(20A04101T) ELECTRONIC DEVICES \& CIRCUITS

Dr.G.ELAIYARAJA.,M.E.Ph.D

Professor

Department of ECE

VEMU Institute of Technology,
P.Kothakota,Chittoor,AP.

Unit- 3

* BJT Circuits at DC
* Applying the BJT in Amplifier Design
$>$ Voltage Amplifier
$>$ Voltage Transfer Characteristic (VTC)
> Small-Signal Voltage Gain
$>$ Determining the VTC by Graphical Analysis
$>$ Q-POINT
* Small-Signal Operation and Models
$>$ Transconductance
$>$ Input Resistance at the Base
$>$ Input Resistance at the Emitter
> Voltage Gain
$>$ Separating the Signal and the DC Quantities
> The Hybrid- π Model
$>$ the TModel

Basic BJT Amplifier Configurations

> Common-Emitter (CE) amplifier without and with emitter resistance
$>$ Common-Base (CB) amplifier
$>$ Common-Collector (CC) amplifier or Emitter Follower

- Biasing in BJT Amplifier Circuits
\rightarrow Fixed bias
$>$ Self bias
> Voltage Divider Bias Circuits
* Biasing using a Constant-Current Source
* CE amplifier - Small Signal Analysis and Design
* Transistor breakdown and Temperature Effects
* Problem solving.

BJT

PNP Transistor
NPN Transistor

BJT

Operation Modes of BJT

*Active mode
*Saturation mode

Mode	EBJ	CBJ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward

Active Mode Operation of BJT Transistor(NPN BJT)

Active Mode Operation of PNP BJT

BIT

Operation Modes of BJT
*Active mode
*Saturation mode *Cutoff mode

Cutoff mode \rightarrow Both the Junctions are reverse Biased.

open circuits switch (OC)

Cut off Mode Operation of BJT

BJT

Operation Modes of BJT
*Active mode
*Saturation mode *Cutoff mode

Mode	EBJ	CBJ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward

Saturation Mode Operation of BJT

BJT

BJT

Common Base Characteristics

Input Characteristics

BJT

Common Emitter Characteristics
Input Characteristics

Output Characteristics

BJT Circuits at DC

Conditions and Models for the Operation of the BJT in Various Modes

- Only DC Voltages are applied
- Vbe=0.7 V and Vce=0.2 V

Cutoff
EJB: Reverse Blased CBJ: Reverse Biased

BJT Circuits at DC

- Only DC Voltages are applied
- Vbe=0.7 V and Vce=0.2 V

Conditions and Models for the Operation of the BJT in Various Modes

Saturation
$V_{E}<V_{B}$ $V_{C}<V_{B}$

BJT Circuits at DC

Conditions and Models for the Operation of the BJT in Various Modes

- Only DC Voltages are applied
- Vbe=0.7 V and Vce=0.2 V

Saturation

EBJ: Forward Biased
CBJ: Forward Biased

BJT Circuits at DC-Active Mode(Problems)

Example, β is specified to be 100 .

(c)

BJT Circuits at DC-Saturation Mode(Problems)

Example, β is specified to be ATLEAST OF 50.

(c)

BJT Circuits at DC-Cutoff Mode(Problems)

Applying the BJT in Amplifier Design

- The basis for this important application is that when operated in the active mode, the BJT functions as a voltage-controlled current source: the baseemitter voltage(Vbe) controls the collector current(Ic)
- Although the control relationship is nonlinear (exponential)
- we will shortly devise a method for obtaining almost-linear amplification from this fundamentally nonlinear device.
> Voltage Amplifier
$>$ Voltage Transfer Characteristic (VTC)
$>$ Biasing the BJT to Obtain Linear Amplification
$>$ Small-Signal Voltage Gain
$>$ Determining the VTC by Graphical Analysis
$>\mathrm{Q}-\mathrm{POINT}$

Applying the BJT in Amplifier Design-Voltage Amplifier

* Voltage-controlled
current source can serve as a transconductance amplifier, that is, an amplifier whose input signal is a voltage and whose output signal is a current.
* A simple way to convert a transconductance amplifier to a voltage amplifier is to pass the output current through a resistor and take the voltage across the resistor as the output.

Applying the BJT in Amplifier Design-Voltage Amplifier

Here vBE is the input voltage, Rc (known as a load resistance) converts the collector current to a voltage (Ic Rc), and Vcc is the supply voltage that powers up the amplifier and, together with Rc, establishes operation in the active mode, as will be shown shortly.
(a) Simple BJT amplifier with input vBE and output vCE.

Applying the BJT in Amplifier Design-Voltage Amplifier

(a) Simple BJT amplifier with input vBE and output vCE.

Applying the BJT in Amplifier Design-Voltage Transfer Characteristic (VTC)

(a) Simple BJT amplifier with input vBE and output vCE.

Applying the BJT in Amplifier Design-Voltage Transfer Characteristic (VTC)

(b) The voltage transfer characteristic(VTC) of the amplifier in (a).

Applying the BJT in Amplifier Design-Voltage Transfer Characteristic (VTC)

(b) The voltage transfer characteristic(VTC) of the amplifier in (a).

Applying the BJT in Amplifier Design-Voltage Transfer Characteristic (VTC)

(b) The voltage transfer characteristic(VTC) of the amplifier in (a).

Applying the BJT in Amplifier Design- Biasing the BJT to Obtain Linear Amplification

(a) Biasing the BJT amplifier at a point Q located on the active-mode segment of the VTC.

Applying the BJT in Amplifier Design- Biasing the BJT to Obtain Linear Amplification

(a) Biasing the BJT amplifier at a point Q located on the active-mode segment of the VTC.

Applying the BJT in Amplifier Design- Biasing the BJT to Obtain Linear Amplification

*BJT amplifier biased at a point Q, with a small voltage signal vbe superimposed on the DC bias voltage VBE.
*The resulting Output Signal vce appears
superimposed on the DC collector voltage VCE.

* The amplitude of vce is larger than that of vbe by the voltage gain Av.

Applying the BJT in Amplifier Design- Biasing the BJT to Obtain Linear Amplification

* If the input signal Vbe is kept small, the corresponding signal at the output Vce will be nearly proportional to with the constant of proportionality being the slope of the almost-linear segment of the VTC around Q.
* This is the voltage gain of the amplifier, and its value can be determined by evaluating the slope of the tangent to the VTC at the bias point Q,

$$
\left.A_{v} \equiv \frac{d v_{C E}}{d v_{B E}}\right|_{v_{B E}=V_{B E}} \quad A_{v}=-\left(\frac{I_{C}}{V_{T}}\right) R_{C}
$$

1. The gain is negative, which signifies that the amplifier is inverting; that is, there is a 180 phase shift between the input and the output.
2. The gain is proportional to the collector bias current and to the load resistance.

$$
A_{v}=-\left(\frac{I_{C}}{V_{T}}\right) R_{C}
$$

$$
A_{v}=-\frac{I_{C} R_{C}}{V_{T}}=-\frac{V_{R C}}{V_{T}}
$$

$$
V_{R C}=V_{C C}-V_{C E}
$$

Where VRC is the dc voltage drop across $R C$,

$$
\begin{aligned}
& A_{v}=-\frac{V_{C C}-V_{C E \text { sat }}}{V_{T}} \\
& A_{V}=-\frac{V_{C C}}{V_{T}} \quad\left|A_{v \max }\right| \simeq \frac{V_{C C}}{V_{T}}
\end{aligned}
$$

