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COURSEOUTCOMES
2

CO 1
Use the appropriate method to determine slope and beam deflection 

for different beam sections.

CO 2
To analyze the structural sections subjected to torsion.

CO 3
Analyze the crippling load and equivalent length for various types of 
columns of different end conditions.

CO 4 Calculate the strain energy, stress distribution & deformation in springs

CO 5
Calculate the stresses and strains associated with thick-wall cylindrical 

pressure vessels and rotating disks. 



UNIT - I Deflection of Beams

Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line of a beam – Double integration and 

Macaulay’s methods. Determination of slope and deflection for cantilever and simply supported beams under point loads, U.D.L. uniformly 

varying load-Mohr’s theorems – Moment area method – application to simply supported and overhanging beams- analysis of propped 

cantilever beams under UDL and point loads.

UNIT - II Torsion

Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular shaft – Torsional moment of resistance – Polar 

section modulus – power transmission through shafts –Combined bending and torsion –. Springs -Types of springs – deflection of close coiled 

helical springs under axial pull and axial couple – Carriage or leaf springs.

UNIT – III Columns and Struts

Introduction – classification of columns – Axially loaded compression members – Euler’s crippling load theory – derivation of Euler’s critical 

load formulae for various end conditions – Equivalent length – Slenderness ratio – Euler’s critical stress – Limitations of Euler’s theory –

Rankine – Gordon formula – eccentric loading and Secant formula – Prof. Perry’s formula.

UNIT - IV Springs

Axial load and torque on helical springs - stresses and deformations - strain energy - compound springs - leaf springs.

UNIT - V Thin and Thick Cylinders

Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame’s theory - Design of thin & thick cylindrical shells- Wire 

wound thin cylinders - Compound cylinders - Shrink fit - compound cylinders
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Deflections



Introduction

• Calculation of deflections is an important part of 
structural analysis

• Excessive beam deflection can be seen as a mode of 
failure.

– Extensive glass breakage in tall buildings can be attributed 
to excessive deflections

– Large deflections in buildings are unsightly (and unnerving) 
and can cause cracks in ceilings and walls.

– Deflections are limited to prevent undesirable vibrations



Beam Deflection

• Bending changes the 
initially straight 
longitudinal axis of the 
beam into a curve that 
is called the 
Deflection Curve or 
Elastic Curve



Beam Deflection

• To determine the deflection curve:

– Draw shear and moment diagram for the beam

– Directly under the moment diagram draw a line for the 
beam and label all supports

– At the supports displacement is zero

– Where the moment is negative, the deflection curve is 
concave downward.

– Where the moment is positive the deflection curve is 
concave upward

– Where the two curve meet is the Inflection Point





Deflected Shape



Example 1
Draw the deflected shape for each of the beams shown



Example 2
Draw the deflected shape for each of the frames shown



Double Integration Method



Elastic‐Beam Theory

• Consider a differential element 
of a beam subjected to pure 
bending.

• The radius of curvature  is 
measured from the center of 
curvature to the neutral axis

• Since the NA is unstretched, 
the dx=d



Elastic‐Beam Theory

• Applying Hooke’s law and the Flexure formula, we 
obtain:

1


M

 EI



Elastic‐Beam Theory
• The product EI is referred to as the flexural rigidity.
• Since dx = ρdθ, then

(Slope)d 
M

dx
EI

 In most calculus books
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1


d v / dx

221 dv / dx 

   EI

2 2

M


d v / dx
3

2

solution)(exact

1 dv / dx 2

d 2v


M  

dx2 EI



The Double Integration Method
Relate Moments to Deflections

d 2v


M  

dx2 EI

dv Mx Do Not
Integration Constants(x)    dx

dx EI(x)

EI (x)
v(x)  

M x
dx 2

Use Boundary Conditions to 
Evaluate Integration 
Constants



Assumptions and Limitations

Deflections caused by shearing action negligibly small compared to
bending

Deflections are small compared to the cross‐sectional dimensions of
the beam

All portions of the beam are acting in the elastic range

Beam is straight prior to the application of loads
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EIy Integrating twice x  c2
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Integrating
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Moment‐Area Theorems



Moment‐Area Theorems

Theorem 1: The change in slope between any two points on
the elastic curve equal to the area of the bending moment
diagram between these two points, divided by the product EI.

dx
  

dv

B

d 2v


M 

dx 2 EI  

d


M 

dx EI
 d 

 M 
dx EI 

 

B A

A

M
   EI

dx



dt  xd

B B

d 
 M 

dx EI 
 

t B A

A A

M M
  x

EI
dx  x  EI

dx



Moment‐Area Theorems

Theorem 2: The vertical distance of point A on a elastic
curve from the tangent drawn to the curve at B is equal to
the moment of the area under the M/EI diagram between
two points (A and B) about point A .

