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 BINARY NUMBER SYSTEM
◦ BINARY NUMBERS

◦ OCTAL NUMBERS

◦ HEXA DECIMAL NUMBERS

◦ NUMBER BASE CONVERSIONS

◦ COMPLIMENTS

◦ SIGNED BINARY NUMBERS

◦ BINARY CODES



 Binary logic and Gates

 Boolean Algebra
◦ Basic Properties

◦ Algebraic Manipulation

 Standard and Canonical Forms
◦ Minterms and Maxterms (Canonical forms)

◦ SOP and POS (Standard forms)



 The decimal system is the base-10 system that we use every day. 

 A number, say 6357, represented in the base-10 system consists of multiple ordered 

digits. (In other words, digits are normally combined together in groups to create 

larger numbers.)

 A digit is a single place that can hold numerical values between 0 and 9 (10 different 

values). 



 For example, 6,357 has four digits. 

 It is understood that in the number 6,357, 
◦ the 7 is filling the "1s place," 
◦ while the 5 is filling the 10s place, 
◦ the 3 is filling the 100s place 
◦ and the 6 is filling the 1,000s place. 

 So you could express 6,357 this way if you want to be explicit: 
(6 * 1000) + (3 * 100) + (5 * 10) + (7 * 1) 

= 6000 + 300 + 50 + 7 
= 6357 



 What you can see from this expression is that each digit is a placeholder for the 
power of  the index of that placeholder of base 10, starting from the least 
significant digit with 10 raised to the power of zero (i.e. counting from the 
rightmost digit). 

 But why do we human beings use 10 based number system?

 The most commonly accepted explanation is that our base-10 number system was 
adopted by our ancestors most likely because we have 10 fingers.

 Interestingly enough, maybe that is why digit in English also means a finger or toe. 



 Computers happen to operate using the base-2 number system, also 
known as the binary number system,  just like the base-10 number 
system is known as the decimal number system to human beings

 Modern computers use binary number system, in which there are only 
zeros and ones. (Only two symbols)

 A “bit” to binary is similar a “digit” to a decimal information. (Again, 
the easiest way to understand bits is to compare them to something 
you know: digits.)

 A bit has a single binary value, either 0 or 1.



 Binary is a base two system which works just like our decimal system.

 Considering the decimal number system, it has a set of values which 
range from 0 to 9.

 The binary number system is base 2 and therefore requires only two 
digits, 0 and 1.



 The binary number system uses binary digits (bits) in place of decimal 
digits. 

 A binary number is composed of only 0s and 1s, like this: 1011. 

 How do you figure out what the value of the binary number 1011 is in 
decimal world? 

 0 = 0 
 1 = 1 
 2 = 10 
 3 = 11 
 4 = 100 
 5 = 101 
 6 = 110 
 7 = 111 
 8 = 1000 
 9 = 1001 
 10 = 1010 
 11 = 1011 
 12 = 1100 



 Keep dividing by 2

 Ex 2 : 23710

237 / 2 = 118 Remainder 1----------------------------------------
--------------| 

118 / 2 = 59      Remainder 0----------------------------------------
-----------|   |

59 / 2  = 29       Remainder 1----------------------------------------
--------|   |   |

29 / 2 = 14        Remainder 1----------------------------------------
--------|   |   |

14 / 2 = 7          Remainder 0----------------------------------------
-----|   |   |   |

7 /  2 =3            Remainder 1----------------------------------------
--|   |   |   |   |

3 /  2 = 1           Remainder 1-----------------------------------|    |   
|  |   |   |   |

1 /  2 = 0           Remainder 1--------------------------------|   |    |  |   
|   |   |   |

1 1 1 0 1 1 0 1



 Look at adder in binary and decimal
3

+ 3

= 6

11

+  11

=                 (carry)  which is 6 in decimal.

6

110



 Although not a problem internally, long binary number seems a 
problem to display in some situations. A common practice to 
solve this problem is to use hexadecimal to represent Binary 
numbers more compactly externally.

 The hexadecimal system is base 16. Therefore, it requires 16 
different symbols. The values 0 through 9 are used, along with 
the letters A through F, which represent the decimal values 10 
through 15.

0..9, A,   B,   C,   D, E,  F 
0..9, 10, 11, 12,13, 14, 15





 The Octal system is base 8. Therefore it requires 8 digits. The values 0 through 7 are 

used.

 Octal to hexadecimal conversion, or visa versa, is most easily performed by first 

converting to binary. 



 A binary number is converted to octal by grouping of 3  bits 

1 1 0 1 0 1 1 0 1-----------655



 The binary, hexadecimal (hex) and octal system 
share one common feature – they are all based on 
powers of 2. 

 Each digit in the hex system is equivalent to a four-
digit binary number and each digit in the octal 
system is equivalent to a 3-digit binary number. 



 Consider a system of 3 input signals (variables) x, y, & z.

 A term which ANDs all input variables, either in the true or complement form, is 
called a minterm.

 Thus, the considered 3-input system has 8 minterms, namely:

 Each minterm equals 1 at exactly one particular input combination and is equal to 0 
at all other combinations

 Thus, for example,           is always equal to 0 except for the input combination xyz 
= 000, where it is equal to 1.

 Accordingly, the minterm is referred to as m0.

 In general, minterms are designated mi, where i corresponds the input combination 
at which this minterm is equal to 1.



 For the 3-input system under consideration, the 
number of possible input combinations is 23, or 
8. This means that the system has a total of 8 
minterms as follows:



 In general, for n-input variables, the number of minterms = the total 
number of possible input combinations = 2n.

 A minterm = 0 at all input combinations except one where the 
minterm = 1.

 Example: What is the number of minterms for a function with 5 input 
variables?

◦ Number of minterms = 25 =32 minterms.



 Consider a circuit of 3 input signals (variables) x, y, & z.

 A term which ORs all input variables, either in the true or 
complement form, is called a Maxterm.

 With 3-input variables, the system under consideration has a total 
of 8 Maxterms, namely:

 Each Maxterm equals 0 at exactly one of the 8 possible input 
combinations and is equal to 1 at all other combinations.

◦ For example, (x + y + z) equals 1 at all input combinations 
except for the combination xyz = 000, where it is equal to 0.

◦ Accordingly, the Maxterm (x + y + z) is referred to as M0.



 In general, Maxterms are designated Mi, where i
corresponds to the input combination at which this 
Maxterm is equal to 0.

 For the 3-input system, the number of possible 
input combinations is 23, or 8. This means that the 
system has a total of 8 Maxterms as follows:



 For n-input variables, the number of Maxterms = 
the total number of possible input combinations = 
2n.

 A Maxterm = 1 at all input combinations except one 
where the Maxterm = 0.

 Using De-Morgan’s theorem, or truth tables, it can 
be easily shown that:



 Consider the function F defined by the 

shown truth table:

 Now let’s rewrite the table, with few 

added columns.

◦ A column i indicating the input 

combination

◦ Four columns of minterms m2, m4, m5

and m7

◦ One last column OR-ing the above 

minterms (m2+m4+m5+m7)

 From this table, we can clearly see that F 

= m2+m4+m5+m7



 In general, Any function can be expressed by OR-ing all minterms (mi) 

corresponding to input combinations (i) at which the function has a value of 1.

 The resulting expression is commonly referred to as the SUM of minterms and is 

typically expressed as F = Σ(2, 4, 5, 7), where Σ indicates OR-ing of the indicated 

minterms. Thus, F = Σ(2, 4, 5, 7) = (m2 + m4 + m5 + m7)



 Consider the example with F and F`.

 The truth table of F` shows that F` 

equals 1 at i = 0, 1, 3 and 6, then,

◦ F` = m0 + m1 + m3 + m6, 

◦ F` = Σ(0, 1, 3, 6), 

◦ F = Σ(2, 4, 5, 7) 

 The sum of minterms expression of F` 

contains all minterms that do not appear 

in the sum of minterms expression of F.



 Using De-Morgan theorem on equation:

 This form is designated as the Product of Maxterms and is expressed 

using the Π symbol, which is used to designate product in regular 

algebra, but is used to designate AND-ing in Boolean algebra.

 F` = Π (2, 4, 5, 7) = M2. M4. M5. M7

 F` = Σ(0, 1, 3, 6) = Π (2, 4, 5, 7)



 Any function can be expressed both as a sum of minterms (Σ mi) and as a product of maxterms (Π 

Mj). 

 The product of maxterms expression (Π Mj) of F contains all maxterms Mj (∀ j ≠ i) that do not appear 

in the sum of minterms expression of F.

 The sum of minterms expression of F` contains all minterms that do not appear in the sum of 

minterms expression of F.

 This is true for all complementary functions. Thus, each of the 2n minterms will appear either in the 

sum of minterms expression of F or the sum of minterms expression of F` but not both.



 The product of maxterms expression of F` contains all maxterms that do not appear 

in the product of maxterms expression of F.

 This is true for all complementary functions. Thus, each of the 2n maxterms will 

appear either in the product of maxterms expression of F or the product of maxterms

expression of F` but not both.



 Example: Given that F (a, b, c, d) = Σ(0, 1, 2, 4, 5, 7), derive the product of maxterms expression of F 

and the two standard form expressions of F`.

 Since the system has 4 input variables (a, b, c & d), the number of minterms and maxterms = 24= 16

 F (a, b, c, d) = Σ(0, 1, 2, 4, 5, 7)

 F = Π (3, 6, 8, 9, 10, 11, 12, 13, 14, 15)

 F` = Σ (3, 6, 8, 9, 10, 11, 12, 13, 14, 15).

