
VEMU INSTITUTE OF TECHNOLOGY
P.Kothakota, Near Pakala, Chittoor

LECTURE NOTES
DEPARTMENT OF MECHANICAL ENGINEERING

SUBJECT NAME: APPLICATION DEVELOPMENT WITH PYTHON

COURSE: B.TECH

REGULATION: R20

BRANCH: EEE

YEAR AND SEMESTER: II – I

MODULE-1

Abstraction:

It refers to the construction of a simpler version of a problem by ignoring the details. The

principle of constructing an abstraction is popularly known as modelling.

It is the simplification of a problem by focusing on only one aspect of the problem while

omitting all other aspects. When using the principle of abstraction to understand a complex

problem, we focus our attention on only one or two specific aspects of the problem and ignore

the rest.

Whenever we omit some details of a problem to construct an abstraction, we construct a

model of the problem. In everyday life, we use the principle of abstraction frequently to

understand a problem or to assess a situation.

Decomposition:

Decomposition is a process of breaking down. It will be breaking down functions into smaller

parts. It is another important principle of software engineering to handle problem complexity.

This principle is profusely made use by several software engineering techniques to contain the

exponential growth of the perceived problem complexity. The decomposition principle is

popularly is says the divide and conquer principle.

Functional Decomposition:

It is a term that engineers use to describe a set of steps in which they break down the overall

function of a device, system, or process into its smaller parts.

Steps for the Functional Decomposition:

1. Find the most general function

2. Find the closest sub-functions

3. Find the next levels of sub-functions

SDLC:

Software Development Life Cycle, SDLC for short, is a well-defined, structured sequence of

stages in software engineering to develop the intended software product.

SDLC Activities

SDLC provides a series of steps to be followed to design and develop a software product

efficiently. SDLC framework includes the following steps:

Communication

This is the first step where the user initiates the request for a desired software product. He

contacts the service provider and tries to negotiate the terms. He submits his request to the

service providing organization in writing.

Requirement Gathering

This step onwards the software development team works to carry on the project. The team holds

discussions with various stakeholders from problem domain and tries to bring out as much

information as possible on their requirements. The requirements are contemplated and

segregated into user requirements, system requirements and functional requirements. The

requirements are collected using a number of practices as given -

 studying the existing or obsolete system and software,

 conducting interviews of users and developers,

 referring to the database or

 collecting answers from the questionnaires.

Feasibility Study

After requirement gathering, the team comes up with a rough plan of software process. At this

step the team analyzes if a software can be made to fulfill all requirements of the user and if

there is any possibility of software being no more useful. It is found out, if the project is

financially, practically and technologically feasible for the organization to take up. There are

many algorithms available, which help the developers to conclude the feasibility of a software

project.

System Analysis

At this step the developers decide a roadmap of their plan and try to bring up the best software

model suitable for the project. System analysis includes Understanding of software product

limitations, learning system related problems or changes to be done in existing systems

beforehand, identifying and addressing the impact of project on organization and personnel etc.

The project team analyzes the scope of the project and plans the schedule and resources

accordingly.

Software Design

Next step is to bring down whole knowledge of requirements and analysis on the desk and

design the software product. The inputs from users and information gathered in requirement

gathering phase are the inputs of this step. The output of this step comes in the form of two

designs; logical design and physical design. Engineers produce meta-data and data dictionaries,

logical diagrams, data-flow diagrams and in some cases pseudo codes.

Coding

This step is also known as programming phase. The implementation of software design starts in

terms of writing program code in the suitable programming language and developing error-free

executable programs efficiently.

Testing

An estimate says that 50% of whole software development process should be tested. Errors may

ruin the software from critical level to its own removal. Software testing is done while coding

by the developers and thorough testing is conducted by testing experts at various levels of code

such as module testing, program testing, product testing, in-house testing and testing the

product at user’s end. Early discovery of errors and their remedy is the key to reliable software.

Integration

Software may need to be integrated with the libraries, databases and other program(s). This

stage of SDLC is involved in the integration of software with outer world entities.

Implementation

This means installing the software on user machines. At times, software needs post-installation

configurations at user end. Software is tested for portability and adaptability and integration

related issues are solved during implementation.

Operation and Maintenance

This phase confirms the software operation in terms of more efficiency and less errors. If

required, the users are trained on, or aided with the documentation on how to operate the

software and how to keep the software operational. The software is maintained timely by

updating the code according to the changes taking place in user end environment or technology.

This phase may face challenges from hidden bugs and real-world unidentified problems.

Disposition

As time elapses, the software may decline on the performance front. It may go completely

obsolete or may need intense up gradation. Hence a pressing need to eliminate a major portion

of the system arises. This phase includes archiving data and required software components,

closing down the system, planning disposition activity and terminating system at appropriate

end-of-system time.

Software Project

A Software Project is the complete procedure of software development from requirement

gathering to testing and maintenance, carried out according to the execution methodologies, in a

specified period of time to achieve intended software product.

Software Management Activities

Software project management comprises of a number of activities, which contains planning of

project, deciding scope of software product, estimation of cost in various terms, scheduling of

tasks and events, and resource management. Project management activities may include:

 Project Planning

 Scope Management

 Project Estimation
Project Planning

Software project planning is task, which is performed before the production of software actually

starts. It is there for the software production but involves no concrete activity that has any

direction connection with software production; rather it is a set of multiple processes, which

facilitates software production. Project planning may include the following:

Scope Management

It defines the scope of project; this includes all the activities, process need to be done in order to

make a deliverable software product. Scope management is essential because it creates

boundaries of the project by clearly defining what would be done in the project and what would

not be done. This makes project to contain limited and quantifiable tasks, which can easily be

documented and in turn avoids cost and time overrun.

During Project Scope management, it is necessary to -

 Define the scope

 Decide its verification and control

 Divide the project into various smaller parts for ease of management.

 Verify the scope

 Control the scope by incorporating changes to the scope

Project Estimation

For an effective management accurate estimation of various measures is a must. With correct

estimation managers can manage and control the project more efficiently and effectively.

Project estimation may involve the following:

 Software size estimation
Software size may be estimated either in terms of KLOC (Kilo Line of Code) or by

calculating number of function points in the software. Lines of code depend upon coding

practices and Function points vary according to the user or software requirement.

