛𝑙𝑜𝑔𝑏𝑎

2. 𝑐𝑎𝑠𝑒 2: 𝑓 𝑛 𝑖𝑠 𝑖𝑛 𝜽 𝑛𝑙𝑜𝑔𝑏𝑎 𝑓 𝑛 = 𝑛log𝑏 𝑎 𝑡ℎ𝑒𝑛 𝑇 𝑛 = 𝜃 𝑛𝑙𝑜𝑔𝑏𝑎 𝑙𝑔𝑛

3. 𝑐𝑎𝑠𝑒 3: 𝑓 𝑛 𝑖𝑠 𝑖𝑛Ω 𝑛𝑙𝑜𝑔𝑏𝑎 𝑓 𝑛 ≥ 𝑛log𝑏 𝑎 𝑡ℎ𝑒𝑛 𝑇 𝑛 = 𝜃 𝑓(𝑛)

 Example 2: 𝑇(𝑛) = 𝑇(𝑛/2) + θ(1)

 Here 𝑎 = 1, 𝑏 = 2. So, 𝑛𝑙𝑜𝑔𝑏𝑎= 𝑛log2 1 = 𝑛0 = 1

 𝑓 𝑛 = θ 1 = 1

 Case 2 applies: the solution is 𝜽(𝒏𝒍𝒐𝒈𝒃𝒂𝒍𝒐𝒈𝒏)

 𝑻 𝒏 = 𝜽(𝒍𝒐𝒈𝒏)

𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑓(𝑛)

Binary Search



Master Theorem – Example 3

 There are three cases:

1. 𝑐𝑎𝑠𝑒 1: 𝑖𝑓 𝑓 𝑛 𝑖𝑠 𝑖𝑛 𝑶 𝑛𝑙𝑜𝑔𝑏𝑎 𝑓 𝑛 ≤ 𝑛log𝑏 𝑎 𝑡ℎ𝑒𝑛 𝑇 𝑛 = 𝜃 𝑛𝑙𝑜𝑔𝑏𝑎

2. 𝑐𝑎𝑠𝑒 2: 𝑓 𝑛 𝑖𝑠 𝑖𝑛 𝜽 𝑛𝑙𝑜𝑔𝑏𝑎 𝑓 𝑛 = 𝑛log𝑏 𝑎 𝑡ℎ𝑒𝑛 𝑇 𝑛 = 𝜃 𝑛𝑙𝑜𝑔𝑏𝑎 𝑙𝑔𝑛

3. 𝑐𝑎𝑠𝑒 3: 𝑓 𝑛 𝑖𝑠 𝑖𝑛Ω 𝑛𝑙𝑜𝑔𝑏𝑎 𝑓 𝑛 ≥ 𝑛log𝑏 𝑎 𝑡ℎ𝑒𝑛 𝑇 𝑛 = 𝜃 𝑓(𝑛)

 Example 3: 𝑇(𝑛) = 4𝑇(𝑛/2) + 𝑛

 Here 𝑎 = 4, 𝑏 = 2. So, 𝑙𝑜𝑔𝑏𝑎 = 2 and 𝑛logba = 𝑛2

 𝑓 𝑛 = 𝑛,

 So, 𝑓(𝑛) ≤ 𝑛2 ⇒ 𝑓(𝑛) is in 𝑂(𝑛logba)

 Case 1 applies: 𝑻(𝒏) = 𝜽(𝒏𝟐)

𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑓(𝑛)



Master Theorem Exercises

 Example 4: 𝑇(𝑛) = 4𝑇(𝑛/2) + 𝑛2

 Example 5: 𝑇(𝑛) = 4𝑇(𝑛/2) + 𝑛3

 Example 6: 𝑇(𝑛) = 9𝑇(𝑛/3) + 𝑛 (Summer 17, Summer 19)

 Example 7: 𝑇(𝑛) = 𝑇(2𝑛/3) + 1 (Summer 17)

 Example 8: 𝑇 𝑛 = 7𝑇 Τ𝑛 2 + 𝑛3 (Winter 18)

 Example 9: 𝑇(𝑛) = 27𝑇(𝑛2) + 16𝑛 (Winter 19)



Recurrence Tree Method

 In recurrence tree, each node represents the cost of a single sub-problem in the set of
recursive function invocations.

 We sum the costs within each level of the tree to obtain a set of per level costs.

 Then we sum the all the per level costs to determine the total cost of all levels of the recursion.

 Here while solving recurrences, we divide the problem into sub-problems of equal size.

 E.g., 𝑇(𝑛) = 𝑎 𝑇(𝑛/𝑏) + 𝑓(𝑛) where 𝑎 > 1 , 𝑏 > 1 and 𝑓(𝑛) is a given function.

 𝐹(𝑛) is the cost of splitting or combining the sub problems.

