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COURSE OUTCOMES

O 1 To Analyze rigid frames with and without side sway for end moments,
shear forces and support reactions using moment distribution method

O 2 To Analyze beams and portal frames and draw SFD and BMD using
kani’s method

Construct the bending moment diagram for beams and frames using

CO3
flexibility method

CO 4 |Analyze the beams and frames by system stiffness method.

CO 5 |To analyze determinate beams using conjugate beam method




(20A01504a) Structural Analysis-lI

UNIT I

MOMENT DISTRIBUTION METHOD FOR FRAMES: Analysis of single bay single storey portal frame including side
sway —Substitute frame analysis by two cycle method.

UNIT 11

KANI'S METHOD: Analysis of continuous beams with and without settlement of supports -Single Bay single storey portal
frames with and without side sway.

UNIT I

FLEXIBILITY METHOD: Flexibility methods- Introduction- Application to continuous beams including support
settlements-Analysis of Single Bay single storey portal frames without and with side sway.

UNIT IV

STIFFNESS METHOD: Stiffness methods- Introduction-application to continuous beams including support settlements-
Analysis of Single Bay single storey portal frames without and with side sway.

UNIT V

CONJUGATE BEAM METHOD: Real beam and conjugate beam, conjugate beam theorems, Analysis of determinate
beams of with uniform and variable cross sections using conjugate beam method.




Textbooks:

1. Analysis of structures by Vazrani&Ratwani — Khanna Publications.

2. Theory of structures by Ramamuratam, jain book depot , New Delhi 9th edition 2015

Reference Books:

1. Strength of materials by R.K Bansal, Lakshmi Publications

2. Strength of materials by S.S Bhavikatti, Vikas Publishing house

3. Structural Analysis: A Unified Approach, by D S Prakash Rao, Universities Press
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R
Moment-Distribution Method

* Classical method.

* Used for Beams and Frames.

* Developed by Hardy Cross in 1924.

* Used by Engineers for analysis of small structures.

* It does not involve the solution of many simultaneous equations.



R
Moment-Distribution Method

* For beams and frames without sidesway, it does not involve the
solution of simultaneous equations.

* For frames with sidesway, number of simultaneous equations
usually equals the number of independent joint translations.

* In this method, Moment Equilibrium Equations of joints are solved
iteratively by considering the moment equilibrium at one joint at a
time, while the remaining joints are considered to be restrained.



R
Definitions and Terminology

Sign Convention

* Counterclockwise member end moments are considered positive.
* Clockwise moments on joints are considered positive.

Member Stiffness

* Consider a prismatic beam AB, which is hinged at end A and fixed
at end B.

L |

| El = constant




Member Stiffness

If we apply a moment M at the end A, the beam rotates by an
angle © at the hinged end A and develops a moment VI, at the
fixed end B, as shown.

Mg, = carryover moment

M = applied moment ( % \\\\\\\\\\\\ E j
/7?'? A *,

L R

L

| El = constant

The relationship between the applied moment M and the rotation
0 can be established using the slope-deflection equation.



Member Stiffness

By substituting M ;= M, 6,=0, and 6;= W = FEM .= O into the
slope-deflection equation, we obtain

_(4EI
M _(Tje (1)

“The bending stiffness, K_, of a member is defined as the moment
that must be applied at an end of the member to cause a unit
rotation of that end.”

By setting © = 1 rad in Eq. 1, we obtain the expression for the
bending stiffness of the beam of figure to be

_ 4El
L

K (2)



Member Stiffness

when the modulus of elasticity for all the members of a structure is
the same (constant), it is usually convenient to work with the
relative bending stiffness of members in the analysis.

“The relative bending stiffness, K, of a member is obtained by
dividing its bending stiffness, K , by 4E.”

A

K== )

* Now suppose that the far end B of the beam is hinged as shown.

i - A
L |

El = constant | 1




Member Stiffness

The relationship between the applied moment M and the rotation
O of the end A of the beam can now be determined by using the
modified slope-deflection equation.

By substituting M, = M, 6,= 0, and W = FEM_, = FEM,, = O into
MSDE, we obtain

_(3El
M _(Tje (4)

M = applied moment (/ \\\\\
A B” l

L L |
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El = constant |



Member Stiffness

By setting 6 = 1 rad, we obtain the expression for the bending
stiffness of the beam of figure to be

3EI
K=" 5
3 (5)
A comparison of Eg. 2 & Eq. 5 indicates that the stiffness of the
beam is reduced by 25% when the fixed support at B is replaced by

a hinged support.

The relative bending stiffness of the beam can now be obtained by
dividing its bending stiffness by 4E.

K _3(1
K230 ©)



Member Stiffness

Relationship b/w applied end moment M and the rotation 6

[?jB If far end of member is fixed

M = (7)

3EI . _
(T)G If far end of member is hinged
Bending stiffness of a member

% If far end of member is fixed

= 3EI ©
L If far end of member is hinged

Relative bending stiffness of a member

— If far end of member is fixed

2 ()

—— If far end of member is hinged
\4 L 10

o)
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Carryover Moment

Let us consider again the hinged-fixed beam of Figure.

_____ Mg, = carryover moment

M = applied moment ( {e \\\\\\\\\\\ ‘D
A o
l L

| El = constant

When a moment M is applied at the hinged end A of the beam, a
moment M, develops at the fixed end B.

The moment M, is termed the carryover moment.

14



Carryover Moment

To establish the relationship b/w the applied moment M and the
carryover moment M;,, we write the slope deflection equation for
Mg, by substituting M = Mg, 6:= 0, and 6,=W = FEM ;= 0 into
SDE

_(2El')
MBA_(TJO (10)

By substituting 6 = ML/(4El) from Eq. 1 into Eq. 10, we obtain

My == (11)

Eqg. 11 indicates, when a moment of magnitude M is applied at the
hinged end of the beam, one-half of the applied moment is carried
over to the far end, provided that the far end is fixed. The direction
of M, and M is same.

15



Carryover Moment

When the far end of the beam is hinged as shown, the carryover
moment Vi, is zero.

__________ ~
//// \\\\
o =
M = abolied moment ( 0 T~
~N

| L |

| El = constant |

j M If far end of member is fixed
2 (12)

| 0 If far end of member is hinged

16



-
Carryover Factor (COF)

“The ratio of the carryover moment to the applied moment
(Mg,/M) is called the carryover factor of the member.”

