 VEMU INSTITUTE OF TECHNOLOGY

Accredited by NAAC, Bangalore
Three B.Tech Programmes (CSE, ECE & EEE) are accredited by NBA, New Delhi

ACCREDITED as A- GRADE By GOVT. of AP, DEPARTMENT Of TECHNICAL EDUCATION

Dr.G.ELAIYARA]JA.,M.E.Ph.D
Professor
Department of ECE
VEMU Institute of Technology,
P.Kothakota,Chittoor,AP.

Course Objectives:

® To introduce fundamental architectural concepts of Microprocessors and

microcontrollers.
* To impart knowledge on addressing modes and instruction set of 8086 and 8051
* 'To introduce assembly language programming concepts
* To explain memory and I/O interfacing with 8086 and 8051

® To introduce16 bit and 32 bit microcontrollers.

Course Outcomes:

CO Description Blooms
Level

Explain about the 8086 microprocessor architecture and its pin

Co1 | . 02
diagram description
Develop the assembly language programming concepts using

CO2 : : 03
8086 Instruction sets

CO3 | Explain the interfacing of 8086 MICroprocessor with peripheral devices 02
Explain the architecture and iInstruction set of 8051

CO4 02

microcontroller

CO5 | Design the applications using 8051 microcontrollers 06

~__Unit-1

+*8086 Architecture:

Main features, pin diagram/description, 8086 microprocessor

family, internal architecture, bus interfacing unit, execution

unit. interrupts and interrupt response. 8086 system timin
’ P P p > y g’

minimum mode and maximum mode configuration.

~ Unit-2
++ 8086 Programming:

Program development steps, instructions, addressing
modes, assembler directives, writing simple programs
with an assembler, assembly language program

development tools.

___Unit-3

<+ 8086 Interfacing:

Semiconductor memories interfacing (RAM, ROM), Intel 8255
programmable peripheral interface, Interfacing switches and LEDS,
Interfacing seven segment displays, software and hardware interrupt
applications, Intel 8251 USART architecture and interfacing, Intel 8237a
DMA controller, stepper motor, A/D and D/A converters, Need for 8259
programmable interrupt controllers.

Unit- 4

“*Microcontroller - Architecture of 8051 — Special Function
Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set

- Addressing modes - Assembly language programming.

~_Unit-5

3 Interfacing Microcontroller - Programming 8051 Timers - Serial Port Programming -
Interrupts Programming — LCD & Keyboard Interfacing - ADC, DAC & Sensor
Interfacing - External Memory Interface- Stepper Motor and Waveform generation -

Comparison of Microprocessor, Microcontroller, PIC and ARM processors

Textbooks& References

Textbooks:

1. Microprocessors and Interfacing — Programming and Hardware by Douglas V Hall, SSSP Rao,
Tata McGraw Hill Education Private Limited, 3rdEdition,1994.

2. K M Bhurchandi, A K Ray, Advanced Microprocessors and Peripherals, 3rd edition, McGraw
Hill Education, 2017.

3. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design,
2nd edition, Pearson, 2012.

References:

1. Ramesh S Gaonkar, Microprocessor Architecture Programming and Applications with the
8085, 6th edition, Penram International Publishing, 2013.

2. Kenneth J. Ayala, The 8051 Microcontroller, 3rd edition, Cengage Learning, 2004.

Introduction to processor:

A processor is the logic circuitry that responds to and processes the basic instructions that
drives a computer.

The term processor has generallyreplaced the term central

processing unit . The processor in a personal computer or
embedded in small devices is often called a microprocessor.

The processor (CPU, for Central Processing Unit) is the computer's brain. It allows the
processing of numeric data, meaning information entered in binary form, and the
execution of instructions stored in memory.

Evolution of Microprocessor:

A microprocessor is used as the CPU in a microcomputer. There are
now many different microprocessors available.

* Microprocessor is a program-controlled device, which fetches the instructions from
memory, decodes and executes the instructions. Most Micro Processor are single-
chip devices.

* Microprocessor is a backbone of computer system. which is called CPU

* Microprocessor speed depends on the processing speed depends on DATA BUS
WIDTH.

e A common way of categorizing microprocessors is by the no. of bits that their ALU
can Work with at a time

4 ™
Evolution of Microprocessor:

» The address bus is unidirectional because the address information is always given by the
Micro Processor to address a memory location of an input / output devices.

> The data bus is Bi-directional because the same bus is used for transfer of data between
Micro Processor and memory or input / output devices in both the direction.

» It has limitations on the size of data. Most Microprocessor does not support floating-
point operations.

» Microprocessor contain ROM chip because it contain instructionsto execute
data.

» Storage capacity is limited. It has a volatile memory. In secondary storage device the storage
capacity is larger. It is a nonvolatile memory.

@ y

Compiler:

@

Evolution of Microprocessor:

™

» Primary devices are: RAM (Read / Write memory, High Speed, Volatile Memory) / ROM (Read
only memory, Low Speed, Non Volatile Memory)

» Compiler is used to translate the high-level language program into machine code at a time. It doesn’t
require special instruction to store in a memory, it stores automatically. The Execution time is less
compared to Interpreter

Evolution of Microprocessor:

RISC (Reduced Instruction Set Computer):

e RISC stands for Reduced Instruction Set Computer. To execute each
instruction, if there is separate

* electronic circuitry in the control unit, which produces all the necessary signals, this
approach of the design of the control section of the processor is called RISC design. It is also
called hardwired approach.

Examples of RISC processors:
* |BM RS6000, MC88100

 DEC’s Alpha 21064, 21164 and 21264 processors

D

g
Features of RISC Processors:

"he standard features of RISC processors are listed below:

—]

» RISC processors use a small and limited number of instructions.

» RISC machines mostly uses hardwired control unit.

» RISC processors consume less power and are having high
performance.

» Each instruction is very simple and consistent.
» RISC processors uses simple addressing modes.

» RISC instruction is of uniform fixed length

@

g
Features of RISC Processors:

CISC (Complex Instruction Set Computer):

» CISC stands for Complex Instruction Set Computer. If the control unit

contains a number of microelectronic circuitry to generate a set of control signals and each micro

circuitry is activated by a micro code, this design approach is called CISC design.

Examples of CISC processors are:
‘]; Intel 386, 486, Pentium, Pentium Pro, Pentium Il, Pentium IlI
Motorola’s 68000, 68020, 68040, etc.

@

Features of CISC Processors:

¥ CISC chips have a large amount of different and complex instructions.

¥ CISC machines generally make use of complex addressing modes.
» Different machine programs can be executed on CISC machine.
¥ CISC machines uses micro-program control unit.

¥ CISC processors are having limited number of registers

@D

8086 Architecture :

MEMORY
INTERFACE

s e e et S e R e e e e e e e E
i : S e e i
: B1U [c-BUS :
I ~_ L 1
i = = l
i = INSTRUCTION i
t STREAM 1
: ; gwne'e 1
UEUE 1
: 8-8BUS 2 !
| 1K ' |
| = 0 e = = ===
1
i DS | '
: 13 1 :
! . : CONTROL i
:_ __________________________ | SYSTEM :
1 - '
: EU - A-BUS !
| i
1
: i
: A AL]
: B8H BL :
cH CL
i ARITHMETIC |
: DH DL LOGIC UNIT I
sP !
| e ! l '
si i > I
{ o1 1 i
’ — 2L OPE RANDS !
' FLAGS -
S .

r

4 ™
8086 Architecture :

» 8086 Microprocessor is divided into two functional units, i.e.,

EU(Execution Unit) and BIU (Bus Interface Unit).
EU (Execution Unit):

Execution unit gives instructions to BIU stating from where to fetch the data and then decode and
execute those instructions. Its function is to control operations on data using the instruction decoder &

ALU. EU has no direct connection with system buses as shown in the above figure, it performs

operations over data through BIU.

@

g

BIU(Bus Interface Unit):

with the Internal Bus.

Instruction queue:

instruction, then it simply reads the
increased execution speed.

D

8086 Architecture :

» BIU takes care of all data and addresses transfers on the buses for the EU like sending
addresses, fetching instructions from the memory, reading data from the ports and the
memory as well as writing data to the ports and the memory. EU has no direction
connection with System Buses so this is possible with the BIU. EU and BIU are connected

» BIU contains the instruction queue. BIU gets up to 6 bytes of next instructions and stores
them in the instruction queue. When EU executes instructions and is ready for its next

instruction from this instruction queue resulting in

g
8086 Architecture :

* Segment register:

» BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the addresses of instructions and data in
memory, which are used by the processor to access memory locations. It also contains 1 pointer

register IP, which holds the address of the next instruction to executed by the EU.

~ ™
Special functions of general purpose register

AX & DX registers:

» In 8 bit multiplication, one of the operands must be in AL. The other operand can be a

byte in memory location or in another 8 bit register. The resulting 16 bit product is stored

in AX, with AH storing the MS byte.

» In 16 bit multiplication, one of the operands must be in AX.

» The other operand can be a word in memory location or in another 16 bit register. The

resulting 32 bit product is stored in DX and AX, with DX storing the MS word and AX storing
the LS word.

@ y

. . . R
special functions of general purpose register

BX register :

In instructions where we need to specify in a general purpose register the 16 bit effective

address of a memory location, the register BX is used (register indirect).

CX register :
In Loop Instructions, CX register will be always used as the implied counter. In I/O instructions,
the 8086 receives into or sends out data from AX or AL depending as a word or byte

operation.

@ y

4 ™
Segment register:

* Segment register:

» BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the addresses of

instructions and data in memory, which are used by the processor to access memory locations. It
also contains 1 pointer register IP which holds the address of the next instruction to executed by the

EU.

g
Flag Register and Functions of 3086 Flags

¥ Flag Register contains a group of status bits called flags that indicate the status of the CPU

or the result of arithmetic operations.

» There are two types of flags:
» The status flags which reflect the result of executing an instruction. The programmer
cannot set/reset these flags directly.

» The control flags enable or disable certain CPU operations.

» The programmer can set/reset these bits to control the CPU's operation.

@

4 R
Flag Register and Functions of 8086 Flags

Nine individual bits of the status register are used as control flags (3 of them) and status flags (6

of them).The remaining 7 are not used.

A flag can only take on the values 0 and 1. We say a flag is set if it has the value 1.The status

flags are used to record specific characteristics of arithmetic and of logical instructions.

g
Structure of Flag Register

s The Flags Register

Z-Flag A-Flag

b

P-Flag

arity

4 R
Flag Register and Functions of 380806 Flags

¢ Control Flags: There are three control flags
1 The Direction Flag (D): Affects the direction of moving data blocks by such

instructions as MOVS, CMPS and SCAS. The flag values are 0 = up and 1 = down and can be set/reset by
the STD (set D) and CLD (clear D) instructions.

1 The Interrupt Flag (l): Dictates whether or not system interrupts can occur. Interrupts are actions
initiated by hardware block such as input devices that will interrupt the normal execution of programs.
The flag values are 0 = disable interrupts or 1 = enable interrupts and can be manipulated by the CLI

(clear 1) and STI (set I) instructions.

@ y

4 R
Flag Register and Functions of 8086 Flags

* The Trap Flag (T): Determines whether or not the CPU is halted after the execution of each
instruction. When this flag is set (i.e. = 1), the programmer can single step through his program to

debug any errors. When this flag = 0 this feature is off. This flag can be set by the INT 3 instruction.

e Status Flags: There are six status flags
* The Carry Flag (C): This flag is set when the result of an unsigned arithmetic operation is too large to
fit in the destination register. This happens when there is an end carry in an addition operation or

there an end borrows in a subtraction operation. A value of 1 = carry and 0 = no carry.

@ y

4 ™
Flag Register and Functions of 3086 Flags

The Overflow Flag (0): This flag is set when the result of a signed arithmetic operation is too large to

fit in the destination register (i.e. when an overflow occurs). Overflow can occur when adding two
numbers with the same sign (i.e. both positive or both negative). A value of 1 = overflow and 0 = no

overflow.

1 The Sign Flag (S): This flag is set when the result of an arithmetic or logic operation is negative. This

flag is a copy of the MSB of the result (i.e. the sign bit). A value of 1 means negative and 0 = positive.

@ y

4 N

Flag Register and Functions of 3086 Flags

The Zero Flag (Z): This flag is set when the result of an arithmetic or logic operation is equal to zero. A

value of 1 means the result is zero and a value of 0 means the result is not zero.

The Auxiliary Carry Flag (A): This flag is set when an operation causes a carry from bit 3 to bit 4 (or a

borrow from bit 4 to bit 3) of an operand. A value of 1 = carry and O = no carry.

The Parity Flag (P): This flags reflects the number of 1s in the result of an operation. If the number of 1s

is even its value = 1 and if the number of 1s is odd then its value = 0.

@ y

4 ™
Addressing Modes of 8086

¢ Addressing mode indicates a way of locating data or operands. Depending up on the data type used in

the instruction and the memory addressing modes, any instruction may belong to one or more

addressing modes or same instruction may not belong to any of the addressing modes.

The addressing mode describes the types of operands and the way they are

accessed for executing an instruction. According to the flow of instruction

execution, the instructions may be categorized as

» Sequential control flow instructions and

> Control transfer instructions.

@

4 ™
Addressing Modes of 8086

* Sequential control flow instructions are the instructions which after execution, transfer control to the
next instruction appearing immediately after it (in the sequence) in the program. For example the
arithmetic, logic, data transfer and processor control instructions are Sequential control flow
instructions.

* The control transfer instructions on the other hand transfer control to some predefined address or
the address somehow specified in the instruction, after their execution. For example INT, CALL, RET &

JUMP instructions fall under this category.

@ y

g
Addressing Modes of 8086

» The addressing modes for Sequential and control flow instructions are
explained as follows.
» Immediate addressing mode:

» In this type of addressing, immediate data is a part of instruction, and

appears in the form of successive byte or bytes.

» Example: MOV AX, 0005H.

» In the above example, 0005H is the immediate data. The immediate data

may be 8- bit or 16-bit in size.

(. y

g
Addressing Modes of 8086

Direct addressing mode:

* Inthe direct addressing mode, a 16-bit memory address (offset) directly specifiedin the
instruction as a part of it.

Example: MOV AX, [5000H].

Register addressing mode:

* In the register addressing mode, the data is stored in a register and it is
referred using the particular register. All the registers, except IP may be

used in this mode.

Example: MOV BX, AX

@ y

g
Addressing Modes of 8086

Register indirect addressing mode:

 Sometimes, the address of the memory location which contains data or operands is determined in an

indirect way, using the offset registers. The mode of addressingis known as register indirect mode.

* In this addressing mode, the offset address of data is in either BX or Sl or DI Register. The

default segment is either DS or ES.

Example: MOV AX, [BX].

@ y

g
Addressing Modes of 8086

Indexed addressing mode:
* In this addressing mode, offset of the operand is stored one of the index registers. DS & ES are the

default segments for index registers Sl & DI respectively.

Example: MOV AX, [SI]

 Here, datais available at an offset address stored in Sl in DS.

g
Addressing Modes of 8086

Register relative addressing mode:

* |n this addressing mode, the data is available at an effective address formed by adding an 8-bit or 16-bit
displacement with the content of any one of the register BX, BP, S| & DI in the default (either in DS &

ES) segment.

Example: MOV AX, 50H [BX]

@ y

Addressing Modes of 8086

‘Based indexed addressing mode:

The effective address of data is formed in this addressing mode, by adding content of a base

register (any one of BX or BP) to the content of an index register (any one of Sl or DI). The default

segment register may be ES or DS. Example: MOV AX, [BX][SI]

Relative based indexed:

1 The effective address is formed by adding an 8 or 16-bit displacement with the sum of contents of any

of the base registers (BX or BP) and any one of the index registers, in a

default segment.

Example: MOV AX, 50H [BX] [SI]

L 4

e
Addressing Modes of 8086

Addressing Modes for control transfer _instructions:

¢ Intersegment

— Intersegment direct

— Intersegment indirect

¢ Intrasegment
— Intrasegment direct

— Intrasegment indirect

(4

g
Addressing Modes of 8086

¢« Intersegment direct:

¥ In this mode, the address to which the control is to be transferred is in a different segment. This

addressing mode provides a means of branching from one code segment to another code segment.

Here, the CS and IP of the destination address are specified directly in the instruction.

Example: JIMP 5000H: 2000H;

Jump to effective address 2000H in segment 5000H.

@

g
Addressing Modes of 8086

Intersegment indirect:
» In this mode, the address to which the control is to be transferred lies in a different segment and it is

passed to the instruction indirectly, i.e. contents of a memory block containing four bytes, i.e. IP(LSB),
IP(MSB), CS(LSB) and CS(MSB) sequentially. The starting address of the memory block may be referred

using any of the addressing modes, exceptimmediate mode.

» Example: JMP [2000H].

» Jump to an address in the other segment specified at effective address

2000H in DS.

@ y

g
Addressing Modes of 8086

¢« Intrasegment direct mode:

¥ In this mode, the address to which the control is to be transferred lies in the same segment in which the
control transfers instruction lies and appears directly in the instruction as an immediate displacement

value. In this addressing mode, the displacement is computed relative to the content of the instruction

pointer.

g
Addressing Modes of 8086

* The effective address to which the control will be transferred is given by
the sum of 8 or 16 bit displacement and current content of IP. In case of
jump instruction, if the signed displacement (d) is of 8- bits (i.e. -
128<d<+127), it as short jump and if it is of 16 bits (i.e. -
32768<d<+32767), it is termed as long jump.

Example: IMP SHORT LABEL.

(- y

g
Addressing Modes of 8086

* Intrasegment indirect mode:

* |n this mode, the displacement to which the control is to be transferred is in the same segment in
which the control transfer instruction lies, but it is passed to the instruction directly. Here, the branch

address is found as the content of a register or a memory location.

 This addressing mode may be used in unconditional branch
instructions.

 Example: JMP [BX]; Jump to effective address stored in BX.

@ y

g
INSTRUCTION SET OF 8086

* The Instruction set of 8086 microprocessor is classified into 7 Types, they

are:-
* Data transfer instructions
* Arithmetic& logical instructions
* Program control transfer instructions
* Machine Control Instructions
* Shift / rotate instructions
* Flag manipulation instructions

* Stringinstructions

g
Data Transfer instructions

e Data transfer instruction, as the name suggests is for the transfer of data from memory to
internal register, from internal register to memory, from one register to another register, from
input port to internal register, from internal register to output port etc

MOV instruction

* |t is a general purpose instruction to transfer byte or word from register to register, memory
to register, register to memory or with immediate addressing.

g
Data Transfer instructions

General Form:

e MOV destination, source
 Here the source and destination needs to be of the same size, that
is both 8 bit or both 16 bit.

« MOV instruction does not affect any flags.