𝒏

Τ𝒏 𝒃 Τ𝒏 𝒃



Example 1: 𝑻(𝒏) = 𝟐𝑻(𝒏/𝟐) + 𝒏

 When we add the values across the levels of
the recursion tree, we get a value of 𝑛 for
every level.

 The bottom level has 2log 𝑛 nodes, each
contributing the cost 𝑇(1).

 We have      𝑛 + 𝑛 + 𝑛 +
…… log𝑛𝑡𝑖𝑚𝑒𝑠

𝑻(𝒏) = 

𝒊=𝟎

𝒍𝒐𝒈𝟐 𝒏−𝟏

𝒏 + 𝟐𝒍𝒐𝒈 𝒏𝑻(𝟏)

𝑻 𝒏 = 𝒏 𝒍𝒐𝒈𝒏 + 𝒏

𝑻 𝒏 = 𝑶(𝒏 log𝒏)

Recurrence Tree Method

The recursion tree for this recurrence is 

𝒍𝒐𝒈𝟐𝒏

𝒏

𝒏

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 22 Τ𝑛 22 Τ𝑛 22 Τ𝑛 22

1 1 1 1



Example 2:  𝑻(𝒏) = 𝑻(𝒏/𝟑) + 𝑻(𝟐𝒏/𝟑) + 𝒏

 When we add the values across the levels of
the recursion tree, we get a value of 𝑛 for
every level.

𝑇(𝑛) = 

𝑖=0

log3/2 𝑛−1

𝑛 + 𝑛log3/2 2𝑇(1)

𝑻(𝒏) ∈ 𝒏 log𝟑/𝟐 𝒏

Recurrence Tree Method

The recursion tree for this recurrence is 

𝒍𝒐𝒈𝟑𝒏

𝒏

𝒏

𝑛

Τ𝑛 3 Τ2𝑛 3

1

3

𝑛

3

2

3

𝑛

3

1

3

2𝑛

3

2

3

2𝑛

3

𝒍𝒐𝒈𝟑/𝟐
𝒏



Example 3: 𝑻(𝒏) = 𝟐𝑻(𝒏/𝟐) + 𝒄. 𝒏𝟐

 Sub-problem size at level 𝑖 is Τ𝑛 2𝑖

 Cost of problem at level 𝑖 Is Τ𝑛 2𝑖
2

 Total cost,

𝑻 𝒏 ≤ 𝒏𝟐 

𝒊=𝟎

𝒍𝒐𝒈𝟐 𝒏−𝟏
𝟏

𝟐

𝒊

𝑻 𝒏 ≤ 𝒏𝟐

𝒊=𝟎

∞
𝟏

𝟐

𝒊

𝑻 𝒏 ≤ 𝟐𝒏𝟐

𝑻 𝒏 = 𝑶 𝒏𝟐

Recurrence Tree Method

The recursion tree for this recurrence is 

𝑛2

Τ𝑛 2 2 Τ𝑛 2 2

Τ𝑛 4 2 Τ𝑛 4 2 Τ𝑛 4 2 Τ𝑛 4 2 Τ1 4𝑛2

𝑂 𝑛2

Τ1 2𝑛2



Recurrence Tree Method - Exercises

 Example 1: 𝑇(𝑛) = 𝑇(𝑛/4) + 𝑇(3𝑛/4) + 𝑐. 𝑛

 Example 2: 𝑇(𝑛) = 3𝑇(𝑛/4) + 𝑐. 𝑛2

 Example 3: 𝑇(𝑛) = 𝑇(𝑛/4) + 𝑇(𝑛/2) + 𝑛2

 Example 4: 𝑇(𝑛) = 𝑇(𝑛/3) + 𝑇(2𝑛/3) + 𝑛





Introduction 

 Many useful algorithms are recursive in structure: to solve a given problem, they call
themselves recursively one or more times.

 These algorithms typically follow a divide-and-conquer approach:

 The divide-and-conquer approach involves three steps at each level of the recursion:
1. Divide: Break the problem into several sub problems that are similar to the original problem but smaller in

size.

2. Conquer: Solve the sub problems recursively. If the sub problem sizes are small enough, just solve the sub
problems in a straightforward manner.

3. Combine: Combine these solutions to create a solution to the original problem.



D&C Running Time Analysis

 The running-time analysis of such divide-and-conquer (D&C) algorithms is almost automatic.

 Let 𝑔(𝑛) be the time required by D&C on instances of size 𝑛.