It represents the fraction of the applied moment M that is carried
over to the far end of the member. By dividing Eqg. 12 by VI, we can
express the carryover factor (COF) as

j 1 If far end of member is fixed
COF =12 (13)

| 0 If far end of member is hinged

17



Distribution Factors

When analyzing a structure by the moment-distribution method,
an important question that arises is how to distribute a moment
applied at a joint among the various members connected to that

joint.

Consider the three-member frame shown in figure below.

A B

D

J

E = constant

Lll Il L3I |3

I

L,, |,
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Suppose that a moment IV is applied to the joint B, causing it to
rotate by an angle 6 as shown in figure below.

M = applied moment

—_—
S ————

E = constant Lo, 1

| Lll Il L3l |3 l
I I

To determine what fraction of applied moment is resisted by each
of the three members AB, BC, and BD, we draw free-body diagrams
of joint B and of the three members AB, BC, and BD.

19



By considering the moment equilibrium of the free body of joint B
(>Mg = 0), we write

M+ Mg, +Mge + Mg, =0
M =—(Mga +Mge +Mgp) (14)

M

MBA MBA/B\) (MBD
U

o

MBC e\
—
B

20



Since members AB, BC, and BD are rigidly connected to joint B, the
rotations of the ends B of these members are the same as that of
the joint.

The moments at the ends B of the members can be expressed in
terms of the joint rotation 6 by applying Eq. 7.

Noting that the far ends A and C, respectively, of members AB and
BC are fixed, whereas the far end D of member BD is hinged, we
apply Eq. 7 through Eq. S to each member to obtain

[ 4E| \ _
Mg, =] ——2 10 = Kg,0 = 4EK;,0 (15)
BA \ Ll ) BA BA
MBC - (4EI2\)6 - KBCG — 4EKBC9 (16)
MBD :(3EI3\6 = KBDO = 4EKBD9 (17)
\ L, ) 18
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Substitution of Eqg. 15 through Eq. 17 into the equilibrium equation

Eq. 14 yields
y :_(4E|1 | 4El, +3E|3\e

%'—1 L, L)
=—K +K +K )):—(ZKB)) 18)

BA BC BD

in which)_K: represents the sum of the bending stiffnesses of all
the members connected to joint B.

“The rotational stiffness of a joint is defined as the moment
required to cause a unit rotation of the joint.”

From Eqg. 18, we can see that the rotational stiffness of a joint is
equal to the sum of the bending stiffnesses of all the members
rigidly connected to the joint.

22



The negative sign in Eq. 18 appears because of the sign convention.

To express member end moments in terms of the applied moment
M, we first rewrite Eq. 18 in terms of the relative bending
stiffnesses of members as

M = —4E(Kga + Kge + Kgp ) =—4E D Kg

0=

v 19
4ED K, (19)

By substituting Eq. 19 into Egs. 15 through 17, we obtain

MBA:_( Res ]M (20)

M. =—£ Kac JM (21)

23




K

Mo :_(ZB"?B}M (22)
From Egs. 20 through 22, we can see that the applied moment M is
distributed to the three members in proportion to their relative
bending stiffnesses.

“The ratio K/>K,for a member is termed the distribution factor of
that member for end B, and it represents the fraction of the applied
moment M that is distributed to end B of the member.”

Thus Eqgs. 20 through 22 can be expressed as

Mga = —DFgM (23)

MBC — _DFBC M (24)

M BD — _DFBDM (25)
24



in which DFg, = Kz, /> Ky, DFge= Kge/>Kg, and DFgp = Kgp/> K, are the
distribution factors for ends B of members AB, BC, and BD,
respectively.

For example, if joint B of the frame is subjected to a clockwise
moment of 150 k-ft (M = 150 k-ft) and if L= L, = 20 ft, L; = 30 ft,
and |, =1, =1;=1,sothat

Kgn =Ky =2LO=0.05|

3( |
K.. =2 |=0.025I
i 4(30)

then the distribution factors for the ends B of members AB, BC,
and BD are given by

25



oF — - _ 0.05! o4
K + Koo + Ky (0.05+0.05+0.025)
DF, - Kae _ 0051

Ko +Kg +Ky,, 01251

DF,. - Keo _0.0251 _

= 0.2
Koy + Koo + Kgp  0.125

These distribution factors indicate that 40% of the 150 k-ft
moment applied to joint B is exerted at end B of member AB, 40%

at end B of member BC, and the remaining 20% at end B of
member BD.

The moments at ends B of the three members are

Mga = —DFgaM =-04(150)= 60Kk - ft or 60 k- ft )
My =—DFycM =-04(150)=-60k - ft or 60k-ft )
Mgp = —DFgpM =-0.2(150)= -30 k - ft or 30k-ft )

26



Based on the foregoing discussion, we can state that, in general,
“the distribution factor (DF) for an end of a member that is rigidly
connected to the adjacent joint equals the ratio of the relative
bending stiffness of the member to the sum of the relative bending
stiffnesses of all the members framing into the joint”; that is

DF = < (26)
2K

“The moment distributed to (or resisted by) a rigidly connected end
of a member equals the distribution factor for that end times the
negative of the moment applied to the adjacent joint.”

27



Fixed-End Moments

The fixed end moment expressions for some common types of
loading conditions as well as for relative displacements of member
ends are given inside the back cover of book.

In the MDM, the effects of joint translations due to support
settlements and sidesway are also taken into account by means of
fixed-end moments.

Consider the fixed beam of Figure.

Py

I El | 25



A small settlement A of the left end A of the beam with respect to
the right end B causes the beam’s chord to rotate counterclockwise
by an angle W = A/L.

e
=" —

—_—

El |

By writing the SDE for the two end moments with W = A/L and by
setting 0,, 65, and FEM ,; and FEM, due to external loading, equal
to zero, we obtain

_BEIA

FEM 5 = FEM 5, =~

in which FEM,; and FEM, denote the FEM due to the relative
translation A between the two ends of the beam.

29



Note that the magnitudes as well as the directions of the two FEM
are the same.

- —
—_—

g
-

It can be seen from the figure that when a relative displacement
causes a chord rotation in the CCW direction, then the two FEMs
act in the CW (-ve) direction to maintain zero slopes at the two
ends of the beam.

Conversely, if the chord rotation due to a relative displacement is
CW, then both FEM act in CCW (+ve) direction.

30



R
Moment-Distribution Method

* MDM Moment Distribution Method
 MD Table Moment Distribution Table
 COM Carryover Moment

* COF Carryover Factor

- DM Distributed Moment

- UM Unbalanced Moment

28



UNIT 1
PART 2
Kani’s Method



Analysis by Kani’s Method:

« Framed structures are rarely symmetric and subjected
to side sway, hence Kani’s method iIs best and much
simpler than other methods.