 F` = Π (0, 1, 2, 4, 5, 7)



 Let F(A,B,C)= A B + A’ C, express F as a sum of minterms

 F(A,B,C)= A B (C+C’) + A’ C (B+B’)

 = ABC + ABC’ + A’BC + A’B’C

 = Σ(1, 3, 6, 7)

 Short Cut Method:

◦ A B =  1 1 - This gives us the input combinations 110 and 111 which correspond to m6 and m7

◦ A’ C = 0 – 1 This gives us the input combinations 001and 011 which correspond to m1 and m3



 The AND operation on two functions corresponds to the intersection of the two sets of minterms of the functions

 The OR operation on two functions corresponds to the union of the two sets of minterms of the functions

 Example
◦ Let F(A,B,C)=Σm(1, 3, 6, 7) and G(A,B,C)=Σm(0,1, 2, 4,6, 7)
◦ F . G = Σm(1, 6, 7)
◦ F + G = Σm(0,1, 2, 3, 4,6, 7)
◦ F’ . G = ?
◦ F’ = Σm(0, 2, 4, 5)
◦ F . G = Σm(0, 2, 4)



 The sum of minterms and the product of maxterms forms of 
Boolean expressions are known as canonical forms.

 Canonical form means that all equivalent functions will have a 
unique and equal representation.

 Two functions are equal if and only if they have the same sum of 
minterms and the same product of maxterms.

 Example:

◦ Are the functions F1 = a' b' + a c + b c ' and                              
F2 = a' c' + a b + b' c Equal?

◦ F1 = a' b' + a c + b c ' = Σm(0, 1, 2 , 5, 6, 7)

◦ F2 = a' c' + a b + b' c = Σm(0, 1, 2 , 5, 6, 7)

◦ They are equal as they have the same set of minterms.



 A product term is a term with ANDed literals. Thus, AB, A’B, A’CD are all product 
terms.

 A minterm is a special case of a product term where all input variables appear in the 
product term either in the true or complement form.

 A sum term is a term with ORed literals. Thus, (A+B), (A’+B), (A’+C+D) are all sum 
terms.

 A maxterm is a special case of a sum term where all input variables, either in the 
true or complement form, are ORed together.



 Boolean functions can generally be expressed in the form of a Sum of 
Products (SOP) or in the form of a Product of Sums (POS).

 The sum of minterms form is a special case of the SOP form where all 
product terms are minterms.

 The product of maxterms form is a special case of the POS form 
where all sum terms are maxterms.

 The SOP and POS forms are Standard forms for representing Boolean 
functions.



Sum of Products Expressions (SOP):

 Any SOP expression can be implemented in 2-levels of gates.

 The first level consists of a number of AND gates which equals the number 
of product terms in the expression. 

 Each AND gate implements one of the product terms in the expression.

 The second level consists of a SINGLE OR gate whose number of inputs 
equals the number of product terms in the expression.



 Example: Implement the following SOP function

F = XZ + Y`Z + X`YZ



Product of Sums Expression (POS):

 Any POS expression can be implemented in 2-levels of gates.

 The first level consists of a number of OR gates which equals the 
number of sum terms in the expression.

 Each gate implements one of the sum terms in the expression.

 The second level consists of a SINGLE AND gate whose number of 
inputs equals the number of sum terms.



 Example: Implement the following POS function

F = (X+Z )(Y`+Z)(X`+Y+Z )





 Deals with binary variables that take 2 discrete values (0 and 1), and with logic 

operations

 Three basic logic operations: 

◦ AND, OR, NOT

 Binary/logic variables are typically represented as letters: A,B,C,…,X,Y,Z
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F(vars) = expression

Example: F(a,b) = a’•b + b’

G(x,y,z) = x•(y+z’)

2023/2/28Boolean Algebra

set of binary

variables

Operators ( +, •, ‘ )

Variables

Constants ( 0, 1 )

Groupings (parenthesis)



 George Boole (1815-1864): “An investigation of the laws of thought”

 Terminology:

◦ Literal: A variable or its complement

◦ Product term: literals connected by •

◦ Sum term: literals connected by +
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 1854: Logical algebra was published by George Boole known today as “Boolean 

Algebra”

 It’s a convenient way and systematic way of expressing and analyzing the operation 

of logic circuits.

 1938: Claude Shannon was the first to apply Boole’s work to the analysis and 
design of logic circuits.



 Variable – a symbol used to represent a logical quantity.

 Complement – the inverse of a variable and is indicated by a bar over the variable.

 Literal – a variable or the complement of a variable.



 Boolean addition is equivalent to the OR operation 

0+0 = 00+1 = 11+0 = 11+1 = 1

A sum term is produced by an OR operation with no AND ops 
involved.

i.e.
A sum term is equal to 1 when one or more of the literals in 
the term are 1.
A sum term is equal to 0 only if each of the literals is 0. 

DCBACBABABA  ,,,



 Boolean multiplication is equivalent to the AND operation

0·0 = 0 0·1 = 

0
1·0 = 0 1·1 = 1

A product term is produced by an AND operation with no OR 
ops involved.

i.e.
A product term is equal to 1 only if each of the literals in the 
term is 1.
A product term is equal to 0 when one or more of the literals 
are 0. 



 The basic laws of Boolean algebra:

◦ The commutative laws 

◦ The associative laws

◦ The distributive laws



 The commutative law of addition for two variables is 

written as: A+B = B+A

 The commutative law of multiplication for two variables is 

written as: AB = BA


A
B A+B

B
A B+A

A

B
AB

B

A
BA



 The associative law of addition for 3 variables is written as: A+(B+C) = (A+B)+C

 The associative law of multiplication for 3 variables is written as: A(BC) = (AB)C
A

B
A+(B+C)

C

A

B
(A+B)+C

C

A

B
A(BC)

C

A

B
(AB)C

C





B+C

A+B

BC

AB



 The distributive law is written for 3 variables as follows:  

A(B+C) = AB + AC
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A
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A

B

C

A
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___________________________________________________________

A, B, and C can represent a single variable or a combination of variables.



 DeMorgan’s theorems provide mathematical verification of:

◦ the equivalency of the NAND and negative-OR gates

◦ the equivalency of the NOR and negative-AND gates.



 The complement of two or more 
ANDed variables is equivalent to the 
OR of the complements of the 
individual variables.

 The complement of two or more ORed
variables is equivalent to the AND of 
the complements of the individual 
variables. 

YXYX 

YXYX 

NAND Negative-OR

Negative-ANDNOR



 Apply DeMorgan’s theorems to the expressions:

ZYXW

ZYX

ZYX

ZYX











 Apply DeMorgan’s theorems to the expressions:

)(

)(

FEDCBA

EFDCBA

DEFABC

DCBA











 Boolean algebra provides a concise way to express the operation of a logic circuit 

formed by a combination of logic gatese

 So that the output can be determined for various combinations of input values.



 To derive the Boolean expression for a given logic circuit, begin at the left-most 
inputs and work toward the final output, writing the expression for each gate.

C

D

B

A

CD

B+CD

A(B+CD)



 Once the Boolean expression for a given logic circuit has been determined, a truth 

table that shows the output for all possible values of the input variables can be 

developed.

◦ Let’s take the previous circuit as the example:

A(B+CD)

◦ There are four variables, hence 16 (24) combinations of values are possible.



 Evaluating the expression

◦ To evaluate the expression A(B+CD), first find the values of the variables that 

make the expression equal to 1 (using the rules for Boolean add & mult).

◦ In this case, the expression equals 1 only if A=1 and B+CD=1 because

A(B+CD) = 1·1 = 1



 Evaluating the expression (cont’)
◦ Now, determine when B+CD term equals 1.
◦ The term B+CD=1 if either B=1 or CD=1 or if both B and CD equal 

1 because
B+CD = 1+0 = 1
B+CD = 0+1 = 1
B+CD = 1+1 = 1

 The term CD=1 only if C=1 and D=1



 Evaluating the expression (cont’)
◦ Summary:
◦ A(B+CD)=1
 When A=1 and B=1 regardless of the values of C and D
 When A=1 and C=1 and D=1 regardless of the value of B

◦ The expression A(B+CD)=0 for all other value combinations of the variables.



 Putting the results in truth table 

format

INPUTS OUTPUT

A B C D A(B+CD)

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

INPUTS OUTPUT

A B C D A(B+CD)

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

When A=1 and B=1 

regardless of  the 

values of  C and D

When A=1 and C=1 and 

D=1 regardless of the 

value of B

A(B+CD)=1

INPUTS OUTPUT

A B C D A(B+CD)

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

INPUTS OUTPUT

A B C D A(B+CD)

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1



Let X: boolean variable,  0,1: constants

1. X + 0 = X  -- Zero Axiom

2. X • 1  = X  -- Unit Axiom 

3. X + 1  = 1   -- Unit Property

4. X • 0  = 0  -- Zero Property



Let X: boolean variable,  0,1: constants

5. X + X = X  -- Idepotence

6. X • X  = X  -- Idepotence

7. X + X’ = 1   -- Complement

8. X • X’ = 0   -- Complement

9. (X’)’ = X -- Involution



 The dual of an expression is obtained by exchanging (• and +), 
and (1 and 0) in it, provided that the precedence of operations 
is not changed.

 Cannot exchange x with x’ 
 Example:  
◦ Find H(x,y,z), the dual of F(x,y,z) = x’yz’ + x’y’z
◦ H  = (x’+y+z’) (x’+y’+ z)



With respect to duality, Identities 1 – 8 have the following 

relationship:

1. X + 0 = X 2. X • 1  = X    (dual of 1)

3. X + 1  = 1 4. X • 0  = 0    (dual of 3)

5. X + X = X 6. X • X  = X   (dual of 5)

7. X + X’ = 1 8. X • X’  = 0   (dual of 8)



Let X,Y, and Z: boolean variables

10. X + Y = Y + X 11. X • Y = Y • X           -- Commutative
12. X + (Y+Z) = (X+Y) + Z   13. X•(Y•Z) = (X•Y)•Z  -- Associative
14. X•(Y+Z) = X•Y + X•Z    15. X+(Y•Z) = (X+Y) • (X+Z) -- Distributive
16. (X + Y)’ = X’ • Y’ 17. (X • Y)’ = X’ + Y’
-- DeMorgan’s In general,

( X1 + X2 + … + Xn )’ = X1’•X2’• … •Xn’,  and 
( X1•X2•… •Xn )’ = X1’ + X2’ + … + Xn’



1. x + x•y = x

2. x•(x+y) = x (dual)

 Proof:

x + x•y = x•1 + x•y

= x•(1+y) 

= x•1

= x

QED  (2 true by duality, why?)
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1. x + x•y = x is true, so (x + x•y)’=x’

2. (x + x•y)’=x’•(x’+y’)

3. x’•(x’+y’) =x’

4. Let X=x’, Y=y’

5. X•(X+Y) =X, which is the dual of x + x•y = x.

6. The above process can be applied to any formula. So if a 

formula is valid, then its dual must also be valid.