 The total time 𝒕(𝒏)taken by this divide-and-conquer algorithm is given by recurrence equation,

𝑡 𝑛 = 𝑙𝑡 𝑛/𝑏 + g 𝑛

 The solution of equation is given as,

𝑡 𝑛 =

𝜃 𝑛𝑘 𝑖𝑓 𝑙 < 𝑏𝑘

𝜃 𝑛𝑘𝑙𝑜𝑔𝑛 𝑖𝑓 𝑙 = 𝑏𝑘

𝜃 𝑛𝑙𝑜𝑔𝑏𝑙 𝑖𝑓 𝑙 > 𝑏𝑘

where 𝑘 is the power of 𝑛 in 𝑔(𝑛)

𝐓(𝐧) = 𝐚𝐓(𝐧/𝐛) + 𝐟(𝐧)





Introduction 

 Binary Search is an extremely well-known instance of divide-and-conquer approach.

 Let 𝑇[1 . . . 𝑛] be an array of increasing sorted order; that is 𝑇 [𝑖] ≤ 𝑇[𝑗] whenever 1 ≤ 𝑖 ≤
𝑗 ≤ 𝑛.

 Let 𝑥 be some number. The problem consists of finding 𝒙in the array 𝑇 if it is there.

 If 𝑥 is not in the array, then we want to find the position where it might be inserted.



Binary Search Example

Step 1:

1 3 7 9 11 32 52 74 90

Input: sorted array of integer values.  𝒙 = 𝟕

1 2 3 4 5 6 7 8 9

1 3 7 9 11 32 52 74 90

Find approximate midpoint



Binary Search Example

Step 3:

1 3 7 9 11 32 52 74 90

1 2 3 4 5 6 7 8 9

1 3 7 9 11 32 52 74 90

𝒙 = 𝟕Step 2:
1 2 3 4 5 6 7 8 9

Is 𝟕< midpoint value? YES.

Search for the target in the area before midpoint. 

Is 𝟕= midpoint value? No.



Binary Search Example

Step 5:

1 3 7 9 11 32 52 74 90

1 2 3 4 5 6 7 8 9

1 3 7 9 11 32 52 74 90

𝒙 = 𝟕Step 4:
1 2 3 4 5 6 7 8 9

Find approximate midpoint

𝟕>value of midpoint? YES.



Binary Search Example

Step 7:

1 3 7 9 11 32 52 74 90

1 2 3 4 5 6 7 8 9

1 3 7 9 11 32 52 74 90

𝒙 = 𝟕Step 6:
1 2 3 4 5 6 7 8 9

Search for the 𝒙in the area after midpoint.

Find approximate midpoint.
Is 𝒙 = midpoint value?  YES.



Binary Search – Iterative Algorithm

Algorithm: Function biniter(T[1,…,n], x)

if x > T[n] then return n+1

i ← 1;

j ← n;

while i < j do

k ← (i + j ) ÷ 2

if x ≤ T [k] then j ← k

else i ← k + 1

return i

3

6

7

32

33

53

11

i

j

𝑥 = 7

k

j

𝑛 = 7 𝑥 = 33



Binary Search – Recursive Algorithm

Algorithm: Function binsearch(T[1,…,n], x)

if n = 0 or x > T[n] then return n + 1

else return binrec(T[1,…,n], x)

Function binrec(T[i,…,j], x)

if i = j then return i

k ← (i + j) ÷ 2

if x ≤ T[k] then 

return binrec(T[i,…,k],x)

else return binrec(T[k + 1,…,j], x)



Binary Search - Analysis

 Let 𝑡(𝑛) be the time required for a call on binrec( 𝑇[𝑖, … , 𝑗], 𝑥 ), where 𝑛 = 𝑗 – 𝑖 + 1 is the
number of elements still under consideration in the search.

 The recurrence equation is given as,
𝒕(𝒏) = 𝒕(𝒏/𝟐) + 𝜽(𝟏)

 Comparing this to the general template for divide and conquer algorithm, 𝑎 = 1, 𝑏 =
2 𝑎𝑛𝑑 𝑓 𝑛 = 𝜃 1 .

∴ 𝒕(𝒏) ∈ 𝜽(𝒍𝒐𝒈𝒏)

 The complexity of binary search is 𝜽(𝒍𝒐𝒈𝒏)

𝑻(𝒏) = 𝒂𝑻(𝒏/𝒃) + 𝒇(𝒏)



Binary Search – Examples

1. Demonstrate binary search algorithm and find the element 𝒙 = 𝟏𝟐 in the following array. [3 /
4]

2, 5, 8, 12, 16, 23, 38, 56, 72, 91

2. Explain binary search algorithm and find the element 𝒙 = 𝟑𝟏 in the following array. [7]
10, 15, 18, 26, 27, 31, 38, 45, 59

3. Let 𝑻[𝟏. . 𝒏] be a sorted array of distinct integers. Give an algorithm that can find an index
𝒊such that 𝟏 ≤ 𝒊 ≤ 𝒏 and 𝑻[𝒊] = 𝒊, provided such an index exists. Prove that your
algorithm takes time in 𝑂(𝑙𝑜𝑔𝑛) in the worst case.