Example:-
« MOV BX, 00F2H; load the immediate number O0F2H in BXregister

e MOV CL, [2000H] ;Copy the 8 bit content of the memory
location, at a displacement of 2000H

from data segment base to the CL register

g
Data Transfer instructions

MOV [589H], BX; Copy the 16 bit content of BX register on to the memory location,
which at a

displacement of 589H from the data segment

base.

« MOV DS, CX; Move the content of CX to DS

PUSH instruction

 The PUSH instruction decrements the stack pointer by two and copies the word from
source to the location where stack pointer now points. Here the source must of word size
data. Source can be a general purpose register, segment register or a memory location.

(4

g
Data Transfer instructions

The PUSH instruction first pushes the most significant byte to sp-1, then the least significant to
the sp-2.
Push instruction does not affect any flags.

hMemory stack =egment

SO0F4
CH o CL 30033
20|30 = 30 30032 <—t
= =t 30031

SFa0=a

=P | oosa | |

30000
oo | =000 i ﬁ'/)

g
Data Transfer instructions

Example:-
e PUSHCX ; Decrements SP by 2, copy content of CX to the
stack (figure shows execution of this instruction)
e PUSH DS ; Decrement SP by 2 and copy DS to stack

e POP instruction

The POP instruction copies a word from the stack location pointed by the stack pointer to the
destination. The destination can be a General purpose register, a segment register or a
memory location. Here after the content is copied the stack pointer is automatically

incremented by two.
* The execution pattern is similar to that of the PUSH instruction.

Example:

e POPCX ; Copy a word from the top of the stack to CX and
increment SP by 2.

D

g
Data Transfer instructions

IN & OUT instructions

 The IN instruction will copy data from a port to the accumulator. If 8 bit is read the data will
go to AL and if 16 bit then to AX. Similarly OUT instruction is used to copy data from
accumulator to an output port.

 Both IN and OUT instructions can be done using direct and indirect addressing modes.
Example:

 |INAL, OF8H; Copy a byte from the port OF8H to AL

e MOV DX, 30F8H;Copy port address in DX

 INAL, DX;

* IN AX, DX;

* OUTO047H, AL; |
- MOV DX, 30F8H:Copy por ‘%%%95%?.#%5‘& Copy contents of AL to 8 bit port

047H

Move 8 bit data from 30F8H port Move 16 bit data

g

Data Transfer instructions

XCHG instruction

* The XCHG instruction exchanges contents of the destination and source. Here destination
and source can be register and register or register and memory location, but XCHG cannot
interchange the value of 2 memory locations.

General Format
* XCHG Destination, Source
Example:
* XCHG BX, CX; exchange word in CX with the word in BX
 XCHG AL, CL; exchange byte in CL with the byte in AL

* XCHG AX, SUMI[BX];here physical address, which is DS+SUM+[BX]. The
content at physical
address and the content of AX are interchanged.

e

Arithmetic Instructions: ADD, ADC, INC, AAA, DAA

™

ADD Addition ADD D,S (S)+(d) > (D) ALL
carry > (CF)
ADC Add with ADCD,S (S)+(D)+(CF) > (D) ALL
carry carry > (CF)
INC Increment by INCD D)+1 - (D) ALL but CY
one
AAA ASCII adjust AAA If the sum is >9,AH AFCF
for addition is incremented by 1
DAA Decimal DAA Adjust AL for decimal ALL
adjust for Packed BCD
addition

g
Arithmetic Instructions—SUB, SBB, DEC, AAS, DAS, NEG

Mnemonic Meaning Format Operation Flags
affected
SUB Subtract SUBD,S (D)-(S) = (D) All
Borrow > (CF)
SBB Subtract SBB D,S (D)-(S)-(CF) » (D) All
with
borrow
DEC Decrement DEC D (D)-1 > (D) All but CF
by one
NEG Negate NEGD All
DAS Decimal DAS Convert the result in ALto All
adjust for packed decimal format
subtraction
AAS ASCII AAS (AL) difference CYAC
adjust for

subtraction

(AH) dec by 1 if borrow

e

Multiplication and Division

Mnemonic Meaning Format Operation Flags Affected
MUL Multiply MUL S (AL) - (S8) — (A>X) OF, CF
(unsigned) (AX) - (S16) — (ID3X),(AX) SF ZF, AF, PF undefined
Div Division Dilv s (1) QAX/(S8)) — (AL) OF SF ZF AF PF CF
(unsigned) R((AX)/(S8)) — (AR undesfined
(2) QDX AXM/(S16)) — (AX)
R, AX)/(S16)) — (DX)
IfQ is FF4 ¢ iNn case (1) or
FFFF,¢g in case (2). then
type O interrupt occurs
IiMUL INnteger multiply IMUL S (AL) - (S8) — (AX) OF, CF
(signed) (AX) - (S16) — (IDX),(A>X) SF ZF, AF, PF undefined
1DV integer divide IDIvV S (1) QAXY/(S8B))) — (AL) OF SF ZF, AF PFR, CF
(signed) R(AX/(S8)) — (AHD) undefined
(2) QUDX,AX)/(S16)) —> (AX)
RDX,AX)/{(S16)) — (D>X)
If Q is positive and exceeds
ZTFFF,. Or if Q is negative
and becomes less than
8800136, thhen type O interupt
occurs
AAM Adjust AL for AAM QUALY/10) — (AHD) SF, ZF, PF
multiplication R((AL)Y10) —> (AL) OF, AFCF undefined
AAD Adjust AX for AAD {AH) - 10 + (AL) — (AL) SF ZF PF
division OO — (AH) OF, AF, CF undefined
CcBwW Convert byte to CcCBWwW (MSB of AL) — (AIll bits of A%l) None
word
CcwWD Convert word to WD (MSB of AX) — (AIll bits of DX) None
double word :

)

Source

Regs
Reg16
NMemsS
Mem 16

()

e

Multiplication and Division

EBvite*Byie AT, ERegister or menory AR
Woord* Word AT Register or memory DX AN
Do - * Divwro evdl EAX Register or memory EAN EDX
B Division Dividend Operand Quotient: Remainder
(DIV or IDIV) (Divisor)
Word/Byte AN Register or Memory Al :AH
Do ™V ord DX AR Eegister or Memory AN DX
o rd Do d EDX: EAX ERegister or Memory EANX : EDX
s

g

Logical Instructions

AND instruction

This instruction logically ANDs each bit of the source byte/word with the corresponding bit
in the destination and stores the result in destination. The source can be an immediate
number, register or memory location, register can be a register or memory location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the operation and AF is
undefined.

General Format:
AND Destination, Source
Example:

AND BL, AL ;suppose BL=1000 0110 and AL=1100 1010 then
after the operation BL would be BL= 1000 0010.

AND CX, AX ;CX <= CX AND AX
AND CL, 08 ;CL<=CL AND (0000 1000)

g

Logical Instructions

OR instruction

* This instruction logically ORs each bit of the source byte/word with the corresponding bit in
the destination and stores the result in destination. The source can be an immediate number,
register or memory location, register can be a register or memory location.

e The CF and OF flags are both made zero, PF, ZF, SF are affected by
the operation and AF is undefined.

* General Format:
* OR Destination, Source

g
Logical Instructions

Example:

e ORBL, AL; suppose BL=10000110and AL= 1100 1010then
after the operation BL would be BL=1100 1110.

* ORCX, AX;CX <= CX AND AX

e ORCL, 08;CL<=CL AND (0000 1000)

NOT instruction

 The NOT instruction complements (inverts) the contents of an operand register or a
memory location, bit by bit. The examples are as follows:
Example:

« NOT AX (BEFORE AX=(1011)2=(B) 16 AFTER EXECUTION AX=
(0100)2=(4)16).

 NOT [5000H]

(4

g

Logical Instructions

XOR instruction

The XOR operation is again carried out in a similar way to the AND and OR operation. The
constraints on the operands are also similar. The XOR operation gives a high output, when the
2 input bits are dissimilar. Otherwise, the output is zero. The example instructions are as
follows:

Example:
e XOR AX,0098H
e XOR AX,BX
e XOR AX,[5000H]

Logical Instructions

Shift / Rotate Instructions

e Shift instructions move the binary data to the left or right by them within the

register or memory location. They also can multiplication of powers of 2+n and

division of powers of 2-n.

 There are two type of shifts logical shifting and arithmetic shifting,

later is used with signed numbers while former with unsigned.

shifting

perform

4 | | ™
Logical Instructions

SHL/SAL instruction

¢ Both the instruction shifts each bit to left, and places the MSB in CF and LSB is made 0. The destination
can be of byte size or of word size, also it can be a register or a memory location. Number of shifts is
indicated by the count.

1 All flags are affected.

General Format:

SAL/SHL destination, count

@ y

4 | | ™
Logical Instructions

SHR instruction

e This instruction shifts each bit in the specified destination to the right and
0 is stored in the MSB position. The LSB is shifted into the carry flag. The destination can be of byte size

or of word size, also it can be a register or a memory location. Number of shifts is indicated by the
count.

» All flags are affected
* General Format:
SHR destination, count

(- y

g
String Instruction Basics

String - a byte or word array located in memory.
Operations that can be performed with string instructions:
* copy a string into another string

e search a string for a particular byte or word
* store characters in a string

e compare strings of characters alphanumerically

@

g

String Instruction Basics

» Source DS:SI, Destination ES:DI

— Youmust ensure DS and ES are correct

— Youmust ensure S| and DI are offsets into DS and ES
respectively

» Direction Flag (0 = Up, 1 = Down)

— CLD - Increment addresses (left to right)
— STD - Decrement addresses (right to left)

g
String Control Instructions
1) MOVS/ MOVSB/ MOVSW

Dest string name, src string name

This instruction moves data byte or word from location in DS to
location in ES.

2) REP / REPE / REPZ / REPNE / REPNZ
Repeat string instructions until specified conditionsexist. This is

prefix a instruction.

3) CMPS / CMPSB / CMPSW
Compare string bytes or string words.

@

g
String Control Instructions

4)SCAS / SCASB / SCASW
Scan a string byte or string word.
Compares byte in AL or word in AX. String address is to be loaded
in DI.

5)STOS / STOSB / STOSW
Store byte or word in a string.

Copies a byte or word in AL or AX to memory location pointed by
DI.

6)LODS / LODSB /LODSW
Load a byte or word in AL or AX

Copies byte or word from memory location pointed by Sl into AL or
AX register.

(> 4

e
5. Program Execution Transfer Instructions

These instructions are similar to branching or looping instructions. These instructions include
unconditional jump or loop instructions.

Classification:

*Unconditional transfer instructions

«Conditional transfer instructions

*|teration control instructions

Interrupt instructions

L 4

e
5. Program Execution Transfer Instructions

Unconditional transfer instructions
» CALL: Call a procedure, save return address on stack
» RET: Return from procedure to the main program.

» JMP: Goto specified address to get next instruction

CALL instruction: The CALL instruction is used to transfer execution of program to a

subprogram or procedure.

D

g
5. Program Execution Transfer Instructions

CALL instruction
» Near call
1. Direct Near CALL: The destination address is specified in the instruction itself.

2.Indirect Near CALL: The destination address is specified in any

16-bit register, except IP

> Far call

1.Direct Far CALL: The destination address is specified in the
instruction itself. It will be in different Code Segment.

2.Indirect Far CALL: The destination address is specified in two

word memory locations pointed by a register.

D

e
5. Program Execution Transfer Instructions

JMP instruction
The processor jumps to the specified location rather than the
instruction after the JMP instruction.

» Intra segment jump

» Inter segment jump

RET

RET instruction will return execution from a procedure to the next instruction after the

CALL instruction in the calling program.

@D

g
5. Program Execution Transfer Instructions

Conditional TransferInstructions

* JA/INBE: Jump if above / jump if not below or equal
* JAE/JNB: Jump if above /jump if not below

« JBE/INA:Jump if below or equal/ Jump if not above
e JC:jumpif carry flag CF=1

e JE/IZ: jump if equal/jump if zero flag ZF=1

e JG/INLE: Jump if greater/ jump if not less than or equal.

@D

g

5. Program Execution Transfer Instructions

Conditional TransferInstructions

JGE/JNL: jump if greater than or equal/ jump if not less than
e JL/INGE: jump if less than/ jump if not greater than or equal
e JLE/ING: jump if less than or equal/ jump if not greater than
* JNC:jump if no carry (CF=0).

e JNE/INZ: jump if not equal/ jump if not zero(ZF=0)

e
5. Program Execution Transfer Instructions

Conditional TransferInstructions

JNO: jump if no overflow(OF=0)

* JNP/JPO: jump if not parity/ jump if parity odd(PF=0)
e JNS: jump if not sign(SF=0)

* JO: jump if overflow flag(OF=1)

e JP/IPE: jump if parity/jump if parity even(PF=1)

e JS:jump if sign(SF=1).

g

5. Program Execution Transfer Instructions

Iteration Control Instructions

> These instructions are used to execute a series of instructions for

certain number of times.

» LOOP: Loop through a sequence of instructions until CX=0.

» LOOPE/LOOPZ : Loop through a sequence of instructions while

ZF=1 and instructions CX = 0.
» LOOPNE/LOOPNZ : Loop through a sequence of instructions while

ZF=0 and CX =0.

» JCXZ : jump to specified address if CX=0.

g
Interrupt Instructions

Two types of interrupt instructions:

» Hardware Interrupts (External Interrupts)

» Software Interrupts (Internal Interrupts and Instructions)
Hardware Interrupts:

 INTR is a maskable hardware interrupt.

* NMlis a non-maskable interrupt.

@

g
Interrupt Instructions

Software Interrupts

* INT :Interrupt program execution, call service procedure
* INTO : Interrupt program execution if OF=1

e |RET: Return from interrupt service procedure to main program.

e
High Level Language Interface Instructions

»ENTER : enter procedure.

» LEAVE: Leave procedure.

»BOUND: Check if effective address within specified array bounds.

g
Processor Control Instructions

|. Flag set/clear instructions

STC: Set carry flagCF to 1

CLC: Clear carry flagCFto O

CMC: Complement the state of the carry flag CF

STD: Set direction flag DF to 1 (decrement string pointers)

CLD: Clear direction flag DF to O

STI: Set interrupt enable flag to 1(enable INTR input)

vV Vv YV VvV VYV Y V

CLI: Clear interrupt enable Flag to O (disable INTR input)

g
Processor Control Instructions

Il. External Hardware synchronizationinstructions
»HLT: Halt (do nothing) until interrupt or reset.
» WAIT:Wait (Do nothing) until signal on the test pin islow.

» ESC: Escape to external coprocessor such as 8087 or 8089.

» LOCK: An instruction prefix. Prevents another processor from taking
the bus while the adjacent instruction executes.
»NOP: No operation. This instruction simply takes up three clock cyclesand does no

processing.

L g

e
Assembler Directives

» ASSUME
> DB
> DD
> DQ
> DT
> DW

Defined Byte. Defined
Double Word Defined Quad
Word Define Ten Bytes
Define Word

g

Assembler Directives

> ASSUME Directive-

The ASSUME directive is used to tell the assembler that the name of the logical segment should be
used for a specified segment. The 8086 works directly with only 4 physical segments: a Code
segment, a data segment, a stack segment, and an extra segment.

Example:

ASUME CS:CODE ;This tells the assembler that the logical segment named CODE contains the
instruction statements for the program and should be treated as a code segment.

ASSUME DS:DATA ;This tells the assembler that for any instruction which refers to a data in the data
segment, data will found in the logical segment DATA.

(g

4 ™
Assembler Directives

» DB - DB directive is used to declare a byte- type variable or to store a byte

in memory location.
» Example:

1. PRICE DB 49h,98h, 29h ; Declare an array of 3 bytes, named as
PRICE and initialize.

2. NAME DB ‘ABCDEF’ ;Declare an array of 6 bytes and initialize with ASCII

code for letters

3. TEMP DB 100 DUP(?) ;Set 100 bytes of storage in memory and give it the name as TEMP, but leave the

100 bytes uninitialized. Program instructions will load values into these locations.

@ y

g
Assembler Directives

> DW -The DW directive is used to define a variable of type word or to
reserve storage location of type word in memory.
» Example:
* MULTIPLIER DW 437Ah ; this declares a variable of type word and

named it as MULTIPLIER. This variable is initialized with the value

437Ah when it is loaded into memory to run.

g
Assembler Directives

» END - END directive is placed after the last statement of a program to tell the assembler that

this is the end of the program module. The assembler will ignore any statement after an END

directive.

» ENDP - ENDPdirective is used along with the name of the procedure to indicate the end of a

procedure to the assembler

Example:

 SQUARE_NUM PROCE ; It start the procedure, Some steps to find the square root of a number

* SQUARE_NUM ENDP ;Hear it is the End for the procedure

L 4

e

Assembler Directives

END
ENDP
ENDS
EQU
EVEN
EXTRN

YV V V V V V

End Program
End Procedure

End Segment
Equate

Align on Even Memory Address

g

Assembler Directives

» ENDS - This ENDS directive is used with name of the segment to

indicate the end of that logic segment.

Example: CODE SEGMENT ;Hear it Start the logic segment containing code ;
» CODE ENDS ;End of segment named as CODE
» GLOBAL - Can be used in place of a PUBLIC directive or in place of

an EXTRN directive.

g

>

Assembler Directives

GROUP - Used to tell the assembler to group the logical statements named after the directive into

one logical group segment, allowing the contents of all the segments to be accessed from the same

group segment base.
INCLUDE - Used to tell the assembler to insert a block of source code
from the named file into the current source module.

LABEL- Used to give a name to the current value in the location

counter.

NAME- Used to give a specific name to each assembly module

when programs consisting of several modules are written.

@g.: NAME PC_BOARD

™

4 ™
Assembler Directives

» OFFSET- Used to determine the offset or displacement of a named data

item or procedure from the start of the segment which contains it.
E.g.: MOV BX, OFFSET PRICES
» ORG- The location counter is set to 0000 when the assembler starts reading a segment. The ORG

directive allows setting a desired value at any pointin the program.

E.g.: ORG 2000H

g
Assembler Directives

» PUBLIC- Used to tell the assembler that a specified name or label will be

accessed from other modules.
» SEGMENT- Used to indicate the start of a logical segment.

E.g.. CODE SEGMENT indicates to the assembler the start of a logical

segment called CODE

» SHORT- Used to tell the assembler that only a 1 byte displacement is

needed to code a jump instruction.
E.g.: IMP SHORT NEARBY_ LABEL

» TYPE - Used to tell the assembler to determine the type of specified

variable.

L g

Write an assembly language program for addition of two 8- bit

numbers using 8086 microprocessors.
DAIA SEGMENT A1 D

50H A2 DB 51H RES
DB ?