Applying the BJT in Amplifier Design- Determining the VTC by Graphical Analysis

$$
\begin{array}{r}
{ }^{v} C E \\
\\
\frac{V_{C E}}{R_{C}}=\frac{V_{C C}}{R_{C}}-\frac{i_{C} R_{C}}{R_{C}} \\
R_{C}
\end{array}
$$

$$
\frac{V_{C E}}{R_{C}}=\frac{V_{C C}}{R_{C}}-I_{C}
$$

$$
i_{C}=\frac{V_{C C}}{R_{C}}-\frac{1}{R_{C}}{ }^{v} C E
$$

Applying the BJT in Amplifier Design- Q-Point

Small-Signal Operation and Models

> Trans-conductance
> Input Resistance at the Base
> Input Resistance at the Emitter
> Voltage Gain
$>$ Separating the Signal and the DC Quantities
$>$ Hybrid- π Model
> T Model

Small-Signal Operation and Models

Transconductance $e^{x}=1+x+\frac{x^{2}}{2!} \frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots$

$v B E=V B E+v b e----(1)$

$$
\begin{aligned}
& i_{C}=I_{s} e^{v_{B E} / V_{T}}=I_{S} e^{\left({ }^{\left(V_{B E}+v_{B E} / V_{T}\right.}\right.} \\
& =I_{s} e^{V_{B E} / V_{T}} e^{v_{b E} / V_{T}}
\end{aligned}
$$

$$
\begin{equation*}
i_{C}=I_{C} e^{v_{b} e^{\prime} V_{T}} \tag{2}
\end{equation*}
$$

If vbe < VT,

$$
e^{\frac{v_{b e}}{V_{T}}}=1+\left(\frac{v_{b e}}{V_{T}}\right)+\frac{\left(\frac{v_{b e}}{V_{T}}\right)}{2!}+\frac{\left(\frac{v_{b e}}{V_{T}}\right)}{3!}+\cdots \quad i_{C} \simeq I_{C}\left(1+\frac{v_{b e}}{V_{T}}\right)
$$

Transconductance

$$
\begin{equation*}
e^{\frac{v_{b e}}{V_{T}}}=1+\left(\frac{v_{b e}}{V_{T}}\right)+\frac{\left(\frac{v_{b e}}{V_{T}}\right)}{2!}+\frac{\left(\frac{v_{b e}}{V_{T}}\right)}{3!}+\cdots \tag{3}
\end{equation*}
$$

This approximation, which is valid only for vbe less than approximately 10 mV , is referred to as the small-signal approximation.

$$
\begin{equation*}
i_{C} \simeq I_{C}\left(1+\frac{v_{b e}}{V_{T}}\right) \quad \Longleftrightarrow \quad i_{C}=I_{C}+\frac{I_{C}}{V_{T}} v_{b e} \tag{4}
\end{equation*}
$$

Thus the collector current is composed of the dc bias value IC and a signal component ic,

$$
i_{c}=\frac{I_{C}}{V_{T}} v_{b e}
$$

Transconductance

$$
i_{c}=\frac{I_{C}}{V_{T}^{v}}{ }_{b e}
$$

This equation relates the signal current in the collector to the corresponding baseemitter signal voltage. It can be rewritten as

$$
i_{c}=g_{m} v_{b e}
$$

$$
Q_{m}=\frac{T_{C}}{V_{T}}
$$

$$
\sigma_{\partial m}=\left.\frac{\partial i_{C}}{\partial v_{B E}}\right|_{i_{C}=I_{C}}
$$

Transconductance

Input Resistance at the Base

$$
i_{B}=\frac{i_{C}}{\beta}=\frac{I_{C}}{\beta}+\frac{1}{\beta} \frac{I_{C}}{V_{T}} v_{b e}
$$

Thus,

$$
i_{B}=I_{B}+i_{b}
$$

where $I B$ is equal $I C / B$ to and the signal component ib is given by

$$
i_{b}=\frac{1}{\beta} \frac{I_{C}}{V_{T}} v_{b e}
$$

Substituting for IC/VT by gm gives

$$
i_{b}=\frac{g_{m}}{\beta} v_{b e}
$$

The small-signal input resistance between base and emitter, looking into the base, is denoted by $\mathrm{r} \pi$ and is defined as

$$
\begin{aligned}
& r_{\pi} \equiv \frac{v_{b e}}{i_{b}} \\
& r_{\pi}=\frac{\beta}{g_{m}} \\
& \begin{array}{ll}
\text { Sm } & \text { Substitute and } \\
\text { Replace } \mathrm{Ic} / \beta
\end{array} \\
& r_{\pi}=\frac{V_{T}}{I_{B}}
\end{aligned} \text { by IB } \quad l
$$

Input Resistance at the Emitter

$$
i_{E}=\frac{i_{C}}{\alpha}=\frac{I_{C}}{\alpha}+\frac{i_{c}}{\alpha}
$$

If we denote the small-signal

Thus,

$$
i_{E}=I_{E}+i_{e}
$$

where IE is equal to IC / α and the signal current ie is given by

$$
i_{e}=\frac{i_{c}}{\alpha}=\frac{I_{C}}{\alpha V_{T}} v_{b e}=\frac{I_{E}}{V_{T}} v_{b e}
$$

emitter looking into the emitter by re, it can be defined as

$$
\begin{gathered}
r_{e} \equiv \frac{v_{b e}}{\dot{I}_{e}} \\
r_{e}=\frac{V_{T}}{I_{E}} \\
r_{e}=\frac{\alpha}{g_{m}} \simeq \frac{1}{g_{m}}
\end{gathered}
$$

Input Resistance at the Emitter

The relationship between $\boldsymbol{r} \boldsymbol{\pi}$ and $\boldsymbol{r e}$ can be found by combining their respective definitions

$$
v_{b e}=i_{b} r_{\pi}=i_{e} r_{e}
$$

Thus,

$$
r_{\pi}=\left(i_{e} / i_{b}\right) r_{e}
$$

which yields

$$
r_{\pi}=(\beta+1) r_{e}
$$

Voltage Gain

$$
\begin{aligned}
{ }^{{ }^{v}}{ }_{C E} & =V_{C C}-i_{C} R_{C} \\
& =V_{C C}-\left(I_{C}+i_{c}\right) R_{C} \\
& =\left(V_{C C}-I_{C} R_{C}\right)-i_{c} R_{C} \\
& =V_{C E}-i_{c} R_{C}
\end{aligned}
$$

Here the quantity VCE is the dc bias voltage at the collector, and the signal voltage is given by

$$
\begin{aligned}
v_{c e}=-i_{c} R_{C} & =-g_{m} v_{b e} R_{C} \\
& =\left(-g_{m} R_{C}\right) v_{b e}
\end{aligned}
$$

Thus the voltage gain of this amplifier $A v$ is

$$
A_{v} \equiv \frac{v_{b e}}{v_{b e}}=-\sigma_{\square} R_{C}
$$

$$
A_{v}=-\frac{I_{C} R_{C}}{V_{T}}
$$

Small Signal Operation

Transconductance

$$
g_{m}=\frac{i_{C}}{V_{b s}}
$$

$$
g_{m}=\left.\frac{\partial i_{C}}{\partial v_{B E}}\right|_{i_{C}=I_{C}}
$$

$$
\begin{array}{cc}
\begin{array}{c}
\text { Input Resistance } \\
\text { at the Base }
\end{array} & \begin{array}{c}
\begin{array}{|c}
\text { Input } \\
\text { at th }
\end{array} \\
i_{B}=I_{B}+i_{b}
\end{array} \\
r_{\pi}=\frac{V_{T}}{I_{B}} & r_{e}= \\
r_{\pi}=\frac{\beta}{g_{m}} & r_{e}=\frac{c}{g} \\
r_{\pi}=(\beta+1) r_{e}
\end{array}
$$