7. Proving one formula also proves its dual.

2023/2/28Boolean Algebra



1. xy + x’z + yz = xy + x’z

2. (x+y)•(x’+z)•(y+z) = (x+y)•(x’+z)  -- (dual)

 Proof:

xy + x’z + yz = xy + x’z + (x+x’)yz

= xy + x’z + xyz + x’yz

= (xy + xyz) + (x’z + x’zy)

= xy + x’z

QED (2 true by duality).

2023/2/28Boolean Algebra



 Enumerates all possible combinations 

of variable values and the 

corresponding function value 

 Truth tables for some arbitrary functions  

F1(x,y,z), F2(x,y,z), and F3(x,y,z) are 

shown to the right.

2023/2/28Boolean Algebra

x y z F1 F2 F3

0 0 0 0 1 1

0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 1 0 1



 Truth table: a unique representation of a Boolean function

 If two functions have identical truth tables, the functions are equivalent (and vice-
versa).

 Truth tables can be used to prove equality theorems. 

 However, the size of a truth table grows exponentially with the number of variables 
involved, hence unwieldy. This motivates the use of Boolean Algebra.

2023/2/28Boolean Algebra



 Boolean algebra is a useful tool for simplifying digital circuits.

 Why do it? Simpler can mean cheaper,  smaller, faster.

 Example: Simplify F = x’yz + x’yz’ + xz.
F = x’yz + x’yz’ + xz

= x’y(z+z’) + xz
= x’y•1 + xz
= x’y + xz
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 Example: Prove
x’y’z’ + x’yz’ + xyz’ = x’z’ + yz’

 Proof:
x’y’z’+ x’yz’+ xyz’

= x’y’z’ + x’yz’ + x’yz’ + xyz’
= x’z’(y’+y) + yz’(x’+x)
= x’z’•1 + yz’•1
= x’z’ + yz’

QED.
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 The complement of a function is derived by interchanging (• 

and +), and (1 and 0), and complementing each variable.

 Otherwise, interchange 1s to 0s in the truth table column 

showing F.

 The complement of a function IS NOT THE SAME as the 

dual of a function.
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 Find G(x,y,z), the complement of

F(x,y,z) = xy’z’ + x’yz

 G = F’ = (xy’z’ + x’yz)’

= (xy’z’)’ • (x’yz)’ DeMorgan

= (x’+y+z) • (x+y’+z’)  DeMorgan again

 Note: The complement of a function can also be derived by 

finding the function’s dual, and then complementing all of the 

literals
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 Minterms and 
Maxterms are easy 
to denote using a 
truth table.

 Example: 
Assume 3 variables 
x,y,z
(order is fixed)

2023/2/28Boolean Algebra

x y z Minterm Maxterm

0 0 0 x’y’z’ = m0 x+y+z = M0

0 0 1 x’y’z = m1 x+y+z’ = M1

0 1 0 x’yz’ = m2 x+y’+z = M2

0 1 1 x’yz = m3 x+y’+z’= M3

1 0 0 xy’z’ = m4 x’+y+z = M4

1 0 1 xy’z = m5 x’+y+z’ = M5

1 1 0 xyz’ = m6 x’+y’+z = M6

1 1 1 xyz = m7 x’+y’+z’ = M7



 GATE LEVEL MINIMIZATION

◦ KARNAUGH MAP

◦ TABULAR MINIMIZATION METHOD

 COMBINATIONAL LOGIC

◦ BINARY ADDER –SUBTRACTER

◦ DECIMAL ADDER

◦ BINARY MMULTIPLIER

◦ MAGNITUDE COMPARATOR

◦ DECODER, ENCODER

◦ MULTIPLEXERS AND DEMULTIPLEXER



 GATE LEVEL MINIMIZATION

◦ KARNAUGH MAP

◦ TABULAR MINIMIZATION METHOD

◦ POS AND SOP IMPLIMENTATION 

◦ NAND & NOR IMPLIMENTATION NOR

◦ OTHER TWO LEVEL IMPLIMENTATION 

◦ XOR IMPLIMENTATION 



 Karnaugh maps (K-maps) are graphical representations of boolean functions.

 One map cell corresponds to a row in the truth table.

 Also, one map cell corresponds to a minterm or a maxterm in the boolean expression

 Multiple-cell areas of the map correspond to standard terms.

2023/2/28Boolean Algebra



2023/2/28Boolean Algebra

m3m21

m1m00

10x1

x2

0 1

2 3

NOTE: ordering of variables is IMPORTANT for f(x1,x2), x1

is the row, x2 is the column.

Cell 0 represents x1’x2’; Cell 1 represents x1’x2; etc. If a 

minterm is present in the function, then a 1 is placed in the 

corresponding cell.

m3m11

m2m00

10x2

x1

0 2

1 3

OR



 Any two adjacent cells in the map differ by ONLY one variable, which appears 

complemented in one cell and uncomplemented in the other. 

 Example:

m0 (=x1’x2’) is adjacent to m1 (=x1’x2) and m2 (=x1x2’) but NOT m3 (=x1x2) 
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 f(x1,x2) = x1’x2’+ x1’x2 + x1x2’ 
= m0 + m1 + m2
= x1’ + x2’

 1s placed in K-map for specified 
minterms m0, m1, m2

 Grouping (ORing) of 1s allows 
simplification

 What (simpler) function is 
represented by each dashed 
rectangle?
◦ x1’ = m0 + m1
◦ x2’ = m0 + m2

 Note m0 covered twice
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x1 0 1

0 1 1

1 1 0

x2

0 1

2 3



 Enter 1s in the K-map for each product term in the function

 Group adjacent K-map cells containing 1s to obtain a product with fewer variables. 
Group size must be in power of 2 (2, 4, 8, …)

 Handle “boundary wrap” for K-maps of 3 or more variables.

 Realize that answer may not be unique
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m6m7m5m41

m2m3m1m00

10110100

yz

x
0 1 3 2

4 5 7 6

-Note: variable ordering is (x,y,z); yz specifies column, x specifies row.

-Each cell is adjacent to three other cells (left or right or top or bottom 

or edge wrap)
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The types of structures that are either 
minterms or are generated by repeated 
application of the minimization 
theorem on a three variable map are 
shown at right. 
Groups of 1, 2, 4, 8 are possible.

minterm

group of 2 terms

group of 4 terms



 Enter minterms of the Boolean function into the map, then group terms

 Example: f(a,b,c) = a’c + abc + bc’

 Result: f(a,b,c) = a’c+ b
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1 1 1

1 1

abc

1 1 1

1 1



 f1(x, y, z)  = ∑ m(2,3,5,7)

 f2(x, y, z)  =  ∑ m (0,1,2,3,6)
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 f1(x, y, z) = x’y + xz

f2(x, y, z) = x’+yz’

yz
X 00 01 11 10

0 1 1
1 1 1

1 1 1 1

1



 Top cells are adjacent to bottom cells. Left-edge cells 

are adjacent to right-edge cells.

 Note variable ordering (WXYZ).
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m10m11m9m810

m14m15m13m1211

m6m7m5m401

m2m3m1m000

10110100WX

YZ



 One square represents a minterm of 4 literals.

 A rectangle of 2 adjacent squares represents a product term of 

3 literals.

 A rectangle of 4 squares represents a product term of 2 literals.

 A rectangle of 8 squares represents a product term of 1 literal.

 A rectangle of 16 squares produces a function that is equal to 

logic 1.
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 Simplify the following Boolean function (A,B,C,D) = 

∑m(0,1,2,4,5,7,8,9,10,12,13).

 First put the function g( ) into the map, and then group as 

many 1s as possible.
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cd
ab

111

11

111

111

g(A,B,C,D) = c’+b’d’+a’bd

111

11

111

111



 There may be a combination of input values which

◦ will never occur

◦ if they do occur, the output is of no concern.

 The function value for such combinations is called a don't care.

 They are denoted with x or –. Each x may be arbitrarily assigned the 

value 0 or 1 in an implementation.

 Don’t cares can be used to further simplify a function
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 Treat don't cares as if they are 1s to generate PIs.

 Delete PI's that cover only don't care minterms.

 Treat the covering of remaining don't care minterms as optional in the selection 

process (i.e. they may be, but need not be, covered).
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 Simplify the function f(a,b,c,d) 

whose K-map is shown at the right.

 f = a’c’d+ab’+cd’+a’bc’ 

or

 f = a’c’d+ab’+cd’+a’bd’
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xx11

xx00

1011

1010

xx11

xx00

1011

1010

0 1 0 1

1 1 0 1

0 0 x x

1 1 x x

ab
cd

00

01

11 

10

00 01 11 10



 Simplify the function g(a,b,c,d) 

whose K-map is shown at right.

 g = a’c’+ ab

or

 g = a’c’+b’d

2023/2/28Boolean Algebra

x 1 0 0

1 x 0 x

1 x x 1

0 x x 0

x 1 0 0

1 x 0 x

1 x x 1

0 x x 0

x 1 0 0

1 x 0 x

1 x x 1

0 x x 0

ab
cd



 What do we do for functions with more variables?