Multiplying Large Integers – Introduction 

 Multiplying two 𝑛 digit large integers using divide and conquer method.

 Example: Multiplication of 𝟗𝟖𝟏 by 𝟏𝟐𝟑𝟒.
1. Convert both the numbers into same length nos. and split each operand into two parts:

2. We can write as,

𝟎𝟗𝟖𝟏 𝟏𝟐𝟑𝟒

𝒘 = 𝟎𝟗 𝒙 = 𝟖𝟏 𝒚 = 𝟏𝟐 𝒛 = 𝟑𝟒

𝟎𝟗𝟖𝟏 = 𝟏𝟎𝟐𝒘 + 𝒙 𝟏𝟐𝟑𝟒 = 𝟏𝟎𝟐𝒚 + 𝒛102𝑤 + 𝑥
= 102 09 + 81
= 900 + 81

=981



Multiplying Large Integers – Example 1 

 Now, the required product can be computed as,
0981 × 1234 = 102𝑤 + 𝑥 × 102𝑦 + 𝑧
= 104𝑤 ∙ 𝑦 + 102 𝑤 ∙ 𝑧 + 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧
= 1080000 + 127800 + 2754

= 1210554

 The above procedure still needs four half-size multiplications:
𝑖 𝑤 ∙ 𝑦 𝑖𝑖)𝑤 ∙ 𝑧 𝑖𝑖𝑖 𝑥 ∙ 𝑦 (𝑖𝑣 𝑥 ∙ 𝑧

 The computation of (𝑤 ∙ 𝑧 + 𝑥 ∙ 𝑦)can be done as,

 Only one multiplication is required instead of two.

𝑤 = 09
𝑥 = 81
𝑦 = 12
𝑧 = 34

𝒓 = 𝒘 + 𝒙 × 𝒚 + 𝒛 = 𝒘 ∙ 𝒚 + 𝒘 ∙ 𝒛 + 𝒙 ∙ 𝒚 + 𝒙 ∙ 𝒛

Additional terms



Multiplying Large Integers – Example 1 

 Now we can compute the required product as follows:

𝒑 = 𝒘 ∙ 𝒚 = 𝟎𝟗 ∙ 𝟏𝟐 = 𝟏𝟎𝟖

𝒒 = 𝒙 ∙ 𝒛 = 𝟖𝟏 ∙ 𝟑𝟒 = 𝟐𝟕𝟓𝟒

𝒓 = 𝒘+ 𝒙 × 𝒚 + 𝒛 = 𝟗𝟎 ∙ 𝟒𝟔 = 𝟒𝟏𝟒𝟎

981 × 1234 = 104𝑝 + 102 (𝑟 − 𝑝 − 𝑞) + 𝑞

= 1080000 + 127800 + 2754

= 1210554.

𝟏𝟎𝟒𝒘 ∙ 𝒚 + 𝟏𝟎𝟐 𝒘 ∙ 𝒛 + 𝒙 ∙ 𝒚 + 𝒙 ∙ 𝒛

𝒓 = 𝒘+ 𝒙 × 𝒚 + 𝒛 = 𝒘 ∙ 𝒚 + 𝒘 ∙ 𝒛 + 𝒙 ∙ 𝒚 + 𝒙 ∙ 𝒛

𝑤 = 09
𝑥 = 81
𝑦 = 12
𝑧 = 34



Multiplying Large Integers – Analysis 

 981 × 1234 can be reduced to three multiplications of two-figure numbers (09∙12, 81∙34 𝑎𝑛𝑑
90∙46) together with a certain number of shifts, additions and subtractions.

 Reducing four multiplications to three will enable us to cut 25% of the computing time required
for large multiplications.

 We obtain an algorithm that can multiply two 𝑛-figure numbers in a time,

𝑻(𝒏)= 𝟑𝒕 (𝒏/𝟐) + 𝒈(𝒏), 

 Solving it gives,
𝑻 𝒏 ∈ 𝜽 𝒏𝒍𝒈𝟑| 𝒏 𝒊𝒔 𝒂 𝒑𝒐𝒘𝒆𝒓 𝒐𝒇 𝟐

𝑻(𝒏) = 𝒂𝑻(𝒏/𝒃) + 𝒇(𝒏)



Multiplying Large Integers – Example 2

 Example: Multiply 𝟖𝟏𝟏𝟒 with 𝟕𝟔𝟐𝟐 using divide & conquer method.

