
DIGITAL LOGIC DESIGN

NUMBER SYSTEM

Presented by

Mr. K.M.D.Rajesh babu,

Assistant Professor,

Department of ECE, Vemu Institute of Technology

MODULE–III
NUMBERSYSTEMS

Number systems: Complements of Numbers,
Codes- Weighted and Non-weighted codes and its
Properties, Parity check code and Hamming code.

Boolean Algebra: Basic Theorems and Properties,
Switching Functions- Canonical and Standard Form,
Algebraic Simplification, Digital Logic Gates, EX-OR
gates, Universal Gates, Multilevel NAND/NOR
realizations

• Number System is a way to represent the numbers in the

computer architecture. There are four different types of the

number system, such as:

Binary number system (base 2)

Octal number system (base 8)

Decimal number system(base 10)

Hexadecimal number system (base 16).

https://byjus.com/maths/octal-number-system/
https://byjus.com/maths/decimal-number-system/
https://byjus.com/maths/hexadecimal-number-system/

BINARY OCTAL DECIMAL HEXA DECIMAL

Has 2 symbols Has 8 symbols Has 10symbols Has 16 symbols

Symbols are 0,1 Symbols are

0,1,2,3,4,5,6 and7

Symbols are from

0-9

Symbols are from

0-9 and

A,B,C,D,E,F

BIT position value

system

Position value

system

Position value

system

Position value

system

Value expressed

in base of 2

Value expressed

in base of 8

Value expressed

in base of 10

Value expressed

in base of 16

101010 2 765 8 925 10 F2F1 16

Facts to Remember:

• Binary numbers are made up of only 0’s and 1’s.

• A binary number is represented with a base-2

• A bit is a single binary digit.

REPRESENTATION OF NUMBERS: Binary

REPRESENTATION OF NUMBERS: Octal

REPRESENTATION OF NUMBERS: Decimal

REPRESENTATION OF NUMBERS: Hexa decimal

Conversion between Numbers: Binary to Decimal

Conversion between Numbers: Octal to Decimal

Conversion between Numbers: Hexadecimal to Decimal

Conversion between Numbers: Decimal to Binary

Conversion between Numbers: Decimal to Octal

Conversion between Numbers: Decimal to Hexadecimal

Octal to Binary

Binary to Octal

Hexa to Binary

Binary to Hexa

Oct

Bin

Hexa

Dec

Number Conversion chart

Oct

Bin

Hexa

Dec

Number Conversion chart

Complements

r-1 ‘s complements

Ex: 1’s and 9’s

(r-1)’s compliment of
N is defined as

(𝑟𝑛−1) −𝑁

r’s Complements

Ex: 2’s and
10’s .

r’s compliment of
N is defined as

𝑟𝑛 −𝑁

Subtraction using 1’s Complement
1. Take the minuend as it is and 1’c of subtrahend

2. Add the 1’C of subtrahend to minuend

3. If carry come in MSB remove the carry and add it

to the ‘sum’ to get result

4. If carry does not come in MSB 1’C of ‘sum’ is the

result

Subtraction using 1’s Complement
1. Take the minuend as it is and 1’c of subtrahend

2. Add the 1’C of subtrahend to minuend

3. If carry come in MSB remove the carry and add it

to the ‘sum’ to get result

4. If carry does not come in MSB 1’C of ‘sum’ is the

result

Subtraction using 2’s Complement
1. Take the minuend as it is and 2’c of subtrahend

2. Add the 2’C of subtrahend to minuend

3. If carry come in MSB discord the end carry and

remaining value is the result

4. If carry does not come in MSB 2’C of ‘sum’ is the

result

Subtraction using 2’s Complement

1. Take the minuend as it is and 2’c of subtrahend

2. Add the 2’C of subtrahend to minuend

3. If carry come in MSB discord the end carry and

remaining value is the result

4. If carry does not come in MSB 2’C of ‘sum’ is the

result

ANALOG AND DIGITAL ELECTRONICS

BINARY CODES

1.The main characteristic of a weighted code is, each binary bit is

assigned by a “weight” and values depend on the position of the binary

bit.

2.The sum of the weights of these binary bits, whose value is 1 is equal to

the decimal digit which they represent.

3.In other words, if w1, w2, w3 and w4 are the weights of the binary

digits, and x1, x2, x3 and x4 are the corresponding bit values, then the

decimal digit N=w4x4 + w3x3+w2x2+w1x1 is represented by the

binary sequence x4x3x2x1.