« PROCEDURE:

¢ 1 Rotation stiffness at each end of all members of a

structure Is determined depending upon the end
conditions.

* a. Both ends fixed Kij= Kji= EI/L

* b. Near end fixed, far end simply supported Kij= %
EI/L; Kji=0



e 2. Rotational factors are computed for all the
members at each joint it Is given by Uij=-0.5
(Kij/ ?Kj1) {THE SUM OF ROTATIONAL
FACTORS AT AJOINT IS -0.5} (Fixed end
moments Including transitional moments,
moment releases and carry over moments are
computed for members and entered. The sum
of the FEM at a joint Is entered in the central
square drawn at the joint).



« 3. Iterations can be commenced at any joint
however the iterations commence from the
left end of the structure generally given by
the equation M?1j = Uij [(MfI + M??1) + ?
M?ji)]



* 4. Initially the rotational components? Mji
(sum of the rotational moments at the far
ends of the joint) can be assumed to be zero.
Further iterations take into account the
rotational moments of the previous joints. 5.
Rotational moments are computed at each
joint successively till all the joints are

processed. This process completes one
cycle of iteration



» 6. Steps 4 and 5 are repeated till the
difference in the values of rotation moments
from successive cycles iIs neglected.

/. Final moments in the members at each
joint are computed from the rotational
members of the final iterations step. Mij =
(Mfij + M??ij) + 2 M?ij + M?jii



 The lateral translation of joints (side sway)
IS taken into consideration by including
column shear In the iterative procedure.

8. Displacement factors are calculated for
each storey given by Uij = -1.5 (Kij/?Kij)



Application Of Analysis Methods For The Portal Frame

Application of Rotation contribution Method (Kani’s
Method) for the analysis of portal frame:

Fixed end moments
FEMAB=0
FEMBA=0
FEMBC = -120 kNm
FEMCB =120 kNm
FEMCD =0
FEMDC=0



« Stiffness and rotation factor (R.F.)
« Table 1.

Stiffness and Rotation Factors — Kani’s
Method



Stiffness and rotation factor (R.F.)

Table 1. Stifiness and Rotation Factors — Kani’s Method

Jout Member K LK RF

B BA 03331 0.6661 23
BC 0.3331 -0.25

C CB 03331 0.5831 0286
CD 0251 0214




3. Displacement factors (0)

Table 2. Calculation of Displacement factors ()
>UCD =(-1.2) + (-0.3) =-1.5

Checked.

Hence OK

Storey Moment (SM) Storey moment =0 (since
lack of nodal loads and lack of loadings on
columns, SM=0) Iterations by Kani’s Method
Figure 2. Calculations of rotation contributions in
tabular form using Kani’s Method
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Final End Moments For columns:

=> F.E.M + 2 (near end contribution) + far end
contribution of that particular column + L.D.C. of that
column

For beams: => F.E.M + 2 (near end contribution) + far
end contribution of that particular beam or slab.

MAB = 10.89 kNm
MBA = 58.64 KNm
MBC = -58.63 KNm
MCB =99.49 KNm
MCD =-69.51 kNm
MDC =0 kNm
MCE = -30 KNm



Structural Analysis - I1I

Flexibility Method - 1

Dr. Rajesh K. N.
Assistant Professor in Civil Engineering
Govt. College of Engineering, Kannur

Dept. of CE, GCE Kannus @ Dr RajeshKN



Module ]

Matrix analysis of structures

*  Definition of flexibility and stiffness influence coefficients -
development of flexibility matrices by physical approach &
energy principle.

Flexibility method

. Flexibility matrices for truss, beam and frame elements -
load transformation matrix-development of total flexibility
matrix of the structure -analysis of simple structures -
plane truss, continuous beam and plane frame- nodal loads
and element loads - lack of fit and temperature effects.

Dept. of CE, GCE Kanmur ‘!l:‘ Dy RijeshKN



FUNDAMENTALS OF FLEXIBILITY METHOD

Introduction

*This method is a generalization of the Maxwell-Mohr
method(1874)

*Not conducive to computer programming, because the choice
of redundants is not unique

* Unknowns are the redundant actions, which are arbitrarily
chosen

Dept. of CE, GCE Kanvmur ‘..4‘) Dr.RajeshKN



Flexibility method (Explanation using principle of superposition)

Example 1: Single redundant - Continuous 2-span beam

- A 8 c
‘(&d ERRRREE Ras e

o a é ¢ e L -
L——L/'z .I; Lty -l (b)

(o)' Released structure

(c) 8

Y Deflection of released
" Eam IR4E] structure due to actual loads

(Negative, since deflection is downward)

s -
Dept. of CE, GCE Kannut w Dr.RajeshKN



Apply unit load corresponding to R,

A
{ m
(e)
L3
Displacement due to unit load, 8, = IRE]

Displacement due to R, is R0,

-

Dept. of CE, GCE Kannu ‘&} Dr. RajeshKN



R0, Deflection of released

A‘(__‘ﬂc structure due to redundant
Rs

applied as a load

(d)

Compatibility condition (or equation of

Ay+Ry0, =0 superposition or equation of geometry)

E b

Oy flexibility coefficient
(Displacement due to unit load corresponding to Ry )
o /

Dept. of CE, GCE Kannur @ Dr RajeshKN



Example 2 - More than one redundant

P P

PR I N S

@, )
(a) - (b) ok
= AN e
y (c)
; (d)
(e)

Choice of redundants

Dept. of CE, GCE Kanmr ‘\“D Dr RajeshKN



Let O, O. be the redundants

m" l% tf
3

o1+ Doc2

(f)
Deflections corresponding to
redundants

D..&D... Displacements in the released
A OL2 :
structure corresponding to redundants, due to
external loads

Dept. of CE, GCE Kannur !\m Dr.RajeshKN



*To get flexibility coefficients

e Apply unit loads corresponding to 9, & O,

Net deflection 1s zero at Band C

DQI.I +P]IQ|+E2Q2 =0 {DQIJ}_‘_[F;I F;;:I{Q,}_{O}
DQ!-2 + 5,0 +F,0,=0 Dy F, F, || 0

-

G

0
Dept. of CE, GCE Kannur \-‘E Dr RajeshKN



*Generally, net deflection need not be zero
D, =Dy, + F,,Q, + F,0,
Dy, =Dy, + F, 0, + F,0,