 Effort estimation
The managers estimate efforts in terms of personnel requirement and man-hour required

to produce the software. For effort estimation software size should be known. This can

either be derived by managers’ experience, organization’s historical data or software

size can be converted into efforts by using some standard formulae.

 Time estimation

Once size and efforts are estimated, the time required to produce the software can be

estimated. Efforts required is segregated into sub categories as per the requirement

specifications and interdependency of various components of software. Software tasks

are divided into smaller tasks, activities or events by Work Breakthrough Structure

(WBS). The tasks are scheduled on day-to-day basis or in calendar months.

The sum of time required to complete all tasks in hours or days is the total time invested

to complete the project.

 Cost estimation

This might be considered as the most difficult of all because it depends on more

elements than any of the previous ones. For estimating project cost, it is required to

consider -

o Size of software

o Software quality

o Hardware

o Additional software or tools, licenses etc.

o Skilled personnel with task-specific skills

o Travel involved

o Communication

o Training and support

Project Estimation Techniques

We discussed various parameters involving project estimation such as size, effort, time and

cost.

Project manager can estimate the listed factors using two broadly recognized techniques –

Decomposition Technique

This technique assumes the software as a product of various compositions.

There are two main models -

 Line of Code Estimation is done on behalf of number of line of codes in the software

product.

 Function Points Estimation is done on behalf of number of function points in the

software product.

Empirical Estimation Technique

This technique uses empirically derived formulae to make estimation.These formulae are based

on LOC or FPs.

 Putnam Model

This model is made by Lawrence H. Putnam, which is based on Norden’s frequency

distribution (Rayleigh curve). Putnam model maps time and efforts required with

software size.

 COCOMO

COCOMO stands for COnstructive COst MOdel, developed by Barry W. Boehm. It

divides the software product into three categories of software: organic, semi-detached

and embedded.

Project Scheduling

Project Scheduling in a project refers to roadmap of all activities to be done with specified order

and within time slot allotted to each activity. Project managers tend to define various tasks, and

project milestones and arrange them keeping various factors in mind. They look for tasks lie in

critical path in the schedule, which are necessary to complete in specific manner (because of

task interdependency) and strictly within the time allocated. Arrangement of tasks which lies

out of critical path are less likely to impact over all schedule of the project.

For scheduling a project, it is necessary to -

 Break down the project tasks into smaller, manageable form

 Find out various tasks and correlate them

 Estimate time frame required for each task

 Divide time into work-units

 Assign adequate number of work-units for each task

 Calculate total time required for the project from start to finish

THE EVOLUTION OF SOFTWARE ENGINEERING TECHNIQUES:

Software is more than just a program code. A program is an executable code, which serves some computational purpose.
Software is considered to be collection of executable programming code, associated libraries and documentations.
Software, when made for a specific requirement is called software product.

Engineering on the other hand, is all about developing products, using well-defined, scientific principles and methods.

Software engineering is an engineering branch associated with development of software product using well-defined
scientific principles, methods and procedures. The outcome of software engineering is an efficient and reliable
software product.

Definitions

IEEE defines software engineering as:

(1) The application of a systematic,disciplined,quantifiable approach to the development,operation and maintenance of
software; that is, the application of engineering to software.

(2) The study of approaches as in the above statement.

Fritz Bauer, a German computer scientist, defines software engineering as:

Software engineering is the establishment and use of sound engineering principles in order to obtain economically software
that is reliable and work efficiently on real machines.

TASK: 1 IDENTIFYING THE REQUIREMENTS FROM PROBLEM STATEMENTS

1. INTRODUCTION

Requirements identification is the first step of any software development project. Until the

requirements of a client have been clearly identified, and verified, no other task (design, coding,

testing) could begin. Usually business analysts having domain knowledge on the subject matter

discuss with clients and decide what features are to be implemented.

In this experiment we will learn how to identify functional and non-functional requirements from

a given problem statement. Functional and non-functional requirements are the primary

components of a Software Requirements Specification.

2. REQUIREMENTS

Sommerville defines "requirement" [1] as a specification of what should be implemented.

Requirements specify how the target system should behave. It specifies what to do, but not how

to do. Requirements engineering refers to the process of understanding what a customer expects

from the system to be developed, and to document them in a standard and easily readable and

understandable format. This documentation will serve as reference for the subsequent design,

implementation and verification of the system.

It is necessary and important that before we start planning, design and implementation of the

software system for our client, we are clear about it's requirements. If we don't have a clear

vision of what is to be developed and what all features are expected, there would be serious

problems, and customer dissatisfaction as well.

Characteristics of Requirements

Requirements gathered for any new system to be developed should exhibit the following three

properties:

http://vlabs.iitkgp.ernet.in/se/1/theory/%22/isad/isad/1/references/%22

 Unambiguity: There should not be any ambiguity what a system to be developed should

do. For example, consider you are developing a web application for your client. The

client requires that enough number of people should be able to access the application

simultaneously. What's the "enough number of people"? That could mean 10 to you, but,

perhaps, 100 to the client. There's an ambiguity.

 Consistency: To illustrate this, consider the automation of a nuclear plant. Suppose one

of the clients say that it the radiation level inside the plant exceeds R1, all reactors should

be shut down. However, another person from the client side suggests that the threshold

radiation level should be R2. Thus, there is an inconsistency between the two end users

regarding what they consider as threshold level of radiation.

 Completeness: A particular requirement for a system should specify what the system

should do and also what it should not. For example, consider a software to be developed

for ATM. If a customer enters an amount greater than the maximum permissible

withdrawal amount, the ATM should display an error message, and it should not dispense

any cash.

Categorization of Requirements

Based on the target audience or subject matter, requirements can be classified into different

types, as stated below:

 User requirements: They are written in natural language so that both customers can

verify their requirements have been correctly identified

 System requirements: They are written involving technical terms and/or specifications,

and are meant for the development or testing teams

Requirements can be classified into two groups based on what they describe:

 Functional requirements (FRs): These describe the functionality of a system -- how a

system should react to a particular set of inputs and what should be the corresponding

output.

 Non-functional requirements (NFRs): They are not directly related what functionalities

are expected from the system. However, NFRs could typically define how the system

should behave under certain situations. For example, a NFR could say that the system

should work with 128MB RAM. Under such condition, a NFR could be more critical

than a FR.