 Solution using D&C

𝒘 = 𝟖𝟏 𝒙 = 𝟏𝟒 𝒚 = 𝟕𝟔 𝒛 = 𝟐𝟐Step 1:

Step 2: Calculate 𝑝, 𝑞 and 𝑟

𝑝 = 𝑤 ∙ 𝑦 = 81 ∙ 76 = 6156
𝑞 = 𝑥 ∙ 𝑧 = 14 ∙ 22 = 308

𝑟 = (𝑤 + 𝑥) ∙ (𝑦 + 𝑧) = 95 ∙ 98 = 9310
8114 × 7622 = 𝟏𝟎𝟒𝒑 + 𝟏𝟎𝟐 (𝒓 − 𝒑 − 𝒒) + 𝒒

= 61560000 + 284600 + 308
= 61844908





Introduction 

 Merge Sort is an example of divide and conquer algorithm.

 It is based on the idea of breaking down a list into several sub-lists until each sub list consists
of a single element.

 Merging those sub lists in a manner that results into a sorted list.

 Procedure
 Divide the unsorted list into N sub lists, each containing 1 element

 Take adjacent pairs of two singleton lists and merge them to form a list of 2 elements. N will now convert 
into N/2 lists of size 2

 Repeat the process till a single sorted list of all the elements is obtained



Merge Sort – Example 

724 521 2 98 529 31 189 451

Unsorted Array

1 2 3 4 5 6 7 8

724 521 2 98 529 31 189 451

1 2 3 4 5 6 7 8

Step 1: Split the selected array

724 521 2 98
1 2 3 4

529 31 189 451
1 2 3 4



Merge Sort – Example 

Select the left subarray and Split 

724 521 2 98
1 2 3 4

529 31 189 451
1 2 3 4

724 521
1 2

2 98
1 2

724
1

521
1

2
1

98
1

521 724 2 98

2 98 521 724

529 31
1 2

189 451
1 2

529
1

31
1

189
1

451
1

31 529 189 451

31 189 451 529

2 31 98 189 451 521 529 724

Select the right subarray and Split 

Split

Merge 



Merge Sort – Algorithm

Procedure: mergesort(T[1,…,n])

if n is sufficiently small then
insert(T)

else

array U[1,…,1+n/2],V[1,…,1+n/2]

U[1,…,n/2] ← T[1,…,n/2]

V[1,…,n/2] ← T[n/2+1,…,n]

mergesort(U[1,…,n/2])

mergesort(V[1,…,n/2])

merge(U, V, T)

Procedure:
merge(U[1,…,m+1],V[1,…,n+1],T[1,…,m+n])

i ← 1;

j ← 1;

U[m+1], V[n+1] ← ∞;

for k ← 1 to m + n do

if U[i] < V[j]

then T[k] ← U[i];

i ← i + 1;

else T[k] ← V[j];

j ← j + 1;



Merge Sort - Analysis

 Let 𝑻(𝒏) be the time taken by this algorithm to sort an array of 𝑛 elements.

 Separating 𝑇 into 𝑈 & 𝑉 takes linear time; 𝑚𝑒𝑟𝑔𝑒(𝑈, 𝑉, 𝑇) also takes linear time.

𝑇(𝑛) = 𝑇(𝑛/2) + 𝑇(𝑛/2) + 𝑔(𝑛) where 𝑔(𝑛) ∈ θ(𝑛).

𝑇(𝑛) = 2𝑡(𝑛/2) + θ(𝑛)

 Applying the general case, 𝑙 = 2, 𝑏 = 2, 𝑘 = 1

 Since 𝑙 = 𝑏𝑘 the second case applies so, 𝑡(𝑛) ∈ θ(𝑛𝑙𝑜𝑔𝑛).

 Time complexity of merge sort is 𝛉(𝒏𝒍𝒐𝒈𝒏).

𝒕 𝒏 =

𝜽 𝒏𝒌 𝒊𝒇 𝒍 < 𝒃𝒌

𝜽 𝒏𝒌𝒍𝒐𝒈𝒏 𝒊𝒇 𝒍 = 𝒃𝒌

𝜽 𝒏𝒍𝒐𝒈𝒃𝒍 𝒊𝒇 𝒍 > 𝒃𝒌

𝒕 𝒏 = 𝒍𝒕 𝒏/𝒃 + 𝐠 𝒏





Matrix Multiplication

 Multiply following two matrices. Count how many scalar multiplications are required.

1 3
7 5

∙
6 8
4 2

𝑎𝑛𝑠𝑤𝑒𝑟 =
1 × 6 + 3 × 4 1 × 8 + 3 × 2
7 × 6 + 5 × 4 7 × 8 + 5 × 2

 To multiply 2 × 2 matrices, total 8 (23) scalar multiplications are required.



Matrix Multiplication

 In general, 𝐴 and 𝐵 are two 2 × 2 matrices to be multiplied.