• Two types binary codes

1.Weighted Binary Systems and

2.Non Weighted Codes.

• Weighted binary codes are those which follow the positional

weighting principles wherein each position of the number

represents a specific weight.

Ex: BCD(8421), 84-2-1, 2421, and 5043210 …

• Non-weighted codes are codes that are not placed weighted. It

means that each position within the binary number is not

assigned a fixed value.

Ex: Excess-3 and Gray codes

DIGITAL LOGIC DESIGN

PARITY CHECK CODE AND HAMMING
CODE.

Presented by

Mr. K.M.D.Rajesh babu,

Assistant Professor,

Department of ECE, Vemu institute of Technology

Parity check code

• Parity check is a simple way to add redundancy bits to the

packets such that the total number of 1's is even (or odd).

• A single bit is appended to the end of each frame, the bit is

1 if the data portion of the frame has odd number of 1's.

Otherwise, it is 0.

• The total number of 1's in each data frame is always even.

• The problem with this approach is that if there are even

number of errors, it can not be detected

• Therefore it has a one bit error detection capability but

no error correction capability.

Networks must be able to transfer data from one device

to another with complete accuracy.

 Data can be corrupted during transmission.

 For reliable communication, errors must be detected

and corrected.

 Error detection and correction are
implemented either at the data link layer or the
transport layer of the OSI model.

Types of errors

Parity bits
Decimal

no.

Message

bits

Parity bits

(even)

Parity bits

(odd)

0 000 0 1

1 001 1 0

2 010 1 0

3 011 0 1

4 100 1 0

5 101 0 1

6 110 0 1

7 111 1 0

Hamming code

• It is an error detection and correction code

• Invented by Richard W. Hamming

• Steps involved in the Hamming code

1. Selecting the number of redundant bits

2. Choosing the location of redundant bits

3. Assigning the values to redundant bits

4. How to detect and correct the error in the hamming code?

• Selecting the number of parity bits

2𝑃 ≥ 𝑛 + 𝑃 + 1

For example msg bits n=4

Let p=2

22 ≥ 4 + 2 + 1

4≥ 7(condition fail)

Let p=3

23 ≥ 4 + 2 + 1

8≥8(condition true)

So select 3 parity bits for 4 bit message to create hamming code

Bit Location 7 6 5 4 3 2 1

Bit designation D4 D3 D2 P3 D1 P2 P1

Binary representation 111 110 101 100 011 010 001

2. Choosing the location of parity bits

Bit Location 7 6 5 4 3 2 1

Bit designation D4 D3 D2 P3 D1 P2 P1

Binary representation 111 110 101 100 011 010 001

(data bits)

(parity bits)

𝑃1 = 3 𝑥𝑜𝑟 5 𝑥𝑜𝑟7

𝑃2 = 3 𝑥𝑜𝑟 6 𝑥𝑜𝑟7

𝑃3 = 5 𝑥𝑜𝑟 6 𝑥𝑜𝑟7

3. Assigning the values to parity bits

• How to detect and correct the error in the hamming

code?.

• Given the 4 bit data word 1010, generate the 18 bit
composite word for the hamming code that corrects
and detects single errors.

Bit Location 7 6 5 4 3 2 1

Bit designation D4 D3 D2 P3 D1 P2 P1

Binary

representation
111 110 101 100 011

01

0
001

(data bits)

(parity bits)

DIGITAL LOGIC DESIGN

BOOLEAN ALGEBRA

Presented by

Mr. K.M.D.Rajesh babu,

Assistant Professor,

Department of ECE, Vemu Institute of Technology

Theorem Name AND form OR form

Identity 1.A=A 0+A=A

Null law 0.A=0 1+A=1

Idempotent law A. A = A A + A = A

Inverse law A A’ = 0 A + A’ = 1

Commutative law AB =BA A+B =B+A

Associate law (AB)C=A(BC) (A+B)+C=A+(B+C)

Distributive law A+BC =

(A+B)(A+C)

A(B+C)= AB+AC

Absorption law A(A+B)=A A+AB= A

De Morgan’s law (AB)’ = A’ +B’ (A+B)’ = A’ B’

• Consensus
AB+A’C+BC=AB+A’C

(A+B) (A’+C) (B+C)=(A+B) (A’+C)

• Transposition theorem

(A+B)(A+C)= A + BC

• Simplify the expression y= AB’D+AB’D’

• Simplify the expression X= ACD+A’BCD

• Simplify AB’+ABC’+AB’C’D =AB’+AC’

• Combinational circuits are more frequently constructed

with NAND or NOR gates rather than AND and OR gates.

