
Dr.G.ELAIYARAJA.,M.E.Ph.D

Professor

Department of ECE

VEMU Institute of Technology,

P.Kothakota,Chittoor,AP.

1

(20A04503T) MICROPROCESSORS AND MICROCONTROLLERS

Course Objectives:

2

 To introduce fundamental architectural concepts of microprocessors and

microcontrollers.

 To impart knowledge on addressing modes and instruction set of 8086 and 8051

 To introduce assembly language programming concepts

 To explain memory and I/O interfacing with 8086 and 8051

 To introduce16 bit and 32 bit microcontrollers.

Course Outcomes:

3

CO Description Blooms

Level

CO1
Explain about the 8086 microprocessor architecture and its pin

diagram description
02

CO2
Develop the assembly language programming concepts using

8086 instruction sets
03

CO3 Explain the interfacing of 8086 microprocessor with peripheral devices 02

CO4
Explain the architecture and instruction set of 8051

microcontroller
02

CO5 Design the applications using 8051 microcontrollers 06

Unit- 1

4

8086 Architecture:

Main features, pin diagram/description, 8086 microprocessor

family, internal architecture, bus interfacing unit, execution

unit, interrupts and interrupt response, 8086 system timing,

minimum mode and maximum mode configuration.

Unit- 2

5

8086 Programming:

Program development steps, instructions, addressing

modes, assembler directives, writing simple programs

with an assembler, assembly language program

development tools.

Unit- 3

6

8086 Interfacing:

Semiconductor memories interfacing (RAM, ROM), Intel 8255

programmable peripheral interface, Interfacing switches and LEDS,

Interfacing seven segment displays, software and hardware interrupt

applications, Intel 8251 USART architecture and interfacing, Intel 8237a

DMA controller, stepper motor, A/D and D/A converters, Need for 8259

programmable interrupt controllers.

Unit- 4

7

Microcontroller - Architecture of 8051 – Special Function

Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set

- Addressing modes - Assembly language programming.

Unit- 5

8

Interfacing Microcontroller - Programming 8051 Timers - Serial Port Programming -

Interrupts Programming – LCD & Keyboard Interfacing - ADC, DAC & Sensor

Interfacing - External Memory Interface- Stepper Motor and Waveform generation -

Comparison of Microprocessor, Microcontroller, PIC and ARM processors

Textbooks& References

9

 Textbooks:

 1. Microprocessors and Interfacing – Programming and Hardware by Douglas V Hall, SSSP Rao,

Tata McGraw Hill Education Private Limited, 3rdEdition,1994.

 2. K M Bhurchandi, A K Ray, Advanced Microprocessors and Peripherals, 3rd edition, McGraw

Hill Education, 2017.

 3. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design,

2nd edition, Pearson, 2012.

 References:

 1. Ramesh S Gaonkar, Microprocessor Architecture Programming and Applications with the

8085, 6th edition, Penram International Publishing, 2013.

 2. Kenneth J.Ayala,The 8051 Microcontroller, 3rd edition, Cengage Learning, 2004.

Introduction to processor:

10

• A processor is the logic circuitry that responds to and processes the basic instructions that
drives a computer.

• The term processor has generallyreplaced the term central

processing unit . The processor in a personal computer or
embedded in small devices is often called a microprocessor.

• The processor (CPU, for Central Processing Unit) is the computer's brain. It allows the
processing of numeric data, meaning information entered in binary form, and the
execution of instructions stored in memory.

Evolution of Microprocessor:

11

• A microprocessor is used as the CPU in a microcomputer. There are
now many different microprocessors available.

• Microprocessor is a program-controlled device, which fetches the instructions from
memory, decodes and executes the instructions. Most Micro Processor are single-
chip devices.

• Microprocessor is a backbone of computer system. which is called CPU

• Microprocessor speed depends on the processing speed depends on DATA BUS
WIDTH.

• A common way of categorizing microprocessors is by the no. of bits that their ALU
can Work with at a time

 The address bus is unidirectional because the address information is always given by the
Micro Processor to address a memory location of an input / output devices.

 The data bus is Bi-directional because the same bus is used for transfer of data between
Micro Processor and memory or input / output devices in both the direction.

 It has limitations on the size of data. Most Microprocessor does not support floating-
point operations.

 Microprocessor contain ROM chip because it contain instructions to execute
data.

 Storage capacity is limited. It has a volatile memory. In secondary storage device the storage
capacity is larger. It is a nonvolatile memory.

Evolution of Microprocessor:

12

 Primary devices are: RAM (Read / Write memory, High Speed, Volatile Memory) / ROM (Read
only memory, Low Speed, Non Volatile Memory)

Compiler:

 Compiler is used to translate the high-level language program into machine code at a time. It doesn’t
require special instruction to store in a memory, it stores automatically. The Execution time is less
compared to Interpreter

Evolution of Microprocessor:

13

RISC (Reduced Instruction Set Computer):

• RISC stands for Reduced Instruction Set Computer. To execute each
instruction, if there is separate

• electronic circuitry in the control unit, which produces all the necessary signals, this
approach of the design of the control section of the processor is called RISC design. It is also
called hardwired approach.

Examples of RISC processors:

• IBM RS6000, MC88100

• DEC’s Alpha 21064, 21164 and 21264 processors

Evolution of Microprocessor:

14

Features of RISC Processors:

15

The standard features of RISC processors are listed below:

 RISC processors use a small and limited number of instructions.

 RISC machines mostly uses hardwired control unit.

 RISC processors consume less power and
performance.

are having high

 Each instruction is very simple and consistent.

 RISC processors uses simple addressing modes.

 RISC instruction is of uniform fixed length

CISC (Complex Instruction Set Computer):

 CISC stands for Complex Instruction Set Computer. If the control unit

contains a number of microelectronic circuitry to generate a set of control signals and each micro

circuitry is activated by a micro code, this design approach is called CISC design.

Examples of CISC processors are:

 Intel 386, 486, Pentium, Pentium Pro, Pentium II, Pentium III

 Motorola’s 68000, 68020, 68040, etc.

Features of RISC Processors:

16

Features of CISC Processors:

17

 CISC chips have a large amount of different and complex instructions.

 CISC machines generally make use of complex addressing modes.

 Different machine programs can be executed on CISC machine.

 CISC machines uses micro-program control unit.

 CISC processors are having limited number of registers

8086 Architecture :

18

 8086 Microprocessor is divided into two

EU(Execution Unit) and BIU (Bus Interface Unit).

functional units, i.e.,

EU (Execution Unit):

Execution unit gives instructions to BIU stating from where to fetch the data and then decode and

execute those instructions. Its function is to control operations on data using the instruction decoder &

ALU. EU has no direct connection with system buses as shown in the above figure, it performs

operations over data through BIU.

8086 Architecture :

19

• BIU(Bus Interface Unit):

 BIU takes care of all data and addresses transfers on the buses for the EU like sending
addresses, fetching instructions from the memory, reading data from the ports and the
memory as well as writing data to the ports and the memory. EU has no direction
connection with System Buses so this is possible with the BIU. EU and BIU are connected
with the Internal Bus.

• Instruction queue:

 BIU contains the instruction queue. BIU gets up to 6 bytes of next instructions and stores
them in the instruction queue. When EU executes instructions and is ready for its next
instruction, then it simply reads the instruction from this instruction queue resulting in
increased execution speed.

8086 Architecture :

20

• Segment register:

 BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the addresses of instructions and data in

memory, which are used by the processor to access memory locations. It also contains 1 pointer

register IP, which holds the address of the next instruction to executed by the EU.

8086 Architecture :

21

AX & DX registers:

 In 8 bit multiplication, one of the operands must be in AL. The other operand can be a

byte in memory location or in another 8 bit register. The resulting 16 bit product is stored

in AX, with AH storing the MS byte.

 In 16 bit multiplication, one of the operands must be in AX.

 The other operand can be a word in memory location or in another 16 bit register. The

resulting 32 bit product is stored in DX and AX, with DX storing the MS word and AX storing

the LS word.

Special functions of general purpose register

22

special functions of general purpose register

23

BX register :

In instructions where we need to specify in a general purpose register the 16 bit effective

address of a memory location, the register BX is used (register indirect).

CX register :

In Loop Instructions, CX register will be always used as the implied counter. In I/O instructions,

the 8086 receives into or sends out data from AX or AL depending as a word or byte

operation.

• Segment register:

 BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the addresses of

instructions and data in memory, which are used by the processor to access memory locations. It

also contains 1 pointer register IP, which holds the address of the next instruction to executed by the

EU.

Segment register:

24

 Flag Register contains a group of status bits called flags that indicate the status of the CPU

or the result of arithmetic operations.

 There are two types of flags:

 The status flags which reflect the result of executing an instruction. The programmer

cannot set/reset these flags directly.

 The control flags enable or disable certain CPU operations.

 The programmer can set/reset these bits to control the CPU's operation.

Flag Register and Functions of 8086 Flags

25

• Nine individual bits of the status register are used as control flags (3 of them) and status flags (6

of them).The remaining 7 are not used.

• A flag can only take on the values 0 and 1. We say a flag is set if it has the value 1.The status

flags are used to record specific characteristics of arithmetic and of logical instructions.

Flag Register and Functions of 8086 Flags

26

Structure of Flag Register

27

• Control Flags: There are three control flags

• The Direction Flag (D): Affects the direction of moving data blocks by such

instructions as MOVS, CMPS and SCAS. The flag values are 0 = up and 1 = down and can be set/reset by

the STD (set D) and CLD (clear D) instructions.

• The Interrupt Flag (I): Dictates whether or not system interrupts can occur. Interrupts are actions

initiated by hardware block such as input devices that will interrupt the normal execution of programs.

The flag values are 0 = disable interrupts or 1 = enable interrupts and can be manipulated by the CLI

(clear I) and STI (set I) instructions.

Flag Register and Functions of 8086 Flags

28

• The Trap Flag (T): Determines whether or not the CPU is halted after the execution of each

instruction. When this flag is set (i.e. = 1), the programmer can single step through his program to

debug any errors. When this flag = 0 this feature is off. This flag can be set by the INT 3 instruction.

• Status Flags: There are six status flags

• The Carry Flag (C): This flag is set when the result of an unsigned arithmetic operation is too large to

fit in the destination register. This happens when there is an end carry in an addition operation or

there an end borrows in a subtraction operation. A value of 1 = carry and 0 = no carry.

Flag Register and Functions of 8086 Flags

29

• The Overflow Flag (O): This flag is set when the result of a signed arithmetic operation is too large to

fit in the destination register (i.e. when an overflow occurs). Overflow can occur when adding two

numbers with the same sign (i.e. both positive or both negative). A value of 1 = overflow and 0 = no

overflow.

• The Sign Flag (S): This flag is set when the result of an arithmetic or logic operation is negative. This

flag is a copy of the MSB of the result (i.e. the sign bit). A value of 1 means negative and 0 = positive.

Flag Register and Functions of 8086 Flags

30

• The Zero Flag (Z): This flag is set when the result of an arithmetic or logic operation is equal to zero. A

value of 1 means the result is zero and a value of 0 means the result is not zero.

• The Auxiliary Carry Flag (A): This flag is set when an operation causes a carry from bit 3 to bit 4 (or a

borrow from bit 4 to bit 3) of an operand. A value of 1 = carry and 0 = no carry.

• The Parity Flag (P): This flags reflects the number of 1s in the result of an operation. If the number of 1s

is even its value = 1 and if the number of 1s is odd then its value = 0.

Flag Register and Functions of 8086 Flags

31

• Addressing mode indicates a way of locating data or operands. Depending up on the data type used in

the instruction and the memory addressing modes, any instruction may belong to one or more

addressing modes or same instruction may not belong to any of the addressing modes.

• The addressing mode describes the types of operands and the way they are

accessed for executing an instruction. According to the

execution, the instructions may be categorized as

 Sequential control flow instructions and

 Control transfer instructions.

flow of instruction

Addressing Modes of 8086

32

• Sequential control flow instructions are the instructions which after execution, transfer control to the

next instruction appearing immediately after it (in the sequence) in the program. For example the

arithmetic, logic, data transfer and processor control instructions are Sequential control flow

instructions.

• The control transfer instructions on the other hand transfer control to some predefined address or

the address somehow specified in the instruction, after their execution. For example INT, CALL, RET &

JUMP instructions fall under this category.

Addressing Modes of 8086

33

 The addressing modes for Sequential and control flow instructions are

explained as follows.

 Immediate addressing mode:

 In this type of addressing, immediate data is a part of instruction, and

appears in the form of successive byte or bytes.

 Example: MOV AX, 0005H.

 In the above example, 0005H is the immediate data. The immediate

may be 8- bit or 16-bit in size.

data

Addressing Modes of 8086

34

Direct addressing mode:

• In the direct addressing mode, a 16-bit memory address (offset) directly specified in the

instruction as a part of it.

Example: MOV AX, [5000H].

Register addressing mode:

• In the register addressing mode, the data is stored in a register and it is

referred using the particular register. All the registers, except IP,

used in this mode.

may be

Example: MOV BX, AX

Addressing Modes of 8086

35

Register indirect addressing mode:

• Sometimes, the address of the memory location which contains data or operands is determined in an

indirect way, using the offset registers. The mode of addressing is known as register indirect mode.