Voltage Gain

$$
A_{v} \equiv \frac{v_{c e}}{v_{b e}}=-g_{m} R_{C}
$$

$$
A_{v}=-\frac{I_{C} R_{C}}{V_{T}}
$$

Separating the Signal and the DC Quantities

(a)

* Every current and voltage in the amplifier circuit of Fig.(a) is composed of two components: a dc component and a signal component
*For instance, $v B E=V B E+v b e$, $i C=I C+i c$, and so on

Separating the Signal and the DC Quantities

(b)

The dc components are determined from the dc circuit given in Fig. 6.36(b) and from the relationships imposed by the transistor.

$$
\begin{array}{rlrl}
I_{C} & =I_{S} e^{V_{B E} / V_{T}} \\
I_{F} & =I_{C} / \alpha & I_{B} & =I_{C} / \beta \\
V_{C E} & =V_{C C}-I_{C} R_{C}
\end{array}
$$

Separating the Signal and the DC Quantities

*On the other hand, a representation of the signal operation of the BJT can be obtained by eliminating the dc sources, as shown in Fig.

* Expressions for the current elements(ic, ib, and ie) obtained when a small signal vbe is applied.
*Small-Signal Circuit Model.

HYBRID π MODEL

(a)

This model represents the BJT as a voltage controlled current source and explicitly includes the input resistance looking into the base,$r \pi$

HYBRID π MODEL

In this model

$$
\begin{aligned}
& i_{c}=g_{m} v_{b e} \\
& i_{b}=\frac{v_{b e}}{r_{\pi}}
\end{aligned}
$$

(a)

HYBRID π MODEL

In this model le=ic+ib

$$
\begin{aligned}
i_{e} & =\frac{v_{b e}}{r_{\pi}}+g_{m^{v} b e}=\frac{v_{b e}}{r_{\pi}}\left(1+g_{m} r_{\pi}\right) \\
& =\frac{v_{b e}}{r_{\pi}}(1+\beta)=v_{b e} /\left(\frac{r_{\pi}}{1+\beta}\right)^{\text {But }} g_{m} r_{\pi}=\beta \\
& =v_{b e} / r_{e}
\end{aligned}
$$

HYBRID π MODEL

Slightly different model can be obtained by expressing the current of the controlled source ($g_{m} \boldsymbol{V}_{b e}$) interms of base current ib

$$
\begin{aligned}
g_{m} v_{b e} & =g_{m}\left(i_{b} r_{\pi}\right) \\
& =\left(g_{m} r_{\pi}\right) i_{b}=\beta i_{b}
\end{aligned}
$$

Equivalent circuit model is
Here the transistor is represented as a currentcontrolled current source, with the control current being $i b$.

HYBRID π MODEL

HYBRID π MODEL


```
npn T-Model
```


(a)

T Model le=ic+ib ib=ie-ic

$$
\begin{aligned}
i_{b} & =\frac{v_{b e}}{r_{e}}-g_{m} v_{b e}=\frac{v_{b e}}{r_{e}}\left(1-g_{m} r_{e}\right) \\
& =\frac{v_{b e}}{r_{e}}(1-\alpha)=\frac{v_{b e}}{r_{e}}\left(1-\frac{\beta}{\beta+1}\right) \\
& =\frac{v_{b e}}{(\beta+1) r_{e}}=\frac{v_{b e}}{r_{\pi}}
\end{aligned}
$$

The current of the controlled source can be expressed in terms of the emitter current.

$$
\begin{aligned}
g_{m} v_{b e} & =g_{m}\left(i_{e} r_{e}\right) \\
& =\left(g_{m} r_{e}\right) i_{e}=\alpha i_{e}
\end{aligned}
$$

npn T-Model

T Model

$$
\begin{aligned}
i_{b} & =\frac{v_{b e}}{r_{e}}-g_{m} v_{b e}=\frac{v_{b e}}{r_{e}}\left(1-g_{m} r_{e}\right) \\
& =\frac{v_{b e}}{r_{e}}(1-\alpha)=\frac{v_{b e}}{r_{e}}\left(1-\frac{\beta}{\beta+1}\right) \\
& =\frac{v_{b e}}{(\beta+1) r_{e}}=\frac{v_{b e}}{r_{\pi}}
\end{aligned}
$$

The current of the controlled source can be expressed in terms of the emitter current.

$$
\begin{aligned}
g_{m} v_{b e} & =g_{m}\left(i_{e} r_{e}\right) \\
& =\left(g_{m} r_{e}\right) i_{e}=\alpha i_{e}
\end{aligned}
$$

T Model

APPLICATION OF THE SMALL SIGNAL EQUIVALENT CIRCUIT

1. Eliminate the signal source and determine the dc operating point of the BJT and in particular the dc collector current $I C$.

$$
I_{C}, I_{B}, I_{E} \text { and } V_{C}
$$

2. Calculate the values of the small-signal model parameters:

$$
g_{m}=\frac{I_{C}}{V_{T}} \quad r_{\pi}=\frac{V_{T}}{I_{B}} \quad r_{\pi}=\frac{\beta}{g_{m}} \quad r_{e}=\frac{\alpha}{g_{m}} \simeq \frac{1}{g_{m}} \quad r_{e}=\frac{V_{T}}{I_{E}}
$$

3. Eliminate the dc sources by replacing each dc voltage source with a short circuit and each dc current source with an open circuit.

APPLICATION OF THE SMALL SIGNAL EQUIVALENT CIRCUIT

4. Replace the BJT with one of its small-signal equivalent circuit models. Although any one of the models can be used, one might be more convenient than the others for the particular circuit being analyzed.
>Hybrid-л Model
> T Model
>Hybrid Model
5. Analyze the resulting circuit to determine the required quantities (e.g., voltage gain, input and output resistance).

$$
A_{v}=\frac{v_{0}}{v_{i}} \quad R_{o} \text { and } R_{i}
$$

Basic BJT Amplifier Configurations

$>$ Common-Emitter (CE) amplifier without and with emitter resistance
>Common-Base (CB) amplifier
$>$ Common-Collector (CC) amplifier or Emitter Follower

Hybrid Equivalent Model

Determination of Hybrid Parameters

$$
\mathrm{V}_{\mathrm{i}}=\mathrm{h}_{11} \mathrm{I}_{\mathrm{i}}+\mathrm{h}_{12} \mathrm{~V}_{\mathrm{o}} \quad \mathrm{I}_{\mathrm{O}}=\mathrm{h}_{21} \mathrm{I}_{\mathrm{i}}+\mathrm{h}_{22} \mathrm{~V}_{\mathrm{o}}
$$

Determination of Hybrid Parameters

$\mathrm{V}_{\mathrm{i}}=\mathrm{h}_{11} \mathrm{I}_{\mathrm{i}}+\mathrm{h}_{12} \mathrm{~V}_{\mathrm{o}}$
$\mathrm{h}_{11}-\Omega$ and h_{22}-mhos
h12, h21 - Dimension Less.
$\mathrm{h}_{11}=\left.\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{I}_{\mathrm{i}}}\right|_{\mathrm{V}_{\mathrm{o}}=0 \mathrm{~V}}=$ Input Impedance with output part short circuited (Ω)
$h_{12}=\left.\frac{V_{i}}{V_{o}}\right|_{\mathrm{I}_{\mathrm{i}}=0 \mathrm{~V}}=$ Reverse Voltage Transfer Ratio with input part open circuited

