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COURSE OUTCOMES

o 1 Use the appropriate method to determine slope and beam deflection
for different beam sections.

CO 2 To analyze the structural sections subjected to torsion.

Analyze the crippling load and equivalent length for various types of

cos3 columns of different end conditions.

co 4 |Calculate the strain energy, stress distribution & deformation in springs

COE Calculate the stresses and strains associated with thick-wall cylindrical

pressure vessels and rotating disks.
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UNIT - | Deflection of Beams

Uniform bending — slope, deflection and radius of curvature — Differential equation for elastic line of a beam — Double integration and
Macaulay’s methods. Determination of slope and deflection for cantilever and simply supported beams under point loads, U.D.L. uniformly
varying load-Mohr’s theorems — Moment area method — application to simply supported and overhanging beams- analysis of propped
cantilever beams under UDL and point loads.

UNIT - Il Torsion

Torsion: Theory of pure torsion — Assumptions and Derivation of Torsion formula for circular shaft — Torsional moment of resistance — Polar
section modulus — power transmission through shafts —Combined bending and torsion —. Springs -Types of springs — deflection of close coiled
helical springs under axial pull and axial couple — Carriage or leaf springs.

UNIT — 11 Columns and Struts

Introduction — classification of columns — Axially loaded compression members — Euler’s crippling load theory — derivation of Euler’s critical
load formulae for various end conditions — Equivalent length — Slenderness ratio — Euler’s critical stress — Limitations of Euler’s theory —
Rankine — Gordon formula — eccentric loading and Secant formula — Prof. Perry’s formula.

UNIT - IV Springs

Axial load and torgue on helical springs - stresses and deformations - strain energy - compound springs - leaf springs.

UNIT - V Thin and Thick Cylinders

Introduction - Thin Cylindrical shells - hoop stress - longitudinal stresses - Lame’s theory - Design of thin & thick cylindrical shells- Wire
wound thin cylinders - Compound cylinders - Shrink fit - compound cylinders
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Deflections



Introduction

* (Calculation of deflections is an important part of
structural analysis

* Excessive beam deflection can be seen as a mode of
failure.

— Extensive glass breakage in tall buildings can be attributed
to excessive deflections

— Large deflections in buildings are unsightly (and unnerving)
and can cause cracks in ceilings and walls.

— Deflections are limited to prevent undesirable vibrations



Beam Deflection

* Bending changes the

initially straight o 4 o 2
longitudinal axis of the y

beam into a curve that ‘ | T
iS Ca”ed the |\\/ Moment diagram

Deflection Curve or
Elastic Curve

Elastic curve



Beam Deflection

* To determine the deflection curve:
— Draw shear and moment diagram for the beam

— Directly under the moment diagram draw a line for the
beam and label all supports

— At the supports displacement is zero

— Where the moment is negative, the deflection curve is
concave downward.

— Where the moment is positive the deflection curve is
concave upward

— Where the two curve meet is the Inflection Point



+M®+M

positive moment,
concave upward

N/

negative moment,
concave downward



Deflected Shape

beam
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%
*
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moment diagram moment diagram

inflection point

inflection point | /’_\
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deflection curve deflection curve




Example 1

Draw the deflected shape for each of the beams shown

P : w




Example 2

Draw the deflected shape for each of the frames shown
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-
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Double Integration Method



Elastic-Beam Theory

_..I I-—rf.r
rE=———
. . . o —
* Consider a differential element ()

of a beam subjected to pure
bending.

* The radius of curvature p is
measured from the center of
curvature to the neutral axis

* Since the NA is unstretched,
the dx=pd6




Elastic-Beam Theorv

* Applying Hooke’s law and the Flexure formula, we

obtain:
1_M
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P
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Elastic-Beam Theory

* The product El is referred to as the flexural rigidity.
* Since dx = pdb, then

do — %dx (Slope)

® |n most calculus books

2 2
1_ d v/dx
L+ @vraxy }
2 2
II;AI: d v/dx (exact solution)
L+ @v/axr ]
d?v_M

dx2 El



The Double Integration Method

Relate Moments to Deflections

dzv: M
dx? El

e (X) — Q/ — IM dX :?:zel\;:attion Constants
dx  EI(X)

Use Boundary Conditions to
Evaluate Integration
Constants

v(x):” II:: (i(() dx?



Assumptions and Limitations

+»» Deflections caused by shearing action negligibly small compared to
bending

+»» Deflections are small compared to the cross-sectional dimensions of
the beam

+»+All portions of the beam are acting in the elastic range

*»Beam is straight prior to the application of loads
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| ] Examples
X ___, f M —_Pl 4 Py
L K I > X
2
P \7 P E|d—Z=M
A2\ X
@x El 7 = —PL+Px
dy X
Integrating once El ™ =—PLx+ F’7+C1
@x-0 %ﬁ:o - EI(O):—PL(O)+Pg+C1:> ¢, =0
2 3
Integrating twice Ely=- P;X + P%+ C,
@x=0 y=0 = EI(O):—&(OY+P@+C,):> C,=0 3
2 6 L —PL
PLX2 X3 @Xx=L Y=Y max 3EI
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PLL2 oL __PL® PL®
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Integrating once El —=_

d W (L-0 WL
@x-0 f=0 = E|(0):_2( : A P

dy W WL®
EIE—?(L—XY—T




W (L-x) wL

Integrating twice Eh/— X+C,
6 4 6
@x=0 y=0 = EI(O)——Vl(L_O)‘l Wi 0)+c, = ¢ W
6 4 6 ’ 724
3 T
l:I\/—_ﬂ{I _v\4_WL v—l—WL
24 6 24
Max. occurs @ x =L
ey WLEwWLweE WL
Ymax = 24 Ymax =~ BE]




Example

Integrating

Since the beam is symmetric

@ x:% E|(0):V£(

2

dy WLx® Wx
dx 2 2 23
| \? (H?’
\2) —Vlﬂ +C = clz—WL3
2 2 3 24

E|ﬂzvﬂ 2 W s

XS ——X
dx 4 6

wLd
24




Integrating

@x=0y=0 = EI(0)=

Max. occurs @ x =L /2

Wf OF w @)y we

4 3 6 4

24

(0)+c,

WL
12

3
s W, oW

Flv=_—__¥°____y"_

24

24

Ely
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X 3BAE]
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Example P
\ 4 ]
P L/2 . L/2 R o)
2 P 2
for 0<x< = M=_x
2 2
2
EId Vzix forO<x<—
dx?
- dy Px°
i ——=—_—+cC
Integrating dx 59 1
Since the beam is symmetric @ X = L ﬂ =0
( \? 2 dx
2 PL2
@x:% EI(O):——Zj +¢, = [C=-—




Integrating

@x=0y=0

Max. occurs @ x =L /2

Ely=P X _PL

2 X+C,
43 16
POy PL?
= E1(0)==—L = (0)+c,
©) 4 3 16 0)
2
FI\/:EX3—PL X
12 16
pL?
Ely =
ymax 48
pL’

Amax YT
48EI




Example

Slope and Elastic Curve. Applying Eq. 84 and integrating twice

yieldg

oA

Moxz
EIU=T+C1,x+C2 (3)

Using the boundary conditions dv/dx =0 at x =0 and » =0 at
x = 0, then C; = C, = 0. Substituting these results into Eqgs. (2) and
(3) with # = dv/dx, we get

g Mox
- EI
M0x2
v = Ans.

2EI



Example
5

The beam in Fig. 8-12a is subjected to a load P at its end. Determine
the displacement at C. EI is constant.

lfxlﬂ‘l/ )Ml

P
2

l\‘lg

Vv 2

P 2a
7\

w]%——»

X3

(b)




P
M1=—Ex1 OExli-'za
ip kT
M2 :_EX2 +7(I2 _23]
= Px; — 3Pa 2a = x = 3a

Slope and Elastic Curve. A

pplying Eq. 84,

d*, P
for x EI =——x
_____ 1 =2 dx% 2 1
d‘Ul ¥ i
EIdxl ——4;:%+c1
P
EI‘U] = —Ex‘? + C]I] + Cg
d
Forx,, EI——= = Px, — 3Pa
X7
di-"‘) P -
E.I - = _x'\" e ?'Pax'\ =+ C

d 5
E_Ivg = Exg3 e

(1)

@



v1=Uatx1=U: 0=U+U+C2

P
Ul = Uatx1 = 2!‘1. 0 = _E{:za)j =+ Cl(za} + C2

B .
v = 0atx, = 2 D=t (2a) %PQ(ZQ)E G (0a) 6

dvy(2a) = dvz(Qa)_

P 9 P 2
——(2a)" + C; = —(2a)” — 3Pa(2a) + C
o (20" + €, = Z(2a)* - 3Pa(2a) + C;

Solving, we obtain

2
Pa C. =0 . 10

P& C,= —2Pa’

3
Substituting C; and C, into Eq. (4) gives

P , 3Pa , 10Pa* 2Pd’

3

TeEIY T2EI T 3EI T EI

V2

The displacement at C is determined by setting x, = 3a. We get

Pa’®
EI

Vo = — Ans.