 You can “code up” a minimizer (Computer-Aided Design, CAD)

◦ Quine-McCluskey algorithm

◦ Iterated consensus

 We won’t discuss these techniques here
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 NAND and NOR Gates

◦ NAND and NOR circuits

◦ Two-level Implementations

◦ Multilevel Implementations

 Exclusive-OR (XOR) Gates

◦ Odd Function

◦ Parity Generation and Checking
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 We can construct any combinational circuit with AND, OR, 
and NOT gates

 Additional logic gates are used for practical reasons
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 Known as a “Universal” gate because ANY digital circuit can 

be implemented with NAND gates alone.

 To prove the above, it suffices to show that AND, OR, and 

NOT can be implemented using NAND gates only.
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X

X

F = (X•X)’ 
= X’+X’ 
= X’

X
Y

Y

F = ((X•Y)’)’ 
= (X’+Y’)’ 
= X’’•Y’’
= X•Y

F = (X’•Y’)’ 
= X’’+Y’’
= X+Y

X

X

F = X’

X
Y

Y

F 
X•Y

F = 
X+Y



 To easily derive a NAND implementation of a boolean

function:

◦ Find a simplified SOP

◦ SOP is an AND-OR circuit

◦ Change AND-OR circuit to a NAND circuit

◦ Use the alternative symbols below
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a) Original SOP

b) Implementation with NANDs

Two-level implementations
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Verify:

(a) G = WXY + YZ

(b) G = ( (WXY)’ • (YZ)’ )’ 

= (WXY)’’ + (YZ)’’ = WXY + YZ



(a) Original SOP

(b) Double inversion and grouping

(c) Replacement with NANDs 
2023/2/28Boolean Algebra

AND-NOT

NOT-OR



F (X,Y,Z) = m(0,6)

1. Express F in SOP form: 

F = X’Y’Z’ + XYZ’

2. Obtain the AND-OR implementation for F.

3. Add bubbles and inverters to transform AND-OR to NAND-

NAND gates.
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Two-level implementation with NANDs
F = X’Y’Z’ + XYZ’
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Starting from a multilevel circuit:

1. Convert all AND gates to NAND gates with AND-NOT 
graphic symbols.

2. Convert all OR gates to NAND gates with NOT-OR graphic 
symbols.

3. Check all the bubbles in the diagram.  For every bubble that 
is not counteracted by another bubble along the same line, 
insert a NOT gate or complement the input literal from its 
original appearance.
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 Also a “Universal” gate because ANY digital circuit can be 

implemented with NOR gates alone.

 This can be similarly proven as with the NAND gate.
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 To easily derive a NOR implementation of a boolean function:

◦ Find a simplified POS

◦ POS is an OR-AND circuit

◦ Change OR-AND circuit to a NOR circuit

◦ Use the alternative symbols below
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F(X,Y,Z) = m(0,6)

1. Express F’ in SOP form:

a)F’ = m(1,2,3,4,5,7)
= X’Y’Z + X’YZ’ + X’YZ + XY’Z’ + XY’Z + 

XYZ

b)F’ = XY’ + X’Y + Z

2. Take the complement of F’ to get F in the POS form: F = 
(F’)' = (X'+Y)(X+Y')Z'

3. Obtain the OR-AND implementation for F.

4. Add bubbles and inverters to transform OR-AND 
implementation to NOR-NOR implementation.
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Two-level implementation with NORs
F = (F’)' = (X'+Y)(X+Y')Z'
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X Y F = XY

0 0 0

0 1 1

1 0 1

1 1 0
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Y

F

XOR: “not-equal” gate

X Y F = XY

0 0 1

0 1 0

1 0 0

1 1 1

X

Y

F

XNOR: “equal” gate

X



 XOR (also ) : the “not-equal” function
 XOR(X,Y) = X  Y = X’Y + XY’
 Identities:
◦ X  0 = X
◦ X  1 = X’
◦ X  X = 0
◦ X  X’ = 1

 Properties:
◦ X  Y = Y  X   
◦ (X  Y)  W = X  ( Y  W)
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 XOR(a,b) = ab’ + a’b

 Straightforward: 5 gates

◦ 2 inverters, two 2-input ANDs, one 2-input OR

◦ 2 inverters & 3 2-input NANDs

 Nonstraightforward:

◦ 4 NAND gates
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 COMBINATIONAL LOGIC

◦ BINARY ADDER –SUBTRACTER

◦ DECIMAL ADDER

◦ BINARY MMULTIPLIER

◦ MAGNITUDE COMPARATOR

◦ DECODER, ENCODER

◦ MULTIPLEXERS AND DEMULTIPLEXER



 Logic circuits for digital systems may be combinational or 

sequential.

 A combinational circuit consists of input variables, logic gates, 

and output variables.
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 To obtain the output Boolean functions from a logic diagram, 

proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary 

symbols. Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled 

gates with other arbitrary symbols. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are 

obtained.

4. By repeated substitution of previously defined functions, obtain the output 

Boolean functions in terms of input variables.



F2 = AB + AC + BC;  T1 = A + B + C; T2 = ABC;   T3 = F2’T1;  

F1 = T3 + T2

F1 = T3 + T2 = F2’T1 + ABC = A’BC’ + A’B’C + AB’C’ + ABC
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 We can derive the truth table in Table 4-1 by using the circuit of 

Fig.4-2.
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1. Table4-2 is a Code-Conversion example, first, we can list the 

relation of the BCD and Excess-3 codes in the truth table.
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2. For each symbol of the Excess-3 code, we use 1’s to draw the 

map for simplifying Boolean function.
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z = D’; y = CD + C’D’ = CD + (C + D)’

x = B’C + B’D + BC’D’ = B’(C + D) + B(C + D)’

w = A + BC + BD = A + B(C + D)

125



 A combinational circuit that performs the addition of two bits is 

called a half adder.

 The truth table for the half adder is listed below:

S = x’y + xy’

C = xy

126

S: Sum
C: Carry





 One that performs the addition of three bits(two 
significant bits and a previous carry) is a full adder.
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S = x’y’z + x’yz’ + xy’z’ + xyz

C = xy + xz + yz

129

C
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 Full-adder can also implemented with two half 
adders and one OR gate (Carry Look-Ahead adder).

S = z ⊕ (x ⊕ y)
= z’(xy’ + x’y) + z(xy’ + x’y)’
= xy’z’ + x’yz’ + xyz + x’y’z

C = z(xy’ + x’y) + xy = xy’z + x’yz + xy

131



 This is also called 
Ripple Carry 
Adder ,because of 
the construction 
with full adders 
are connected in 
cascade.
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 Fig.4-9 causes a unstable factor on carry bit, and 

produces a longest propagation delay.

 The signal from Ci to the output carry Ci+1, propagates 

through an AND and OR gates, so, for an n-bit RCA, 

there are 2n gate levels for the carry to propagate 

from input to output.
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 Because the propagation delay will affect the output signals 

on different time, so the signals are given enough time to 

get the precise and stable outputs.

 The most widely used technique employs the principle of 

carry look-ahead to improve the speed of the algorithm.
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Pi = Ai ⊕ Bi steady state value

Gi = AiBi steady state value

Output sum and carry

Si = Pi ⊕ Ci

Ci+1 = Gi + PiCi

Gi : carry generate Pi : carry propagate

C0 = input  carry

C1 = G0 + P0C0

C2 = G1 + P1C1  = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

 C3 does not have to wait for C2 and C1 to 
propagate.



 C3 is propagated at the same time as C2 and C1.

136



 Delay time of n-bit CLAA = XOR + (AND + OR) + XOR
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M = 1subtractor ; M = 0adder
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BCD adder can’t exceed 9 on each input digit. K is the carry.
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 When the binary sum is greater than 1001, we obtain a non-valid 

BCD representation.

 The addition of binary 6(0110) to the binary sum converts it to the 

correct BCD representation and also produces an output carry as 

required.

 To distinguish them from binary 1000 and 1001, which also have a 

1 in position Z8, we specify further that either Z4 or Z2 must have a 

1.

C = K + Z8Z4 + Z8Z2



 A decimal parallel 

adder that adds n 

decimal digits needs n 

BCD adder stages.

 The output carry from 

one stage must be 

connected to the input 

carry of the next 

higher-order stage.
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If =1
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 Usually there are more bits in the partial products and it is necessary 
to use full adders to produce the sum of the partial products.

142
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 For J multiplier bits and K 

multiplicand bits we need (J X K) 

AND gates and (J − 1) K-bit 

adders to produce a product of 

J+K bits.

 K=4 and J=3, we need 12 AND 

gates and two 4-bit adders.
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 The equality relation of 

each pair of bits can be 

expressed logically with an 

exclusive-NOR function as:

A = A3A2A1A0 ; B = 

B3B2B1B0

xi=AiBi+Ai’Bi’ for i = 

0, 1, 2, 3

(A = B) = x3x2x1x0
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 We inspect the relative magnitudes 

of pairs of MSB. If equal, we 

compare the next lower significant 

pair of digits until a pair of unequal 

digits is reached.

 If the corresponding digit of A is 1 

and that of B is 0, we conclude that 

A>B.

(A>B)=

A3B’3+x3A2B’2+x3x2A1B’1+x3x2x1A0B

’0

(A<B)=

A’3B3+x3A’2B2+x3x2A’1B1+x3x2x1A’0B
0
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 The decoder is called n-to-m-line decoder, where m≤2n .

 the decoder is also used in conjunction with other code converters such as a BCD-to-

seven_segment decoder.

 3-to-8 line decoder: For each possible input combination, there are seven outputs that 

are equal to 0 and only one that is equal to 1.





 Some decoders are constructed with NAND gates, it becomes 

more economical to generate the decoder minterms in their 

complemented form.

 As indicated by the truth table , only one output can be equal to 0 
at any given time, all other outputs are equal to 1.
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 A decoder with an enable input is referred to as a 

decoder/demultiplexer.

