DIGITAL LOGIC DESIGN NUMBER SYSTEM

Presented by
Mr. K.M.D.Rajesh babu,
Assistant Professor,
Department of ECE, Vemu Institute of Technology

MODULE-III NUMBERSYSTEMS

Number systems: Complements of Numbers, Codes- Weighted and Non-weighted codes and its Properties, Parity check code and Hamming code.

Boolean Algebra: Basic Theorems and Properties, Switching Functions- Canonical and Standard Form, Algebraic Simplification, Digital Logic Gates, EX-OR gates, Universal Gates, Multilevel NAND/NOR realizations

- Number System is a way to represent the numbers in the computer architecture. There are four different types of the number system, such as:
* Binary number system (base 2)
* Octal number system (base 8)
* Decimal number system(base 10)
* Hexadecimal number system (base 16).

BINARY	OCTAL	DECIMAL	HEXA DECIMAL
Has 2 symbols	Has 8 symbols	Has 10symbols	Has 16 symbols
Symbols are 0,1	Symbols are $0,1,2,3,4,5,6$ and7	Symbols are from $0-9$	Symbols are from $0-9$ and A,B,C,D,E,F
BIT position value system	Position value system	Position value system	Position value system
Value expressed in base of 2	Value expressed in base of 8	Value expressed in base of 10	Value expressed in base of 16
$(101010)_{2}$	$(765)_{8}$	$(925)_{10}$	(F2F1)16

REPRESENTATION OF NUMBERS: Binary

Facts to Remember:

- Binary numbers are made up of only 0's and 1's.
- A binary number is represented with a base-2
- A bit is a single binary digit.

Binary system
01010101

2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

REPRESENTATION OF NUMBERS: Octal

Octal Point
Octal Numbering System (base 8)

$$
\text { Characters }=0,1,2,3,4,5,6,7
$$

$$
437=4 \times 64+3 \times 8+7 \times 18
$$

REPRESENTATION OF NUMBERS: Decimal

10^{4}	10^{3}	10^{2}	10	1		10	10	10	10^{-4}	\leftarrow Weights
S_{4}	S_{3}	S_{2}	S_{1}	S_{0}	.	S-1	S-2	S-3	S-4	
$\stackrel{\uparrow}{\text { MSD }}$						p			$\stackrel{\uparrow}{\text { LSD }}$	

Units Decimal Point
$10 \times$ Smatier

REPRESENTATION OF NUMBERS: Hexa decimal

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Hexadecimal Weighting $16^{3} 16^{2} 16^{1} 16^{0}$ $5 \mathrm{C} 8 \mathrm{~A}_{16}$

Conversion between Numbers: Binary to Decimal

10101
Hence, $10101_{2}=21_{10}$

Convert Binary to Decimal number in C

Find the equivalent decimal number for binary 10102

Placevaives	2^{3}	2^{2}	2^{1}	2°
Binary	1	0	1	0
Conversion	1×2^{3}	0×2^{2}	1×2^{1}	$0 \times 2^{\circ}$
Decimal	$8+0+2+0$			
		10		

Conversion between Numbers: Octal to Decimal

Octalto Decimal Conversion Firnd the equivalert decimal ruember for octal 143 s

$\left(\begin{array}{lll}1 & 7 & 2\end{array}\right) \mathrm{s} \longrightarrow$ Octal number
$8^{0} * 2=2$
$8^{1} * 7=56$
$8^{2} * 1=64$
$(172)_{8}=(2+56+64)_{10}$
$(172)_{\mathrm{s}}=(122)_{10}$

Conversion between Numbers: Hexadecimal to Decimal

Decimal Number: 427

Conversion between Numbers: Decimal to Binary

Successive Division by 2

Remainders
$\begin{array}{ll}1 & \text { LSB } \\ 0 & \\ 1 & \\ 1 & \\ 1 & \text { MSB }\end{array}$
Read the remainders from the bottom up

Answer $=.00110($ (for fice sipificant dipis)

Conversion between Numbers: Decimal to Octal

Multiplication	Result	Integer Portion	Fraction Portion
0.45×8	3.60		3
0.60			
0.60×8	4.80		4.80
0.80×8	6.40		6
0.40×8	3.20		3.20
0.20×8	1.60	\vee	1.60