• In this addressing mode, the offset address of data is in either BX or SI or DI Register. The

default segment is either DS or ES.

E•xample: MOV AX, [BX].

Addressing Modes of 8086

36

Indexed addressing mode:

• In this addressing mode, offset of the operand is stored one of the index registers. DS & ES are the

default segments for index registers SI & DI respectively.

Example: MOV AX, [SI]

• Here, data is available at an offset address stored in SI in DS.

Addressing Modes of 8086

37

Register relative addressing mode:

• In this addressing mode, the data is available at an effective address formed by adding an 8-bit or 16-bit

displacement with the content of any one of the register BX, BP, SI & DI in the default (either in DS &

ES) segment.

Example: MOV AX, 50H [BX]

Addressing Modes of 8086

38

•
•Based indexed addressing mode:

• The effective address of data is formed in this addressing mode, by adding content of a base

register (any one of BX or BP) to the content of an index register (any one of SI or DI). The default

segment register may be ES or DS. Example: MOV AX, [BX][SI]

Relative based indexed:

• The effective address is formed by adding an 8 or 16-bit displacement with the sum of contents of any

of the base registers (BX or BP) and any one of the index registers, in a

default segment.

Example: MOV AX, 50H [BX] [SI]
•

Addressing Modes of 8086

39

• Addressing Modes for control transfer instructions:

• Intersegment

– Intersegment direct

– Intersegment indirect

• Intrasegment

– Intrasegment direct

– Intrasegment indirect

Addressing Modes of 8086

40

• Intersegment direct:

 In this mode, the address to which the control is to be transferred is in a different segment. This

addressing mode provides a means of branching from one code segment to another code segment.

Here, the CS and IP of the destination address are specified directly in the instruction.

Example: JMP 5000H: 2000H;

• Jump to effective address 2000H in segment 5000H.

Addressing Modes of 8086

41

Intersegment indirect:

 In this mode, the address to which the control is to be transferred lies in a different segment and it is

passed to the instruction indirectly, i.e. contents of a memory block containing four bytes, i.e. IP(LSB),

IP(MSB), CS(LSB) and CS(MSB) sequentially. The starting address of the memory block may be referred

using any of the addressing modes, except immediate mode.

 Example: JMP [2000H].

 Jump to an address in the other segment specified at effective

2000H in DS.

address

Addressing Modes of 8086

42

• Intrasegment direct mode:

 In this mode, the address to which the control is to be transferred lies in the same segment in which the

control transfers instruction lies and appears directly in the instruction as an immediate displacement

value. In this addressing mode, the displacement is computed relative to the content of the instruction

pointer.

Addressing Modes of 8086

43

• The effective address to which the control will be transferred is given by

the sum of 8 or 16 bit displacement and current content of

jump instruction, if the signed displacement (d) is of 8-

IP. In case of

bits (i.e. -

128<d<+127), it as short jump and if it is of 16 bits (i.e. -

32768<d<+32767), it is termed as long jump.

Example: JMP SHORT LABEL.

Addressing Modes of 8086

44

• Intrasegment indirect mode:

• In this mode, the displacement to which the control is to be transferred is in the same segment in

which the control transfer instruction lies, but it is passed to the instruction directly. Here, the branch

address is found as the content of a register or a memory location.

• This addressing mode may be used in unconditional branch

instructions.

• Example: JMP [BX]; Jump to effective address stored in BX.

Addressing Modes of 8086

45

INSTRUCTION SET OF 8086

46

• The Instruction set of 8086 microprocessor is classified into 7 Types, they

are:-

• Data transfer instructions

• Arithmetic& logical instructions

• Program control transfer instructions

• Machine Control Instructions

• Shift / rotate instructions

• Flag manipulation instructions

• String instructions

• Data transfer instruction, as the name suggests is for the transfer of data from memory to
internal register, from internal register to memory, from one register to another register, from
input port to internal register, from internal register to output port etc

MOV instruction

• It is a general purpose instruction to transfer byte or word from register to register, memory
to register, register to memory or with immediate addressing.

Data Transfer instructions

47

General Form:
• MOV destination, source
• Here the source and destination needs to be of the same size, that

is both 8 bit or both 16 bit.
• MOV instruction does not affect any flags.

Example:-
•
• MOV BX, 00F2H; load the immediate number 00F2H in BX register

• MOV CL, [2000H] ;Copy the 8 bit content of the memory
location, at a displacement of 2000H

from data segment base to the CL register

Data Transfer instructions

48

•MOV [589H], BX; Copy the 16 bit content of BX register on to the memory location,
which at a
displacement of 589H from the data segment
base.

• MOV DS, CX; Move the content of CX to DS

PUSH instruction

• The PUSH instruction decrements the stack pointer by two and copies the word from
source to the location where stack pointer now points. Here the source must of word size
data. Source can be a general purpose register, segment register or a memory location.

Data Transfer instructions

49

The PUSH instruction first pushes the most significant byte to sp-1, then the least significant to
the sp-2.
Push instruction does not affect any flags.

Data Transfer instructions

50

Example:-

• PUSH CX ; Decrements SP by 2, copy content of CX to the
stack (figure shows execution of this instruction)

; Decrement SP by 2 and copy DS to stack• PUSH DS

• POP instruction

The POP instruction copies a word from the stack location pointed by the stack pointer to the
destination. The destination can be a General purpose register, a segment register or a
memory location. Here after the content is copied the stack pointer is automatically
incremented by two.

• The execution pattern is similar to that of the PUSH instruction.

Example:

• POP CX ; Copy a word from the top of the stack to CX and
increment SP by 2.

Data Transfer instructions

51

Move 8 bit data from 30F8H port Move 16 bit data

from 30F8H port Copy contents of AL to 8 bit port

047H

• IN & OUT instructions

• The IN instruction will copy data from a port to the accumulator. If 8 bit is read the data will
go to AL and if 16 bit then to AX. Similarly OUT instruction is used to copy data from
accumulator to an output port.

• Both IN and OUT instructions can be done using direct and indirect addressing modes.

Example:

• IN AL, 0F8H; Copy a byte from the port 0F8H to AL

• MOV DX, 30F8H;Copy port address in DX

• IN AL, DX;

• IN AX, DX;

• OUT 047H, AL;

• MOV DX, 30F8H;Copy port address in DX

Data Transfer instructions

52

XCHG instruction

• The XCHG instruction exchanges contents of the destination and source. Here destination
and source can be register and register or register and memory location, but XCHG cannot
interchange the value of 2 memory locations.

General Format

• XCHG Destination, Source

Example:

• XCHG BX, CX; exchange word in CX with the word in BX

• XCHG AL, CL; exchange byte in CL with the byte in AL

• XCHG AX, SUM[BX];here physical address, which is DS+SUM+[BX]. The
content at physical

address and the content of AX are interchanged.

Data Transfer instructions

53

Mnemonic Meaning Format Operation Flags

affected

ADD Addition ADD D,S (S)+(D)  (D)

carry  (CF)

ALL

ADC Add with

carry

ADC D,S (S)+(D)+(CF)  (D)

carry  (CF)

ALL

INC Increment by

one

INC D (D)+1  (D) ALL but CY

AAA ASCII adjust

for addition

AAA If the sum is >9,AH

is incremented by1

AF,CF

DAA Decimal
adjust for

addition

DAA Adjust AL fordecimal

PackedBCD

ALL

Arithmetic Instructions:ADD,ADC, INC,AAA, DAA

54

Arithmetic Instructions–SUB, SBB, DEC, AAS, DAS, NEG

55

Mnemonic Meaning Format Operation Flags
affected

SUB Subtract SUB D,S (D) - (S)  (D)
Borrow  (CF)

All

SBB Subtract

with

borrow

SBB D,S (D) - (S) - (CF)  (D) All

DEC Decrement

by one

DEC D (D) - 1  (D) All but CF

NEG Negate NEG D All

DAS Decimal

adjust for

subtraction

DAS Convert the result in ALto

packed decimal format

All

AAS ASCII

adjust for

subtraction

AAS (AL) difference

(AH) dec by 1 if borrow

CY,AC

Multiplication and Division

56

Multiplication and Division

57

AND instruction

• This instruction logically ANDs each bit of the source byte/word with the corresponding bit
in the destination and stores the result in destination. The source can be an immediate
number, register or memory location, register can be a register or memory location.

• The CF and OF flags are both made zero, PF, ZF, SF are affected by the operation and AF is
undefined.

• General Format:

• AND Destination, Source

Example:

• AND BL, AL ;suppose BL=1000 0110 and AL = 1100 1010 then
after the operation BL would be BL= 1000 0010.

• AND CX, AX ;CX <= CX AND AX

• AND CL, 08 ;CL<= CL AND (0000 1000)

Logical Instructions

58

OR instruction

• This instruction logically ORs each bit of the source byte/word with the corresponding bit in
the destination and stores the result in destination. The source can be an immediate number,
register or memory location, register can be a register or memory location.

• The CF and OF flags are both made zero, PF, ZF, SF are affected by
the operation and AF is undefined.

• General Format:

• OR Destination, Source

Logical Instructions

59

Example:
• OR BL, AL; suppose BL=1000 0110 and AL = 1100 1010 then

after the operation BL would be BL= 1100 1110.
• OR CX, AX;CX <= CX AND AX
• OR CL, 08;CL<= CL AND (0000 1000)
NOT instruction
• The NOT instruction complements (inverts) the contents of an operand register or a

memory location, bit by bit. The examples are as follows:
Example:

• NOT AX (BEFORE AX= (1011)2= (B) 16 AFTER EXECUTION AX=
(0100)2= (4)16).

• NOT [5000H]

Logical Instructions

60

XOR instruction

• The XOR operation is again carried out in a similar way to the AND and OR operation. The
constraints on the operands are also similar. The XOR operation gives a high output, when the
2 input bits are dissimilar. Otherwise, the output is zero. The example instructions are as
follows:

Example:

• XOR AX,0098H

• XOR AX,BX

• XOR AX,[5000H]

Logical Instructions

61

Shift / Rotate Instructions

• Shift instructions move the binary data to the left or right by them within the

register or memory location. They also can multiplication of powers of 2+n and

division of powers of 2-n.

shifting

perform

• There are two type of shifts logical shifting and arithmetic shifting,

later is used with signed numbers while former with unsigned.

Logical Instructions

62

SHL/SAL instruction

• Both the instruction shifts each bit to left, and places the MSB in CF and LSB is made 0. The destination
can be of byte size or of word size, also it can be a register or a memory location. Number of shifts is
indicated by the count.

• All flags are affected.

General Format:

• SAL/SHL destination, count

Logical Instructions

63

SHR instruction

• This instruction shifts each bit in the specified destination to the right and
0 is stored in the MSB position. The LSB is shifted into the carry flag. The destination can be of byte size
or of word size, also it can be a register or a memory location. Number of shifts is indicated by the
count.

• All flags are affected

• General Format:

SHR destination, count

Logical Instructions

64

String - a byte or word array located in memory.

Operations that can be performed with string instructions:

• copy a string into another string

• search a string for a particular byte or word

• store characters in a string

• compare strings of characters alphanumerically

String Instruction Basics

65

 Source DS:SI, Destination ES:DI

– You must ensure DS and ES are correct

– You must ensure SI and DI are offsets into DS and ES
respectively

 Direction Flag (0 = Up, 1 = Down)

– CLD - Increment addresses (left to right)

– STD - Decrement addresses (right to left)

String Instruction Basics

66

String Control Instructions

67

1) MOVS/ MOVSB/ MOVSW

Dest string name, src string name

This instruction moves data byte or word from location in DS to
location in ES.

2) REP / REPE / REPZ / REPNE / REPNZ

Repeat string instructions until specified conditionsexist. This is

prefix a instruction.

3) CMPS / CMPSB / CMPSW
Compare string bytes or string words.

4)SCAS / SCASB / SCASW
Scan a string byte or string word.
Compares byte in AL or word in AX. String address is to be loaded
in DI.

5)STOS / STOSB / STOSW
Store byte or word in a string.
Copies a byte or word in AL or AX to memory location pointed by
DI.

6)LODS / LODSB /LODSW
Load a byte or word in AL or AX

Copies byte or word from memory location pointed by SI into AL or
AX register.

String Control Instructions

68

5. Program Execution Transfer Instructions

69

These instructions are similar to branching or looping instructions. These instructions include

unconditional jump or loop instructions.

Classification:

•Unconditional transfer instructions

•Conditional transfer instructions

•Iteration control instructions

•Interrupt instructions

Unconditional transfer instructions

 CALL: Call a procedure, save return address on stack

 RET: Return from procedure to the main program.

 JMP: Goto specified address to get next instruction

CALL instruction: The CALL instruction is used to transfer execution of program to a

subprogram or procedure.

5. Program Execution Transfer Instructions

70

CALL instruction

 Near call

1.Direct Near CALL: The destination address is specified in the instruction itself.

2. Indirect Near CALL: The destination address is specified in any

16-bit register, except IP.

 Far call

1.Direct Far CALL: The destination address is specified in the
instruction itself. It will be in different Code Segment.

2. Indirect Far CALL: The destination address is specified in two

word memory locations pointed by a register.