Moment-Area Theorems



Moment-Area Theorems

Theorem 1: The change in slope between any two points on
the elastic curve equal to the area of the bending moment
diagram between these two points, divided by the product El.

iy
e

dvy M dv
=_ 0=2"" ¥ .
dx? El = dx |
do M M T zr
e =do —(ﬁ)dx /\
R | ,
M A B *
GB/A —jﬁdx ‘ X !L dx
A
A B_=Q=._

tan B tan A






Moment-Area Theorems

Theorem 2: The vertical distance of point A on a elastic
curve from the tangent drawn to the curve at B is equal to
the moment of the area under the M/EI diagram between
two points (A and B) about point A .

fa;
A/B | 2B/a



Example

1
Determine the slope at points B and C of the beam shown in Fig. 8—15a.

Take E = 29(10%) ksi and I = 600 in*,




30k'ft) 1(60k'ft_30k'ft
EI

t

675 k- ft?

El

Substituting numerical data for £ and 7, and converting feet to inches,
we have

—675 k - f2(144 in?/1 £t2)
20(10°) k/in?(600 in*) Fig. 815
—0.00559 rad Ans.

tp

The negative sign indicates that the angle is measured clockwise
from A, Fig. 8-15c.

In a similar manner, the area under the M/EI diagram between
points A and C equals ;4. We have

1/ 60k-ft 900 k - ft>
9C = 9C/A = 5(—T)(30 ft) = —T
Substituting numerical values for EI, we have
—900 k - ft2(144 inz/ftz)

0
€ 20(10%) k/in%(600 in*)

—0.00745 rad Ans.




Example

-~

Determine the deflection at points B and C of the beam shown in
Fig. 8-16a. Values for the moment of inertia of each segment are
indicated in the figure. Take E = 200 GPa.

B__ ~C_500N-m

a’
1‘. IAB = 8(106) mm4 IBC = 4(106) mm4

M
Elpc 500
250 Flo
o BC

l
2 :

A FZmﬂB c
|



250 N'm
Elge

2000 N - m?

(4 m]}{zm) = Elp

Ap=1lpa= [

Substituting the numerical data yields

: 3
ctan € 2000 N-m

B 7 [Acmiom 27 [200(10°) N/mPJ[4(10%) mun*(1 m/(10°)° mm)]

Ap=tgu tan A = 0.0025m = 2.5 mm. Ans.

Likewise, for ¢4 we must compute the moment of the entire
(c) M/EIgc diagram from A to C about point C. We have

Fig. 8-16 250N -m S00N-m
Ac = fcja = [Ts‘:(il m)](S m) + [Tx('ﬂln]](lj m)

_ 7250N-m’ 7250 N - m’

Elge  [200(10%) N/m?|[4(10°)(10712) m?]
0.00906 m = 9.06 mm Ans.

Since both answers are positive, they indicate that points B and C
lie above the tangent at A.



Example
3

Determine the slope at point C of the beam in Fig. 8-17a.

E = 200 GPa, I = 6(10°) mm*.

f fc )
& T fpic tan D

tan C
(c)

horizontal

M
ET 60
EI
30
El
A &3 D
—3m 3m 6m
(b)



c = Op;c

Moment-Area Theorem. Using Theorem 1, fp,c is equal to the
shaded area under the M/ET diagram between points C and D. We

have

30kKkN-m 1 60 kN -m 30kN-m

G m( EI T =
_ 135kN-m?

ErI
Thus,

135 kN -m?

~ [200(10°) kKN/m2][6(10°)(102) m*] Uiloes sk

fc



Example

Determine the slope at point C of the beam in Fig. 8-18a.

E = 29(10%) ksi, I = 600 in*. M
EI
36
El
12
8 k El
G
' :
- _—— o "L‘-L?‘JB ‘
L — 6 ft — 12 ft 6ft<l an B
6 ft 12 ft 6 ft : -

Ig/a
bc = ¢ — bcia =E_9C[A

Moment-Area Theorems. Using Theorem 1,6c/41s equivalent to the s
area under the M/ET diagram between points A and C; that is,

1 12k-ft\ 36k-ft?
Oess = —(6ft =
cra =5 )( EI ) EI




Applying Theorem 2, 15,4 is equivalent to the moment of the area
under the M/EI diagram between B and A about point B, since this is
the point where the tangential deviation is to be determined. We have

1 1 36 k - ft
tand) tB/A=[6ft+§(18ft)][§(18ft)( = )]

; %(6 ft)[%(6 ﬁ)(%}; ft)]

_ 4320k -ft°
- EI

Substituting these results into Eq. 1, we have

Fig. 8-18
g B320k-f  36k-ft* 144k -ft’
€ (4ft)EI EI EI
so that
. £t2
e 144 k- ft

a 29( 103) k/in2( 144 inz/ftz) 600 in4( 1 ft“/ (12)4 in4)
= 0.00119 rad Ans.



Example
5

Determine the deflection at C of the beam shown in Fig. 8-194. Take

E = 29(10%) ksi, I = 21 in*.

3kt
¥ ¢
e ———— | (21 A

—12ft— A

M ‘
El A/B

12 ft 12 ft 4

12 ft

B
Ac
AI
tan C G

tan B (c)

Ac=—"——1



Moment-Area Theorem. We will apply Theorem 2 to determine f 45
and tc;g. Here t4p is the moment of the M/ET diagram between A
and B about point A,

tam = [%(24&):[%(24&](51(.&” _ 480k £

El EI
andf¢,p is the moment of the M/EI diagram between C and B about C.
1 [1 2.5keft 60 k - ft’ F—121 12 fi—
— = = — tan A | |
le/p [3(12ft)]2(12ft)( El )} £l o = B
Substituting these results into Eq. (1) yields R adlc
Icllf
A —1(480k-ft3)_60k-ft3_180k-ft3 i
RN BT EI EI
Working in units of kips and inches, we have tan B ()
Q 180 k - ft3(1728 in3/ft%) Fig. 8-19
! C =

29(10%) k/in*(21 in*)
= 0.511 in. Ans.



Example 6

Determine the deflection at point C of the beam shown in Fig. 8-20a.
E = 200 GPa, I = 250(10°) mm®.
EI

24 kN 72 KN

1

Ic/a

Ac =tcja — 2tpa

tan C



tan A

3 1 192kN-m
= [30m [30m(-225)|
AF
@ 1 1 192 kN -m
A= '5/4 fcia + [5(8 m) + SmME(S m)(— T E )}
Ac _ 11264 kN -m?
Er
© @ C The moment of the M/ET diagram between A and B about point B gives
y 1 1 192kN m 2048 kN *m’
Fig. 8-20 == o St e i W o P el tpe vl i
: toa = 3 6m) | 56m(- 252 o

Why are these terms negative? Substituting the resultsinto Eq. (1) yields
11 264 kN -m’ ( 2048 kN-m3‘)
Ap=-i—- 2 ——/————

EI EI
_ _T168 kN -m’
EI
Thus,
—~7168 kN »m®

Ae = 1200(10%) KN/m?][250(10°)(10°2) m]

= —0143m Ans.



Example 7

Determine the slope at the roller B of the double overhang beam
shown in Fig. 8-21a. Take E = 200 GPa, I = 18(10°) mm*.