$(.45)_{10}=(.34631 . .)_{8}$

Conversion between Numbers: Decimal to Hexadecimal

Remainders

Multiplication	Repult	Integer Portion	Fraction Portion
0.85×16	13.60	$\boxed{13}(0)$.60
0.60×16	9.60	\vee	9.60
0.60×16	9.60	9.60	

$|.85|_{10}=\{1.099 .1 . \mid 6$

Octal to Binary

Binary to Octal

\left.| Binary Number: | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Group of three digits: | 101010011.110100 | | | | | | |
| Octal Equivalent: | 5 | 2 | 3 | 6 | | | |$\right)$

To convert binary numbers into octal ones, you only have to make 3 -bit groups and convert directly each group:

Hexa to Binary
Converting Hex to Binary

Find the Hex Equivalentfor Binary 1011010
1011010
gromp 2 Eroup 1

Group 2 containing onity 3 bits, so add O to the tefn

Binary 01010010 is equal to $5 A$

$$
01010010_{2}=5 A_{16}
$$

To convert binary numbers into hexadecimals, you only have to make 4-bit groups and convert directly each group:

Number Conversion chart

Number Conversion chart

Complements

r's Complements Ex: 2's and 10's .

r's compliment of N is defined as

$$
r^{n}-N
$$

$r-1$'s complements Ex: 1's and 9's
$(r-1)$'s compliment of N is defined as

$$
\left(r^{n}-1\right)-N
$$

Subtraction using 1's Complement

1. Take the minuend as it is and 1 'c of subtrahend
2. Add the 1 ' C of subtrahend to minuend
3. If carry come in MSB remove the carry and add it to the 'sum' to get result
4. If carry does not come in MSB 1'C of 'sum' is the result

Subtraction using 1's Complement

1. Take the minuend as it is and 1 ' c of subtrahend
2. Add the 1'C of subtrahend to minuend
3. If carry come in MSB remove the carry and add it to the 'sum' to get result
4. If carry does not come in MSB 1'C of 'sum' is the result

$$
1111
$$

$\begin{array}{lllll}0 & 1 & 0 & 1 & \text { Answer }\end{array}$

Subtraction using 2's Complement

1. Take the minuend as it is and 2 ' c of subtrahend
2. Add the 2'C of subtrahend to minuend
3. If carry come in MSB discord the end carry and remaining value is the result
4. If carry does not come in MSB 2'C of 'sum' is the result
Given the two binary numbers $X=1010100$ and $Y=1000011$, perform the subtraction (a) $X-Y$ and $($ b) $Y-X$ using 2 's complements.
(a)

$X=$	1010100
2 l complement of $Y=$	+0111101
Sum =	10010001
Discard end carry ${ }^{2}=$	-1000000
Answer: $X-Y=$	0010001

Subtraction using 2's Complement

1. Take the minuend as it is and 2 'c of subtrahend
2. Add the 2'C of subtrahend to minuend
3. If carry come in MSB discord the end carry and remaining value is the result
4. If carry does not come in MSB 2'C of 'sum' is the result

$$
Y=\quad 1000011
$$

2's complement of $X=\quad+0101100$
Sum $=\quad 1101111$
There is no end carry.
Answer: $Y-X=-(2$'s complement of 1101111$)=-0010001$

Using 10 's complement, subtract 72532 - 3250 .

$$
M=\quad 72532
$$

10^{\prime} s complement of $N=+\underline{96750}$

$$
\text { Sum }=169282
$$

Discard end carry $10^{5}=\quad-100000$

$$
\text { Answer }=69282
$$

ANALOG AND DIGITAL ELECTRONICS BINARY CODES

1.The main characteristic of a weighted code is, each binary bit is assigned by a "weight" and values depend on the position of the binary bit.
2.The sum of the weights of these binary bits, whose value is 1 is equal to the decimal digit which they represent.
3.In other words, if $\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3$ and w 4 are the weights of the binary digits, and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ and x 4 are the corresponding bit values, then the decimal digit $\mathrm{N}=\mathrm{w} 4 \times 4+\mathrm{w} 3 \times 3+\mathrm{w} 2 \times 2+\mathrm{w} 1 \times 1$ is represented by the binary sequence $\mathrm{x} 4 \times 3 \times 2 \times 1$.