DAIA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA MOV
DS,AX MOV AL,Al
MOV BL,A2 ADD AL,BL
MOV RES,AL MOV
AX,4CO0H INT 21H

CODE ENDS

END START

@

"Write an assembly language program to find the factorial of given®

number using 8086 microprocessors.
DAIA SEGMENT

FIRST DW O3H
SECDW 01H
DAJA ENDS
CODE SEGMENT
ASSUME CS:CODE,DS:DATA
START: MOV AX,DATA MOV

DS,AX MOV AX,SEC
MOV CX,FIRST
L1: MUL CX
DEC CX
JCXZ L2 IMP L1
L2: INT3H
CODE ENDS
END START

@ y

/" Write an assembly language program to find the sum of squares using 8086

Microprocessors.
DATASEGMENT

NUM DW 5H
RESDW ?

DATA ENDS
CODE SEGMENT

ASSUME CS: CODE, DS: DATA
START: MOV AX,DATA MOV

DS,AX MOV CX,NUM
MOV BX,00
L1: MOV AX,CX MUL
CX ADD BX,AX
DEC CX
INZ L1
MOV RES,BX INT
3H

CODE ENDS

@ END START
\& %

g
Procedures and Macros

Procedures:

can be written as a separate subprogram called a procedure.

Defining Procedures:

procedures. The directive PROC indicates beginning of a procedure.
Procedure_name PROC [NEAR|FAR]

@

 While writing programs, it may be the case that a particular sequence of instructions is used several
times. To avoid writing the sequence of instructions again and again in the program, the same sequence

e Assembler provides PROC and ENDP directives in order to define

™

Its general form is:

g
Procedures and Macros

Passing parameters to and from procedures:

The data values or addresses passed between procedures and main
program are called parameters. There are four ways of passing

parameters:

» Passing parameters in registers
» Passing parameters in dedicated memory locations
» Passing parameters with pointers passed in registers

» Passing parameters using the stack

@

4 ™
Procedures and Macros

MACROS:
» When the repeated group of instruction is too short or not suitable to be

implemented as a procedure, we use a MACRO. A macro is a group of instructions to which a name is
given. Each time a macro is called in a program, the assembler will replace the macro name with the

group of instructions.
Defining MACROS:

» Before using macros, we have to define them. MACRO directive

informs the assembler the beginning of a macro. The general form is:

» Macro_name MACRO argumentl, argument2, ...Arguments are optional. ENDM informs the

embler the end of the macro. Its general formis: ENDM

S

e
Procedures and Macros

)

Procedures Macros

Accessed by CALL and RET mechanism
during program execution

Machine code for instructions only put in memory once

Parameters are passed in registers,
memory locations or stack

Procedures uses stack

A procedure can be defined anywhere in
program using the directives PROC
and ENDP

Procedures takes huge memory for
each time CALL is used) instruction

L 4

CALL(3 bytes

Accessed by name given to macro
when
defined during assembly

Machine code generated for instructions
each time called

Parameters passed as part of statement
which calls macro

Macro does not utilize stack

A macro can be defined anywhere in
program using the directives MACRO
and ENDM

Length of code is very huge if macro’s are
called for more number of times

e
Minimum mode operation in 8086:

Reset |
S cixkceENn. | L
—— RDY s284 = B3
| Reset Cik RDY
i
= ¥ h 4
FRM Cik Ready p————— -
[M =1 mm S =
RrD DOMUX -
Veo e owR
so86 s Ao——=] CS Logic: T—= %‘6 m'u“"'
S I ——
£ : | SE— 1o - -
ALE sTs : Ap—Anp >
.. - e T
ADg — ADs. Z:‘?ehes < ;
Aq6lSsy — 20or3
i A aiSe =¥
DT/R DEN =2 — =
CSo CSe CcCSo CSe 1IORD | 1IOWR
]
> _‘l 3 __l _"_ - __
e (=53 : Ccs cs : cs
Transceivers 3 -
RAM R_ROM
= 7az2as : :
DIR v RD Wik : OE ;
MRD MWR MRD

4 ™
Minimum mode operation in SO86:

» In a minimum mode 8086 system, the microprocessor 8086 is operated in
minimum mode by strapping its MN/MX pin to logic 1.

» In this mode, all the control signals are given out by the microprocessor
chip itself. There is a single microprocessor in the minimum mode system.

» The remaining components in the system are latches, transceivers, clock generator, memory and 1/O

devices. Some type of chip selection logic may be required for selecting memory or 1/O devices,
depending upon the address map of the system.

» Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They are used for
separating the valid address from the multiplexed address/data signals and are controlled by the ALE

signal generated by 8086.

@ y

4 ™
Minimum mode operation in SO86:

» Transceivers are the bidirectional buffers and sometimes they are called as data amplifiers. They are
required to separate the valid data from the time multiplexed address/data signals.

» They are controlled by two signals namely, DEN and DT/R.

» The DEN signal indicates the direction of data, i.e. from or to the processor. The system contains memory
for the monitor and users program storage.

» Usually, EPROM is used for monitor storage, while RAM for users program
storage. A system may contain |/O devices.

D y

g

Maximum mode operation in 80806:
In the maximum mode, the 8086 is operated by strapping the MN/MX

pin to ground.
In this mode, the processor derives the status signal S2, S1, SO. Another chip called bus
controller derives the control signal using this status information.

In the maximum mode, there may be more than one

microprocessor in the system configuration.
The components in the system are same as in the minimum mode system.

The basic function of the bus controller chip 1C8288 is to derive
control

signals like RD and WR (for memory and /O devices), DEN, DT/R, ALE etc.
using the information by the processor on the status lines.

The bus controller chip has input lines S2, S1, SO and CLK. These inputs to
8288 are driven by CPU.

D

e

I S————

— =

Maximum mode operation in 8O86:

—E2
p— T Rr-"
Ft-n:-n'tc-: I_._._
e T Faa e e | A L=
LR W = L e AT
Reseat Gk RDY = azas —
i T i
s 5 - L ALE
Resat Gk DY DEN s L TSe AN
o Lt = L o LAk
=R N [] L S ae ROMA
Sa | T E=ao RaOkaA
B BHE —_——— L s D
r ' I
.-ﬁ..l:lgh—-ﬂ-.ﬂws. STE : Sy, —_A-‘I'E I =t
18/ Ss — [[= "“n.-t':' o |
AaelSe Fan A | i i |
_I l
_ = Data
L Lo I L s >0 buffars
Tl el S f
J_ iR [
—a P CSo sj\/ = C=ae [T =T
+ + - + L | s
: : RD
LAURA =]] LACH
R WwWit !] = s o =1
AR P T FARE - ﬂ [Lomme BN e

4 N

Maximum mode operation in 80806:
1 It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC

and AIOWC. The AEN, I0B and CEN pins are especially useful for
multiprocessor systems.
1 AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of the MCE/PDEN

output depends upon the status of the IOB pin.

¢ If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it acts as peripheral

data enable used in the multiple bus configurations.

@ y

4 ™
Maximum mode operation in 80806:

¢« INTA pin used to issue two interrupt acknowledge pulses to the interrupt
controller or to an interrupting device.
¢« IORC, IOWC are I/O read command and 1/O write command signals

respectively.

¢ These signals enable an 10 interface to read or write the data from or to the address port.

¢« The MRDC, MWTC are memory read command and memory write command signals respectively and

may be used as memory read or write signals.

@

4 ™
Maximum mode operation in 80806:

The MRDC, MWTC are memory read command and memory write

command signals respectively and may be used as memory read or signals. write
1 All these command signals instructs the memory to accept or send from or to the bus. data

¢« For both of these write command signals, the advanced signals namely AIOWC and AMWTC are

available.

¢ Here the only difference between in timing diagram between minimum mode and maximum mode is

the status signals used and the available control and advanced command signals.

@ y

4 ™
Maximum mode operation in 80806:

¢ RO, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as on the ALE

and apply a required signal to its DT / R pin during T1.

1 In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate MRDC or IORC.
These signals are activated until T4. For an output, the AMWC or AIOWC is activated from T2 to T4 and
MWTC or IOWC is activated from T3 to T4.

e

Write Cycle Timing Diagram for Minimum Mode

I T: | T, | i lT\\' | ¥

Clk

ate _ [\

ADD/STATUS JPHE_ Ay 9 84 Py

ADD / DATA X Ais— Ao { Valid data Dis Do X

b \ P

o A /

e

Bus Request and Bus Grant Timings in Minimum Mode
System of 8086

Clk I | I

/ N

HOLD

HLDA / \

Bus Request and
Bus Grant Timings in Mimimmum Mode System

Memory Read Timing Diagram in Maximum Mode of 8086

r. One bus cvcle ——————
Ty | T | A=n.- 1 Ts | Ty |

Clk]
P / X /
5 - Acave > imactive X Active
Add/Statuas > BHE., Ais — Ase X S:—Ss P---mmmmmmmmmmm e
Add/Data __ _ _ ___ _< A= — Ay) (D= — Dy) ___________

NMRDC \ /
DT /K \ /

e

Memory Write Timing in Maximum mode of 8086

- One bus cycle - =
I Ti I Tz I T3 E T4 I Tl I

Clk — e

ALE / \
S:— Sy Active X: ___Inactive >< Active
ADD/STATUS X XBHE) S-— S, S
: Aq<-A _ N
ADD/DATA 15-Ao Data out D;s — Dy)
AMWC or ATOWC \ /
MWTC or IOWC \ /
DT /R high

e N\ /

4 ™
Assembly Language Programming

The assembly programming language is a low-level language which is using mnemonics.
developed by The microcontroller or microprocessor can

understand only the binary language like O’s or 1’s therefore the assembler convert the assembly
language to binary language and store it the memory to perform the tasks. Before writing the program
the embedded designers must have sufficient knowledge on particular hardware of the controller or

processor, so first we required to know hardware of 8086 processor.
Machine Language:

Set of fundamental instructions the machine can execute Expressed as a

pattern of 1’s and O's

@ y

g
Assembly Language Programming

Assembly Language:

Alphanumeric equivalent of machine language Mnemonics more human-
oriented than 1'sand O’s

Assembler:

Computer program that transliterates (one-to-one mapping) assembly to machine language

Computer’s native language is machine/assembly language

g
Why Assembly Language Programming

e Faster and shorter programs: Compilers do not always generate
optimum code.

* Instruction set knowledge is important for machine designers.

 Compiler writers must be familiar with details of machine language.

* Small controllers embedded in many products

e Have specialized functions,

* Rely so heavily on input/output functionality,

 HLLs inappropriate for product development.

D

e
Basic Elements of 8086 Assembly Programming Language

Immediate

® Declaration

Operands | | Register

@ Interupt

—_—

Memory

e ——

Arithmetic ®

Operations] , Logic ®

IMP @

4 ™
8086 Assembly Programming Language Instructions

* Like we know instruction are the lines of a program that means an action for the computer to
execute.
In 8086, a normal instruction is made by an operation code and sometimes
operands.
Structure:
Operation Code [Operandl [, Operand2]]
* Operations
 The operation is usually logic or arithmetic, but we can also find some

special operation like the Jump (JMP) operation.

D y

e
8086 Assembly Programming Language Instructions

 Operands

 QOperands are the parameters of the operation in the instruction. They can
be use in 3 way:

* Immediate

* This means a direct access of a variable that have been declared in the
program.

* Register

* Here we use the content of a register to be a parameter.

* Memory

 Here we access to the content of a specific part of the memory using a pointer

D

™

g

D

SYNTAX OF 8086/8088 ASSEMBLY LANGUAGE

The language is not case sensitive.

There may be only one statement per line. A statement may start in any

column.

A statement is either an instruction, which the assembler translates into machine code, or a

assembler directive (pseudo-op), which instructs the assembler to perform some specific task.

Syntax of a statement:
{name} mnemonic {operand(s)} {; comment}
The curly brackets indicate those items that are not present or are optional

in some statements.

L

g

D

SYNTAX OF 8086/8088 ASSEMBLY LANGUAGE

The name field is used for instruction labels, procedure names, segment

names, macro names, names of variables, and names of constants.

MASM 6.1 accepts identifier names up to 247 characters long. All characters are significant, whereas
under MASM 5.1, names are significant to 31 characters only. Names may consist of letters, digits, and

the following 6 special characters: ? . @ _ $ % .If a period is used; it must be the first character.

Names may not begin with a digit.

Instruction mnemonics, directive mnemonics, register names, operator

names and other words are reserved.

4 ™
Stack

A stack is a container of objects that are inserted and removed according to the last-in first-out (LIFO)

principle. In the pushdown stacks only two operations are allowed: push the item into the stack, and

pop the item out of the stack.

¢ A stack is a container of objects that are inserted and removed according to the last-in first-out (LIFO)
principle. In the pushdown stacks only two operations are allowed: push the item into the stack, and
pop the item out of the stack. A stack is a limited access data structure - elements can be added and
removed from the stack only at the top. push adds an item to the top of the stack, pop removes the

item from the top.

@ y

g
Stack

A helpful analogy is to think of a stack of books; you can remove only the

top book, also you can add a new book on the top. A stack is a recursive

data structure. Here is a structural definition of a Stack:

A stack is either empty or it consists of a top and the rest which is a stack;

g

Applications

@ y

The simplest application of a stack is to reverse a word. You push a given

word to stack - letter by letter - and then pop letters from the stack.

Another application is an "undo" mechanism in text editors; this operation
is accomplished by keeping all text changes in a stack.

Backtracking. This is a process when you need to access the most recent data element in a series of
elements. Think of a labyrinth or maze - how do you find a way from an entrance to an exit? Once you
reach a dead end, you must backtrack. But backtrack to where? to the previous choice point.
Therefore, at each choice point you store on a stack all possible choices. Then backtracking simply

means popping a next choice from the stack.

g
Stack Data Structure

Stack is a linear data structure which follows a particular order in which the operations are performed.

The order may be LIFO(Last In First Out) or FILO(First In Last Out).

[\/\ainly the following three basic operations are performed in the stack:

Push: Adds an item in the stack. If the stack is full, then it is said to be an Overflow condition.

* Pop: Removes an item from the stack. The items are popped in the reversed order in which they are

pushed. If the stack is empty, then it is said to be an Underflow condition.

e
Stack Structure

Push

4 first out
Stack ’
Insertion and Deletion
happen on same end ooy uy gy
-

P Pop

ot

Phvsical addross

SO0000H
NAllowod Stack momory
S
S SOrnl [2050+
Stack tog
S5 Fhys:cal id

g

Stack Structure

@ y

™

If the stack top points to a memory location 52050H, it means that the location 52050H is already
occupied with the previously pushed data. The next 16 bit push operation will decrement the stack
pointer by two, so that it will point to the new stack-top 5204EH and the decremented contents of

SP will be 204EH. This location will now be occupied by the recently pushed data.

Thus for a selected value of SS, the maximum value of SP=FFFFH and the segment can have
maximum of 64K locations. If the SP starts with an initial value of FFFFH, it will be decremented by

two whenever a 16-bit data is pushed onto the stack.

g

™

Stack Structure

After successive push operations, when the stack pointer contains 0000H, any attempt to further

push the data to the stack will result in stack overflow.

After a procedure is called using the CALL instruction, the IP is incremented to the next instruction.
Then the contents of IP, CS and flag register are pushed automatically to the stack. The control is then
transferred to the specified address in the CALL instruction i.e. starting address of the procedure.

Then the procedure is executed.

4)
Interrupts
Definition:
The meaning of ‘interrupts’ is to break the sequence of operation. While the CPU is executing a
program, on ‘interrupt’ breaks the normal sequence of execution of instructions, diverts its execution
to some other program called Interrupt Service Routine (ISR).After executing ISR , the control is

transferred back again to the main program. Interrupt processing is an alternative to polling.

4 N
Interrupts

Need for Interrupt:

Interrupts are particularly useful when interfacing 1/O devices that provide

or require data at relatively low data transfer rate.

Interrupt is a mechanism that allows hardware or software to suspend normal execution on
microprocessor in order to switch to interrupt service routine for hardware / software. Interrupt can
also describe as asynchronous electrical signal that sent to a microprocessor in order to stop
current execution and switch to the execution signaled (depends on priority). Whether an interrupt is
prioritized or not depends on the interrupt flag register which controlled by priority /

programmable interrupt

@ y

4 N
Interrupt Cycle of 8086

¢ Interrupts in 8086 microprocessor. ... Whenever an interrupt occurs the processor completes the
execution of the current instruction and starts the execution of an Interrupt Service Routine (ISR) or

Interrupt Handler. ISR is a program that tells the processor what to do when the interrupt occurs.

¢« In 8086 microprocessor following tasks are performed when
microprocessor encounters an interrupt:
1 The value of flag register is pushed into the stack. It means that first the value of SP (Stack Pointer) is

decremented by 2 then the value of flag register is pushed to the memory address of stack segment.

@ y

g
Interrupt Cycle of 8086

¢ The value of starting memory address of CS (Code Segment) is pushed into the stack.

1 The value of IP (Instruction Pointer) is pushed into the stack.
1 IPis loaded from word location (Interrupt type) * 04.
¢ CSisloaded from the next word location.

¢ Interrupt and Trap flag are reset to O.

Qardware Interrupts

Hardware interrupts are those interrupts which are caused by any

peripheral device by sending a signal through a specified pin to the microprocessor. There are two

hardware interrupts in 8086 microprocessor.

They are: (A) NMI (Non Maskable Interrupt) — It is a single pin non maskable hardware interrupt which
cannot be disabled. It is the highest priority interrupt in 8086 microprocessor. After its execution, this
interrupt generates a TYPE 2 interrupt. IP is loaded from word location 00008 H and CS is loaded from

the word location O000A H.

@ y

™
Qardware Interrupts

(B) INTR (Interrupt Request) — It provides a single interrupt request and is activated by I/O port. This
interrupt can be masked or delayed. It is a level triggered interrupt. It can receive any interrupt type, so

the value of IP and CS will change on the interrupt type received.

4 ™
Software Interrupts

» These are instructions that are inserted within interrupts. the program to generate

» There are 256 software interrupts in 8086 microprocessor. The instructions are of the format INT

type where type ranges from 00 to FF. The starting address ranges from 00000 H to 003FF H.

» These are 2 byte instructions. IP is loaded from type * 04 H and CS is loaded from the next address

give by (type * 04) + 02 H. Some important software interrupts are:

@ y

g
Software Interrupts

TYPE O corresponds to division by zero(0).

(A) TYPE 1 is used for single step execution for debugging of program.
(B) TYPE 2 represents NMI and is used in power failure conditions.
(C) TYPE 3 represents a break-point interrupt.