30 KN-m 10 lkN

3

D
BA C
2m*“_‘2111‘—1—~2m
SkN

SkN

0p
05 lc/B
%: Nﬂ c




30 kN-m l
T
L B CA ‘

Zm 2m—dyd _9m.
SkN 5 kN 0,

tC/B :(

20 5],
El

 53.33

1( 10 .\ (2
(1\4_5.(_5.?}. kg

KN -m3=0.00741 rad

)

)



Another Solution

Moment Area Theorem. To determine tgz,c we apply the moment [y
area theorem by finding the moment of the M/EI diagram between
BC about point C. This only involves the shaded area under two of

the diagrams in Fig. 8-21b. Thus, :ﬁ:— X
—30kN - 2 1 10 kN -
an = | em(2H2) |+ (B2) 3em( )] =
_ 5333kN-m’
B EI

Substituting into Eq. (1),
e 5333kN-m’
B (2m)[200(10°) KN/m?|[18(10°)(107'2) m?]
= 0.00741 rad Bl




Conjugate-Beam Method



Conjugate-Beam Method

i w dVv d M
—_— = =W

JUITTTE T =W —
| L do M dv _M
real beam dx  FI dx 2 FI

—3 'V :dex

| AV IR YA VIR

% - ] Integratin
QTTH/H H\l\l\ e M =IUWO'X]U'X
| . |
conjugate beam 6 = J~|Kﬁ}dx V= J‘“J‘kﬁJdX JjX




Real Beam Conjugate Beam
wn 1) 0 sy v ==
o A=0 . M=0 -
| - pin pin
Qg v e A
(@R A=0 M=0
u roller , roller
3) =0 T V=0
m A=0 . M=0
a fixed free
D
B 4) 60 = v
[ A free M fixed
2
(qo] 5) 0 % —
(@) A=0 internal pin M=0 hinge
-
n
- ' 6) 0 S 14 g
(@) A=0 internal roller M=0 hinge
7) 0 ey W 1% =
- hin M
ge ;
internal roller




real beam

—

conjugate beam



Examble 1
Find the Max. deflection Take E=200Gpa, 1=60(106)

'-——15ft-al._ |
F 15ft—f

real beam



15 ft - ’

real beam

75
B.M.D

75
El

: :
A e B

- 15 ft - 15 fi -' conjugate beam

562.5

My
562.5

N

4

A, =M,

vV, =—2
° El

_ 5625 5y _ 140625
El El



Examnle 2
Find the deflection at Point C




- 6 m — 4m —e2m-

| = ]

l N A |
- <3 3

ok 81 27

‘ El El

27 63 -162



Example

Find the deflection at Point D




30 kips

; b

C D
| | O+ E'}whinge =0
< =L iep. 2 J2000) | 360(4)
t e g 4 g'— AT T B
I T 480
10 kips 20 kips Ra="gr
N >
F.=0
| 18’ 6] _ T ’
Momen 720 360 480 . _
(Kip+f0) El  EI EI P
600
120 =
DRI
3600
El M= 900 () = 3000
) Rl EI
1 3600
600 Ap =M. =
600_p El




Example 4
Find the Rotation at A

10 ft




=t = -

primary structure

B
T )20 k- ft
> 4

20
El

20
Ei

333
El

100
EI

666
El

_ 333
El



Examble 5

6k 8k 6k

by

10k 10k

M (k- ft) S —
144 1
120 120 }_;12 ftJ-ﬁ ft- -\-6 ft=—12 ft#

x (ft)

12 18 24 36

moment diagram

1 =450 in*| I' = 900 in* 4501
Twlth#éft 12ft4T %%%;
A
Aﬂ“l “ iii I

conjugate beam



EXAMPLE 814 Sl
1116 720 360 36
(HEM =0 E(IS) = E(l(]) = 5(3) = E(z) + Mo=10
v 1736k it
c = EI 120 14 130

Substituting the numerical data for EI and converting units, we have

11736 k - f3(1728 in’ s
-ft°(1728 in /fts) ) 12 18 A 36
A= Mo = — P T . = —1.35in.  Ans.
29{10 ) k/ll'l (450 m ] moment diagram
The negative sign indicates that the deflection is downward. (b)
720
0 720 Fr 360
720 » 720 El gy
L sk b 4§36
o i A : *\i E i : _EI
- - | M
S, )
10t 10 f fr @ — 3ft
il |2 1 EI -—llJf

conjugate beam external reactions internal reactions

(s) {4 (s)

Copyright © 2009 Pearson Prentice Hall Inc.




Examble 6

8k

—_g\v 30k - ft
- -

N | | E

12 ft—ep—2 ft—p——15 ft—,

~

real beam

«

|
]

™
=

—z
s

Yokt
‘A Ap C R

(%)VBQ@B)L

elastic curve

T

I

men
4

12 ft—p—12 ft—
conjugate beam




I8 Fo~s ——E—I_
EI ' ik 3.6
15 ft 4‘ i Fllft——\\ EI
Rne- i -]
A g\ C' 3
: a5 ;.
TE | L AEC
i % 15 ft—
-5 P20 aY -
I % 45t
F—12 ft—p—12 ft—| %
conjugate beam external reactions
() (d
Equilibriem. The external reactions at B’ and C’ are calculated first 225
and the results are indicated in Fig. 8-274. In order to determine (8p)g, EI
the conjugate beam is sectioned just to the right of B' and the shear Sfi _,i\‘ %
force (V g)g is computed, Fig. 8-27¢. Thus, Mp: :L__ 1 5\“;\ -
225 450 36 1‘8"_ g
i D i X (‘B)R :
+12F, =0 Velg + —————=0_ L
2 Vede* 51 ~ B " EI [—l
151t
450
2286k - ft? El
f v ==
(65)r = (Va)e = 5 °
228.6 k- ft?

- [29(10%)(144) k/ftg][30f(12)4] ft*
= 0.0378 rad Ans.



The internal moment at B’ yields the displacement of the pin. Thus,

225 450 3.6
E f - : - 4 5 - .5 e 5 =
+2Mp =0 Myt 55 ) — 57 15} = 5 (15) =0
2304 k - ft®
EA T
—2304 k - ft°

 [29(10°)(144) k/£E][30/(12)"] £
= 0381 ft = 458 in.

Ans.

The slope (), can be found from a section of beam just to the
left of B', Fig. 8-27f. Thus,

228.6 225 450 3.6
+T2Fy—0, (Vg)L+F+'E—E—E—O

(GB)L = (VB')L =0 Ans.

Obviously, Az = Mp for this segment is the same as previously calcu-

lated, since the moment arms are only slightly different in Figs. 8-27¢
and 8-27f.




Moment Diagrams and Equations for
Maximum Deflection

R=S T;fi{QT'
1 AMAX f
IL ; IL
W, 72 W
5 v o
m "
Ao = SwL*
MAX ™ 384F]
. P
—
= —R
1 AMA}){ t
I L |
P PL P
2 = 2

PL?
Amax = ggr

e Ao WLt 12
MAX — 3IR4ET



B
1 hBSMA)s f
L
; ;
Pa
M

P
S S
- — )
W~ pI PL
» L |

PL?: M=-PL




Examnbnle 4

Find the Maximum deflection for the following structure based on
The previous diagrams

P; =8.2kips P; =8.2kips
Pp=144Kkips Pp=14.4Kips

l 1 wp, = 0.4 kip/ft
_ / _




(a) Dead load deflection produced by uniform load is
_ 5(0.4)(30)*(1728) B
384(30.000)(758)

0.32 in

Dead load deflection produced by concentrated loads is

_ Pa(3L7 — 4a?

14.4(10)[3(30)* — 4(10)2](1728)

D 24E] 24(30.000) (758)

AD: — 105 il]

Total dead load deflection, Apr = Ap; + Ap, = 0.32 + 1.05 = 1.37 in

_ Pa(3L* —4a?)

8.2(10)[3(30)>— 4(10)2](1728)

Live load deflection\A

24E1 24(30,000)(758)
A, =0.61n
P P
P, = 8.2 kips P; =8.2 kips w
P,i:l4,4klip< P;:H.;lklipx' raﬂlr taﬁ 1 | l | l l | l |
1 wpy = 0.4 kip/f _‘?E'T;fi;;/__ K_T;fi\:;f_ﬁ
[ Apax Ay,
l 1 1 El | 1I. . ? 1; . MAX t
10— M M
Anmax 25%1 (L2 —da?) MAX -’*:ng




TORSION OF CIRCULAR SHAFT

* TOR 0 OMENT OR TWISTING MOMENT :-

» In factories and workshops, shafts is used to transmit energy from one
end to other end.

» To transmit the energy, a turning force is applied either to the rim of a
pulley, keyed to the shafts, or to any other suitable point at some
distance from the axis of the shaft.

» The moment of couple acting on the shaft is called torque or turning
moment or twisting moment.






ANGLE OF TWIST (6)

» When the shaft is subjected to Torque (T),point A on the
surface of the shaft comes to A’ position. The angle AOA’ at
the centre of the shaft is called the angle of twist.

» £AOA'= B =Angle of twist

» Angle of twist is measured in radians.
A

3

A



SHEAR STRESS IN SHAFT:(t)

» When a shaft is subjected to equals and opposite end
couples, whose axes coincide with the axis of the shaft, the
shaft is said to be in pure torsion and at any point in the
section of the shaft stress will be induced.

» That stress is called shear stress in shaft.



STRENGTH OF SHAFTS

Maximum torque or power the shaft can transmit from one
pulley to another, is called strength of shaft.

(a) For solid circular shafts:
Maximum torque (T)is given by :

T=£x1‘xD3
16

where, D = dia. of the shaft
t=shear stress in the shaft






ASSUMPTION IN THE THEORY OF TORSION:

* The following assumptions are made while finding out
shear stress in a circular shaft subjected to torsion.