- Two types binary codes
1.Weighted Binary Systems and
2.Non Weighted Codes.
- Weighted binary codes are those which follow the positional weighting principles wherein each position of the number represents a specific weight.

Ex: BCD(8421), 84-2-1, 2421, and $5043210 \ldots$

- Non-weighted codes are codes that are not placed weighted. It means that each position within the binary number is not assigned a fixed value.

Ex: Excess-3 and Gray codes

Binary codes for the decimal digits

$\begin{aligned} & \text { Deifinal } \\ & \text { dif } \end{aligned}$	${ }_{8}^{400}$	Erese 3	84.11	291	Biviny
0	amo	011	1000	mom	DIomeol
I	000	0100	1111	moll	OIOMOM
!	010	000	010	010	OIMOM
3	011	010	01010	10.11	100100
4	0100	0.11	0100	0100	H11000
;	000	100	1011	10.1	1 1000\|
6	0110	100	100	1100	1 movio
1	0111	100	101	100	100010
8	100	191	100	110	10000
9	100	1100	1111	11.1	10000

Decimal	BCD				Excess-3$B C D+0011$			
		4	2	1				
0	0	0	0	0		0	1	1
1		0	0	1		1	1	0
2		0	1	0		1	1	1
3	0	0	1	1		1	1	0
4		1	0	0		1	1	1
5	0	1	0	1		0	0	
6		1	1	0		0	0	1
7		1	1	1		0		0
8		0	0	0		0	0	
9	1	0	0	1		1	1	

Grey Code to Binary Conversion

Convert the Grey cocte 1010 to its equivalent Binacry

i.e

$$
\begin{aligned}
& b(3)=g(3) \\
& b(2)=b(3) \oplus g(2) \\
& b(1)=b(2) \oplus g(1) \\
& b(a)=b(1) \oplus g(0)
\end{aligned}
$$

Binary To Gray Conversion

* Convert $(10110)_{2}$ to gray code

$$
(10110)_{2}=(11101)_{\text {Gray }}
$$

Decimal		BCD			Gray
0	0	0	0	0	
1	0	0	0	1	0
2	0	0	1	0	0
0	0	0			
3	0	0	1	1	0
0	1	0	0	0	1
0	1				
4	0	1	0	1	0
0	0	1	1	0	1
0	1	0			
6	0	1	1	1	1

DIGITAL LOGIC DESIGN
 PARITY CHECK CODE AND HAMMING CODE.

Presented by
Mr. K.M.D.Rajesh babu,
Assistant Professor,
Department of ECE, Vemu institute of Technology

Parity check code

- Parity check is a simple way to add redundancy bits to the packets such that the total number of 1 's is even (or odd).
- A single bit is appended to the end of each frame, the bit is 1 if the data portion of the frame has odd number of 1 's. Otherwise, it is 0 .
- The total number of 1 's in each data frame is always even.
- The problem with this approach is that if there are even number of errors, it can not be detected
- Therefore it has a one bit error detection capability but no error correction capability.

Networks must be able to transfer data from one device to another with complete accuracy.
\star Data can be corrupted during transmission.

* For reliable communication, errors must be detected and corrected.
\star Error detection and correction are implemented either at the data link layer or the transport layer of the OSI model.

0 changed to 1

Two errors

Sent

Burst error

Received

Parity bits

Decimal no.	Message bits	Parity bits (even)	Parity bits (odd)
0	000	0	1
1	001	1	0
2	010	1	0
3	011	0	1
4	100	1	0
5	101	0	1
6	110	0	1
7	111	1	0

Hamming code

- It is an error detection and correction code
- Invented by Richard W. Hamming
- Steps involved in the Hamming code

1. Selecting the number of redundant bits
2. Choosing the location of redundant bits
3. Assigning the values to redundant bits
4. How to detect and correct the error in the hamming code?