 The truth table of demultiplexer is the same with decoder.

Demultiplexer

D0

D1

D2

D3

E

A B





 From table 4-4, we obtain the functions for the combinational circuit in sum of minterms:

S(x, y, z) = ∑(1, 2, 4, 7)

C(x, y, z) = ∑(3, 5, 6, 7)
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 An encoder is the inverse operation of a decoder.

 We can derive the Boolean functions by table 4-7
z = D1 + D3 + D5 + D7

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7
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 If two inputs are active simultaneously, the output produces an undefined combination. We 

can establish an input priority to ensure that only one input is encoded.

 Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is generated 

when all the inputs are 0; the output is the same as when D0 is equal to 1.

 The discrepancy tables on Table 4-7 and Table 4-8 can resolve aforesaid condition by 

providing one more output to indicate that at least one input is equal to 1. 



V=0no valid inputs

V=1valid inputs

X’s in output columns represent 

don’t-care conditions

X’s in the input columns are 

useful for representing a truth 

table in condensed form. 

Instead of listing all 16 

minterms of four variables.
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 Implementation of 

table 4-8

x = D2 + D3

y = D3 + D1D’2

V = D0 + D1 + D2 + D3
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0
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S = 0, Y = I0 Truth Table S Y = S’I0
+ SI1

S = 1, Y = I1 0 I0
1

I1
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 Multiplexer circuits can be combined with common selection 
inputs to provide multiple-bit selection logic. Compare with 
Fig4-24.
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I0

I1

Y



 A more efficient method for implementing a Boolean 
function of n variables with a multiplexer that has n-1 
selection inputs.

F(x, y, z) = (1,2,6,7)

159



F(A, B, C, D) = (1, 3, 4, 11, 12, 13, 14, 15)
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 A multiplexer can be constructed with three-state gates.
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 There are two basic types of design methodologies: top-down 

and bottom-up.

 Top-down: the top-level block is defined and then the sub-blocks 

necessary to build the top-level block are identified.(Fig.4-9 

binary adder)

 Bottom-up: the building blocks are first identified and then 

combined to build the top-level block.(Example 4-2 4-bit adder)
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Gates statement: gate name(output, input, control)

>> bufif1(OUT, A, control);

A = OUT when control = 1, OUT = z when control = 0;

>> notif0(Y, B, enable);

Y = B’ when enable = 0, Y = z when enable = 1;
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 HDL uses the keyword tri 
to indicate that the output 
has multiple drivers.

module muxtri (A, B, select, OUT);

input A,B,select;

output OUT;

tri OUT;

bufif1 (OUT,A,select);

bufif0 (OUT,B,select);

endmodule
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Sequential 

Circuits
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 Asynchronous

 Synchronous

Combinational

Circuit
Memory

Elements

Inputs Outputs

Combinational

Circuit

Flip-flops

Inputs Outputs

Clock
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 Latches and flip-flops (FFs) are the basic building 
blocks of sequential circuits.

◦ latch:  bistable memory device with level sensitive triggering 
(no clock), watches all of its inputs continuously and changes 
its outputs, independent of a clocking signal.

◦ flip-flop: bistable memory device with edge-triggering (with 
clock), samples its inputs, and changes its output only at 
times determined by a clocking signal.
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 Controlled latches are level-triggered

 Flip-Flops are edge-triggered
C

CLK Positive Edge

CLK Negative Edge
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 The Mealy model: the outputs are functions of 
both the present state and inputs (Fig. 5-15).
◦ The outputs may change if the inputs change during 

the clock pulse period.

 The outputs may have momentary false values unless 
the inputs are synchronized with the clocks.

 The Moore model: the outputs are functions 
of the present state only (Fig. 5-20).
◦ The outputs are synchronous with the clocks.



Fig. 5.21 Block diagram of Mealy and Moore state machine



 State Reduction
Reductions on the 
number of flip-flops 
and the number of 
gates.

◦ A reduction in the 
number of states may 
result in a reduction in 
the number of flip-flops.

◦ An example state 
diagram showing in Fig. 
5.25.

Fig. 5.25 State diagram



◦ Only the input-output 
sequences are 
important.

◦ Two circuits are 
equivalent
 Have identical outputs for 

all input sequences;

 The number of states is 
not important.

Fig. 5.25 State diagram

State: a a b c d e f f g f g a

Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 0 1 1 0 1 0 0



 Equivalent states
◦ Two states are said to be equivalent

 For each member of the set of inputs, they give exactly 
the same output and send the circuit to the same state 
or to an equivalent state.

 One of them can be removed.



 Reducing the state table
◦ e = g (remove g);

◦ d = f (remove f);



◦ The reduced finite state machine

State: a a b c d e d d e d e a

Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 0 1 1 0 1 0 0



◦ The checking of each 
pair of states for 
possible equivalence can 
be done systematically 
using Implication Table.

◦ The unused states are 
treated as don't-care 
condition  fewer 
combinational gates.

Fig. 5.26   Reduced State diagram





 State Assignment 

 To minimize the cost of the combinational 
circuits.
◦ Three possible binary state assignments. (m states 

need n-bits, where 2n > m)



◦ Any binary number assignment is satisfactory as 
long as each state is assigned a unique number.

◦ Use binary assignment 1.
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 Sequential circuits are digital circuits in which 
the outputs depend not only on the current 
inputs, but also on the previous state of the 
output. 

 They basic sequential circuit elements can be 
divided in two categories:

 Level-sensitive (Latches)
◦ High-level sensitive
◦ Low-level sensitive

 Edge-triggered (Flip-flops)
◦ Rising (positive) edge triggered
◦ Falling (negative) edge triggered
◦ Dual-edge triggered
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The Set/Reset latch is the most basic unit of sequential digital 
circuits. It has two inputs (S and R) and two outputs outputs Q and 
Q’. The two outputs must always be complementary, i.e  if Q is 0 
then Q’ must be 1, and vice-versa. The S input sets the Q output to 
a logic 1. The R input resets the Q output to a logic 0.  

S

R

Q

Q

R

S

Q

Q

S R Q+

0 0

0 1

1 0

1 1

Function

S Q

R Q

Logic Symbol

Truth TableCircuit Diagram

Q

0

1

0

Q΄+

Q΄ Latch

Reset

Set

1

0

0 Illegal
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To be able to control when the S and R inputs of the SR latch can be 
applied to the latch and thus change the outputs, an extra input is 
used. This input is called the Enable. If the Enable is 0 then the S 
and R inputs have no effect on the outputs of the SR latch. If the 
Enable is 1 then the Gated SR latch behaves as a normal SR latch.

Logic Symbol

Truth Table

S

R

Q

Circuit Diagram

S Q

R Q Q

EN

S REN Q+

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Truth Table

S Q

R Q

EN

S REN Q+

0 X X

1 0 0

1 0 1

1 1 0

1 1 1

Function

Q

Q

Q

Q

Q

0

1

U
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Complete the timing diagrams for :
(a) Simple SR Latch
(b) SR Latch with Enable input.
Assume that for both cases the Q output is initially at logic zero.

Set

Reset

Q

Set

Reset

Q

Enable

(b)(a)
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A problem with the SR latch is that the S and R inputs can not be at 
logic 1 at the same time. To ensure that this can not happen, the S 
and  R inputs can by connected through an inverter. In this case the 
Q output is always the same as the input, and the latch is called the 
Data or D latch. The D latch is used in Registers and memory 
devices.

Logic Symbol

Truth Table

D QEN Q+

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Truth Table

DEN Q+

0 0

10

1 0

1 1

FunctionD
Q

Circuit Diagram

Q
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S Q

R Q

D Q

Q

EN

Q

Q

Q

Q

0

0

1

1
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Another way to ensure that the S and R inputs can not be at logic 1 
simultaneously, is to cross connect the Q and Q’ outputs with the S 
and R inputs through AND gates. The latch obtained is called the JK 
latch. In the J and K inputs are both 1 then the Q output will change 
state (Toggle) for as long as the Enable 1, thus the output will be 
unstable. This problem is avoided by ensuring that the Enable is at 
logic 1 only for a very short time, using edge detection circuits. 

Logic Symbol

Truth Table

J KEN Q+

0 X X

1 0 0

1 0 0

1 0 1

1 0 1

1 1 0

1 1 0

1 1 1

1
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0

1

0

11 1

Q

Truth Table

JEN Q+

0 X

01

1 0

1 1

Function
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1
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0
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 Latches are also called transparent or level 
triggered flip flops, because the change on the 
outputs will follow the changes of the inputs as 
long as the Enable input is set.   

 Edge triggered flip flops are the flip flops that 
change there outputs only at the transition of the 
Enable input. The enable is called the Clock input. 
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Edge detection circuits are used to detect the transition of the 
Enable from logic 0 to logic 1 (positive edge) or from logic 1 to logic 
0 (negative edge). The operation of the edge detection circuits 
shown below is based on the fact that there is a time delay between 
the change of the input of a gate  and the change at the output. 
This delay is in the order of a few nanoseconds. The Enable in this 
case is called the Clock (CLK)

EN
EN'

 EN

EN

EN'

EN

EN
EN'

 EN

EN

EN'

EN

EN

Positive Edge Detection Negative Edge Detection

 EN
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The JK edge triggered flip flop can be obtained by inserting an edge 
detection circuit at the Enable (CLK) input of a JK latch. This ensures 
that the outputs of the flip flop will change only when the CLK 
changes (0 to 1 for +ve edge or 1 to 0 for –ve edge)

Logic Symbol

Positive Edge JK Flip Flop
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Logic Symbol
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The D edge triggered flip flop can be obtained by connecting the J  
with the K inputs of a JK flip through an inverter as shown below. 
The D edge trigger can also be obtained by connecting the S with 
the R inputs of a SR edge triggered flip flop through an inverter. 