𝐴 =
𝐴11 𝐴12
𝐴21 𝐴21

and 𝐵 =
𝐵11 𝐵12
𝐵21 𝐵22

𝐶 =
𝐶11 𝐶12
𝐶21 𝐶22

=
𝐴11 𝐴12
𝐴21 𝐴22

∙
𝐵11 𝐵12
𝐵21 𝐵22

𝐶11 = 𝐴11 ∙ 𝐵11 + 𝐴12 ∙ 𝐵21
𝐶12 = 𝐴11 ∙ 𝐵12 + 𝐴12 ∙ 𝐵22
𝐶21 = 𝐴21 ∙ 𝐵11 + 𝐴22 ∙ 𝐵21
𝐶22 = 𝐴21 ∙ 𝐵12 + 𝐴22 ∙ 𝐵22

 Computing each entry in the product takes 𝒏 multiplications and there are 𝒏𝟐entries for a total
of 𝑶(𝒏𝟑 ).



Strassen’s Algorithm for Matrix Multiplication 

 Consider the problem of multiplying two 𝑛 × 𝑛 matrices.

 Strassen’s devised a better method which has the same basic method as the multiplication of
long integers.

 The main idea is to save one multiplication on a small problem and then use recursion.



Strassen’s Algorithm for Matrix Multiplication 

Step 1

𝑆1 = 𝐵12 − 𝐵22
𝑆2 = 𝐴11 + 𝐴12
𝑆3 = 𝐴21 + 𝐴22
𝑆4 = 𝐵21 − 𝐵11
𝑆5 = 𝐴11 + 𝐴22
𝑆6 = 𝐵11 + 𝐵22
𝑆7 = 𝐴12 − 𝐴22

𝑆8 = 𝐵21 + 𝐵22
𝑆9 = 𝐴11 − 𝐴21
𝑆10 = 𝐵11 + 𝐵12

Step 2

𝑃1 = 𝐴11 ∙ 𝑆1
𝑃2 = 𝑆2 ∙ 𝐵22
𝑃3 = 𝑆3 ∙ 𝐵11

𝑃4 = 𝐴22 ∙ 𝑆4
𝑃5 = 𝑆5 ∙ 𝑆6
𝑃6 = 𝑆7 ∙ 𝑆8

𝑃7 = 𝑆9 ∙ 𝑆10
All above 

operations 
involve only one 
multiplication. 

Step 3

Final Answer:

𝐶 =
𝐶11 𝐶12
𝐶21 𝐶22

Where, 

𝐶11 = 𝑃5 + 𝑃4 − 𝑃2 + 𝑃6
𝐶12 = 𝑃1 + 𝑃2
𝐶21 = 𝑃3 + 𝑃4

𝐶22 = 𝑃5 + 𝑃1 − 𝑃3 − 𝑃7
No multiplication is 

required here.

𝐴 =
𝐴11 𝐴12
𝐴21 𝐴21

and 𝐵 =
𝐵11 𝐵12
𝐵21 𝐵22



Strassen’s Algorithm - Analysis

 It is therefore possible to multiply two 2 × 2 matrices using only seven scalar multiplications.

 Let 𝑡(𝑛) be the time needed to multiply two 𝑛 × 𝑛 matrices by recursive use of equations.

𝒕(𝒏) = 𝟕𝒕(𝒏/𝟐) + 𝒈(𝒏)

Where 𝑔(𝑛) ∈ 𝑂(𝑛2).

 The general equation applies with 𝑙 = 7, 𝑏 = 2 and 𝑘 = 2.

 Since 𝑙 > 𝑏𝑘 , the third case applies and 𝑡 𝑛 ∈ 𝑂 𝑛𝑙𝑔7 .

 Since 𝑙𝑔7 > 2.81, it is possible to multiply two 𝑛 × 𝑛 matrices in a time𝑶(𝒏𝟐.𝟖𝟏).

𝒕 𝒏 =

𝜽 𝒏𝒌 𝒊𝒇 𝒍 < 𝒃𝒌

𝜽 𝒏𝒌𝒍𝒐𝒈𝒏 𝒊𝒇 𝒍 = 𝒃𝒌

𝜽 𝒏𝒍𝒐𝒈𝒃𝒍 𝒊𝒇 𝒍 > 𝒃𝒌

𝒕 𝒏 = 𝒍𝒕 𝒏/𝒃 + 𝐠 𝒏





Introduction 

 Quick sort chooses the first element as a pivot element, a lower bound is the first index and an
upper bound is the last index.

 The array is then partitioned on either side of the pivot.

 Elements are moved so that, those greater than the pivot are shifted to its right whereas the
others are shifted to its left.

 Each Partition is internally sorted recursively.

42 23 74 11 65 58 94 36

0 1 2 3 4 5 6 7

99 87

8 9

LB UB

Pivot 
Element



Quick Sort - Example

42 23 74 11 65 58 94 36
0 1 2 3 4 5 6 7

99 87
8 9Procedure pivot(T[i,…,j]; var l)

p ← T[i]
k ← i; l ← j+1
Repeat 
k ← k+1 until T[k] > p or k ≥ j
Repeat 
l ← l-1 until T[l] ≤ p
While k < l do

Swap T[k] and T[l]
Repeat k ← k+1 until 
T[k] > p
Repeat l ← l-1 until 
T[l] ≤ p

Swap T[i] and T[l]

LB = 0, UB = 9

p = 42

l

42 23 74 11 65 58 94 36 99 87

k l

36 74
Swap

42 23 36 11 65 58 94 74 99 87

k l

4211
Swap

k

k = 0, l = 10



Quick Sort - Example

11 23 36 42 65 58 94 74
0 1 2 3 4 5 6 7

99 87
8 9Procedure pivot(T[i,…,j]; var l)

p ← T[i]
k ← i; l ← j+1
Repeat 
k ← k+1 until T[k] > p or k ≥ j
Repeat 
l ← l-1 until T[l] ≤ p
While k < l do

Swap T[k] and T[l]
Repeat k ← k+1 until 
T[k] > p
Repeat l ← l-1 until 
T[l] ≤ p

Swap T[i] and T[l]

11 23 36 42 65 58 94 74 99 87

k l

23 36 42 65 58 94 74 99 8711
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k l
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LB UB
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Quick Sort - Example

11 23 36 42 65 58 94 74
0 1 2 3 4 5 6 7

99 87
8 9Procedure pivot(T[i,…,j]; var l)

p ← T[i]
k ← i; l ← j+1
Repeat 
k ← k+1 until T[k] > p or k ≥ j
Repeat 
l ← l-1 until T[l] ≤ p
While k < l do

Swap T[k] and T[l]
Repeat k ← k+1 until 
T[k] > p
Repeat l ← l-1 until 
T[l] ≤ p

Swap T[i] and T[l]

58 65 94 74 99 87

23 36 42 58 65 94 74 99 8711

LB UB

l

LB UB

65 58 94 74 99 8765

k

Swap

6558



Quick Sort - Example

94 74 99 87
Procedure pivot(T[i,…,j]; var l)
p ← T[i]
k ← i; l ← j+1
Repeat 
k ← k+1 until T[k] > p or k ≥ j
Repeat 
l ← l-1 until T[l] ≤ p
While k < l do

Swap T[k] and T[l]
Repeat k ← k+1 until 
T[k] > p
Repeat l ← l-1 until 
T[l] ≤ p

Swap T[i] and T[l]

87 74 94 99

23 36 42 58 65 74 87 94 9911

LB UB

LB UB

k

94

l

Swap

9987

94 74 87 99

k l

Swap

9487

k l

87
Swap

74 87



Quick Sort - Algorithm

Procedure: quicksort(T[i,…,j])

{Sorts subarray T[i,…,j] into 
ascending order}

if j – i is sufficiently small 
then insert (T[i,…,j])

else

pivot(T[i,…,j],l)

quicksort(T[i,…,l - 1])

quicksort(T[l+1,…,j]

Procedure: pivot(T[i,…,j]; var l)

p ← T[i]

k ← i

l ← j + 1

repeat k ← k+1 until T[k] > p or k ≥ j

repeat l ← l-1 until T[l] ≤ p

while k < l do

Swap T[k] and T[l]

Repeat k ← k+1 until T[k] > p

Repeat l ← l-1 until T[l] ≤ p

Swap T[i] and T[l]



Quick Sort Algorithm – Analysis 

1. Worst Case
 Running time depends on which element is chosen as key or pivot element.

 The worst case behavior for quick sort occurs when the array is partitioned into one sub-array with 𝒏 − 𝟏
elements and the other with 𝟎 element.

 In this case, the recurrence will be,

𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(0) + 𝜃(𝑛)

𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝜃(𝑛)

𝑻(𝒏) = 𝜽(𝒏𝟐)

2. Best Case
 Occurs when partition produces sub-problems each of size n/2.

 Recurrence equation:

𝑇(𝑛) = 2𝑇(𝑛/2) + θ(𝑛)

𝑙 = 2, 𝑏 = 2, 𝑘 = 1, 𝑠𝑜 𝑙 = 𝑏𝑘

𝑻(𝒏) = 𝜽(𝒏𝒍𝒐𝒈𝒏)



Quick Sort Algorithm – Analysis 

3. Average Case
 Average case running time is much closer to the best case.

 If suppose the partitioning algorithm produces a 9:1 proportional split the recurrence will be,

𝑇(𝑛) = 𝑇(9𝑛/10) + 𝑇(𝑛/10) + θ(𝑛)

𝑻(𝒏) = 𝜽(𝒏𝒍𝒐𝒈𝒏)



Quick Sort - Examples

 Sort the following array in ascending order using quick sort algorithm.