- Selecting the number of parity bits

$$
2^{P} \geq n+P+1
$$

For example msg bits $\mathrm{n}=4$
Let $\mathrm{p}=2$

$$
\begin{aligned}
& 2^{2} \geq 4+2+1 \\
& 4 \geq 7(\text { condition fail })
\end{aligned}
$$

Let $\mathrm{p}=3$

$$
\begin{gathered}
2^{3} \geq 4+2+1 \\
8 \geq 8(\text { condition true })
\end{gathered}
$$

So select 3 parity bits for 4 bit message to create hamming code
2. Choosing the location of parity bits

Bit Location	7	6	5	4	3	2	1
Bit designation	D4	D3	D2	P3	D1	P2	P1
Binary representation	111	110	101	100	011	010	001

3. Assigning the values to parity bits

Bit Location	7	6	5	4	3	2	1
Bit designation	D4	D3	D2	P3	D1	P2	P1
Binary representation	111	110	101	100	011	010	001
(data bits)							
(parity bits)							

$$
\begin{aligned}
& P_{1}=3 \operatorname{xor} 5 \operatorname{xor} 7 \\
& P_{2}=3 \operatorname{xor} 6 \operatorname{xor} 7 \\
& P_{3}=5 \operatorname{xor} 6 \operatorname{xor} 7
\end{aligned}
$$

- How to detect and correct the error in the hamming code?.
- Given the 4 bit data word 1010, generate the 18 bit composite word for the hamming code that corrects and detects single errors.

Bit Location	7	6	5	4	3	2	1
Bit designation	D4	D3	D2	P3	D1	P2	P1
Binary representation	111	110	101	100	011	01 0	001
(data bits)							
(parity bits)							

DIGITAL LOGIC DESIGN BOOLEAN ALGEBRA

Presented by

Mr. K.M.D.Rajesh babu,
Assistant Professor,
Department of ECE, Vemu Institute of Technology

Theorem Name	$A N D$ form	$O R$ form
Identity	$1 \cdot A=A$	$0+A=A$
Null law	$0 . A=0$	$1+A=1$
Idempotent law	$A \cdot A=A$	$A+A=A$
Inverse law	$A A^{\prime}=0$	$A+A^{\prime}=1$
Commutative law	$A B=B A$	$A+B=B+A$
Associate law	$(A B) C=A(B C)$	$(A+B)+C=A+(B+C)$
Distributive law	$A+B C=$ $(A+B)(A+C)$	$A(B+C)=A B+A C$
Absorption law	$A(A+B)=A$	$A+A B=A$
De Morgan's law	$(A B)^{\prime}=A^{\prime}+B^{\prime}$	$(A+B)^{\prime}=A^{\prime} B^{\prime}$

(1) $\times \cdot 0=0$
(2) $x \cdot 1=x$

(3) $x \cdot x=x$

(4) $x \cdot \bar{x}=0$
(5) $x+0=x$

(6) $x+1=1$

(7) $x+x=x$

(8) $x+\bar{x}=1$

- Consensus
$A B+A^{\prime} C+B C=A B+A^{\prime} C$
$(A+B)\left(A^{\prime}+C\right)(B+C)=(A+B)\left(A^{\prime}+C\right)$
- Transposition theorem
$(A+B)(A+C)=A+B C$
- Simplify the expression $y=A B^{\prime} D+A B^{\prime} D^{\prime}$
- Simplify the expression $X=A C D+A^{\prime} B C D$
- Simplify $A B^{\prime}+A B C^{\prime}+A B^{\prime} C^{\prime} D=A B^{\prime}+A C^{\prime}$
- Combinational circuits are more frequently constructed with NAND or NOR gates rather than AND and OR gates.
- It is important to be able to recognize the relationships between AND-OR and NAND or NOR.
- NAND and NOR universal gates.

multilevel NAND diagram

- From the given Boolean expression, draw the logic diagram with AND, OR, and inverter gates. Assume that both the normal and complement inputs are available.
- Convert all AND gates to NAND gates with AND-invert graphic symbols.
- Convert all OR gates to NAND gates with invert-OR graphic symbols.
- Check all small circles in the diagram. For every small circle that is not compensated by another small circle along the same line, insert an inverter (one-input NAND gate) or complement the input variable.


```
- \(F=A+(B O+C)(b O+B E C)\)
```

- From the given Boolean expression, draw the logic diagram with AND, OR, and inverter gates

(a) AND-OR diagram
- Convert all AND gates to NAND gates with AND-invert graphic symbols.
- Convert all OR gates to NAND gates with invert-OR graphic symbols