(D) TYPE 4 is the overflow interrupt.

e

ADDRESS

POINTERS (224)

" AVAILABLE INTERRUPT <

RESERVED INTERRUPT
POINTERS (27)

DEDICATED INTERRUPT
POINTERS (5)

nterrupt Vector Table (IVT) on 8086

(3FFH

TYPE 255 POINTER :
(AVAILABLE)

3FCH

~4
N

11}

¢

19

TYPE 33 POINTER :
(AVAILABLE)

LB

CS BASE ADDRESS

———— — —— — — ———————— i ——

IP OFFSET

084H i
 TYPE 32 POINTER: __|
_ 080K (AVAILABLE)
(O7FH I JvpPE 31 POINTER: __
(RESERVED)
 TYPES5POINTER: _
(RESERVED)
014H
(Il TYPE4POINTER: __|
_ OVERFLOW
010H _
. TYPE3POINTER: __|
1-BYTE INT INSTRUCTION
0OCH
TYPE 2 POINTER : ___
NON-MASKABLE
008H T
TYPE 1 POINTER :* ___
‘SINGLE-STEP
004H e
| TYPE 0 POINTER :
9 'DIVIDE ERROR
0OOH

|-»——— 16 BITS ————]|

4 ™
Non Maskable Interrupt

¢« Hardware interrupt is caused by any peripheral device by sending a signal through a specified pin to the
microprocessor. The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non- maskable

Interrupt and INTR is a maskable interrupt having lower priority.

¢« tisasingle non-maskable interrupt pin (NMI) having higher priority than the
maskable interrupt request pin (INTR)and it is of type 2 interrupt.

¢« When this interrupt is activated, these actions take place —

¢« Completes the current instruction that is in progress.

1 Pushes the Flag register values on to the stack.

@ y

4 ™
Non Maskable Interrupt

Pushes the CS (code segment) value and IP (instruction pointer) of the return address value

on to the stack.

IP Is loaded from the contents of the word location 00008H.

CS i1s loaded from the contents of the next word location 0000AH.

Interrupt flag and trap flag are reset to 0.

g

Maskable Interrupt

@ y

™

The 8086 has two hardware interrupt pins, i.e. ... NMI is a non-maskable interrupt and INTR is a
maskable interrupt having lower priority. One moreinterrupt pin associated is INTA called interrupt

acknowledge.

The INTR is a maskable interrupt because the microprocessor will be interrupted only if interrupts
are enabled using set interrupt flag instruction. It should not be enabled using clear interrupt Flag

instruction.

The INTR interrupt is activated by an I/O port. If the interrupt is enabled and NMlI is disabled, then

the microprocessor first completes the current execution and sends ‘0" on INTA pin twice.

4 ™
Maskable Interrupt

 The first ‘0" means INTA informs the external device to get ready and during the second ‘0’ the

microprocessor receives the 8 bit, say X, from the programmable interrupt controller.

* These actions are taken by the microprocessor -
* First completes the currentinstruction.

* Activates INTA output and receives the interrupt type, say X.

* Flagregister value, CS value of the return address and IP value of the
return address are pushed on to the stack.

* |Pvalueisloaded from the contents of word location X x 4

* CSisloaded from the contents of the next word location.

* Interruptflag and trap flag is reset to O

@ y

/Memory interfacing to 8086 (Static

select suitable maps.

RAM and EPROM)

* Interface two 4Kx8 EPROMS and two 4Kx8 RAM chips with 8086.

Table Memory Map for Problem
Address Ay A Ay Asg Ajs A AplAyy Ay Ao Ay Ao A A Aus Asy Agy Ay Ay Ano
FFFFFH } ¢ 1. 4 L1 dbg % A4 LR 102k A% D LA
» - EPROM 8K x 8
FEOOOH 1 4 & 4 T BiW ¥ b U 9 0O 0 00 00
o ckeFte e e o B S0 M E D SRS G G SRR T SIS NI ST (e EES B B
RAM 8K x8
SRR Ok i k) o2 010 0 0.0.0°0 0 0400 0.0°.0

™

Memory interfacing to 8086 (Static RAM and EPROM)

=1 %
S
>
-
Do EvEN
cs, cs
- S
ROM a2 <G Pg — Ay >y e RO’
O, - i * | 4K o~ a8 A ~ - Ay a3< -~ B
o e D - O MARD ——<a O
e o2 B —— 2
- . 3-= O, b—e a
Ay —-— A~ = -
sl Tar28 Oa s R e s s
el S % x
~ y - — Ay — A,z ==
= = - - \U/ -
= = = [Ao >, Lo uana
S = B oy ,\\ — - S < &
—~— AERD ————— S5 RO <] =D

Fig shows the interfacing diagram for the memory system

Memory interfacing to 8086 (Static RAM and EPROM)

Table Memory Chip Selection for Problem

\

e

3255- PROGRAMMABLE PERIPHERAL INTERFACE

» It has 24 input/output lines
» 24 lines divided into 3 ports

* Port A(8bit)
e Port B(8 bit)
e Port C upper(4 bit), Port C Lower (4 bit)

All the above 3 ports can act as input or output ports

™

e

3255- PROGRAMMABLE PERIPHERAL INTERFACE

POWER —_— *5V

SUPPLIES —_ » GND GROUP A
CONTROL

GROUFR A
PORT A

(&)

BI-DIRECTIONAL
DATA BUS

DATA BUS

BUFFER

<

GROUP A
PORT C
UPPER

(<)

=

GROUFP B
PORT C
LOWER

(4)

GROUFP B
CONTROL

GROUP B
PORT B
(&)

F

Figure: Block Diagram of 8255(PPlI)

o
FPAT-FPAO

o
PC7-PCa

vo
FPC3-PCO

o
PB7-PBO

™

g255— PROGRAMMABLE PERIPHERAL INTERFACE

Data Bus buffer

» lItis a 8-bit bidirectional Data bus.
» Used to interface between 8255 data bus with system bus.

» The internal data bus and Outer pins Dy-D7 pins are connected in

internally.

» The direction of data buffer is decided by Read/Control Logic.

@

g255— PROGRAMMABLE PERIPHERAL INTERFACE

Read/Write Control Logic
This is getting the input signals from control bus and Address Bus.

» Control signal are RD andWR.
» Address signals are AQ, Al, and CS
» 8255 operation is enabledor disabled by CS.

Group A and B get the Control Signal from CPU and send the command to the individual control
blocks.
Group A send the control signal to port A and Port C (Upper) PC7-PC4. Group B send the

control signal to port B and Port C (Lower) PC3-PCO.

@

g255— PROGRAMMABLE PERIPHERAL INTERFACE

PORTA:
» Thisis a 8-bit buffered I/0 latch.

» It can be programmed by mode 0, mode 1, mode 2 .

PORT B:
»This is a 8-bit buffer 1/0 latch.

» It can be programmed by mode 0 and mode 1.

PORTC:
» This is a 8-bit Unlatched buffer Input and an Output latch.

> Itis spitted into two parts.

@ It can be programmed by bit set/reset operation.
N

8255-PROGRAMMABLE PERIPHERAL INTERFACE

=Ficimf] T AnppPAd
PAo2]2 ci= I m) =R
=1 W 38O PAE
PAOC] 4 ST OPAT
RD O S 36 [0 Wk
CSO6 35 [IrESET
GHND O 7 34 D0
A1 C]8 cicimlng|
A0C]a 32002
PCT 10 MO D3
P11 9239A soppa
PCS 12 29 [Ds
PC4 13 28O DE
PCOC]14 27 QD7
PC1 15 26 O v
PC2C16 25 O PBTY
PCIC17 24 [PBEG
PEOC 1S 23O PBS
PE1 19 22 O PB4
PB2] 20 21 O PB3
8255 Pin Diagram

g255— PROGRAMMABLE PERIPHERAL INTERFACE

Pin Description of 8255

PA7-PAO: These are eight port A lines that acts as either latched output or buffered input
lines depending upon the control word loaded into the control word register.

PC7-PCa4. Upper nibble of port C lines. They may act as either output latches or input
buffers lines. This port also can be used for generation of handshake lines in
mode 1 or mode 2.

PC3-PCO: These are the lower port C lines, other details are the same
as PC7-PC4 lines.

PBO-PB7: These are the eight port B lines which are used lines or
as latched output way buffered input lines in the same
as port A.

@

g255— PROGRAMMABLE PERIPHERAL INTERFACE

Pin Description of 8255

» RD: This is the input line driven by the microprocessor and should be low
to indicate read operation to8255.

»WR: This is an input line driven by the microprocessor. A low on this line
indicates writeoperation.

»CS : This is a chip select line. If this line goes low it enables the 8255 to respondto RD and WR
signals, otherwise RD and WR signal are neglected.

»A1-A0: These are the address input lines and are driven by the microprocessor.

» RESET: The 8255 is placed into its reset state if this input line is a

logical 1. All peripheral ports are set to the input mode.

@

g255— PROGRAMMABLE PERIPHERAL INTERFACE

Various modes of 8255:

These are two basic modes of operation of 8255. /O mode and Bit Set-Reset

mode (BSR).
>In 1/0 Mode:

The 8255 ports work as programmable I/O ports, while in BSR mode only port C (PCO-PC7) can be used

to set or reset its individual port bits.

Under the I/O mode of operation, further there are three modes of operation of 8255, so as to support

different types of applications, mode 0, mode 1 and mode 2.

@

g255— PROGRAMMABLE PERIPHERAL INTERFACE

» Mode 0 (Basic I/0 mode): This mode is also called as basic input/output Mode. This mode provides
simple input and output capabilities using each of the three ports. Data can be simply read from and

written to the input and output ports respectively, after appropriate initialization.

™
g255— PROGRAMMABLE PERIPHERAL INTERFACE

>Mode 1: (Strobed input/output mode) in this mode the handshaking control the input and output

action of the specified port. Port C lines PCO- PC2, provide strobe or handshake lines for port B.

> This group which includes port B and PCO-PC2 is called as group B for Strobed data input/output. Port C

lines PC3-PC5 provides strobe lines for port A.

» This group including port A and PC3-PC5 from group A. Thus port C is

utilized for generating handshake signals.

@ y

™
g255— PROGRAMMABLE PERIPHERAL INTERFACE

> Mode 2 (Strobed bidirectional 1/0): This mode of operation of 8255 is also called as strobed
bidirectional 1/0O. This mode of operation provides 8255 with additional features for communicating

with a peripheral device on an 8-bit data bus.

> Handshaking signals are provided to maintain proper synchronization data flow and

between the data transmitter and receiver.

> The interrupt generation and other functions are similar to mode 1.

@ y

g255— PROGRAMMABLE PERIPHERAL INTERFACE

> BSR Mode:

In this mode any of the 8-bits of port C can be set or reset depending on DO of the control word. The bit

to be set or reset is selected by bit select flags D3, D2 and D1 of the CWR as givenin table.

e

8255 — 8086 Interfacing

RD
VR
3086
nP
M /1O

3255 interfacing with 8086:

8 Bit Input - Qutput

control bus >

Data bus >

<
Q
&

Address bus >

RE

R

o

DO
D7

AO

8255
PPI

EMN
Decoder

Interfacing the 8255 PPI to the 8086 microprocessor

g
Stepper motor

» Stepper motor is often used in computer systems. Normally DC and AC

motors move smoothly in a circular fashion.

» Stepper motor is a DC motor, specially designed, which moves in discrete or fixed step and thus
complete one rotation of 360 degrees. To rotate the shaft of the motor a sequence of pulses are

applied to the windings in a predefined sequence.

» The number of pulses required to complete one rotation depends on the number of teeth on the

rotor. Hence rotation Per pulse sequence is 3609/NT where NT is the number of teeth on rotor.

@

g
Stepper motor

Programs for Stepper Motor Rotation:

1. Program to rotate the stepper motor continuously in clockwise direction for following
specification
NT = Number of teeth on rotor = 200 Speed of motor =12

rotations/minute. CPU frequency = 10MHz

e
Stepber motor

PORTC EQU 8004H
CNTLPRT EQU 8006H DELAY
EQU 14705

DATA ENDS
CODE SEGMENT

ASSUME CS: CODE, DS: DAIA
START: MOV AX, DAIA MOV

DS, AX MOV AL, 80H

MOV DX, CNTLPORT OUT

DX, AL

MOV AL, 33H MOV DX,

PORTC OUT DX, AL

ROR AL, 1 MOV CX,
BACK: DELAY LOOP SELF

DELAY LOOP FOR 25Ms

JMP BACK
SELF:

CODE ENDS
END START

@

g

DACO0800 8-bit Digital to Analog Converter

« The DAC 0800 is a monolithic 8-bit DAC manufactured by National

Semiconductor.

e Usually the supply V+is 5V or +12V.

* The V-pin can be kept at a minimum of -12V.

og

supply voltages i.e. from 4.5V to +18V. T

LY p—

Digital to analog converter interfacing

* |t has settling time around 100ms and can operate on a range of power

|

LY

bowsr—
By—|

= Po—
B’ﬂ—
B"-_

@ o« @m ot ok WK

— Compensation
—— Ve (=)

— Veur (+)
W &

L BasLSB

- — E_?

— Bs

Digital to analog converter interfacing

s

25k
14 —"N\N—0 5V
Dg - Dy PA; - PAy >B|-Bg — AAAANA—
= 5k
. 15 4 e
R . 8255 25k DAC0800 741 =)
- 3 |+ 0
0.01 uF 2
IOWR —— 16 = =
12V o 3 13 Veec, +5Vor
0.1uF == 1

4 N

Digital to analog converter interfacing
s AD 7523 is a 16 pin DIP, multiplying digital to analog converter, containing R-2R ladder(R=10KQ)

I“

Intersi
for digital to analog conversion along with single pole double through NMOS switches to connect the

digital inputs to the ladder.

oOUT,— 1 15_!— Rea
OUT; 2 15 Ve i
GMND — 3 14 |— v+
MSB B, 4 13 MNC
E-::I 5 ALFIEES 12 NG
By,—{ 6 11 B.L58
By— 7 10 Bz
Bs— B 9 By

4 R
Pin Diagram of AD/7523

® The supply range extends from +5V to +15V, while Vref may be anywhere between -10V to +10V. The
maximum analog output voltage will be +10V, when all the digital inputs are at logic high state. Usually a

Zener is connected between OUT1 and OUT2 to save the DAC from negative transients.

* An operational amplifier is used as a current to voltage converter at the output of AD 7523 to

convert the current output of AD7523 to a proportional output voltage.

* It also offers additional drive capability to the DAC output. An external feedback resistor acts to

control the gain. One may not connect any external feedback resistor, if no gain control is required.

@ y

e
Analog to Digital Converter Interfacing

SOC CLOCK

Y 1

Control and
Timing unit and
II'P1 — — S.A.R.

Py ——

/Py ——>= e
e] >N
/P —— 8 Channel l
. Analog
P4 Multiplexer l} > |
/P —> omrP e ; 8-bit
/P Latch Jr— O/P
f 6 —1
256 R =)
/Py —— Register oooes
ladder and >
Switch tree
T] i ¢
O/P
C B A 4 T T Enable
Address Lines Vret+ Vier -

Block Diagram of ADC 0808/0809

e
Pin Diagram of ADC 0808/0809

I/Pq —~ 1 28 +=— /P2

IIPgs —= 2 27 t=— |/P1

IIPs — 3 26 < |/Po /P, - 1/P, Analog inputs

1P — 4 25 <- ADDA ADDA,B.C Address lines for selecting analog inputs

IIP; — 5 24 <— ADDB 0O,-0, Digital 8-bit output with O; MSB and O, L.SB
SOC— 6 23 =<— ADDC SOC Start of conversion signal pin
EOC—{ 7 aEcemnn 22— NE EOC End of conversion signal pin

Oz =8 ADCO809 21 < O/MSB OE Output latch enable pin, if Eigh enable output
OE — g 20 < Og CLK Clock input for ADC

CLK — 10 19 f<— Os Vee. GND Supply pins +5V and GND

Vee — 11 18 |=— O4 Vi+and V - Reference voltage positive (+5 Volts maximum)
Viert—> 12 17 l<«— Og LSB and Reference voltage negative (OV minimum)
GND-— 13 16 < Vrer

01 —14 15 < Oz

/Timing Diagram Of ADC 0808.

——

| LT £ 03 Lo

START - \

(e)

EOC \ f
o R S

e

Interfacing ADCO808 with 8086

CS

Reset ——

IORD ——

IOWR — >

PA; — PAg

PC;
PCo

8255

PBp

PB;
PB,

Viert Veiert
T
{ +5V =
+5V
el N
4 } O B¢
__EOC ADC 0808
soc /P2 fe———
OE GND (=<
o ALE A C
+ 5V =
_A A

~«——— Clock up

Analog
P
voltage

4 R
Programmable interrupt controller 8259A

e 8259 microprocessor is defined as Programmable Interrupt Controller (PIC) microprocessor. There
are 5 hardware interrupts and 2 hardware interrupts in 8085 and 8086 respectively.
e But by connecting 8259 with CPU, we can increase the interrupt handling capability. 8259 combines

the multi interrupt input sources into a single interrupt output. Interfacing of single PIC provides 8

interrupts inputs from IRO-IR7.

 For example, interfacing of 8085 and 8259 increases the interrupt

handling capability of 8085 microprocessor from 5 to 8 interrupt levels.

@ y

g
-eatures of 8259 PIC microprocessor

It is a LSI chip which manages 8 levels of interrupts i.e. it is used to

implement 8 level interrupt systems.

1 It can be cascaded in a master slave configuration to handle up to 64 levels of interrupts.
¢ It can identify the interrupting device.

¢ It can resolve the priority of interrupt requests i.e. it does not require any

external priority resolver.

¢ It can be operated in various priority modes such as fixed priority and

rotating priority.

¢ The interrupt requests are individually mask-able.

@

4 ™
-eatures of 8259 PIC microprocessor

¢« The operating modes and masks may be dynamically changed by the

software at any time during execution of programs.

¢ It accepts requests from the peripherals, determines priority of incoming request, checks whether the
incoming request has a higher priority value than the level currently being serviced and issues an

interrupt signal to the microprocessor.

¢ It provides 8 bit vector number as an interrupt information.
¢« It does not require clock signal.

¢ It can be used in polled as well as interrupt modes.

¢ The starting address of vector number is programmable.

¢ It can be used in buffered mode

D y

glook Diagram of 8259 PIC microprocessor

DOI

INTR INT

R
w
cs
=
C

SP/EN

DO

e
Pin Description of 8259

0 0 N O U A W N R

[
o

o

CASO 12
CAS1 | 13
Gnd

14

8259
PIC

28
27

26 |

25
24
23
22
21
20
19
18
17
16
15

Vcc
AO
INTA

IR7
IR6
IRS
IR4
IR3
IR2
IR1
IRO
INT
SP/EN
CAS2

™
Eeyboard /display controller 8279

8279 programmable keyboard/display controller is designed by Intel that interfaces a keyboard with
the CPU. The keyboard first scans the keyboard and identifies if any key has been pressed. It then

sends their relative response of the pressed key to the CPU and vice-a-versa.

How Many Ways the Keyboard is Interfaced with the CPU?
The Keyboard can be interfaced either in the interrupt or the polled mode. In the Interrupt mode,
the processor is requested service only if any key is pressed, otherwise the CPU will continue with its

main task.

In the Polled mode, the CPU periodically reads an internal flag of 8279 to

check whether any key is pressed or not with key pressure.

@ y

e

CEK

Architecture and Description

RESET pp _pp,

@ E W E.S A. IRC
r}_L_I_L 1
Data L | 1/O Control AH FIFO/Sensor
ffers RAM Status
@ rnal Data B) =

4 ™
Architecture and Description....

* 1/0 Control and Data Buffer

e This unit controls the flow of data through the microprocessor. It is enabled only when D is low. Its data
buffer interfaces the external bus of the system with the internal bus of the microprocessor. The pins
A0, RD, and WR are used for command, status or data read/write operations.

* Control and Timing Register and Timing Control

 This unit contains registers to store the keyboard, display modes, and other operations as
programmed by the CPU. The timing and control unit handles the timings for the operation of the

circuit.

@ y

e
8279 — Pin Description

RL, 1 40 A Ve (+5V)
RL, 2 39 B RL,
CLOCK 3 38 B RL,
IRQE 4 37 PR CNTL/STB
RL, 5 36 A SHIFT
RL. 6 35 B3 SL,
RL. 7 34 A SL,
RL, =8 33 P SL,
RESET 9 32 A sL,
RD] 10 go7g 31 — OUT B,
WR] 11 30 | OUT B,
DB, =] 12 29 A OUT B,
DB, 13 28 pOUT B,
DB, = 14 27 B OUTA,
DB, 15 26 I OUTA,
DB, —] 16 25 B OUTA,
DB. 3 17 24 I OUT A,
DB:— 18 23 BB
DB, = 19 22 CS
V.(OV)] 20 21 = A,

g
°Programmable communication interface 8251 USART

 Most of devices are parallel in nature. These devices transfer data simultaneously on data lines. But
parallel data transfer process is very complicated and expensive. Hence in some situations the serial
/0 mode is used where one bit is transferred over a single line at a time. In this type of transmission
parallel word is converted into a stream of serial bits which is known as parallel to serial conversion.
The rate of transmission in serial mode is BAUD, i.e., bits per second. The serial data transmission

involves starting, end of transmission, error verification bits along with the data.

4 ™
Block Diagram of Serial 1/0 Interface

* The microprocessor has to identify the port address to perform read or write operation. Serial I/O

uses only one data line, chip select, read, write control signals.

Tx -
8086 - Rx Serial
microprocessor VO
W interface
ﬁ —

ﬂ\ITRODUCTION SERIAL COMMUNICATION

Serial communication is common method of transmitting data between a computer and a peripheral

device such as a programmable instrument or even another computer.

Serial communication transmits data one bit at a time, sequentially, over a single communication line

to a receiver. Serial is also a most popular communication protocol that is used by many devices for

instrumentation.

@D y

ﬂﬁroduotion Serial Communication

This method is used when data transfer rates are very low or the data must be transferred over long

distances and also where the cost of cable and synchronization difficulties makes parallel

communication impractical.

Serial communication is popular because most computers have one or more serial ports, so no extra

hardware is needed other than a cable to connect the instrument to the computer or two computers

together.

@ y

4 N

8251a-USART-universal Synchronous/Asynchronous Receiver/Transmitter

A USART is also called a programmable communications interface (PCl). When information is to be

sent by 8086 over long distances, it is

« economical to send it on a single line. The 8086 has to convert parallel data to serial data and then
output it. Thus lot of microprocessor time is required for such a conversion.

* Similarly, if 8086 receives serial data over long distances, the 8086 has to internally convert this into
parallel data before processing it. Again, lot of time is required for such a conversion. The 8086 can

delegate the job of

conversion from serial to parallel and vice versa to the 8251A USART used in thesystem.

@ y

8251A-USART-Universal Synchronous/Asynchronous

Receiver/Transmitter
’ The Intel 8251A is the industry standard Universal

Synchronous/Asynchronous Receiver/Transmitter (USART), designed for data communications

with Intel microprocessor families such as 8080, 85, 86and

e The 8251A converts the parallel data received from the processor on the D7-0 data pins into
serial data, and transmits it on TxD (transmit data) output pin of 8251A. Similarly, it converts
the serial data received on RxD (receive data) input into parallel data, and the processor reads

it using the data pins D7-0.

D

g
Features

= Compatible with extended range of Intel microprocessors.

" |t provides both synchronous and asynchronous data transmission.
= Synchronous 5-8 bit characters.

= Asynchronous 5-8 bit characters.

= |t has full duplex, double buffered transmitter and receiver.

= Detects the errors-parity, overrun and framing errors.

= All inputs and outputs are TTL compatible.

= Availablein 28-pin DIP package.

@

e
Architecture 8251A

TRAMSMIT

BUFFER —a TxD
P -5)
TueRDY
TRANSMIT
CONTROL TwE
T=C
RECEIVE
BUFFEII: RAxD

DATA
aus
Ly Dg BUFFER
RESET
CLK READ/WRITE
c/o CONTROL
AG LOGH
Wi
WD Y
n'.':"l"ﬁ CONTROL
/ I
INTERNAL |
OATA BUS |

{=

RECEIVE
DONTROL

pa—— Rl C

st SYMNIOMET

J

e
Pin Diagram

D, (] 1 = 28 []
Ds [] 2 2r L]
RxD [] 3 26 |]
GND [] 4 25 |]
D, 15 24 []
Ds (6 23 [
D 1 7 22 []
D, 18 8251A 21 []
™e [_le 20 []
wR [] 10 19 []
cs 11 18]
c/d [] 12 17]
RD [] 13 16 [
RXRDY [_] 14 15]

D
Do

Vee

RXC

DTR

RTS

DSR
RESET
CLK

TXD
TXEMPTY
GTS.
SYNDET/BD
TXRDY

e
8251A USART Interfacing With 8086

“tVec. Ve

04— DO,
C | -‘{Dﬂ—o‘, TXD !——_)

Ay 0 CI B Rx D 16—-———
|
€D > RD 22SIA
3086 g o e USART
RESET, > RESET =

Rl i cloek frequency

CLEA s o
* CLIS R xcC 160 t#HZ

GrND "-I:—' G\NO-_‘L I

csS

g
Recommended Standard -232c¢ (RS-232C)

™

RS-232 was first introduced in 1962 by the Radio Sector of the Electronic Industries Association EIA.
RS-232 (Recommended standard-232) is a standard interface approved by the Electronic Industries
Association (EIA) for connecting serial devices. In other words, RS-232 is a long-established standard
that describes the physical interface and protocol for relatively low-speed serial data communication
between computers and related devices. An industry trade group, the Electronic Industries

Association (EIA), defined it originally for teletypewriter devices.

g
Recommended Standard -232c¢ (RS-232C)

In 1987, the EIA released a new version of the standard and changed the name to EIA-232-D. Many
people, however, still refer to the standard as RS- 232C, or just RS-232. RS-232 is the interface that
your computer uses to talk to and exchange data with your modem and other serial devices. The

serial ports on most computers use a subset of the RS- 232C standard.

e
Recommended Standard -232c¢ (RS-232C)

RS-232 DB-9 Male Pinout

PIN 1: Data Carrier Detect
GMND @ PIMN 2: Receive Data
DTR @ @ R PIN 3: Transmit Data
(8l |cTs PIN 4: Data Terminal Ready
PIN 5: Signal Ground
RoxD Cz::‘ @ RTS PIMN 6: Data Set Ready
Dsr PIN 7: Request to Send
DCD G:} PIN 8: Clear to Send
PIN 9: Ring Indicator

4 ™
Need For DMA

1 Direct memory access (DMA) is a feature of modern computer systems that allows certain hardware
subsystems to read/write data to/from memory without microprocessor intervention, allowing the

processor to do other work.
1 Used in disk controllers, video/sound cards etc, or between memory locations.

1 Typically, the CPU initiates DMA transfer, does other operations while the transfer is in progress, and

receives an interrupt from the DMA controller once the operation is complete.

1 Can create cache coherency problems (the data in the cache may be different from the data in the

external memory after DMA)

@ y

PROCESSOR

Biu /El

DMA Data Transfer Method

From
decoder
MNMemory - -
Select ~

~
~
-

An Aqs AND Dg D

s

T Ao — Aas

RAM

1/O Bus

=
I
—
=
w | A
Port
with
D MLA one
Controller P or
(DMAC) - : set of
r f Addresses
e '
ra
: DMMAC
DMA Requost Acknowledge 1
From
Decoder
Port

Select

DEWVICE

RECEIVE
FROM
R.AM

g
DMA Data Transfer Method

@

The 1/O device asserts the appropriate DRQ signal for the channel.

The DMA controller will enable appropriate channel, and ask the CPU to release the bus so that the
DMA may use the bus. The DMA requests the bus by asserting the HOLD signal which goes to the
CPU.

The CPU detects the HOLD signal, and will complete executing the current instruction. Now all of the
signals normally generated by the CPU are placed in a tri-stated condition (neither high or low) and
then the CPU asserts the

HLDA signal which tells the DMA controller that it is now in charge of the bus.

The CPU may have to wait (hold cycles).

4 ™
)MA Data Transfer Method

DMA activates its -MEMR, -MEMW, -IOR, -IOW output signals, and the address outputs from the DMA
are set to the target address, which will be used to direct the byte that is about to transferred to a

specific memory location.

e The DMA will then let the device that requested the DMA transfer know

that the transfer is commencing by asserting the -DACK signal.

* The peripheral places the byte to be transferred on the bus Data lines.
* Once the data has been transferred, The DMA will de-assert the - DACK2 signal, so that the FDC

knows it must stop placing data on the bus.

@ y

4 ™
DMA Data Transfer Method

The DMA will now check to see if any of the other DMA channels have any work to do. If none of the

channels have their DRQ lines asserted, the DMA controller has completed its work and will now tri-

state the -MEMR, - MEMW, -IOR, -IOW and address signals.

* Finally, the DMA will de-assert the HOLD signal. The CPU sees this, and de- asserts the HOLDA signal.
Now the CPU resumes control of the buses and address lines, and it resumes executing instructions and

accessing main memory and the peripherals.

@ y

g
Features of 82b7

Here is a list of some of the prominent features of 8257 -
* |t has four channels which can be used over four |/O devices.
* Each channel has 16-bit address and 14-bit counter.
* Each channel can transfer data up to 64kb.
* Each channel can be programmed independently.

e Each channel can perform read transfer, write transfer and verify
transfer operations.

* |t generates MARK signal to the peripheral device that 128 bytes
have

* been transferred.
* |trequires a single phase clock.
* |ts frequency ranges from 250Hz to 3MHz.

e
Pin diagram

O\DWQGMB_ W

§157
DMA Controller

AT

AL

Py

A‘

- TC

A_I

; A:

A]
32 A
3 A
30 D,
29 D,
28 Dy,
27 D,
26 D,
Z5 DACKO
Z4 - DACK 1
23 D,
22 D,
2t D

Elock Diagram of 8257

interral Bus

CH O
earr [2Ra0
re B—>DbAcxo
i
I Cr 1 5
16-81T s
ADDR
CNTR OACK 1
[| l
CHZ
15-81T DREC2
AT DACK 2
CNTR
cH 2
16-81T DR
= DACK 3

Prionty
resolver

0
0>
4 «4Mm
0 w2z
LT

e
Terminal Count Register:

i IBIEEEIIIH

0= Ve:rlfy t:ransfe:r
| = Write transfer
0 = Read transfer

l l 14-bit cﬂunt
0 |
0
l
l | =Illegal

e
Mode Set Register:

B.' E'ra Bs Bq B:i E: -B] ’ L
ALITCS|EW|[RP| EN3|EN2 [EN1|ENO

- 1 = Enable channel - 0
— () = Disable channel - 0

————>» |1 = Rotating Priori !
0= F;Edlp’fiﬂ::: gl _ » 1 = Enable channel - 1
' » = Disable channel - 1

—>]| = Exteude{i write selection

0 = Normal write selection —> 1 =Enable channel - 2
' » () = Disable channel - 2
» 1 =S5top DMA on terminal count : R ©
> 1 = Enable auto reload At L

0 = Disable auto reload ALl L L S

B, B

gtatus Register:

Bﬁ B4 B:: B:IEL' Bﬂ

0| UP|TC3

TC2

TCI

TCO

———> | = Channel-0 has reached terminal count

—3 | = Channel-1 has reached terminal count

> | = Channel-2 has reached terminal count

» | =Channel-3 has reached terminal count
» 1 =Channel-2 is reloaded from channel -3

- Address
¥

Register Y —
l As l _‘*_2 { A: Au
Channel-0 DM A address register - 0 - 0 O 0
Channel-0 Count register o o o |1
Channel-1 DMA address register O Q 1 0
Channel-1 Count register O 0 i 1
Channel-2 DMA address register 0 1 0 {0
Channel-2 Count register "0 1 0 | 1
Channel-3 DMA address register l 0 1 i 0
Channel-3 Count register 0 1 1 1
Mode set register (Write only) { 1 o | o 0
Status register {Read only) { 1 0 0 0

e
Disadvantages of Microprocessor

» The overall system cost is high.

» A large sized PCB is required for assembling all the
components.

» Overall product design requires more time.
» Physical size of the product is big.

» A discrete components are used, the system is notreliable.

D

e
Advantages of Microcontroller based System

» As the peripherals are integrated into a single chip, the overall system

cost is very less.

» As the peripherals are integrated with a microprocessor the system is

more reliable.

» Though microcontroller may have on chip ROM,RAM and I/O ports, addition ROM, RAM |/O

ports may be interfaced externally if required.

» On chip ROM provide a software security.

D

e
8051 Basic Component

» 4K bytes internal ROV E 3 E
> 128 bytes internal RAIV] . -
> Four 8-bit 1/0 ports (PO - P3). o -
» Two 16-bit timers/counters E E
» One serial interface = -
» 64k external memory for code - s
» 64k external memory for data E E
> 210 bit addressable o -

. -

® Microcontroller

D

Block Diagram

External ir]:terrupfs

On-chip
Interrupt ROM for On-chip <— | Counter
Control program RAM } Inputs
l code -—
= TF T
CPU <
T T {} Serij
B
0SC Conlf:‘ol 41/0 Ports Port
Jj{ |:| }—4“ POP1P2P3 TXD RxD
1T 1 Address7l5_a}ta

D@

Internal Block Diagram of 8051

-
|
|
|

: |
| |
! |
! |
| |
! |
! |
| |
! |
|
i — |
| | TreaaeEzs | | Thar1 For——— |
I eSS T

! I

| o
I L {::::, BUFFER — :
i = I
I R TR = e I
| e [=T Ap— |
| sAEFTER: |
I 7 1= AT e |
| e b I
[Tl o gy == g} |
- |

S

LTSS B TRl S5 = = b [|1 —r--] |

e] ot | B 3 [| et '

E = P T = [

RS e oo |
I 1 = 7 o
! |

|
I P TR I, e =) I
|

1
Tl) WAL I
ki - - - - -

e

e
Pin Diagram of 8051

~—
P1.O0C] 40 |1 vCcC
P1.1 |2 39 |1 PO.O (ADO)
P1 203 38 1 PO.1 (AD1)
P1.30C|a 37 |1 PO.2 (AD2)
P1al]s 36 [1 PO.3 (AD3)
P1.5 |6 35 |1 PO.a (ADAa)
P1.6 |7 34 {1 PO.S (ADS)
P1. 708 33 |1 PO.6 (ADS)
RST LC]9O 32 1 PO.7 (AD7)
(RXD) P3O} 10 S0O51 31 |1 EA/VPP
(TXD) P3.1] 11 30 1 ALE/PROG
(INTO) P3 21} 12 29 |1 PSEN
(INT1)P3I. 3] 13 28 1 P2.7 (A15)
(TO) P3. 4l] 14 27 |1 P26 (A14)
(T P3I.S[] 15 26 1 P2.5 (A13)
(WR) P36] 16 25 |1 P2.a (A12)
(RD) P37} 17 24 1 P23 (A11)
XTAL=2 1] 18 23 |1 P22 (A10)
XTAL1T] 19 22 1 P2.1 (A9)
GND | 20 21 |1 P2.0 (A8)

40 - PIN DIP

e

Bufion I +

T

Basic Circuit of 8051

10KQ

+5V
PN
k- PORT 1 Pins 1 -8
10uF/i16V
| i Pins 32 - 39
1 Pin ¢
D PORT 3 Pins 10-17
_L Pin 31
= c1yy " Pin 30
33pF i l 11.0S92MHz P'n]8 Pll"\ 29
=
Ll =4} | Pin 19 Pins 21 - 28
= Pin 20

T +5V

PORT O >

i

8051 Microconftroller

10K

o
€

Z 1340d >

e
PORT O-Description

PO.7 AD7
— 8-bit R/W -General PO.6 ADG6
Purpose I/O PO.5 ADS5S
PO.4 AD4

- 0 Itiplexed low b dd
anddata bus " Jor external PO.3 AD?3
memory design PO.2 AD?2
PO.1 ADI1
PO.O ADO

g
PORT 1 -Description

- Only 8-bit R/W - General
Purposel/O

P1.7
P1.6
P1.5
Pl.4
P1.3
P1.2
P1.1
P1.0

=N W] & | O\ |00

e
PORT 2 -Description

.y I P2.7 AlS
— 8-bit R/W - Genera
Purpose 1/O P2.6 Al4
P2.5 Al3
— Or high byte of the address P2.4 Al2
bus for external memory design P2 .3 All
P2.2 Al0
P2.1 A9

P2.0 —— AR

e
PORT 3 - Description

P0rT 3P

P3.0 RXD Serial Input

P3.1 TXD Serial Output

P3.2 INTO External Interrupt O
P3.3 INT1 External Interrupt 1
P3.4 T0 Timer 0

P3.5 T1 Timer 1

P3.6 WR External Memory Write

P3.7 RD External Memory Read

e
8051 addressing modes

--ﬂn

D

4 ™
Immediate addressing mode

»In this addressing mode the source operand is constant. In immediate addressing mode, when the

instruction is assembled, the operand comes immediately after the op-code.

»The immediate data must be preceded by ‘#’ sign. This addressing mode can be used to load

information into any of the register, including the

DPTR.

Ex: MOVA, #25H
MOV R4,#62

MOV DPTR,#4532H

e
Register addressing mode

» Register addressing mode involves the use of registers to hold the data
to be manipulated.

Ex :-

MOV A, RO // copy the contents of RO in toA.
MOV R2, A
ADD A,R5

// copy the contents of Ain to R2.

// add the content of R5 to content ofA.

e
Direct addressing mode

» In direct addressing mode, the data is in a RAM memory location whose address is known, and

this address is given as a part of the instruction.

Contrast this with the immediate addressing mode in which the operand

itself is provided with the instruction.
Ex:-

MOV RO,40H //save content of RAM location 40h into RO.