Determination of Hybrid Parameters

$\mathrm{I}_{\mathrm{o}}=\mathrm{h}_{21} \mathrm{I}_{\mathrm{i}}+\mathrm{h}_{22} \mathrm{~V}_{\mathrm{o}}$
$\mathrm{h}_{11}-\Omega$ and $\mathrm{h}_{22}-$ mhos h12, h21 - Dimension Less.
$h_{21}=\left.\frac{I_{o}}{I_{i}}\right|_{V_{o}=0 \mathrm{~V}}=$ Forward Current Gain with output part short circuited
$\mathrm{h}_{22}=\left.\frac{\mathrm{I}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{o}}}\right|_{\mathrm{I}_{\mathrm{i}}=0 \mathrm{~A}}=$ Output Adm ittance with input part open circuited (mhos)

General h-Parameters for any Transistor Configuration

General h-Parameters for any Transistor Configuration

Three Basic Configurations of BJT Amplifier

Three Basic Configurations of BJT Amplifier

Hybrid Model for BJT Configurations-CE

Hybrid Model for BJT Configurations-CC

Hybrid Model for BJT Configurations-CB

Hybrid Model for BJT Configurations-CE

Hybrid Model for BJT Configurations-CE

$$
\text { (a) } v_{b e}=h_{i e} i_{b}+h_{r e} v_{e c}
$$

(b)

Hybrid Model for BJT Configurations-CB

Hybrid Model for BJT Configurations-CB

(b)

Hybrid Model for BJT Configurations-CC

CE Amplifier Without Emitter Resistance (Using Hybrid Model)

1.Current Gain or Current Amplification A_{i}
2. Input Resistance R_{i}
3. Voltage Gain or Voltage Amplification A_{v}
4. Output Admittance Y_{0}
5. Output Resistance $\boldsymbol{R}_{\text {o }}$

CE Amplifier Without Emitter Resistance (Using Hybrid Model)

Determine :

1. Current Gain or Current Amplification A_{i}
2. Input Resistance R_{i}
3. Voltage Gain or Voltage Amplification A_{v}
4. Output Admittance Y_{0}
5. Output Resistance $\boldsymbol{R}_{\boldsymbol{o}}$

CE Amplifier Without Emitter Resistance (Using Hybrid Model)

$$
\begin{gathered}
\mathrm{A}_{\mathrm{i}}=\frac{\boldsymbol{i}_{L}}{\boldsymbol{i}_{b}}=-\frac{\boldsymbol{i}_{c}}{\boldsymbol{i}_{b}} \\
\boldsymbol{i}_{c}=\boldsymbol{h}_{f e} \boldsymbol{i}_{b}+\boldsymbol{h}_{o e} \boldsymbol{v}_{c} \\
\boldsymbol{v}_{c}=\boldsymbol{i}_{L} \boldsymbol{R}_{L}=-\boldsymbol{i}_{c} \boldsymbol{R}_{L}
\end{gathered}
$$

- Current Gain or Current $\boldsymbol{i}_{c}=h_{f e} i_{b}+h_{o e}\left(-i_{c} \boldsymbol{R}_{L}\right)$ Amplification:
- Current gain is defined as the ratio of the load current I_{L} to the input current I_{b}.

$$
\begin{aligned}
& \boldsymbol{i}_{c}\left(1+\boldsymbol{h}_{o e} \boldsymbol{R}_{L}\right)=\boldsymbol{h}_{f e} \boldsymbol{i}_{b} \\
& A_{i}=\frac{\boldsymbol{i}_{c}}{\boldsymbol{i}_{b}}=-\frac{h_{f e}}{1+h_{o e} R_{L}}
\end{aligned}
$$

CE Amplifier Without Emitter Resistance (Using Hybrid Model)

CE Amplifier Without Emitter Resistance (Using Hybrid Model)

CE Amplifier Without Emitter Resistance
(Using Hybrid Model)

$$
\begin{aligned}
& \text { Output Admittance } Y_{o} \\
& \mathrm{Y}_{\mathrm{o}}=\frac{\boldsymbol{i}_{c}}{\boldsymbol{V}_{c}} \\
& \boldsymbol{i}_{c}=h_{f e} \dot{\boldsymbol{i}}_{b}+h_{o e} V_{c}
\end{aligned}
$$

$$
\text { Dividing By } V_{c}
$$

$$
\begin{gathered}
\begin{array}{c}
i_{c} \\
v_{c}
\end{array}=\frac{h_{f} i_{i}}{v_{c}}+\frac{h_{o v} v_{c}}{v_{c}}=\frac{\overline{i_{c}}}{v_{c}}=\frac{h_{f} i_{b}}{v_{c}}+h_{o c} \\
v_{s}=0, R_{s} i_{b}+h_{i e} i_{b}+h_{r e} v_{c}=0 \\
\left(R_{S}+h_{i e}\right)_{i_{b}}=-h_{r e} v_{c}
\end{gathered}\left|\Rightarrow \frac{h_{b}}{v_{c}}=-\frac{h_{r e}}{R_{s}+h_{i e}}\right| \Rightarrow Y_{0}=h_{o e}-\frac{h_{f e} h_{r e}}{R_{s}+h_{i e}} \text { and } R_{0}=\frac{1}{Y_{0}}
$$

CE Amplifier Without Emitter Resistance (Using Approximate Hybrid Model)

$$
A_{i}=\frac{i_{c}}{i_{b}}=-\frac{h_{f e}}{1+h_{o e} R_{L}}
$$

$$
R_{i}=\frac{v_{b}}{i_{b}}=h_{i e}+h_{r e} A_{i} R_{L}
$$

$$
A_{i}=\frac{i_{c}}{i_{b}}=-h_{f e} \quad h_{o c}=0, \text { and } h_{r e}=0
$$

$$
\Rightarrow R_{i}=h_{i e}
$$

CE Amplifier Without Emitter Resistance (Using Approximate Hybrid Model)

$$
\Rightarrow Y_{0}=h_{e-}-\frac{h_{f f_{e}} h_{\text {end }}}{R_{0}+h_{e}} R_{R_{0}}=\frac{1}{Y_{0}}
$$

$$
\Rightarrow A_{v}=\frac{A_{i} R_{L}}{R_{i}}=\frac{A_{i} R_{L}}{h_{i e}}
$$

$$
\Rightarrow Y_{0}=\operatorname{Oand} R_{0}=\frac{1}{Y_{0}}=\infty
$$

CE Amplifier With Emitter Resistance

CE Amplifier With Emitter Resistance (Using Hybrid Model)

CE Amplifier With Emitter Resistance
 (Using Hybrid Model)

$$
\begin{aligned}
& \begin{array}{r}
\operatorname{A}_{i}=-\frac{h_{f e}}{1+h_{o e} R_{L}} \\
R_{i}=\frac{v_{b}}{i_{b}}=h_{i e}+h_{r e} A_{i} R_{L} \\
\hline
\end{array} \\
& A_{i}=\frac{h_{o e} R_{e}-h_{f e}}{1+h_{o e}\left(R_{L}+R_{e}\right)} \\
& R_{i}=h_{i e}+h_{r e} A_{i}\left(R_{L}+R_{e}\right)+R_{e}\left(1-A_{i}\right)-R_{e} h_{r e} \\
& A_{v}=\frac{A_{i} R_{L}}{R_{i}} \\
& Y_{0}=h_{o e}-\frac{h_{f e} h_{r e}}{R_{s}+h_{i e}} \text { and } R_{0}=\frac{1}{Y_{0}} \\
& A_{v}=\frac{A_{i} R_{L}}{R_{i}} \\
& R_{0}=\frac{1+h_{f e}}{h_{o e}}+\frac{\left(R_{s}+h_{i e}\left(1+h_{o e} R_{e}\right)\right.}{h_{o e} R_{e}} \text { and } Y_{0}=\frac{1}{R_{0}}
\end{aligned}
$$

CE Amplifier With Emitter Resistance (Using Approximate Hybrid Model)

CE Amplifier With Emitter Resistance (Using Approximate Hybrid Model)

$$
A_{i}=\frac{h_{o e} R_{e}-h_{f e}}{1+h_{o e}\left(R_{L}+R_{e}\right)}
$$

$$
A_{i}=-h_{f e}
$$

$$
R_{=}=h_{c}+h_{r} A\left(R_{2}+R\right)+R_{l}(1-A)-R_{e} h_{w}
$$

$$
R_{i}=h_{i e}+\left(1+h_{f}\right) R_{e}
$$

$$
A_{v}=\frac{A_{i} R_{L}}{R_{i}}
$$

$$
A_{v}=\frac{A_{i} R_{L}}{R_{i}}=\frac{\left.-h_{f i} R_{L}\right)}{h_{i e}+\left(1+h_{f e}\right) R_{e}}
$$

$$
R_{0}=\frac{1+h_{f e}}{h_{o c}}+\frac{\left(R_{s}+h_{i v}\left(1+h_{o c} R_{e}\right)\right.}{h_{o c} R_{e}}{ }_{\text {and }} Y_{0}=\frac{1}{R_{0}}
$$

$$
Y_{0}=0, \text { and } R_{0}=\infty
$$

CB Amplifier(Using Hybrid Model)

CB Amplifier(Using Hybrid Model)

CB Amplifier (Using Hybrid Model)

CB Amplifier (Using Hybrid Model)

CB Amplifier (Using Hybrid Model)

CB Amplifier (Using Hybrid Model)

CC Amplifier(Using Hybrid Model)

CB Amplifier(Using Hybrid Model)

CB Amplifier (Using Hybrid Model)

$$
\mathrm{A}_{\mathrm{i}}=\frac{\boldsymbol{i}_{L}}{\boldsymbol{i}_{b}}=-\frac{\boldsymbol{i}_{e}}{\boldsymbol{i}_{b}}
$$

$$
i_{c}=h_{f t} i_{b}+h_{o c} v_{e}
$$

$$
v_{c}=i_{L} R_{L}=-i_{c} R_{L}
$$

$$
\begin{aligned}
& i_{e}= h_{f c} i_{b}+h_{o c}\left(-i_{c} R_{L}\right) \quad A_{i}=\frac{i_{c}}{i_{b}}=-\frac{h_{f c}}{1+h_{o c} R_{L}} \\
& i_{c}\left(1+h_{o c} R_{L}\right)=h_{f c} i_{b}
\end{aligned}
$$

CB Amplifier (Using Hybrid Model)

$$
\begin{gathered}
\mathrm{R}_{\mathrm{i}}=\frac{\boldsymbol{V}_{b}}{\boldsymbol{i}_{b}} \\
\boldsymbol{v}_{b}=\boldsymbol{h}_{i c} \boldsymbol{i}_{b}+\boldsymbol{h}_{r c} \boldsymbol{v}_{e}
\end{gathered}
$$

$$
\text { But, } \mathrm{A}_{\mathrm{i}}=-\frac{i_{e}}{i_{b}} \Rightarrow i_{e}=-\mathrm{A}_{\mathrm{i}} i_{b} \quad \nu_{e}=\boldsymbol{i}_{L} \boldsymbol{R}_{L}=-\boldsymbol{i}_{e} \boldsymbol{R}_{L}=\boldsymbol{A}_{i} \boldsymbol{i}_{b} \boldsymbol{R}_{L}
$$

$$
v_{b}=h_{i c} i_{b}+h_{r c}\left(A_{A} i_{b} R_{L}\right.
$$

$$
v_{b}=i_{b}\left(h_{i c}+h_{r c} A_{i} R_{L}\right)
$$

$$
\Rightarrow R_{i}=\frac{V_{b}}{i_{b}}=h_{i c}+h_{r c} A_{i} R_{t}
$$

CB Amplifier (Using Hybrid Model)

$$
\mathrm{A}_{\mathrm{v}}=\frac{\boldsymbol{V}_{e}}{\boldsymbol{V}_{b}}
$$

But, $\mathrm{A}_{\mathrm{i}}=-\frac{\boldsymbol{i}_{e}}{\boldsymbol{i}_{b}} \Rightarrow \boldsymbol{i}_{e}=-\mathrm{A}_{\mathrm{i}} \boldsymbol{i}_{b}$

$$
\begin{array}{|c|}
\\
\begin{array}{l|l|}
\hline \frac{1}{v_{e}=i_{L} R_{L}=-i_{c} R_{L}=A_{i} i_{b} R_{L}} \\
\hline \mathrm{R}_{\mathrm{i}} & \Rightarrow A_{v}=\frac{v_{e}}{v_{b}}=\frac{A_{i} i_{b} R_{L}}{v_{b}}=\frac{A_{i} R_{L}}{R_{i}} \\
\hline
\end{array}
\end{array}
$$

CB Amplifier (Using Hybrid Model)

Output Admittance Y_{o}

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{o}}=\frac{\boldsymbol{i}_{e}}{\boldsymbol{v}_{e}} \\
& \boldsymbol{i}_{e}=h_{f c} \boldsymbol{i}_{b}+h_{o c} v_{e}
\end{aligned}
$$

Dividing By V_{e}

$$
\begin{array}{c|c}
\frac{i_{e}}{v_{e}}=\frac{h_{f c} i_{b}}{v_{e}}+\frac{h_{o b} v_{e}}{v_{e}} \Rightarrow \frac{i_{e}}{v_{e}}=\frac{h_{f c_{i}} i_{b}}{v_{e}}+h_{o c} \\
v_{s}=0, R_{s} i_{b}+h_{i c} i_{b}+h_{r c} v_{e}=0 \\
\left(R_{S}+h_{i c}\right) i_{b}=-h_{r c} v_{e} & \Rightarrow \frac{h_{r c}}{v_{e}}=-\frac{\boldsymbol{i}_{b}}{R_{s}+h_{i c}} \\
\hline Y_{0}=h_{o c}-\frac{h_{f c} h_{r c}}{R_{s}+h_{i c}} \text { and } R_{0}=\frac{1}{Y_{0}} \\
\hline
\end{array}
$$

Conversion Formulae for Hybrid Parameters

From CB to CE
$h_{i e}=\frac{h_{i b}}{1+h_{j b}}$
$h_{o e}=\frac{h_{o b}}{1+h_{f b}}$
$h_{f e}=\frac{-h_{f b}}{1+h_{f b}}$
$h_{r e}=\frac{h_{i b} h_{o b}}{1+h_{f b}}-h_{r b}$

From CE to CB

$$
h_{i b}=\frac{h_{i e}}{1+h_{f e}} \quad h_{i c}=h_{i e}
$$

$$
h_{o c}=h_{o e}
$$

$$
h_{f c}=\left(1+h_{f e}\right)
$$

$$
h_{r c}=1-h_{r e} \equiv 1
$$

CE Amplifier Circuit

CE Amplifier Circuit

Figure 1 A Simple Common Emitter Amplifier

* In this kind of arrangement, as the input voltage V_{i} increases, the base current I_{B} also increases which in turn increases the collector current I_{c}.
*This causes an increase in the voltage drop across the collector resistor, R_{C} which results in a decreased output voltage V_{0} as emphasized by the following relationship

$$
V_{0}=\dot{V}_{C C}-I_{C} R_{C}
$$

CE Amplifier Circuit

* Similarly as the input voltage goes on

Figure 1 A Simple Common Emitter Amplifier

$$
V_{0}=V_{C C}-I_{C} R_{C}
$$ decreasing, I_{B} and hence I_{C} decrease, due to which the voltage drop across R_{C} also decreases thereby increasing the output voltage.

*This indicates that for the positive halfcycle of the input waveform, one would get amplified negative half-cycle while for the negative input pulse, the output would be a amplified positive pulse. Hence there exists a phase-shift of 180° between the input and the output waveforms of the common emitter amplifier for which it is also referred to as Inverting Amplifier.

Figure 2 Common Emitter Amplifier with Biasing and Decoupling Details

CB Amplifier Circuit

CC Amplifier Circuit(Emitter Follower)

Comparison of BJT Amplifier

Characteristics	CE Amplifier	CB Amplifier	CC amplifier (Emitter Follower)
Current Gain	High	Less Than Unity	High
Voltage Gain	High	High	Less Than Unity
Input Resistance	Medium	Lowest	Highest
Output Resistance	Moderately High	Highest	Lowest
Phase Shift between Input and Output	180°	0°	0°
Application	For Audio Frequency Applications	For High Frequency Applications	For Impedance Matching

Biasing in BJT Amplifier Circuits

- Fixed Bias(Base Bias)
- Self Bias/Voltage Divider Bias Circuits
- Biasing Using a Collector-to-Base Feedback Resistor
- Biasing using a Constant-Current Source

Biasing in BJT Amplifier Circuits

* The biasing problem is that of establishing a constant dc current in the collector of the BJT.

Biasing in BJT Amplifier Circuits

* This current has to be calculable, predictable, and insensitive to variations in temperature and to the large variations in the value of β encountered among transistors of the same type.

Biasing in BJT Amplifier Circuits

* Another important consideration in bias design is locating the dc bias point in the iC-vCE plane to allow for maximum output signal swing.

Fixed Bias/Base Bias

Two obvious schemes for biasing the BJT: (a) by fixing VBE; (b) by fixing IB. Both result in wide variations in IC and hence in VCE and therefore are considered to be "bad." Neither scheme is recommended.

Fixed Bias/Base Bias

- First, attempting to bias the BJT by fixing the voltage VBE by, for instance, using a voltage divider across the power supply VCC, is not a viable approach:
- The very sharp exponential relationship iC-vBE means that any small and inevitable differences in VBE from the desired value will result in large differences in IC and in VCE.
- Second, biasing the BJT by establishing a constant current in the base, where is also not a recommended approach.
- Here the typically large variations in the value of β among units of the same device type will result in correspondingly large variations in IC and hence in VCE.

Fixed Bias/Base Bias

ADVANTAGES OF FIXED BIAS CIRCUIT

1. Simple circuit as it uses few components.
2. It provides max flexibility, because the biasing conditions are easily set by changing the value of R_{B}.

DISADVANTAGES OF FIXED BIAS CIRCUIT

Poor stability

1. There is no means to stop self increase of I_{C} due to increase in temperature.

So, thermal stability is not provided.
2. If $\boldsymbol{\beta}$ increases due to transistor replacement then, Ic also increases by factor $\boldsymbol{\beta}$ Therefore there is a chance of thermal runaway $\quad I_{C}=\beta I_{B}$

Self Bias/Voltage Divider Bias

(a)

(b)

Classical biasing for BJTs using a single power supply: (a) circuit; (b) circuit with the voltage divider supplying the base replaced with its Thévenin equivalent.
*The arrangement most commonly used for biasing a discrete-circuit transistor amplifier if only a single power supply is available.
*The technique consists of supplying the base of the transistor with a fraction of the supply voltage VCC through the voltage divider R1, R2.

* In addition, a resistor $\boldsymbol{R E}$ is connected to the emitter.

Self Bias/Voltage Divider Bias

(a)

(b)

Classical biasing for BJTs using a single power supply: (a) circuit; (b) circuit with the voltage divider supplying the base replaced with its Thévenin equivalent.

Self Bias/Voltage Divider Bias

Self Bias/Voltage Divider Bias

Classical biasing for BJTs using a single power supply: (a) circuit;
(b) circuit with the voltage divider supplying the base replaced with its Thévenin equivalent.

Self Bias/Voltage Divider Bias

* Biasing the BJT using two power supplies. Resistor $R B$ is needed only if the signal is to be capacitively coupled to the base.
* Otherwise, the base can be connected directly to ground, or to a grounded signal source, resulting in almost total β-independence of the bias current.

$$
\mathrm{I}_{\mathrm{E}}=\frac{V_{E E}-V_{B E}}{\mathrm{R}_{\mathrm{E}}+\frac{\mathrm{R}_{\mathrm{B}}}{\beta+1}}
$$

Biasing Using a Collector-to-Base Feedback

 Resistor
(a)
*The circuit employs
resistor RB connected between the collector and the base.

* Resistor RB provides negative feedback, which helps to stabilize the bias point of the BJT.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\boldsymbol{I}_{E} \mathrm{R}_{\mathrm{C}}+\boldsymbol{I}_{B} \mathrm{R}_{\mathrm{B}}+V_{B E} \\
& \mathrm{~V}_{\mathrm{CC}}=\boldsymbol{I}_{E} \mathrm{R}_{\mathrm{C}}+\frac{\boldsymbol{I}_{E}}{\beta+1} \mathrm{R}_{\mathrm{B}}+V_{B E}
\end{aligned}
$$

(b)
(a) A CE transistor amplifier biased by a feedback resistor RB.
(b) Analysis of the circuit in (a).

Biasing Using a Collector-to-Base Feedback Resistor

(a) A CE transistor amplifier biased by a feedback resistor RB.
(b) Analysis of the circuit in (a).

Biasing Using a Constant-Current Source

(a)

(b)

Transistor Breakdown and Temperature Effects

Transistor Breakdown and Temperature Effects

The BJT common-emitter characteristics including the breakdown region.

Transistor Breakdown and Temperature Effects

(20A04101T) ELECTRONIC DEVICES \& CIRCUITS

Dr.G.ELAIYARAJA.,M.E.Ph.D

Professor

Department of ECE

VEMU Institute of Technology,
P.Kothakota,Chittoor,AP.

Unit- 4

* MOS Field-Effect Transistors (MOSFETs):
* Introduction
* Device Structure and Physical Operation
$>$ Device Structure
> Operation with Zero Gate Voltage
> Creating a Channel for Current Flow
$>$ Operation for Different Drain to Source Voltages(Vds)
* The P-channel MOSFET
* CMOS
* V-I Characteristics
> iD - vDS Characteristics
> iD-vGS Characteristics
$>$ Finite Output Resistance in Saturation
> Characteristics of the p - Channel MOSFET
*MOSFET Circuits at DC
*Applying the MOSFET in Amplifier Design
$>$ Voltage Transfer Characteristics
$>$ Biasing the MOSFET to Obtain Linear Amplification
> The Small Signal Voltage Gain
$>$ Graphical Analysis
$>$ The Q-point
*Problem solving.

Introduction

- Compared to BJTs, MOSFETs can be made quite small (i.e., requiring a small area on the silicon IC chip), and their manufacturing process is relatively simple.
- Also, their operation requires comparatively little power.
- To pack large numbers of MOSFETs (as many as 2 billion) on a single IC chip to implement very sophisticated, very-large-scale-integrated (VLSI) digital circuits such as those for memory and microprocessors.

Historical Background

- Evolution of IC Technology

Year	Technology	Number of components	Typical products
1947	Invention of transistor	1	-
1950-1960	Discrete components	1	Junction diodes and transistors
1961-1965	Small-scale integration	10-100	Planner devices, logic gates, flip-flops
1966-1970	Medium-scale integration	100-1000	Counters, MUXs, decoders, adders
1971-1979	Large-scale integration	1000-20,000	8-bit $\mu \mathrm{p}, \mathrm{RAM}, \mathrm{ROM}$
1980-1984	Very-large-scale integration	20,000-50,000	DSPs, RISC processors, 16-bit, 32-bit μ P
1985-	Ultra-large-scale integration	$\geq 50,000$	64-bit $\mu \mathrm{p}$, dual-core $\mu \mathrm{P}$

Introduction

- Analog circuits such as amplifiers and filters can also be implemented in MOS technology, albeit in smaller, less-dense chips.
- Also, both analog and digital functions are increasingly being implemented on the same IC chip, in what is known as mixedsignal design.

Device Structure and Physical Operation-

Insulated-gate FET or IGFET Device Structure

Device Structure and Physical OperationDevice Structure

Physical Structure of the Enhancementtype NMOS transistor: (a) perspective view;

Device Structure and Physical OperationDevice Structure

Device Structure and Physical OperationDevice Structure

(a) Physical structure of the PMOS transistor

(a)

Device Structure and Physical OperationDevice Structure

a

b

Mirll Metal
Polysilicon
IIII Oxide
© \triangle Diffusion
Depletion
(a) nMOS enhancement-mode transistor
(b) nMOS depletion-mode transistor

Device Structure and Physical OperationOperation with Zero Gate Voltage

* With zero voltage applied to the gate, two back-to-back diodes exist in series between drain and source.
*One diode is formed by the pn junction between the $n+d r a i n ~ r e g i o n ~ a n d ~ t h e ~ p t y p e ~$ substrate, and the other diode is formed by the pn junction between the p-type substrate and the $n+$ source region.
*These back-to-back diodes prevent current conduction from drain to source when a voltage vDS is applied.
* In fact, the path between drain and source has a very high resistance (of the order of $10^{\wedge} 12 \Omega$).

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

$$
\boldsymbol{i}_{D}=\left[\boldsymbol{k}_{n}\left(\boldsymbol{v}_{G S}-\boldsymbol{v}_{T}\right)\right]_{\boldsymbol{v}_{D S}}
$$

$$
i_{D}=\left[k_{n}\left(v_{e f f}-\frac{1}{2} v_{D S}\right)\right] v_{D S}
$$

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

Device Structure and Physical OperationCreating a Channel for Current Flow

$$
i_{D}=0 \text { for }_{V_{G S}}<\mathcal{V}_{T}
$$

Triode Region

$$
\begin{gathered}
\left.\boldsymbol{i}_{D}=\left[k_{n}^{\prime}\left(\frac{W}{L}\right)\left(v_{G S}-v_{T}\right) v_{D S}-\frac{1}{2} v_{d s}{ }^{2}\right)\right] \text { for } v_{G S} \geq v_{T} \text { and } v_{d s} \leq v_{\text {eff }} \\
\text { Saturation Region } \\
i_{D}=\frac{1}{2}\left[k_{n}^{\prime}\left(\frac{W}{L}\right)\left(v_{G S}-v_{T}\right)^{2}\right] \text { for } v_{G S} \geq v_{T} \text { and } v_{d s} \geq v_{\text {eff }}
\end{gathered}
$$

p-Channel MOSFET

(a)

p-Channel MOSFET

Complementary MOS or CMOS

Current-Voltage Characteristics

$>$ iD - vDS Characteristics
$>$ iD - vGS Characteristics
$>$ Finite Output Resistance in Saturation
$>$ Characteristics of the p - Channel MOSFET
*These characteristics can be measured at dc or at low frequencies and thus are called static characteristics.

(a)

(b)

(c)

Current-Voltage Characteristics

- $v_{G S}<V_{t n}$: no channel; transistor in cut-off; $i_{D}=0$
- $v_{G S}=V_{t n}+v_{O V}$: a channel is induced; transistor operates in the triode region or the saturation region depending on whether the channel is continuous or pinched-off at the drain end;

Current-Voltage Characteristics

Continuous channel, obtained by:

$$
v_{G D}>V_{t n}
$$

or equivalently:

$$
v_{D S}<v_{O V}
$$

Then,

$$
I_{D}=k_{n}^{\prime}\left(\frac{W}{L}\right)\left[\left(v_{G S}-V_{t n}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right]
$$

or equivalently,

$$
I_{D}=k_{n}^{\prime}\left(\frac{W}{L}\right)\left(v_{O V}-\frac{1}{2} v_{D S}\right) v_{D S}
$$

Pinched-off channel, obtained by:

$$
v_{G D} \leqslant V_{t n}
$$

or equivalently:

$$
v_{D S} \geqslant v_{O V}
$$

Then

$$
I_{D}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)\left(v_{C S}-V_{t n}\right)^{2}
$$

or equivalently,

$$
I_{D}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right) v_{O V}^{2}
$$

Current-Voltage Characteristics

When the MOSFET is used to design an amplifier, it is operated in the saturation region.

$$
\begin{gathered}
i_{D}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)\left(v_{G S}-V_{t n}\right)^{2} \\
i_{D}=\frac{1}{2} k_{n}\left(\frac{W}{L}\right) v_{O V}^{2}
\end{gathered}
$$

Current-Voltage Characteristics

The iD-vGS characteristiC of an NMOS transistor operating in the saturation region. The iD-vOV characteristic can be obtained by simply relabelling the horizontal axis; that is, shifting the origin to the point $v G S=V t n$.

Current-Voltage Characteristics- Finite Output Resistance in Saturation

Increasing vDS beyond vDSsat causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective channel length (by ΔL).

Current-Voltage Characteristics- Finite Output

 Resistance in Saturation$$
\begin{gathered}
i_{D}=\frac{1}{\left(1-\frac{\Delta L}{L}\right)^{2}} \frac{1}{2}\left[k_{n}^{\prime}\left(\frac{W}{L}\right)\left(v_{G S}-v_{T}\right)^{2}\right] \\
L_{\text {eff }}= \\
L-\Delta L=1-\frac{\Delta L}{L} \approx 1-\lambda V_{D S} \\
i_{D}=\frac{1}{2}\left[k_{n}^{\prime}\left(\frac{W}{L}\right)\left(v_{G S}-v_{T}\right)^{2}\right]\left(1+\lambda V_{D S}\right)
\end{gathered}
$$

Channel-length Modulation
Increasing vDS beyond vDSsat causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective channel length (by ΔL).

Current-Voltage Characteristics- Finite Output Resistance in Saturation

Channel-length Modulation
Increasing vDS beyond vDSsat causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective channel length (by ΔL).

Current-Voltage Characteristics- Finite Output Resistance in Saturation

Effect of $v D S$ on iD in the saturation region. The MOSFET parameter VA depends on the process technology and, for a given process, is proportional to the channel length L.

Current-Voltage Characteristics- Finite Output Resistance in Saturation

Large-signal equivalent circuit model of the n-channel MOSFET in saturation, incorporating the output resistance ro.

Current-Voltage Characteristics- Finite Output Resistance in Saturation

Large-signal equivalent circuit model of the n-channel MOSFET in saturation, incorporating the output resistance ro.

Current-Voltage Characteristics- Characteristics of the p-Channel MOSFET

$v_{S G}<\left|V_{t p}\right|$: no channel; transistor in cut-off; $i_{D}=0$
$v_{S G}=\left|V_{t p}\right|+\left|v_{O V}\right|$: a channel is induced; transistor operates in the triode region or in the saturation region depending on whether the channel is continuous or pinched-off at the drain end;

Current-Voltage Characteristics- Characteristics of the p-Channel MOSFET

Continuous channel, obtained by:

$$
v_{D G}>\left|V_{t p}\right|
$$

or equivalently:

$$
v_{S D}<\left|v_{O V}\right|
$$

Then,

$$
i_{D}=k_{p}^{\prime}\left(\frac{W}{L}\right)\left[\left(v_{S G}-\left|V_{t p}\right|\right) v_{S D}-\frac{1}{2} v_{S D}^{2}\right]
$$

or equivalently

$$
i_{D}=k_{p}^{\prime}\left(\frac{W}{L}\right)\left(\left|v_{O V}\right|-\frac{1}{2} v_{S D}\right) v_{S D}
$$

Saturation Region

Pinched-off channel, obtained by:

$$
v_{D G} \leqslant\left|V_{t p}\right|
$$

or equivalently

$$
v_{S D} \geqslant\left|v_{O V}\right|
$$

Then

$$
i_{D}=\frac{1}{2} k_{p}^{\prime}\left(\frac{W}{L}\right)\left(v_{S G}-\left|V_{t p}\right|\right)^{2}
$$

or equivalently

$$
i_{D}=\frac{1}{2} k_{p}^{\prime}\left(\frac{W}{L}\right) v_{O V}^{2}
$$

MOSFET Circuits at DC

- Consider circuits in which only dc voltages and currents are of concern.
- Design and analysis examples of MOSFET circuits at dc.
- The objective is to instill in the reader a familiarity with the device and the ability to perform MOSFET circuit analysis both rapidly and effectively.
- Generally neglect channel-length modulation, $\lambda=0$

$$
\mathcal{V}_{e f f}=\mathcal{V}_{G S}-\mathcal{V}_{t n}, \mathcal{V}_{e f f}=\mathcal{V}_{S G}-\left|\mathcal{V}_{t p}\right|
$$

Applying the MOSFET in Amplifier Design

- The basis for this important application is that when operated in saturation, the MOSFET functions as voltage-controlled current source: The gate-to-source voltage controls the drain current .
- Although the control relationship is nonlinear (square law)
- we will shortly devise a method for obtaining almost-linear amplification from this fundamentally nonlinear device.
> Voltage Amplifier
$>$ Voltage Transfer Characteristic (VTC)
> Biasing the BJT to Obtain Linear Amplification
$>$ Small-Signal Voltage Gain
$>$ Determining the VTC by Graphical Analysis
$>$ Q-POINT

Applying the MOSFET in Amplifier DesignObtaining a Voltage Amplifier

* Voltage-controlled current source can serve as a transconductance amplifier, that is, an amplifier whose input signal is a voltage and whose output signal is a current.
*A simple way to convert a transconductance amplifier to a voltage amplifier is to pass the output current through a resistor and take the voltage across the resistor as the output.

$$
v_{D S}=v_{D D}-i_{D} \boldsymbol{R}_{D}
$$

Applying the MOSFET in Amplifier DesignVoltage Transfer Characteristic (VTC)

$$
\mathcal{V}_{G S}<\mathcal{V}_{T}
$$

The Transistor is Cut-off

$$
\begin{aligned}
& \boldsymbol{i}_{D}=0, \\
& \boldsymbol{v}_{D S}=V_{D D}-\boldsymbol{i}_{D} \boldsymbol{R}_{D} \\
& \boldsymbol{v}_{D S}=V_{D D}
\end{aligned}
$$

Applying the MOSFET in Amplifier DesignVoltage Transfer Characteristic (VTC)

Applying the MOSFET in Amplifier DesignVoltage Transfer Characteristic (VTC)

Applying the MOSFET in Amplifier DesignVoltage Transfer Characteristic (VTC)

Applying the MOSFET in Amplifier DesignVoltage Transfer Characteristic (VTC)

Applying the MOSFET in Amplifier DesignVoltage Transfer Characteristic (VTC)

Applying the MOSFET in Amplifier DesignVoltage Transfer Characteristic (VTC)

Applying the MOSFET in Amplifier DesignBiasing the MOSFET to Obtain Linear Amplification

Applying the MOSFET in Amplifier DesignBiasing the MOSFET to Obtain Linear Amplification

$$
v_{G S}=V_{G S}+v_{g s}(t)
$$

Applying the MOSFET in Amplifier DesignBiasing the MOSFET to Obtain Linear Amplification

Applying the MOSFET in Amplifier DesignSmall Signal Voltage Gain

$$
\begin{aligned}
& A_{v}=\left.\frac{d \nu_{D s}}{d v_{G S}}\right|_{V_{0 s}=V_{V s}} \\
& v_{D S}=v_{D D}-\frac{1}{2} k_{n} R_{D}\left(v_{G S}-v_{T}\right)^{2} \\
& \frac{d v_{D S}}{d v_{G S}}=0-\frac{1}{2} k_{n} R_{D} \cdot 2\left(v_{G S}-v_{T}\right) \\
& A_{\nu}=-k_{n} R_{D}\left(v_{G S}-v_{T}\right)=-k_{n} R_{D} V_{\text {ff }} \\
& i_{D}=\frac{1}{2}\left[k_{n}\left(V_{e f f}\right)^{2}\right] \\
& k_{n}=\frac{2 i_{o}}{\left(V_{e f f}\right)^{2}} \\
& A_{t}=-k_{n} R_{v} V_{v t} \\
& A_{=}=-\frac{2_{i}}{\left(V_{\text {eff }}\right)^{2}} R_{o} V_{\text {of }} \\
& A_{A}=-\frac{i_{D} R_{D}}{V_{\text {UIt }}}
\end{aligned}
$$

Applying the MOSFET in Amplifier DesignDetermining the VTC by Graphical Analysis

Applying the MOSFET in Amplifier DesignLocating the Bias Point Q

Unit- 5

* MOSFET Small Signal Operation Models
- The DC Bias
- Separating the DC Analysis and the Signal Analysis
- Small Signal Equivalent Circuit Models
- The Transconductance
- The T Equivalent Circuit Model
* Basic MOSFET Amplifier Configurations
- Three Basic Configurations
- Characterizing Amplifiers
- Common Source (CS) Amplifier without and with Source Resistance
- Common Gate (CG) Amplifier
- Source Follower
- The Amplifier Frequency Response

* Biasing in MOSFET Amplifier

 Circuits- Biasing by Fixing VGS with and without Source Resistance
- Biasing using Drain to Gate Feedback Resistor
- Biasing using Constant Current Source
*Common Source Amplifier using MOSFETs
- Small Signal Analysis and Design
- Body Effect
\star Problem Solving.