- NAND logic

- MULTI LEVEL NOR CIRCUITS

- From the given Boolean expression, draw the logic diagram with AND, OR, and inverter gates. Assume that both the normal and complement inputs are available.
- Convert all AND gates to NAND gates with AND-invert graphic symbols.
- Convert all OR gates to NAND gates with invert-OR graphic symbols.
- Check all small circles in the diagram. For every small circle that is not compensated by another small circle along the same line, insert an inverter (one-input NAND gate) or complement the input variable.

$$
\text { - } F=(A B+E)(C+D)
$$

Karnaugh Map Method - Up to five Variables, Don't Care Map Entries, Tabular Method.

Combinational Logic Circuits: Adders, Subtractors, comparators, Multiplexers, Demultiplexers, Encoders, Decoders and Code converters, Hazards and Hazard Free Relations.

KARANAUGHMAP

Boolean functions may be simplified by algebraic theorems. However, this procedure of minimization is awkward. KARANAUGH Map is a simple straightforward procedure. The map is made up of squares. Each square represents one minterm

A two-variable function has four possible minterms. We can rearrange these minterms into a Karnaugh map.

By recognizing various patterns, the user can derive alternative algebraic expressions for the same function, from which he can select the simplest one. We shall assume that the simplest algebraic expression is anyone in a sum of products or product of sums that has a minimum number of literals.

3 variable function

One square represents one minterm, giving a term of three literals.

- Two adjacent squares represent a term of two literals.
- Four adjacent squares represent a term of one literal.
- Eight adjacent squares encompass the entire map and produce a function that is always equal to 1.

Simplify the Boolean function $F(x, y, z)=\sum(2,3,4,5)$

FIGURE $3-4$
Map for Example 3-1; $F(x, y, z)=$ $\mathbf{\Sigma}(2,3,4,5)=x^{\prime} y+x y^{\prime}$

Given the following Boolean function:
$F=A^{\prime} C+A^{\prime} B+A B^{\prime} C+B C$
(a) Express it in sum of minterms, (b) Find the minimal sum of products expression,

4-variable K-map

m_{0}	m_{1}	m_{3}	m_{2}
m_{4}	m_{5}	m_{7}	m_{6}
m_{12}	m_{13}	m_{15}	m_{14}
m_{8}	m_{9}	m_{11}	m_{10}

$w^{\prime} \boldsymbol{x}^{\prime} \boldsymbol{y}^{\prime} z^{\prime}$	$w^{\prime} \boldsymbol{x}^{\prime} y^{\prime} \boldsymbol{z}$	$w^{\prime} x^{\prime} \boldsymbol{y} \boldsymbol{z}$	$w^{\prime} \boldsymbol{x}^{\prime} \boldsymbol{y} \mathbf{z}^{\prime}$
$w^{\prime} x y^{\prime} z^{\prime}$	$w^{\prime} x y^{\prime} z$	$w^{\prime} x \boldsymbol{y} \mathbf{z}$	$\boldsymbol{w}^{\prime} x \boldsymbol{y} \mathbf{z}^{\prime}$
$w x y^{\prime} \mathbf{z}^{\prime}$	$w x y^{\prime} \boldsymbol{z}$	$w x y z$	$w x y \mathbf{z}^{\prime}$
w $\boldsymbol{x}^{\prime} \boldsymbol{y}^{\prime} \boldsymbol{z}^{\prime}$	$w x^{\prime} y^{\prime} \boldsymbol{z}$	$w x^{\prime} \boldsymbol{y} \boldsymbol{z}$	$\boldsymbol{w} \boldsymbol{x}^{\prime} \boldsymbol{y} \boldsymbol{z}^{\prime}$

- 4 variable k-map has maximum of 16 minterms.
- Map has 16 square boxes
- Possibilities of adjacent squares

One square represents one minterm, giving a term of four literals.

Two adjacent squares represent a term of three literals.
Four adjacent squares represent a term of two literals.
Eight adjacent squares represent a term of one literal.

- Sixteen adjacent squares represent the function equal to 1 .

