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COURSEOUTCOMES
2

CO 1
To Analyze rigid frames with and without side sway for end moments, 

shear forces and support reactions using moment distribution method

CO 2
To Analyze beams and portal frames and draw SFD and BMD using 

kani’s method

CO 3
Construct the bending moment diagram for beams and frames using 

flexibility method

CO 4 Analyze the beams and frames by system stiffness method.

CO 5 To analyze determinate beams using conjugate beam method



UNIT I 

MOMENT DISTRIBUTION METHOD FOR FRAMES: Analysis of single bay single storey portal frame including side 

sway –Substitute frame analysis by two cycle method. 

UNIT II 

KANI`S METHOD: Analysis of continuous beams with and without settlement of supports -Single Bay single storey portal 

frames with and without side sway. 

UNIT III 

FLEXIBILITY METHOD: Flexibility methods- Introduction- Application to continuous beams including support 

settlements-Analysis of Single Bay single storey portal frames without and with side sway. 

UNIT IV 

STIFFNESS METHOD: Stiffness methods- Introduction-application to continuous beams including support settlements-

Analysis of Single Bay single storey portal frames without and with side sway. 

UNIT V 

CONJUGATE BEAM METHOD: Real beam and conjugate beam, conjugate beam theorems, Analysis of determinate 

beams of with uniform and variable cross sections using conjugate beam method. 
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Textbooks: 

1. Analysis of structures by Vazrani&Ratwani – Khanna Publications. 

2. Theory of structures by Ramamuratam, jain book depot , New Delhi 9th edition 2015 

Reference Books: 

1. Strength of materials by R.K Bansal, Lakshmi Publications 

2. Strength of materials by S.S Bhavikatti, Vikas Publishing house 

3. Structural Analysis: A Unified Approach, by D S Prakash Rao, Universities Press 

4. Structural analysis by R.S.Khurmi, S.Chand Publications, New Delhi 2020 edition 

5. Basic Structural Analysis by K.U.Muthuet al.,I.K.International Publishing House Pvt.Ltd 3rd edition 2017 

6. Theory of Structures by Gupta S P, G S Pundit and R Gupta, Vol II, Tata McGrawHillPublications company Ltd. 



Moment‐Distribution Method

• Classical method.

• Used for Beams and Frames.

• Developed by Hardy Cross in 1924.

• Used by Engineers for analysis of small structures.

• It does not involve the solution of many simultaneous equations.
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Moment‐Distribution Method

• For beams and frames without sidesway, it does not involve the
solution of simultaneous equations.

• For frames with sidesway, number of simultaneous equations
usually equals the number of independent joint translations.

• In this method, Moment Equilibrium Equations of joints are solved
iteratively by considering the moment equilibrium at one joint at a
time, while the remaining joints are considered to be restrained.
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Definitions and Terminology

Sign Convention

• Counterclockwise member end moments are considered positive.

• Clockwise moments on joints are considered positive.

Member Stiffness

• Consider a prismatic beam AB, which is hinged at end A and fixed 
at end B.

4

A B

L
EI = constant



Member Stiffness

If we apply a moment M at the end A, the beam rotates by an
angle θ at the hinged end A and develops a moment MBA at the
fixed end B, as shown.

A B

θM = applied moment

MBA = carryover moment

L
EI = constant

The relationship between the applied moment M and the rotation
θ can be established using the slope‐deflection equation.

8



Member Stiffness

By substituting Mnf = M, θn = θ, and θf = Ψ = FEMnf = 0 into the 
slope‐deflection equation, we obtain

(1) M 
 4EI 
 L

“The bending stiffness, K , of a member is defined as the moment
that must be applied at an end of the member to cause a unit
rotation of that end.”

By setting θ = 1 rad in Eq. 1, we obtain the expression for the
bending stiffness of the beam of figure to be

(2)

9

K 
4EI

L



Member Stiffness

when the modulus of elasticity for all the members of a structure is
the same (constant), it is usually convenient to work with the
relative bending stiffness of members in the analysis.

“The relative bending stiffness, K, of a member is obtained by
dividing its bending stiffness, K , by 4E.”

(3)K 
K


I

4E L

• Now suppose that the far end B of the beam is hinged as shown.

A B
L

EI = constant 1
0



Member Stiffness

The relationship between the applied moment M and the rotation
θ of the end A of the beam can now be determined by using the
modified slope‐deflection equation.

By substituting Mrh = M, θr = θ, and Ψ = FEMrh = FEMhr = 0 into
MSDE, we obtain

(4) 
 L

M 
 3EI 

θM = applied moment

A B
L

EI = constant 1
1



Member Stiffness

By setting θ = 1 rad, we obtain the expression for the bending  
stiffness of the beam of figure to be

(5)
L

K 
3EI

A comparison of Eq. 2 & Eq. 5 indicates that the stiffness of the
beam is reduced by 25% when the fixed support at B is replaced by
a hinged support.

The relative bending stiffness of the beam can now be obtained by
dividing its bending stiffness by 4E.

9

(6) 
4E 4  L 

K 
K


3  I 



Member Stiffness

Relationship b/w applied end moment M and the rotation θ

if far end of member is fixed


 
L

 4EI 

(7)

if far end of member is hinged



 
 L

 3EI 

M 


Bending stiffness of a member
4EI

if far end of member is fixed

(8)

if far end of member is hinged


3EI

 L

K 
 L

Relative bending stiffness of a member

if far end of member is fixed
 I
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(9)

if far end of member is hinged3 I

4 L

L
K  



Carryover Moment

Let us consider again the hinged‐fixed beam of Figure.

A B

θM = applied moment

MBA = carryover moment

L
EI = constant

When a moment M is applied at the hinged end A of the beam, a 
moment MBA develops at the fixed end B.

The moment MBA is termed the carryover moment.
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Carryover Moment

To establish the relationship b/w the applied moment M and the
carryover moment MBA, we write the slope deflection equation for
MBA by substituting Mnf = MBA, θf = θ, and θn = Ψ = FEMnf = 0 into
SDE

(10)
 


 2EI 

L
M

BA

By substituting θ = ML/(4EI) from Eq. 1 into Eq. 10, we obtain

(11)
2


M

M
BA

Eq. 11 indicates, when a moment of magnitude M is applied at the
hinged end of the beam, one‐half of the applied moment is carried
over to the far end, provided that the far end is fixed. The direction
of MBA and M is same.
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Carryover Moment

When the far end of the beam is hinged as shown, the carryover 
moment MBA is zero.

M = applied moment

A B
L

EI = constant

θ

if far end of member is fixed
M

(12)
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if far end of member is hinged



0

M 


2
BA



Carryover Factor (COF)

“The ratio of the carryover moment to the applied moment
(MBA/M) is called the carryover factor of the member.”

It represents the fraction of the applied moment M that is carried
over to the far end of the member. By dividing Eq. 12 by M, we can
express the carryover factor (COF) as

(13)
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if far end of member is fixed
COF 


2

1



0 if far end of member is hinged



Distribution Factors

When analyzing a structure by the moment‐distribution method,
an important question that arises is how to distribute a moment
applied at a joint among the various members connected to that
joint.

Consider the three‐member frame shown in figure below.

B DA

E = constant L2, I2

C

L1, I1 L3, I3
18



Suppose that a moment M is applied to the joint B, causing it to 
rotate by an angle θ as shown in figure below.

D

M = applied moment

BA θ
θ

θ

E = constant L2, I2

C

L1, I1 L3, I3

To determine what fraction of applied moment is resisted by each
of the three members AB, BC, and BD, we draw free‐body diagrams
of joint B and of the three members AB, BC, and BD.

19



By considering the moment equilibrium of the free body of joint B 
(∑MB = 0), we write

M MBA MBC MBD  0

(14)M  M BA  M BC  M BD 

M

A
B

B B D

MBA MBA MBD

MBC MBD

MBC

B

C
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Since members AB, BC, and BD are rigidly connected to joint B, the
rotations of the ends B of these members are the same as that of
the joint.

The moments at the ends B of the members can be expressed in
terms of the joint rotation θ by applying Eq. 7.

Noting that the far ends A and C, respectively, of members AB and
BC are fixed, whereas the far end D of member BD is hinged, we
apply Eq. 7 through Eq. 9 to each member to obtain

(15)  KBA  4EKBA
 4EI1 MBA  

L 1 

(16)
L

MBC
  KBC  4EKBC

 4EI2  

 2 

(17)
18L3

  KBD  4EKBD


 3EI3 MBD  





Substitution of Eq. 15 through Eq. 17 into the equilibrium equation 
Eq. 14 yields


 1 2 3 

 
L L L

 4EI1 4EI2 3EI3 M  

represents the sum of the bending stiffnesses of all

 K  K  K    K 
BA BC BD  B

(18)

in whichKB

22

the members connected to joint B.

“The rotational stiffness of a joint is defined as the moment
required to cause a unit rotation of the joint.”

From Eq. 18, we can see that the rotational stiffness of a joint is
equal to the sum of the bending stiffnesses of all the members
rigidly connected to the joint.



The negative sign in Eq. 18 appears because of the sign convention.

To express member end moments in terms of the applied moment 
M, we first rewrite Eq. 18 in terms of the relative bending

(19)

 4E KB KBC  KBD 

stiffnesses of members as

M  4EKBA

M

4EKB

  

By substituting Eq. 19 into Eqs. 15 through 17, we obtain

(20)
K

KBA


M





 
MBA  

 B

(21)

23
K

MBC 
M








 KBC 

 B



(22)
K





 KBDMBD  

 B

M



From Eqs. 20 through 22, we can see that the applied moment M is
distributed to the three members in proportion to their relative
bending stiffnesses.

“The ratio K/∑KB for a member is termed the distribution factor of
that member for end B, and it represents the fraction of the applied
moment M that is distributed to end B of the member.”

Thus Eqs. 20 through 22 can be expressed as
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(23)

(24)

(25)

M BA  DFBAM

M BD  DFBDM

 DFBC MMBC



in which DFBA = KBA/∑KB, DFBC = KBC/∑KB, and DFBD = KBD/∑KB, are the
distribution factors for ends B of members AB, BC, and BD,
respectively.

For example, if joint B of the frame is subjected to a clockwise
moment of 150 k‐ft (M = 150 k‐ft) and if L1 = L2 = 20 ft, L3 = 30 ft,
and I1 = I2 = I3 = I, so that

 0.05I
I

BCBAK  K
20

BD

25

 
4  30 

K 
3  I 

 0.025I

then the distribution factors for the ends B of members AB, BC, 
and BD are given by







 0.4
0.05 0.05 0.025 I

0.05I

K  K  K
DF 

KBA
BA

BDBCBA

 0.4
0.125I


0.05I

K  K  K
DF 

BDBCBA

KBC
BC


0.025I

 0.2
0.125IK  K  K

DF 
BDBA BC

KBD
BD

These distribution factors indicate that 40% of the 150 k‐ft
moment applied to joint B is exerted at end B of member AB, 40%
at end B of member BC, and the remaining 20% at end B of
member BD.

The moments at ends B of the three members are

M BA  DFBAM  0.4150 60 k - ft 60 k - ft

60 k - ft

30 k - ft

or

or

orM BD  DFBD M  0.2150 30 k - ft

 DFBC M  0.4150 60 k - ftMBC
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Based on the foregoing discussion, we can state that, in general,
“the distribution factor (DF) for an end of a member that is rigidly
connected to the adjacent joint equals the ratio of the relative
bending stiffness of the member to the sum of the relative bending
stiffnesses of all the members framing into the joint”; that is

(26)DF 
K

K

“The moment distributed to (or resisted by) a rigidly connected end
of a member equals the distribution factor for that end times the
negative of the moment applied to the adjacent joint.”

27



Fixed‐EndMoments

The fixed end moment expressions for some common types of
loading conditions as well as for relative displacements of member
ends are given inside the back cover of book.

In the MDM, the effects of joint translations due to support
settlements and sidesway are also taken into account by means of
fixed‐end moments.

Consider the fixed beam of Figure.

25

A B

L
EI



’
A small settlement Δ of the left end A of the beam with respect to 
the right end B causes the beam s chord to rotate counterclockwise
by an angle Ψ = Δ/L.

A BΨΔ L2

6EI

L

EI
L2

6EI

By writing the SDE for the two end moments with Ψ = Δ/L and by
setting θA, θB, and FEMAB and FEMBA due to external loading, equal
to zero, we obtain

L2

29

 
6EI

BAABFEM  FEM

in which FEMAB and FEMBA denote the FEM due to the relative  
translation Δ between the two ends of the beam.



Note that the magnitudes as well as the directions of the two FEM 
are the same.

A BΨΔ L2

6EI

L

EI
L2

6EI

It can be seen from the figure that when a relative displacement
causes a chord rotation in the CCW direction, then the two FEMs
act in the CW (‐ve) direction to maintain zero slopes at the two
ends of the beam.

Conversely, if the chord rotation due to a relative displacement is
CW, then both FEM act in CCW (+ve) direction.
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Moment‐Distribution Method

• MDM

• MD Table

• COM

• COF

Moment Distribution Method 

Moment Distribution Table 

Carryover Moment

Carryover Factor

• DM

• UM

Distributed Moment 

Unbalanced Moment
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UNIT 1

PART 2

Kani’s Method



Analysis by Kani’s Method:

• Framed structures are rarely symmetric and subjected
to side sway, hence Kani’s method is best and much
simpler than other methods.

• PROCEDURE:

• 1. Rotation stiffness at each end of all members of a

structure is determined depending upon the end
conditions.

• a. Both ends fixed Kij= Kji= EI/L

• b. Near end fixed, far end simply supported Kij= ¾ 
EI/L; Kji= 0



• 2. Rotational factors are computed for all the 

members at each joint it is given by Uij= -0.5 

(Kij/ ?Kji) {THE SUM OF ROTATIONAL 

FACTORS AT A JOINT IS -0.5} (Fixed end 

moments including transitional moments, 

moment releases and carry over moments are 

computed for members and entered. The sum 

of the FEM at a joint is entered in the central 

square drawn at the joint).



• 3. Iterations can be commenced at any joint 

however the iterations commence from the 

left end of the structure generally given by 

the equation M?ij = Uij [(Mfi + M??i) + ? 

M?ji)]



• 4. Initially the rotational components? Mji 

(sum of the rotational moments at the far 

ends of the joint) can be assumed to be zero. 

Further iterations take into account the 

rotational moments of the previous joints. 5. 

Rotational moments are computed at each 

joint successively till all the joints are 

processed. This process completes one 

cycle of iteration



• 6. Steps 4 and 5 are repeated till the 

difference in the values of rotation moments 

from successive cycles is neglected.

• 7. Final moments in the members at each 

joint are computed from the rotational 

members of the final iterations step. Mij = 

(Mfij + M??ij) + 2 M?ij + M?jii



• The lateral translation of joints (side sway) 

is taken into consideration by including 

column shear in the iterative procedure.

• 8. Displacement factors are calculated for 

each storey given by Uij = -1.5 (Kij/?Kij)



• Application Of Analysis Methods For The Portal Frame

• Application of Rotation contribution Method (Kani’s 
Method) for the analysis of portal frame:

• Fixed end moments

• FEMAB = 0

• FEMBA = 0

• FEMBC = -120 kNm

• FEMCB = 120 kNm

• FEMCD = 0

• FEMDC = 0



• Stiffness and rotation factor (R.F.)

• Table 1.

• Stiffness and Rotation Factors – Kani’s 

Method





• 3. Displacement factors (δ)

• Table 2. Calculation of Displacement factors (δ)

• ΣUCD = (-1.2) + (-0.3) = -1.5

• Checked.

• Hence OK

• Storey Moment (SM) Storey moment = 0 (since 
lack of nodal loads and lack of loadings on 
columns, SM=0) Iterations by Kani’s Method 
Figure 2. Calculations of rotation contributions in 
tabular form using Kani’s Method





• Final End Moments For columns:

• => F.E.M + 2 (near end contribution) + far end 
contribution of that particular column + L.D.C. of that 
column

• For beams: => F.E.M + 2 (near end contribution) + far 
end contribution of that particular beam or slab.

• MAB = 10.89 kNm

• MBA = 58.64 kNm

• MBC = -58.63 kNm

• MCB = 99.49 kNm

• MCD = -69.51 kNm

• MDC = 0 kNm

• MCE = -30 kNm





































































































































































































Deflections



Introduction

• Calculation of deflections is an important part of 
structural analysis

• Excessive beam deflection can be seen as a mode of 
failure.

– Extensive glass breakage in tall buildings can be attributed 
to excessive deflections

– Large deflections in buildings are unsightly (and unnerving) 
and can cause cracks in ceilings and walls.

– Deflections are limited to prevent undesirable vibrations



Beam Deflection

• Bending changes the 
initially straight 
longitudinal axis of the 
beam into a curve that 
is called the 
Deflection Curve or 
Elastic Curve



Beam Deflection

• To determine the deflection curve:

– Draw shear and moment diagram for the beam

– Directly under the moment diagram draw a line for the 
beam and label all supports

– At the supports displacement is zero

– Where the moment is negative, the deflection curve is 
concave downward.

– Where the moment is positive the deflection curve is 
concave upward

– Where the two curve meet is the Inflection Point





Deflected Shape



Example 1
Draw the deflected shape for each of the beams shown



Example 2
Draw the deflected shape for each of the frames shown



Conjugate-Beam Method



Conjugate-Beam Method

2dV  

dx dx 2
w

d M
w

d


M 

dx EI

d 2v


M 

dx 2 EI

Integrating

  M 

V  wdx

 M 

M   wdx dx
 

     
   EI 

dx v    EI 
dx dx



Conjugate-Beam Supports





Example 1
Find the Max. deflection Take E=200Gpa, I=60(106)



B B '
 V  

562.5

EI


562.5

(25) 
14062.5

EI EI
B 'B  M



Example

2
Find the deflection at Point C

C



EI EI EI
C C '

  M 
27

(1) 
63

(3) 
162



Example

3
Find the deflection at Point D



360

EI
720

EI

EI
D D '


3600

  M



Example

4
Find the Rotation at A

10 ft



EI
A


33.3



Example

5
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Example
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Moment Diagrams and Equations for 
Maximum Deflection





Example 4
Find the Maximum deflection for the following structure based on 

The previous diagrams