5. Program Execution Transfer Instructions

71

JMP instruction

The processor jumps to the specified location rather than the

instruction after the JMP instruction.

 Intra segment jump

 Inter segment jump

RET

RET instruction will return execution from a procedure to the next instruction after the

CALL instruction in the calling program.

5. Program Execution Transfer Instructions

72

Conditional TransferInstructions

• JA/JNBE: Jump if above / jump if not below or equal

• JAE/JNB: Jump if above /jump if not below

• JBE/JNA: Jump if below or equal/ Jump if not above

• JC: jump if carry flag CF=1

• JE/JZ: jump if equal/jump if zero flag ZF=1

• JG/JNLE: Jump if greater/ jump if not less than or equal.

5. Program Execution Transfer Instructions

73

Conditional TransferInstructions

• JGE/JNL: jump if greater than or equal/ jump if not less than

• JL/JNGE: jump if less than/ jump if not greater than or equal

• JLE/JNG: jump if less than or equal/ jump if not greater than

• JNC: jump if no carry (CF=0).

• JNE/JNZ: jump if not equal/ jump if not zero(ZF=0)

5. Program Execution Transfer Instructions

74

Conditional TransferInstructions

• JNO: jump if no overflow(OF=0)

• JNP/JPO: jump if not parity/ jump if parity odd(PF=0)

• JNS: jump if not sign(SF=0)

• JO: jump if overflow flag(OF=1)

• JP/JPE: jump if parity/jump if parity even(PF=1)

• JS: jump if sign(SF=1).

5. Program Execution Transfer Instructions

75

Iteration Control Instructions

 These instructions are used to execute a series of instructions for

certain number of times.

 LOOP: Loop through a sequence of instructions until CX=0.

instructions while LOOPE/LOOPZ : Loop through a sequence of

ZF=1 and instructions CX = 0.

 LOOPNE/LOOPNZ : Loop through a sequence of instructions while

ZF=0 and CX =0.

 JCXZ : jump to specified address if CX=0.

5. Program Execution Transfer Instructions

76

Interrupt Instructions

77

Two types of interrupt instructions:

 Hardware Interrupts (External Interrupts)

 Software Interrupts (Internal Interrupts and Instructions)

Hardware Interrupts:

• INTR is a maskable hardware interrupt.

• NMI is a non-maskable interrupt.

Software Interrupts

• INT : Interrupt program execution, call service procedure

• INTO : Interrupt program execution if OF=1

• IRET: Return from interrupt service procedure to main program.

Interrupt Instructions

78

ENTER : enter procedure.

LEAVE:Leaveprocedure.

BOUND: Check if effective address within specified array bounds.

High Level Language Interface Instructions

79

Processor Control Instructions

80

I. Flag set/clear instructions

 STC: Set carry flag CF to 1

 CLC: Clear carry flag CF to 0

 CMC: Complement the state of the carry flag CF

 STD: Set direction flag DF to 1 (decrement string pointers)

 CLD: Clear direction flag DF to 0

 STI: Set interrupt enable flag to 1(enable INTR input)

 CLI: Clear interrupt enable Flag to 0 (disable INTR input)

II. External Hardware synchronizationinstructions

HLT: Halt (do nothing) until interrupt or reset.

WAIT:Wait (Do nothing) until signal on the test pin islow.

ESC: Escape to external coprocessor such as 8087 or 8089.

LOCK: An instruction prefix. Prevents another processor from taking

the bus while the adjacent instruction executes.

NOP: No operation. This instruction simply takes up three clock cycles and does no

processing.

Processor Control Instructions

81

Assembler Directives

82

 ASSUME

 DB

 DD

 DQ

 DT

 DW

-

-

-

-

-

Defined Byte. Defined

Double Word Defined Quad

Word Define Ten Bytes

Define Word

 ASSUME Directive-
The ASSUME directive is used to tell the assembler that the name of the logical segment should be
used for a specified segment. The 8086 works directly with only 4 physical segments: a Code
segment, a data segment, a stack segment, and an extra segment.

Example:

ASUME CS:CODE ;This tells the assembler that the logical segment named CODE contains the
instruction statements for the program and should be treated as a code segment.

ASSUME DS:DATA ;This tells the assembler that for any instruction which refers to a data in the data
segment, data will found in the logical segment DATA.

Assembler Directives

83

 DB - DB directive is used to declare a byte- type variable or to

in memory location.

store a byte

 Example:

1. PRICE DB 49h, 98h, 29h ; Declare an array of 3 bytes,

PRICE and initialize.

named as

2. NAME DB ‘ABCDEF’ ;Declare an array of 6 bytes and initialize with ASCII

code for letters

3. TEMP DB 100 DUP(?) ;Set 100 bytes of storage in memory and give it the name as TEMP, but leave the

100 bytes uninitialized. Program instructions will load values into these locations.

Assembler Directives

84

 DW -The DW directive is used to define a variable of type word or to
reserve storage location of type word in memory.

 Example:

• MULTIPLIER DW 437Ah ; this declares a variable of type word and

named it as MULTIPLIER. This variable is initialized with the value

437Ah when it is loaded into memory to run.

Assembler Directives

85

 END - END directive is placed after the last statement of a program to tell the assembler that

this is the end of the program module. The assembler will ignore any statement after an END

directive.

 ENDP - ENDPdirective is used along with the name of the procedure to indicate the end of a

procedure to the assembler

Example:

• SQUARE_NUM PROCE ; It start the procedure, Some steps to find the square root of a number

• SQUARE_NUM ENDP ;Hear it is the End for the procedure

Assembler Directives

86

 END

 ENDP

 ENDS

 EQU

 EVEN

 EXTRN

- End Program

- End Procedure

- End Segment

- Equate

- Align on Even Memory Address

-

Assembler Directives

87

 ENDS - This ENDS directive is used with name of the segment to

indicate the end of that logic segment.

Example: CODE SEGMENT ;Hear it Start the logic segment containing code ;

 CODE ENDS ;End of segment named as CODE

 GLOBAL - Can be used in place of a PUBLIC directive or in place of

an EXTRN directive.

Assembler Directives

88

 GROUP - Used to tell the assembler to group the logical statements named after the directive into

one logical group segment, allowing the contents of all the segments to be accessed from the same

group segment base.

 INCLUDE - Used to tell the assembler to insert a block of source code

from the named file into the current source module.

 LABEL- Used to give a name to the current value in the location

counter.

 NAME- Used to give a specific name to each assembly module

when programs consisting of several modules are written.

E.g.: NAME PC_BOARD

Assembler Directives

89

 OFFSET- Used to determine the offset or displacement of a named

item or procedure from the start of the segment which contains it.

data

E.g.: MOV BX, OFFSET PRICES

 ORG- The location counter is set to 0000 when the assembler starts reading a segment. The ORG

directive allows setting a desired value at any point in the program.

E.g.: ORG 2000H

Assembler Directives

90

 PUBLIC- Used to tell the assembler that a specified name or label

accessed from other modules.

will be

 SEGMENT- Used to indicate the start of a logical segment.

E.g.: CODE SEGMENT indicates to the assembler the start of a

segment called CODE

logical

 SHORT- Used to tell the assembler that only a 1 byte displacement is

needed to code a jump instruction.

E.g.: JMP SHORT NEARBY_LABEL

 TYPE - Used to tell the assembler to determine the type of specified

variable.

Assembler Directives

91

Write an assembly language program for addition of two 8- bit

numbers using 8086 microprocessors.

92

DATA SEGMENT A1 DB

50H A2 DB 51H RES

DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA MOV

DS,AX MOV AL,A1

MOV BL,A2 ADD AL,BL

MOV RES,AL MOV

AX,4C00H INT 21H

CODE ENDS

END START

Write an assembly language program to find the factorial of given

number using 8086 microprocessors.

93

DATA SEGMENT

FIRST DW 03H

SEC DW 01H

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

START: MOV AX,DATA MOV

DS,AX MOV AX,SEC

MOV CX,FIRST

L1: MUL CX

DEC CX

JCXZ L2 JMP L1

L2: INT 3H

CODE ENDS

END START

Write an assembly language program to find the sum of squares using 8086

microprocessors.

94

DATA SEGMENT

NUM DW 5H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA MOV

DS,AX MOV CX,NUM

MOV BX,00

L1: MOV AX,CX MUL

CX ADD BX,AX

DEC CX

JNZ L1

MOV RES,BX INT

3H

CODE ENDS

END START

Procedures:

• While writing programs, it may be the case that a particular sequence of instructions is used several
times. To avoid writing the sequence of instructions again and again in the program, the same sequence
can be written as a separate subprogram called a procedure.

Defining Procedures:

• Assembler provides PROC and ENDP directives in order to define
procedures. The directive PROC indicates beginning of a procedure. Its general form is:

Procedure_name PROC [NEAR|FAR]

Procedures and Macros

95

Passing parameters to and from procedures:

The data values or addresses passed between procedures and main

program are called parameters. There are four ways of passing

parameters:

 Passing parameters in registers

 Passing parameters in dedicated memory locations

 Passing parameters with pointers passed in registers

 Passing parameters using the stack

Procedures and Macros

96

MACROS:
 When the repeated group of instruction is too short or not suitable to be

implemented as a procedure, we use a MACRO. A macro is a group of instructions to which a name is

given. Each time a macro is called in a program, the assembler will replace the macro name with the

group of instructions.

Defining MACROS:

 Before using macros, we have to define them. MACRO directive

informs the assembler the beginning of a macro. The general form is:

 Macro_name MACRO argument1, argument2, …Arguments are optional. ENDM informs the

assembler the end of the macro. Its general form is : ENDM

Procedures and Macros

97

Procedures Macros

Accessed by CALL and RET mechanism

during program execution

Accessed by name given to macro

when

defined during assembly

Machine code for instructions only put in memory once Machine code generated for instructions
each time called

Parameters are passed in registers,

memory locations or stack

Parameters passed as part of statement

which calls macro

Procedures uses stack Macro does not utilize stack

A procedure can be defined anywhere in

program using the directives PROC

and ENDP

A macro can be defined anywhere in

program using the directives MACRO

and ENDM

Procedures takes huge memory for CALL(3 bytes

each time CALL is used) instruction

Length of code is very huge ifmacro’s are

called for more number of times

Procedures and Macros

98

Minimum mode operation in 8086:

99

 In a minimum mode 8086 system, the microprocessor 8086 is operated in
minimum mode by strapping its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor
chip itself. There is a single microprocessor in the minimum mode system.

 The remaining components in the system are latches, transceivers, clock generator, memory and I/O
devices. Some type of chip selection logic may be required for selecting memory or I/O devices,
depending upon the address map of the system.

 Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They are used for
separating the valid address from the multiplexed address/data signals and are controlled by the ALE
signal generated by 8086.

Minimum mode operation in 8086:

100

 Transceivers are the bidirectional buffers and sometimes they are called as data amplifiers. They are
required to separate the valid data from the time multiplexed address/data signals.

 They are controlled by two signals namely, DEN and DT/R.

 The DEN signal indicates the direction of data, i.e. from or to the processor. The system contains memory
for the monitor and users program storage.

 Usually, EPROM is used for monitor storage, while RAM for users program
storage. A system may contain I/O devices.

Minimum mode operation in 8086:

101

In the maximum mode, the 8086 is operated by strapping the MN/MX
pin to ground.

In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus
controller derives the control signal using this status information.

In the maximum mode, there may be more than one

microprocessor in the system configuration.

The components in the system are same as in the minimum mode system.

The basic function of the bus controller chip IC8288 is to derive
control

signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc.
using the information by the processor on the status lines.

The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to
8288 are driven by CPU.

Maximum mode operation in 8086:

102

Maximum mode operation in 8086:

103

IOWC• It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC,

and AIOWC. The AEN, IOB and CEN pins are especially useful for

multiprocessor systems.

• AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of the MCE/PDEN

output depends upon the status of the IOB pin.

• If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it acts as peripheral

data enable used in the multiple bus configurations.

Maximum mode operation in 8086:

104

• INTA pin used to issue two interrupt acknowledge pulses to the interrupt

controller or to an interrupting device.

• IORC, IOWC are I/O read command

respectively.

and I/O write command signals

• These signals enable an IO interface to read or write the data from or to the address port.

• The MRDC, MWTC are memory read command and memory write command signals respectively and

may be used as memory read or write signals.

Maximum mode operation in 8086:

105

• The MRDC, MWTC are memory read command and memory write

writecommand signals respectively and may be used as memory read or signals.

• All these command signals instructs the memory to accept or send from or to the bus. data

• For both of these write command signals, the advanced signals namely AIOWC and AMWTC are

available.

• Here the only difference between in timing diagram between minimum mode and maximum mode is

the status signals used and the available control and advanced command signals.

Maximum mode operation in 8086:

106

• R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as on the ALE

and apply a required signal to its DT / R pin during T1.

• In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate MRDC or IORC.

These signals are activated until T4. For an output, the AMWC or AIOWC is activated from T2 to T4 and

MWTC or IOWC is activated from T3 to T4.

Maximum mode operation in 8086:

107

Write Cycle Timing Diagram for Minimum Mode

108

Bus Request and Bus Grant Timings in Minimum Mode

System of 8086

109

Memory Read Timing Diagram in Maximum Mode of 8086

110

Memory Write Timing in Maximum mode of 8086

111

Assembly Language Programming

112

The assembly

developed by

programming language is a low-level language which is using mnemonics.