Simplify the Boolean function
$F(w, x, y, z)=\sum(0,1,2,4,5,6,8,9,12,13,14)$

- The map method of simplification: convenient for < 5 variable
- The tabulation method overcomes this difficulty: specific step-by-step procedure
- It is also known as the Quine-McCluskey method.
- The tabular method of simplification consists of two parts
- Exhaustive search for prime implicant
- Find least number of literals from prime implicant seacich any image in this area
- List of minterms that specify the function in first coloumn.
- The process compares each min term with every other minterm. If two min terms differ in only one variable, that variable is removed and remaining variables are considered.
- This process is repeated for every minterm until no further elimination of literals

Simplify the following Boolean function by using the tabulation method:
$F(w, x, y, z)=\sum(0,1,2,8,10,11,14, \mathrm{I} 5)$

Don't write or place any image in this area

Step I: Group binary representation of the minterms according to the number of 1's contained

Step2: Any two min terms that differ from each other by only one variable can be combined,
and the unmatched variable removed. The minterms in one section are compared with
those of the next section down only.
Step 3: The terms of column (b) have only three variables. The searching and comparing the two-variable terms of column (c).

Step 4: The unchecked terms in the table form the prime implicant

Simplify the following Boolean function by using the tabulation-method: $F(y, x, y, z)=$

a	$\mathrm{b}^{\text {b }}$	c
w x y z	w x y z	w x y z
0-0 000	$(0,1)-000-$	(0,28,10) - 0-0
1-0 001	$(0,2)-\quad 00-0$	(0,82,10) - 0-0
2-0 0010	(0,8)- - 000	(10,11, 14,15) 1 - $1-$
8-1 0000		(10, 14, 11, 15)
10-1 0110	(2,10) - 010	$F=W^{\prime} X^{\prime} Y^{\prime}+X^{\prime} Z^{\prime}+W Y$
	$(8,10) \quad 10-0$	
11-1 0011	$(10,11) 101-$	
14-1 $11 \begin{array}{llll}1 & 0\end{array}$	$(10,14) \quad 1-10$	
15-1 1111	$(11,15) \quad 1-11$	

Don't write or place any image in this area

Simplify the following Boolean function by using the tabulation method: $F(w, x, y, z)=$ $\sum(1,4,6,7,8,9,10,11,15)$

(a)			(b)		(c)
0001	1	\checkmark	1,9	(8)	8, 9, 10, $11(1,2)$
0100	4	\checkmark	4,6	(2)	8, 9, 10, $11(1,2)$
1000	8	\checkmark	8,9		
			8, 10		
0110	6	\checkmark			
1001	9	\checkmark	6,7	(1)	
1010	10	\checkmark	9, 11		
			10,11		
0111	7	\checkmark			
1011	11	\checkmark	7,15	(8)	
			11,15	(4)	
1111	15				

Don't write or place any image in this area

Ouine a clucs ev minimiva

Prime implicants

Decimal	w	Binary x	y	z	Term
$1,9(8)$	-	0	0	1	$x^{\prime} y^{\prime} z$
$4,6(2)$	0	1	-	0	$w^{\prime} x z^{\prime}$
$6,7(1)$	0	1	1	-	$w^{\prime} x y$
$7,15(8)$	-	1	1	1	$x y z$
$11,15(4)$	1	-	1	1	$w y z$
$8,9,10,11(1,2)$	1	0	-	-	$w x^{\prime}$

				1	4	6	7	8	9	10	11

Don't write or place any image in this area

Logic circuits for digital systems may be combinational or sequential

Don't write or place any image in this area

1. The problem is stated.
2. Define input and output variables.
3. The input and output variables are assigned
letter symbols.
4. Derive truth table (The truth table that
defines the required relationships between inputs and outputs is derived).
5. The simplified Boolean function for each

Don't write or place any image in this area

- Digital computers perform the basic arithmetic operation is the addition of two binary digits.
- A combinational circuit that performs the addition of two bits is called a half-adder. Performs the addition of three bits is Full-adder.

Half-Adder.

1. Define problem: Addition of two binary digits.
2. Define i/o variables: input variables are 2 and output are 2

Don't write or place any image in this area
3. Assign x, y as input and Sum, Carry are output variables .