*Where D,,, D

e Dy, support displacements corresponding to @, @

(D} ={Dp} +[F1{0}
pa-fprt -} e[ 7] we-{g)

Flexibility coefficient F is sometimes denoted as Dy

= 10
Dept. of CE, GCE Kanmur @ Dr RajeshKN



*If there are no support displacements, {D(,} ={0}

Dept. of CE, GCE Kanmur

{Q}=[F]4({D@}“{Dm})

-10} =‘[F]_' {DQL}

@

1
Dy RijeshKN



* Example: To find out redundants

Given: B =2P M = PL P,=P P,=P

Dept. of CE, GCE Kannur ‘!.L\l Dy RojeshKN



PL |26
“[Po)= e [97}

Dept. of CE, GCE Kannur ‘3.1,] D RajeshKN
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2 3El
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-] |

ie, O =

Dept. of CE, GCE Kannur

[F]°

_ 6EI
70

|

16 =5
-5 2

= ‘[F]—l [DQI-]

1P

69P

56 °

_—6EI[16 -5| PL
-5 2

48E1

|

26
97

|

P
56

|

69
—64

O

Dy RajeshKN



Temperature changes, pre-strains and
support displacements not corresponding to redundants

Let:

{ D:r} Displacements corresponding to redundants due to
‘ temperature changes, in the released structure

{ DQ,,} Displacements corresponding to redundants due to
pre-strains, in the released structure

{D

QR} Displacements corresponding to redundants due to

support displacements not corresponding to
redundants, in the released structure

= 16
Dept. of CE, GCE Kanmur @ Dr.RajeshKN



{Do}={Do.}+{Dor | +{Dor} +{Dex | +[F1{0}

*Let {Dyc}=1Dp}+{Dor}+{Dor)*+{Don}

Dept. of CE, GCE Kannur ‘\“ﬂ

Dy RojeshKN



Member end actions

* Member end actions are the couples and forces that act at
the ends of a member when it is considered to be isolated
from the remainder of the structure

Ayz  Apa

: TA ' 5{2 ' AETB c p

* In the above case, member end actions are the SEs and
BN s at the ends of members AB and BC

- I8
Dept. of CE, GCE Kannur ‘\‘l:l Dr.RajeshKN



* In the above figure AM,,AMQ,AM;:.,AM..; are the
member end actions considered (upward forces and
anticlockwise moments are +ve).

*The first two are just to the left of B, and the last two are
just to the right of B

Ay, +A,; gives the reaction at B, and

A+ A,, givesthe bending moment at B

19
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Joint displacements, member end actions, and
support reactions

*Once the redundants are found, all the joint
displacements, member end actions, and support reactions

can be found subsequently

*But it is easier to incorporate such calculations into the
basic computations, instead of postponing them as separate
calculations

20
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* Example: To find out
* joint displacements,
* member end actions and
* reactions other than redundants

:L"— L/Z—O'G—le + Lyp _+_L/2‘¢
2, 2,

Actual structure
Given: B =2P M = PL P=P B =P

Dept. of CE, GCE Kannur ‘\‘.D Dr RajeshKN



D
{DJ f :{ 4 } Joint displacements in the actual structure
D due to loads

{Q}={g'

~

} Redundants

Dept. of CE, GCE Kannur ‘!.L] Dy RajeshKN



1) Dg.2
Ap2 ( o
$ Anu

Vs D,, Joint displacements in the released
{Dy }=

D,, structure due to loads

{ A } = Reactions in the released structure due to
RI A loads
RL?2

Dept. of CE, GCE Kannur ‘\‘D Dy RojeshKN



D,y Joint displacements in the released structure due to
! .

" unit values of redundants

v, - Reactions in the released structure due to unit

values of redundants
‘ ’l >3
Dept. of CE, GCE Kanmur “_.L Dr.RajeshKN



Joint displacements D,, =D, + Dy @, + D0,
D,,=D,,+ DJQZIQI + DjozzQz

oln matrix form,

{D./} - {D.Il.}+[DJQ:I{Q}

D D
where, {DJ}={DJI}’ {DJL}=<DJLI}’
J2 L JL2

Doy Dy ’QI
[DJQ]=|:DJZ2I DJZ!2:|, {Q}zigz}

D Joint displacement / in the released structure
J2U due to unit value of redundant j

>4

Dept. of CE, GCE Kannus ‘JD Dr RajeshKN



* If there are j joint displacements to be obtained,
and there are ¢ redundants,

{D,}=1D, }"‘[DJQ]{Q}

jx! jl jq @

Dept. of CE, GCE Kannur ‘31,] Dy RojeshKN



Reactions (other than redundants)

Ay = Ay + ARQIIQ| g ARleQZ
Apy = Agyy + ARQ"IQl * ARQ"’Q

{Aﬂl}z{ARLI}+—ARQ|l ARle-{QI}
Ag, Aps Apory Ao | O
+[ARQ]

» If there are r reactions to be obtained (other than
redundants) and q redundants,

{4, } +|:ARQ:|

rxl r z<l .
Dept. of CE, GCE Kannur “.L‘ DrRajeshKN




Member end actions

G 7

Aﬂi

* Member end actions { AM } —! {AML} e I:AMQ:I{Q}

{ A } Member end actions in the released structure
due to loads

I: A Member end actions in the released structure
he due to unit values of redundants

Dept. of CE, GCE Kannur (\‘l) Dr RajeshKN



[f there are m member end actions and ¢ redundants,

1Ay} =14 }"'[AMQ]{Q}

mx| mx| mxgq gxl

!\l

Dept. of CE, GCE Kannur ‘,{L) Dr RajeshKN



* In the given example,

R=2P M=PL P=P P=P

F— Ly —+— Lyn + L/n ——!—— Lso -’i
@, @>

69
As found out earlier, [Q]=5£6[ 64}

Dept. of CE, GCE Kannur ‘!-L\l Dy RajeshKN



(D,)+[ D, 10}

—

(A} =)+ A [{0)

14e} = {ARL}+[ARQ:HQ}
v
To be found out

L of CE, GCE Kannur @

Dy RajeshKN



3‘0&4 (C)
5PL 5. _13PE [, Jar 1
= Jzz"m' a2 S8EI|13
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To get [D,(,]

4 .