The microcontroller or microprocessor can

understand only the binary language like 0’s or 1’s therefore the assembler convert the assembly

language to binary language and store it the memory to perform the tasks. Before writing the program

the embedded designers must have sufficient knowledge on particular hardware of the controller or

processor, so first we required to know hardware of 8086 processor.

Machine Language:

Set of fundamental instructions the machine can execute Expressed as a

pattern of 1’s and 0’s

Assembly Language Programming

113

Assembly Language:

Alphanumeric equivalent of machine language Mnemonics more human-

oriented than 1’s and 0’s

Assembler:

Computer program that transliterates (one-to-one mapping) assembly to machine language

Computer’s native language is machine/assembly language

Why Assembly Language Programming

114

• Faster and shorter programs: Compilers do not always generate

optimum code.

• Instruction set knowledge is important for machine designers.

• Compiler writers must be familiar with details of machine language.

• Small controllers embedded in many products

• Have specialized functions,

• Rely so heavily on input/output functionality,

• HLLs inappropriate for product development.

Basic Elements of 8086 Assembly Programming Language

115

8086 Assembly Programming Language Instructions

116

• Like we know instruction are the lines of a program that means an action for the computer to

execute.

In 8086, a normal instruction is made by an operation code and sometimes

operands.

Structure:

Operation Code [Operand1 [, Operand2]]

• Operations

• The operation is usually logic or arithmetic, but we can also find some

special operation like the Jump (JMP) operation.

8086 Assembly Programming Language Instructions

117

• Operands

• Operands are the parameters of the operation in the instruction. They can

be use in 3 way:

• Immediate

• This means a direct access of a variable that have been declared in the

program.

• Register

• Here we use the content of a register to be a parameter.

• Memory

• Here we access to the content of a specific part of the memory using a pointer

SYNTAX OF 8086/8088 ASSEMBLY LANGUAGE

118

• The language is not case sensitive.

• There may be only one statement per line. A statement may start in any

column.

• A statement is either an instruction, which the assembler translates into machine code, or an

assembler directive (pseudo-op), which instructs the assembler to perform some specific task.

• Syntax of a statement:

{name} mnemonic {operand(s)} {; comment}

• The curly brackets indicate those items that are not present or are optional

in some statements.

SYNTAX OF 8086/8088 ASSEMBLY LANGUAGE

119

• The name field is used for instruction labels, procedure names, segment

names, macro names, names of variables, and names of constants.

• MASM 6.1 accepts identifier names up to 247 characters long. All characters are significant, whereas

under MASM 5.1, names are significant to 31 characters only. Names may consist of letters, digits, and

the following 6 special characters: ? . @ _ $ % .If a period is used; it must be the first character.

Names may not begin with a digit.

• Instruction mnemonics, directive mnemonics, register names, operator

names and other words are reserved.

Stack

120

• A stack is a container of objects that are inserted and removed according to the last-in first-out (LIFO)

principle. In the pushdown stacks only two operations are allowed: push the item into the stack, and

pop the item out of the stack.

• A stack is a container of objects that are inserted and removed according to the last-in first-out (LIFO)

principle. In the pushdown stacks only two operations are allowed: push the item into the stack, and

pop the item out of the stack. A stack is a limited access data structure - elements can be added and

removed from the stack only at the top. push adds an item to the top of the stack, pop removes the

item from the top.

Stack

121

• A helpful analogy is to think of a stack of books; you can remove only the

top book, also you can add a new book on the top. A stack is a recursive

data structure. Here is a structural definition of a Stack:

• A stack is either empty or it consists of a top and the rest which is a stack;

Applications

122

• The simplest application of a stack is to reverse a word. You push a given

word to stack - letter by letter - and then pop letters from the stack.

• Another application is an "undo" mechanism in text editors; this operation

is accomplished by keeping all text changes in a stack.

• Backtracking. This is a process when you need to access the most recent data element in a series of

elements. Think of a labyrinth or maze - how do you find a way from an entrance to an exit? Once you

reach a dead end, you must backtrack. But backtrack to where? to the previous choice point.

Therefore, at each choice point you store on a stack all possible choices. Then backtracking simply

means popping a next choice from the stack.

Stack Data Structure

123

Stack is a linear data structure which follows a particular order in which the operations are performed.

The order may be LIFO(Last In First Out) or FILO(First In Last Out).

Mainly the following three basic operations are performed in the stack:

• Push: Adds an item in the stack. If the stack is full, then it is said to be an Overflow condition.

• Pop: Removes an item from the stack. The items are popped in the reversed order in which they are

pushed. If the stack is empty, then it is said to be an Underflow condition.

Stack Structure

124

• If the stack top points to a memory location 52050H, it means that the location 52050H is already

occupied with the previously pushed data. The next 16 bit push operation will decrement the stack

pointer by two, so that it will point to the new stack-top 5204EH and the decremented contents of

SP will be 204EH. This location will now be occupied by the recently pushed data.

• Thus for a selected value of SS, the maximum value of SP=FFFFH and the segment can have

maximum of 64K locations. If the SP starts with an initial value of FFFFH, it will be decremented by

two whenever a 16-bit data is pushed onto the stack.

Stack Structure

125

• After successive push operations, when the stack pointer contains 0000H, any attempt to further

push the data to the stack will result in stack overflow.

• After a procedure is called using the CALL instruction, the IP is incremented to the next instruction.

Then the contents of IP, CS and flag register are pushed automatically to the stack. The control is then

transferred to the specified address in the CALL instruction i.e. starting address of the procedure.

Then the procedure is executed.

Stack Structure

126

Interrupts

127

Definition:

The meaning of ‘interrupts’ is to break the sequence of operation. While the CPU is executing a

program, on ‘interrupt’ breaks the normal sequence of execution of instructions, diverts its execution

to some other program called Interrupt Service Routine (ISR).After executing ISR , the control is

transferred back again to the main program. Interrupt processing is an alternative to polling.

Interrupts

128

Need for Interrupt:

Interrupts are particularly useful when interfacing I/O devices that provide

or require data at relatively low data transfer rate.

Interrupt is a mechanism that allows hardware or software to suspend normal execution on

microprocessor in order to switch to interrupt service routine for hardware / software. Interrupt can

also describe as asynchronous electrical signal that sent to a microprocessor in order to stop

current execution and switch to the execution signaled (depends on priority). Whether an interrupt is

prioritized or not depends on the interrupt flag register which controlled by priority /

programmable interrupt

Interrupt Cycle of 8086

129

• Interrupts in 8086 microprocessor. ... Whenever an interrupt occurs the processor completes the

execution of the current instruction and starts the execution of an Interrupt Service Routine (ISR) or

Interrupt Handler. ISR is a program that tells the processor what to do when the interrupt occurs.

• In 8086 microprocessor following tasks are performed when

microprocessor encounters an interrupt:

• The value of flag register is pushed into the stack. It means that first the value of SP (Stack Pointer) is

decremented by 2 then the value of flag register is pushed to the memory address of stack segment.

Interrupt Cycle of 8086

130

• The value of starting memory address of CS (Code Segment) is pushed into the stack.

• The value of IP (Instruction Pointer) is pushed into the stack.

• IP is loaded from word location (Interrupt type) * 04.

• CS is loaded from the next word location.

• Interrupt and Trap flag are reset to 0.

Hardware Interrupts

131

Hardware interrupts are those interrupts which are caused by any

peripheral device by sending a signal through a specified pin to the microprocessor. There are two

hardware interrupts in 8086 microprocessor.

They are: (A) NMI (Non Maskable Interrupt) – It is a single pin non maskable hardware interrupt which

cannot be disabled. It is the highest priority interrupt in 8086 microprocessor. After its execution, this

interrupt generates a TYPE 2 interrupt. IP is loaded from word location 00008 H and CS is loaded from

the word location 0000A H.

Hardware Interrupts

132

• (B) INTR (Interrupt Request) – It provides a single interrupt request and is activated by I/O port. This

interrupt can be masked or delayed. It is a level triggered interrupt. It can receive any interrupt type, so

the value of IP and CS will change on the interrupt type received.

 These are instructions that are inserted within interrupts. the program to generate

 There are 256 software interrupts in 8086 microprocessor. The instructions are of the format INT

type where type ranges from 00 to FF. The starting address ranges from 00000 H to 003FF H.

 These are 2 byte instructions. IP is loaded from type * 04 H and CS is loaded from the next address

give by (type * 04) + 02 H. Some important software interrupts are:

Software Interrupts

133

TYPE 0 corresponds to division by zero(0).

(A) TYPE 1 is used for single step execution for debugging of program.

(B) TYPE 2 represents NMI and is used in power failure conditions.

(C) TYPE 3 represents a break-point interrupt.

(D) TYPE 4 is the overflow interrupt.

Software Interrupts

134

Interrupt Vector Table (IVT) on 8086

135

Non Maskable Interrupt

136

• Hardware interrupt is caused by any peripheral device by sending a signal through a specified pin to the

microprocessor. The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non- maskable

interrupt and INTR is a maskable interrupt having lower priority.

• t is a single non-maskable interrupt pin (NMI) having higher priority than the

maskable interrupt request pin (INTR)and it is of type 2 interrupt.

• When this interrupt is activated, these actions take place −

• Completes the current instruction that is in progress.

• Pushes the Flag register values on to the stack.

Non Maskable Interrupt

137

• Pushes the CS (code segment) value and IP (instruction pointer) of the return address

on to the stack.

• IP is loaded from the contents of the word location 00008H.

• CS is loaded from the contents of the next word location 0000AH.

• Interrupt flag and trap flag are reset to 0.

value

Maskable Interrupt

138

• The 8086 has two hardware interrupt pins, i.e. ... NMI is a non-maskable interrupt and INTR is a

maskable interrupt having lower priority. One moreinterrupt pin associated is INTA called interrupt

acknowledge.

• The INTR is a maskable interrupt because the microprocessor will be interrupted only if interrupts

are enabled using set interrupt flag instruction. It should not be enabled using clear interrupt Flag

instruction.

• The INTR interrupt is activated by an I/O port. If the interrupt is enabled and NMI is disabled, then

the microprocessor first completes the current execution and sends ‘0’ on INTA pin twice.

Maskable Interrupt

139

• The first ‘0’ means INTA informs the external device to get ready and during the second ‘0’ the

microprocessor receives the 8 bit, say X, from the programmable interrupt controller.

• These actions are taken by the microprocessor −

• First completes the current instruction.

• Activates INTA output and receives the interrupt type, say X.

• Flag register value, CS value of the return address and IP value of the

return address are pushed on to the stack.

• IP value is loaded from the contents of word location X × 4

• CS is loaded from the contents of the next word location.

• Interrupt flag and trap flag is reset to 0

• Interface two 4Kx8 EPROMS and two 4Kx8 RAM chips with 8086.
select suitable maps.

Memory interfacing to 8086 (Static RAM and EPROM)

140

Memory interfacing to 8086 (Static RAM and EPROM)

141

Memory interfacing to 8086 (Static RAM and EPROM)

142

8255- PROGRAMMABLE PERIPHERAL INTERFACE

143

 It has 24 input/output lines

 24 lines divided into 3 ports

• Port A(8bit)

• Port B(8 bit)

• Port C upper(4 bit), Port C Lower (4 bit)

All the above 3 ports can act as input or output ports

Block Diagram

Figure: Block Diagram of 8255(PPI)

192

8255- PROGRAMMABLE PERIPHERAL INTERFACE

144

Data Bus buffer

 It is a 8-bit bidirectional Data bus.

 Used to interface between 8255 data bus with system bus.

 The internal data bus and Outer pins D0-D7 pins are connected in

internally.

 The direction of data buffer is decided by Read/Control Logic.

193

8255- PROGRAMMABLE PERIPHERAL INTERFACE

145

Read/Write Control Logic
This is getting the input signals from control bus and

Control signal are RD andWR.

Address signals are A0, A1, and CS

Address Bus.

8255 operation is enabledor disabled by CS.

Group A and B get the Control Signal from CPU and send the command to the individual control

blocks.

Group A send the control signal to port A and Port C (Upper) PC7-PC4. Group B send the

control signal to port B and Port C (Lower) PC3-PC0.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

146
194

PORT A:
 This is a 8-bit buffered I/O latch.

 It can be programmed by mode 0 , mode 1, mode 2 .

PORT B:

This is a 8-bit buffer I/O latch.

It can be programmed by mode 0 and mode 1.

PORTC:

 This is a 8-bit Unlatched buffer Input and an Output latch.

 It is spitted into two parts.

 It can be programmed by bit set/reset operation.
195

8255- PROGRAMMABLE PERIPHERAL INTERFACE

147

8255-PROGRAMMABLE PERIPHERAL INTERFACE

198

8255 Pin Diagram

8255- PROGRAMMABLE PERIPHERAL INTERFACE

148

Pin Description of 8255

199

PA7-PA0: These are eight port A lines that acts as either latched output or buffered input
lines depending upon the control word loaded into the control word register.

PC7-PC4:

PC3-PC0:

Upper nibble of port C lines. They may act as either output latches or input
buffers lines. This port also can be used for generation of handshake lines in
mode 1 or mode 2.