Non-functional requirements could be further classified into different types like:

 Product requirements: For example, a specification that the web application should use

only plain HTML, and no frames

 Performance requirements: For example, the system should remain available 24x7

 Organizational requirements: The development process should comply to SEI CMM

level 4

Functional Requirements

Identifying Functional Requirements

Given a problem statement, the functional requirements could be identified by focusing on the

following points:

 Identify the high level functional requirements simply from the conceptual understanding

of the problem. For example, a Library Management System, apart from anything else,

should be able to issue and return books.

 Identify the cases where an end user gets some meaningful work done by using the

system. For example, in a digital library a user might use the "Search Book" functionality

to obtain information about the books of his interest.

 If we consider the system as a black box, there would be some inputs to it, and some

output in return. This black box defines the functionalities of the system. For example, to

search for a book, user gives title of the book as input and get the book details and

location as the output.

 Any high level requirement identified could have different sub-requirements. For

example, "Issue Book" module could behave differently for different class of users, or for

a particular user who has issued the book thrice consecutively.

Preparing Software Requirements Specifications

Once all possible FRs and non-FRs have been identified, which are complete, consistent, and

non-ambiguous, the Software Requirements Specification (SRS) is to be prepared. IEEE

provides a template [iv], also available here, which could be used for this purpose. The SRS is

prepared by the service provider, and verified by its client. This document serves as a legal

agreement between the client and the service provider. Once the concerned system has been

developed and deployed, and a proposed feature was not found to be present in the system, the

client can point this out from the SRS. Also, if after delivery, the client says a new feature is

required, which was not mentioned in the SRS, the service provider can again point to the SRS.

The scope of the current experiment, however, doesn't cover writing a SRS.

3. SIMULATION:
We show here how to extract functional requirements when a problem statement is given.

The case under study is a online voting system.

Internet has led to discussion of e-democracy and online voting. Many peoples think that the

internet could replace representative democracy, enabling everyone to vote on everything and

anything by online voting .Online voting could reduce cost and make voting more convenient.

This type of voting can be done for e-democracy, or it may be used for finalizing a solution, if

many alternatives are present. Online voting make’s use of authentication, hence it needs

security, and the system must be able to address obtaining, marking, delivering and counting

ballots via computer. Advantage of online voting is it could increase voter turnout because of

convenience, and it helps to reduce fraud voting.

5. CASE STUDY

1 : A Library Information System for SE VLabs Institute

The SE VLabs Institute has been recently setup to provide state-of-the-art research facilities in

the field of Software Engineering. Apart from research scholars (students) and professors, it also

includes quite a large number of employees who work on different projects undertaken by the

institution.

As the size and capacity of the institute is increasing with the time, it has been proposed to

develop a Library Information System (LIS) for the benefit of students and employees of the

institute. LIS will enable the members to borrow a book (or return it) with ease while sitting at

his desk/chamber. The system also enables a member to extend the date of his borrowing if no

other booking for that particular book has been made. For the library staff, this system aids them

to easily handle day-to-day book transactions. The librarian, who has administrative privileges

and complete control over the system, can enter a new record into the system when a new book

has been purchased, or remove a record in case any book is taken off the shelf. Any non-member

http://vlabs.iitkgp.ernet.in/se/1/theory/%22/isad/isad/1/references/%22
http://vlabs.iitkgp.ernet.in/se/1/theory/%22http:/www.cse.msu.edu/~cse870/IEEEXplore-SRS-template.pdf%22

is free to use this system to browse/search books online. However, issuing or returning books is

restricted to valid users (members) of LIS only.

The final deliverable would a web application (using the recent HTML 5), which should run only

within the institute LAN. Although this reduces security risk of the software to a large extent,

care should be taken no confidential information (eg., passwords) is stored in plain text.

Identification of functional requirements

The above problem statement gives a brief description of the proposed system. From the above,

even without doing any deep analysis, we might easily identify some of the basic functionality of

the system:

 New user registration: Any member of the institute who wishes to avail the facilities of

the library has to register himself with the Library Information System. On successful

registration, a user ID and password would be provided to the member. He has to use this

credentials for any future transaction in LIS.

 Search book: Any member of LIS can avail this facility to check whether any particular

book is present in the institute's library. A book could be searched by its:

 Title

 Authors name

 Publisher's name

User login: A registered user of LIS can login to the system by providing his employee ID and

password as set by him while registering. After successful login, "Home" page for the user is

shown from where he can access the different functionalities of LIS: search book, issue book,

return book, reissue book. Any employee ID not registered with LIS cannot access the "Home"

page -- a login failure message would be shown to him, and the login dialog would appear again.

This same thing happens when any registered user types in his password wrong. However, if

incorrect password has been provided for three time consecutively, the security question for the

user (specified while registering) with an input box to answer it are also shown. If the user can

answer the security question correctly, a new password would be sent to his email address. In

case the user fails to answer the security question correctly, his LIS account would be blocked.

He needs to contact with the administrator to make it active again.

Issue book: Any member of LIS can issue a book against his account provided that:

 The book is available in the library i.e. could be found by searching for it in LIS

 No other member has currently issued the book

 Current user has not issued the maximum number of books that can

If the above conditions are met, the book is issued to the member.

Note that this FR would remain incomplete if the "maximum number of books that can

be issued to a member" is not defined. We assume that this number has been set to four

for students and research scholars, and to ten for professors.

Once a book has been successfully issued, the user account is updated to reflect the same.

Return book: A book is issued for a finite time, which we assume to be a period of 20 days.

That is, a book once issued should be returned within the next 20 days by the corresponding

member of LIS. After successful return of a book, the user account is updated to reflect the same.

Reissue book: Any member who has issued a book might find that his requirement is not over

by 20 days. In that case, he might choose to reissue the book, and get the permission to keep it

for another 20 days. However, a member can reissue any book at most twice, after which he has

to return it. Once a book has been successfully reissued, the user account is updated to reflect the

information.

In a similar way we can list other functionality offered by the system as well. However, certain

features might not be evident directly from the problem system, but which, nevertheless, are

required. One such functionality is "User Verification". The LIS should be able to judge between

a registered and non-registered member. Most of the functionality would be available to a

registered member. The "New User Registration" would, however, be available to non-members.

Moreover, an already registered user shouldn't be allowed to register himself once again.

Having identified the (major) functional requirements, we assign an identifier to each of

them [v] for future reference and verification. Following table shows the list:

Table 01: Identifier and priority for software

requirements

Requirement Priority

R1 New user registration High

R2 User Login High

R3 Search book High

R4 Issue book High

R5 Return book High

R6 Reissue book Low

Identification of non-functional requirements

Having talked about functional requirements, let's try to identify a few non-functional

requirements.

 Performance Requirements:
 This system should remain accessible 24x7

 At least 50 users should be able to access the system altogether at any given time

Security Requirements:

 This system should be accessible only within the institute LAN

 The database of LIS should not store any password in plain text -- a hashed value

has to be stored

Software Quality Attributes

Database Requirements

Design Constraints:

 The LIS has to be developed as a web application, which should work with

Firefox 5, Internet Explorer 8, Google Chrome 12, Opera 10

 The system should be developed using HTML 5

Once all the functional and non-functional requirements have been identified, they are

documented formally in SRS, which then serves as a legal agreement.

1. OPERATORS

http://www.jiludwig.com/reiber/requirements_trace.html

a. Read a list of numbers and write a program to check whether a
particular element is present or not using membership operators.

In:
x = ["apple", "banana"]
print("banana" in x)
output:True

notin:
x = ["apple", "banana"]
print("pineapple" not in x)
output:True

b.Read your name and age and write a program to display the year in
which you will turn 100 years old.

name=str(input("enter your name:"))

a=int(input("enter your age:"))

print(name)

print(a)

year=int(input("enter the present year:"))

t=100-a

print(t)

if t>=100:

 print("you have already crossed the age of 100")

else:

 ans=year+t

 print("in the ",ans,"year you will turn 100")

output:

enter your name:bujji

enter your age:20

bujji

20

enter the present year:37

80

in the 117 year you will turn 100

c.Read radius and height of a cone and write a program to find the
volume of a cone.

Python Program to find Volume and Surface Area of a Cone

import math

radius = float(input('Please Enter the Radius of a Cone: '))
height = float(input('Please Enter the Height of a Cone: '))

Calculate Length of a Slide (Slant)
l = math.sqrt(radius * radius + height * height)

Calculate the Surface Area
SA = math.pi * radius * (radius + l)

Calculate the Volume
Volume = (1.0/3) * math.pi * radius * radius * height

print("\n Length of a Side (Slant)of a Cone = %.2f" %l)

print(" The Surface Area of a Cone = %.2f " %SA)

print(" The Volume of a Cone = %.2f" %Volume);

output:

Please Enter the Radius of a Cone: 5

Please Enter the Height of a Cone: 12

 Length of a Side (Slant)of a Cone = 13.00

 The Surface Area of a Cone = 282.74

 The Volume of a Cone = 314.16

d.Write a program to compute distance between two points taking input
from the user (Hint: use Pythagorean theorem)

x1=int(input("enter x1 : "))

x2=int(input("enter x2 : "))

y1=int(input("enter y1 : "))

y2=int(input("enter y2 : "))

result= ((((x2 - x1)**2) + ((y2-y1)**2))**0.5)

print("distance between",(x1,x2),"and",(y1,y2),"is : ",result)

output:
enter x1 : 4

enter x2 : 6

enter y1 : 0

enter y2 : 6

distance between (4, 6) and (0, 6) is :

6.324555320336759

e.Arithmetic operators

x = 15
y = 4

Output: x + y = 19
print('x + y =',x+y)

Output: x - y = 11
print('x - y =',x-y)

Output: x * y = 60
print('x * y =',x*y)

Output: x / y = 3.75
print('x / y =',x/y)

Output: x // y = 3
print('x // y =',x//y)

Output: x ** y = 50625
print('x ** y =',x**y)

output:
x + y = 19

x - y = 11

x * y = 60

x / y = 3.75

x // y = 3

x ** y = 50625

f.comparision operators

x = 10
y = 12

Output: x > y is False
print('x > y is',x>y)

Output: x < y is True
print('x < y is',x<y)

Output: x == y is False
print('x == y is',x==y)

Output: x != y is True

print('x != y is',x!=y)

Output: x >= y is False
print('x >= y is',x>=y)

Output: x <= y is True
print('x <= y is',x<=y)

output:
x > y is False

x < y is True

x == y is False

x != y is True

x >= y is False

x <= y is True

2. CONTROL STRUCTURES

1.Read your email id and write a program to display the no

of vowels,consonants,digits and white spaces in it using if

elif else statement in python

def count(str):

 # Declare the variable vowels,

 # consonant, digit and special

 # characters

 vowels = 0

 consonant = 0

 specialChar = 0

 digit = 0

 # str.length() function to count

 # number of character in given string.

 for i in range(0, len(str)):

 ch = str[i]

 if ((ch >= 'a' and ch <= 'z') or

 (ch >= 'A' and ch <= 'Z')):

 # To handle upper case letters

 ch = ch.lower()

 if (ch == 'a' or ch == 'e' or ch == 'i'

 or ch == 'o' or ch == 'u'):

 vowels += 1

 else:

https://www.google.com/search?q=read+your+email+id+and+write+a+program+to+display+the+no+of+vowels,consonants,digits+and+white+spaces+in+it+using+if+elif+else+statement+in+python&spell=1&sa=X&ved=2ahUKEwj1m9WW35T1AhXsTGwGHS3GD9YQkeECKAB6BAgBEDE
https://www.google.com/search?q=read+your+email+id+and+write+a+program+to+display+the+no+of+vowels,consonants,digits+and+white+spaces+in+it+using+if+elif+else+statement+in+python&spell=1&sa=X&ved=2ahUKEwj1m9WW35T1AhXsTGwGHS3GD9YQkeECKAB6BAgBEDE
https://www.google.com/search?q=read+your+email+id+and+write+a+program+to+display+the+no+of+vowels,consonants,digits+and+white+spaces+in+it+using+if+elif+else+statement+in+python&spell=1&sa=X&ved=2ahUKEwj1m9WW35T1AhXsTGwGHS3GD9YQkeECKAB6BAgBEDE

 consonant += 1

 elif (ch >= '0' and ch <= '9'):

 digit += 1

 else:

 specialChar += 1

 print("Vowels:", vowels)

 print("Consonant:", consonant)

 print("Digit:", digit)

 print("Special Character:", specialChar)

Driver function.

str = "asfsgfgfhgfdghh123@gmail.com"

count(str)

output:

Vowels: 4

Consonant: 19

Digit: 3

Special Character: 2

2. Write a program to create and display a dictionary by storing the
antonyms of words. Find the antonym of a particular word given by the
user from the dictionary using for loop.

print('enter word from following words ')

no ={ 'right': 'left', 'correct':'wrong', 'yes':'no' }

for i in no.keys():

 print(i)

y = input()

if y in no :

 print('antonym is ', no[y])

else:

 print('not in the list given : ')

output:

enter word from following words

right
correct

yes

right
antonym is left

3. Write a Program to find the sum of a Series 1/1! + 2/2! + 3/3! + 4/4!
+…….+ n/n!. (Input :n = 5, Output : 2.70833)

def sumOfSeries(num):

 # Computing MAX

 res = 0
 fact = 1

 for i in range(1, num+1):
 fact *= i

 res = res + (i/ fact)

 return res

n = 5

print("Sum: ", sumOfSeries(n))

output:

Sum: 2.708333333333333

4. In number theory, an abundant number or excessive number is a
number for which the sum of its proper divisors is greater than the
number itself. Write a program to find out, if the given number is
abundant. (Input: 12, Sum of divisors of 12 = 1 + 2 + 3 + 4 + 6 = 16, sum
of divisors 16 > original number 12)

print('Enter the number:')

n=int(input())

sum=1 # 1 can divide any number

for i in range(2,n):

 if(n%i==0): #if number is divisible by i add the number

 sum=sum+i

if(sum>n):
 print(n, 'is Abundant Number')

else:
 print(n, 'is not Abundant Number')

output:
Enter the number:

15

15 is not Abundant Number

1. Read a list of numbers and print the numbers divisible by x but not by y (Assume x = 4 and y

= 5).
def findNoIsDivisibleOrNot(n, l =[]):

 # Checking if a number is divided

 # by every element or not

 for i in range(0, len(li)):
 if li[i]% n != 0:

 return 0

 return 1

Driver code

li = [14, 12, 4, 18]
n = 2

if findNoIsDivisibleOrNot(n, li) == 1:

 print ("Yes")

else:
 print ("No")

output:
Yes

2. Read a list of numbers and print the sum of odd integers and even integers from the list.(Ex: [23, 10,
15, 14, 63], odd numbers sum = 101, even numbers sum = 24)

Python Program to find Sum of Even and Odd Numbers in a List

NumList = []

Even_Sum = 0

Odd_Sum = 0

Number = int(input("Please enter the Total Number of List Elements: "))

for i in range(1, Number + 1):

 value = int(input("Please enter the Value of %d Element : " %i))
 NumList.append(value)

for j in range(Number):
 if(NumList[j] % 2 == 0):

 Even_Sum = Even_Sum + NumList[j]

 else:
 Odd_Sum = Odd_Sum + NumList[j]

print("\nThe Sum of Even Numbers in this List = ", Even_Sum)

print("The Sum of Odd Numbers in this List = ", Odd_Sum)

output:

Please enter the Total Number of List Elements: 5
Please enter the Value of 1 Element : 23

Please enter the Value of 2 Element : 15

Please enter the Value of 3 Element : 10
Please enter the Value of 4 Element : 14

Please enter the Value of 5 Element : 63
The Sum of Even Numbers in this List = 24

The Sum of Odd Numbers in this List = 101

3. Read a list of numbers and print numbers present in odd index position. (Ex: [10, 25, 30, 47, 56, 84,

96], The numbers in odd index position: 25 47 84).

test_list =[10, 25, 30, 47, 56, 84, 96]

printing original list
print("The original list : " + str(test_list))

using naive method

Separating odd and even index elements
odd_i = []

for i in range(0, len(test_list)):

 if i % 2:
 odd_i.append(test_list[i])

res = odd_i

print result

print("odd index list: " + str(res))

output:

The original list : [10, 25, 30, 47, 56, 84, 96]

odd index list: [25, 47, 84]

4. Read a list of numbers and remove the duplicate numbers from it. (Ex: Enter a list with duplicate

elements: 10 20 40 10 50 30 20 10 80, The unique list is: [10, 20, 30, 40, 50, 80])

Program:
def Remove(duplicate):

 final_list = []

 for num in duplicate:
 if num not in final_list:

 final_list.append(num)

 return final_list

Driver Code

duplicate = [10,20, 40 ,10, 50, 30, 20, 10, 80]

print(Remove(duplicate))

output:

[10, 20, 40, 50, 30, 80]

1.Given a list of tuples. Write a program to find tuples which have all elements divisible by K from a list of tuples.

test_list = [(6, 24, 12), (60, 12, 6), (12, 18, 21)], K = 6, Output : [(6, 24, 12), (60, 12, 6)]

Program:

test_list = [(6, 24, 12), (60, 12, 6), (12, 18, 21)]
printing original list

print("The original list is : " + str(test_list))

initializing K

K = 6

all() used to filter elements

res = [sub for sub in test_list if all(ele % K == 0 for ele in sub)]

printing result
print("K Multiple elements tuples : " + str(res))

output:
The original list is : [(6, 24, 12), (60, 12, 6), (12, 18, 21)]

K Multiple elements tuples : [(6, 24, 12), (60, 12, 6)]

2. Given a list of tuples. Write a program to filter all uppercase characters tuples from given list of tuples. (Input:

test_list = [(“GFG”, “IS”, “BEST”), (“GFg”, “AVERAGE”), (“GfG”,), (“Gfg”, “CS”)], Output : [(„GFG‟, „IS‟,

„BEST‟)]).

Program:
test_list = [("GFG", "IS", "BEST"), ("GFg", "AVERAGE"), ("GFG",), ("Gfg", "CS")]

printing original list
print("The original list is : " + str(test_list))

res_list = []
for sub in test_list:

 res = True

 for ele in sub:

 # checking for uppercase

 if not ele.isupper():

 res = False
 break

 if res:

 res_list.append(sub)

printing results

print("Filtered Tuples : " + str(res_list))

output:

The original list is : [('GFG', 'IS', 'BEST'), ('GFg', 'AVERAGE'), ('GFG',), ('Gfg', 'CS')]

Filtered Tuples : [('GFG', 'IS', 'BEST'), ('GFG',)]

3. Given a tuple and a list as input, write a program to count the occurrences of all items of the list in the tuple.

(Input : tuple = ('a', 'a', 'c', 'b', 'd'), list = ['a', 'b'], Output : 3)

Program:

from collections import Counter

def countOccurrence(tup, lst):

 counts = Counter(tup)

 return sum(counts[i] for i in lst)

Driver Code

tup = ('a', 'a', 'c', 'b', 'd')
lst = ['a', 'b']

print(countOccurrence(tup, lst))

output:

3

1. Write a program to generate and print a dictionary that contains a number (between 1 and n) in

the form (x, x*x).

 Program:

n=int(input("Input a number "))

d = dict()

for x in range(1,n+1):

 d[x]=x*x

print(d)

output:
Input a number 5

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

2. Write a program to perform union, intersection and difference using Set A and Set B.

Program:

A = {0, 2, 4, 6, 8};

B = {1, 2, 3, 4, 5};

union

print("Union :", A | B)

intersection

print("Intersection :", A & B)

difference

print("Difference :", A - B)

symmetric difference
print("Symmetric difference :", A ^ B)

output:

Union : {0, 1, 2, 3, 4, 5, 6, 8}

Intersection : {2, 4}

Difference : {0, 8, 6}

Symmetric difference : {0, 1, 3, 5, 6, 8}

3. Write a program to count number of vowels using sets in given string (Input : “Hello World”,

Output: No. of vowels : 3)

Program:

def vowel_count(str):

 # Initializing count variable to 0

 count = 0

 # Creating a set of vowels

 vowel = set("aeiouAEIOU")

 # Loop to traverse the alphabet

 # in the given string

 for alphabet in str:

 # If alphabet is present

 # in set vowel
 if alphabet in vowel:

 count = count + 1

 print("No. of vowels :", count)

Driver code

str = "Hello World"

Function Call

vowel_count(str)

output:
No. of vowels : 3

4.Write a program to form concatenated string by taking uncommon characters from two strings

using set concept (Input : S1 = "aacdb", S2 = "gafd", Output : "cbgf").

Program:
def uncommonConcat(str1, str2):

 # convert both strings into set

 set1 = set(str1)

 set2 = set(str2)

 # take intersection of two sets to get list of

 # common characters
 common = list(set1 & set2)

 # separate out characters in each string
 # which are not common in both strings

 result = [ch for ch in str1 if ch not in common] + [ch for ch in str2 if ch not in common]

 # join each character without space to get

 # final string

 print(''.join(result))

Driver program

if __name__ == "__main__":

 str1 = 'aacdb'
 str2 = 'gafd'

 uncommonConcat(str1,str2)

output:

cbgf

a.Create a empty dictionary with dict() method

Creating an empty Dictionary

Dict = {}

print("Empty Dictionary: ")

print(Dict)

output:

Empty Dictionary:

{}

b. Add elements one at a time

Creating an empty Dictionary
Dict = {}
print("Empty Dictionary: ")
print(Dict)

Adding elements one at a time
Dict[0] = 'Geeks'
Dict[2] = 'For'
Dict[3] = 1
print("\nDictionary after adding 3 elements: ")
print(Dict)

output:

Empty Dictionary:

{}

Dictionary after adding 3 elements: {0: 'Geeks', 2: 'For', 3: 1}

3. Update existing key‟s value

Creating an empty Dictionary

Dict = {}

print("Empty Dictionary: ")

print(Dict)

Adding elements one at a time

Dict[0] = 'Geeks'

Dict[2] = 'For'

Dict[3] = 1

print("\nDictionary after adding 3 elements: ")

print(Dict)

Updating existing Key's Value

Dict[2] = 'Welcome'

print("\nUpdated key value: ")

print(Dict)

output:

Empty Dictionary: {}

Dictionary after adding 3 elements:{0: 'Geeks', 2: 'For', 3: 1}

Updated key value: {0: 'Geeks', 2: 'Welcome', 3: 1}

4.Access an element using a key and also get() method

dic = {"A": 1, "B": 2}

print(dic.get("A"))

print(dic.get("C"))

print(dic.get("C", "Not Found ! "))

output:

1

None

Not Found !

5. Deleting a key value using del() method

thisdict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
del thisdict["model"]
print(thisdict)

output:
{'brand': 'Ford', 'year': 1964}

6.pop() method

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.pop("model")

print(thisdict)

output:

{'brand': 'Ford', 'year': 1964}

7. popitem() method

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.popitem()

print(thisdict)

output:

{'brand': 'Ford', 'model': 'Mustang'}

8.clear() method

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.clear()

print(thisdict)

output:

{}

9. Given a dictionary, write a program to find the sum of all items in the dictionary.

dic={ 'x':455, 'y':223, 'z':300, 'p':908 }

print("Dictionary: ", dic)

#using sum() and values()

print("sum: ",sum(dic.values()))

output:

Dictionary: {'x': 455, 'y': 223, 'z': 300, 'p': 908}

sum: 1886

10. Write a program to merge two dictionaries using update() method
def Merge(dict1, dict2):
 res = {**dict1, **dict2}
 return res

Driver code
dict1 = {'a': 10, 'b': 8}
dict2 = {'d': 6, 'c': 4}
dict3 = Merge(dict1, dict2)
print(dict3)

output:

{'a': 10, 'b': 8, 'd': 6, 'c': 4}

1. Given a string, write a program to check if the string is symmetrical and palindrome or not. A string is said to be

symmetrical if both the halves of the string are the same and a string is said to be a palindrome string if one half of

the string is the reverse of the other half or if a string appears same when read forward or backward.

Program:

string = 'amaama'
half = int(len(string) / 2)

if len(string) % 2 == 0: # even
 first_str = string[:half]
 second_str = string[half:]
else: # odd
 first_str = string[:half]
 second_str = string[half+1:]

symmetric
if first_str == second_str:
 print(string, 'string is symmertical')
else:
 print(string, 'string is not symmertical')

palindrome
if first_str == second_str[::-1]: # ''.join(reversed(second_str)) [slower]
 print(string, 'string is palindrome')
else:
 print(string, 'string is not palindrome')

output:

amaama string is symmertical

amaama string is palindrome

2. Write a program to read a string and count the number of vowel letters and print all letters except 'e' and 's'.

str=input("Please enter a string as you wish: ");

vowels=0

for i in str:

 if(i == 'a'or i == 'i'or i == 'o'or i == 'u' or

 i == 'A'or i == 'E'or i == 'I'or i == 'O'or i == 'U'):

 vowels=vowels+1;#vowel counter is incremented by 1

print("The number of vowels:",vowels);

output:

Please enter a string as you wish: fruites

The number of vowels: 2

3. Write a program to read a line of text and remove the initial word from given text. (Hint: Use split() method,

Input : India is my country. Output : is my country)

test_str = "India is my country"

printing original string
print("The original string is : " + test_str)

Using split()
Removing Initial word from string

res = test_str.split(' ', 1)[1]

printing result

print("The string after omitting first word is : " + str(res))

output:
The original string is : India is my country

The string after omitting first word is : is my country

4. Write a program to read a string and count how many times each letter appears. (Histogram).

def letterFrequency(fileName, letter):
 # open file in read mode

 file = open(fileName, "r")

 # store content of the file in a variable

 text = file.read()

 # declare count variable
 count = 0

 # iterate through each character
 for char in text:

 # compare each character with
 # the given letter

 if char == letter:

 count += 1

 # return letter count

 return count

call function and display the letter count

print(letterFrequency('kiran.txt', 'a'))

Text file: malayalam is a language
Output:

1.A generator is a function that produces a sequence of results instead of a single value. Write a generator function

for Fibonacci numbers up to n.

Program:

def fib(num):

 a = 0

 b = 1

 for i in range(num):

 yield a

 a, b = b, a + b # Adds values together then swaps them

for x in fib(100):

 print(x)

output:
0

1

1

2

3

5

8

13

21

34

2. Write a function merge_dict(dict1, dict2) to merge two Python dictionaries.

Program:

def Merge(dict1, dict2):
 return(dict2.update(dict1))

Driver code
dict1 = {'a': 10, 'b': 8}
dict2 = {'d': 6, 'c': 4}

This return None
print(Merge(dict1, dict2))

changes made in dict2
print(dict2)

output:

None

{'d': 6, 'c': 4, 'a': 10, 'b': 8}

3.Write a fact() function to compute the factorial of a given positive number.

Program:

num = int(input("Enter a number: "))

factorial = 1

if num < 0:

 print(" Factorial does not exist for negative numbers")

elif num == 0:

 print("The factorial of 0 is 1")

else:

 for i in range(1,num + 1):

 factorial = factorial*i

 print("The factorial of",num,"is",factorial)

output:

Enter a number: 5

The factorial of 5 is 120

4. Given a list of n elements, write a linear_search() function to search a given element x in a list.

Progam:

def linearsearch(arr, x):

 for i in range(len(arr)):

 if arr[i] == x:

 return i
 return -1

arr = ['t','u','t','o','r','i','a','l']

x = 'a'
print("element found at index "+str(linearsearch(arr,x)))

output:

element found at index 6

1. Write a program to demonstrate the working of built-in statistical functions mean(), mode(), median() by

importing statistics library.

Mean:

n_num = [1, 2, 3, 4, 5]

n = len(n_num)

get_sum = sum(n_num)

mean = get_sum / n

print("Mean is: " + str(mean))

output:
Mean is: 3.0

Median:
n_num = [1, 2, 3, 4, 5]

n = len(n_num)

n_num.sort()

if n % 2 == 0:

 median1 = n_num[n//2]

 median2 = n_num[n//2 - 1]
 median = (median1 + median2)/2

else:

 median = n_num[n//2]
print("Median is: " + str(median))

output:
Median is: 3

Mode:

import statistics

set1 =[1, 2, 3, 3, 4, 4, 4, 5, 5, 6]

print("Mode of given data set is % s" % (statistics.mode(set1)))

output:
Mode of given data set is 4

2.Write a program to demonstrate the working of built-in trignometric functions sin(), cos(), tan(), hypot(),

degrees(), radians() by importing math module.

Program:

import math

print(math.sin(math.pi/3)) #pi/3 radians is converted to 60 degrees

print(math.tan(math.pi/3))

print(math.cos(math.pi/6))

print(math.hypot(2,2))
 math.radians(30)

math.degrees(math.pi/6)

output:

0.8660254037844386

1.7320508075688767

0.8660254037844387

2.8284271247461903

0.5235987755982988

29.999999999999996

3. Write a program to demonstrate the working of built-in Logarithmic and Power functions exp(), log(), log2(),

log10(), pow() by importing math module.

import math

returning the exp of 4

print ("The e**4 value is : ", end="")

print (math.exp(4))

returning the log of 2,3

print ("The value of log 2 with base 3 is : ", end="")

print (math.log(2,3))

returning the log2 of 16

print ("The value of log2 of 16 is : ", end="")
print (math.log2(16))

returning the log10 of 10000

print ("The value of log10 of 10000 is : ", end="")
print (math.log10(10000))

print ("The value of 3 to the power 2 is : ", end="")
print (math.pow(3,2))

output:

The e**4 value is : 54.598150033144236

The value of log 2 with base 3 is : 0.6309297535714574

The value of log2 of 16 is : 4.0
The value of log10 of 10000 is : 4.0

The value of 3 to the power 2 is : 9.0

4. Write a program to demonstrate the working of built-in numeric functions ceil(), floor(), fabs(), factorial(), gcd()

by importing math module.

Program:

import math

my_int = 4.5467

print (math.ceil(my_int))

my_int = 4.5467

print (math.floor(my_int))

my_int = 4.5467

print (math.fabs(my_int))

my_val_1 = 8

my_val_2 = -6.9

print(math.copysign(my_val_1, my_val_2))

a = 5

returning the factorial of 5

print("The factorial of 5 is : ", end="")

print(math.factorial(a))

a = 15

b = 5

returning the gcd of 15 and 5

print ("The gcd of 5 and 15 is : ", end="")

print (math.gcd(b, a))

output:

5
4

4.5467

-8.0
The factorial of 5 is : 120

The gcd of 5 and 15 is : 5

1. Write a program to create a BankAccount class. Your class should support the following methods for

i) Deposit

ii) Withdraw

iii) GetBalanace

Program:

class Bank:

 def __init__(self):
 self.balance = 0

 print ("The account is created")

 def deposit(self):

 amount = float(input("Enter the amount to be deposit: "))

 self.balance = self.balance + amount

 print ("The deposit is successful and the balance in the account is %f" % self.balance)

 def withdraw(self):

 amount = float(input("Enter the amount to withdraw: "))
 if (self.balance >= amount):

 self.balance = self.balance - amount

 print ("The withdraw is successful and the balance is %f" % self.balance)

 else:
 print ('Insuficient Balance')

 def getbalance(self):
 print ("Balance in the account is %f" % self.balance)

acc = Bank()

acc.deposit()

acc.withdraw()

acc.getbalance()

output:

The account is created

Enter the amount to be deposit: 20000

The deposit is successful and the balance in the account is 20000.000000
Enter the amount to withdraw: 15000

The withdraw is successful and the balance is 5000.000000

Balance in the account is 5000.000000

2. Create a SavingsAccount class that behaves just like a BankAccount, but also has an interest rate and a method

that increases the balance by the appropriate amount of interest (Hint:use Inheritance).

3. Write a program to create an employee class and store the employee name, id, age, and salary using the

constructor. Display the employee details by invoking employee_info() method and also using dictionary (__dict__).

Program:

class Employee:

 __id=0

 __name=""

 __gender=""
 __city=""

 __salary=0

 # function to set data

 def setData(self,id,name,gender,city,salary):

 self.__id= id

 self.__name = name

 self.__gender = gender

 self.__city = city

 self.__salary = salary

 # function to get/print data
 def showData(self):

 print("Id\t\t:",self.__id)

 print("Name\t:", self.__name)

 print("Gender\t:", self.__gender)

 print("City\t:", self.__city)

 print("Salary\t:", self.__salary)

main function definition

def main():

 #Employee Object

 emp=Employee()
 emp.setData(1,'pankaj','male','delhi',55000)

 emp.showData()

if __name__=="__main__":

 main()

output:

Id : 1

Name : pankaj

Gender : male

City : delhi
Salary : 55000

4. Access modifiers in Python are used to modify the default scope of variables. Write a program to demonstrate the

3 types of access modifiers: public, private and protected.

class Super:

 # public data member
 var1 = None

 # protected data member
 _var2 = None

 # private data member
 __var3 = None

 # constructor
 def __init__(self, var1, var2, var3):
 self.var1 = var1
 self._var2 = var2
 self.__var3 = var3

 # public member function
 def displayPublicMembers(self):

 # accessing public data members
 print("Public Data Member: ", self.var1)

 # protected member function
 def _displayProtectedMembers(self):

 # accessing protected data members
 print("Protected Data Member: ", self._var2)

 # private member function
 def __displayPrivateMembers(self):

 # accessing private data members
 print("Private Data Member: ", self.__var3)

 # public member function
 def accessPrivateMembers(self):

 # accessing private member function
 self.__displayPrivateMembers()

derived class
class Sub(Super):

 # constructor
 def __init__(self, var1, var2, var3):
 Super.__init__(self, var1, var2, var3)

 # public member function
 def accessProtectedMembers(self):

 # accessing protected member functions of super class
 self._displayProtectedMembers()

creating objects of the derived class
obj = Sub("Geeks", 4, "Geeks !")

calling public member functions of the class
obj.displayPublicMembers()
obj.accessProtectedMembers()
obj.accessPrivateMembers()

Object can access protected member

Output:
Public Data Member: Geeks

Protected Data Member: 4

Private Data Member: Geeks !

1. Write a program to find the maximum and minimum K elements in Tuple using slicing and sorted() method

(Input: test_tup = (3, 7, 1, 18, 9), k = 2, Output: (1,3, 9, 18))

Program:

initializing tuple

test_tup = (3, 7, 1, 18, 9)

printing original tuple

print("The original tuple is : " + str(test_tup))

initializing K

K = 2

Maximum and Minimum K elements in Tuple

Using slicing + sorted()

test_tup = list(test_tup)

temp = sorted(test_tup)

res = tuple(temp[:K] + temp[-K:])

printing result

print("The extracted values : " + str(res))

output:

The original tuple is : (3, 7, 1, 18, 9)

The extracted values : (1, 3, 9, 18)

2.
Write a program to find the size of a tuple using getsizeof() method from sys module and built-in __sizeof__()

method.

Program:

import sys

sample Tuples

Tuple1 = ("A", 1, "B", 2, "C", 3)
Tuple2 = ("Geek1", "Raju", "Geek2", "Nikhil", "Geek3", "Deepanshu")

Tuple3 = ((1, "Lion"), (2, "Tiger"), (3, "Fox"), (4, "Wolf"))

print the sizes of sample Tuples

print("Size of Tuple1: " + str(sys.getsizeof(Tuple1)) + "bytes")

print("Size of Tuple2: " + str(sys.getsizeof(Tuple2)) + "bytes")
print("Size of Tuple3: " + str(sys.getsizeof(Tuple3)) + "bytes")

print("Size of Tuple1: " + str(Tuple1.__sizeof__()) + "bytes")

print("Size of Tuple2: " + str(Tuple2.__sizeof__()) + "bytes")
print("Size of Tuple3: " + str(Tuple3.__sizeof__()) + "bytes")

output:

Size of Tuple1: 44bytes

Size of Tuple2: 44bytes

Size of Tuple3: 36bytes

Size of Tuple1: 36bytes

Size of Tuple2: 36bytes

Size of Tuple3: 28bytes

	SUBJECT NAME: APPLICATION DEVELOPMENT WITH PYTHON
	MODULE-1
	Abstraction:
	Whenever we omit some details of a problem to construct an abstraction, we construct a model of the problem. In everyday life, we use the principle of abstraction frequently to understand a problem or to assess a situation.
	Decomposition:
	Functional Decomposition:
	Steps for the Functional Decomposition:

	SDLC Activities
	Communication
	Requirement Gathering
	Feasibility Study
	System Analysis
	Software Design
	Coding
	Testing
	Integration
	Implementation
	Operation and Maintenance
	Disposition

	Software Project
	Software Management Activities
	Project Planning
	Scope Management
	Project Estimation
	Project Estimation Techniques
	Decomposition Technique
	Empirical Estimation Technique

	Project Scheduling
	Software engineering is an engineering branch associated with development of software product using well-defined scientific principles, methods and procedures. The outcome of software engineering is an efficient and reliable software product.
	Definitions
	1. INTRODUCTION
	2. REQUIREMENTS
	Characteristics of Requirements
	Categorization of Requirements
	Functional Requirements
	Identifying Functional Requirements

	Preparing Software Requirements Specifications
	We show here how to extract functional requirements when a problem statement is given. The case under study is a online voting system.

	5. CASE STUDY
	Identification of functional requirements
	Identification of non-functional requirements