‘ﬂon
0 Ds022
a_—_g_—:’is:éﬂra
Apo22 ) 11
t‘m:
| B s
Cd | Do Do | | 12 42 | 2EI|1 4
| 2E] 2E] |
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69
Already we know, [Q]= 5_6[—64]

Joint displacements

10T 2211 31p[69
D,}+[D, (0} L3
SEI 13| 2EI|1 4|56|-64
__pE[17
T 112EI| -5
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Lhot {ARL}

’?1 PN 7 1%
: 1
M, ( ¢ g lc
F L/2—+—L/2_.1‘_L/2 _+_L/2_.'
Vs Released structure with loads
and reactions
PL 3P L —PL
V,=R+F—-F=2P MA='l?"’M+ 2’ -2PL= ~
(2P ]
_ Apy, _
{4} = =4 PL{
Ay —T
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i e
7 g 3

Released structure with unit value
of redundant Q,

F

% .
o £
I

Released structure with unit value

] of redundant Q,

=
£ :[—L 5
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Reactions (other than redundants)

(4.} ={4,,}+[ 4 {0}
Ll 1)

~ p[107
56| 31L
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Choice of member end actions

* Any number among the 4 member end actions can be
chosen for analysis

* Usually two among the 4 are chosen

* Any two of the 4 member end actions can be chosen for
analysis

* Usually the moments at both ends are chosen

Dept. of CE, GCE Kannur @ Dr RajeshKN



Member end actions

To get {4,, |

‘4.\“ A2
C A I B )A

Member end actions considered

Ay, A, "+ are the reactive moments at the end of
members in the actual structure

Ay Ay, cer are the reactive moments at the end of
members in the released structure

Dept. of CE, GCE Kannur ‘!ﬂ Dy RojeshKN



R=2P M=PL p=P 4R=P
%C’;‘ ‘ m i- t ; Released

T structure
2P
PL lzp 20z
2 ( ) :
A : Bt
2.P 0
- . | —PL
A,,, = reactive moment just to the right of A =——

; ; ' 3PL
A,, , = reactive moment just to the left of B =——

o a0
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G——

~PL
2

A, ; = reactive moment just to the right of B =

A, , = reactive moment just to the left of C =0
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L
NN\
«—
2
w
=
R
~
(1'

L L
2P
w  fr =
9
*\fa ! Bp ($
0
2P 0 B
r AMLI ‘ r—PL/Z’
A 3PL/2
{ AML} = ML2 = / [
A - PL/ 2
\A."I.-‘ 4 L 0 d
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Hence, member end actions

{AM} = {AMI.} +[AMQ:|{Q}

—PLf2] [-L -2L] 0.554PL
3PL/2 0 L |P|69 0.3571
“-pr2[T 0 -L 5[-64] ~) 0.643L |
e B ) LY W 0

- L)

3
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Member end actions (with a different choice of member
end actions for analysis)

Awz Apa

Y P

AM!
Member end actions considered

To get { Am‘}

In the released structure,

Ay Ayy are SF and BM (equal to reactions) just to
the left of B, and

A5, A,,, areSF and BM just to the right of B

Dept. of CE, GCE Kanmur ‘!l} De.RajeshKN



= B=P
—( 14 | m } 1 ; Released

T structure
2P
#i 2P 3PL
£ 2
A ! B?}
2P

A,,,, = Shear force just to the left of B =F —F =0

w2 = Bending moment just to the left of B

PL

+M=3ﬁ
2

2 306

Dy RojeshKN

=PL-
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Gg——

A, ; = Shear force just to the right of B

=2P-P =2P-2P=0

A,, , = Bending moment just to the right of B

=ﬂ—2PL+£'£+M
2 2

A

2
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1o
~

0|3
—Ly
-‘—
J
w

()
®

{A.m. } =
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Hence, member end actions

{ Ay } = { Ay } 22 I:AMQ]{Q}

4 0 R ] )
ﬂ 11 8
=4 . L - A f. 69 I 2 20L
0 0 -1|56—64 ~ 56| 64
_ﬂ‘. _0 —L_ | 36L
i, 2
Dept. of CE, GCE Kannur ‘éi:l S
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Flexibilities of prismatic members

eFlexibility coefficients of a structure are calculated from
the contributions of individual members

eHence it is worthwhile to construct member flexibility
matrices for various types of actions

eMember oriented axes (local coordinates) and structure
oriented axes (global coordinates)

51
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Member flexibility matrices for prismatic members with
one end fixed and the other free

I P
eBeam member
(F .]=[F,‘m Emz]= 3EI 2EI
S\ B By | BOL
| 2EI EI |
v 114)&”
A g 1—/’/] r—r

(»)

e
(——]

()
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eTruss member [F,, |=
o

@ oy

L

EA

v

AT B
.

C))

=
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(b)

@
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elPlane frame member

Yn
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(d) L, b
5 B R |E4 -

Fal=| i Fum Fun|=1 0 35 o5

L Fysi Fusn, Fusnl n g

O 2 E
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eGrid member
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Futy
(b}

ﬁ ’ll‘\

%‘4' Farvs
(d)

_F.uu

[F.m]‘: Fy»

_F.sm
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% -L»»’m

)

(c)
L L
” E

F!I 13 351 L 2 I
Fyyu|=| O a 0
E%! 33 L2 L

2El EI




eSpace frame member

Yy f Ays
‘ L
f4ve
@ Ay Aya
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£ % 0 0 0 0
EA
3
0 £ 0 0 0 £
3E1, 2EI,
0 B i i 0
3EI, 2E1,
[Fm] = I
0 0 0 = 0 0
0 0 =% 6 £ %
2EI, EI
0 L 0 0 0 L
i 2E1, El, |
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Formalization of the Flexibility method

(Explanation using principle of complimentary virtual work)

For each member,

{D.m} = [Fm]{A.x-n }

Here{D,, | contains relative displacements of the k end
with respect to j end of the i-th member

-
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e[f there are m members in the structure,

'{Dm}\ -[F.m] [0] [0] 0] 0 I ({Am}
{D.uz} 0 [Fm] [0] LO] 0 {A.uz}
{DM}} [OJ 0 [Fut] [O] 0 {A.us}

\ : r = - : : % : 1 X EEE
2 O 0 [0] Ve [FM"] s 0 (A}

O] [0 [0] -~ [0] = [Fulllid)

‘{D.\!m };

\ -

{D.u } = [FM ]{AM }
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{D.u } 2 [F.u]{AM }
[F,] is the unassembled flexibility matrix of the entire structure

eMember end actions in {4, {will be related to the
structure actions{4;| applied to the released structure.

