INTRODUCTION TO SIMULATION

WHAT IS SIMULATION?

- The imitation of the operation of a real-world process or system *over time*...
 - Most widely used tool (along LP) for decision making
 - Usually on a computer with appropriate software
 - − An analysis (descriptive) tool − can answer what if questions
 - − A synthesis (prescriptive) tool − if complemented by other tools
- Applied to complex systems that are impossible to solve mathematically
- This course focuses on one form of simulation modelling discrete-event simulation modelling.

APPLICATIONS

Systems – facility or process, actual or planned

Examples

Manufacturing facility

Bank operation

Airport operations (passengers, security, planes, crews, baggage)

Transportation/logistics/distribution operation

Hospital facilities (emergency room, operating room, admissions)

Computer network

Freeway system

Business process (insurance office)

Criminal justice system

Chemical plant

Fast-food restaurant

Supermarket

Theme park

Emergency-response system

SYSTEM

- A set of interacting components or entities operating together to achieve a common goal or objective.
- Examples:
 - A manufacturing system with its machine centers, inventories, conveyor belts, production schedule, items produced.
 - A telecommunication system with its messages, communication network servers.
 - A theme park with rides, workers, ...

REAL WORLD SYSTEMS OF INTEREST ARE HIGHLY COMPLEX!!!

WHY & HOW TO STUDY A SYSTEM

Measure/estimate performance Improve operation Prepare for failures System Experiment with a Experiment Experiment with mathematical model with the a physical model actual system of the system of the system IE 325 **Mathematical** IE 202 IE 324 Simulation **Analysis** IE 303

MATHEMATICAL MODEL

- An abstract and simplified representation of a system
- Specifies
 - Important components
 - Assumptions/approximations about how the system works
- Not an exact re-creation of the original system!
- If model is simple enough, study it with Queueing Theory, Linear Programming, Differential Equations...
- If model is complex, Simulation is the only way!!!

GETTING ANSWERS FROM MODELS

ACTUAL SYSTEM

Operating Policies

- Single queue, parallel servers
- FIFO

Input Parameters

- No of servers
- Inter-arrival Time Distribution
- Service Time Distributions

Output Parameters

- Waiting Times
- System Size
- Utilizations

Y = f(X)

STOCHASTIC MODELS

- Randomness or uncertainty is inherent
- Example: Bank with customers and tellers

ACTUAL SYSTEM

QUEUEING MODEL

CLASSIFICATION OF SIMULATION MODELS

Static (Monte Carlo)

Represents the system at a particular point in time

IID observations

- Estimation of π
- Risk Analysis in Business

Dynamic Systems

Represents the system behaviour over time Continuous Simulation:

- (Stochastic) Differential Equations
 - Water Level in a Dam

Discrete Event Simulation:

- System quantities (state variables) change with events
 - Queueing Systems
 - Inventory Systems

HOW TO SIMULATE

- By hand
 - Buffon Needle and Cross Experiments (see Kelton et al.)
- Spreadsheets
- Programming in General Purpose Languages
 - Java
- Simulation Languages
 - SIMAN
- Simulation Packages
 - Arena

Issue: Modeling Flexibility vs. Ease of Use

ADVANTAGES OF SIMULATION

- When mathematical analysis methods are not available, simulation may be the only investigation tool
- When mathematical analysis methods are available, but are so complex that simulation may provide a simpler solution
- Allows comparisons of alternative designs or alternative operating policies
- Allows time compression or expansion

DISADVANTAGES OF SIMULATION

- For a stochastic model, simulation <u>estimates</u> the output while an analytical solution, if available, produces the exact output
- Often expensive and time consuming to develop
- An invalid model may result with confidence in wrong results.

STEPS IN A SIMULATION STUDY

PROBLEM FORMULATION

- A statement of the problem
 - the problem is clearly understood by the simulation analyst
 - the formulation is clearly understood by the client

SETTING OF OBJECTIVES & PROJECT PLAN

Project Proposal

- Determine the questions that are to be answered
- Identify scenarios to be investigated
- Decision criteria
- Determine the end-user
- Determine data requirements
- Determine hardware, software, & personnel requirements
- Prepare a time plan
- Cost plan and billing procedure

STEPS IN A SIMULATION STUDY

MODEL CONCEPTUALIZATION

CONCEPTUAL MODEL

- Abstract essential features
 - Events, activities, entities, attributes, resources, variables, and their relationships
 - Performance measures
 - Data requirements
- Select correct level of details (assumptions)

LEVELS OF DETAIL

- Low levels of detail may result in lost of information and goals cannot be accomplished
- High levels of detail require:
 - more time and effort
 - longer simulation runs
 - more likely to contain errors

Entity: is an object of interest in the system

- Dynamic objects get created, move around, change status,
 affect and are affected by other entities, leave (maybe)
- Usually have multiple realizations floating around
- Can have different types of entities concurrently

Example: Health Center

Patients

Visitors

Attribute: is a characteristic of all entities, but with a specific value "local" to the entity that can differ from one entity to another.

Example: Patient

Type of illness,

Age,

Sex.

Temperature,

Blood Pressure

Resources: what entities compete for

- Entity seizes a resource, uses it, releases it
- Think of a resource being assigned to an entity, rather than an entity "belonging to" a resource
- "A" resource can have several *units* of capacity which can be changed during the simulation

Example: Health Center

Doctors, Nurses

X-Ray Equipment

Variable: A piece of information that reflects some characteristic of the whole system, not of specific entities

- Entities can access, change some variables

Example: Health Center

Number of patients in the system,

Number of idle doctors,

Current time

• *State*: A collection of variables that contains all the information necessary to describe the system at any time

Example: Health Center

{Number of patients in the system,

Status of doctors (busy or idle),

Number of idle doctors,

Status of Lab equipment, etc}

• *Event*: An instantaneous occurrence that changes the state of the system

Example: Health Centre

Arrival of a new patient,

Completion of service (i.e., examination)

Failure of medical equipment, etc.

Activity: represents a time period of specified length.

Example: Health Center

Surgery,

Checking temperature,

X-Ray.

LOGICAL (FLOWCHART) MODEL

• Shows the logical relationships among the elements of the model

STEPS IN A SIMULATION STUDY

DATA COLLECTION & ANALYSIS

- Collect data for input analysis and validation
- Analysis of the data
 - Determine the random variables
 - Fit distribution functions

STEPS IN A SIMULATION STUDY

MODEL TRANSLATION

• Simulation model executes the logic contained in the flow-chart model

Coding

General Purpose Language

Examples:

JAVA, C++, Visual BASIC

Special Purpose Simulation Language/Software

Examples:

SIMAN, ARENA, EXTEND

ARENA EXAMPLE

STEPS IN A SIMULATION STUDY

VERIFICATION AND VALIDATION

- *Verification*: the process of determining if the operational logic is correct.
 - Debugging the simulation software
- *Validation*: the process of determining if the model accurately represents the system.
 - Comparison of model results with collected data from the real system

VERIFICATION AND VALIDATION

STEPS IN A SIMULATION STUDY

EXPERIMENTAL DESIGN

- Alternative scenarios to be simulated
- Type of output data analysis (steady-state vs. terminating simulation analysis)
- Number of simulation runs
- Length of each run
- The manner of initialization
- Variance reduction

ANALYSIS OF RESULTS

- Statistical tests for significance and ranking
 - Point Estimation
 - Confidence-Interval Estimation
- Interpretation of results
- More runs?

STEPS IN A SIMULATION STUDY

DOCUMENTATION & REPORTING

- Program Documentation
 - Allows future modifications
 - Creates confidence
- Progress Reports
 - Frequent reports (e.g. monthly) are suggested
 - Alternative scenarios
 - Performance measures or criteria used
 - Results of experiments
 - Recommendations

IMPLEMENTATION