• It is important to be able to recognize the relationships

between AND-OR and NAND or NOR.

• NAND and NOR universal gates.

multilevel NAND diagram
• From the given Boolean expression, draw the logic diagram with AND,

OR, and inverter gates. Assume that both the normal and complement

inputs are available.

• Convert all AND gates to NAND gates with AND-invert graphic

symbols.

• Convert all OR gates to NAND gates with invert-OR graphic symbols.

• Check all small circles in the diagram. For every small circle that is not

compensated by another small circle along the same line, insert an

inverter (one-input NAND gate) or complement the input variable.

• 𝐹 = 𝐴 + (𝐵ത+ 𝐶)(𝐷ഥ+ 𝐵𝐸ത)

• From the given Boolean expression, draw the logic

diagram with AND, OR, and inverter gates

• Convert all AND gates to NAND gates with

AND-invert graphic symbols.

• Convert all OR gates to NAND gates with

invert-OR graphic symbols

• NAND logic

• MULTI LEVEL NOR CIRCUITS

• From the given Boolean expression, draw the logic diagram

with AND, OR, and inverter gates. Assume that both the

normal and complement inputs are available.

• Convert all AND gates to NAND gates with AND-invert

graphic symbols.

• Convert all OR gates to NAND gates with invert-OR graphic

symbols.

• Check all small circles in the diagram. For every small circle

that is not compensated by another small circle along the same

line, insert an inverter (one-input NAND gate) or complement

the input variable.

• 𝐹 = 𝐴𝐵 + 𝐸 (𝐶 +𝐷)

• Karnaugh Map Method - Up to five Variables, Don't Care

Map Entries, Tabular Method.

• Combinational Logic Circuits: Adders, Subtractors,

comparators, Multiplexers, Demultiplexers, Encoders,

Decoders and Code converters, Hazards and Hazard

Free Relations.

KARANAUGH MAP
Boolean functions may be simplified by algebraic theorems.

However, this procedure of minimization is awkward.

KARANAUGH Map is a simple straightforward procedure.

The map is made up of squares. Each square represents one

minterm

A two-variable function has four possible minterms. We can re-

arrange these minterms into a Karnaugh map.

• By recognizing various patterns, the user can derive alternative

algebraic expressions for the same function, from which he can

select the simplest one. We shall assume that the simplest

algebraic expression is anyone in a sum of products or product

of sums that has a minimum number of literals.

3 variable function

• One square represents one minterm, giving a term of

three literals.

• Two adjacent squares represent a term of two literals.

• Four adjacent squares represent a term of one literal.

• Eight adjacent squares encompass the entire map and

produce a function that is always equal to 1.

Simplify the Boolean function F(x, y, z) = σ (2, 3, 4, 5)

Given the following Boolean function:

F = A'C + A'B + AB'C + BC

(a) Express it in sum of minterms,

(b) Find the minimal sum of products expression,

𝒎𝟎 𝒎𝟏 𝒎𝟑 𝒎𝟐

𝒎𝟒 𝒎𝟓 𝒎𝟕 𝒎𝟔

𝒎𝟏𝟐 𝒎𝟏𝟑 𝒎𝟏𝟓 𝒎𝟏𝟒

𝒎𝟖 𝒎𝟗 𝒎𝟏𝟏 𝒎𝟏𝟎

𝒘′𝒙′𝒚′𝒛′ 𝒘′𝒙′𝒚′𝒛 𝒘′𝒙′𝒚 𝒛 𝒘′𝒙′𝒚 𝒛′

𝒘′𝑥 𝒚′𝒛′ 𝒘′𝑥 𝒚′𝒛 𝒘′𝑥 𝒚 𝒛 𝒘′𝑥 𝒚 𝒛′

𝑤 𝑥 𝒚′𝒛′ 𝑤 𝑥 𝒚′𝒛 𝑤 𝑥 𝑦 𝑧 𝑤 𝑥 𝑦 𝒛′

w 𝒙′𝒚′𝒛′ 𝒘 𝒙′𝒚′𝒛 𝒘 𝒙′ 𝒚 𝒛 𝒘 𝒙′ 𝒚 𝒛′

4-variable K-map

• 4 variable k-map has maximum of 16 minterms.