B

A

M
t A B

  x
EI

dx

B
M

t A B  x  EI
dx

A
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Example 6





Example 7



M/EI

‐30/EI
‐20/EI

‐

t 



20
2

1 1





10
2


 2

2


C / B
EI EI

  2    3 
     

 
53.33

kN m 3  0.00741 rad
EI



Another Solution



Conjugate-Beam Method



Conjugate-Beam Method

2dV  

dx dx 2
w

d M
w

d


M 

dx EI

d 2v


M 

dx 2 EI

Integrating

  M 

V  wdx

 M 

M   wdx dx
 

     
   EI 

dx v     EI 
dx dx



Conjugate-Beam Supports





Example 1
Find the Max. deflection Take E=200Gpa, I=60(106)



B B '
 V  

562.5

EI


562.5

(25) 
14062.5

EI EI
B 'B

  M



Example 2
Find the deflection at Point C

C



EI EI EI
C C '

  M 
27

(1) 
63

(3) 
162



Example

3
Find the deflection at Point D



360

EI
720

EI

EI
D D '


3600

  M



Example 4
Find the Rotation at A

10 ft



EI
A


33.3



Example 5
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Example 6







Moment Diagrams and Equations for 
Maximum Deflection





Example 4
Find the Maximum deflection for the following structure based on 

The previous diagrams















































































Module 6 
Columns and Struts



Columns and Struts

• Any member subjected to axial compressive load 
is called a column or Strut.

• A vertical member subjected to axial compressive 
load – COLUMN (Eg: Pillars of a building)

• An inclined member subjected to axial 
compressive load - STRUT

• A strut may also be a horizontal member
• Load carrying capacity of a compression member 

depends not only on its cross sectional area, but 
also on its length and the manner in which the 
ends of a column are held.



• Equilibrium of a column – Stable, Unstable, 
Neutral.

• Critical or Crippling or Buckling load – Load at 
which buckling starts

• Column is said to have developed an elastic 
instability.



Classification of Columns
• According to nature of failure – short, medium 

and long columns
• 1. Short column – whose length is so related to its 

c/s area that failure occurs mainly due to direct 
compressive stress only and the role of bending 
stress is negligible

• 2. Medium Column - whose length is so related to
its c/s area that failure occurs by a combination of
direct compressive stress and bending stress

• 3. Long Column - whose length is so related to its
c/s area that failure occurs mainly due to bending
stress and the role of direct compressive stress is
negligible



Euler’s Theory

• Columns and struts which fail by buckling may 
be analyzed by Euler’s theory

• Assumptions made



Case (i) Both Ends Hinged





Case (ii) One end fixed other free







Case (iii) Fixed at both ends







Case (iv) One end fixed, other hinged







Equivalent Length (le)





Limitations of Euler’s Formula

• Assumption – Struts are initially perfectly 
straight and the load is exactly axial.

• There is always some eccentricity and initial 
curvature present.

• In practice a strut suffers a deflection before 
the Crippling load.



• Critical stress (σc) – average stress over the 
cross section

• l/k is known as Slenderness Ratio



Slenderness Ratio

• Slenderness ratio is the ratio of the length of a 
column and the radius of gyration of its cross 
section

• Slenderness Ratio = l/k



Rankine’s Formula 
OR

Rankine-Gorden Formula

• Euler’s formula is applicable to long columns only for 
which l/k ratio is larger than a particular value.

• Also doesn’t take in to account the direct 
compressive stress.

• Thus for columns of medium length it doesn’t 
provide accurate results.

• Rankine forwarded an empirical relation







• A Factor of Safety may be considered for the value of σc in the 
above formula



• Rankine’s formula for columns with other end 
conditions
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Definition: A spring may be defined as an elastic
member whose primary function is to deflect or
distort under the action of applied load; it recovers its
original shape when load is released.

Important types of springs are:

There are various types of springs such as

Helical spring: They are made of wire coiled into a
helical form, the load being applied along the axis of
the helix. In these type of springs the major stresses is
torsional shear stress due to twisting. They are both
used in tension and compression.

103

Spiral springs: They are made of flat strip of metal wound in the 

form of spiral and loaded in torsion.

In this the major stresses are tensile and compression due to bending.

104

52
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Uses of springs :

To apply forces and to control motions as in 

brakes and clutches.

To measure forces as in spring balance. 

To store energy as in clock springs.

To reduce the effect of shock or impact  

loading as in carriage springs.

To change the vibrating characteristics of a 

member as inflexible mounting of motors.

105

Derivation of the Formula :

In order to derive a necessary formula which

governs the behavior of springs, consider a closed

coiled spring subjected to an axial load W.

106

53
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Let

W = axial load

D = mean coil diameter d = diameter of spring wire 

n = number of active coils

C = spring index = D / d For circular wires

l = length of spring wire G = modulus of rigidity 

x = deflection of spring q = Angle of twist

when the spring is being subjected to an axial load to the wire
of the spring gets be twisted like a shaft.

If q is the total angle of twist along the wire and x is the
deflection of spring under the action of load W along the axis
of the coil, so that

x = D / 2 . θ
107

UNIT-5

COLUMNS & STRUTS
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