1. 5, 3, 8, 9, 1, 7, 0, 2, 6, 4

2. 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9 

3. 9, 7, 5, 11, 12, 2, 14, 3, 10, 6 





Exponentiation - Sequential 

 Let 𝑎 and 𝑛 be two integers. We wish to compute the exponentiation𝒙 = 𝒂𝒏.

 Algorithm using Sequential Approach:

 This algorithm takes a time in 𝜽(𝒏)since the instruction 𝒓 = 𝒂 ∗ 𝒓 is executed exactly 𝒏 − 𝟏
times, provided the multiplications are counted as elementary operations.

function exposeq(a, n)

r ← a

for i ← 1 to n - 1 do

r ← a * r

return r



Exponentiation - Sequential 

 But to handle larger operands, we must consider the time required for each multiplication.

 Let 𝒎is the size of operand 𝒂.

 Therefore, the multiplication performed the 𝒊𝒕𝒉 time round the loop concerns an integer of size
𝒎and an integer whose size is between 𝒊𝒎 − 𝒊 + 𝟏 and 𝒊𝒎, which takes a time between

𝑎 = 5 𝑠𝑜 𝑚 = 1 and 𝑛 = 25 and suppose 𝑖 = 10

The body of loop executes 10𝑡ℎ time as,

𝒓 = 𝒂 ∗ 𝒓

here 9 times multiplication is already done so 𝒓 = 𝟓𝟗 = 1953125

The size of 𝑟 in the 10th iteration will be between 𝑖𝑚 − 𝑖 + 1 𝑡𝑜 𝑖𝑚, i.e.,

between 𝟏 𝒕𝒐 𝟏𝟎

𝑀(𝑚, 𝑖𝑚 − 𝑖 + 1) and 𝑀(𝑚, 𝑖𝑚)

10-10+1 10



Exponentiation - Sequential 

 The total time 𝑇(𝑚, 𝑛) spent multiplying when computing an with exposeq is therefore,



𝑖=1

𝑛−1

𝑀 𝑚, 𝑖𝑚 − 1 + 1 ≤ 𝑇 𝑚, 𝑛 ≤ 

𝑖=1

𝑛−1

𝑀 𝑚, 𝑖𝑚

𝑇 𝑚, 𝑛 ≤ 

𝑖=1

𝑛−1

𝑀 𝑚, 𝑖𝑚 ≤ 

𝑖=1

𝑛−1

𝑐𝑚 𝑖𝑚

𝑐𝑚2 

𝑖=1

𝑛−1

𝑖 ≤ 𝑐𝑚2𝑛2 = 𝜽 𝒎𝟐𝒏𝟐

 If we use the divide-and-conquer multiplication algorithm,

𝑻(𝒎,𝒏) ∈ 𝜽(𝒎𝒍𝒈𝟑𝒏𝟐)



Exponentiation – D & C

 Suppose, we want to compute 𝒂𝟏𝟎

 We can write as,
𝑎10 = (𝑎5)2 = (𝑎. 𝑎4)2 = (𝑎. (𝑎2 )2)2

 In general,

𝑎𝑛 = ൞

𝑎 𝑖𝑓 𝑛 = 1

𝑎 Τ𝑛 2 2
𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑎 × 𝑎𝑛−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Algorithm using Divide & Conquer Approach:

function expoDC(a, n)

if n = 1 then return a

if n is even then return [expoDC(a, n/2)]2

return a * expoDC(a, n - 1)



Exponentiation – D & C

function expoDC(a, n)

if n = 1 then return a

if n is even then return [expoDC(a, n/2)]2

return a * expoDC(a, n - 1)

𝑁 𝑛 = ൞

0 𝑖𝑓 𝑛 = 1

𝑁 Τ𝑛 2 + 1 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑁 𝑛 − 1 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Number of operations performed by 
the algorithm is given by, 

𝑇 𝑚, 𝑛 = ൞

0 𝑖𝑓 𝑛 = 1

𝑇 𝑚, Τ𝑛 2 +𝑀 𝑚 Τ𝑛 2,𝑚 Τ𝑛 2 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑇 𝑚, 𝑛 − 1 +𝑀 𝑚, 𝑛 − 1 𝑚 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Solving it gives,   𝑻(𝒎,𝒏) ∈ 𝛉 (𝒎𝒍𝒈𝟑𝒏𝒍𝒈𝟑)

Time taken by the 
algorithm is given by, 



Exponentiation – Summary

Multiplication 

Classic D&C

exposeq 𝜽 𝒎𝟐𝒏𝟐 𝜽 𝒎𝒍𝒈𝟑𝒏𝟐

expoDC 𝜽 𝒎𝟐𝒏𝟐 𝜽 𝒎𝒍𝒈𝟑𝒏𝒍𝒈𝟑