• Map has 16 square boxes

• Possibilities of adjacent squares

• One square represents one minterm, giving a term of four

literals.

• Two adjacent squares represent a term of three literals.

• Four adjacent squares represent a term of two literals.

• Eight adjacent squares represent a term of one literal.

• Sixteen adjacent squares represent the function equal to 1.

• Simplify the Boolean function

F(w, x, y, z) = σ (0, 1,2,4,5,6,8,9, 12, 13, 14)

Don’t write or

place any image

in this area

• The map method of simplification: convenient for < 5 variable

• The tabulation method overcomes this difficulty:

specific step-by-step procedure

• It is also known as the Quine-McCluskey method.

• The tabular method of simplification consists of two parts

• Exhaustive search for prime implicant

• Find least number of literals from prime implicant search

DETERMINATION OF PRIME

IMPlICANTS

Don’t write or

place any image

in this area

• List of minterms that specify the function in first coloumn.

• The process compares each min term with every other minterm.

If two min terms differ in only one variable, that variable is

removed and remaining variables are considered.

• This process is repeated for every minterm until no further

elimination of literals

Simplify the following Boolean function by using

the tabulation method:

F(w, x, y, z) = σ (0, 1,2,8,10,11,14, I5)

Don’t write or

place any image

in this area

Step I: Group binary representation of the minterms according to the

number of 1's contained

Step2: Any two min terms that differ from each other by only one

variable can be combined,

and the unmatched variable removed. The minterms in one

section are compared with

those of the next section down only.

Step 3: The terms of column (b) have only three variables. The

searching and comparing

process is repeated for the terms in column (b) to form

the two-variable terms of column (c).

Step 4: The unchecked terms in the table form the prime implicant

Quine-McCluskey minimization

method

Simplify the following Boolean function by using the tabulation method: F(w, x, y, z) =

σ (0, 1,2,8,10,11,14, I5)

a b c

w x y z w x y z w x y z

0- 0 0 0 0 (0,1)- 0 0 0 -

(0,2)- 0 0 - 0

(0,8)- - 0 0 0

(0, 2 8,10) - 0 - 0

(0, 8 2,10) - 0 - 0
1- 0 0 0 1

2- 0 0 1 0

8- 1 0 0 0

(10,11,14,15) 1 - 1 –

(10, 14, 11, 15) 1 - 1 -

10-1 0 1 0 (2,10) - 0 1 0

(8, 10) 1 0 - 0

F= W’ X’Y’ + X’Z’+ WY

11-1 0 1 1

14-1 1 1 0

(10,11) 1 0 1 –

(10,14) 1 – 1 0

15-1 1 1 1 (11,15) 1 - 1 1

(14, 15) 1 1 1 -

Quine-McCluskey minimization

method

Don’t write or

place any image

in this area

Quine-McCluskey minimization

method

Don’t write or

place any image

in this area

Simplify the following Boolean function by using the tabulation method: F(w, x, y, z) =

σ (1,4,6,7,8,9, 10, 11, 15)

Quine-McCluskey minimization

method

Don’t write or

place any image

in this area

Don’t write or

place any image

in this area

Cominational Logic

Circuits
Logic circuits for digital systems may be combinational or sequential

Don’t write or

place any image

in this area

DESIGNPROCEDURE

1. The problem is stated.

2. Define input and output variables.

3. The input and output variables are assigned

letter symbols.

4. Derive truth table (The truth table that

defines the required relationships between

inputs and outputs is derived).

5. The simplified Boolean function for each

output is obtained.

Don’t write or

place any image

in this area

ADDERS

• Digital computers perform the basic arithmetic

operation is the addition of two binary digits.

• A combinational circuit that performs the addition of

two bits is called a half-adder. Performs the addition of

three bits is Full-adder.

Half-Adder.

1. Define problem: Addition of two binary digits.

2. Define i/o variables: input variables are 2 and

output are 2

3. Assign x, y as input and Sum, Carry are output

variables .

Don’t write or

place any image

in this area

x y Sum

carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

4. Define TT

5. The simplify Boolean function

S = ҧ𝑥 𝑦 + 𝑥ഥ𝑦
C = 𝑥𝑦

Don’t write or

place any image

in this area

6. Draw the logic diagram

Don’t write or

place any image

in this area

1.Problem statement : A full-adder

is a combinational circuit that

forms the arithmetic sum of three

input bits.

2.Define I/O: It consists of three

inputs and two outputs

3.Notation: Input variables are

denoted by x,y and Z and output

are denoted by S,C.