These are the lower port C lines, other details are the same
as PC7-PC4 lines.

PB0-PB7: eight port B lines which are used lines or
buffered input lines in the same

These are the
as latched output way
as port A.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

149

Pin Description of 8255

RD: This is the input line driven by the microprocessor and should be low
to indicate read operation to8255.

lineWR: This is an input line driven by the microprocessor. A low on this
indicates writeoperation.

CS : This is a chip select line. If this line goes low, it enables the 8255 to respond to RD and WR
signals, otherwise RD and WR signal are neglected.

A1-A0: These are the address input lines and are driven by the microprocessor.

 RESET: The 8255 is placed into its reset state if this input line is a

logical 1. All peripheral ports are set to the input mode.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

150

Various modes of 8255:

These are two basic modes of operation of 8255. I/O mode and Bit Set-Reset

mode (BSR).

In I/O Mode:

The 8255 ports work as programmable I/O ports, while in BSR mode only port C (PC0-PC7) can be used

to set or reset its individual port bits.

Under the I/O mode of operation, further there are three modes of operation of 8255, so as to support

different types of applications, mode 0, mode 1 and mode 2.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

151

 Mode 0 (Basic I/O mode): This mode is also called as basic input/output Mode. This mode provides

simple input and output capabilities using each of the three ports. Data can be simply read from and

written to the input and output ports respectively, after appropriate initialization.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

152

Mode 1: (Strobed input/output mode) in this mode the handshaking control the input and output

action of the specified port. Port C lines PC0- PC2, provide strobe or handshake lines for port B.

This group which includes port B and PC0-PC2 is called as group B for Strobed data input/output. Port C

lines PC3-PC5 provides strobe lines for port A.

This group including port A and PC3-PC5 from group A. Thus port C is

utilized for generating handshake signals.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

153

 Mode 2 (Strobed bidirectional I/O): This mode of operation of 8255 is also called as strobed

bidirectional I/O. This mode of operation provides 8255 with additional features for communicating

with a peripheral device on an 8-bit data bus.

 Handshaking signals are provided to maintain proper synchronization

between the data transmitter and receiver.

data flow and

 The interrupt generation and other functions are similar to mode 1.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

154

 BSR Mode:

In this mode any of the 8-bits of port C can be set or reset depending on D0 of the control word. The bit

to be set or reset is selected by bit select flags D3, D2 and D1 of the CWR as given in table.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

155

8255 interfacing with 8086:

156

 Stepper motor is often used in computer systems. Normally DC and AC

motors move smoothly in a circular fashion.

 Stepper motor is a DC motor, specially designed, which moves in discrete or fixed step and thus

complete one rotation of 360 degrees. To rotate the shaft of the motor a sequence of pulses are

applied to the windings in a predefined sequence.

 The number of pulses required to complete one rotation depends on the number of teeth on the

rotor. Hence rotation Per pulse sequence is 3600/NT where NT is the number of teeth on rotor.

Stepper motor

157

Programs for Stepper Motor Rotation:

1. Program to rotate the stepper motor continuously in clockwise direction for following

specification

NT = Number of teeth on rotor = 200 Speed of motor = 12

rotations/minute. CPU frequency = 10MHz

Stepper motor

158

DATA SEGMENT

PORTC EQU 8004H
CNTLPRT EQU 8006H DELAY

EQU 14705

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA
START:

BACK:

SELF:

MOV AX, DATA MOV

DS, AX MOV AL, 80H

MOV DX, CNTLPORT OUT

DX, AL

MOV AL, 33H MOV DX,

PORTC OUT DX, AL

ROR AL, 1 MOV CX,

DELAY LOOP SELF

DELAY LOOP FOR 25Ms

JMP BACK

CODE ENDS

END START

Stepper motor

159

DAC0800 8-bit Digital to Analog Converter

• The DAC 0800 is a monolithic 8-bit DAC manufactured by National

Semiconductor.

• It has settling time around 100ms and can operate on a range of power

supply voltages i.e. from 4.5V to +18V.

• Usually the supply V+ is 5V or +12V.

• The V-pin can be kept at a minimum of -12V.

Digital to analog converter interfacing

160

Digital to analog converter interfacing

161

Intersil‟s AD 7523 is a 16 pin DIP, multiplying digital to analog converter, containing R-2R ladder(R=10KΩ)

for digital to analog conversion along with single pole double through NMOS switches to connect the

digital inputs to the ladder.

converter
n ci

Digital to analog converter interfacing

162

Pin Diagram of AD7523

163

• The supply range extends from +5V to +15V , while Vref may be anywhere between -10V to +10V. The

maximum analog output voltage will be +10V, when all the digital inputs are at logic high state. Usually a

Zener is connected between OUT1 and OUT2 to save the DAC from negative transients.

• An operational amplifier is used as a current to voltage converter at the output of AD 7523 to

convert the current output of AD7523 to a proportional output voltage.

• It also offers additional drive capability to the DAC output. An external feedback resistor acts to

control the gain. One may not connect any external feedback resistor, if no gain control is required.

Block Diagram of ADC 0808/0809

Analog to Digital Converter Interfacing

164

Pin Diagram of ADC 0808/0809

165

Timing Diagram Of ADC 0808.

166

Interfacing ADC0808 with 8086

167

Programmable interrupt controller 8259A

168

• 8259 microprocessor is defined as Programmable Interrupt Controller (PIC) microprocessor. There

are 5 hardware interrupts and 2 hardware interrupts in 8085 and 8086 respectively.

• But by connecting 8259 with CPU, we can increase the interrupt handling capability. 8259 combines

the multi interrupt input sources into a single interrupt output. Interfacing of single PIC provides 8

interrupts inputs from IR0-IR7.

• For example, interfacing of 8085 and 8259 increases the interrupt

handling capability of 8085 microprocessor from 5 to 8 interrupt levels.

Features of 8259 PIC microprocessor

169

• It is a LSI chip which manages 8 levels of interrupts i.e. it is used to

implement 8 level interrupt systems.

• It can be cascaded in a master slave configuration to handle up to 64 levels of interrupts.

• It can identify the interrupting device.

• It can resolve the priority of interrupt requests i.e. it does not require any

external priority resolver.

• It can be operated in various priority modes such as fixed priority and

rotatingpriority.

• The interrupt requests are individually mask-able.

Features of 8259 PIC microprocessor

170

• The operating modes and masks may be dynamically changed by the

software at any time during execution of programs.

• It accepts requests from the peripherals, determines priority of incoming request, checks whether the

incoming request has a higher priority value than the level currently being serviced and issues an

interrupt signal to the microprocessor.

• It provides 8 bit vector number as an interrupt information.

• It does not require clock signal.

• It can be used in polled as well as interrupt modes.

• The starting address of vector number is programmable.

• It can be used in buffered mode

Block Diagram of 8259 PIC microprocessor

171

Pin Description of 8259

172

keyboard /display controller 8279

173

8279 programmable keyboard/display controller is designed by Intel that interfaces a keyboard with

the CPU. The keyboard first scans the keyboard and identifies if any key has been pressed. It then

sends their relative response of the pressed key to the CPU and vice-a-versa.

How Many Ways the Keyboard is Interfaced with the CPU?

The Keyboard can be interfaced either in the interrupt or the polled mode. In the Interrupt mode,

the processor is requested service only if any key is pressed, otherwise the CPU will continue with its

main task.

In the Polled mode, the CPU periodically reads an internal flag of 8279 to

check whether any key is pressed or not with key pressure.

Architecture and Description

174

• I/O Control and Data Buffer

• This unit controls the flow of data through the microprocessor. It is enabled only when D is low. Its data

buffer interfaces the external bus of the system with the internal bus of the microprocessor. The pins

A0, RD, and WR are used for command, status or data read/write operations.

• Control and Timing Register and Timing Control

• This unit contains registers to store the keyboard, display modes, and other operations as

programmed by the CPU. The timing and control unit handles the timings for the operation of the

circuit.

Architecture and Description….

175

8279 − Pin Description

176

Programmable communication interface 8251 USART

177

• Most of devices are parallel in nature. These devices transfer data simultaneously on data lines. But

parallel data transfer process is very complicated and expensive. Hence in some situations the serial

I/O mode is used where one bit is transferred over a single line at a time. In this type of transmission

parallel word is converted into a stream of serial bits which is known as parallel to serial conversion.

The rate of transmission in serial mode is BAUD, i.e., bits per second. The serial data transmission

involves starting, end of transmission, error verification bits along with the data.

Block Diagram of Serial I/O Interface

178

• The microprocessor has to identify the port address to perform read or write operation. Serial I/O

uses only one data line, chip select, read, write control signals.

INTRODUCTION SERIAL COMMUNICATION

179

Serial communication is common method of transmitting data between a computer and a peripheral

device such as a programmable instrument or even another computer.

Serial communication transmits data one bit at a time, sequentially, over a single communication line

to a receiver. Serial is also a most popular communication protocol that is used by many devices for

instrumentation.

Introduction Serial Communication

180

This method is used when data transfer rates are very low or the data must be transferred over long

distances and also where the cost of cable and synchronization difficulties makes parallel

communication impractical.

Serial communication is popular because most computers have one or more serial ports, so no extra

hardware is needed other than a cable to connect the instrument to the computer or two computers

together.

8251a-USART-universal Synchronous/Asynchronous Receiver/Transmitter

181

• A USART is also called a programmable communications interface (PCI). When information is to be

sent by 8086 over long distances, it is

• economical to send it on a single line. The 8086 has to convert parallel data to serial data and then

output it. Thus lot of microprocessor time is required for such a conversion.

• Similarly, if 8086 receives serial data over long distances, the 8086 has to internally convert this into

parallel data before processing it. Again, lot of time is required for such a conversion. The 8086 can

delegate the job of

conversion from serial to parallel and vice versa to the 8251A USART used in thesystem.

8251A-USART-Universal Synchronous/Asynchronous

Receiver/Transmitter

182

• The Intel 8251A is the industry standard Universal

Synchronous/Asynchronous Receiver/Transmitter (USART), designed for data communications

with Intel microprocessor families such as 8080, 85, 86 and

• The 8251A converts the parallel data received from the processor on the D7-0 data pins into

serial data, and transmits it on TxD (transmit data) output pin of 8251A. Similarly, it converts

the serial data received on RxD (receive data) input into parallel data, and the processor reads

it using the data pinsD7-0.

Features

183

 Compatible with extended range of Intel microprocessors.

 It provides both synchronous and asynchronous data transmission.

 Synchronous 5-8 bit characters.

 Asynchronous 5-8 bit characters.

 It has full duplex, double buffered transmitter and receiver.

 Detects the errors-parity, overrun and framing errors.

 All inputs and outputs are TTL compatible.

 Available in 28-pin DIP package.

Architecture 8251A

184

Pin Diagram

185

8251A USART Interfacing With 8086

186

Recommended Standard -232c (RS-232C)

187

• RS-232 was first introduced in 1962 by the Radio Sector of the Electronic Industries Association EIA.

RS-232 (Recommended standard-232) is a standard interface approved by the Electronic Industries

Association (EIA) for connecting serial devices. In other words, RS-232 is a long-established standard

that describes the physical interface and protocol for relatively low-speed serial data communication

between computers and related devices. An industry trade group, the Electronic Industries

Association (EIA), defined it originally for teletypewriter devices.

Recommended Standard -232c (RS-232C)

188

• In 1987, the EIA released a new version of the standard and changed the name to EIA-232-D. Many

people, however, still refer to the standard as RS- 232C, or just RS-232. RS-232 is the interface that

your computer uses to talk to and exchange data with your modem and other serial devices. The

serial ports on most computers use a subset of the RS- 232C standard.

Recommended Standard -232c (RS-232C)

189

• Direct memory access (DMA) is a feature of modern computer systems that allows certain hardware

subsystems to read/write data to/from memory without microprocessor intervention, allowing the

processor to do other work.

• Used in disk controllers, video/sound cards etc, or between memory locations.

• Typically, the CPU initiates DMA transfer, does other operations while the transfer is in progress, and

receives an interrupt from the DMA controller once the operation is complete.

• Can create cache coherency problems (the data in the cache may be different from the data in the

external memory after DMA)

Need For DMA

190

DMA Data Transfer Method

191

• The I/O device asserts the appropriate DRQ signal for the channel.

• The DMA controller will enable appropriate channel, and ask the CPU to release the bus so that the

DMA may use the bus. The DMA requests the bus by asserting the HOLD signal which goes to the

CPU.

• The CPU detects the HOLD signal, and will complete executing the current instruction. Now all of the

signals normally generated by the CPU are placed in a tri-stated condition (neither high or low) and

then the CPU asserts the

HLDA signal which tells the DMA controller that it is now in charge of the bus.

• The CPU may have to wait (hold cycles).

DMA Data Transfer Method

192

• DMA activates its -MEMR, -MEMW, -IOR, -IOW output signals, and the address outputs from the DMA

are set to the target address, which will be used to direct the byte that is about to transferred to a

specific memory location.

• The DMA will then let the device that requested the DMA transfer know

that the transfer is commencing by asserting the -DACK signal.

• The peripheral places the byte to be transferred on the bus Data lines.