Logic Symbol

Positive Edge D Flip Flop

CLK QN+1 FunctionD

X

0

1

D Q

Q
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CLK

D Q

Q
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Logic Symbol

Negative Edge D Flip Flop

CLK QN+1 FunctionD

X

0

1

D Q

Q

CLK

CLK

D Q

Q

J Q

QK

0

1

Q

0

1

Q



ACOE161 - Digital Logic for 

Computers - Frederick University

219

The T edge triggered flip flop can be obtained by connecting the J  
with the K inputs of a JK flip directly. When T is zero then both J and 
K are zero and the Q output does not change. When T is one then 
both J and K are one and the Q output will change to the opposite 
state, or toggle. 

Logic Symbol

Positive Edge T Flip Flop
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T Q
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J Q
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Logic Symbol

Negative Edge T Flip Flop

T Q

Q

CLK

CLK

T Q

Q

J Q

QK

CLK QN+1 FunctionT

X

0

1

CLK QN+1 FunctionT

X

0

1

Q Q

Q

Q΄

Q

Q΄



ACOE161 - Digital Logic for 

Computers - Frederick University

220

Two extra inputs are often found on flip flops, that either clear or 
preset the output. These inputs are effective at any time, thus are 
called asynchronous. If the Clear is at logic 0 then the output is 
forced to 0, irrespective of the other normal inputs. If the Preset is 
at logic 0 then the output is forced to 1, irrespective of the other 
normal inputs. The preset and the clear inputs can not be 0 
simultaneously. In the Preset and Clear are both 1 then the flip flop 
behaves according to its normal truth table. 

Positive Edge JK Flip Flop with Preset and Clear

PRESET

J Q

QK
CLR

PR

CLEAR

CLK QN+1 FunctionK
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X

X
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Complete the timing diagrams for :
(a) D Latch
(b) JK Latch 
Assume that for both cases the Q output is initially at logic zero.

Enable

Data (D)

Q

J

K

Q

Enable

(b)(a)
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Complete the timing diagrams for :
(a) Positive Edge Triggered JK Flip Flop
(b) Negative Edge Triggered JK Flip Flop
Assume that for both cases the Q output is initially at logic zero.

J

K

Q

CLK

(b)(a)

J

K

Q

CLK
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Complete the timing diagrams for :
(a) Positive Edge Triggered D Flip Flop
(b) Positive Edge Triggered T Flip Flop
(c) Negative Edge Triggered T Flip Flop
(d) Negative Edge Triggered D Flip Flop 

(b)(a)

D

Q

CLK

D

Q

CLK

(d)(c)

T

Q

CLK

T

Q

CLK
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Complete the timing diagrams for :
(a) Positive Edge Triggered JK Flip Flop
(b) Negative Edge Triggered JK Flip Flop.
Assume that for both cases the Q output is initially at logic zero.

(b)(a)

J

K

Q

CLK

CLR

PR

J

K

Q

CLK

CLR

PR
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A Master Slave flip flop is obtained by 
connecting two SR latches as shown below. This 
flip flop reads the inputs when the clock is 1 
and changes the output when the clock is at 
logic zero. 

Logic Symbol
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(a)   Positive Master Slave JK Flip Flop

J

K

Q
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(b)   Negative Master Slave JK Flip Flop
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A Master Slave flip flop is obtained by 
connecting two SR latches as shown below. This 
flip flop reads the inputs when the clock is 1 
and changes the output when the clock is at 
logic zero. 

J

K

Q

CLK

(a)   Positive Master Slave JK Flip Flop

J

K

Q

CLK

(b)   Negative Master Slave JK Flip Flop
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A register that goes through a prescribed sequence 
of states upon the application of input pulses is 

called a counter.
The input pulses may be clock pulses or they may 

originate from some external source and may occur 
at a fixed interval of time or at random.

The sequence of states may follow the same binary 
number sequence or any other sequence of states .

A counter that follows the binary number sequence is 
called a binary counter.

An n-bit binary counter consists of n flip flops and 
can count in binary from o through (2^n)-1.

Counters are available in 2 categories: ripple counters 
and synchronous counters.

In a ripple counter, the flip flop output transition 
serves as a source for triggering other flip flops.



A binary ripple counter consists of a series 
connection of complementing flip flops(T or JK), 

with the output of each flip flop connected to 
the CP input of the next higher order flip flop.

The flip flop holding the least significant bit 
receives the incoming count pulses.

In the diagram of 4-bit binary ripple counter, all 
J and K inputs are equal to 1.

The small circle in the CP input indicates that 
the flip flop complements during a negative-

going transition or when the output to which it 
is connected goes from 1 to 0.







From the table it is obvious that the lowest-
order bit A1 must be complemented with each 

count pulse.

Every time A1 goes from 1 to 0, it complements 
A2.

Every time A2 goes from 1 to 0, it complements 
A3, and so on.

The flip flops change once at a time in rapid 
succession, and the signal propagates through 

the counter in a ripple fashion.

Ripple counters are also called as asynchronous 
counters



A decimal counter follows a sequence of ten 
states and returns to 0 after the count of 9.

Such a counter must have at least 4 flip flops to 
represent each decimal digit is represented by 

the binary code used to represent a decimal digit.
The sequence of states in a decimal counter is 

dictated by the binary code used to represent a 
decimal digit.

In the diagram, the output of Q1 is applied to the 
C inputs of both Q2 and Q8 and the output of Q2 

is applied to the C input of Q4.
The J and K inputs are connected either to a 

permanent 1 signal or to outputs of other flip 
flops.

A ripple counter is an asynchronous  sequential 
circuit.



State diagram of a decimal BCD 
counter

 When the C input goes from 1 to 0, the flip flop is set if J=1, 

is cleared if K=1, is complemented if J=K=1, and is left 
unchanged if J=K=0.



BCD ripple counter





Synchronous counters are different from ripple 
counters in that clock pulses are applied to the 

inputs of all flip flops simultaneously rather 
than one at a time in succession as in a ripple 

counter.
The decision whether a flip flop is to be 

complemented or not is determined from the 
values of the data inputs such as T or J and K at 

the time of the clock edge.
If T=0 or J=K=0, the flip flop does not change 

state.
If T=1 or J=K=1, the flip flop complements.



The design of a synchronous binary counter is so simple that 
there is no need to go through a sequential logic  design 

process.

In a synchronous binary counter, the flip flop in the least 
significant position is complemented with every pulse.

A flip flop in any other position is complemented when all 
the bits in the lower significant positions are equal to 1.

For eg, if the present state of a 4-bit counter is 
A3A2A1A0=0011, the next count is 0100.

A0 is always complemented because the present state of 
A0=1.

A2 is complemented because the present state of A1 A0 =11.

However A3 is not complemented because the present state 
of A 2A1 A0 =011, which does not give an all 1’s condition.



4-bit synchronous 
binary counter



In the diagram, the C inputs of all flip flops are 
connected to a common clock.

The counter is enabled with the count enable input.
If the enable input is 0, all J and K inputs are equal 
to 0 and the clock does not change the state of the 

counter.
The first stage A0 has its J and K equal to 1 if the 

counter is enabled.
The other J and K inputs are equal to 1 if all 

previous least significant stages are equal to 1 and 
count is enabled.

The chain of AND gates generates the required 
logic for the J and K inputs in each stage.

The counter can be extended to any number of 
stages,  with each stage having an additional flip 

flop and an AND gate that gives an output of 1 if all 
previous flip flop outputs are 1



A synchronous count down binary counter goes through 
the binary states in reverse order from 1111 down to 

0000 and back to 1111 to repeat the count.
The bit in the least significant position is complemented  

with each pulse.
A bit in any other position is complemented if all lower 

significant bits are equal to 0.
For eg, the next state after the present state of 0100 is 

0011.
The least significant bit is always complemented.

The second significant bit is complemented because the 
first 2 bits are equal to 0.

The 3rd significant bit is complemented because the 1st

2 bits are equal to 0.
But the 4th bit does not change because not all lower 

significant bits are equal to 0.



4-bit up-down binary counter



Both up counting and down counting can be combined in 
one circuit to form a counter capable of counting either 

up or down.

It has an up control input and a down control input.

When the up input is 1, the circuit counts up, since the T 
inputs receive their signals from the values of the 

previous normal outputs of the flip flops.

When the up input is 1 and the down input is 0, the circuit 
counts up, since the T inputs receive their signals from 

the values of the normal outputs of the flip flops.

When the down input is 1 and the up input is 0, the circuit 
counts down, since the complemented outputs of the 

previous flip flops are applied to the T inputs.

When the up and down inputs are both 0, the circuit does 
not change state and remains in the same count.

When the up and down inputs are both 1, the circuit 
counts up.



A BCD counter counts in binary-coded decimal 
from 0000 to 1001 and back to 0000.



The flip flop input conditions for the T flip flops are 
obtained from the present and next state 

conditions.

The output is equal to 1 when the present state is 
1001.

In this way, y can enable the count of the next 
higher significant decade while the same pulse 

switches the present decade from 1001 to 0000.

The flip flop input equations can be simplified by 
means of maps.

The unused terms are taken as don’t care terms.

The circuit can be easily drawn with 4 T flip flops, 5 
AND gates and 1 OR gate.

Synchronous BCD counters can be cascaded to form 
a counter for decimal numbers of any length.



Procedure to Design Synchronous Counters 

The procedure to design a synchronous counter is listed here.
• Obtain the truth table of the logic sequence for intended 
counter to be designed. Alternatively obtain the state diagram of 
the counter.
• Determine the number and type of flip-flop to be used.
• From the excitation table of the flip-flop, determine the next 
state logic.
• From the output state, use Karnaugh map for simplification to 
derive the
circuit output functions and the flip-flop output functions.
• Draw the logic circuit diagram. 



Ring Counter







Johnson Counter

The Johnson counter, also known as the twisted-ring

counter, is exactly the same as the ring counter except

that the inverted output of the last flip-flop is connected

to the input of the first flip-flop.