1) The material of shaft is uniform throughout the length.
2) The twist along the shaft is uniform.
3) The shaftis of uniform circular section throughout the

length.
4) Cross section of the shaft, which are plane before twist
remain plain after twist.

5) All radii which are straight before twist remain straight
after twist.



——

POLLAR MOMENT OF INERTIA : (])

* The moment of inertia of a plane area, with respect to an

axis perpendicular to the plane of the figure is called polar
moment of inertia.

® As per the perpendicular axis theorem.



THEORY OF TORSION AND TORSION EQUATION

* Consider a shaft fixed at one end
subjected to torque at the other end.

e As aresult of torque every cross-section

T= Torque
I= length of the shaft
R=Radius of the shaft

of the shaft will be subjected to shear

stress.

Line CA on the surface of the shaft will
be deform to CA’ and OA to OA’, as shown

in figure.

* Let, ZACA'=shear strain
£AOA’=angle of twist

-




TORSION RIGIDITY

® Let twisting moment Produce a twist radians in length L.
T Ch

J L
e for given shaft the twist is therefore proportional to the
twisting moment T.

® In a beam the bending moment produce deflection, in the
same manner a torque produces a twist in shaft.

® The quantity C] stands for the torque required to produce a
twist of 1 radian per unit of the shaft.

® The quantity C] corresponding to a similar EI, in expression
for deflection of beams, El is known as flexure rigidity.
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EXAMOLE 6 :-

A solid shaft ABC is fixed at A and free at C and torque of 900 N.m is
applied at B. The length of BC is 2m and that of BC is 1m. The diameter
of AB is 40mm and that of BC is 20mm. If the shaft is made up of same
material, find the angle of twisty in radius at the free end C.

Solution :

d, =40mm

d, =20mm

/, =2000mm

[, =1000mm

T =900x10° N.mm
As per given data,

twist will occur in the shaft AB and there will be zero twist in shaft BC.
The torque T =600x10° N.mm will act only on part AB.






When length of shaft required is very large, due to non availability of a
single shaft of required length, it becomes necessary to connect two
shafts together. This is usually done by means of flanged coupling as

shown below
A EiSO4762  _F

G ez E; 1SD 4762

I _ Keyway DIN 6885

- The flange of two shafts are joined together by bolts nuts or rivets and
the torque is then transferred from one shaft to another through the
couplings.



- As the torque is transferred through the bolts, will be subjected to shear
stress. As the diameter of bolts is small, as compared to the diameter of
the flange therefore shear stress is assumed to be uniform in the bolts.

1) Design of bolts :
We know that torque transmitted by the shaft,
T =2 <xrxD?>
16

Where, 1= shear stress in shaft
d = diameter of shaft
Now,

Torque rested by one bolt,
= ( area x shear stress ) x radius of bolt circle
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DESIGN OF KEYS

A flange is attached to the shaft by means of a key. A rectangle
notch is cut on the circumference of the shaft and a similar notch is cut
on the inner side of the flange. The flange is then placed over the shaft
in such a way that the two notches from a rectangular hole. A
rectangular key is then inserted in to the hole and the flange is said to
be keyed to the shaft.

Torque is transmitted by the shaft to flange through the key. Key is
subjected to the shear stress.

i \ KEY
FLANGE — DRAKL




EXAMPLE OF KEYS

EXAMPLE -7:-

A flanged coupling connecting two lengths of solid circular shaft has
6 nos of 20 mm diameter bolts equally spaced along a pitch circle of 240
mm diameter. Determine the shaft if the average shear stress in the
bolts is to be the same as maximum shear stress in the shaft.

Solution :
n=6Nos
d=20 mm
D =240 mm

Tb=

We know that,
Torque transmitted by shaft = Torque resisted by bolt






EXAMPLE -8 :-
The shaft each of 100 mm diameter are to be connected to the end by a

bolted coupling. If the maximum shear stress in the shaft is 80 Mpa and in
the bolts is 70 Mpa, find the number of 20 mm diameter bolts required for
the coupling. Take diameter of bolt circle as 200 mm.

Solution :

d=100mm

7 =80N/mm’
7, = 70N/mm”
dy, =20mm

D =200mm

We know that,
Torque transmitted by the shaft = torque rested by the bolt






EXAMPLE -9 :-

A shaft 100 in diameter is transmitted torque of 6000 N.m by means
of key 200 mm long and 25 mm wide. Find the stress developed in

shaft.
d=100 mm
T=6000 N.m
L=200 mm

T = shear stress in shaft
9 B 7

J R
6000x10° 1

9817x10° 50

r =30.56N/mm”~

J=" «a* =% x100*

304
J=9.817x10°

R=lg—0-=50mm



Example -10 :-
Two shaft of diameter 50 mm are joined by a rigid flange coupling
and transmit a torque in such a way that the shear stress in shaft does
not exceed » . If six bolt are used to join the flange and the bolt
circle is 150 {M T iameter. Determine the diameter of the bolt if the
permitted shear stress in the boltis 7, = 8ON/mm?,

Solution :

d=50mm

= 100N/mm°
7, = 80N/mm”
n= 6 Nos
D=150 mm

We know that,
Torque transmitted by the shaft = Torque resisted by bolts.
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Module 6
Columns and Struts



Columns and Struts

Any member subjected to axial compressive load
is called a column or Strut.

A vertical member subjected to axial compressive
load - COLUMN (Eg: Pillars of a building)

An inclined member subjected to axial
compressive load -STRUT

A strut may also be a horizontal member

Load carrying capacity of a compression member
depends not only on its cross sectional area, but
also on its length and the manner in which the
ends of a column are held.



* Equilibrium of a column — Stable, Unstable,
Neutral.

* Critical or Crippling or Buckling load — Load at
which buckling starts

* Column is said to have developed an elastic
instability.



Classification of Columns

According to nature of failure — short, medium
and long columns

1. Short column — whose length is so related to its
c/s area that failure occurs mainly due to direct
compressive stress only and the role of bending
stress is negligible

2. Medium Column - whose length is so related to
its ¢/s area that failure occurs by a combination of
direct compressive stress and bending stress

3. Long Column - whose length is so related to its
c/s area that failure occurs mainly due to bending
stress and the role of direct compressive stress is
negligible




Euler’s Theory

e Columns and struts which fail by buckling may
be analyzed by Euler’s theory

 Assumptions made

the column is initially straight

the cross-section is uniform throughout

the line of thrust coincides exactly with the axis of the column
the material is homogeneous and isotropic

the shortening of column due to axial compression is negligible.



Case (i) Both Ends Hinged

Pv{\ =8
s
y <
| nﬁlﬁ}h
3 o
P
d>y
El —=M=-P)
dx-




: . d° P
The equation can be written as d—; +a’y=0 where o?= ==
: X

The solution is y= A4 sin o x + B cos a x

Atx=0,y=0,..B=0
atx=/,y=0and thus 4 sina/=0

[fA=0,y is zero for all values of load and there is no bending.

sina/=0 or al= (considering the least value)

or =1/l
2El

Euler crippling load, P, = o*El = E




Case (ii) One end fixed other free

d?y
Eldxz =M =P(a—-y)=Pa—- Py




2
Eld—-;_‘i=M=P(a—y)=Pa—Py

dx
E 2)+a2y=—g- where % =—
dx? EI EI
- : ' P.a
The solutionis ¥y = A sinax + Bcos ax + =
Elo~

= Asinox + Bcosax + a

=0 y=0, & f==a

or Aacosax—Basinax=0 or A=0

y = —a,cos ax + a=a(l — cos ax)



At x=Ly=a, . a=a(l —cos al)

or cosa/=0 or ol =% (considering the least value)

a=112]
neEl

Eulef crippling load, P, = o*El = e



Case (iii) Fixed at both ends




EIZX_ZZ—Py-i_M
d? M P
—2X+052 =— where a’?=—
dx El El
The solution 1s y = A sin &tx + B cos o.x + = A sin ox + B cos ox + —
Elo? e
~ M
x=0, =0, ). B=-—
4 P
d
dx

or Aacosax—Basinax=0 or A=0

M M M
. y=——0¢c08 0X +—=—(1—cos ax)
P 2, P




At x=1Ly=0, .. Oz%(l—cosal)or cosal=1

or al=2m (considering the least value)
or =2/l

2
*. Euler crippling load, P, = o2EI = 4732EI |




Case (iv) One end fixed, other hinged

EI=—2 =—Py+R(- )




d? 'Rl —x ol P
__g’+a2y= ( ) where = o® et
dx EI | | El
. R(I —
Thesolutionis y = A sin ax + B cos ox + ¢ 2x )
Elo

or

meme s 1
=Asinax+Bcosax+F(l—x)

: R
Aacosax—Basmax——I;:O

or



R . Rl R

yzﬁsm ax—;—cos ax+;(l—x)
At x=Ly=0, .. =—R—sinal——@-cosal
Po P

or tan al = al

al=4.49 rad (considering the least value)
a=449/1

449%El 20.2El 2m*El

*+ Euler crippling load, P,= a*El = TP 7




Equivalent Length ()

2EIl
12

Euler’s load can be expressedas  F, =

where 2 is referred as equivalent length of the
column which takes into account the type of fixing
of the ends.