4. Define TT

\mathbf{x}	y	Sum carry	
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

5. The simplify Boolean function

$$
\mathrm{S}=\bar{x} y+x \bar{y}
$$

$\mathrm{C}=x y$

Don't write or place any image in this area

6. Draw the logic diagram

(a) $\begin{aligned} S & =x y^{\prime}+x^{\prime} y \\ C & =x y\end{aligned}$

(c) $\begin{aligned} S & =\left(C+x^{\prime} y^{\prime}\right)^{\prime} \\ C & =x y\end{aligned}$

(e) $S=x \oplus y$ $\mathcal{C}=x y$

Don't write or place any image in this area

1. Problem statement : A full-adder is a combinational circuit that forms the arithmetic sum of three input bits.
2. Define I/O: It consists of three inputs and two outputs
3. Notation: Input variables are denoted by x, y and Z and output are denoted by S,C.

Don't write or place any image in this area

4. Truth table

xyz	S	
000	0	0
001	1	0
010	1	0
011	1	1
100	1	0
101	0	1
110	0	1
111	1	1

Don't write or place any image in this area

5. Simplify the boolean function

$$
\begin{aligned}
& \mathrm{S}=\mathrm{x}^{\prime} y^{\prime} z+\mathrm{x}^{\prime} \mathrm{yz} z^{\prime}+x y^{\prime} z^{\prime}+x y z \\
& \mathrm{C}=x y+x z+y z
\end{aligned}
$$

Don't write or place any image in this area

6. Draw the logic diagram

Don't write or place any image in this area

$(A>B)=A_{j} B_{1}^{\prime}+x_{j} A_{2} B_{1}^{\prime}+x_{j=2} A_{2} A_{1} B_{1}^{\prime}+x_{j} H_{2} A_{1} A_{1} B_{1}^{\prime}$

Don't write or place any image in this area

6. Draw the logic diagram

$$
\begin{aligned}
S & =z \oplus(x \oplus y) \\
& =z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y^{\prime}+x^{\prime} y\right)^{\prime} \\
& =z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y+x^{\prime} y^{\prime}\right) \\
& =x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y z+x^{\prime} y^{\prime} z
\end{aligned}
$$

Don't write or place any image in this area
and the carry output is

$$
C=z\left(x y^{\prime}+x^{\prime} y\right)+x y=x y^{\prime} z+x^{\prime} y z+x y
$$

Logic circuits for digital systems may be combinational or sequential

Don't write or place any image in this area

1. The problem is stated.
2. Define input and output variables.
3. The input and output variables are assigned
letter symbols.
4. Derive truth table (The truth table that
defines the required relationships between inputs and outputs is derived).
5. The simplified Boolean function for each

Don't write or place any image in this area

- Digital computers perform the basic arithmetic operation is the addition of two binary digits.
- A combinational circuit that performs the addition of two bits is called a half-adder. Performs the addition of three bits is Full-adder.

Half-Adder.

1. Define problem: Addition of two binary digits.
2. Define i/o variables: input variables are 2 and output are 2

Don't write or place any image in this area
3. Assign x, y as input and Sum, Carry are output variables .

4. Define TT

x		y	Sum
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

5. The simplify Boolean function

$$
\begin{aligned}
& \quad \mathrm{S}=\bar{x} y+x \bar{y} \\
& \mathrm{C}=x y
\end{aligned}
$$

Don't write or place any image in this area

6. Draw the logic diagram

(a) $\begin{aligned} S & =x y^{\prime}+x^{\prime} y \\ C & =x y\end{aligned}$

(c) $\begin{aligned} S & =\left(C+x^{\prime} y^{\prime}\right)^{\prime} \\ C & =x y\end{aligned}$

(e) $S=x \oplus y$ $\mathcal{C}=x y$

Don't write or place any image in this area

1. Problem statement : A full-adder is a combinational circuit that forms the arithmetic sum of three input bits.
2. Define I/O: It consists of three inputs and two outputs
3. Notation: Input variables are denoted by x, y and Z and output are denoted by S,C.