Let’s say, starts from 000, 100, 110, 111, 011 and 001,

and the sequence is repeated so long as there is input

pulse.



Clock Pulse 
No

FFA FFB FFC FFD

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

Truth Table for a 4-bit Johnson 

Ring Counter





 The generation of pseudo-random bit sequences is particularly useful in 
communication and computing systems

 Pseudo-random sequences are normally generated using a circuit called linear-
feedback shift register (LFSR)

 it consists simply of a tapped circular shift register with the taps feeding a modulo-2 
adder (XOR gate) whose output is fed back to the first flip-flop



The shift register must start from a nonzero state



PROGRAMMABLE 

DEVICES 



Fixed  ANDarray  

(decoder)
Programmable  OR

array

Programmable

connections OutputsInputs

Programmable read-only memory(PROM)

Programmable  AND

array

Fixed  ORarray
connections

Inputs
Programmable

Outputs

Programmable array logic (PAL)device

Programmable logic array(PLA)

Ahmad Almulhem, KFUPM2010

Programmable  AND

array

Programmable  OR

arrayconnections
Inputs

Programmable
Outputs

Programmable  

connections

All useAND-OR structure- differ in which is programmable
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representation usinggates simplified representation

Note: This PROM has 4 memory locations of 4 bits each
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representation usinggates
simplified representation



• AND array and ORarray
are programmable

• XOR is available to  complement 
an output if  needed

• Example:
• 3 inputs/2 outputs

• F1 = A B’ + A C + A’ B C’

• F2 = (AC + BC)’

Source: Mano’stextbook

Ahmad Almulhem, KFUPM 2010



• Fixed OR array and
programmable AND array
• Opposite of ROM

• Feed back is used to support  more 
product terms

• AND output can not beshared  here!

• Example:

• 4 inputs/4 outputs with fixed 3- input OR
gates

• W = A B C’ + A’ B’ CD’

• X  =?

• Y  =?

• Z =?

Ahmad Almulhem, KFUPM2010
Source: Mano’stextbook
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Use a PROM to implement an:

• inverter F1 =A

• OR

• NAND

• XOR

F2 = A+B F3

= A·B F4 = A

B

AB F1 F2 F3 F4

0 0 1 0 1 0

0 1 1 1 1 1

1 0 0 1 1 1

1 1 0 1 0 0

Truth table is transferred  directly 

to the PROMgrid.



• Xilinx FPGAs
• Configurable LogicBlock

(CLB)
• Programmable logic  and FFs

• Programmable
Interconnects
• Switch Matrices

• Horizontal/vertical  lines

• I/O Block(IOB)
• Programmable I/O pins

Source: Mano’stextbook

Ahmad Almulhem, KFUPM 2010



– a programmable device using more complex cells
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• Actel
– Anti-fuse based  FPGAs

• Radiation tolerant

– Flash-based FPGAs

• Lattice
– Flash-based FPGAs
– CPLDs (EEPROM)

• QuickLogic
– ViaLink-based  FPGAs

• Xilinx
– Virtex-II/Virtex-4: Feature- packed 

high-performance  SRAM-based FPGA
– Spartan 3: low-cost feature  reduced

version
– CoolRunner: CPLDs

• Altera
– Stratix/Stratix-II

• High-performance SRAM-based
FPGAs

– Cyclone/Cyclone-II
• Low-cost feature reduced  version for 

cost-critical  applications
– MAX3000/7000 CPLDs
– MAX-II: Flash-based FPGA



• Internal SRAM

• Embedded Multipliers  and DSP

blocks

• Embedded logic analyzer

• Embedded CPUs

• High speed I/O (~10GHz)

• DDR/DDRII/DDRIII SDRAM  

interfaces

• PLLs



https://searchnetworking.techtarget.com/definition/hardware
https://whatis.techtarget.com/definition/operating-system-OS
https://whatis.techtarget.com/definition/processor
https://searchstorage.techtarget.com/definition/hard-disk-drive
https://searchstorage.techtarget.com/definition/SSD-solid-state-drive
https://searchnetworking.techtarget.com/definition/hardware
https://whatis.techtarget.com/definition/operating-system-OS
https://whatis.techtarget.com/definition/processor
https://searchstorage.techtarget.com/definition/hard-disk-drive
https://searchstorage.techtarget.com/definition/SSD-solid-state-drive


 The term random access as applied to RAM comes from the fact that any storage location, also known as any 

memory address, can be accessed directly. Originally, the term Random Access Memory was used to distinguish 

regular core memory from offline memory.

 Offline memory typically referred to magnetic tape from which a specific piece of data could only be accessed by 

locating the address sequentially, starting at the beginning of the tape. RAM is organized and controlled in a way 

that enables data to be stored and retrieved directly to and from specific locations.

 Other types of storage -- such as the hard drive and CD-ROM-- are also accessed directly or randomly, but the 

term random access isn't used to describe these other types of storage.

 RAM is similar in concept to a set of boxes in which each box can hold a 0 or a 1. Each box has a unique address 

that is found by counting across the columns and down the rows. A set of RAM boxes is called an array, and each 

box is known as a cell.

 To find a specific cell, the RAM controller sends the column and row address down a thin electrical line etched 

into the chip. Each row and column in a RAM array has its own address line. Any data that's read flows back on a 

separate data line.

 RAM is physically small and stored in microchips. It's also small in terms of the amount of data it can hold. A 

typical laptop computer may come with 8 gigabytes of RAM, while a hard disk can hold 10 terabytes.

https://searchdatabackup.techtarget.com/definition/magnetic-tape
https://whatis.techtarget.com/definition/CD-ROM
https://searchstorage.techtarget.com/definition/array


RAM comes in two primary forms:

 Dynamic Random Access Memory (DRAM) makes up the typical computing device's RAM 
and, as was previously noted, it needs that power to be on to retain stored data.

 Each DRAM cell has a charge or lack of charge held in an electrical capacitor. This data must 
be constantly refreshed with an electronic charge every few milliseconds to compensate for 
leaks from the capacitor. A transistor serves as a gate, determining whether a capacitor's value 
can be read or written.

 Static Random Access Memory (SRAM) also needs constant power to hold on to data, but it 
doesn't need to be continually refreshed the way DRAM does.

 In SRAM, instead of a capacitor holding the charge, the transistor acts as a switch, with one 
position serving as 1 and the other position as 0. Static RAM requires several transistors to 
retain one bit of data compared to dynamic RAM which needs only one transistor per bit. As a 
result, SRAM chips are much larger and more expensive than an equivalent amount of DRAM.

https://searchstorage.techtarget.com/definition/DRAM
https://whatis.techtarget.com/definition/SRAM-static-random-access-memory


Multi-transistor RTL NOR gate
One-transistor RTL NOR gate



 Resistor–transistor logic (RTL) (sometimes also transistor–resistor logic (TRL)) is a class of digital
circuits built using resistors as the input network and bipolar junction transistors (BJTs) as switching
devices. RTL is the earliest class of transistorized digital logic circuit used; other classes include diode–
transistor logic (DTL) and transistor–transistor logic (TTL). RTL circuits were first constructed
with discrete components, but in 1961 it became the first digital logic family to be produced as
a monolithic integrated circuit.

 The logical operation OR is performed by applying consecutively the two arithmetic
operations addition and comparison (the input resistor network acts as a parallel voltage summer with
equally weighted inputs and the following common-emitter transistor stage as a voltage
comparator with a threshold about 0.7 V). The equivalent resistance of all the resistors connected to
logical "1" and the equivalent resistance of all the resistors connected to logical "0" form the two legs
of a composed voltage divider driving the transistor. The base resistances and the number of the inputs
are chosen (limited) so that only one logical "1" is sufficient to create base-emitter voltage exceeding
the threshold and, as a result, saturating the transistor. If all the input voltages are low (logical "0"), the
transistor is cut-off. The pull-down resistor R1 biases the transistor to the appropriate on-off threshold.
The output is inverted since the collector-emitter voltage of transistor Q1 is taken as output, and is high
when the inputs are low. Thus, the analog resistive network and the analog transistor stage perform the
logic function NOR

https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Resistor
https://en.wikipedia.org/wiki/Bipolar_junction_transistor
https://en.wikipedia.org/wiki/Diode%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Discrete_component
https://en.wikipedia.org/wiki/Logic_family
https://en.wikipedia.org/wiki/Monolithic_integrated_circuit
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Comparison_(mathematics)
https://en.wikipedia.org/wiki/Pull-down_resistor


Advantages
 The primary advantage of RTL technology was that it used a minimum number of 

transistors. In circuits using discrete components, before integrated circuits, transistors were 
the most expensive component to produce. Early IC logic production (such as Fairchild's in 
1961) used the same approach briefly, but quickly transitioned to higher-performance 
circuits such as diode–transistor logic and then transistor–transistor logic (starting in 1963 
at Sylvania Electric Products), since diodes and transistors were no more expensive than 
resistors in the IC.

Limitations
 The disadvantage of RTL is its high power dissipation when the transistor is switched on, by 

current flowing in the collector and base resistors. This requires that more current be 
supplied to and heat be removed from RTL circuits. In contrast, TTL circuits with "totem-
pole" output stage minimize both of these requirements.

 Another limitation of RTL is its limited fan-in: 3 inputs being the limit for many circuit 
designs, before it completely loses usable noise immunity.[citation needed] It has a low noise 
margin. Lancaster says that integrated circuit RTL NOR gates (which have one transistor 
per input) may be constructed with "any reasonable number" of logic inputs, and gives an 
example of an 8-input NOR gate.

https://en.wikipedia.org/wiki/Diode%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Sylvania_Electric_Products
https://en.wikipedia.org/wiki/Totem_pole_output
https://en.wikipedia.org/wiki/Fan-in
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Noise_margin




 DTL was initially made with discrete transistors and resistors before being integrated onto silicon.