The equivalent lengths for different types of end conditions are

(1) both ends hinged, / =1
(if) one end fixed and the other free, [, =2/
(111) both ends fixed,/ =1/2
)

(1v) one end fixed, other hinged, | = 1/\/5 2y

A

AY
T

Pointsof [/, =

Inflection
\_L

Nl\

=2

0
P

(i)



Limitations of Euler’s Formula

* Assumption — Struts are initially perfectly
straight and the load is exactly axial.

* There is always some eccentricity and initial
curvature present.

* |n practice a strut suffers a deflection before
the Crippling load.



* Critical stress (o.) — average stress over the
Cross section

B - ;*El
c.=—% =
i Al?
- w2EAK?
Al?
g
n-E

O- 2
(1 Ik)>

* |/k is known as Slenderness Ratio




Slenderness Ratio

* Slenderness ratio is the ratio of the length of a
column and the radius of gyration of its cross
section

e Slenderness Ratio = I/k

The Radius of Gyration ky of an Area (A) about an axis (x) is defined as:

I =k*A

X

x
ke, j 2
A



Rankine’s Formula
OR
Rankine-Gorden Formula

Euler’s formula is applicable to long columns only for
which |/k ratio is larger than a particular value.

Also doesn’t take in to account the direct
compressive stress.

Thus for columns of medium length it doesn’t
provide accurate results.

Rankine forwarded an empirical relation



pis il

+
P £

where P = Rankine’s crippling load
P_ = ultimate load for a strut = o, - 4, constant for a material

P, = Eulerial load for a strut = 7 EI/I?

e For short columns, P, is very large and therefore 1/P, is small in comparison to 1/P .. Thus the crippling
load P is practically equal to P,

* For long columns, P, is very small and therefore 1/P, is quite large in comparison to 1/P_. Thus the
crippling load P is practically equal to P,



T Y
—
T
l_Pe+PC
P PP
P"—'-' PCPe — PC o O-C.A
7
E+P, 1+F,/F, I+GCAI
n?El
o.-A
_1 oAl
. B
w2 EAk?
P = ECLA

where o, is the crushing stress

2
e (—];) a is the Rankine’s constant (O'C/’iTzE)



11 11 1
_....=—.+_
r B £
1_E+F5
P PP,
Vo — PCP" - Pc _ O'C°A
Pe+Pc 1+Pc/Pe l+O'CA-12
n2El
o.-A
—1 oAl
P
0. A | ﬂ'zEAkz

2
1t a(—{) where o is the crushing stress
a is the Rankine’s constant (o /7°E)

* A Factor of Safety may be considered for the value of o.in the
above formula



e Rankine’s formula for columns with other end
conditions




Definition: A spring may be defined as an elastic
member whose primary function is to deflect or
distort under the action of applied load; it recovers its
original shape when load is released.

Important types of springs are:
There are various types of springs such as

Helical spring: They are made of wire coiled into a
helical form, the load being applied along the axis of
the helix. In these type of springs the major stresses is
torsional shear stress due to twisting. They are both
used in tension and compression.

Spiral springs: They are made of flat strip of metal wound in the

form of spiral and loaded in torsion.
In this the major stresses are tensile and compression due to bending.

07/31/2018



Uses of springs :

To apply forces and to control motions as in
brakes and clutches.

To measure forces as in spring balance.

To store energy as in clock springs.

To reduce the effect of shock or impact
loading as in carriage springs.

To change the vibrating characteristics of a
member as inflexible mounting of motors.

Derivation of the Formula :

In order to derive a necessary formula which
governs the behavior of springs, consider a closed
coiled spring subjected to an axial load W.

07/31/2018
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Let

W = axial load

D = mean coil diameter d = diameter of spring wire
n = number of active coils

C =spring index = D / d For circular wires

| = length of spring wire G = modulus of rigidity
x = deflection of spring g = Angle of twist

when the spring is being subjected to an axial load to the wire
of the spring gets be twisted like a shaft.

If g is the total angle of twist along the wire and x is the
deflection of spring under the action of load W along the axis
of the coil, so that

x=D/2.0

UNIT-5
COLUMNS & STRUTS

07/31/2018
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THIN AND THICK CYLINDERS

INTRODUCTION:

[n many engineering applications, cylinders are frequently
used for transporting or storing of liquids, gases or fluids.

Eg: Pipes, Boilers, storage tanks etc.

These cylinders are subjected to fluid pressures. When a
cylinder 1s subjected to a internal pressure, at any point on the
cylinder wall, three types of stresses are induced on three

mutually perpendicular planes.

They are,




LS

Manipal

I. Hoop or Circumferential Stress (6.) — This 1s directed along the
tangent to the circumference and tensile in nature. Thus, there

will be increase in diameter.

2. Longitudinal Stress (o, ) — This stress is directed along the
length of the cylinder. This is also tensile in nature and tends

to increase the length.

3. Radial pressure ( p, ) — It i1s compressive in nature.

[ts maenitude 1s equal to fluid pressure on the inside wall and

zero on the outer wall if it 1s open to atmosphere.
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— -

|. Hoop Stress (0.) 2. Longitudinal Stress (6;) 3. Radial Stress (p.)

Element on the cylinder
wall subjected to these

three stresses




L THIN CYLINDERS

Manipal

INTRODUCTION:

A cylinder or spherical shell is considered to be thin when the

metal thickness i1s small compared to internal diameter.

1. €., when the wall thickness, ‘t’ 1s equal to or less than

‘d/20°, where ‘d’ 1s the internal diameter of the cylinder or shell,

we consider the cylinder or shell to be thin, otherwise thick.

Magnitude of radial pressure is very small compared to

other two stresses 1n case of thin cylinders and hence neglected.




Manipal

| Longitudinal

axis

The stress acting along the circumference of the cylinder is called
circumferential stresses whereas the stress acting along the length of
the cylinder (i.e., in the longitudinal direction ) 1s known as
longitudinal stress




The bursting will take place if the force due to internal (fluid)
pressure (acting vertically upwards and downwards) i1s more than the
resisting force due to circumferential stress set up in the material.

P - internal pressure (stress)

o. —circumferential stress




-
\

dl P - internal pressure (stress)

o, — circumferential stress



Consider a thin cylinder closed at both ends and subjected to internal

pressure ‘p’ as shown in the figure.
Let d=Internal diameter, t = Thickness of the wall

L = Length of the cylinder.




|
Manipal
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To determine the Bursting force across the diameter:
Consider a small length ‘dl’ of the cylinder and an elementary
area 'dA’ as shown in the figure.

Force on the elementary area,

dF = pXdA =pXrXxdlxdo

=p><%><d/><d()

e

Horizontal component of this force

dF. =pX % XdlxcosOxdb

—

Vertical component of this force

dF, =pX —L; Xdlxsm 0xdo

-
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The horizontal components cancel out
when integrated over semi-circular
portion as there will be another equal
and opposite horizontal component on
the other side of the vertical axis.

.. Total diametrica | bursting force = J‘px;xdlxsm 6 xdo

-
0

Z})X(—:X(“X[—COSQ] r=pxdxdl

= pX projected area of the curved surface.
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. Resisting force (due to crcumfere ntial stress 6, )=2Xo XtXdl

Under equillibri um, Resistng force = Bursting force

Le., 2X0o, XtXdl =pxdxdl
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Force due to fluid pressure = p % area on which p is acting = p %(d xL)

(bursting force)

Force due to circumferential stress = ¢_ X area on which o_ 1s acting

(resisting force) =o X (L xt+L xXt)=0 x2L xt
Under equilibrium bursting force = resisting force

p %(d XL)ig‘ x 2L Xt
. Circumfere ntial stress, o, =




o /~ LONGITUDINAL STRESS (o,):

Manipal

= —— . : : :
The bursting of the cylinder takes

place along the section AB

The force, due to pressure of the fluid, acting at the ends of the
thin cylinder, tends to burst the cylinder as shown in figure




T

Longitudin al bursting force (on the end of cylinder) = p><z><d2

Area of cross section resisting this force = mxdxt
Let 6, = Longitudmn al stress of the material of the cylinder.

. Resisting force =0, XmxdXxt




|
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m ——————— ——

Under equillibri um, bursting force = resisting force

]

Le., pxzxd2 =0, XTxXdxt
S xd
Longitudin al stress, o, =L "
4xt

Fromeqgs (1) & (2),




Manipal
Force due to fluid pressure = pXxarea on which pis acting

T >
= p =3¢
P 4

Re sisting force =6, Xarea on which o, is acting
=0, Yrxdxt

. circumference

Under equillibri um, bursting force =resisting force

o B
Longifidif® xnireed 7




LU EVALUATION OF STRAINS

Manipal

o, =(pd)/(4t)

A

G =(pd)/(2t) ° "0 ~=(pd)/(21)

v
o =(pd)/(4t)
A point on the surface of thin cylinder is subjected to biaxial
stress system, (Hoop stress and Longitudinal stress) mutually
perpendicular to each other, as shown in the figure. The strains due

to these stresses 1.e., circumferential and longitudinal are obtained

by applying Hooke’s law and Poisson’s theory for elastic

materials.




Circumfere ntial stram, €. :

O of
Ec = — i G =ppd)/(41)
E E |
o] o] '
=2X—=—puX—
E E 0‘ (pd)(:() - —’0 ‘(pd’(
o
=—X(2—p) l
E
O =(pd)/(41)
. od xd
L., Er=—= P A ) NE O 5 ot (3)
d 4XxtxE
Note: Let dd be the change in diameter. Then




Longitudin al stramn, ¢, :

o O
€, =——LX
E

VOLUMETRIC STRAIN, @

\

Change in volume = oV = final volume — original volume

original volume = V = area of cylindrical shell % length




final volume = final area of cross section x final length




Z 2dLod+oLd:

T d?xL

ooooooooooooooooo




LS
Maximum Shear stress :
There are two principal stresses at any poimt,
viz., Circumfere ntial and longitudn al. Both
these stresses are normal and act perpendicu lar
to each other.

O -0,

o p) O ,=(pd)/(41)
A

- Maximum Shear stress, T

pd pd

2t 4t
= 6. ~(pd)/(21) ‘ —G' =
~(pd)/(2t)

4

O =(pd)/(41)

1




18 43.1 4

wnm
anipa iy
Maximum Shear stress :
: 0--0
. Maximum Shear stress, T =— - '

pd pd

A

4t

ooooooooooooooooooooo




ILLUSTRATIVE PROBLEMS

A thin cylindrical shell 1s 3m long and 1m in internal diameter. It 1s
subjected to internal pressure of 1.2 MPa. If the thickness of the sheet is
| 2mm, find the circumferential stress, longitudinal stress, changes in
diameter, length and volume . Take E=200 GPa and p= 0.3.

SOLUTION:
|. Circumferential stress, 6.
o= (pxd) / (2%t

— (1.2%1000) / (2% 12)
= 50 N/mm?= 50 MPa (Tensile)

2. Longitudinal stress, o, :
6, = (pxd) / (4xt)
=02 =350/2

=25 N/mm? = 25 MPa (Tensile).




3. Circumferential strain. & :
: . - (pxd) (2-W

© (4xt) E

(1.2><1000)x (2-0.3)
(4x12)  200x10°

=2.125%10™" (Increase)

Change in diameter, od = ¢_ xd
= 2.125x10"x1000 = 0.2125 mm (Increase).

4. Longitudinal strain, g, :

(pxd)x(l—.?xu)
(4% t) E

&, =

~ (1.2x1000) ><(1—2><0.3)
(4x12) 200x10°

=5x10" (Increase)

Change in length = ¢ | XL=5x10""%3000 = 0.15 mm (Increase).




| Y \Y;

Volumetric strain, v : d d
dv _ (pX )_X(5—4><p)

V. (@xtxE

~ (1.2x1000) (5—4%0.3)
(4%12)%200%10° %

=4.75%10" (Increase)

-.Change in volume, dv=4.75x10"xV

=4.75%10™ xgx 10002 %3000

=1.11919%10° mm° =1.11919%10" m’
=1.11919 Litres.




A copper tube having 45mm internal diameter and 1.5mm wall
thickness 1s closed at its ends by plugs which are at 450mm apart. The
tube is subjected to internal pressure of 3 MPa and at the same time
pulled in axial direction with a force of 3 kN. Compute: 1) the change
in length between the plugs 11) the change in internal diameter of the
tube. Take E_, = 100 GPa, and p., = 0.3.

SOLUTION:
A] Due to Fluid pressure of 3 MPa:

Longitudinal stress, 6, = (pxd) / (4xt)
= (3%45) / (4% 1.5) = 22.50 N/mm? = 22.50 MPa.

o,
_(pxd)x(l 2% W)

Long. stram, ¢, =

4%t E

225X(_|ﬂ;) = ()Xl()"-‘
100x10°

Change 1n length, 6,= ¢, x L =9 x 10°%450 = +0.0405 mm (increase)




=3.825%10""

Change in diameter, 0,= €% d = 3.825 x 10*x45

=+ 0.0172 mm (increase)

B] Due to Pull of 3 kN (P=3kN):
Area of cross section of copper tube, A, =m x d x t
=X 45 x1.5=212.06 mm?

Longitudinal strain, € | = direct stress/E = o/E = P/(A_ X E)
=3 x 10°/(212.06 x 100 x 10°)
=1.415 x 104

Change 1n length, 6,=¢, X L= 1.415 x 10+ x450= +0.0637mm (increase)




Lateral strain, £~ -t X Longitudinal strain = -p. X g,

=-0.3x 1.415 x 10*= -4.245 x 107

Change in diameter, §,= g, * d = -4.245 X 10~ x45

=-1.91 x 10 mm (decrease)

C) Changes due to combined effects:
Change 1n length = 0.0405 + 0.0637 = + 0.1042 mm (increase)

Change in diameter = 0.01721 - 1.91 x 10°=+0.0153 mm (increase)




PROBLEM

A cylindrical boiler 1s 800mm in diameter and Im length. It is
required to withstand a pressure of 100m of water. If the permissible
tensile stress 1s 20N/mm?, permissible shear stress 1s 8N/mm? and
permissible change in diameter is 0.2mm, find the minimum thickness
of the metal required. Take E = 200GPa, and p = 0.3.

SOLUTION:

Fluid pressure, p = 100m of water = 100x9.81x103% N/m?
= 0.981N/mm?* .

I. Thickness from Hoop Stress consideration: (Hoop stress 1s critical
than long. Stress)

o = (pxd)/(2xt)

20 = (0.981x800)/(2xt)

t=19.62 mm




2. Thickness from Shear Stress consideration:
_ (pxd)
(8X%1)

X

)
L

~ (0.981x800)
(8Xt1)

St=12.26mm.
3. Thickness from permissible chanee in diameter consideration

(0d=0.2mm): I
od (p>d) ><(2 —iL)

d (4 ><t) E

0.2 __(().981><8()())x(2—().3)
K00 (4 ><t) 200><10°

t =6.67mm

Therefore, required thickness, t = 19.62 mm.




PROBLEM

A cylindrical boiler has 450mm in internal diameter, 12mm thick and
0.9m long. It is initially filled with water at atmospheric pressure.
Determine the pressure at which an additional water of 0.187 liters
may be pumped into the cylinder by considering water to be
incompressible. Take E = 200 GPa, and p = 0.3.

SOLUTION:

Additional volume of water, oV = 0.187 liters = 0.187%10-* m°
= 187*10° mm?*

V =2 %450>%(0.9%10°)=143.14%10° mm®

v
8 PR )
V  4xtxE

187%x10° px 450
143.14x10° 4x12x200x10°

(5—-4x0.33)

Solving. p=7.33 N/mm?




m A JOINT EFFICIENCY
Steel plates of only particular lengths and width are available. Hence
whenever larger size cylinders (like boilers) are required, a number
of plates are to be connected. This 1s achieved by using riveting in
circumferential and longitudinal directions as shown in figure. Due
to the holes for rivets, the net area of cross section decreases and
hence the stresses increase.

Circumferential Longitudinal

/ r i V e l S '// I‘ i vV Ct S
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The cylindrical shells like boilers are having two types of joints
namely Longitudinal and Circumferential joints. Due to the holes for
rivets, the net area of cross section decreases and hence the stresses
increase. If the efficiencies of these joints are known, the stresses
can be calculated as follows.

Let n ,= Efficiency of Longitudinal joint

and n .= Efficiency of Circumferential joint.

Circumferential stress is given by,

pxd
2XtXn,

Cc =
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Longitudinal stress is given by,

Note: In longitudinal joint, the circumferential stress is developed

and 1n circumferential joint, longitudinal stress is developed.

Circumferential Longitudinal

rivets / rivets




LS
[f A is the gross area and A is the effective resisting area then,
Efficiency = A /A
Bursting force=p L d
Resisting force = 6, XA _,;_o, X1, XA =0oc X1, X2tL

Where n =Efficiency of Longitudinal joint
Bursting force = Resisting force
pLd =occxn, xX2tL

pxd

Oc

2XtX"M,
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[f n =Efficiency of circumferential joint

Efficiency = A /A
Bursting force = (mw d*/4)p

Resisting force = o, XA’ =0, 1. XA'=06, X1, xnw d t

Where 1 =Efficiency of circumferential joint

Bursting force = Resisting force




A cylindrical tank of 750mm internal diameter, 12mm thickness and
[.5m length is completely filled with an oil of specific weight
7.85 kN/m?® at atmospheric pressure. If the efficiency of longitudinal
joints 1s 75% and that of circumferential joints 1s 45%, find the
pressure head of oil in the tank. Also calculate the change in volume.
Take permissible tensile stress of tank plate as 120 MPa and E = 200
GPa, and p = 0.3.
SOLUTION:

Let p = max permissible pressure in the tank.

Then we have, 6,= (pxd)/(4xt) n .

120 = (px750)/(4%x12) 0.45
p = 3.456 MPa.

Also, 6 = (pxd)/(2xt) n ,
120 = (px750)/(2%12) 0.75
p = 2.88 MPa.




Max permissible pressure in the tank, p = 2.88 MPa.

Vol. Stram, dv _ (pxd)

X(5—=4xn)
V (4xtxE) ;

28875
___(88XTOD) . (5-4%03)=8.55%10

T (4x12x200%10°%)

dv=8.55x10"%xV =8.55x10" x§x750: %1500 =0.567x10° mm°.

=0.567%10" m" =0.567 litres.




A boiler shell 1s to be made of 15mm thick plate having a limiting
tensile stress of 120 N/mm?. If the efficiencies of the longitudinal and
circumferential joints are 70% and 30% respectively determine;

1) The maximum permissible diameter of the shell for an
internal pressure of 2 N/mm?.

(11) Permissible intensity of internal pressure when the shell
diameter 1s 1.5m.

SOLUTION:

(1) To find the maximum permissible diameter of the shell for an
internal pressure of 2 N/mm?:

a) Let limiting tensile stress = Circumferential stress = ¢ _
[20N/mm?.
pxd

O 7 —
2XtX1,

2xd

e d= 1260 mm
2x15%0.7




b) Let limiting tensile stress = Longitudinal stress = ¢ , = 120N/mm”.

pxd

G. =

= 4X XN,

2xd

120=——
4x15x%0.3

d= 1080 mm

The maximum diameter of the cylinder in order to satisty both the
conditions = 1080 mm.




(11) To find the permissible pressure for an internal diameter of 1.5m:
(d=1.5m=1500mm)

a) Let limiting tensile stress = Circumferential stress = ¢ =
| 20N/mm?.
: xd
Le, O.=—
2XtXn,
px1500
2x15x0.7
p=1.68 N/mm~.

120 =

b) Let limiting tensile stress = Longitudinal stress = ¢ , = 120N/mm?.

pXxd
C

: —4><t><1](
px1500
4x15x0.3

120 =

p=1.44 N/mm°.

The maximum permissible pressure = 1.44 N/mm?.




PROBLEMS FOR PRACTICE

PROBLEM
Calculate the circumferential and longitudinal strains for a boiler of
1000mm diameter when 1t 1s subjected to an internal pressure of
I MPa. The wall thickness is such that the safe maximum tensile stress
in the boiler material 1s 35 MPa. Take E=200GPa and p= 0.25.

(Ans: € .=0.0001531, £ ,=0.00004375)

PROBLEM
A water main Im in diameter contains water at a pressure head of
120m. Find the thickness of the metal if the working stress in the pipe
metal i1s 30 MPa. Take unit weight of water = 10 kN/m°.

(Ans: t=20mm)




PROBLEM

A gravity main 2m in diameter and 15mm in thickness. It is subjected
to an internal fluid pressure of 1.5 MPa. Calculate the hoop and
longitudinal stresses induced in the pipe material. If a factor of safety
4 was used in the design, what is the ultimate tensile stress in the pipe
material?

(Ans: 6.=100 MPa, 6,=50 MPa, ¢,=400 MPa)

PROBLEM
At a point in a thin cylinder subjected to internal fluid pressure, the
value of hoop strain i1s 600x10* (tensile). Compute hoop and
longitudinal stresses. How much 1s the percentage change in the
volume of the cylinder? Take E=200GPa and p= 0.2857.

(Ans: 6.=140 MPa, 6,=70 MPa, %age change=0.135%.)




PROBLEM

A cylindrical tank of 750mm internal diameter and 1.5m long is to be
filled with an oil of specific weight 7.85 kN/m3 under a pressure head
of 365 m. If the longitudinal joint efficiency is 75% and
circumferential joint efficiency is 40%, find the thickness of the tank
required. Also calculate the error of calculation in the quantity of oil
in the tank 1f the volumetric strain of the tank i1s neglected. Take

permissible tensile stress as 120 MPa, E=200GPa and p= 0.3 for the
tank material. (Ans: =12 mm, error=0.085%.)




THICK CYLINDERS
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INTRODUCTION:

The thickness of the cylinder 1s large compared to that of thin
cylinder.
1. €., In case of thick cylinders, the metal thickness ‘t’ 1s more

than ‘d/20°, where ‘d’ 1s the internal diameter of the cylinder.

Magnitude of radial stress (p,) i1s large and hence it cannot be

neglected. The circumferential stress is also not uniform across the
cylinder wall. The radial stress i1s compressive in nature and
circumferential and longitudinal stresses are tensile in nature.

Radial stress and circumferential stresses are computed by using

‘Lame’s equations’.
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LAME’S EQUATIONS (Theory) :
ASSUMPTIONS:

1. Plane sections of the cylinder normal to its axis remain plane and

normal even under pressure.
2. Longitudinal stress (o, ) and longitudinal strain (g, ) remain constant

throughout the thickness of the wall.
3. Since longitudinal stress (o, ) and longitudinal strain (€, ) are constant,

it follows that the difference in the magnitude of hoop stress and
radial stress (p,) at any point on the cylinder wall 1s a constant.

4. The material 1s homogeneous, 1sotropic and obeys Hooke’s law. (The

stresses are within proportionality limit).




Consider a thick cylinder of external radius r, and internal radius

I,, containing a fluid under pressure ‘p’ as shown in the fig.

Let ‘L’ be the length of the cylinder.




L

Consider an elemental ring of radius ‘r’ and thickness 0, as shown

in the above figures. Let p. and (p+ op.) be the intensities of radial
~ | I l r

yressures at inner and outer faces of the ring.



Consider the longitudinal
section XX of the ring as
shown 1n the fig.

The bursting force 1s

evaluated by considering “'———1 %

the projected area,
“2xrxL.’ for the inner face
and ‘2x(r+0 )xL’ for the

- p.+op,
outer face . | |

The net bursting force, P = p x2XxrxL - (p,+0p,)*2%(r+0,)*L
=( -p, % 0,- rxdp,- op, % 0,) 2L

Bursting force is resisted by the hoop tensile force developing at the

level of the strip 1.e.,

F=c.x2 x§xL



Thus, for equilibrium, P =F,
(-p, X O,- rxop,- op, %X 0,) 2L = ¢ *x2%9 XL
-prx Or - ’Xop,- Op, X 0, = G XOr
Neglecting products of small quantities, (i.e., dp, X or)

O o.': 3 pr_ (" 2 6pl )/ 6r

LOI]"I(lldlnal 6112111] 1S (&Pl]‘itanl Iﬁence w¢eE have,

EiT ==X + L X — = constant Since P_is compressive
' E 2 E

— P, ) = constant

since 6, E and p are constants (6, — P.) should be constant . Let it be

ual to 2a. Thus




G - p, = 2a,

C

1LE,, 0. = P28, e (2)

From (1), pt+2a=-p,—(r*dp,) /0,
P,

1€ 2(p, +a)=-rX
_ 5% Son SN (3)
] (p, +a)

Integrating, (-2 xlog,r) +c¢= log. (p,+a)
Where c is constant of integration. Let it be taken as log_ b, where

‘b’ 1s another constant. b

-~

Thus, log_(p+a) = -2 xlog,r + log.b = - log r*+ log.b=log, r°




b ; b
) +a=— or, radial stress. p. =—
[ I

-

| r
Substituting 1t in equation 2, we get

Hoop stress, o,

The equations (4) & (5) are known as “Lame’s Equations”™ for radial

pressure and hoop stress at any specified point on the cylinder wall.
Thus, r,<r <r.,.




2 »
’
| "
o)
-
|

Consider a transverse section near the end wall as shown in the fig.
Bursting force, P =nxr,**xp

Resisting force 1s due to longitudinal stress ‘c | .
e, F,=o0,Xn X *r?)

For equilibrium, F,= P

G X T X(r*-1,7)= T X1,°Xp

Therefore, longitudinal stress,
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Variations of Hoop stress and Radial stress are parabolic across
the cylinder wall.

At the inner edge. the stresses are maximum.

The value of ‘Permissible or Maximum Hoop Stress’ 1s to be
considered on the inner edge.

The maximum shear stress (o and Hoop, Longitudinal and

ax )

radial strains (¢, €, € ) are calculated as in thin cylinder but

separately for inner and outer edges.




w ILLUSTRATIVE PROBLEMS

Manipal
AP By

PROBLEM ' :

A thick cylindrical pipe of external diameter 300mm and internal
diameter 200mm 1s subjected to an internal fluid pressure of 20N/mm?
and external pressure of S N/mm?. Determine the maximum hoop
stress developed and draw the variation of hoop stress and radial
stress across the thickness. Show at least four points for each case.

SOLUTION:

External diameter = 300mm. External radius, r,=150mm.

Internal diameter = 200mm. Internal radius, r,=100mm.

Lame’s equations:
For Hoop stress,

For radial stress.




Boundary conditions:
At r=100mm (on the inner face), radial pressure = 20N/mm?

A= e
100°

Similarly, at r =150mm (on the outer face), radial pressure = SN/mm?

b

S:ﬁ—'
150"

Solving equations (3) & (4), weget a=7, b=2,70,000.

: : : 2,70,000
Lame’s equations are, for Hoop stress, o, =———+
re

. 5) )
For radial stress. p. = M_




To draw variations of Hoop stress & Radial stress :

At r=100mm (on the inner face),

2.70.000
100°

: 2,70,
Radial stress, p, = 7—000 —7= 20 MPa (Comp)

100°
Atr=120mm.

Hoop stress, ¢, =

Hoop stress, o, = +7 = 34 MPa (Tensile)

2,70,000
—_— .+.
120"

7= 25.75 MPa (Tensile)

T
Radial stress, p, = w— = 11.75 MPa (Comp)

Atr=135mm, i

2,70,000

1357
2.70.000

Radial stress, p, =— o 7= 7.81 MPa (Comp)
3D

Hoop stress, 6, = +7= 21.81 MPa (Tensile)




At r=150mm.

2,70,0 :
Hoop stress, ¢, = 7(30@ +7 = 19 MPa (Tensile)
5072

; 2,70,000
Radial stress, p, = ?'()’ —7 = 5MPa (Comp)
50?

Variation of Radial Variation of Hoop
Stress —Comp Stress-Tensile

(Parabolic) (Parabolic)

Variation of Hoop stress & Radial stress
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PROBLEM :

Find the thickness of the metal required for a thick cylindrical shell of
internal diameter 160mm to withstand an internal pressure of 8 N/mm?.
The maximum hoop stress in the section 1s not to exceed 35 N/mm?.

SOLUTION:

Internal radius, r,2=80mm.

Lame's equations are,

;
b

~

for Radial stress, p, =




Boundary conditions are,

at r = 80mm, radial stress p, =8 N/mm°,

and Hoop stress, 6. =35 N/ mm . (.- Hoop stress is max on inner face)

35=—
80°

Solving equations (3) & (4), we

: 1.37.600 : 2
. Lame's equations are, ©_= —)+l3 ............ (35)

I

1,37,600
and P, = e 1350 (6)

e




On the outer face, pressure = 0.

Le.,, p, =0atr=r,.

0 I’J7',600 _1355

-

l.l
r, =100.96mm.

Thickness of the metal =1, -,

= 20.96mm.
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PROBLEM :

A thick cylindrical pipe of outside diameter 300mm and internal
diameter 200mm 1s subjected to an internal fluid pressure of 14 N/mm?.
Determine the maximum hoop stress developed in the cross section.
What is the percentage error if the maximum hoop stress is calculated
by the equations for thin cylinder?

SOLUTION:

Internal radius, r,=100mm. External radius, r,=150mm

Lame’s equations:
For Hoop stress, ©O.=

For radial pressure,




Boundary conditions:
At x =100mm P = 14N/mm’

. ba
100°

14

Similarly, at x =150mm

Solving, equations (1) & (2), we get a=11.2, b=2,52,000.

22
. Lame' s equation for Hoop stress, ¢, = +11°2 ... 00 &)




Max hoop stress on the inner face (where x=100mm):

252
=220 10 S 4MPa
1002 =

: : : xd
By thin cylnder formula, S = 2_
| Xt

where D =200mm, t =50mm and p = 14MPa.

4%200
S ek o
| 2%50

36.4-28
Percentage error = (16—4-)>< 100 = 23.08%.
2 0.




¢

The principal stresses at the inner edge of a cylindrical shell are

81.88 MPa (T) and 40MPa (C). The internal diameter of the
cylinder is 180mm and the length is 1.5m. The longitudinal
stress 18 21.93 MPa (T). Find,

(1) Max shear stress at the inner edge.

(11) Change 1n internal diameter.

(i11) Change in length.

(1v) Change in volume.
Take E=200 GPa and p=0.3.

SOLUTION:

1) Max shear stress on the mner face:

6.-p, _ 81.88-(-40)
Tll\l\ 25 7 = o

.

= 60.94 MPa




1) Change n mner diameter :

0d_Gc B pHlco
d E E Eo \‘
81.¢ 3 3
e e Bty
200x10° 200x10° 20010
=4.365x10"
od =+0.078mm.
m) Change in Length :
.O_l.:6l -EXPI._EXO(‘
L. Ei B E
21.93 13 3
= ,l - - ¢ -X(—40) - ) —X381.88
200x10° 200x10° 200x10°

=46.83x10°
ol =+0.070mm.




v) Change m volume :

oV ol od
— = = X —
Vi 2E D
=9.198 x10+

nxlxofxlsoo)

OV =9.198x10™" X ( 1

=35.11x10° mm”.
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PROBLEM :

ind the max internal pressure that can be allowed into a thick pipe of
uter diameter of 300mm and inner diameter of 200mm so that tensile
ress in the metal does not exceed 16 MPa if, (1) there 1s no external
uid pressure, (11) there is a fluid pressure of 4.2 MPa.

SOLUTION:

External radius, r,=150mm.
Internal radius, r,=100mm.

Case (1) — When there 1s no external fluid pressure:

Boundary conditions:
At r=100mm , 6, = 16N/mm?

At r=150mm,P =0




Solvingwe get, a = 492 & b=110.77x10°

110.77 %10’ |
sothat o, = —)il— s 3 P e (3)

7

~110.77x10°

1"

pr —492 .................. (4)

Fluid pressure on the mner face where r =100mm,
~ 110.77x10°

p=——— —492=6.16 MPa.
' 100° —



Case (11) — When there is an external fluid pressure of 4.2 MPa:

Boundary conditions:
At r=100mm , 6 = 16 N/mm?

At r=150mm , p= 4.2 MPa.

Solving we get, a = 2.01 & b=139.85x10°

139.85%10°
bbEoter ke S Yy

)

sothat o =

~ 139.85%10°

=

P:




Flud pressure on the mner face where » = 100mm,
~ 139.85x10°
100°

p. ~2.01=11.975 MPa.
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PROBLEM :
A pipe of 150mm internal diameter with the metal thickness of S0mm
transmits water under a pressure of 6 MPa. Calculate the maximum
and minimum intensities of circumferential stresses induced.

(Ans: 12.75 MPa, 6.75 MPa)
PROBLEM :
Determine maximum and minimum hoop stresses across the section

of a pipe of 400mm internal diameter and 100mm thick when a fluid
under a pressure of 8N/mm?* i1s admitted. Sketch also the radial
pressure and hoop stress distributions across the thickness.

(Ans: o, =20.8 N/'mm?> o . =12.8 N/mm?)

PROBLEM :

A thick cylinder with external diameter 240mm and internal diameter
‘D’ 1s subjected to an external pressure of 50 MPa. Determine the
diameter ‘D’ if the maximum hoop stress in the cylinder is not to
exceed 200 MPa. (Ans: 169.7 mm)
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PROBLEM :

A thick cylinder of Im inside diameter and 7m long 1s subjected to an
internal fluid pressure of 40 MPa. Determine the thickness of the
cylinder if the maximum shear stress in the cylinder is not to exceed
65 MPa. What will be the increase in the volume of the cylinder?
E=200 GPa, p=0.3. (Ans: t=306.2mm, 0v=>5.47x%10>m?)
PROBLEM :

A thick cylinder is subjected to both internal and external pressure.
The internal diameter of the cylinder 1s 150mm and the external
diameter 1s 200mm. If the maximum permissible stress in the
cylinder 1s 20 N/mm’ and external radial pressure i1s 4 N/mm?,
determine the intensity of internal radial pressure. (Ans:
10.72 N/mm?)