Don’t write or

place any image

in this area

xyz S C

000 0 0

001 1 0

010 1 0

011 1 1

100 1 0

101 0 1

110 0 1

111 1 1

4. Truth table

Don’t write or

place any image

in this area
S = x’y’z+ x’yz’+xy’z’+xyz

C = xy + xz + yz

5. Simplify the boolean function

Don’t write or

place any image

in this area

6. Draw the logic diagram

Don’t write or

place any image

in this area

MAGNITUDE COMPARATOR

Don’t write or

place any image

in this area

6. Draw the logic diagram

Don’t write or

place any image

in this area

Cominational Logic

Circuits
Logic circuits for digital systems may be combinational or sequential

Don’t write or

place any image

in this area

DESIGNPROCEDURE

1. The problem is stated.

2. Define input and output variables.

3. The input and output variables are assigned

letter symbols.

4. Derive truth table (The truth table that

defines the required relationships between

inputs and outputs is derived).

5. The simplified Boolean function for each

output is obtained.

Don’t write or

place any image

in this area

ADDERS

• Digital computers perform the basic arithmetic

operation is the addition of two binary digits.

• A combinational circuit that performs the addition of

two bits is called a half-adder. Performs the addition of

three bits is Full-adder.

Half-Adder.

1. Define problem: Addition of two binary digits.

2. Define i/o variables: input variables are 2 and

output are 2

3. Assign x, y as input and Sum, Carry are output

variables .

Don’t write or

place any image

in this area

x y Sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

4. Define TT

5. The simplify Boolean function

S = ҧ𝑥 𝑦 + 𝑥ഥ𝑦
C = 𝑥𝑦

Don’t write or

place any image

in this area

6. Draw the logic diagram

Don’t write or

place any image

in this area

1.Problem statement : A full-adder

is a combinational circuit that

forms the arithmetic sum of three

input bits.

2.Define I/O: It consists of three

inputs and two outputs

3.Notation: Input variables are

denoted by x,y and Z and output

are denoted by S,C.

FULL-ADDER

Don’t write or

place any image

in this area

xyz S C

000 0 0

001 1 0

010 1 0

011 0 1

100 1 0

101 0 1

110 0 1

111 1 1

4. Truth table

Don’t write or

place any image

in this area
S = x’y’z+ x’yz’+xy’z’+xyz

C = xy + xz + yz

5. Simplify the boolean function

Don’t write or

place any image

in this area

6. Draw the logic diagram

Don’t write or

place any image

in this area

6. Draw the logic diagram

Don’t write or

place any image

in this area

Full-Subtractor

Don’t write or

place any image

in this area

MAGNITUDE COMPARATOR

Don’t write or

place any image

in this area

Decoder

Don’t write or

place any image

in this area

Don’t write or

place any image

in this area

8X3 Encoder

Don’t write or

place any image

in this area

Encoder

Enabled Decoder

Implement a full-adder circuit with a decoder
and two OR gates.

Don’t write or

place any image

in this area

Multiplexer

MULTIPLEXER

• It is a combinational circuit

• Many input and one output

• Depending on select i/p, one of the data i/p is transferred to

the o/p

Don’t write or

place any image

in this area

Multiplexer

• Example of multiplexers are 2𝑛𝑋1 where n = 1,2,3,4,… etc.

• For example 2x1

• Implement by following combinational design steps.

Don’t write or

place any image

in this area

Multiplexer

• Example of multiplexers are 2𝑛𝑋1 where n = 1,2,3,4,… etc.

Don’t write or

place any image

in this area

4x1 Multiplexer

Don’t write or

place any image

in this area

Multiplexer

Construct a 8X1multiplexer using 4X1multiplexer

Don’t write or

place any image

in this area

16 X 1 muxer

Don’t write or

place any image

in this area

16 X 1 muxer

Implement a 64:1 MUX using 8:1 MUXs.

Construct a 16 : 1 Mux using only 2 : 1 Mux

Don’t write or

place any image

in this area

Demultiplexer

• It is a combinational circuit

• Single input and many outputs

• Depending on select i/p, i/p is transferred to

the any one of the selected o/p.

• Also known as data distributor.

Don’t write or

place any image

in this area

Demultiplexer

Don’t write or

place any image

in this area

Demultiplexer

Don’t write or

place any image

in this area

Code convertor

Don’t write or

place any image

in this area

Code convertor

Don’t write or

place any image

in this area

Code convertor