Don't write or place any image in this area

4. Truth table

$x y z$	S	
000	0	0
001	1	0
010	1	0
011	0	1
100	1	0
101	0	1
110	0	1
111	1	1

Don't write or place any image in this area

5. Simplify the boolean function

$$
\begin{aligned}
& \mathrm{S}=\mathrm{x}^{\prime} \mathrm{y}^{\prime} z^{\prime} \mathrm{x}^{\prime} \mathrm{yz} z^{\prime}+x y^{\prime} z^{\prime}+x y z \\
& \mathrm{C}=x y+x z+y z
\end{aligned}
$$

Don't write or place any image in this area

6. Draw the logic diagram

Don't write or place any image in this area

6. Draw the logic diagram

$$
\begin{aligned}
S & =z \oplus(x \oplus y) \\
& =z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y^{\prime}+x^{\prime} y\right)^{\prime} \\
& =z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y+x^{\prime} y^{\prime}\right) \\
& =x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y z+x^{\prime} y^{\prime} z
\end{aligned}
$$

Don't write or place any image in this area
and the carry output is

$$
C=z\left(x y^{\prime}+x^{\prime} y\right)+x y=x y^{\prime} z+x^{\prime} y z+x y
$$

Don't write or place any image in this area

$(A>B)=A_{j} B_{1}^{\prime}+x_{j} A_{2} B_{1}^{\prime}+x_{j=2} A_{2} A_{1} B_{1}^{\prime}+x_{j} H_{2} A_{1} A_{1} B_{1}^{\prime}$

Don't write or place any image in this area

TABLE 5.2
Truth Table of a 3-to-8-Line Decoder

Inputs						Outputs					
x	y	z	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

Don't write or place any image in this area

FIGURE 5-8
$\Delta \partial$ to 0 lime Momerar
Don't write or place any image in this area

TABLE 5-3
Truth Table of Octal-to-Blnary Encoder

D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	Outputs		
1	0	0	0	0	0	0	0	0	z	
0	1	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

$$
\begin{aligned}
& z=D_{1}+D_{3}+D_{\mathrm{s}}+D_{7} \\
& y=D_{2}+D_{3}+D_{6}+D_{7} \\
& x=D_{4}+D_{5}+D_{6}+D_{7}
\end{aligned}
$$

Don't write or place any image in this area

FIGURE 5-13
Octal-to-binary encoder

Don't write or place any image in this area

Enabled Decoder

Section 5.5 Decoders and Encoders

Implement a full-adder circuit with a decoder and two OR gates.

FIGURE 5-9
Implementation of a fuil-adder with a decoder

FIGURE 5.12
A 4×16 decoder constructed with two 3×8 decoders

- It is a combinational circuit
- Many input and one output
- Depending on select i / p, one of the data i / p is transferred to the o/p

Don't write or place any image in this area

- Example of multiplexers are $2^{n} X 1$ where $\mathrm{n}=1,2,3,4, \ldots$ etc.
- For example 2×1
- Implement by following combinational design steps.

- Example of multiplexers are $2^{n} X 1$ where $n=1,2,3,4, \ldots$ etc.

Don't write or place any image in this area

A 4-ll Hultiplever Gircuit

sux

Thuth Thetry

4	\%	1
플	4	[1]
E18)	1	Er
1	4	다는
1	1	H4

Don't write or place any image in this area

Construct a 8×1 multiplexer using 4×1 multiplexer

Don't write or place any image in this area

Don't write or place any image in this area

Construct a 16:1 Mux using only 2:1 Mux
Implement a 64:1 MUX using 8:1 MUXs.

Don't write or place any image in this area

- It is a combinational circuit
- Single input and many outputs
- Depending on select $i / p, i / p$ is transferred to the any one of the selected o/p.
- Also known as data distributor.

Don't write or place any image in this area

Demultiplexentill

Don't write or place any image in this area

Don't write or place any image in this area

TABLE 4-1
Truth Table for Code-Conversion Example

	Input $B C D$				Output Excess-3 Code			
A	B	C	D	w	x	y	z	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

Don't write or place any image in this area

$$
\begin{aligned}
z & =D^{\prime} \\
y & =C D+C^{\prime} D^{\prime}=C D+(C+D)^{\prime} \\
x & =B^{\prime} C+B^{\prime} D+B C^{\prime} D^{\prime}=B^{\prime}(C+D)+B C^{\prime} D^{\prime} \\
& =B^{\prime}(C+D)+B(C+D)^{\prime} \\
w & =A+B C+B D=A+B(C+D)
\end{aligned}
$$

Don't write or place any image in this area

Don't write or place any image in this area