MOV 56H,A // save content of Ain RAM location 56H

4 R
Register indirect addressing mode

» In the register indirect addressing mode, a register is used as a pointer to the data. If the data is
inside the CPU, only register RO and R1 are used for this purpose. they must be preceded by the
“@” sign.

Ex :-

MOV A,@RO

// move contents of RAM location whose address is held by RO into A.
MOV @R1,B

// move contents of B RAM location whose address is held
by R

@ y

4 ™
Indexed addressing mode

» Indexed addressing mode is widely used in accessing data elements of look-

up table entries located in the program ROM space of the 8051.

» The instruction used for this purpose is “MOV A, @A+DPTR”.

» Indexed addressing mode is widely used in accessing data elements of look- up table entries located in

the program ROM space of the 8051.

» The instruction used for this purpose is “MOV A, @A+DPTR”.

D y

g

Instruction set of 8051

» 8051 has simple instruction setin different groups. There are,
» Arithmeticinstructions
» Logicalinstructions
» Data transferinstructions
» Branching and loopinginstructions

> Bit controlinstructions

4 ™
Arithmetic instructions

» These instructions are used to perform various mathematical operations like addition,

subtraction, multiplication, and division etc.

EX: ADD A,R1
ADDCA,#2 SUBB
A,R2
INCA

DECA

g
Logical instructions

The logical instructions are the instructions which are used for performing

some operations like AND, OR, NOT, X- OR and etc., on the operands.

EX:
ANLA,Rn // AND register toaccumulator
ORL A,Rn // OR register to accumulator
XRL A.Rn // Exclusive OR Reg toAcc
CLR A CPLA //Clear Accumulator

// Complement Accumulator

g
Sranch and Looping Instructions

» These instructions are used for both branching as well as looping.

» These instructions include conditional & unconditional jump or loop
instructions.

EX:
> JC // Jump if carry equal to one
> INC // Jump if carry equal to zero
> JB // Jump if bit equal toone
> JNB // Jump if bit equal to zero
> JBC // Jump if bit equal to one and clearbit

e

Unconditional Jump Instructions

In 8051 there are two unconditional jumps. They are:

> SJMP // Shortjump

> LIMP // Long jump

e
Writing “1” to Output Pin P1.X

Read latch Vee
Load(L1) 2. outpytpinis
1. write a 1 to thepin 3 S
Internal CPU ° . _ i .,
bus oin
4 outputl
Write to latch <) M1
Y4
Read pin

(g

@riting “0” to Output Pin P1.X

Read latch Vee
Load(L1) 2. output pig s
1. write a 0 to thepin o
Internal CPU ° . .
bus oin
outputO
Write to latch < | |: M1
N
Read pin

@

e
Reading “High™ at Input Pin

Read latch Ve 2. MO\AP1
: . B2 external pin=High
1. writeal tothe pinMOV //l Load(L1)
P1 #0FFH T~
1 1 .
3 P1.Xpin
Internal CPUbus py s - p
—_—
0 /)
Wite to latch) M1

) ﬁ} TB1 -)
Read pin

3. Read pin=1 Readlatch=0

Wite to latch=1

e

Reading “Low” at Input Pin

1.

Read latch

2. MOWA,P1

external pin=Low

P1.Xpin

Vee
write a 1 to thepin MOV] B2 Load(L1)
oa
P1,#0FFH ~
N 1
Internal CPUbus ® | ® ®
-
0
Write to latch) M1
) ﬁ} TB1 < J
Read pin

3. Read pin=1 Readlatch=0
Write to latch=1

@D

g
A and B Registers

e A and B are “accumulators” forarithmetic instructions

e They can be accessed by direct mode as special function registers:

e B-—addressOFOh

e A —address OEOh - use “ACC” for directmode

e
Arithmetic Instructions

» Add

» Subtract
» Increment
» Decrement
» Multiply
» Divide

» Decimaladjust

g
Arithmetic Instructions

Mnemonic ADD A, Description

byte ADDC A, add A to byte, put result in A

byte add with carry

SUBB A, byte subtract withborrow

INC A incrementA

INC byte INC increment byte in memory

DPTR DEC A increment data pointer

DEC byte decrement accumulator

MUL AB decrement byte

DIV AB multiply accumulator by b register divide
DA A accumulator by b register decimal adjust the

accumulator

g
ADD Instructions

add a, byte
addc a, byte

These instructions affect 3 bits in PSW:
C =1 if result of add is greater than FF

AC =1 if there is a carry out of bit 3

OV =1 if there is a carry out of bit 7, but not from bit 6,or visa versa.
Program Status Word (PSWW)

Bit 7 B 5 4 3 2 1

O
Flag CY AC FO R51 RS0 (LT F1 P
Name Carry Avxiliary U=zer Fegister | Register Crverflo U=zer Parity
Flag Carry Flag 0O Bank Bank we flag Flag 1 Bit
Flag =elect 1 Select O

g

D

INC
INC

INC
DEC
DEC

A
byte
DPTR
A
byte

Increment and Decrement

increment A

increment byte in memory
increment data pointer
decrement accumulator

decrement byte

e The increment and decrement instructions do NOT affect the C flag.

e Notice we can only Increment the data pointer, not decrement.

e
Other Logicinstructions

e CLR-clear

e RL-rotateleft

e RLC - rotate left through Carry

e RR —rotateright

e RRC - rotate right through Carry

e SWAP- swap accumulatornibbles

4 I
TIMER/COUNTER

» 8051 has two 16-bit programmable timers/counters. They can be configured to operate either as

timers or as event counters. The names of the two counters are TO and T1 respectively.

» The timer content is available in four 8-bit special function registers, viz, TLO,THO,TL1 and TH1
respectively.

» In the "timer" function mode, the counter is incremented in every machine cycle. Thus,
one can think of it as counting machine cycles.

Hence the clock rate is 1/12 th of the oscillatorfrequency.

» In the "counter" function mode, the register is incremented in response to a 1 to O transition at its

corresponding external input pin (TO or T1). It requires 2 machine cycles to detect a high to low.

@ y

6peration of Timer/Counter

» The operation of the timers/counters is controlled by two special function registers, TMOD and

TCON respectively.

Timer Mode control (TMOD) Special Function Register:
» TMOD register is not bit addressable.

» TMOD Address: 89 H

7 2 1 O

(o [or Joi [o [Gate]m[mIMDJ

{ Timer 1 Timer O]

e
Timer/ Counter Control Logic:

Osc freq # _ 12 Timer mode

CT=0
5 To Timer
/ stages
| =

T1/0 CT=1
Input pin Counter mode

TR1/0 bit
in TCON

sk
bt
Gate bit

in TMOD Dc- "“‘\

_MTi0
input pin

Figure: Timer/ Counter control logic Diagram

~ ™
Timer modes of operation

Timer Mode-0:

In this mode, the timer is used as a 13-bit UP counter as follows.

Interiupt
TLX 5bits 1LEWEH4" THX Bbits EE— E—
Input pulse I T

From previous
stage

Fig: Operation of Timer in Mode 2

»The lower 5 bits of TLX and 8 bits of THX are used for the 13 bit count. Upper 3 bits of TLX are
ignored. When the counter rolls over from all 0's to all 1's, TFX flag is set and an interrupt is

generated.

@ y

g
Timer modes of operation

>The input pulse is obtained from the previous stage. If TR1/0 bit is 1 and Gate bit is 0, the counter
continues counting up. If TR1/0 bit is 1 and Gate bit is 1, then the operation of the counter is

controlled by input. This mode is useful to measure the width of a given pulse fed to input.

g
Timer Mode-1:

» This mode is similar to mode-0 except for the fact that the Timer operates in 16-bit mode.

i : Interrupt
—= TLX Bhits THX Bhits L%
Input pulse ! TEX
From previous
stage

Fig: Operation of Timer in Mode 1

4 ™
Timer Mode-2: (Auto-Reload Mode)

>This is a 8 bit counter/timer operation. Counting is performed in TLX while THX stores a constant value.

N L

In this mode when the timer overflows i.e. TLX becomes FFH, it is fed with the value stored in THX. For

D

example if we load THX with 50H then the timer in mode 2 will count from 50H to FFH. After that 50H is

again reloaded. This mode is useful in applications like fixed time sampling

Interrupt
——== TLX 8Bbits TFX ———s
Input pulse
From previous
stage T

THX Bhits

g
Timer Mode-3:

Timer 1 in mode-3 simply holds its count. The effect is same as setting TR1=0.

TimerO in mode-3 establishes TLO and THO as two separate counters.

Interrupt
e TLO 8hits —= TFD —

Input pulse
From previous
stage

Interrupt
12 —1—= THO 8hits —== TF1 ——==
I

TR1 bit in TCON

Fig: Operation of Timer in Mode 3

Control bits TR1 and TF1 are used by Timer-0 (higher 8 bits) (THO) in Mode-3 while TRO and TFO are

available to Timer-0 lower 8 bits(TLO).

D

g
Interrupts

» An interrupt is an external or internal event that microcontroller to

inform it that a device needs its service.

Interrupts vs. Polling

» A single microcontroller can serve several devices.
» There are two ways to do that:
— interrupts

— polling.

D

interrupts the

g
Interrupts

» In Polling , the microcontroller ‘s program simply checks each of the I/O

devices to see if any device needs servicing. If so, it performs the service.

» In the interrupt method, whenever any device needs microcontrollers

service, it tells to microcontroller by sending an interrupt signal.

» The program which is associated with the interrupt is called the interrupt service routine (ISR) or

interrupt handler.

D

e
Steps in executing an interrupt

» Finish currentinstruction and saves the PC on stack.

> Jumps to a fixed location in memory depend on type of interrupt.

» Starts to execute the interrupt service routine until RETI (return

* from interrupt).

» Upon executing the RETI the microcontroller returns

place
* where it was interrupted. Get pop PC from stack.

D

to

the

e
Interrupt Sources

» Original 8051 has 6 sources of interrupts

Reset

Timer 0 overflow

Timer 1 overflow

External InterruptO

External Interrupt 1

Serial Port events buffer full, buffer empty, etc)

oA WwWwNE

g
Interrupt Vectors

execution (interrupt service routine) begins.

External InterruptO
Timer O overflow

External Interrupt 1
Timer 1 overflow

Serial
Timer 2 overflow(8052+)

D

0003h
000Bh
0013h

001Bh
0023h
002bh

» Each interrupt has a specific place in code memory where program

Note: that thereare only 8
memory locations between
vectors.

g

Interrupt Enable (IE) register

» Allinterrupt are disabled after reset
» We can enable and disable them by IE

D7 Do
Ea -- ETZ Es ET1 EX1 ETT BT

EA IE.7 Enables / disables all interrupts
— IE.G No mplemented, rezerved for future use
ET2 IE.5 Enables or dizables timer 2 overtlow interrupt
ES IE.4 Enables or dizables the senal port mtermapt
ET1 IE.3 Enables or dizables timer 2 overtlow interrupt
EX1 IE.2 Enables or dizables external mtermupt 1
ETO0 IE.1 Enables or dizables timer O overtlow interrupt
EX0 IE.O Enables or dizables external mtermupt

e

SETB
SETB
SETB
SETB
SETB
SETB

D

EA
ETO
ET1
EXO
EX1
ES

» by mov instruction
» Recommended in the first of program
« MOVIE, #100101108B

Enabling an interrupt

» by bit operation
» Recommended in the middle of program

SETB
SETB
SETB
SETB
SETB
SETB

IE.
IE.
IE.
IE.
IE.
IE.

B Do WwWkd

;Enable All

:Enable TimerO over flow
;Enable Timerl over flow
:Enable INTO
:EnableINT1

;Enable Serial port

e

Disabling an interrupt

CLRB
CLRB
CLRB
CLRB
CLRB
CLRB

EA ‘Disable All

ETO ET1 : Disable TimerO over flow
: Disable Timer1 over flow

EXO ; Disable INTO

EX1 ; Disable INT1

ES ; Disable Serial port

g

Interrupt Priorities

What if two interrupt sources interrupt at the same time?
The interrupt with the highest PRIORITY gets serviced first.
All interrupts have a power on default priority order.
External interrupt O (INTO)

Timer interruptO (TFO)

External interrupt 1 (INT1)

Timer interruptl (TF1)

v & W bhE

Serial communication (RI+TI)

Priority can also be set to “high” or “low” by IP reg.

4 N

Interrupt Priorities (IP)
7 6 5 q O

T e [[[[oo [oo]

IP7: reserved

IP6: reserved

IP5: timer 2 interrupt priority bit(8052 only)

IP4: serial port interrupt priority bit IP3:timer 1
interrupt priority bit IP2: external interrupt 1
priority bit IP1: timer O interrupt priority bit [PO:
external interrupt O priority bit

g
SERIAL COMMUNICATION

» The serial port of 8051 is full duplex, i.e., it can transmit and receive

simultaneously.

» The register SBUF is used to hold the data. The special function register SBUF is physically two

registers. One is, write-only and is used to hold data to be transmitted out of the 8051 via TXD.

» The other is, read-only and holds the received data from external sources

via RXD. Both mutually exclusive registers have the same address 099H.

@ y

- N
3051 SERIAL DATACOMMUNICATION AND PROGRAMMING

Real world interfacing of 8051 with external memory

* A single microcontroller can serve several devices. There are two ways to do that is interrupts or
polling. In the interrupt method, whenever any device needs its services, the device notifies the

micro controller interrupts whatever it is doing and serves the device.

- The program which is associated with the interrupt is called the interrupt service routine (ISR) or

Interrupt handler.

* |n polling, the microcontrollers continuously monitor the status of several

devices and serve each of them as certain conditions are met.

* The advantage of interrupts is that microcontroller can serve many devices.

@ y

g
3051 SERIAL DATACOMMUNICATION AND PROGRAMMING

» Addresses of Ports and Devices in 4. Addresses of Ports and Devices in Real

World Interfacing
¥ Device Control Register, Status Register, Receive Buffer, Transmit Buffer

» Each I/O device is at a distinct address or set of addresses

¥ Each device has three sets of registers —data buffer register(s), control

register(s) and status register

Device Addresses

» Device control and status addresses and port address remains constant and are not re-locatable in a
program as the glue circuit (hardware) to accesses these is fixed during the circuit design. There can be

common addresses for input and output buffers, for example SBUF in 8051

@ y

g
3051 SERIAL DATACOMMUNICATION AND PROGRAMMING

The processor, memory, devices Glue Circuit

» The processor, memory and devices are interfaced (glued) together using a programmable circuit like
GAL or FPGA. The circuit consists of the address decoders as per the memory and device addresses

allocated and the needed latches multiplexers/ demultiplexers.

Device Addresses

» There may be common addresses for control and status bits There can be a control bits, which

changes the function of a register at a device address

@

™

Interfacing LED and
Push Button Switch to 8051

¢ Pushbutton Switch

A typical push button switch has two active terminals that are normally open and

these two terminals get internally shorted when the push button is depressed.

\\»\

e r_

/

http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051

" Interfacing LED and
Push Button Switch to 8051

**When push button S1 is depressed the

Ci it Di . .
et pastam o .5 s ey .« LED D1 goes ON and remains ON until
push button switch S2 is depressed and
a1 50 this cycle can be repeated.
- vee .. - “*Resistor R3, capacitor C3 and push
sad® oy § 10K § 10K button S3 forms the reset circuitry for the
9 | ner P Microcontroller.
. Po.1| 28 X8 Capacitor C1, C2 and Crystal X1 belongs
L] . .
%”*‘: L0 '|15“I 1, 52 to the clock circuitry.
L = = “*R1 and R2 are pull up resistors for the
O Ra RN, push buttons.
c1 19 s 560 ohm LED “*R4 is the current limiting resistor for
|
33pFI:I = LED.
-2 11.DE—E‘2MHZ1E
+—|— XTALZ
33pF GEID

http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051

" Interfacing LED and
Push Button Switch to 8051

Program

MOV PO,#83H // Initializing push button switches and initializing LED
in OFF state.
READSW:MOV A,PO0 // Moving the port value to Accumulator.
RRC A // Checking the vale of Port 0 to know if switch 1 is ON or not
JC NXT // If switch 1 is OFF then jump to NXT to check if switch 2 is
ON
CLR PO.7 // Turn ON LED because Switch 1 is ON
SJMP READSW // Read switch status again.
NXT: RRC A // Checking the value of Port 0 to know if switch 2 is ON or
not
JC READSW // Jumping to READSW to check status of switch 1
again (provided switch 2 is OFF)
SETB PO0.7 // Turning OFF LED because Switch 2 is ON
SJMP READSW // Jumping to READSW to read status of switch 1
again.

END

http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051
http://www.circuitstoday.com/interfacing-led-using-push-button-switch-to-8051

4 N

Keyboard Interfacing
> Hex key pad is essentially a collection of 16
Hex keypad keys arranged in the form of a 4X4 matrix.
C1 C2 C3 C4 | »Hex key pad usually have keys representing
_:_H j‘-—- j_H _ﬁ____‘ numeric's 0 to 9 and characters A to F.
R1 T I- = I- - I- = » The hex keypad has 8 communication lines
— — — —
FE_I-?H I-EH I-QH I-GH namely R1, R2, R3, R4, C1, C2, C3 and C4.
S QS e S e S >»R1 to R4 represents the four rows and Cl1
R3—e—¢ . g I = . 5 to C4 represents the four columns.
.-——'-' _._-——'-' _._-——'-' _._-——'-'
Hél—r- I- I- I-
Hex keyvpad v W circuitstoday. com

™

/Keyboard Interfacing

Hex keypad »When a particular key is pressed the corresponding
1 co C3 Ca row and column to which the terminals of the key are
connected gets shorted.
: _E_ i i » For example if key 1 is pressed row R1 and column
R -1 I-_H I- -7 I- - C1 gets shorted and so on.
j_ T _E_ _E_ »The program identifies which key is pressed by a
R I- - I- -t I- N I- -— method known as column scanning.
e & 2 = »1In this method a particular row is kept low (other
23 - I- -t I- - I- -— rows are kept high) and the columns are checked for
E [T [CE [2| |ow
2 __1_:- -1 I- -t I- - I- -t >If a particular column is found low then that means
that the key connected between that column and the
Hex keypad wwew . circuitstoday. com corresponding row (the row that is kept low) is been
pressed.

For example if row R1 1s initially kept low and
column C1 is found low during scanning, that
means key 1 is pressed.

@ y

/Keyboard Interfacing

Interfacing hex keypad to 8051.

19

>

[11.0592MH=

18

Hex keyvpad
1 2 3 A R1
Rz
R2
4 5 6 B R4
CA1
I a g _ cz
cC3
E 0 F D Cs
1
|
I
33pF |
—
2
+—
33pF

@ Interfacing hex keypad to 8051

L
21 40 4
cC3 l =
10uFrov B Resect
P1.0
P1.1
P1.2 o
P1.3 ol
P1.4 0D
P1.5 1 = common cathode
P16 FO.0 7 segment LED display
P1.7 =3 |
I PO g™ h
ATE8551 R3 | g
PO.2 "™
R4 T
PO.3 "™, (=}
RS d
PO.4 [M5
HTALA RS | ©
PO.S "™y b -
RT | 4
FO.& r COM
HTALZ Ra
PO.T "
20 R1 to B2 = 330 ochm

www_circuitstoday. com

/

e
Keyboard Interfacing-Program

ORG O0OH
MOV DPTR,#LUT // moves starting address of LUT to DPTR
MOV A, #11111111B // loads A with all 1's
MOV P0,#00000000B // initializes PO as output port
BACK: MOV P1,#11111111B // loads P1 with all 1's
CLR P1.0 // makes row 1 low
JB P1.4NEXT1 // checks whether column 1 is low and jumps to NEXT1 if notlow ~ MOV A,#0D // loads a with 0D if
column is low (that means key 1 is pressed)
ACALL DISPLAY // calls DISPLAY subroutine
NEXT1: JBP1.5NEXT2 // checks whether column 2 is low and so on...
MOV A, #1D
ACALL DISPLAY
NEXT2: JBP1.6,NEXT3
MOV A, #2D
ACALL DISPLAY
NEXT3: JBP1.7,NEXT4
MOV A, #3D
ACALL DISPLAY

” Keyboard Interfacing-Program

NEXT4:

NEXTS5:

NEXT6:

NEXT7:

NEXTS:

SETB P1.0

CLR P1.1

JB P1.4,NEXT5
MOV A,#4D
ACALL DISPLAY
JB P1.5,NEXT6
MOV A,#5D
ACALL DISPLAY
JB P1.6 NEXT7
MOV A,#6D
ACALL DISPLAY
JB P1.7,NEXTS
MOV A,#7D
ACALL DISPLAY
SETB P1.1

CLR P1.2

B P1.4,NEXT9
MOV A,#8D
ACALL DISPLAY

NEXT9:

NEXT10:

NEXTT11:

NEXT12:

NEXT13:

NEXT14:

NEXT15:

JB P1.5,NEXT10
MOV A, #9D
ACALL DISPLAY
JBP1.6,NEXT11
MOV A, #10D
ACALL DISPLAY
JB P1.7,NEXT12
MOV A, #11D
ACALL DISPLAY
SETB P1.2

CLR P1.3

JB P1.4,NEXT13
MOV A, #12D
ACALL DISPLAY
JB P1.5,NEXT14
MOV A, #13D
ACALL DISPLAY
JB P1.6,NEXT15
MOV A, #14D
ACALL DISPLAY
JB P1.7,BACK
MOV A, #15D
ACALL DISPLAY LJMP BACK

g Keyboard Interfacing-Program

DISPLAY: MOVC A,(@A+DPTR // gets digit drive pattern for the current key from LUT
MOV PO,A // puts corresponding digit drive pattern into PO
RET
LUT: DB 01100000B // Look up table starts here

DB 11011010B

DB 11110010B

DB 11101110B

DB 01100110B

DB 10110110B

DB 10111110B

DBO0O0111110B

DB 11100000B

DB11111110B

DB 11110110B

DB 10011100B

DB 10011110B

DB 11111100B

DB 10001110B

DBO1111010B

END

DISPLAY

e LED
® Seven Segment Display
e L.CD

LED Interfacing

. ’I“ -

S ,_, .
‘ 1
e
" - ¢
,E:I:d.:, 7 Segment LED Display

g fcoma b

m = 0 g n o R

e dcom c dot

LED Interfacing

Digit Drive Pattern Digit

O

1

LED Interfacing

Interfacing Seven Segment Display to 8051

+5W +50 +50
L
31 40
EA oo
1
- +| o= Common cathode
s3 o T 1ouFnow _— R3 seven segment LED display
9 z =E! |
RST PLALT i, | | E
3 RS [S
P12 At
= 4 RE =
oo ATE:E;IEF‘I P13 "W d
. 5 R7 -
P4 i —
) 6 RE e
P15 it b g .
7 R9 |
P1.6 P | |— h
zcom
< 19 8 R10 |
I3 HTAL1 PLTL . wsss,
3zpF | x4
— R3 to R10 = 560chm
c2 11.0582MHz o
< 2 XTALZ 1
3-3-[:-F RO
I

Interfacing 7 segment display to 8051 whww _circuitstoday com

g
LED Interfacing

Program

ORG O00H / /initial starting address
START: MOV A,#00001001B // initial value of accumulator
MOV B,A
MOV RO,#0AH //Register RO initialized as counter which counts from 10 to 0
LABEL: MOVA,B
INCA
MOV B,A
MOVCA,(@A+PC // adds the byte in A to the program counters address
MOV P1,A
ACALL DELAY // calls the delay of the timer
DEC R0/ /Counter RO decremented by 1
MOV A RO // RO moved to accumulator to check if it is zero in next instruction.
JZ START //Checks accumulator for zero and jumps to START. Done to check if counting has been finished.
SJMP LABEL

LED Interfacing

Program

DB 3FH // digit drive pattern for O
DB 06H // digit drive pattern for 1
DB 5BH // digit drive pattern for 2
DB 4FH // digit drive pattern for 3
DB 66H // digit drive pattern for 4
DB 6DH // digit drive pattern for 5
DB 7DH // digit drive pattern for 6
DB O7H // digit drive pattern for 7
DB 7FH // digit drive pattern for 8
DB 6FH // digit drive pattern for 9
DELAY: MOV R4,#05H // subroutine for delay
WAIT1: MOV R3,#00H
WAIT2: MOV R2,#00H
WAIT3: DJNZ R2,WAIT3
DJNZ R3,WAIT?2
DJNZ R4, WAIT1
RET
END

S

LED Interfacing

Common cathode
seven segment LED display

D2

+5NW +5W +5%
-
31 40
EA oo
F3 to R10 = 560ohm
+| 3
L J
=3 'Iq. T 10uFrov L =3 D1
9 2 R |
RST Py | s
3 RS [N
P1.2 N
=2 4 RE6 ©
s A P13 A d
. 5 =1y -
1 Plaf—snso—T
- 5 =T —
P1S | o
7 Ro | h
P18l aman— 1 [com
':.-"1 19 8 R10 |
I HTALA PLT L o s, o
33pF _| XA BCS45
— R _ |
— 10
C27 T 11.0592MHz 1o P3.0 m—@
o onm
4 - HTALZ P31 11
33pF GND
I

Multiplexing 7 segement displays to 8051

whww_circuitstoday.com

= N T S TR = T T = -

L
BCS43

R1z2 g
550 ohm

Program.

ORG 000H // initial starting address

MOV P1,#00000000B // clears port 1

MOV R6,#1H // stores "1"

MOV R7,#6H // stores "6"

MOV P3,#00000000B // clears port 3

MOV DPTR,#LABEL1 // loads the address of line 29 to DPTR

MAIN: MOV A,R6 // "1" is moved to accumulator

SETB P3.0 // activates 1st display

ACALL DISPLAY // calls the display sub routine for getting the pattern for "1"
MOV P1,A /| moves the pattern for "1" into port 1

ACALL DELAY // calls the 1ms delay

CLR P3.0 // deactivates the 1st display

MOV A,R7 // "2" is moved to accumulator

SETB P3.1 // activates 2nd display

ACALL DISPLAY /I calls the display sub routine for getting the pattern for "2"
MOV P1,A // moves the pattern for "2" into port 1

ACALL DELAY // calls the 1ms delay

CLR P3.1// deactivates the 2nd display

SJMP MAIN // jumps back to main and cycle is repeated

D@

Program.

DELAY: MOV R3,#02H

DEL1: MOV R2,#0FAH

DEL2: DUNZ R2,DEL2

DJNZ R3,DEL1

RET

DISPLAY: MOVC A,@A+DPTR // adds the byte in A to the address in DPTR and loads A
with data present in the resultant address
RET

LABEL1:DB 3FH

DB 06H

DB 5BH

DB 4FH

DB 66H

DB 6DH

DB 7DH

DB 07H

DB 7FH

DB 6FH

END

" LCD Interfacing

™

pd (o o) g0

e

Ln|@jald|e oo

N Digital voltmeter / ammeter, digital clock,
_;%,?f:fé- home automation displays, status indicator
-rf#f’f‘a'i,_ﬁ% display, digital code locks, digital
%ﬁﬁ:‘% speedometer/ odometer, display for music

I.;ﬁ"'}*
u
o

players etc.

*It consists of 16 columns and 2 rows of 5X7 or 5X8

LCD dot matrices.
°It 1s available 1n a 16 pin package with back light

,contrast adjustment function and each dot matrix

has 5X8 dot resolution.

http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-tachometer-using-8051
http://www.circuitstoday.com/digital-tachometer-using-8051
http://www.circuitstoday.com/digital-tachometer-using-8051
http://www.circuitstoday.com/digital-tachometer-using-8051
http://www.circuitstoday.com/digital-tachometer-using-8051

LCD Interfacing

GND

vCC
Contrast
RS

RW

EN

D0

O

D2

D3

s

DS

D6

D7
Backlight (+)
Backhgh ()

Pin No: Name Function

1 VSS This pin must be connected to the ground
2 VCC Positive supply voltage pin (5V DC)
3 VEE Contrast adjustment

4 RS Register selection

5 R/W Read or write

6 H Enable

7 DBO Data

8 DB1 Data

9 DB2 Data

10 DB3 Data

11 DB4 Data

12 DB5 Data

13 DB6 Data

14 DB7 Data

15 LED+ Back light LED+

16 LED- Back light LED-

GND
vCe

g LCD Interfacing

*VEE pin 1s meant for adjusting the contrast of the LCD display and
the contrast can be adjusted by varying the voltage at this pin. This is

done by connecting one end of a POT to the Vcc (5V), other end to

Contra

Ezv the Ground and connecting the center terminal (wiper) of of the POT
% to theVEE pin.

o: °*High logic at the RS pin will select the data register and Low logic
§§ at the RS pin will select the command register.

g;mg:“l(t: we make the RS pin high and the put a data in the 8 bit data line

EHYDBO to DB7) , the LCD module will recognize it as a data to be

displayed .
°If we make RS pin low and put a data on the data line, the module
will recognize it as a command.

RS
RW
EN
D0
D1
D2
D2
D4
s
D6
D7

GND

tonnaEN pin is for enabling the module. A high to low transition at this

g LCD Interfacing

*R/W pin is meant for selecting between read and write modes. High level at

this pin enables read mode and low level at this pin enables write mode.

pin will enable the module.

*DBO to DB7 are the data pins. The data to be displayed and the
command instructions are placed on these pins.

*LED+ is the anode of the back light LED and this pin must be
connected to Vcc through a suitable series current limiting resistor.

Backlight (+)
BEHRT'ED- is the cathode of the back licht LED and this pin must be connected to
g P

ground .

™

" LCD Interfacing- 16x2 LCD Module Commands

GND

vCC
Contrast

RS

RW

EN

D0

D1

D2

D3

D4

D5

D6

D7
Backlight (+)
Backhgit (-)

Command Function

OF LCD ON, Cursor ON, Cursor blinking ON
01 Clear screen

02 Return home

04 Decrement cursor

06 Increment cursor

OE Display ON ,Cursor blinking OFF

80 Force cursor to the beginning of 1*line
CO Force cursor to the beginning of 2™line
38 Use 2 lines and 5X7 matrix

83 Cursor line 1 position 3

3C Activate second line

08 Display OFF, Cursor OFF

C1 Jump to second line, position1

OC Display ON, Cursor OFF

Cl1 Jump to second line, position1

C2 Jump to second line, position2

" LCD Interfacing

LCD Initialization

GND **Send 38H to the 8 bit data line for initialization
vee

Contres *¢*Send OFH for making LCD ON, cursor ON and cursor blinking ON.

<
Eﬁ **Send O6H for incrementing cursor position.

82 **Send O1H for clearing the display and return the cursor.

D2

D2
D4
s
D6
D7

Backlight

Backiat| Sending Data to the LCD

** Make R/ W low.

** Make RS=0 if data byte is a command and make RS=1 if the data byte is a
data to be displayed.

*¢*Place data byte on the data register.

**Pulse E from high to low.

g Repeat above steps for sending another data.

" LCD Interfacing-Circuit Diagram

+E0F +5W +5W +E0F
. » - 16 x 2 LCD MODULE JHD 1624
wss Wcc WEE RS RW E DBO DB1 DBZ DB3 DB4 DBS DB6 pp7 LED+ LED-
| | BT
| 14
31 40 L
EA Voo S50 ohm
Rz
10K
+- S1 == N = -
- 10uFM 0V I
3 psT P3.4 |14
P33 [13
=3
IC1
8.2k ATEESS1
€L P10 |1
) z
P1.1
P12 |2
o P13 | 4
L
| 191 seraL P14 | =
33pF | p1s | 8
— P16 | 7
(e 11.0582 MH= =
4 £ —1TALz P17
33pF SND
15
— Interfacing 16x2 LCD module to 8051 www_circuitstoday com

4 LCD Interfacing-Program

MOV A,#38H
ACALL CMMND
MOV A,#BFH
ACALL CMMND
MOV A,#B1H
ACALL CMMND
MOV A, #B6H
ACALL CMMND
MOV A,#82H
ACALL CMMND
MOV A,#3CH
ACALL CMMND
MOV A,#A45SD
ACALL DISP
MOV A,#54D
ACALL DISP
MOV A,#88D
ACALL DISP
MOV A,#58D

f/ Use 2 lines and 5x7 matrix

f/ LCD ON,

cursor ON,

J/Clear screen

S/ Increment cursor

//Cursor line one ,

position 2

[/Activate second line

cursor blinking ON

-

ACALL DISF
MOV A,#32D
ACALL DISP
MOV A,#76D
ACALL DISP
MOV A,#67D
ACALL DISP
MOV A, #68D
ACALL DISP

MOV A,#OCI1IH //Jump to second line,
ACALL CMNMND

MOV A,#67D
ACALL DISP
MOV A,#73D
ACALL DISP
MOV A,#32D
ACALL DISFP

position

1

- | .

g CCD terTacmg-Prograrm

ACALL DISP
ACALL DISP CMND: MOV P1,A

' ’ CLR P3.5
XC(:)XL'E’E?SE CLRP3.5 SETB P3 4
MOV A #73D CLR P3.4 '
ACALL DISP SETB P3.3 MOV P1,#0FFh
MOV A#84D CLR P3.3 SETB P3.3
ACALL DISP
MOV A #83D ACALL DELY MOV A,P1
ACALL DISP RET
MOV A#84D DISP: MOV P1,A JBACL. 7, DELY
ACALL DISP SETR P3’5 CLR P3.3
MOV A #79D :
ACALL DISP CLR P3.4 CLR P3.4
MOV A #68D SETB P3.3 RET
ACALL DISP
MOV A,#65D CLR P3.3 END
ACALL DISP ACALL DELY

RET

MOV A,#89D
CALL DISP

e
D/A Interfacing

2.5k
+10Vv

2.5k

-12V

i

1l to Vv Convertor

D/A Interfacing

" D/A Interfacing

C1 s
] -y
” U2 Sk <TEKXT:
o == 18 _Ryrals FO.OADD |2
HERL] Al PO.1AD] = 15VDC
—_ 12MH2 o PO.2IAD2 e A
C2 TEXT> XTALZ PO.3IADS |
— BET L
-] PO.SIADS |—— s
PO.64ADE <7
33pF (] ! I U1 . \£0.992079
TEXT T o.uF
PLOMS e i] 1 VEE |— TEXT R2
joree FLU o el A oowe [s Dummy
C3 e gl A e jout = 7" Load
Z AN . ——1 ALE PLAAIZ e ¥ RS L
[¢ EA PLEIALS [A VREF- 1 _
@ “ PLOAIG] A0 e ==
RA | <TEXD P2.7IA15 Al WREF+ R e
10k =1 p1o FRORXD [DACOEDS
TEX] =] b P3.ATXD | 131K
@ = P12 PL2ANTE | B3l
=1 P13 PIIANTT T
- — P14 PR.4MD [5k
: — P15 PRSI [TERT?
P16 P2BNR | :
L] e g I © saeedsolutions.blogspot.com
ATEACH]
{TEXT?

D/A Interfacing- 8-bit DAC 0808

Pin diagram of DAC 0808 *Pin description
Pin Number Description
‘ ' NC - Not Connected
NC (NOTE 2) COMPENSATION 2 GND - Ground
3 Vee - Negative Supply
GND v =
REF(-) 4 lout - Current Cut
VEE VREF(+) 5 A1 - Digital Input Bit 1
la ~ v 6 A2 - Digital Input Bit 2
0 DACO808 cc
7 A3 - Digital Input Bit 3
MSB Al AB LSS
8 A4 - Digital Input Bit 4
A2 A7 9 AS5 - Digital Input Bit 5
A3 A6 10 A6 - Digital Input Bit 6
11 A7 - Digital Input Bit 7
a4 AS s
12 A8 - Digital Input Bit 8
13 Vcc - Positive Supply
14 Vref+ - Positive Voltage Reference
15 Vref- - Negative Volitage Reference
16 COMP - Compensation

D/A Interfacing- 8-bit DAC 0808

Pin diagram of DAC 0808 UD—Vref[@+E+£+ﬁ+D—4+D5+ D6 , D?]
U el 2 £ 8 16 32 o3 128 256
NC (NOTE 2) COMPENSATION Ex:
1. IF data =00H [00000000], Vref= 100
GND VREF(-)
0 0 o 0 o 0 0 0
Vee ettt VO=10[3 + 3+ g+ 12+ 35 + 55 + 135 + 338)
s v Therefore, W= 0 Volts.
0 DAC0808 ce
MSB Al AS LSS 2_If data is 50H [10000000], Vref= 100
'O 1 O 0 O 0 O o o
A2 A7 Vv _10[2+4+E+16+32+E4+ 123+255]
Al Ab Therefare, V0= 5 Volts.
As AS Different Analog ocutput voltages for different Digital signal is given as:
DATA OUTFUT VOLTAGE
00H 1Y
80H v

FFH 10V

e
D/A Interfacing- PROGRAM

Program: Write an ALP to generate Square wave form on port P1 of 8051 microcontroller using DAC

S ORG ©eeeéh
T mov P1,#06H
(. Start)
~— o repeat:Acall squarwave
2 sjmp repeat
Configure P1 a O/P Port squarwave:mov P1l,#FFH
> Acall delay
: mov P1,#06H
Load P1 with FFH
Acall delay
\ 4
ret
Call Delay delay:mov re,#20
¥ up2:mov rl,#250
Load P1 with O0OH upl:mov r2,#250
¥ Here:djnz r2,Here
Call Delay djnz rl,upl
| djnz re,up2

ret
END

D/A Interfacing- Program

__ Ny ORG ©©e0h
(Start

e — P mow Pl » #EBH
Configure P1 a|Ov/P Port

repeat:Acall triwave;
sjmp repeat

e Lt

Load A =00H &
Send to Port 1

v triwave:mov A, #006H
"ﬁ“ INCR:mov P1,A
PN INC A

es

[T8 CUME A <=FFH

CIJNE A,#OFFH, INCR
DECR:mov P1,A

Eq:fhl-::
—xload A =FFH &

Send to Port 1 DEC J&.
+
e CINE A, #@@H,DECR
b ret
ves) END

- CJNE A ==00H

Hlffhl-::-

@

Program: Write an ALP to generate Triangular wave form on port P1 of 8051 microcontroller using DAC.

generate triangular wave

D/A Interfacing-Program

Program: Write an ALP to generate Stair-case wave form (with 5-steps) on port P1 of 8051 microcontroller using DAC.

ORG ©eeeh

mov P1l,#606H

repeat:Acall stair_case_wave; generate staircase wave
sjmp repeat
stair_case_wave:mov A,#OGH
mov P1,A

Acall delay

Back: ADD A,#51

mov P1,A

Acall delay

CIJNE A,#OFFH,Back

SIJMP stair_case_wave
delay:mov re,#20

up2:mov rl,#250

upl: mov r2,#250

here:djnz r2,here

dijnz rl,upl

djnz re,up2

ret

I
(

=2 L 20— Ve (OR Vger)
RD 2 19 CLK R
. WR 3 18 DBO (LSB)
A/D Interfacing "] bl
NTR/1® ADcCoso4 P82
Vg #+) [15 DE3
Vipd(=) 7 14 DB 4
A GND B 13 DBS
e ADC 0804 Vaer/2 =49 12 f—DB6
DGHID 10 11 DBT (MSB)

e 8 bit successive approximation analogue to djo

® Features:

+***Differential Analo gue Voltage Inputs

*0-5V Input Voltage Range

“*No Zero Adjustment,

+**Built in Clock Generator,

**Reference Voltage can be externally adjusted to convert smaller analogue voltage span to 8

bit resolution etc.

(

ADCO0804

3
7 S I - I ST

=)
o
F4
o
o

20
19
18
17
18
15
14
13
12
11

A/D Interfacing
® The Voltage at Vret/2 (pin9) of ADCO0804 can be externally adjusted to convert

smaller input Voltage spans to full 8 bit resolution.

VYoo (OR Viger)

CLK R

DBO (LSB)
DB 1

DB2

DB3

DE.4

DBS

DB6

DBT (MSB)

™

® Vret/2 (pin9) left open means input voltage span is 0-5V and step size is
5/255=19.6mV

Vref/2 (pin9) (volts) -Input Voltage span (Volts) -Step size (mV)

Left open

2
1.5
1.28
1.0
0.5

0-5 5/255=19.6
0—-4 4/255=15.69
0-3 3/255=11.76
0—-2.56 2.56/255=10.04
0-2 2/255="7.84
0-—1 1/255=3.92

R10
10K

A/D Interfacing-Ci

& 5V

rcult Diagram

“Win

IF——ANMA
i

;5"-.-"
S1 .| +| ca
Reset ? T 1 0wFM oW
1
No connection BRQ,,E'
20 B
g | Wreff2 Do LSB
o1
7 D2
D3
I_____.ji_
O
[y | oS
19 ADC 0804
DG
D7
RS
5 10K MSB
4 cs
< RD
1S0pF WR
INTR

.||}_T

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.&6
P1.7F

P3.7
P3.6

P3.5
P3.4

31

ic2
ATEOSS51

40

PO.0

PO.1

Po.2

PG.3

PO.4

PO.>

PC.6

PO.T

L]
R1 to R& =560 OHM
LSH ﬁ\ﬁ?@ 1
f MM —
e D1 go
{Ei} MM —
rR_ D2 gs
G AN —e
’R‘}_\DE' =¥
e — N
e D9 gms
{Ei} MM —
e DS me
G— AN —e
R“ﬁ}*hitha R7
AN
~~_ D7 Rms
O —
MSB Da
18 <
"
1 x1 33pF
C—111.0582MH=
19 ==
|é————*‘
33pF

1

e
A/D Interfacmg CerU|t Dlagram

**The &ircuit initiates the ADC to cotrvert a given analogue input then accepts the corresponding digital data and displays it
on the LED array connected at PO.

“*For example, if the analogue input voltage Vin is 5V then all LEDs will glow indicating 11111111 in binary
which is the equivalent of 255 in decimal.

*“*Data out pins (DO to D7) of the ADC0804 are connected to the port pins P1.0 to P1.7 respectively.

“*LEDs D1 to D8 are connected to the port pins P0.0 to P0.7 respectively.

s*Resistors R1 to R8 are current limiting resistors.

**P1 of the microcontroller is the input port and P0 is the output port.

*Control signals for the ADC (INTR, WR, RD and CS) are available at port pins P3.4 to P3.7 respectively.

“*Resistor R9 and capacitor C1 are associated with the internal clock circuitry of the ADC.

**Preset resistor R10 forms a voltage divider which can be used to apply a particular input analogue voltage to the ADC.
%*Push button S1, resistor R11 and capacitor C4 forms a debuncing reset mechanism.

%*Crystal X1 and capacitors C2,C3 are associated with the clock circuitry of the microcontroller.

(g

g

MAIN:

A/D Interfacing-Program

ORG O0OH

MOV P1,#11111111B // initiates P1 as the input port

CLR P3.7 // makes CS=0

SETB P3.6 // makes RD high

CLR P3.5 // makes WR low

SETB P3.5 // low to high pulse to WR for starting conversion

WAIT:]B P3.4,WAIT // polls until INTR=0

CLR P3.7 // ensures CS=0

CLR P3.6 // high to low pulse to RD for reading the data from ADC
MOV A,P1 // moves the digital data to accumulator

CPLA // complements the digital data (*see the notes)

MOV PO,A // outputs the data to PO for the LEDs

SJMP MAIN // jumps back to the MAIN program

END

Stepper Motor Interfacing

® Stepper motors are widely used in industrial, medical, consumer -electronics

application.

* Stepper motor is a brush less motor which converts electrical pulses into mechanical

rotation.

* A stepper motor usually have a number of field coils (phases) and a toothed rotor.

ey
-s-c“fflg:’..;’__-l-jrv_ ;I'-

a. Coll 1 [Drange]

BN (Fed)
1. Coil 4 [Blu=]

Stepper Motor Interfacing

® The step size of the motor is determined by the number of phases and the number
of teeth on the rotor.

® Step size is the angular displacement of the rotor in one step.

* If a stepper motor has 4 phases and 50 teeth, it takes 50X4=200 steps to make
one complete rotation.

® Step angle will be 360/200=1.8°.

. Coll 1 [Drange]

LeEY (Red]
1. Coil 4 [Blue]

J

Stenner Motor Interfacing

Ic2
ULMNZ003

14
13

-1
=tepper Motor

Al
+5V
A2
.
A3
Ad

+3W +3\W +3W
i
| Cc4
I 0.1uF 21 A0
51 J® 4] C - -
Rezet = T10uFM oW
TI 5 RST
R1 P1.0 1
&2k P11 7
) ATaa9552 P1.3 4
2 19
|{ - HTALT
zpF |
I
c3 -1
+ I{ - 18| xTaLz
33pF

¥1=11.0592 MHz 20

(g

[ULN2003 h

It Is basically a relay driver IC and it is a darlington array having high voltages and

high currents .
It Is made up of seven open collector darlington pairs having common emitter which

shows ULN2003 has a capability of handling seven different relays at a time.
A single darlington pair consists of two bipolar transistors and it operates on the

current range of 500mA to 600mA.

www.TheEngineeringProjects.com > A

1

Re Output C
input B ——— AN\
7.2kQ
A\/.V. VA\"\-’_z E

3.0kQ

—

77

[ULN2003 h

*ULN2003 operates on 5V and TTL (Transistor Transistor Logic) and CMOS
(Complementary Metal Oxide Semi Conductor).
“*They are commonly used as relay drivers in order to drive different kinds of loads.
*+*ULNZ2003A can also be used to drive different motors (e.g. _or
) with (like , or
etc.) .
*Some of the other applications of ULN2003 include logic buffers, lamp drivers, line

drivers, LED display, motor driver circuits etc.

@ y

https://www.theengineeringprojects.com/2017/05/dc-motor-projects.html
https://www.theengineeringprojects.com/2017/05/dc-motor-projects.html
https://www.theengineeringprojects.com/2017/05/dc-motor-projects.html
https://www.theengineeringprojects.com/2013/06/stepper-motor-drive-circuit-in-proteus.html
https://www.theengineeringprojects.com/2013/06/stepper-motor-drive-circuit-in-proteus.html
https://www.theengineeringprojects.com/2013/06/stepper-motor-drive-circuit-in-proteus.html
https://www.theengineeringprojects.com/2018/03/introduction-to-microcontrollers.html
https://www.theengineeringprojects.com/2015/03/arduino-projects.html
https://www.theengineeringprojects.com/2015/03/pic-microcontroller-projects.html
https://www.theengineeringprojects.com/2015/03/pic-microcontroller-projects.html
https://www.theengineeringprojects.com/2015/03/pic-microcontroller-projects.html
https://www.theengineeringprojects.com/2016/01/8051-microcontroller-projects.html
https://www.theengineeringprojects.com/2016/01/8051-microcontroller-projects.html
https://www.theengineeringprojects.com/2016/01/8051-microcontroller-projects.html

e

ULN2003-PINOUT

INDICATION FOR PIN # 1 (SMALL CIRCLE)

PIN # 1:
PIN # 2:

PIN # 3:

PIN # 4.
PIN # 5:

PIN # 6.

PIN # 7:

PIN # 8:

INPUT1 => <= PIN # 16: OUTPUT1
INPUT2 => <3 PIN # 15: OUTPUTZ
INPUTS => <= PIN # 14: OUTPUTS
INPUTZ => <= PIN # 13: OUTPUT4
INPUTS => <= PIN # 12: OUTPUTS
INPUT6 => <= PIN # 11: OUTPUT6
INPUT7 => <=3 PIN # 10: OUTPUT?
GND > < PIN# 9: VCC (COM)

ULN2003 PINOUT

www. TheEngineeringProjects.com

g
ULN2003-Pin Description

Pin No Name Function Description
1 Inl Input Pair 1 Input for 1% Channel
2 In2 Input Pair 2 Input for 224 Channel
3 In3 Input Pair 3 Input for 3™ Channel
4 Ind Input Pair 4 Input for 4 Channel
5 Ins Input Pair 5 Input for 5 Channel
] In6 Input Pair 6 Input for 6% Channel
7 In7 Input Pair 7 Input for 72 Channel
8 Ground | Common Emiatter (0W) Ground (OW)
o Common | Common Clamp Diodes | Common Free Wheeling Dhiodes
10 OtV Output Pair 7 COutput for 71 Channel
11 Outh Cutput Pair 6 Output for 61 Channel
12 Outtd Output Pair 5 Ouutput for 3™ Channel
13 Outd COutput Pair 4 Output for 4% Channel
14 Out3 COutput Pair 3 Cutput for 3™ Channel
15 Ot Cutput Pair 2 Output for 27 Channel
16 Ol COutput Pair 1 Output for 1° Channel

www.TheEngineeringProjects.com

e
ULN2003-Logic Diagram

Made of hybrid combination of logic gates

Logic diagram

:] com

and diodes. e >o ! > -

Features 2 >O_l 1 .
2B ' 2C

Drivers per package 7 p—o
Lot Typical 50 A s 2] -
Tout Max 500 mA pi——e
Peak output current 500 mA N = >(‘ = e
Delay time 250 Ns " p—e -
Output voltage 50 V 5B sC
Switching voltage 50 | 6 Pt—e 14
Tnput compatibility CMOS TTL _ 68 >OJ' 6C
Rating Catalog —-] P—e 10
Pin per package 16S0IC. 1650, 16TSSOP, 16PDIP | -- i >OJ’ v
Voltage (@ lowest current | 900 mV

D

e

Stepper Motor Interfacing-Program

Main : MOV A, # OFF H ; Initialization of Port 1

MOV P1,A ;

MOV A, #77 H ; Code for the Phase 1
MOV P1,A ;

ACALL DELAY ; Delay subroutine
MOV A, # BB H ; Code for the Phase II
MOV P1,A ;

ACALL DELAY ; Delay subroutine.
MOV A, # DD H ; Code for the Phase III
MOV P1,A ;

ACALL DELAY ; Delay subroutine
MOV A, # EE H ; Code for the Phase 1
MOV P1,A ;

ACALL DELAY ; Delay subroutine
SJMP MAIN;;

Keep the motor rotating continuously.

DELAY Subroutine
MOV R4, #OFF H ; Load R4 with FF
MOV R5, # OFF ; Load R5 with FF
LOOP1: DJNZ R4, LOOP1 ; Decrement R4
until zero, wait
LOOP2: DJNZ R5,LOOP2 ; Decrement R5
until zero, wait

RET ; Return to main program .

D

* Interruptis an asynchronous signal (either hardware or software) which

indicates the processor to make a Change in current execution.

® When the processor receives a valid interrupt signal it saves the current state

and then goes to execute a set of predefined steps called interrupt service
routine (ISR).

http://www.circuitstoday.com/external-interrupts-handling-in-8051
http://www.circuitstoday.com/external-interrupts-handling-in-8051

* Interrupt Sources
* 2 External Interrupts, 2 Timer Interrupts, and 1 Serial Interrupt.

e External interrupts are — External Interrupt O(INTO) and External Interrupt 1
(INTT1).

® Timer interrupts are Timer O interrupt and Timer 1 interrupt.

e A serial interrupt is given for serial communication with the micro controller

(transmit and receive) .

http://www.circuitstoday.com/external-interrupts-handling-in-8051
http://www.circuitstoday.com/external-interrupts-handling-in-8051

e

Handling External Interrupts

VDN s W=

[
o

[y
[y

[y
N

[y
W

[
H

[
)

[
(5

[
~

[
o

[
0

Interrupt Source Vector Interrupt
address priority

External Interrupt 0 — 0003H 1

INTO

Timer O Interrupt 0O00OBH 2
External Interrupt 1 — 0013H 3

INT1

Timer 1 Interrupt 001BH 4

Serial Interrupt 0023H 5

N
o

@D

F1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

Reset
P3.0[RxD]
P3.1[TxD]
P3.2[INTO]
P3.3[INT1]
P3.4[T0O]
P3.5[T1]
P3.6[WR]
P3.7[RD]
XTAL2
XTAL1L

Vss

Vcc

[ADO]PO.O
[AD1]PO.1
[AD2]P0O.2
[AD3]P0O.3
[AD4]P0O.4
[ADS]PO.5
[AD6]PO.6
[AD7]PO.7
[VPPIEA
[PROG]ALE
PSEN
[A15]P2.7
[A14]P2.6
[A13]P2.5
[A12]P2.4
[A11]P2.3
[A10]P2.2
[A9]P2.1
[A8]P2.0

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

http://www.circuitstoday.com/external-interrupts-handling-in-8051

e

TCON,IE,IP -SFR’S

TCOMNM REGISTER

Thi=s bit i=s =2et by the processor when there is an interrupt at INT1

Thi=s bit i= cleared by the proces=sor when there iz a jump to ISR

of INT

=&t thi= bit (0} for an interrupt generated by a low level signal at INT1

This bit is =2et by the proces=sor when there i= an interrupt at INTO

Clear thi= bit (1) for an interrupt generated by a falling edge =signal at INT1

Thi=s bit i= cleared by the processor when there iz a jump to ISR of INTO

=et thi= bit (0} for an interrupt generated by a low level =ignal at INTOD

(MSB) (LSB)
TCOMN. T TCOMN.& TCOMN.S TCOMN.4 TCOMN.3 TCOMN.Z2 TCOM.1 TCOM.O
Direct addres=s &2H TF1 TRE1 TFO TRO IE1 m1 IEQ 1TO
Bit addres=s aF =E =D aC B S, &9 &0

Clear thi= bit (1) for an interruct generated by a falling edge =signal at INTD

Lo

e
TCON,IE,IP-SFR

'S

Clear for dizabling all interrupts

Clear for dizabling external interrupt 1 (INT1)

=&t for enabling all interrupts according to the individual enable bits

Set for enabling external interrupt 1 (INT1)

Clear for dizabling external interrupt ¢ (INTO)

IE REGISTER
(MSB) (L=B)
IE.7 IE.& IE.S IE.& IE.2 IE.2 IE.1 IE.O
Direct address A&H EA, Rezerved| Rezerved I ES ET1 EX1 ETO EXO
|
Bit addresz AF AE A0 A0 AB Al A0 Pt

=et for enabling external interrupt 0 (INTO)

"4

TCON,IE,IP-SFR’S

IP REGISTER

(M5B) (LSB)
IP. ¥ IP. & IP. 5> IP.4 IP.3 IP.2Z IP.1 IP.0
Direct address B3H -- -- PT2 PS FT1 P PTO PO
Bit address BF BE B BC BB BA BS BE&

Clear for giving low priority for external interrupt 1 (INT1)

et for grving high priority for external interrupt 1 {(INT1}

Clear for giving low priority for external interrupt @ (INTO)

et for giving high priority for external interrupt 0 (INTO)

D

Toggling 2 LED with a Pushbutton Using Interrupt

+ 55"

+ 55"

+ 5%

SN
-

—+ — =}
== =

——y
T OuwFES 05"

e
—-1
AT @
=0 obarm LED
= =1 SR

=31 40
= T et e
—+ =
L] —1
=1 = —
- 1 0uFs1 00
RST
INT 0 =
(=3
&2k [y
ATESSSS
r1.0
-1
{{ 1= BT 1
23pF =1 =
B = P11
—= [11.058Z2MH= 15
._|{) W) e
33pF S MDD

EDE

S0 obarm

Toggling 2 LED with a Pushbutton Using Interrupt

ORG 000H // starting address

SJMP LABEL //jumps to the LABEL

ORG 003H // starting address for the ISR(INTO)

ACALL ISR // calls the ISR (interrupt service routine)

RETI // returns from the interrupt

LABEL: MOV A ,#10000000B // sets the initial stage of the LEDs (D1 OFF & D2 ON)
MAIN: // main function that sets the interrupt parameters

SETB IP.0 // sets highest priority for the interrupt INTO

SETB TCON.O0 // interrupt generated by a falling edge signal at INTO (pin12)
SETB IE.O // enables the external interrupt

SETB IE.7 // enables the global interrupt control

SJMP MAIN // jumps back to the MAIN subroutine

ISR: // interrupt service routine

CPL A // complements the current value in accumulator A

MOV P1,A /[moves the current accumulator value to port 1

RET // jumps to RETI

END