• Once the data has been transferred, The DMA will de-assert the - DACK2 signal, so that the FDC

knows it must stop placing data on the bus.

DMA Data Transfer Method

193

• The DMA will now check to see if any of the other DMA channels have any work to do. If none of the

channels have their DRQ lines asserted, the DMA controller has completed its work and will now tri-

state the -MEMR, - MEMW, -IOR, -IOW and address signals.

• Finally, the DMA will de-assert the HOLD signal. The CPU sees this, and de- asserts the HOLDA signal.

Now the CPU resumes control of the buses and address lines, and it resumes executing instructions and

accessing main memory and the peripherals.

DMA Data Transfer Method

194

• Here is a list of some of the prominent features of 8257 −

• It has four channels which can be used over four I/O devices.

• Each channel has 16-bit address and 14-bit counter.

• Each channel can transfer data up to 64kb.

• Each channel can be programmed independently.

• Each channel can perform read transfer, write transfer and verify
transfer operations.

• It generates MARK signal to the peripheral device that 128 bytes
have

• been transferred.

• It requires a single phase clock.

• Its frequency ranges from 250Hz to 3MHz.

Features of 8257

195

Pin diagram of 8257

196

Block Diagram of 8257

197

Terminal Count Register:

198

Mode Set Register:

199

Status Register:

200

201

 The overall system cost is high.

 A large sized PCB is required
components.

Disadvantages of Microprocessor

202

for assembling all the

 Overall product design requires more time.

 Physical size of the product is big.

 A discrete components are used, the system is not reliable.

 As the peripherals are integrated into a single chip, the overall system

cost is very less.

Advantages of Microcontroller based System

203

 As the peripherals are integrated with a microprocessor the

more reliable.

system is

 Though microcontroller may have on chip ROM,RAM and I/O ports, addition ROM, RAM I/O

ports may be interfaced externally if required.

 On chip ROM provide a software security.

8051 Basic Component

204

 4K bytes internal ROM

 128 bytes internal RAM

 Four 8-bit I/O ports (P0 - P3).

 Two 16-bit timers/counters

 One serial interface

 64k external memory for code

 64k external memory for data

 210 bit addressable

⦿ Microcontroller

Block Diagram

205

CPU

On-chip
RAM

On-chip
ROM for
program
code

4 I/O Ports
Serial
PortOSC

Interrupt
Control

External interrupts
Timer/Counter

Timer 1

Timer 0

Bus
Control

TxD RxDP0 P1 P2 P3

Address/Data

Counter
Inputs

Internal Block Diagram of 8051

206

Pin Diagram of 8051

207

Basic Circuit of 8051

208

PORT 0-Description

209

– 8-bit R/W -General
Purpose I/O

– Or acts as amultiplexed low byte address
and data bus for external
memory design

PORT 1 -Description

210

– Only 8-bit R/W - General
Purpose I/O

PORT 2 -Description

211

– 8-bit R/W - General
Purpose I/O

– Or high byte of the address
bus for external memory design

PORT 3 - Description

212

PORT 3 Pin Function Description

P3.0 RXD Serial Input

P3.1 TXD Serial Output

P3.2 INT0 External Interrupt 0

P3.3 INT1 External Interrupt 1

P3.4 T0 Timer 0

P3.5 T1 Timer 1

P3.6 WR External Memory Write

P3.7 RD External Memory Read

8051 addressing modes

213

Immediate addressing mode

214

In this addressing mode the source operand is constant. In immediate addressing mode, when the

instruction is assembled, the operand comes immediately after the op-code.

The immediate data must be preceded by ‘#’ sign. This addressing mode can be used to load

information into any of the register, including the

DPTR. Ex: MOVA,#25H

MOV R4,#62

MOV DPTR,#4532H

Register addressing mode

215

 Register addressing

to be manipulated.

mode involves the use of registers to hold the data

Ex :-

MOV A, R0

MOV R2, A

ADD A,R5

// copy the contents of R0 in toA.

// copy the contents of A in to R2.

// add the content of R5 to content ofA.

Direct addressing mode

216

 In direct addressing mode, the data is in a RAM memory location whose address is known, and

this address is given as a part of the instruction.

Contrast this with the immediate addressing mode in which

itself is provided with the instruction.

Ex:-

the operand

MOV R0,40H //save content of RAM location 40h intoR0.

MOV 56H,A // save content ofA in RAM location 56H

Register indirect addressing mode

217

 In the register indirect addressing mode, a register is used as a pointer to the data. If the data is

inside the CPU, only register R0 and R1 are used for this purpose. they must be preceded by the

“@” sign.

Ex :-

MOV A,@R0

// move contents of RAM location whose address is held by R0 into A.

MOV @R1,B

// move contents of B RAM location whose address is held

by R

Indexed addressing mode

218

 Indexed addressing mode is widely used in accessing data elements of look-

up table entries located in the program ROM space of the 8051.

 The instruction used for this purpose is “MOV A, @A+DPTR”.

 Indexed addressing mode is widely used in accessing data elements of look- up table entries located in

the program ROM space of the 8051.

 The instruction used for this purpose is “MOV A, @A+DPTR”.

Instruction set of 8051

219

 8051 has simple instruction set in different groups. There are,

 Arithmeticinstructions

 Logicalinstructions

 Data transferinstructions

 Branching and loopinginstructions

 Bit controlinstructions

Arithmetic instructions

220

 These instructions are used to perform various mathematical operations like addition,

subtraction, multiplication, and division etc.

EX: ADD A,R1

ADDCA,#2 SUBB

A,R2

INC A

DECA

Logical instructions

221

The logical instructions are the instructions which are used for performing

some operations like AND, OR, NOT, X- OR and etc., on the operands.

EX:
ANL A,Rn

ORL A,Rn

XRL A,Rn

CLR A CPLA

// AND register toaccumulator

// OR register to accumulator

// Exclusive OR Reg toAcc

//Clear Accumulator

// Complement Accumulator

Branch and Looping Instructions

222

 These instructions are used for both branching as well as looping.

 These instructions include conditional & unconditional jump or loop
instructions.

EX:

 JC

 JNC

 JB

 JNB

 JBC

// Jump if carry equal to one

// Jump if carry equal to zero

// Jump if bit equal to one

// Jump if bit equal to zero

// Jump if bit equal to one and clearbit

Unconditional Jump Instructions

223

In 8051 there are two unconditional jumps. They are:

 SJMP // Short jump

 LJMP // Long jump

Writing “1” to Output Pin P1.X

224

Vcc

Load(L1)

Read latch

Write to latch

InternalCPU

bus

M1

D Q

P1.X

Clk Q

2. output pin is
Vcc

P1.X

pin

1. write a 1 to thepin
1

TB1

Read pin

0 output1

TB2

Writing “0” to Output Pin P1.X

225

Vcc

Load(L1)

Read latch

Write to latch

InternalCPU

bus

M1

D Q

P1.X

Clk Q

2. output pin is
ground

P1.X

pin

1. write a 0 to thepin
0

TB1

Read pin

1 output0

TB2

Reading “High” at Input Pin

226

Vcc

Load(L1)

Read latch

Write to latch

Internal CPUbus

M1

P1.Xpin
D Q

P1.X

Clk Q

2. MOVA,P1

TB1

Read pin

3. Read pin=1 Readlatch=0

Write to latch=1

external pin=High
1. write a 1 to the pinMOV

P1,#0FFH

1

0

1

TB2

Reading “Low” at Input Pin

227

Vcc

Load(L1)

Read latch

Write to latch

Internal CPUbus

M1

P1.Xpin
D Q

P1.X

Clk Q

2. MOVA,P1

TB1

Read pin

3. Read pin=1 Readlatch=0

Write to latch=1

external pin=Low
1. write a 1 to thepin MOV

P1,#0FFH

1

0

0

TB2

A and B Registers

228

• A and B are “accumulators” forarithmetic instructions

• They can be accessed by direct mode as special function registers:

• B – address 0F0h

• A – address 0E0h - use “ACC” for directmode

Arithmetic Instructions

229

 Add

 Subtract

 Increment

 Decrement

 Multiply

 Divide

 Decimaladjust

Arithmetic Instructions

230

Mnemonic ADD A,

byte ADDC A,

byte

SUBB A, byte

INC A

INC byte INC

DPTR DEC A

DEC byte

MUL AB

DIV AB

DA A

Description

add A to byte, put result in A

add with carry

subtract withborrow

increment A

increment byte in memory

increment data pointer

decrement accumulator

decrement byte

multiply accumulator by b register divide

accumulator by b register decimal adjust the

accumulator

ADD Instructions

231

add a, byte

addc a, byte

These instructions affect 3 bits in PSW:

C = 1 if result of add is greater thanFF

AC = 1 if there is a carry out of bit 3

OV = 1 if there is a carry out of bit 7, but not from bit 6,or visa versa.

Increment and Decrement

232

• The increment and decrement instructions do NOT affect the C flag.

• Notice we can only Increment the data pointer, not decrement.

INC A increment A

INC byte increment byte in memory

INC DPTR increment data pointer

DEC A decrement accumulator

DEC byte decrement byte

Other LogicInstructions

233

• CLR - clear

• RL – rotateleft

• RLC – rotate left through Carry

• RR – rotate right

• RRC – rotate right through Carry

• SWAP– swap accumulatornibbles

 8051 has two 16-bit programmable timers/counters. They can be configured to operate either as

timers or as event counters. The names of the two counters are T0 and T1 respectively.

 The timer content is available in four 8-bit special function registers, viz, TL0,TH0,TL1 and TH1

respectively.

 In the "timer" function mode, the counter is incremented in every machine cycle. Thus,

one can think of it as counting machine cycles.

Hence the clock rate is 1/12 th of the oscillatorfrequency.

 In the "counter" function mode, the register is incremented in response to a 1 to 0 transition at its

corresponding external input pin (T0 or T1). It requires 2 machine cycles to detect a high to low.

TIMER/COUNTER

234

 The operation of the timers/counters is controlled by two special function registers, TMOD and

TCON respectively.

Timer Mode control (TMOD) Special Function Register:

 TMOD register is not bit addressable.

 TMOD Address: 89 H

Operation of Timer/Counter

235

Timer/ Counter Control Logic:

236

Figure: Timer/ Counter control logic Diagram

Timer modes of operation

237

Timer Mode-0:

In this mode, the timer is used as a 13-bit UP counter as follows.

Fig: Operation of Timer in Mode 2

The lower 5 bits of TLX and 8 bits of THX are used for the 13 bit count. Upper 3 bits of TLX are

ignored. When the counter rolls over from all 0's to all 1's, TFX flag is set and an interrupt is

generated.

Timer modes of operation

238

The input pulse is obtained from the previous stage. If TR1/0 bit is 1 and Gate bit is 0, the counter

continues counting up. If TR1/0 bit is 1 and Gate bit is 1, then the operation of the counter is

controlled by input. This mode is useful to measure the width of a given pulse fed to input.

 This mode is similar to mode-0 except for the fact that the Timer operates in 16-bit mode.

Timer Mode-1:

239

Fig: Operation of Timer in Mode 1

Timer Mode-2: (Auto-Reload Mode)

240

This is a 8 bit counter/timer operation. Counting is performed in TLX while THX stores a constant value.

In this mode when the timer overflows i.e. TLX becomes FFH, it is fed with the value stored in THX. For

example if we load THX with 50H then the timer in mode 2 will count from 50H to FFH. After that 50H is

again reloaded. This mode is useful in applications like fixed time sampling

Fig: Operation of Timer in Mode 2

Timer Mode-3:

241

Timer 1 in mode-3 simply holds its count. The effect is same as setting TR1=0.

Timer0 in mode-3 establishes TL0 and TH0 as two separate counters.

Fig: Operation of Timer in Mode 3

Control bits TR1 and TF1 are used by Timer-0 (higher 8 bits) (TH0) in Mode-3 while TR0 and TF0 are

available to Timer-0 lower 8 bits(TL0).

 An interrupt is an external or internal event that microcontroller to

inform it that a device needs its service.

interrupts the

Interrupts vs. Polling

 A single microcontroller can serve several devices.

 There are two ways to do that:

– interrupts

– polling.

Interrupts

242

 In Polling , the microcontroller ‘s program simply checks each of the I/O

devices to see if any device needs servicing. If so, it performs the service.

 In the interrupt method, whenever any device needs microcontrollers

service, it tells to microcontroller by sending an interrupt signal.

 The program which is associated with the interrupt is called the interrupt service routine (ISR) or

interrupt handler.

Interrupts

243

Steps in executing an interrupt

244

 Finish current instruction and saves the PC on stack.

 Jumps to a fixed location in memory depend on type of interrupt.

 Starts to execute the interrupt service routine until RETI (return

 from interrupt).

 Upon executing the RETI the microcontroller returns to the
place

 where it was interrupted. Get pop PC from stack.

 Original 8051 has 6 sources of interrupts

1. Reset

2. Timer 0 overflow

3. Timer 1 overflow

4. External Interrupt 0

5. External Interrupt 1

6. Serial Port events buffer full, buffer empty, etc)

Interrupt Sources

245

 Each interrupt has a specific place in code memory where program

execution (interrupt service routine) begins.

External Interrupt 0

Timer 0 overflow

External Interrupt 1

Timer 1 overflow

Serial

Timer 2 overflow(8052+)

:

:

:

:

:

:

0003h

000Bh

0013h

001Bh

0023h

002bh

Interrupt Vectors

246

Note: that there are only 8
memory locations between
vectors.

Interrupt Enable (IE) register

247

 All interrupt are disabled after reset

 We can enable and disable them by IE

Enabling an interrupt

248

 by bit operation
 Recommended in the middle of program

SETB EA
SETB ET0
SETB ET1
SETB EX0
SETB EX1
SETB ES

;Enable All
;Enable Timer0 over flow
;Enable Timer1 over flow
;Enable INT0
;Enable INT1
;Enable Serial port

 by mov instruction
 Recommended in the first of program

• MOV IE, #10010110B

SETB

SETB

SETB

SETB

SETB

SETB

IE.7

IE.1

IE.3

IE.0

IE.2

IE.4

Disabling an interrupt

249

CLRB

CLRB

CLRB

EA

ET0 ET1

;Disable All

; Disable Timer0 over flow

; Disable Timer1 over flow

CLRB EX0 ; Disable INT0

CLRB EX1 ; Disable INT1

CLRB ES ; Disable Serial port

 What if two interrupt sources interrupt at the same time?

 The interrupt with the highest PRIORITY gets serviced first.

 All interrupts have a power on default priority order.

1. External interrupt 0 (INT0)

2. Timer interrupt0 (TF0)

3. External interrupt 1 (INT1)

4. Timer interrupt1 (TF1)

5. Serial communication (RI+TI)

 Priority can also be set to “high” or “low” by IP reg.

Interrupt Priorities

250

IP.7: reserved

IP.6: reserved

IP.5: timer 2 interrupt priority bit(8052 only)

IP.4: serial port interrupt priority bit IP.3: timer 1

interrupt priority bit IP.2: external interrupt 1

priority bit IP.1: timer 0 interrupt priority bit IP.0:

external interrupt 0 priority bit

Interrupt Priorities (IP)

Register

251

 The serial port of 8051 is full duplex, i.e., it can transmit and receive

simultaneously.

 The register SBUF is used to hold the data. The special function register SBUF is physically two

registers. One is, write-only and is used to hold data to be transmitted out of the 8051 via TXD.

 The other is, read-only and holds the received data from external sources

via RXD. Both mutually exclusive registers have the same address 099H.

SERIAL COMMUNICATION

252

Real world interfacing of 8051 with external memory

• A single microcontroller can serve several devices. There are two ways to do that is interrupts or

polling. In the interrupt method, whenever any device needs its services, the device notifies the

micro controller interrupts whatever it is doing and serves the device.

• The program which is associated with the interrupt is called the interrupt service routine (ISR) or

Interrupt handler.

• In polling, the microcontrollers continuously monitor the status of several

devices and serve each of them as certain conditions are met.

• The advantage of interrupts is that microcontroller can serve many devices.

8051 SERIAL DATACOMMUNICATION AND PROGRAMMING

253

 Addresses of Ports and Devices in 4. Addresses of Ports and Devices in Real

World Interfacing

 Device Control Register, Status Register, Receive Buffer, Transmit Buffer

 Each I/O device is at a distinct address or set of addresses

 Each device has three sets of registers ─data buffer register(s), control

register(s) and status register

Device Addresses

 Device control and status addresses and port address remains constant and are not re-locatable in a

program as the glue circuit (hardware) to accesses these is fixed during the circuit design. There can be

common addresses for input and output buffers, for example SBUF in 8051

8051 SERIAL DATACOMMUNICATION AND PROGRAMMING

254

The processor, memory, devices Glue Circuit

 The processor, memory and devices are interfaced (glued) together using a programmable circuit like

GAL or FPGA. The circuit consists of the address decoders as per the memory and device addresses

allocated and the needed latches multiplexers/ demultiplexers.

Device Addresses

 There may be common addresses for control and status bits There can be a control bits, which

changes the function of a register at a device address

8051 SERIAL DATACOMMUNICATION AND PROGRAMMING

255

Interfacing LED and

Push Button Switch to 8051

256

 Pushbutton Switch

A typical push button switch has two active terminals that are normally open and

these two terminals get internally shorted when the push button is depressed.

http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051

Interfacing LED and

Push Button Switch to 8051

257

Circuit Diagram
When push button S1 is depressed the

LED D1 goes ON and remains ON until

push button switch S2 is depressed and

this cycle can be repeated.

Resistor R3, capacitor C3 and push

button S3 forms the reset circuitry for the

Microcontroller.

Capacitor C1, C2 and Crystal X1 belongs

to the clock circuitry.

R1 and R2 are pull up resistors for the

push buttons.

R4 is the current limiting resistor for

LED.

http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051

Interfacing LED and

Push Button Switch to 8051

258

MOV P0,#83H // Initializing push button switches and initializing LED

in OFF state.

READSW:MOV A,P0 // Moving the port value to Accumulator.

RRC A // Checking the vale of Port 0 to know if switch 1 is ON or not

JC NXT // If switch 1 is OFF then jump to NXT to check if switch 2 is

ON

CLR P0.7 // Turn ON LED because Switch 1 is ON

SJMP READSW // Read switch status again.

NXT: RRC A // Checking the value of Port 0 to know if switch 2 is ON or

not

JC READSW // Jumping to READSW to check status of switch 1

again (provided switch 2 is OFF)

SETB P0.7 // Turning OFF LED because Switch 2 is ON

SJMP READSW // Jumping to READSW to read status of switch 1

again.

END

Program

http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051

Keyboard Interfacing

259

Hex keypad

Hex key pad is essentially a collection of 16

keys arranged in the form of a 4×4 matrix.

Hex key pad usually have keys representing

numeric's 0 to 9 and characters A to F.

The hex keypad has 8 communication lines

namely R1, R2, R3, R4, C1, C2, C3 and C4.

R1 to R4 represents the four rows and C1

to C4 represents the four columns.

Keyboard Interfacing

260

Hex keypad When a particular key is pressed the corresponding

row and column to which the terminals of the key are

connected gets shorted.

For example if key 1 is pressed row R1 and column

C1 gets shorted and so on.

The program identifies which key is pressed by a

method known as column scanning.

In this method a particular row is kept low (other

rows are kept high) and the columns are checked for

low.

If a particular column is found low then that means

that the key connected between that column and the

corresponding row (the row that is kept low) is been

pressed.

For example if row R1 is initially kept low and

column C1 is found low during scanning, that

means key 1 is pressed.

Keyboard Interfacing

261

Interfacing hex keypad to 8051.

Keyboard Interfacing-Program

262

ORG 00H

MOV DPTR,#LUT // moves starting address of LUT to DPTR

MOV A,#11111111B // loads A with all 1's

MOV P0,#00000000B // initializes P0 as output port

BACK: MOV P1,#11111111B // loads P1 with all 1's

CLR P1.0 // makes row 1 low

JB P1.4,NEXT1 // checks whether column 1 is low and jumps to NEXT1 if not low MOV A,#0D // loads a with 0D if

column is low (that means key 1 is pressed)

ACALL DISPLAY // calls DISPLAY subroutine

NEXT1: JB P1.5,NEXT2 // checks whether column 2 is low and so on...

MOV A,#1D

ACALL DISPLAY

NEXT2: JB P1.6,NEXT3

MOV A,#2D

ACALL DISPLAY

NEXT3: JB P1.7,NEXT4

MOV A,#3D

ACALL DISPLAY

Keyboard Interfacing-Program

263

NEXT4: SETB P1.0

CLR P1.1

JB P1.4,NEXT5

MOV A,#4D

ACALL DISPLAY

NEXT5: JB P1.5,NEXT6

MOV A,#5D

ACALL DISPLAY

NEXT6: JB P1.6 NEXT7

MOV A,#6D

ACALL DISPLAY

NEXT7: JB P1.7,NEXT8

MOV A,#7D

ACALL DISPLAY

NEXT8: SETB P1.1

CLR P1.2

JB P1.4,NEXT9

MOV A,#8D

ACALL DISPLAY

NEXT9: JB P1.5,NEXT10

MOV A,#9D

ACALL DISPLAY

NEXT10: JB P1.6,NEXT11

MOV A,#10D

ACALL DISPLAY

NEXT11: JB P1.7,NEXT12

MOV A,#11D

ACALL DISPLAY

NEXT12: SETB P1.2

CLR P1.3

JB P1.4,NEXT13

MOV A,#12D

ACALL DISPLAY

NEXT13: JB P1.5,NEXT14

MOV A,#13D

ACALL DISPLAY

NEXT14: JB P1.6,NEXT15

MOV A,#14D

ACALL DISPLAY

NEXT15: JB P1.7,BACK

MOV A,#15D

ACALL DISPLAY LJMP BACK

Keyboard Interfacing-Program

264

DISPLAY: MOVC A,@A+DPTR // gets digit drive pattern for the current key from LUT

MOV P0,A // puts corresponding digit drive pattern into P0

RET

LUT: DB 01100000B // Look up table starts here

DB 11011010B

DB 11110010B

DB 11101110B

DB 01100110B

DB 10110110B

DB 10111110B

DB 00111110B

DB 11100000B

DB 11111110B

DB 11110110B

DB 10011100B

DB 10011110B

DB 11111100B

DB 10001110B

DB 01111010B

END

DISPLAY

265

 LED

 Seven Segment Display

 LCD

LED Interfacing

266

7 Segment LED Display

LED Interfacing

267

Digit Drive Pattern

LED Interfacing

268

Interfacing Seven Segment Display to 8051

LED Interfacing

269

Program

ORG 000H //initial starting address

START: MOV A,#00001001B // initial value of accumulator

MOV B,A

MOV R0,#0AH //Register R0 initialized as counter which counts from 10 to 0

LABEL: MOV A,B

INC A

MOV B,A

MOVC A,@A+PC // adds the byte in A to the program counters address

MOV P1,A

ACALL DELAY // calls the delay of the timer

DEC R0//Counter R0 decremented by 1

MOV A,R0 // R0 moved to accumulator to check if it is zero in next instruction.

JZ START //Checks accumulator for zero and jumps to START. Done to check if counting has been finished.

SJMP LABEL

LED Interfacing

270

Program

DB 3FH // digit drive pattern for 0

DB 06H // digit drive pattern for 1

DB 5BH // digit drive pattern for 2

DB 4FH // digit drive pattern for 3

DB 66H // digit drive pattern for 4

DB 6DH // digit drive pattern for 5

DB 7DH // digit drive pattern for 6

DB 07H // digit drive pattern for 7

DB 7FH // digit drive pattern for 8

DB 6FH // digit drive pattern for 9

DELAY: MOV R4,#05H // subroutine for delay

WAIT1: MOV R3,#00H

WAIT2: MOV R2,#00H

WAIT3: DJNZ R2,WAIT3

DJNZ R3,WAIT2

DJNZ R4,WAIT1

RET

END

LED Interfacing

271

Program.

ORG 000H // initial starting address

MOV P1,#00000000B // clears port 1

MOV R6,#1H // stores "1"

MOV R7,#6H // stores "6"

MOV P3,#00000000B // clears port 3

MOV DPTR,#LABEL1 // loads the address of line 29 to DPTR

MAIN: MOV A,R6 // "1" is moved to accumulator

SETB P3.0 // activates 1st display

ACALL DISPLAY // calls the display sub routine for getting the pattern for "1"

MOV P1,A // moves the pattern for "1" into port 1

ACALL DELAY // calls the 1ms delay

CLR P3.0 // deactivates the 1st display

MOV A,R7 // "2" is moved to accumulator

SETB P3.1 // activates 2nd display

ACALL DISPLAY // calls the display sub routine for getting the pattern for "2"

MOV P1,A // moves the pattern for "2" into port 1

ACALL DELAY // calls the 1ms delay

CLR P3.1 // deactivates the 2nd display

SJMP MAIN // jumps back to main and cycle is repeated

272

Program.
DELAY: MOV R3,#02H

DEL1: MOV R2,#0FAH

DEL2: DJNZ R2,DEL2

DJNZ R3,DEL1

RET

DISPLAY: MOVC A,@A+DPTR // adds the byte in A to the address in DPTR and loads A

with data present in the resultant address

RET

LABEL1:DB 3FH

DB 06H

DB 5BH

DB 4FH

DB 66H

DB 6DH

DB 7DH

DB 07H

DB 7FH

DB 6FH

END

273

LCD Interfacing

274

•It consists of 16 columns and 2 rows of 5×7 or 5×8

LCD dot matrices.

•It is available in a 16 pin package with back light

,contrast adjustment function and each dot matrix

has 5×8 dot resolution.

Digital voltmeter / ammeter, digital clock,

home automation displays, status indicator

display, digital code locks, digital

speedometer/ odometer, display for music

players etc .

http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-tachometer-using-8051
http://www.circuitstoday.com/digital-tachometer-using-8051
http://www.circuitstoday.com/digital-tachometer-using-8051
http://www.circuitstoday.com/digital-tachometer-using-8051
http://www.circuitstoday.com/digital-tachometer-using-8051

LCD Interfacing

275

Pin No: Name Function

1 VSS This pin must be connected to the ground

2 VCC Positive supply voltage pin (5V DC)

3 VEE Contrast adjustment

4 RS Register selection

5 R/W Read or write

6 E Enable

7 DB0 Data

8 DB1 Data

9 DB2 Data

10 DB3 Data

11 DB4 Data

12 DB5 Data

13 DB6 Data

14 DB7 Data

15 LED+ Back light LED+

16 LED- Back light LED-

LCD Interfacing

276

•VEE pin is meant for adjusting the contrast of the LCD display and

the contrast can be adjusted by varying the voltage at this pin. This is

done by connecting one end of a POT to the Vcc (5V), other end to

the Ground and connecting the center terminal (wiper) of of the POT

to theVEE pin.

•High logic at the RS pin will select the data register and Low logic

at the RS pin will select the command register.

•If we make the RS pin high and the put a data in the 8 bit data line

(DB0 to DB7) , the LCD module will recognize it as a data to be

displayed .

•If we make RS pin low and put a data on the data line, the module

will recognize it as a command.

LCD Interfacing

277

•R/W pin is meant for selecting between read and write modes. High level at

this pin enables read mode and low level at this pin enables write mode.

•EN pin is for enabling the module. A high to low transition at this

pin will enable the module.

•DB0 to DB7 are the data pins. The data to be displayed and the

command instructions are placed on these pins.

•LED+ is the anode of the back light LED and this pin must be

connected toVcc through a suitable series current limiting resistor.

•LED- is the cathode of the back light LED and this pin must be connected to

ground.

LCD Interfacing- 16×2 LCD Module Commands

278

Command Function

0F LCD ON, Cursor ON, Cursor blinking ON

01 Clear screen

02 Return home

04 Decrement cursor

06 Increment cursor

0E Display ON ,Cursor blinking OFF

80 Force cursor to the beginning of 1stline

C0 Force cursor to the beginning of 2ndline

38 Use 2 lines and 5×7 matrix

83 Cursor line 1 position 3

3C Activate second line

08 Display OFF, Cursor OFF

C1 Jump to second line, position1

OC Display ON, Cursor OFF

C1 Jump to second line, position1

C2 Jump to second line, position2

LCD Interfacing

279

LCD Initialization

Send 38H to the 8 bit data line for initialization

Send 0FH for making LCD ON, cursor ON and cursor blinking ON.

Send 06H for incrementing cursor position.

Send 01H for clearing the display and return the cursor.

Sending Data to the LCD

Make R/W low.

Make RS=0 if data byte is a command and make RS=1 if the data byte is a

data to be displayed.

Place data byte on the data register.

Pulse E from high to low.

Repeat above steps for sending another data.

LCD Interfacing-Circuit Diagram

280

LCD Interfacing-Program

281

LCD Interfacing-Program

282

ACALL DISP

MOV A,#67D

ACALL DISP

MOV A,#85D

ACALL DISP

MOV A,#73D

ACALL DISP

MOV A,#84D

ACALL DISP

MOV A,#83D

ACALL DISP

MOV A,#84D

ACALL DISP

MOV A,#79D

ACALL DISP

MOV A,#68D

ACALL DISP

MOV A,#65D

ACALL DISP

MOV A,#89D

ACALL DISP

HERE: SJMP HERE

CMND: MOV P1,A

CLR P3.5

CLR P3.4

SETB P3.3

CLR P3.3

ACALL DELY

RET

DISP: MOV P1,A

SETB P3.5

CLR P3.4

SETB P3.3

CLR P3.3

ACALL DELY

RET

DELY: CLR P3.3

CLR P3.5

SETB P3.4

MOV P1,#0FFh

SETB P3.3

MOV A,P1

JB ACC.7,DELY

CLR P3.3

CLR P3.4

RET

END

D/A Interfacing

283

D/A Interfacing

284

D/A Interfacing

285

D/A Interfacing- 8-bit DAC 0808

286

D/A Interfacing- 8-bit DAC 0808

287

D/A Interfacing- PROGRAM

288

Program: Write an ALP to generate Square wave form on port P1 of 8051 microcontroller using DAC

D/A Interfacing- Program

289

Program:Write an ALP to generateTriangular wave form on port P1 of 8051 microcontroller using DAC.

D/A Interfacing-Program

290

Program: Write an ALP to generate Stair-case wave form (with 5-steps) on port P1 of 8051 microcontroller using DAC.

A/D Interfacing

291

 ADC 0804

 8 bit successive approximation analogue to digital converter

 Features:

Differential AnalogueVoltage Inputs

0-5V InputVoltage Range

No Zero Adjustment,

Built in Clock Generator,

Reference Voltage can be externally adjusted to convert smaller analogue voltage span to 8

bit resolution etc.

A/D Interfacing

292

 The voltage at Vref/2 (pin9) of ADC0804 can be externally adjusted to convert

smaller input voltage spans to full 8 bit resolution.

 Vref/2 (pin9) left open means input voltage span is 0-5V and step size is

5/255=19.6mV

Vref/2 (pin9) (volts) -Input voltage span (volts) -Step size (mV)

Left open 0 – 5 5/255= 19.6

2 0 – 4 4/255= 15.69

1.5 0 – 3 3/255= 11.76

1.28 0 – 2.56 2.56/255= 10.04

1.0 0 – 2 2/255= 7.84

0.5 0 – 1 1/255= 3.92

A/D Interfacing-Circuit Diagram

293

A/D Interfacing-Circuit Diagram

294

The circuit initiates the ADC to convert a given analogue input , then accepts the corresponding digital data and displays it

on the LED array connected at P0.

For example, if the analogue input voltage Vin is 5V then all LEDs will glow indicating 11111111 in binary

which is the equivalent of 255 in decimal.

Data out pins (D0 to D7) of the ADC0804 are connected to the port pins P1.0 to P1.7 respectively.

LEDs D1 to D8 are connected to the port pins P0.0 to P0.7 respectively.

Resistors R1 to R8 are current limiting resistors.

P1 of the microcontroller is the input port and P0 is the output port.

Control signals for the ADC (INTR,WR, RD and CS) are available at port pins P3.4 to P3.7 respectively.

Resistor R9 and capacitor C1 are associated with the internal clock circuitry of the ADC.

Preset resistor R10 forms a voltage divider which can be used to apply a particular input analogue voltage to the ADC.

Push button S1, resistor R11 and capacitor C4 forms a debuncing reset mechanism.

Crystal X1 and capacitors C2,C3 are associated with the clock circuitry of the microcontroller.

A/D Interfacing-Program

295

ORG 00H

MOV P1,#11111111B // initiates P1 as the input port

MAIN: CLR P3.7 // makes CS=0

SETB P3.6 // makes RD high

CLR P3.5 // makes WR low

SETB P3.5 // low to high pulse to WR for starting conversion

WAIT: JB P3.4,WAIT // polls until INTR=0

CLR P3.7 // ensures CS=0

CLR P3.6 // high to low pulse to RD for reading the data from ADC

MOV A,P1 // moves the digital data to accumulator

CPL A // complements the digital data (*see the notes)

MOV P0,A // outputs the data to P0 for the LEDs

SJMP MAIN // jumps back to the MAIN program

END

Stepper Motor Interfacing

296

 Stepper motors are widely used in industrial, medical, consumer electronics

application.

 Stepper motor is a brush less motor which converts electrical pulses into mechanical

rotation.

 A stepper motor usually have a number of field coils (phases) and a toothed rotor.

Stepper Motor Interfacing

297

 The step size of the motor is determined by the number of phases and the number

of teeth on the rotor.

 Step size is the angular displacement of the rotor in one step.

 If a stepper motor has 4 phases and 50 teeth, it takes 50×4=200 steps to make

one complete rotation.

 Step angle will be 360/200=1.8°.

Stepper Motor Interfacing

298

ULN2003

299

It is basically a relay driver IC and it is a darlington array having high voltages and

high currents .

It is made up of seven open collector darlington pairs having common emitter which

shows ULN2003 has a capability of handling seven different relays at a time.

A single darlington pair consists of two bipolar transistors and it operates on the

current range of 500mA to 600mA.

ULN2003

300

ULN2003 operates on 5V and TTL (Transistor Transistor Logic) and CMOS

(Complementary Metal Oxide Semi Conductor).

They are commonly used as relay drivers in order to drive different kinds of loads.

ULN2003A can also be used to drive different motors (e.g. DC Motors or Stepper

Motors) with Microcontrollers (like Arduino, PIC Microcontroller or 8051

Microcontroller etc.) .

Some of the other applications of ULN2003 include logic buffers, lamp drivers, line

drivers, LED display, motor driver circuits etc.

https://www.theengineeringprojects.com/2017/05/dc-motor-projects.html
https://www.theengineeringprojects.com/2017/05/dc-motor-projects.html
https://www.theengineeringprojects.com/2017/05/dc-motor-projects.html
https://www.theengineeringprojects.com/2013/06/stepper-motor-drive-circuit-in-proteus.html
https://www.theengineeringprojects.com/2013/06/stepper-motor-drive-circuit-in-proteus.html
https://www.theengineeringprojects.com/2013/06/stepper-motor-drive-circuit-in-proteus.html
https://www.theengineeringprojects.com/2018/03/introduction-to-microcontrollers.html
https://www.theengineeringprojects.com/2015/03/arduino-projects.html
https://www.theengineeringprojects.com/2015/03/pic-microcontroller-projects.html
https://www.theengineeringprojects.com/2015/03/pic-microcontroller-projects.html
https://www.theengineeringprojects.com/2015/03/pic-microcontroller-projects.html
https://www.theengineeringprojects.com/2016/01/8051-microcontroller-projects.html
https://www.theengineeringprojects.com/2016/01/8051-microcontroller-projects.html
https://www.theengineeringprojects.com/2016/01/8051-microcontroller-projects.html

ULN2003-PINOUT

301

ULN2003-Pin Description

302

ULN2003-Logic Diagram

303

Made of hybrid combination of logic gates

and diodes.

Stepper Motor Interfacing-Program

304

Main : MOV A, # 0FF H ; Initialization of Port 1

MOV P1, A ;

MOV A, #77 H ; Code for the Phase 1

MOV P1, A ;

ACALL DELAY ; Delay subroutine

MOV A, # BB H ; Code for the Phase II

MOV P1, A ;

ACALL DELAY ; Delay subroutine.

MOV A, # DD H ; Code for the Phase III

MOV P1, A ;

ACALL DELAY ; Delay subroutine

MOV A, # EE H ; Code for the Phase 1

MOV P1, A ;

ACALL DELAY ; Delay subroutine

SJMP MAIN;

Keep the motor rotating continuously.

DELAY Subroutine

MOV R4, #0FF H ; Load R4 with FF

MOV R5, # 0FF ; Load R5 with FF

LOOP1: DJNZ R4, LOOP1 ; Decrement R4

until zero,wait

LOOP2: DJNZ R5, LOOP2 ; Decrement R5

until zero,wait

RET ; Return to main program .

Handling

External Interrupts

305

 Interrupt is an asynchronous signal (either hardware or software) which

indicates the processor to make a change in current execution.

 When the processor receives a valid interrupt signal it saves the current state

and then goes to execute a set of predefined steps called interrupt service

routine (ISR).

http://www.circuitstoday.com/external-interrupts-handling-in-8051
http://www.circuitstoday.com/external-interrupts-handling-in-8051

Handling

External Interrupts

306

 Interrupt Sources

 2 External Interrupts, 2Timer Interrupts, and 1 Serial Interrupt.

 External interrupts are – External Interrupt 0(INT0) and External Interrupt 1

(INT1).

 Timer interrupts areTimer 0 interrupt andTimer 1 interrupt.

 A serial interrupt is given for serial communication with the micro controller

(transmit and receive) .

http://www.circuitstoday.com/external-interrupts-handling-in-8051
http://www.circuitstoday.com/external-interrupts-handling-in-8051

Handling External Interrupts

307

Interrupt Source Vector

address

Interrupt

priority

External Interrupt 0 –

INT0

0003H 1

Timer 0 Interrupt 000BH 2

External Interrupt 1 –

INT1

0013H 3

Timer 1 Interrupt 001BH 4

Serial Interrupt 0023H 5

http://www.circuitstoday.com/external-interrupts-handling-in-8051

TCON,IE,IP –SFR’S

308

TCON,IE,IP-SFR’S

309

TCON,IE,IP-SFR’S

310

Toggling 2 LED with a Pushbutton Using Interrupt

311

Toggling 2 LED with a Pushbutton Using Interrupt

312

ORG 000H // starting address

SJMP LABEL //jumps to the LABEL

ORG 003H // starting address for the ISR(INT0)

ACALL ISR // calls the ISR (interrupt service routine)

RETI // returns from the interrupt

LABEL: MOV A,#10000000B // sets the initial stage of the LEDs (D1 OFF & D2 ON)

MAIN: // main function that sets the interrupt parameters

SETB IP.0 // sets highest priority for the interrupt INT0

SETB TCON.0 // interrupt generated by a falling edge signal at INT0 (pin12)

SETB IE.0 // enables the external interrupt

SETB IE.7 // enables the global interrupt control

SJMP MAIN // jumps back to the MAIN subroutine

ISR: // interrupt service routine

CPL A // complements the current value in accumulator A

MOV P1,A // moves the current accumulator value to port 1

RET // jumps to RETI

END