{4y} consists of joint loads {4,} and redundant actions {4, |

Hence, {Av} [B.us]Av}
—==__Action transformation matrix

(equilibrium matrix)

Le., {4} =[[B.w] [BMQ]}

Dept. of CE, GCE Kannur l&l D RajeshKN




B,,] relate {4,} to {4,} and

:BMQ] relate {4, | to {AQ}

eEach column in the submatrix [#w] consists of
member end actions caused by a unit value of a joint
load applied to the released structure.

eEach column in the submatrix |[B. | consists of
member end actions caused by a unit value of a
redundant applied to the released structure.

Depl of CE, GCE Kannur ‘\;‘-L] Dy RojeshKN



eSuppose an arbitrary set of virtual actions {94,
is applied on the structure.

{M}}

104,

External complimentary virtual work produced by the
virtual loads {s4,} and actual displacements (p,} is

{5'4.\1 } = [B.\fs]{JAs} = I:[B.\IJ] [BMQ]]{

5w’={§A3}T{Ds}=|:{‘5AJ}T {‘SAQ}T]{?}

0
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Internal complimentary virtual work produced by the
virtual member end actions {5AM } and actual (relative)
end displacements {D,, | is

U = {5'4.&4 }T {D-"’ }

Dept. of CE, GCE Kannur ‘31) Dr RajeshKN



eEquating the above two (principle of complimentary
virtual work),

{‘SAS }T {Ds} = {5AM }T {DM }

But {AM } = [Bm]{As} and {D,, |= [FM]{AM |

Also, {64, }=Bys]{04;}

Hence, {54} {Dy}={64s} [Bus] [Fu][Bus]{4s)

Dept. of CE, GCE Kannur ‘31} D RajeshKN



{Ds } = [B‘ws ]T [FM ][B.\.{s]{As }

{Ds}=[FS]{As}

Where,

= i , the assembled flexibility matrix
[F5]=Bus] [Fi][Bus] for the entire structure.

Dept. of CE, GCE Kannur ‘\‘.ﬂ Dr RajeshKN



| F’g] is partitioned into submatrices related to:

joint loads {4, |

and redundant actions {AQ}

—

_ (2] _[ 1R [Fe|
l

D= (B a}= 0, -

AJ
A.

—

[FQJ :| . F‘(}(] y

— — ——
v
S ——

Where,
[FJJ] = [BMJ ]T [FM: :B.w] [FJQ] - :B.w ]T :FM ]':BMQ]

l:FQJ] = [BMQ]T [Fu w] [ QQ] = :BMQ ]T :Ft! ][B.\!Q]
{
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\D,}=[Fy {4, "'[FJQ]{ !
(Do} =[ Fos J{4} +[ Foo {40}

= 4o} = Foo | [{ o)~ Far J{4)

]
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In the subsequent calculations, the above {A} should be
used.

However, the final values of redundants are obtained
by including actual or equivalent joint loads applied
directly to the supports.

Thus, {Ag},,.mu = -{ALK’}+{AQ}

{ } represents actual and equivalent joint loads applied
2¢) directly to the supports, corresponding to
redundants.

o 0
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e Once redundants{AQ} are found,

{D 7 } can be found out from,

(D} =[Fu[{4,}+[ Fio J{ 40}
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e Similarly, support reactions caused by joint loads and
redundant can be obtained with an action transformation
matrix [an]

{AR} = [BRS]{AS}

(2] 5] 1!

eEach column in the submatrix [BRJ] consists of support
reactions caused by a unit value of a joint load applied to
the released structure.

. I
eEach column in the submatrix [ *Q 1 consists of
support reactions caused by a unit value of a
redundant applied to the released structure.
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e If actual or equivalent joint loads are applied
directly to the supports,

{4p}=—{4rc } +[Be {14 +[BRQ]{ Q}

{ } represents combined joint loads (actual and
RC1 equivalent) applied directly to the supports.

-
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e As seen earlier, member end actions due to actual loads
are obtained by superimposing member end actions due
to restraint actions and combined joint loads

Ay } =1 4ur } +[Bu 14, +[BWQ]{ Q}

where { A

MF }

represents fixed end actions

Dept. of CE, GCE Kannur w Dr.RajeshKN



Comparison of the procedures explained with principle
of superposition and principle of complimentary virtual
work

eFor calculating redundants,
Principle of superposition {0} =[F]" ({DQ} —{Dy, })

Principle of complimentary virtual work
{AQ} » [FQQ]-‘ [{DQ} B [FQJ]{AJ }:l
Hence, [F ] = [FQQ]

{Q} ™= {AQ} and {DQL} =[FQJ]{AJ}

Dept. of CE, GCE Kanmur ‘(&) De.RajeshKN



eFor calculating joint displacements,
Principle of superposition {p }={D, |+ [ D, Q]{Q}

Principle of complimentary virtual work

(D} =[Fu){4,}+[ Fo J{ 4o}

Hence, {DJL}:[FJJ]{AJ} and

[D,Q]=[FJQ]

Dept. of CE, GCE Karmur ‘3.[,) Dr RajeshKN



eFor calculating member end actions,

Principle of superposition {AM} = {Am } +[A.\-rQ:|{Q}

Principle of complimentary virtual work

{A.u } = {Am } + [B.w ]{AJ } T I:BMQ ] {AQ}

Hence, {A.m. } = {AMF } + :B MJ]{AJ } and

[AMQ] - [BMQ:

Dept. of CE, GCE Karnur ‘ﬂ) Dr RajeshKN



eFor calculating support reactions,
Principle of superposition {An} = {ARL} +[ARQ:|{Q}

Principle of complimentary virtual work

{AR} ia -{ARC}+[B&1]{A./}+[BRQ]{AQ}

Hence, {Am.}=“{ARc}+[BR,]{A‘,} and

[AR@] - [BR@]

Dept. of CE, GCE Kanur ‘ﬂ) Dr RajeshKN



Member flexibility matrix for a beam member with
moments at the ends as member end actions

(A Y

Required to find out rotations at the ends due to unit
moments at each end separately

2
, | VI N
* @ L dx”
| X | 2
r A
dc 2L

3

X
Ely =—+Cx+
V= Cx+G,

- ™
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—L
y =0=C, =0 y=0=C=—
x=A) B x=[ 6
Ldy ] x L
Cdc  El 2L 6
oL L
Y oeml L.TE
L
F"”=3El un""

cﬁf@*ﬁ
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Similarly,

MI2 T r

[F _]= Funn  Fia _ 3EI  6FE]
M‘ Fyan Fuyn
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K1
Dr RajeshKN



Member flexibility matrix for a beam member with
moment and shear at one end as member end actions

v
Ky

I\

'
Ay g PO |

£

O,

ﬁ s
/ %i ; A»z’:/ ‘ 1 4":..,

7

D)

1

(o)

L r
[ Fm]{ﬂm Fu.sz 3EI 2EI
| EHZ! F:V22 Lz L
2EI  EI |

-
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Flexibility method

*  Flexibility matrices for truss beam and frame elements -
load transformation matrix-development of total flexibility
matrix of the structure .

83

G
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James Clerk Maxwell (13 June 1831 - 5 November
1879) was a Scottish theoretical physicist and
mathematician. His most important achievement was
classical electromagnetic theory. Maxwell also
developed the Maxwell-Boltzmann distribution, a
statistical means of describing aspects of the kinetic
theory of gases, These two discoveries helped usher in
the era of modern physics, laying the foundation for
uch fields as special relativity and quantum
mechanics.

Maxwell is also known for creating the first true colour
photograph in 1861 and for his foundational work on
the rigidity of rod-and-joint frameworks like those in
many bridges.

Maxwell is considered by many physicists to be the 19th-century scientist with
the greatest influence on 20th-century physics. His contributions to the science
are considered by many to be of the same magnitude as those of Isaac Newton
and Albert Einstein. Einstein himself described Maxwell's work as the "most
profound and the most fruitful that physics has experienced since the time of
Newton." Einstein kept a photograph of Maxwell on his study wall, alongside
pictures of Michael Faraday and Newton.

54
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Christian Otto Mohr (October 8, 1835 - October 2,
1918) was a German civil engineer, one of the most
celebrated of the nineteenth century.

Starting in 1855, his early working life was spent in
railroad engineering for the Hanover and Oldenburg
state railways, designing some famous bridges and
making some of the earliest uses of steel trusses.
Even during his early railway years, Mohr had
developed an interest in the theories of mechanics
and the strength of materials. In 1867, he became
professor of mechanics at Stuttgart Polytechnic, and
in 1873 at Dresden Polytechnic in 1873. In 1874, Mohr
formalised the idea of a statically determinate
structure.

In 1882, he famously developed the graphical method for analysing stress
known as Mohr's circle and used it to propose an early theory of strength based
on shear stress. He also developed the Williot-Mohr diagram for truss
displacements and the Maxwell-Mohr method for analysing statically
indeterminate structures, it can also be used to determine the displacement of
truss nodes and forces acting on each member. The Maxwell-Mohr method is
also referred to as the virtual force method for redundant trusses,

XS
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Introduction

» The systematic development of slope deflection method in this matrix is
called as a stiffness method.

» This method is a powerful tool for analysing indeterminate structures.
» Stiffness method of analysis of structure also called as displacement method.
In the method of displacement are used as the basic unknowns.



Procedure

1. Determine degree of kinematic indeterminacy of structure.
2. Select unknown displacement

3. Restrain all the joints to set fully restrained structure under giv
condition.

4. For analysis of the restrain structure to get ADL.

5. Generate stiffness matrix of given structure apply unit positive
displacement for members and add all the displacement for membe#
meeting at a joint.



6. Superposition equation.
AD} = {ADL} + [S]1{D

>
>
>
-
7
8

{AD} = Joint action or forces given in structure
[ADL]}= Force analysis of restrained structure under given loading
[S] = Stiffness method
[D] = Unknown
. Determine the final moments.
. Calculation for SF and draw SF, BM diagram.




Properties of stiffness matrix

» Stiffness matrix is a square matrix of order n*n, where n is equal to KI.
- Stiffness matrix is symmetrical matrix. Hence, sij=sji.

~ Sii =represents action due to unit positive displacement and while other
displacement are 0.

~ Sii is the principle diagonal element.
» Stiffness matrix does not exist for unstable structure,

~ Stiffness matrix is non-singular matrix [s] is not equal to 0 for stable
structure.

~ Sii is the action at joint due to unit value of displacement at J joint




Analysis given beam by stiffness method.
Take El is constant.

100 kn
60 kn/m

1. 1.
am 4 Sm 5m




Step 1: Degree of kinematic indeterminancy
Dki = 2

»Step 2: Select unknown displacement
D1=6B D2=6C




Step 3: Restrain the Structure to get kinematical
determinate structure

100 kn
60 kn/m
Step 4: Free analysis of restrained structure to get ADL
Mab =-WI1"2 /12 = - 80 kn.m
ADL1 = 80-37.5=425
Mba = + 80 kn.m ADL2 = 37.5 \

Mbc= W'l /8 = -37.5kn.m

Mcb = +37.5 kn.m



Step 5 : Stiffness matrix

1. Apply unit rotation at joint B

Sri= (4EI/L)+(4EI/L)
= (4E1/4)+(4EL/3)
= 2.33El

Sa1= 2El/L
= 2E1/3
= 0.67El




Apply unit rotation at C

512 S22

$12= 2EI/L
= 2E1/3
= 0.67El
522= 4EI/L
= 4E1/3
= 1.33El




Superposition equation :
{AD}={ADL}+[S]{D}

42.5 2.33

—

0 L 37.5 ) 0.67

0= 42.5 + 2.33EI6B+ 0.67EI6C
0= 37.5 + 0.67EIBB+ 1.33EI0C

©B= -22.22/El
Oc=-11.85/El

0.67] . _|_ OB_L

1.31 1 ecl




» Final End moment :

Mab = Mfab + 2ElI / L (2 ©a, eb - 3A/L)
= -80 + 2El/ 4 (-11.85/El)
= -85.92 kn.m

Mba = 68.16 kn.m

Mbc = 68.15 kn.m

Mcb =0 kn.m

Span moments :
AB=wl"2/8
=60"4"2/8
=120 kn.m
BC= wl/4
= 100*3/4
=75 kn.m







Deflections



Introduction

* Calculation of deflections is an important part of
structural analysis

* Excessive beam deflection can be seen as a mode of
failure.

— Extensive glass breakage in tall buildings can be attributed
to excessive deflections

— Large deflections in buildings are unsightly (and unnerving)
and can cause cracks in ceilings and walls.

— Deflections are limited to prevent undesirable vibrations



Beam Deflection

* Bending changes the
initially straight
longitudinal axis of the
beam into a curve that
is called the
Deflection Curve or
Elastic Curve

=]
=

my Al

M




Beam Deflection

* Todetermine the deflection curve:
— Draw shear and moment diagram for the beam

— Directly under the moment diagram draw a line for the
beam and label all supports

— At the supports displacement is zero

— Where the moment is negative, the deflection curve is
concave downward.

— Where the moment is positive the deflection curve is
concave upward

— Where the two curve meet is the Inflection Point



+M@+M

positive moment,
concave upward

_M\Q_M

negative moment,
concave downward



Deflected Shape

beam

M

o b

moment diagram moment Gagram

inflection point

{—Nnﬂmim pont I \

deflection curve deflection curve



Example 1

Draw the deflected shape for each of the beams shown

P . w




Example 2

Draw the deflected shape for each of the frames shown

(©



Conjugate-Beam Method



Conjugate-Beam Method

W dv d?®
ST g e
L a M dv M
real beam dx B ﬁ Ay 2 B Fl

IIHI| HIH Lntefgr:tmg o = o

L /A Y IR

conjugate beam -‘ e:ﬂ\ﬁ de ' = ”K J F



Real Beam Conjugate Beam
wn 1) o W= v I
dd A=10 - M=0 =
m pin pin
(@ 2) 0 v e
o A=10 M=
= raller roller
3) a=0 T V=0
m A=0 M=0
a fixed free
D -
m 4) f — Vv [
] A free M \ fixed
(€D
P’
@© %) . Y e
mu A=0 internal pin M=0 hinge
— 0 S— v
- %) g e
(@) A=0 internal roller M=0 hinge
7) 0 { Vv w
A hinge M

internal roller



conjugate beam



Examble 1
Find the Max. deflection Take E=200Gpa, I=60(109)

75k.f FA i 7 AL |
——15ft— s ~---\

real beam



A A,
real beam —o .t
7q " )
B.M.D
75
El
A ,
A — e 3
. 1511 — 15 11 -’ conjugate beam
562.5
El
My
1) 5625
)0, =V, =
w5t 251t Vg

El

562.5 —14062.5
AB :MB' :?(ZS)ZT



Example

Find the deflection at Point C




- 6m - 4m se2m-

—-162
El

.*I
~
~

27 63
‘ Ae =M =2-()- 2 @)=



Example

Find the deflection at Point D

30 kips

D

AN

10 kips 20 kips



C+ E’”hmgc =0

C
ey X
— 18R
!. 12—l 5*+ 6'—
10 kips 20 kips
! 18’ ! 6’4"
Moment 720
““xaxaaﬁmahaﬂhﬁ,/,/’/// (kip»ft) El
120
3600
. EI
| (] )

72!)([()‘) 3()()(—3)
+ - = ()
El El
o - 480
4 El
1 ZF,=0
360 480
— —_— D = U
El El
600
Rp=—
P FEI
600 3600
My = 0) =
D EI ()) El
3600
AD = M D' =
El




Example

Find the Rotation at A

10 ft




primary structure

333

Bl

100
ET

20
El

20
&l

66.6

20 k-ft

B

333

El



Example

6k 8k 6k

LLJ

iz

450 in*| 1'=900 1 |n

=450 in* I

12 ft H—ﬂ fi 12 ft
10k 10 k
M (k-ft)
120 144 120
12 18 24 36

moment diagram

120 120
B 12 mf:',_i
£ Er ZL Fr

~— 121t —-‘--6 fie foe— 12 ft —Ji

conjugate beam

x (ft)



EEEIACT (contnues

1116 720 360 36
(+EZMo =0 F(IS) - E(lO) — 5(3) <= E(Z) +M~=0
L - 11736k M(kt)
g = EI 120 14 129

Substituting the numerical data for E7 and converting units, we have

x (ft
11736 k - £3(1728 in¥/£%) _ 12 18 24 %
Ac= My =— T —- = —155in. Ans.
29( 10 ) k/ln (450 mn ) moment diagram
The negative sign indicates that the deflection is downward. (b)
720 720 2 3
L 7 LN EI ET
1:"1/: 7 i k %67
-~ "_4\\5 ~1\ ] -7 z
f%'o' i \\\ o :f“ '}Vc
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Equilibrium. The external reactions at B' and C” are calculated first
and the results are indicated in Fig. 8-274.In order to determine (6 )g.
the conjugate beam is sectioned just to the right of B’ and the shear
force (V g)g is computed, Fig. 8-27¢. Thus,

225 450 36

+T2Fy=02 (VB’)R+E_H_E=O
2286k - ft?
o =(Vg)g=—mm
(Op)r = (Va)r =5,
228.6 k- ft?

= [29(103)(144) k/ftz][30/(12)4] ft*
= (0.0378 rad Ans.

(d)



The internal moment at B’ yields the displacement of the pin. Thus,

225 450 36
=0 —Mp 5) - 5) —=2(15) =
(+EZMpy =0; Mp + EI() E1(7 ) El(l) 0
2304 k - ft*
A =Mp=—""Fr
—2304 k « ft?

 [29(10°)(144) k/£E][30/ (12)7] £¢*
= —0381 ft = —4.58 in.

Ans.

The slope (#p). can be found from a section of beam just to the
left of B', Fig. 8-27f. Thus,

2286 225 450 3.6
+12F, = 0; Vet g Y gr ~E1 EL-°
(68). = (Vg)L =0 Ans.

Obviously, Ag = Mp for this segment is the same as previously calcu-

lated, since the moment arms are only slightly different in Figs. 8-27¢
and 8-27f.
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Moment Diagrams and Equations for
Maximum Deflection
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Examnle 4

Find the Maximum deflection for the following structure based on
The previous diagrams

Pp=144kips Pp=14.4kips

1 1 wp = 0.4 kip/ft




(«) Dead load deflection produced by uniform load is
_5(0.4)(30)*(1728)
384(30.000)(758)

0.321n

Dead load deflection produced by concentrated loads is
4.4 (10)[3(30)* — 4(10)*](1728)
24(30.000)(758)

ADZ‘ = 1.05in
Total dead load deflection, Apr = Apy + A, =032+ 1.05= 137 in

 Pa(3L —4a*) ) 8.2(10)[3(30)° — 4(10)*](1728)

Live load deflection)

L 24E 24(30.000)(758)
A, =06in
P P
P =82kips P = 82kips I. i — — {fi—e L4
Ppm iddkips  Pp= (44 kips \ _ 1 1 1 [ 1 ]' 1 1
vo= AL - B e
‘ SMAX Svax 4
[TTTT T 11T a1 0
P P wil. w2 wi

Pa

T :
N M P v

1% X )
Apax = TIIZI (32— 4ah)