 One early form of DTL, used by IBM Corp in the 360 family of computers, was really a hybrid technology.

 Transistor and diode chips were glued to a ceramic substrate and aluminum resistor paste was deposited on the

substrate to make resistors.

 Finally the ceramic base and components were hermetically sealed in an aluminum can. This family was used

extensively in IBM products in the middle to late 1960's.

 While this family was not a true integrated circuit, it was very successful and was less expensive than true

integrated circuits for several years.

 By the early 1970's integrated circuits became quite common and DTL gave way to TTL which was more

appropriate to integrated circuit technology.

 While DTL is no longer commercially used, we will discuss it because it is similar to and easier to understand

than TTL, and because designers still find the configuration of value.

 First, however, we will discuss diode logic which is the front end of the DTL gate and performs the actual

logic operation.





 Transistor–transistor logic (TTL) is a logic family built from bipolar junction transistors. Its

name signifies that transistors perform both the logic function (the first "transistor") and the

amplifying function (the second "transistor"), as opposed to resistor–transistor logic (RTL)

or diode–transistor logic (DTL).

 TTL integrated circuits (ICs) were widely used in applications such as computers, industrial

controls, test equipment and instrumentation, consumer electronics, and synthesizers.

Sometimes TTL-compatible logic levels are not associated directly with TTL integrated

circuits, for example, they may be used at the inputs and outputs of electronic instruments.

 After their introduction in integrated circuit form in 1963 by Sylvania Electric Products, TTL

integrated circuits were manufactured by several semiconductor companies. The 7400

series by Texas Instruments became particularly popular. TTL manufacturers offered a wide

range of logic gates, flip-flops, counters, and other circuits. Variations of the original TTL

circuit design offered higher speed or lower power dissipation to allow design optimization.

TTL devices were originally made in ceramic and plastic dual in-line package(s) and in flat-

pack form. Some TTL chips are now also made in surface-mount technology packages.

https://en.wikipedia.org/wiki/Logic_family
https://en.wikipedia.org/wiki/Bipolar_junction_transistor
https://en.wikipedia.org/wiki/Resistor%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Diode%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Synthesizer
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Sylvania_Electric_Products
https://en.wikipedia.org/wiki/7400_series
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/Surface-mount_technology




 The ECL circuit operation is considered below with assumption that the 

input voltage is applied to T1 base, while T2 input is unused or a logical 

"0" is applied.

 During the transition, the core of the circuit – the emitter-coupled pair (T1 

and T3) – acts as a differential amplifier with single-ended input. The 

"long-tail" current source (RE) sets the total current flowing through the 

two legs of the pair. 

 The input voltage controls the current flowing through the transistors by 

sharing it between the two legs, steering it all to one side when not near 

the switching point. 

 The gain is higher than at the end states (see below) and the circuit 

switches quickly.

https://en.wikipedia.org/wiki/File:ECL_transition_1000.jpg


 The metal-oxide (SiO2)-semiconductor (Si) is the most common microelectronic structures nowadays. The two terminals of MOS-

Capacitor consist of the main structures in MOS devices and it is the simplest structure of MOS devices. Therefore, it's essential to 

understand the mechanisms and characteristics of how MOS-C operates. The mechanisms under static biasing conditions can be 

visualized from two diagrams.

Energy band diagram

Block-charge diagram

The characteristics of MOS-C can be visualized by C-V (Capacitance verses Voltage) curves.

 Introduction

 The principals of forming MOS structure are similar to the metal-semiconductor (MS) contact structures, but the MOS structure is like 

sandwich structures which have a thin layer of silicon oxides in the middle between metal and semiconductor (Si) layer. Figure 1 below 

shows a schematic of an ideal MOS-C device. For an ideal MOS-C structure, some properties should follow below.

The metallic gate should thick enough to be equipotential region, where every points has the same potential in the space, under a.c and d.c

biasing conditions. The oxides layer in the middle should be a perfect insulator with zero current flowing through under all static biasing 

conditions. There should be no charge centers located on the oxide-semiconductor interface. The semiconductor should be uniformly doped 

with donors or acceptors as p-type or n-type semiconductors. The semiconductor (Si) should be thick enough for charges to encounter a field 

free region (Si bulk) before reaching the back contact. The Ohmic contacts should be established on the backside of the MOS device.

https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Semiconductors/Metal-Semiconductors_Contacts
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Semiconductors/Metal-Semiconductors_Contacts


The schematic of an ideal MOS-C device

Energy Band and Block Charge Diagrams

Accumulation of n-type MOS devices (a) 

band diagram (b) block charge diagram

The flat band diagram of MOS-C in 

equilibrium with n-type 

semiconductor, (b) the block charge 

diagrams of flat band MOS-C.

Capacitance verses voltage of 

MOS-C device for n-type 

semiconductor.

Accumulation of n-type MOS devices (a) band diagram (b) block 

charge diagram



CMOS Inverter



 CMOS circuits are constructed in such a way that all P-type metal–oxide–semiconductor (PMOS)
transistors must have either an input from the voltage source or from another PMOS transistor.

 Similarly, all NMOS transistors must have either an input from ground or from another NMOS
transistor. The composition of a PMOS transistor creates low resistance between its source and drain
contacts when a low gate voltage is applied and high resistance when a high gate voltage is applied.

 On the other hand, the composition of an NMOS transistor creates high resistance between source
and drain when a low gate voltage is applied and low resistance when a high gate voltage is applied.

 CMOS accomplishes current reduction by complementing every NMOSFET with a PMOSFET and
connecting both gates and both drains together. A high voltage on the gates will cause the NMOSFET
to conduct and the PMOSFET not to conduct, while a low voltage on the gates causes the reverse.

 This arrangement greatly reduces power consumption and heat generation. However, during the
switching time, both MOSFETs conduct briefly as the gate voltage goes from one state to another.

 This induces a brief spike in power consumption and becomes a serious issue at high frequencies.

https://en.wikipedia.org/wiki/PMOS_logic
https://en.wikipedia.org/wiki/NMOS_logic
https://en.wikipedia.org/wiki/Electrical_resistance
https://en.wikipedia.org/wiki/Voltage


FAMILY DESCRIPTION PRPOGATION DELAY (ns)
TOGGLE SPEED 

(MHZ)

POWER PER GATE @ 

1MHZ (mw)

TYPICAL SUPPLY 

VOLTAGE RANGE

INTRODUCTION 

YEAR
REMARKS

CMOS AC/ACT 3 125 0.5
3.3 or 5 (2-6 or 4.5-

5.5)
1985 ACT has TTL compatible levels

CMOS HC/HCT 9 50 0.5 5 (2-6 or 4.5-5.5) 1982 HCT has TTL compatible levels

CMOS 4000B/74C 30 5 1.2 10V (3-18) 1970
Approximately half speed and 

power at 5 volts

DTL Diode–transistor logic 25 10 5 1962

Introduced by Signetics, Fairchild 
930 line became industry 

standard in 1964

ECL ECL III 1 500 60 -5.2(-5.19 - -5.21) 1968 Improved ECL

ECL MECL I 8 31 -5.2 1962
first integrated logic circuit 

commercially produced

ECL ECL 10K 2 125 25 -5.2(-5.19 - -5.21) 1971 Motorola

ECL ECL 100K 0.75 350 40 -4.5(-4.2 - -5.2) 1981

ECL ECL 100KH 1 250 25 -5.2(-4.9 - -5.5) 1981

PMOS MEM 1000 300 1 9 -27 and -13 1967 Introduced by General Instrument

RTL Resistor–transistor logic 500 4 10 3.3 1963

the first CPU built from 
integrated circuits (the Apollo 

Guidance Computer) used RTL.

TTL Original series 10 25 10 5 (4.75-5.25) 1964 Several manufacturers

TTL L 33 3 1 5 (4.75-5.25) 1964 Low power

TTL H 6 43 22 5 (4.75-5.25) 1964 High speed

https://en.wikipedia.org/wiki/Diode%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Resistor%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer


TTL S 3 100 19 5 (4.75-5.25) 1969 Schottky high speed

TTL LS 10 40 2 5 (4.75-5.25) 1976 Low power Schottky high speed

TTL ALS 4 50 1.3 5 (4.5-5.5) 1976 Advanced Low power Schottky

TTL F 3.5 100 5.4 5 (4.75-5.25) 1979 Fast

TTL AS 2 105 8 5 (4.5-5.5) 1980 Advanced Schottky

TTL G 1.5 1125 (1.125 GHz) 1.65 - 3.6 2004 First GHz 7400 series logic

TTL Original series 10 25 10 5 (4.75-5.25) 1964 Several manufacturers

TTL L 33 3 1 5 (4.75-5.25) 1964 Low power

TTL H 6 43 22 5 (4.75-5.25) 1964 High speed

TTL S 3 100 19 5 (4.75-5.25) 1969 Schottky high speed

TTL LS 10 40 2 5 (4.75-5.25) 1976 Low power Schottky high speed

TTL ALS 4 50 1.3 5 (4.5-5.5) 1976 Advanced Low power Schottky

TTL F 3.5 100 5.4 5 (4.75-5.25) 1979 Fast

TTL AS 2 105 8 5 (4.5-5.5) 1980 Advanced Schottky

TTL G 1.5 1125 (1.125 GHz) 1.65 - 3.6 2004 First GHz 7400 series logic

RTL Resistor–transistor logic 500 4 10 3.3 1963

the first CPU built from integrated 
circuits (the Apollo Guidance 

Computer) used RTL.

PMOS MEM 1000 300 1 9 -27 and -13 1967 Introduced by General Instrument

ECL ECL III 1 500 60 -5.2(-5.19 - -5.21) 1968 Improved ECL

ECL MECL I 8 31 -5.2 1962
first integrated logic circuit 

commercially produced

https://en.wikipedia.org/wiki/Resistor%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer

