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Unit – 1  

Complex - analysis  

• Function of Complex Variable/ Differentiation:  

If for each value of the complex variable  Z= X+iY in a given region ‘R’ , we have one or more values of 

w=f(z)=u+iv, Then W is said to be a function of ‘Z’ , and we have w=f(z)=u+iv.   

Where u and v are real and imaginary parts of f(z). z=x+iy 

and  

f(z)=u(x,y)+iv(x,y) is a complex function.  

• Continuity of a Function:  

Let f(z) is said to be continuous function at z=z if  

 
  

• Differentiability of a Function:  

A function f(z) is said to be differentiable at z=z if   

 exists. It is donated by  fˡ(z₀)  

  

• Analytical Function:  

i.e. fˡ(z₀) =  



The complex function f(z) is said to be analytical function at z=a if the function f(z) has derivative at z=a and 

neighbourhood of z=a.  

Example:     

1. Let f(z) = 𝑧2 fˡ(z) = 2z  

At z=0, fˡ(z) = 2(0) = 0 (finite) f(z) 

has derivative at z=0  

Finally f(z) is called analytical function.  

1  

2. Let f(z) =   
𝑧  

−1  

At z=0, fˡ(z) =  

f(z)  has  no  

derivative at z=0  

Finally f(z) is called not analytical function.  

• Singular Point:  

Let z=a is said to be singular point if the function f(z) is not analytical at z=a.  

Example:   

f(z) =  z = 0 is called 

singular point.  

fˡ(z) =  



• Cauchy – Riemann Equations in Cartesian co-ordinates:   

• If f(z ) is continuous in some neighbourhood of z and differentiable at z then the first order partial  

derivatives satisfy the equations   and     at the point  z which are called  the  

Cauchy-Riemann  equations.  

proof:  

Let f(z) = u+iv be an analytical function  

By definition of analytical function, f(z) has derivative.  

i.e. fˡ(z) =  exists (finite)  

1) z = x+iy f(z) = u+iv f(z) = u(x,y)+iv(x,y)  

2) z = x+iy  △ z = △ x + i △ 𝑦 3) 𝑓 𝑧 +△ 𝑧 = ?  

𝑧 +△ z = x+iy+ △x+ i△ y  

𝑧 +△ z  = (x+ △x)+i(y+ △ y)   

𝑓 𝑧 +△ 𝑧  = u(x+ △x , y+ △ y) + iv(x+ △x , y+ △ y)  

[u(x+ △x , y+ △y) + iv(x+ △x , y+ △y) ]−[u x,y +iv x,y ]  

   fˡ(z) =   lim  △x+ i△y  → ①  

△x+ i△y→0  

We know that △ x+i △y  = 0+i0 △  

x = 0, △ y = 0  



Case (1) If △ y  = 0 , put △ y  = 0 in ①.  

 

Case (2) If △ x  = 0 , put △ x  = 0 in ①  

[u(x,y+ △y)+iv(x,y+△y)) −[u x,y +iv x,y ]  

   fˡ(z) = △limy→0  

  

  

Equate ② & ③  

  

Compare the real and imaginary parts  

i△ y   

[ u(x,y + △ y) − u x,y ]   i[v(x,y+ △ y) − u x,y ]   

fˡ(z) =  - i △ lim y →0   △ y   +   △ lim x →0   △ y   

fˡ(z) = -   →③   



     (If u𝑥 = 𝑣𝑦 and uy = −𝑣x)  

These are Cauchy – Riemann Equations in Cartesian co-ordinate System.  

Cauchy – Riemann Equations in Polar co-ordinates:  

Let z=x+iy  

We know that x=rcosθ , 

y=rsinθ z = 

rcosθ+irsinθ z = 

r(cosθ+isinθ) z = 𝑟𝑒𝑖θ
  

f(z)=u+iv f(𝑟𝑒𝑖θ) = u(r, θ)+iv(r,  

θ) → ①  

Differentiate ① w.r.t  ‘r’,  

fˡ (  →②  

Differentiate ① w.r.t  ‘θ’,  

fˡ ( →③  

Substitute ② in ③ , We get  



ir  

ir 

Lets compare real and imaginary parts   

  

These are Cauchy – Riemann Equations in Polar co-ordinate System. Examples  

1) Show that f(z) = xy+iy is not analytical  

Solution : Given , f(z) = xy+iy  

f(z) = u+iv u= xy 

 v= y  

 

It doesn't not satisfies C-R equations and hence its not an analytical function.  

2) Show that f(z) = 2xy+i(𝑥2- 𝑦2) is not analytical function. Solution:  Given     f(z) = 2xy+i(𝑥2- 𝑦2)   

=  y ,    

=  x ,    

  

  



f(z) = u+iv 

u=2xy       v= 𝑥2- 𝑦2
  

 

It doesn't not satisfies C-R equations and hence its not an analytical function.  

3) Test the analyticity f(z) = 𝑒𝑥(cosy-isiny) and also find the fˡ(z) Solution: Given   f(z) =  𝑒𝑥cosy -  

i𝑒𝑥siny  

f(z) = u+iv u = 𝑒𝑥cosy      

v = -𝑒𝑥siny  

  

,    

f(z) is not analytical function and the fˡ(z)  does not exist.  

4) Show that f(z) = z 𝑧 2 is not analytical function  

Solution : Given  f(z) = z 𝑧 2  

=  2y ,      =  2x   

=  2x ,      2 y   

  &   

cosy ,    

siny  

  

  



   f(z) = (x+iy) (x + iy)  2 =  (x+iy) [  𝑥2 + 𝑦2]2
  

f(z) = x(𝑥2 + 𝑦2)+iy(𝑥2 + 𝑦2) f(z) =  

u+iv  

u = x(x2 + y2) = x3 + xy2  V = y(x2 + y2) = x2y + y3
  

  

f(z) is not analytical function   

5) Show that w= logz is an analytical function and also find   

Solution :  Given      w = logz  

put z = 𝑟𝑒𝑖θ
  

𝑖θ = log r + log 𝑒𝑖θ w w 

= log 𝑟𝑒 

= log r + iθ log e  

f(z) = w = log r +iθ = u+iv u 

= log r          v = θ  

=  2xy   

=  2xy,    

  



   r  &      

r( ) = 1      &     0 = 0      It is an analytical function f(z) 

=  u+iv  

f(reiθ) = u(r, θ)+iv(r, θ)  

differentiate on both sides w.r.t  ‘r’  

fˡ(  

  

6) Show that  f(x) = sinz is an analytical function everywhere in the complex plane  

Solution : Given   f(x) = sinz  

f(x) = sin(x+iy) f(x) = sinx 

cos(iy) + sin(iy) cosx f(X) = sinx 

coshy + isinhy cosx f(x) = u+iv  

u = sinx coshy         v= sinhy cosx  

fˡ(z)   (0)     

fˡ(z) =    



 =  cosx coshy ,    -sinx sinhy  

  = sinx sinhy,     = coshy cosx    &     It is an analytical function  

7) Test the analyticity of the function f(z) = 𝑒𝑥 (cosy+isiny) and find fˡ(z). Solution : Given , f(z) = 𝑒𝑥 

(cosy+isiny)  = u+iv  

u = 𝑒𝑥 cosy        v = 𝑒𝑥 siny  

 cosy ,    

 siny      

    &   It is an analytical function  

f(z) = u+iv  

fˡ(z) =  cosy + i 𝑒𝑥 siny  

fˡ(z) = 𝑒𝑥(cosy+isiny)  

fˡ(z)  = 𝑒𝑥 i 𝑒𝑦 = e(x+iy)  

fˡ(z)  = ez  

8) Determine P such that the function f(z) =  be an analytical function.  

Solution :   

  



Given , f(z) =   

It is an analytical function, It satisfies the C-R equation  

)        v =  

   

  

   similarly :   

By given f(z) is an analytical function, f(z) satisfies C-R equations.  

   x  y  y +p2x2  

Comparing the equations we get:  

P = -1  

9) Prove that function f(z) defined by f(z) = -R equations are satisfied at the origin, yet fˡ(0) does not exist.  

Solution : Given f(z) =   

i) To show that f(z) is continuous at z=0  

  

  u =  

2 x,      

2 y   

  px ( 

)     

,    



   let      lim f(z) =  ( given f(0) = 0)  

𝑧→0  

𝑦→0  

 

3 f(z) = f(z)  =  

lim x(1+i) = 0 = f(0)  

𝑥→0 f(z) is  

continuous   

ii) To show that C-R equations are satisfied at origin  

f(z) =  f(z) 

= u+iv  

3  

u = , 

v =   



R Equations are satisfied at origin iii) To 

show that fˡ(z)  does not exist at origin  

 fˡ(z) =    

 y→0  z    

 x3 1+i −y2 +3 y(1−i) 2    −  

x  

 lim  0  

=  1    

1     

C  –   



 fˡ(z) =  yx  →→00     x      x +  iy   

lim  x     

𝑥 →0   x  

fˡ(z) =    

x 1 +i  3 fˡ(z) 𝑥lim
 →0 

 
 x 3 =  

= 1+i   (Finite)  

fˡ(z) Exists  

At y = mx   

fˡ(z) 

=  

  

y→mx  

fˡ(z) =   

y→mx  

fˡ(z) 

=    

  fˡ(z) =   (Infinite) fˡ(z)  depends upon the ‘m’ value, so that the fˡ(z) does not exist at origin  

fˡ(z) =  



Part – B  

Laplace Equations   

the equation of the form     

Harmonic Function   

The function u and v are said to be harmonic, if it satisfies Laplace Equations  

  i.e 

 

 

or  

  

Milne – Thomson Method   

When u is given find f(z) :  

   𝜕𝑢  𝜕𝑢  

1) To find  and   

2) To find   fˡ(z) = u+iv   

Differentiate w.r.t ‘x’ we get  



   fˡ(z) =    (From C-R equation)  

fˡ(z) =   

,0)  

 ,0)  fˡ(z)  =   

∅1(z1,0) - i ∅2(z2,0)  

Integrate w.r.t ‘z’ f(z) = 𝟏∅ ׬(z𝟏,0) dz - i 𝟐∅ ׬(z𝟐,0)  

dz + c When v is given find f(z):  

   𝜕𝑣  𝜕𝑣  

1) To find  and   

2) To find f(z) = u+iv  

Differentiate w.r.t ‘x’ , we get  

     (From C-R equation)     

fˡ(z) =  

fˡ(z) =    

,0)   

,0)   



fˡ(z) =  ∅1(z1,0) + i ∅2(z2,0)  

Integrate w.r.t ‘z’ f(z) = 𝟏[∅׬(z𝟏,0) + i ∅𝟐(z𝟐,0)  

]dz + c  

1) Construct an analytical function f(z) when u = x3- 3x y2 + 3x + 1 is given  

   Solution:      

By Milne Thomson Method  

 f(z) =u+iv  

,0) = - 6(z) (0) = 0            

fˡ(z) =  

   fˡ(z) = ,0)              

Integrate w.r.t   ‘z’ f(z) =   

 dz + c f(z) [ i ∅2(𝑧,0) + (𝑧,0)1∅]׬

  dz + c f(z) ( 3z2 +3 − 0)׬ =

= + 3z + c  

f(z) = 𝒛𝟑 + 3z + c  

6 xy   

( z,0) = 3  z 2 +3   

  

  &    



2) Construct an analytical function f(z) when u = sinx coshy is given  

   Solution: = cosx sinhy  

=  sinx sinhy  

By Milne Thomson Method  

 f(z) =u+iv  

(z,0) = sinz(0) = 0                                  

fˡ(z) =  

   fˡ(z) =  ,0)                                  

Integrate w.r.t   ‘z’ f(z) =   

  = dz + c f(z) [ i ∅2(z,0) - (z,0)1∅]׬

  cosz dz + c f(z) = sinz + c׬

3) Find the analytical function f(z) = u+iv if u+v   

sin2x  

   Solution:   u+v =   

f(z) = u+iv 

if(z) = ui-v  

(1 + i)f(z) = (u-v)+i(u+v) 

f(z) = u+iv  

,0) = cosz(1) = cosz   

  

  &    



Where F(z) = (1+i)f(z) 

u+v = V  

  

   𝜕𝑽,0) = −𝐜𝐨𝐬𝐞𝐜𝟐𝐳  

  

,0) =  

∅ 1 ( z ,0) =    

  

  

,0)   



f(z) = u+iv 

fˡ(z) =  

f(z) =  ׬[∅1(z,0) + i ∅2(z,0) ] dz + c  

f(z) = ׬ −cosec2z (i) dz+ c 

f(z) =  -i(-cotz) + c = i cotz + c 

f(z) = i cot z + c  

(1+i) f(z) =icotz + c  

i 

f(z)  =  

cotz f(z) =  

cotz + c1  

𝐢+𝟏  

f(z) = 𝟐 cotz + c𝟏  

4) Find the analytical function , whose real part is u = 

ex [(x2- y2)(cosy − 2xysiny)]  

   Solution:  u = ex x2 cosy - ex y2 cosy – 2xy ex siny   

 x  2 cosy – 2y ex siny – 2xy ex siny  

fˡ(z) =  

  

  

  

  cosy + 2x  e x  cosy  -   e y 

x  2   

=  0 + 0  -   0   –   0  =  0   



 cos(0) + 2z ez cos(0) – 0 – 0 – 0   

  

 siny + e siny y - 2y ex cosy – 2x ex siny – 2xy ex cosy  

f(z) = u+iv  

fˡ(z) 

= 

fˡ(z) =  

f(z) =   (0,)׬ - i (z,0) ] dz + c  

f(z) = ׬(ez z2 + 2z ez - 0) dz + c f(z) 

 ez z2 ׬  = ez (z2 +2z)dz + c f(z) ׬ =

dz +  2 ׬zez dz  

 u = z2 dv = ez dz du = 2z dz  v= ez f(z) = 𝐞𝐳  

𝐳𝟐 - 2 ׬z dz ez dz + 2 ׬z ez dz + c f(z) = 𝐞𝐳  

𝐳𝟐 + c  

  



5) The analytical function whose imaginary part is v(x,y) = 2xy Solution:  

v = 2xy  

= 2y = (z,0)  = 2(0) = 0  

= 2x = (z,0)  = 2(z) = 2z f(z) 

 i (z,0) ] dz + c f(z) + (z,0)׬  =

  z dz + c׬   =

2  

   f(z) =  2  + c  

f(z) = 𝐳𝟐 + 𝐜  

6) Find harmonic conjugate at u = 𝐞𝐱𝟐−𝐲𝟐cos2xy and also find f(z)  

   Solution :  u = 𝐞𝐱𝟐−𝐲𝟐 cos2xy  

 cos2xy (2x) - 𝐞𝐱𝟐−𝐲𝟐 sin2xy (2y)  

∅1(z,0) = 𝐞𝐳𝟐−𝟎 cos0 (2z) - 𝐞𝐱𝟐−𝐲𝟐(0)  

∅𝟏(𝐳,0) = 𝐞𝐳𝟐 2z  cos2xy (-2y) -  

𝐞𝐱𝟐−𝐲𝟐 sin2xy (2x)  



∅2(z,0) = 0 – 0   

∅𝟐(𝐳,0) = 𝟎 f(z)  

= u+iv fˡ(z) =  

fˡ(z) =  

fˡ(z)  =  ∅1(z,0) - i ∅2(z,0)  

f(z) =  ׬[∅1(z,0) - i ∅2(z,0) ] dz + c f(z) =  ׬ ez22z 

dz + c       (put 𝐳𝟐 = t  => 2z dz = dt) f(z) = ׬ et dt + 

c  = et + c  

f(z) =  𝐞𝐳𝟐 + c f(z) = e(x+iy)2 f(z) =  

ex2−y2+2xyi + c f(z) = ex2−y2 e2xyi + c u+iv =  

ex2−y2 [cos2xy+isin2xy] + c u+iv = ex2−y2  

cos2xy + i e ex2−y2 (sin2xy) + c  

v = 𝐞𝐱𝟐−𝐲𝟐 sin2xy + c  

7) Find the analytical function f(z) such that  Re[fˡ(z)] = 3 x2 - 4y -3 y2 and f(1+i) = 0.  

  



   Solution :   Re[fˡ(z)] = 3 x2 - 4y -3 y2  

f(z) = u+iv  

fˡ(z)  =    

Re[fˡ(z)] =  

  

 Integrate w.r.t  ‘x’  we get   &     u =   x + f(y)    v =  3  

   u =  𝐱𝟑 - 4xy -3 𝐲𝟐x + f(y)  v = 3 𝐱𝟐y - 𝐲𝟑 -2 𝐲𝟐 + f(x)  

Differentiate  w.r.t  ‘y’  we get              Differentiate  w.r.t  ‘x’  we get   

   6xy + fˡ(y)   =  6xy + fˡ(x)   

From C-R equations   

  

- 4x - 6xy + fˡ(y) = - 6xy - fˡ(x)   

-4x + fˡ(y) = - fˡ(x )  

Compare equation on both sides  

i.e fˡ(x) = 4x ,  fˡ(y ) = 0  

 f(x) = 4 ׬x dx  f(y) = c f(x)  

  

Integrate w.r.t  ‘y’  we get         

  



 =   + c  

   f(x) = 2 𝐱𝟐 + c  f(y) = c  

f(z) = u+iv f(z) = [x3 - 4xy -3 y2x] + i [3 x2y - y3 -2 y2] +  

2 x2 + c  

given f(1+i) = 0 f(z) = u+iv 

z = x+iy = (1+i)  

put x = 1, y = 1 f(z) = [1-4-3] + i[3-2-1]  

+2 +c f(1+i) = 0 = -6 +2i +c c  

= 6 – 2i  

f(z) = [𝐱𝟑 - 4xy -3 𝐲𝟐x] + i [3 𝐱𝟐y - 𝐲𝟑 -2 𝐲𝟐] + 2 𝐱𝟐 + 6 – 2i  

8) Find the analytic function f(z) = u+iv if u-v = ex (cosy – siny) Solution:   

f(z) = u+iv i  f (z) = iu-v  

(1+i) f(z) = (u-v) + i (u+v) 

f(z) = u+iv u = u-v = 𝐞𝐱  

(cosy – siny)  



F(z) = (1+i) f(z)  cosy - ex siny = 

∅1(z,0) = ez - 0 = ez  siny - ex 

cosy = ∅2(z,0) = 0 - ez = - ez  

  

f(z) =  ׬[∅1(z,0) - i ∅2(z,0) ] dz + c  

f(z) = ׬(ez + i ez ) dz + c  

f(z) =( 𝐞𝐳 + i 𝐞𝐳 ) + c (1+i) 

f(z) = ez +i ez + c  

f(z) =  f(z)  

= 𝒆𝐳 + c  

Harmonic Conjugate  

1) Show that function u= 2xy+3y is harmonic and find harmonic conjugate.  

   Solution:   u= 2xy+3y  

  

fˡ(z)  =   



 = 0    u satisfies  laplace  equation  

‘u’ is a Harmonic function  

   𝜕𝑣  𝜕𝑣  

dv = dx +  dy  

dv = -(2x+3) dx + 2y dy v  

  dx + 2y dy (2x+3)- ׬ =

  2  2  

   v = -+ c  

v = - 𝒙𝟐+ 𝐲𝟐 - 3x + c  

2) Show that u = 2log (𝑥2+ y2) is harmonic and find its harmonic conjugate.  

   Solution:   u = 2log (𝑥2+ y2)   



 

d x  

3) Find f(z) if the imaginary part is r2 cos2θ + r sinθ Solution:   

V =  r2 cos2θ + r sinθ  

2 x   2 y   

dv 
    = dx +    dy   

𝜕 𝑢   

dv =  - dx +    dy   

dv =    dx +    dy   

dv =    ( y dx  –   x dy)   

v =  -   v  

=   -     

v =  -   )  + c   



  

 → ②  

  

 Solution:   f(z) = u+iv  

real f(z) = u  

[real  f(z)]2 = u2
  

 → ①  

Similarly ,   

 → ②  

d  

d  d  

  

=   2r cos 2 θ + sinθ   

  

  → ①   

r   

-   r [2r cos2   

Integrate w.r.t  ‘ r ’ , we get u =  -   

  

  

)  → ③   

  ② & ③   

fˡ( )  =  0   

sin2   

    sin2   cos2   

4) 
  Show that  [    [real   ] f(z)] 2     =  fˡ(z)  2 

𝟐   



Add 

equation ① & 

②  

   2  2  

] + 2u [   

{ f(z) = u+iv  => fˡ(z) =  

  

 [real  𝐟(𝐳)]𝟐 = 2 fˡ(z) 𝟐  

5) If f(z) is analytical function with constant modulus ,then show that f(z) is constant.  

Solution:   

let f(z) is constant modulus   

f(z) = u+iv  

f(z) = 𝑢2 + 𝑣2 = constant  

𝑢2 + 𝑣2 = c  

𝑢2 + 𝑣2 = 𝑐2 = c1  

Differentiate  w.r.t  ‘x’   

= 0 → ①  

  

2  fˡ(z)  



Differentiate  w.r.t  ‘y’   

= 0 → ② By C-R 

equations  

   ①   = 0 → ③  

= 0 → ④  

   Multiply  ③ * v  uv  = 0   

   ④ * u   = 0   

 Subtract  then    uv 

  



   u =  

u = c  

Similarly   

v = c f(z) is 

constant  

  

Conformal Mapping :   

A transformation w = f (z) is said to be conformal if it preserves angel between   

oriented curves in magnitude as well as in orientation.   

Bilinear Transformation :  

 is called the bilinear transformation or   

mobius transformation. Where a,b,c,d are complex constants.  

The method to find the bilinear transformation if three points and their images are given 

as follows:  

We know that we need four equations to find 4 unknowns. To find a bilinear   

transformation we need three points and their images.  

  

=  c   



in cross ration, three are four points (w,w1, w2,w3,) = (z,z1, z2, z3,)  

   (w−w1)(w2−w3)  (z − z1) ( z2−z3)  

=  

 (w1−w2) (w3−w)  ( z1−z2) (z3−z)  

az+b  

Since we have to get w =  , we take one point as ‘z’ and its image as ‘w’  

Problems about bilinear transformation:  

1) Find the bilinear transformation on which maps the points (-1, 0, 1) into the points (0,i,3i) in w-plane  

   Solution :   In z-plane, z1 = -1, z2 = 0, z3 = 1   

In w-plane, w1 = 0, w2 = i, w3 = 3i  

In cross ration,  

(w,0,i,3i) = (z,-1,0,1)  

   (w−w1)(w2−w3)  (z − z1) ( z2−z3)  

=   

-2wi(1-z) = (z+1) [ - [i(3i-w)]]                                               

-2wi + 2wiz = -[-3-wi](z+1)  

-2wi + 2wiz = 3z + wiz + 3 +wi  



-3wi + wiz = (3z + 3)  

- w[i(3-z)] = z(z+1)   w  

  = 

2) Find the bilinear transformation which maps the points (α,i,0) in 

the z-plane into (0,i,α) in the w-plane.  

   Solution:   In z-plane, z 

 In w-plane,    

(w−w1) 

 (w  −w   ) (  − w)   (  − z ) (z   z )1  2 w3ˡ =   

z1ˡ 2 3− ((ww−w1−w2) ( w𝑤3) ( −𝑍1z2) (z3−z) w3ˡ z1ˡ  
   

3) Find the bilinear transformation that maps the points (0,i,α) respectively into (0,1, α).  

 1   1    

  =  0], z 2   =  i, z 3   =  0    

  

  

  w =    



 

az+b  

The transformation  w =   

The roots of this transformation are called fixed points or invariant points.  

z =  ( we know that w = f(z) ) z(cz+d) = 

az+b c z2 +dz = az+b c 𝐳𝟐+(d-a)z – b = 0 

Problems:  

1) Find  the  fixed  points  of  the transformation w =   

Solution: The roots of above transformation are called fixed points  



put w 

= z z =  z(z+1) 

= z-1 z2 +z – z +1 

= 0 z2  

+1 = 0 z2 = -1 z = ± 

i fixed points ± i  

2) The fixed points of the transformation w =   

   Solution:   put w = z  

z =   

  z(z+2) = (z-i+1)  

z2 +2z = z-i+I 

z2+z+i-I = 0  

( a =1, b =1, c =1-i)  

 −𝐛 ±  𝐛𝟐  −𝟒𝐚𝐜    −1  ± 1 +4  (1  −i  )  

 z  =  𝟐𝐚  =  2  

−1  ± 1+ 4 − 4  i  −1 ±  3 −4  

i z  =  2  =  2  

 −𝟏 +  𝟑− 𝟒𝐢   −𝟏 −  𝟑− 𝟒𝐢    
 𝟐  𝟐  &        

3) Determine the bilinear transformation whose fixed points are 1,-1 Solution:  

Given fixed points are  z = 1,-1  



az+b  

The roots of the transformation is  w =  are called fixed points put w = z cz+d  

az+b 

z =   

cz2+(d-a)z – b = 0 (z+1)(z-

1) = 0  

   z2 -1= 0     (c =1, d =0, a =0, b =1)  

w =   

Problems on images:  

1) Write the image of the triangle with vertices (i,1+i,1) in the z-plane under the transformation w = 3z+4-2i  

 Solution:   y  

 (x,y) = (1,0)    

In w-plane:   



y 

in z-plane Transformation z =i  x+iy = 0+i w= 3z+4-2i (x,y) = (0,1) w= 

3(x+iy)+4-2i z= 1+i  x+iy = 1+i u+iv = w  

   (x,y) = (1,1)  u = 3x+4, v= 3y-2  

 x z-  plane  

   (1,0)    

z =1  x+iy = 1  



i) (x,y) = (0,1)  (u,v) = (4,1)                                      ii) (x,y) =  

(1,1)  (u,v) = (7,1) iii) (x,y) = (1,0)  (u,v) = (7,-2)  

Conclusion:  

The image of the triangle whose vertices (i,1+i,1) is mapped as triangle 

whose vertices (4,1) ,(7,1), (7,-2) in w-plane under the transformation 

w=3z+4-2i  

   1  1  

2) Find the image of the infinite strip 0 < y <   under the transformation w =   

   2  z  

 Solution:   In z –plane   

the infinite strip between the lines y =0, y = .  

Transformation:   

   1  y  

w = z  

1 z =    

𝑤 x+iy =   

𝑢−𝑖𝑣  

x+iy =  

x 

=   

(1   ,   1)   (0   ,   1)   

(7   ,   1)   

(7   ,   -   2)   

(4   ,   1)   

x   

w   -   plane   

x   

Y = 0    

y =    
1   

2   

0   

  

  , y =  



   In w –plane   z - plane   

   i) y = 0  ii)  y =   

 0 = -v  u2 + v2 = -2v v = 0 Conclusion: 1  

   The image of infinite strip 0 < y <   is transferred as straight line (v=0) or circle under the transformation w =   

2  

   π  z  

3) Find the image of the region in the z-  plane between the lines y = 0 and y =   under the transformation w  

=  e 2  

   Solution:   In z –plane   

The lines are y =0, y =   

Transformation  

w =  ez  

 u+iv = ex+iy = ex eiy y  =  0  u+iv  =  ex  

[cosy+isiny] u = ex cosy        v = e𝑥 siny  

In w-plane  

i) y =0  u = ex,   v = 0  

   π  x  

ii) y =  u = 0,   v = e  



2  

v = 0   

 

Conclusion:   
π  

   The image of the region lines y = 0 & y =  are transferred as first quadrant in the w-plane under the   
2  

transformation w =  ez  

1  

4) Show that transformation w = z +   maps the circle z = c  into the eclipse u = (c +   , v =  (c -  . Also 

discuss the z case when c = 1 in detail.  

y   

y =    
π   

2   

0   

z    -   plane    

x   

v   

0   

w    -   plane    

u   

u = 0    



  
  

 Solution:    Z –plane    Transformation 

1  

circle  z  =  c  
  

w  

= z  

+  
z  

   x + iy = c   

 x2 +y2 = c  u+iv = r(rcos 𝐱𝟐 +𝐲𝟐 =𝐜𝟐 u+iv =  

(r+    u = (r+   v = (r-   

w –plane  

   z = c   y  

z = r  ( r =c)  

 we know that  𝐜𝐨𝐬𝟐θ  +  

𝐬𝐢𝐧𝟐θ = 1  

 Case:   When c = 1  

z = 1    , r = 1  

u =2 cosθ , v = 0  

The  

w = r   

x   

z   =   
  c   



u+iv = 2 cosθ + i (0) 2 sinθx u = 2     v = 0 

Conclusion:   
𝟐  

  The image of circle z = c is transferred as eclipse   = 1 in w –

plane and also the image of circle  z = 1 when   

c = 1 is transferred as straight lines u =2 & v = 0 in w – 

plane under the transformation w = z +  .  

5) Discuss the transformation of w = sinz using example.  𝐚𝟐  

+ 
𝐛  

 Solution:   Transformation w = sinz  

w = sin (x+iy) w = 

sinxcosiy + cosxsiniy  

u+iv = sinxcoshy + icosxsinhyx  

   u = sinxcoshy  v = 

cosxsinhy  

   Example: In z –plane  In w –plane  

  u v z = 1    ,  

 x = c  coshy =  , sinhy =   

   sinx  cosx  

𝐱𝟐+ 𝐲𝟐 = 1  

𝐮         
𝐯   𝟐   

𝟐   
1   

z   

y   

0   

u   2   

a   2   +   
    v   2   

b   2   
    1   =   

y   

0   

X =c   



   put x = c     

 Conclusion:   cos 2 hy - sinh 2 y = 1  

The image line x  

 = c is transferred as hyperbola  =  
1   

 in w – plane under  

the transformation w = sinz.  

6) Discuss the transformation of w = cosz  

Solution: Transformation on w = cosz  

w = cos(x+iy) w = cosxcosiy – sinxsiniy u+iv = 

cosxcoshy – isinxsinhyx u = cosxcoshy 

sinxsinhy In 

z- plane In w-plane y = c cosx =  sinx = - 

  

   put y = c  y  

v =  - 

,  

y   

0   

x   

𝐮   𝟐   

𝐚   𝟐   -   
𝐯   𝟐   

𝐛   𝟐   =   1   
    

y   

0   

y =c   

  



 

 Conclusion:    

 The image of line y = c is transferred as ellipse  under the transformation w = cosz.     

  

x   

u   2   

a   2   +   
    v   2   

b   2   =   
    1   



                                  

                Unit – 2   

                                                      Complex Integration   

    Line Integral:   

      suppose f(z) is a complex function in the region R, and C is a smooth curve in R. Consider an interval   

 x1 < x2 … < xn < b are points in (a, b).   y   
   (a, b) and a <   

      ∆ xr = xr - xr−1 are chord vectors, then   

   

             
r=1n  ∆ xr =  ab f z dz    

   

   Where the summation tends to a limit and independent of the points choice. The 

limit exists if f(z) is continuous along the path.   

   

Evaluation of the integrals:    f z dz =  (u + iv)(dx + idy) =  udx − vdy + 

i(udy + vdx)  where u and v are functions of x.   

   

x    

                



      

Problems:   

1) Evaluate  cx2 + ixydz  from A(1, 1) to B(2, 8) along x = t and y = t3.   

   Solution:  Along x = t, y = t3 , dx = dt, dy = 3 t2 dt , The limits for t are 1 and 2    c  

 x2 +ixy (dx+idy) =  c x2dx−xydy)+i(xy dx+x2dy    

   2  2 dt - 3 t6 dt + i4 t4 dt = 𝒕^𝟑-3  𝒕^𝟕+i4  𝒕^𝟓(apply the lower     

            =  1 t  𝟑  𝟕  𝟓  

                                                                                                                                              and upper limit)               
   𝟏𝟎𝟗𝟒  𝟏𝟐𝟒𝐢  

                                                     =  -    +       
   𝟐  𝟓  

   

   1+i  2 dz along y = x2   

2) Evaluate  0  z  

   1+i  2 dz along y = x2 , dy = 2x dx   

     Solution:   0  z  

   1+i  2- y2+2ixy)(dx+ idy)   

         =  0 (x  

   1  2- x4) dx - 2 x3 2x dx + i(x2- x42xdx+2 x3dx)   



         = 0 (x  

   𝟐  𝟐  

         = -  +i     
   𝟑  𝟑  

   
2+i  

3) Evaluate  1−i 2x + 1 + iy dz along (1-i) to (2+i).   

  Solution:  Along (1-i) to (2+i) is the straight line AB joining (1,-1) to (2,1).   

       The equation of AB is y-1 = -  (x-2)       y-2x =  

-3, y = 2x-3, dy = 2dx   

         X varies from 1 to 2   
2+i2  

           1−i 2x+1+iy dz  =  1 2x+1 dx – (2x-3)2dx + i[2x-3]dx + (2x+1)2dx]   
2  

               =  1 −2x+7 dx + i(6x-1)dx   

   x2  x2  

               = -2   +7x+i(6  -x)|(apply the lower     
   2  2  

                                                                                                                              and upper limit)               
𝟐+𝐢  

           𝟏−𝐢 𝟐𝐱+𝟏+𝐢𝐲 dz = 4+8i   

   

   (1,1)  2 +5y+i(x2 −y2)]dz along y2 = x.   

4) Evaluate  (0,0) [3 x  

A(1, - 1) 
    

B (2,1)    



Solution: Along 𝐲𝟐 =x, 2ydy = dx, y varies from 0 to 1.   

   

        (0(1,0),3)[3 x2 +5y+i(x2 −y2)][dx+idy] =  01 3 y42ydy+5y2y - (y4 −y2)dy + i[(3y4+5y)dy+ (y4 −y2)2ydy]   

   y6  y5  y3  y6  y5  y4  y2  

               = 5   -    + 11.  + i(2  +3  -2  +5   ) (apply the lower     
   6  5  3  6  5  4  2  

                                                                                                                                                               and upper limit)               
   𝟏𝟐𝟗  𝟒𝟒𝐢  

               =    +       
   𝟑𝟎  𝟏𝟓  

   

   (1,3)  2ydx+(x2 −y2)dy along a) y = 3 x2  b) y =3x.   

5) Evaluate  (0,0) x  

Solution: a) y = 3 𝐱𝟐 , dy = 6xdx,  x varies from 0 to 1.   

           (0(1,0),3) x2ydx+(x2 −y2)dy =  01 3 x4dx+ (x2 −9x4)6xdx   

   
  



  
   (1,3)  5  4  

           (0,0) x2ydx +(x2 − y2)dy  = 3 

 x5 + 6 x4 -54 x66      
     

𝟔𝟗  

   = -       
𝟏𝟎  

      b) y = 3x , dy = 3dx,  x varies from 0 to 1.   
(1,3)  

           (0,0) x2ydx +(x2 − y2)dy  =  

01 3 x3dx + (x2 − 9x2)3dx   

   𝑥4   𝑥3   

              = 3   - 24  (apply the lower     
   4  3  

                                                                                                         and upper limit)               
𝟐𝟗  

              = -      
𝟒  

6) Evaluate  c  3z + 1 dz where C is the boundary of the square with vertices at the points z = 0, z = 1, z =1+I, 

z = i and the orientation of C is anti-clockwise. Solution:  C is the square OABC   



  

            
 
 

c z  3 +   1 dz =  
 
 
c 1   3 z +  1 dz  

  + 

 
 
c 2   1 z +  3 dz +  

 
 
c 3     

      Along  C 
𝟏  OA  =   

              y  =0 ,  

dy =0    C(0,1)    

  1   x 2     

      X varies from 0 to 1   c 1   3 z+1  dz  =      0 (3 
x+1)dx = 3 

 
2 
  +  x(apply    

                                                                                                 the lower  and upper limit)                

  
    Z=0    0 

  Z=1  

A(1,0)    
𝟓   

                  =          
𝟐   

        Along  𝒄 𝟐  AB  =   

3   z   +1   dz +    
    3   z   +1   c   4   

dz     

B(1,1)    



x =1, dx =0  y 

varies from 0 to 1   

 1  𝟑            c2 3z + 1 dz  = i 0 [3 (1+iy)+1]dy = 4i - 𝟐    

   

 Along 𝒄𝟑= BC     y =1, dy=0  x 

varies from 1 to 0   

0 𝟑                                         c3 3z + 1 dz  =  1 [3 (x +  

i)+1]dx = - 𝟐 -3i-1   

   

Along 𝒄𝟒= CO     x =0, dx=0  y 

varies from 1 to 1   

1 𝟑                     c4 3z + 1 dz  =   1  

[3𝑖𝑦 + 1]idx =  𝟐 -i   

 𝟓  𝟑   𝟓   𝟑   c 3z+1 dz= =𝟐 +𝟒𝒊− 𝟐 − 𝟐  

−𝟑𝐢−𝐢+ 𝟐 =𝟎   

   

  c 3z+1 dz=0   

   
      

    



(1,1) 2 +4xy+ix2]dz along y = x2 7)  

Evaluate  (0,0) [3 x  

Solution:  y = 𝐱𝟐, dy = 2xdx,    

           (0(1,0),1)[3 x2 +4xy+ix2] =  01(3 x2+4 x3+i x2)(dx+i2xdx)   

   1  2+4 x3-2 x3)dx + i(6 x3+8 x4+ x2)dx   

               =  0 (3 x  

              =1+1 -  + i(  +  -  ) (apply the lower                                                                                                                             

and upper limit)                
   𝟑   𝟏𝟎𝟑𝐢   

               =  +       
   𝟐  𝟑𝟎  

   

8) Evaluate  c  y2 + 2xy dx + x2 − 2xy dy , where is the boundary of the region by y = x2 and x = y2   

   Solution:     

   C1: Along OA, y = x2, dy = 2xdx  X varies from 0 to 1      c1  y2 + 2xy dx + x2 − 2xy dy =  01( x4+2 x3)dx + (x2  

3)2xdx  =  𝟐 
𝟓        C2: Along ABO, x = y2, dx = 2ydy   y varies from 1 to 0  - 

2 x 

          

  c2  y2 +2xy dx + x2 −2xy dy  =    



   1  2+2 y3)2ydy + (y4 - 2 y3)dy = -1   

         =  0 ( y  

        𝐜  𝐲𝟐 + 𝟐𝐱𝐲 𝐝𝐱 + 𝐱𝟐 − 𝟐𝐱𝐲 𝐝𝐲 = -1 + 𝟐 𝟓  = - 𝟑 𝟓    
   

Cauchy’s theorem   

       If f(z) is analytical and  fˡ(z) is continuous inside and cˡ on a simple 

closed curve C, then   c f(z)dz = 0.   

   Proof: Suppose R is the region bounded by C       f(z) = u+iv      z = 

x+iy   

      Where C 
  

          c f(z)dz =  c(u + iv)(dx + idy)          =  c udx − vdy  + i(udy 

+ vdx)   

 ߲ u  ߲ u  ߲ v  ߲ v  

      Since fˡ(z) is continuous,  ߲ x ,  ߲ y,  ߲ x ,  ߲ y exist and are continuous in R.   

      According to Green’s theorem   

 ߲ v  ߲ u  

Y =    x   
2   

,    

y   
2     =  x    

0   
    

B   
    

A   
    

c   
    

R   
    



           c udx + vdy = . R(  ߲ x −  ߲ y) dxdy   

    ߲ v  ߲ u   ߲ V  ߲ U  

 

           c f z dz =  . R(−  ߲ x −  ߲ y) dxdy +  i . R(  ߲ Y −  ߲ X) dxdy   

    ߲ 𝑈  ߲ u   ߲ V  ߲ 𝑉  

 

      Since f(z) is analytic     c f z dz =  . R(  ߲ 𝑌 −  ߲ y) dxdy +  i . R(  ߲ Y −  ߲ 𝑌) dxdy   

    ߲ u  ߲ v   ߲ u  ߲ v  

            ߲ x =  ߲ y and   ߲ y  = -  ߲ x   

           𝐜 𝐟 𝐳 𝐝𝐳 = 0   

   

Cauchy’s Integral Formula    

      If f(z) is analytical within and on a simple closed curve and cˡ a is any point inside C, then   
   1  f(z)dz  

         f(a) = 𝟐𝛑𝐢  c (𝐳−𝐚)    

    proof: C is a closed curve and a is any point inside C, Enclose a within a circle C whose radius is r and the  

centre is at a. Now C is inside C.   

 f(z)     is not analytical  

inside C.   
(𝐳−𝐚)  



   
 By Cauchy’s theorem for multiple connected region      c g z dz =   cˡ g z dz   

             g(z) = (𝐳−𝐚)  C   

        Where                     cˡ is z−a = r   

            z – a = reiθ, z = a + reiθ   

            dz = rieiθdθ   

          θ varies from 0 to 2π in cˡ   

   c   cˡ f(𝐳−𝐚z dz) =   c f(𝐳−𝐚z dz) =  02π f(a + r(erie
θ

i)θ r)eiθdθ = i  02π f(a + rei
θ

)d   

         As r → 0,cˡ → 0   

   𝐟 𝐳 𝐝𝐳  2π  

              𝐜 (𝐳−𝐚) = i  𝟎  f(a) dθ = f(a) 2π i   
f z dz  

            f(a) =     c (𝐳−𝐚)   

2πi  

         Cauchy’s integral formula for the derivatives    

f z dz 1  

f(z)   

.a    

cˡ   
     

z    



             f(a) =     c (𝐳−𝐚)   

2πi  

         Differentiating with respect to a successively    
f z dz 1  

              fˡ(a) = 2πi  c (z−a)2   
   2  f z dz  

          fˡˡ(a) =     c (z−a)3   

          

           f iv (a) = 2.3.42πi  c (fz−az dz)5   

         .   

         .   

         .   

 

          f n(a) = 2n!πi  c (z−af z )dzn+1   

      We can evaluate easily the integrals of complex functions using this formula.   

Problems:   

𝐳ezdz  

2 πi   

  f  iii   ( a) =  2.3     c (fz−az dz) 4     

2 πi   

1   



1) Evaluate  c (z+2)3 where C is 𝐳 = 3.  Solution:  

z = -2 lies inside z = 3   

         According to Cauchy’s integral formula   

1 f z dz z a = -2]    fˡˡ(a) =   c (z−a)3 ,    

[f(z) = z e  

πi2  

        fˡ(z) = z ez + ez        fˡˡ(z) = z ez +  

 2ez        fˡˡ(-2) = - 2e−2 + 2e−2=0   

𝐳𝐞𝐳𝐝𝐳  

           𝐜 (𝐳+𝟐)𝟑 = 0.   
dz  

2) Evaluate  c z3(𝐳+𝟒) where C is 𝐳 = 2 using Cauchy’s integral formula.   
   

Solution:  z = 0 lies inside C and z = -4 lies outside.   

      According to Cauchy’s integral formula   
 1  

and f(z)=   (𝐳+𝟒) ]   fˡ(z)= −  fˡˡ(z) =    fˡˡ(a) = 2πi  c (z−a)3     [a=0 

 and  fˡˡ(0) =    

   𝐝𝐳  𝐢𝛑  

           𝐜 𝐳𝟑(𝐳+𝟒) = 𝟑𝟐   

f z dz   2   



   
(z3−sin3z)dz  

3) Evaluate  c  where C is 𝐳 = 2 using Cauchy’s integral formula.   
   

Solution:  According to Cauchy’s integral formula   

 1 f z dz   3 − sin3z]    fˡˡ(a) =   c (z−a)3     [a=  and f(z) = z  

   πi    

         <2, z =  lies inside C: 𝐳 = 2         fˡ(z)= 3z2- 

 3cos3z fˡˡ(z) = 6z+9 sin3z       fˡˡ(  ) = 3π-9   
𝐟 𝐳 𝐝𝐳  

           𝐜 (𝐳−𝐚)𝟑  = πi(3π-9 )    
𝑑𝑧  

4) Evaluate  𝑐  𝑒𝑧(z−1)3 where C is 𝐳 = 2 using Cauchy’s integral formula.   
   

   𝑑𝑧  𝑒−𝑧𝑑𝑧  

Solution:    𝑐 𝑒𝑧(z−1)3 =  𝑐 (z−1)3    

            z = 1 lies inside C i.e|z|=2   

            f(z) = 𝑒−𝑧   

         According to Cauchy’s integral formula   

 f(a), [ a =1]    

(   z   −   
π   
2   

)   3   

1   f z dz        
  
c  ( 𝒛 − 𝒂 )   =   



2πi  

  1 f z dz         fˡˡ(a) = πi  c (z−a)3   

             fˡ(z)=- 𝑒−𝑧 fˡˡ(z) = 𝑒−𝑧, fˡˡ(1) = 𝑒−1   

   𝑒−𝑧𝑑𝑧  𝐢𝛑  

 

              𝑐 (z−1)3 = 𝐞   

5) Using Cauchy’s integral formula evaluate  𝑧4𝑑𝑧 where C is ellipse and  9 𝑥2+4 𝑦2 = 𝑐 

(z+1)(z−𝑖)2  

36.     

Solution:     

𝑧4𝑑𝑧  

  

 𝑐 (z+1)(z−𝑖)2    
  

    =  𝑐 (z+1)(1+𝑖)2 -  𝑐 (z−i)(1+𝑖)2 +    𝑐  

(z−𝑖)2   Splitting into partial fractions    z = -1 and z = i lie inside 9 𝑥2+4 𝑦2 = 36   
f z dz  

1  

2πi c (𝐳−𝐚)   

          f(a) =      
f z dz 1  

               c (z−a)2 = fˡ(a)    

2πi  

         f(z) =z4, a = -1, f(-1) = 1, a=I, f(i) = 1       

     fˡ(z) = 4z3 and fˡ(i) = -4i   

𝑧 4 𝑑𝑧   𝑧 4 𝑑𝑧     𝑧 4 𝑑𝑧   



 

z4dz  

        c (z+1)(z−i)2 =   2πi -  2πi +  2πi (-4i)   
      

   
logzdz1  

6) Evaluate  c   (z−1)3  where C is 𝐳−𝟏 = 𝟐 using Cauchy’s integral formula   

 Solution:          

 

       According to Cauchy’s integral formula   

1 f z dz  fˡˡ(a)  

2 c (z−a)3 = 2!        [  

 

a =1] πi 1  

        𝐳 − 𝟏 =  is a circle whose centre is (1,0)   
𝟐  

.    

(1   ,0)    
.    

(   
1   

𝟐   
,0)    

    =    = 4π(1 - i)    



 and   1      

radius is  , a=1 lies inside C   
𝟐  

1     f(z) =  

logz, fˡ(z)=   , fˡˡ(z) = -  , fˡˡ(1) = -1   
   𝐳  

   1  

           fˡˡ(a) =πi c (z−a)3   
𝐥𝐨𝐠𝐳𝐝𝐳  

             = - πi   

𝐜 (𝐳−𝟏)𝟑  

   (z2−z−1)dz  1  

7) Evaluate  c  z(z−i)2  where C is 𝐳 − 𝟐 = 1    

 Solution:          

    According to Cauchy’s integral formula   

f z dz      c (z−a) = 2πif(a)   

          z =0 inside C and z=i is outside C   

 2         f(z) =  , [a=0, f(0) =1]  

   2   

(𝐳𝟐−𝐳−𝟏)𝐝𝐳  

            𝐜 𝐳(𝐳−𝐢)𝟐 = 2π𝐢   

   
(3z2+7z+1)dz  

2   z   

f z dz   



9) If F(a) =  c (z−a) using Cauchy’s integral formula where C is 𝐳 = 2, F(1), F(3), fˡˡ(1−i) .   

(3z2+7z+1)dz  

 Solution:        Suppose F(a) =  c (z−a)     

(3z2+7z+1)dz  

           F(1) =         , [z=1 lies inside C]   
   c  (z−1)  

 f(z)dz        

     c  (z−a) = 2πi f(a)   

          [f(z) = 3z2 +7z+1, f(1) = 3+7+1 =11]   
 

 2            c   =  

2πi 11 = 22 πi  = F(1)   

 

 = 0 = F(3)   
  

            a = 1-i is inside C   

            F(a) = 2πi(3 a2+7a+1)   

             Fˡ(a)  = 2πi(6a+7)   

  
2   

  
            F(z) =     c    dz,     [ z=3 is outside C]      

  

2               c  



             Fˡˡ(a)  = 12πi   

             Fˡˡ(1-i)  = 12πi   
   

Complex Power Series   

Taylor’s Theorem:   

     If f(z) is analytic inside and a simple closed circle C with centre at a, then for z inside C          f(z) = f(a) +  

fˡ(a) (z-a) + fˡˡ(a) (z − a)2+ 
fˡˡˡ(a)

 (z − a)3+...   

   2!  3!  

Proof: Let Z be any point inside C, then enclose z with a circle  cˡ , with centre at a , let w be a point on  cˡ , 

then   
   1  1  1  z−a  −1  

converges 

uniformly 

multiplying 

both sides by f(w) and integrating with respect to w on cˡ             cˡ 𝑓(w−zw dw) = cˡ 𝑓(w−aw dw) +(z-a)  cˡ 𝑓(w−aw dw)2 + (z − 

a)2  cˡ 𝑓(w−aw dw)3 +…+ (z − a)𝑛  cˡ (w−a𝑓 w )dw𝑛+1   

       f(w) is analytic on cˡ   



          f(z) =   

   (a)  𝑓 w dw  

      and      n!  
 = 

2πi cˡ (w−a)𝑛+1        Dividing by 2πi   

 1 𝑓 w dw 1 𝑓 w dw (𝑧 −𝑎 ) 𝑓 w dw ( z−a ) 2 𝑓 w dw ( z−a ) 𝑛 𝑓 w dw          cˡ (w−z) = 2πi cˡ (w−a) + 2πi  cˡ (w−a)2 + 2πi (w−a)3 +…+ 2πi   cˡ 

(w−a)𝑛+1+…   

2πi  
 

 2𝑛          f(z) =  

 f(a)+(z-a) fˡ(a)+  fˡˡ(a)+…+   (f)𝑛(a)+…   

   2!  !  

      This is Taylor’s series of f(z)      

 if    z-a = h   

   h2  h𝑛  

         f(a+h)=f(a) + h fˡ(a)+  fˡˡ(a)+…+ n! (a)+… 2!       (f)𝑛       if   

 a=0, h=z   

   z2  z𝑛  𝑛  

 

           f(z)=f(0) + z fˡ(0)+ 2! fˡˡ(a)+…+ n!  

1   

(   f   )   𝑛   1   

𝑓   w dw   
  
cˡ  ) w−z (     

πi 2   

n   



1 

(f) (a)+…   

       This is a Maclaurin’s series of f(z)   
   

Laurent series   

      If f(z) is analytic in a ring R bounded by two concentric circles C1and C2 of radii r1 and r2,   

 (r1 > r2) with centre at a then for all z in R   P     f(z) = a0 + a1 (z-a)+ a2 (z − a)2+…+ b  + b + …   

 𝑓 w dw   C1      

            Where a𝑛 = 2πi C1 (w−a)𝑛+1    

𝑓 w dw1   

            and      b𝑛 = 2πi C2 (w−a)−𝑛+1   

Where cˡ is any curve in R encircling C𝟐    

      Proof: Consider cross cut PQ and f(z) is analytic in the region Rˡ bounded by PQ, z is any point in Rˡ.   

  𝑓 𝑤 𝑑𝑤  𝑓 w dw  𝑓 𝑤 𝑑𝑤  𝑓 w dw  

         f(z) =  [  
PQ (w−z) -  C2  (𝑤−𝑧) -  QP (w−z) +  C1  (𝑤−𝑧) ]   

2πi  
  𝑓 w dw  𝑓 w dw  

f(z) =  [ C1 (𝑤−𝑧)  -  C2 (𝑤−𝑧) ]   Equation 1             

2πi  
   

1   

(   z−a   )   

2   

(   z−a   )   2   

  

a.    Q    

C   2   

  
      

Rˡ   
    

C   l   
  
      

  



      Where C1 and C2 are described anticlockwise    

      Consider    

  (z−a   ) 𝑛  𝑓 w dw  

+…+ 2πi           (w−a)2 

    C1 (w−a)𝑛+1 +…   
  

        
  

          =  𝒏=𝟎(𝐳 − 𝐚)𝒏 a𝒏       Equation 2   
f w dw  

1  

          Where     an = 2πi  C1 (w−a)n+1   

 1  f w dw  

      

For C2, w-a < z-a    

    Consider       C2 (w−z)   

2πi  

   

      

      

1   

(   𝑤 − 𝑧   )   1   

1   (   𝑧 − 𝑎   )   

(   z−a   )   ∞   

𝑓   w dw   𝑓   w dw   𝑓   w dw   

  2 πi   
  
C   

  =   
2π i   

  
C 1   ( 𝑤 − 𝑎 ) 

  +   
2 π i  

  
C 1   

𝑛   𝑓   w dw   

=   
  
𝑛 =0   πi 2 

    C 𝑛 +1      



1 

       =   +    +…]   

 f w dw   1  f w dw  f w dw  

        C 2πi C2  (z−a) +  2πi  C2 (w−a)−1  +   

𝑐2 2πi (w−a)−3   

2πi  

       = ∑ b 𝐧     equation 3    Where       
f w dw  

  

           bn =
 
2πi  C2  w−a −n+1   

 

  Substituting equations 2 & 3 in 1, we get       f(z) =  𝐧=𝟎(𝐳 − 𝐚)𝐧 a𝐧 +  𝐧=𝟏 𝐳 − 𝐚 −𝐧 b𝐧    This is called the Laurent series of f(z)    

  

    The first part  𝐧=𝟎(𝐳 − 𝐚)𝐧a𝐧 is called the analytic part and the second part    
  

      𝐧=𝟏 𝐳 − 𝐚 −𝐧 b𝐧  is called the principal part. If the principal part is zero, the series reduces to the Taylor’s series   

Problems   

1) Expand log z by Taylor’s series about z = 1.   

fˡˡˡ(a)
3! (z − a)3+...+   

fnn
(
!
a)

 (z − a)n+…        

 a=1, f(1) = 0   

  Solution:     The given function is f(z) = log z    

        Taylor’s series is    

 fˡˡ(a)  

    f(z) = f(a) +  fˡ(a) (z-a) +  2! (z − a)2+  

  1   



    

1  

             fˡ(z) = z , fˡ(1) = 1,   

1  

             fˡˡ(z) = - z2 , fˡˡ(1) = -1,   

2  

           fˡˡˡ(z) = z3  , fˡˡˡ(1) = 2,          f iv(z) =  

−3!
z4 , f iv(1) = -3!   

      log z = (z-1) -  (𝐳 − 𝟏)𝟐+ 13 (𝐳 − 𝟏)𝟑- 14 (𝐳 − 𝟏)𝟒+…+ (−𝟏)𝐧−𝟏n(𝐳−𝟏)𝐧+…   
   

7𝑧−2  

  

2) Obtain all the Laurent series of the function    about z = -1   
𝑧+1 𝑧(𝑧−2) 7𝑧−2  

   Solution:        f(z) =   
𝑧+1 𝑧(𝑧−2)  

      put    z+1 = u , z = u-1           z-

2 = u-3   
   7z−2  7 u−1 −2  A  B  C  

          z+1 z(z−2) = u u−1 (u−3) = u + u−1 + u−3    
7u−9  

  



A = lim = -3   
u→0 u−1 (u−3) 7u−9  

B = lim   = 1   
u→1 u (u−3)  

7u−9 C 

= lim = 2 u→3 u−1 u  

       - 3 + 1 + 2 = - 3 - 1 − u −1 - 2 1 − u −1 u  u−1 

  u−3  u3  3  

   = - 3 - (1+u+ u2+ u3+… ) - (1+ u + u2 +…) u 3 9  

            = - 𝐮𝟑 - 𝟓𝟑 -(1 + 𝟑𝟐𝟐 )(z+1) -(1 + 𝟑𝟐𝟐 ) (𝐳 + 𝟏)𝟐−(1 + 𝟑𝟐𝟒 ) (𝐳 + 𝟏)𝟑+…   

   

3) Expand   is the region   

      (i) 0 <  z − 1 < 1   (ii) 1 <  z < 2   (iii) z > 2   

Solution:    

 (i)   =   -     

          z − 1  < 1   

2   

3   



 

(ii)  

1 1     -   = -  -     
   (z−2)   (z−1)   

 𝐳𝟐     −𝟏  𝐳 

         = 𝟐 (1+ 𝟐 + 𝟒 + 𝟖 +…) - 𝐳 ( 1 + 𝐳  𝐳𝟐     
2  

 (iii)   |z|>2,2<|Z|,  <1, z  

             
(z−2)  

 (z−1) ) z  

z  

   =    1   1− 2 −1 -  1    1− 1 −1  

       z  z  z  z  

    (1+  + …) -  z z z z z z  

n−1  

  -     =     -   

=   -     -     =   -   1  − z −  1   

              =   -   z (1+( - 1)  +  𝐳     − 𝟏   𝟐   +   𝐳   −   𝟏   𝟑    ⋯ )  + −     𝟏       
( 𝐳 − 𝟏 )   

1   

z   

2   

1   

2   
1−   

z   

2   

− 1   1   

z   
1−   

1   

z   

− 1   

+   ⋯   +   )   

 <   1 z   ,   z   ,  <2   1   < ,        <1   

z   

𝐳 𝟑   𝟏   𝟏   𝟏   



            =  n=1  

  𝟏  𝐧−𝟏-1)           (𝟐  

𝐳  

   
(z2−1) 4) Find the 

Laurent series expansion of the function  if 2< z <3.   
(z+2)(z+3)   

   Solution:           

   (z2−1)  

         f(z) =    
   (z+2)(z+3)   

3 8    = 1+  

-    
   (z+2)   (z+3)   

        

           

            =  1+ +…)    
  

z n   -   
  

n=1  z n     

  

  =  1  -   

  

   1 +  = 

  -   

  z 
  3   

 1+   =     
3   

z   

    1+   
2   

z   

− 1   

-   
    8   

3   

    1+   
z   

3   



            = 1+  𝐧=𝟏 𝐳𝐧 + 𝟑𝐧 )   

e2z  

5) Expand f(z) = (z−1)3 about z=1 as Laurent series. Also indicate the region of convergence of the series.   

e2z  

Solution:          
3   

f(z) =  
 
(z−1)  

       put z-1 =u, z= 1+u   
  

        =   =    (1+2u+   +…)   

        
  

         =   

   
z  

6) Express f(z) =  in a series of positive and negative powers of z-1.   
(z−1)(z−3) z  

   Solution:         f(z) =    
(z−1)(z−3)  

   z  A  B  

n−1 n−1   z n−1 n   

               1+3  =   n=1   +  8    n=1  n       

𝟖𝐳 𝐧 − 𝟏   

z   n   

−   𝟏   
𝐧   (−   

𝟐   𝐧 − 𝟏   

𝐞   
𝟐   (   +   +   ⋯   +   )   

e 2 z     

        = 

    
𝟏   𝟏   𝟐   

𝐳 − 𝟏   𝟑   𝐳 − 𝟏   𝟐   𝐳 − 𝟏        



              =    +      
   (z−1)(z−3)  (z−1)  (z−3)  

   z  1  

A = lim  = -    
z→1 (z−3) 2 z 3  

B = lim  =  z→3 (z−1)   2  

            
  

          =    

−  1   z−1  2 +…) -                 = - 3 (1 
  

  

          = 𝟐(𝐳−𝟏) -  𝟒 𝐧=𝟎  

          Contour Integration   

Singular points   

Singular point:  A point at which f(z) ceases to be analytic is called a singular point.   

Isolated singular point:  Suppose z=a is a singular point of a function f(z) and no other singular point of f(z) exists in a 

circle with centre at a, then z=a is said to be an isolated singular point.   

f(z) =    -     =     -    

  1   

z−1   -     2(z−1)     
  

  2   

z−1 ) − 1   -   

  4     2   

𝟏   𝟑   
  

  2(z−1)   
  -     

3   

  4   
  (1+       2   

  +     
(z−1)   3   

  2   2   

𝐳 − 𝟏   

  𝟐   

𝐧       



    In such a case f(z) can be expanded by Laurent series around z=a   

Pole:  If the principal part of f(z) consists of a finite number of terms b1, b2... bn    bn≠ 

0 then (z-a) is said to be a pole of order n.   

    if n=1, z=a is said to be a simple pole.(note: if f(z) has a pole at z=a, then     
   

Removable singularity:  If a single valued function f(z) is not defined at z=a and  f z exists, then 

z=a is said to be a  sin z removable singularity f(z) =  , z=0 is a removable  

singularity.  z  

Essential singularity: If the principal part of f(z) consists of an infinite number of terms, then z=a is said to be an essential 

singularity   

   e z =    z=0 is an essential singularity.   

Singularity at infinity: Suppose we substitute z= 1 , f(1 ) = F(w) (say), then the singularity at w=0 of F(w) is called the w 

   w  

 singularity at infinity. ez has an 

essential singularity at z =∞, since e z has an essential singularity at z=0.   

Entire function: A function which is analytic everywhere in the finite plane is called an entire function or integral function.   

    Examples: ez , sin z, cos z are entire functions.   

Note: An entire function can be represented by a Taylor series which has an infinite radius of convergence. Conversely, if a 

power series has an infinite radius of convergence, it represents an entire function.   

  



Liouville’s theorem: If f(z) is analytic and bounded, i.e f(z) < m for some constant m in the entire complex plane, then f(z) is 

a constant.   

Residue: We know that  c (z−adz ) = 2πi where C is z − a  = R and  c (z−adz)  = 0, if n ≠ -1.   

 c   f z dz = 2πi b1where C is the circle with centre at a and f(z) is expanded in Laurent series. b1is said  

to be the residue of f(z) at z=a [ the coefficient of  in the principal part of the Laurent series of 

f(z)].   

Cauchy’s Residue Theorem:   

Statement: If f(z) is an analytic function inside and on a closed curve ‘C’ except at a finite number of points, inside C, then   

   c f z dz = 2πi  ( sum of the residues at the points where f(z) is not analytic and which lie inside C).   

 If the poles of order one and n then the residues are      

  d    dn−1  nf(z)]    

  limz→a   dz [(z−a) f(z)], lim dzn−1!n−1[ (z−a) z→a eiz 1) Find the poles of the function and the  

corresponding residues at each pole, f(z) = (z2+1)   

eiz  

  Solution:     The given function is f(z) = (z2+1) , f(z) is not analytic at z = i and z = -i    

      Therefore, the poles of f(z) are i and -i, both are simple poles       If 

z=a is a simple pole, then the residue at z= a is lim(z−a)f z z→a   

          Res z=i= lim(z−i)f z = lim(z−i)    eiz  𝐢  −𝟏   

 = -  𝐞  



   z→iz→i  (z+i)(z−i)   𝟐  

 eiz  𝐢      

       Res z= -i= lim(z+i)f z = lim(z+i)   =   𝐞. z→−iz→−i  (z−i)(z+i)   𝟐  

2𝑧  

2) Find the poles of the function and the corresponding residues at each pole, f(z) =   𝜋 .   

  
 6  

   2𝑧  𝜋  

 Solution:     The given function is f(z) =   𝜋  , z-   is a double pole   
      6  

 6  
   2  𝜋  

 

   6𝜋 lim𝜋   dzd 𝑧(z−𝜋 6)2   

          Res at z =  =   

  
  z→ 6    6  

𝝅  𝝅  𝟏   𝟑   
         = 𝒍𝒊𝒎  2 sinz cosz =2 Sin  Cos =𝟐   =          

  𝐳→𝝅   
𝟔  𝟔  

 
𝟐   𝟐   𝟐  

 𝟔  

  z sinz  

3) Find the residue of (z−π)3 at z = π.   

z sinz  

 Solution:        The given function is f(z) = (z−π)3 , z = π is a pole of order 3        

   If z = a is a pole of order 3, then residue at z = a is   

𝟑   

  



  

[(z − a)  

           limz→an−1!  dz 
dn−1n−1  nf(z)]       (a = π )   

1 d2  

       Res at z = π = z→πlim dz2 (z sinz)   

          = lim    (z 

cosz + sinz) z→π  dz   lim  (cosz 

– z sinz + cosz ) = -1.   

(cosπz2+sinπz2)dz  

4) Evaluate  c  z−1 2(z−2)  

  

Solution: The given function is f(z) =   ,  z = 1 is a double pole 

and z = 2 is a simple pole, both lie inside C. z−1  

       Res at z = 1 = lim d [ z − 1 2f(z)] = lim  d (cosπz2+sinπz2)   
  

          =  

lim  =  

2   (z−2)   

  

  d   

            = 

z→π    

  where C is  z    3.  =   

2   2   

  

z→1 dzz→1 dz     (z−2)   

2 +2 zcosπz 2 )− cosπz 2 2   

3   z→1   

z−2   2   

z→2   

(   cosπz   2   +   sinπz   2   )   

z−1   2   
   1  =   



       Res at z = 2 = lim z −  

2 f(z) = lim z→2  

       According to residue theorem    

(cosπz2+sinπz2)dz  

           = 2 𝛑i(sum of the residues) = 2 𝛑i(3+1) =8 𝛑𝐢 c  z−1  

2(z−2)  

   
    z secz dz  2+9 y2=9   

5) Evaluate  c  1−𝑧2  where C is  4 x  

z secz Solution:  

The given function is f(z) = 1−𝑧2     z=1 and -1 are simple poles and 4 x2+9 y2=9 is a ellipse whose semi minor and 

major axes are 1 and  .1 and -1 both  

 lie inside C.    y z secz    sec1   

       Res at z=1 = lim (z-1)f(z) = lim -    = -      
z→1 z→1 z+1 2 z secz  sec1   

        Res at z= - 1 = lim (z+1)f(z) = lim -    = -      
   z→−1  z→−1  z−1  2  

z secz dz     c 1−𝑧2 = 2 πi (sum of the residues, by residue  

theorem) x   

           = 2 πi  (-sec 1) = - 2 𝛑i ( sec 1)   
   

ezdz  

(0   ,1)    

0   
    Z= - 1 

    Z=1    
(   
3   

2   
,0)    



6) Evaluate  c  (z+2)(z−1) Where C is the circle z − 1= 1.   

ezdz  

Solution:  The given function is f(z) =  c (z+2)(z−1) , z =-2 and 1 are simple poles , z=1 

lies inside C and z =-2 lies outside C.   

ez   e       Res at z=1 = lim 

(z1)f(z) = lim    =    z→1  z→1  z+2  3   

         𝐜 𝐟(𝐳) dz = 2 𝛑i    

       (sum of residues at the poles which lie inside C)   
 

 𝐞𝐳𝐝𝐳 2 𝛑i𝐞   

         𝐜 (𝐳+𝟐)(𝐳−𝟏) =   𝟑     

       Evaluation of real integrals in unit circle    

   

2π  

We can evaluate the integrals of the type  0 f( cos θ, sin θ)dθ where f(cos θ, sin θ) is a rational function, using residue 

theorem.   

 iθ, we can write cos θ   =  

 eiθ+e−iθ       we know that if z = e  

2  

 1   eiθ−e−iθ           cos θ =   (z+  ) and sin θ =    
   z  2i  

 1      

(1   ,0)    

z−1   =   
  1 

    



sin θ =  (z-  )  2i z  

        
  i 

eiθ  

dθ = 

dz 

and 

dθ =  
 

dz    

iz  

    By this substitution we can change the integral into a function of z.   

          We know that  c f(z)dz = 2πi (sum of the integrals)          We  

 

take C is z =1, then θ varies from 0 to 2π   

2π  

0 f(cosθ, sinθ)dθ  =  c g(z)dz   where C is z =1   

1 1  1  dz       g(z) = f [ 2 (z+  ) ,  (z-  ) ]    z 2i  z iz  

          We can evaluate using residue theorem   

Problems   

   2π  dθ   2π  



   1) Show that  0  a+bsinθ = a2−b2 , a>b>0 using residue theorem.   

   Solution:     Consider C = z =1, z = eiθ   

 1     1           cos θ =   (z+  ) , sin θ =  (z-  )    
   z  2i  z  

   2π  dθ   dz   

    

              0  a+bsinθ =  c iz[a+2b i(z− 1z  )]    

2   

          f(z) = [ bz2+2aiz−b ]   

2 dz  

            c f(z)dz =  c bz2+2aiz−bdz         

    bz2 + 2aiz −b = b(z-α)(z-β)   

2ai     
   where     (α+β) = -   , αβ = -1   

  −ai−i a2−b2        

    α = and  β = b  b  

  α <1 and β >1    α  lies in C      c f(z) dz= 2π i Res Z = α    

2   

          Res Z = α = lim (Z -α ) f(z) = lim     

   z→α  z→α b(z−β)   

b   

− ai+i a 2 − b 2   



            =    

b(α−β)   
   

            

           

            

   𝟐𝛑  

              𝟎  𝟐   
   

 2π  dθ   

 2) Evaluate  0  (6−3cosθ)2 using residue theorem   

 2π  dθ  

 Solution:         0  (6−3cosθ)2      

   Substitute z =eiθ   

 1     1           cos θ =    (z+  ) , sin θ =  (z-  )  z 

   2i  z  

            dz = i eiθdθ  and dθ = 
dz     

iz  

   2π  dθ   dz   4zdz   

  

  



  

               0  (6−3cosθ)2 =  c 

      The poles are α and β where α = 2 - 3 and β = 2 + 3 and both are double poles, among which α lies inside C.   

d   2f(z) ]      

    Res at z = α = lim    [(Z −α) z→α dz  

   d   z   α + β)   

            = z→limα dz[(Z −β)2 ] = (α − β)    

        
           (α + β) = 4, α – β = -2 3       Res at z= α =  =    

  4zdz 𝟒𝛑  

            c 9 i(z 2 −4z+1) 2  = 9i  2πi  6 3   = 𝟐𝟕 𝟑    

   2π  dθ   

 3) Evaluate  0    (a+bcosθ)2 , a>b>0 using residue theorem   

   0 2π  dθ        

 

   2π  dθ   4zdz   

         0 (a+bcosθ)2 =  c i(2az+bz2+b)2       The poles are α and β, both are double poles   

   −a+ a2−b2  −a− a2−b2  

iz[6− 

 

(   z+ 1z  

)]2 

Solution:      

(a+bcosθ)2  
  put     z = eiθ,   

dθ 
dz =dθ   

(z+ 1  )  izz  

 

dz = eiθ 

cos θ =   

  =   
  
c      



       Where    α = and  β  

= b b  

      a lies inside C   

   d   z   

 

         Residue at z = α = z→limα dz [b2(Z −β)2 ]    

1(α + β)   

            = - (  )   

            
 2π  dθ   

           0  (a+bcosθ)2 = 2πi (Res z = α  by residue theorem)   

   2πia4  𝟐𝛑a  

             =   3  =  𝟑    

4i(a2−b2)(𝐚𝟐−𝐛𝟐)𝟐  

   

Contour integration when the poles lie on imaginary axis   

f(x)   

    We can evaluate integrals of the type  

 = h(x), using residue theorem. g(x)  

2   
3     
2   

b( α − β )   

1 − 2 ab 3   a   

=   -   b (   b8(a 2 − b 2 ) 3     )  =  4( a 2 − b 2 )     

    

    



 Consider  c h(z) dz when the poles of h(z) lie on imaginary axis. We take positive imaginary axis. Integration is taken over the 

semicircle and the line – R to R. The poles lie on upper half plane. If the poles lie on real axis   

R       c h(z) dz  = −R h 

z  dz + r h(z) dz    

  We know that by residue theorem  c h(z) dz  = 2πi (sum of the residues of h(z) at its poles which lie on upper half 

plane)   
R  

         −R h z  dz + r h(z) dz  = i (sum of the residues )   

    In the limiting case R → ∞ we get    

∞  

         ∞ h x dx ( if  r h(z) dz = 0)   

          -R   R   

Problems:   

∞ dx  1) 

Evaluate by contour integration      
dz   

Solution: Consider  c  1+z2 where C is the contour consisting of semicircle ┌ and the line (diameter) from –R to 

R.   

r    



   c       dz   dz   dz         

           r  

   ∞  dx   dz   

            =  c      

 -R   R         The poles of f(z) are i , i lie on upper half plane.  

 

 Solution:      ∞ f x dx   

+  r f z dz     [ r f z dz  = 0]            −R f z dz 

  
   Res at z=i=    ( z - i) f(z) =  lim    =   z  →   i   z  →   i    

dz              c  πi   

( residue at z=i)    

              =     

  ∞  dx    ∞   dx    

            [  f(x) is even]    
π    

              =        
    1+ x     z 1+     

  ∞       

2)   Evaluate      using residue theorem.    

    
1+   z   2   −   R   1+   z   2   

R   

    =     +   
  
r   

dz    

=  0    

1+   z   2   
    

┌    
    

∞  

  

R   

=   



        =  c f Z dz               f 𝑧 dz =  c f Z dz    

      The poles of f(z) =  are i, -i, 2i,-2i.   

       All are simple poles i and 2i lie on upper half plane.   

   Res at z=i= lim (z-i)f(z) z → i  

   𝑧2   𝟏   

 

             = z lim→ i (i+z )(4+z2)= - 𝟔𝐢    

          Res at  

z=2i = lim (z- 

2i)f(z) z → 2i  

   𝑧2   4   𝟏   

 

    = z lim→ 2i (𝑧+2𝑖)(1+z2)= -   = 𝟑𝒊    According to residue theorem      c f Z dz  

2 (sum of residues)   

 
  𝟏   𝟏   π   

             = 2  (-   +   ) =    
 𝟔𝐢  𝟑𝒊  𝟑    

   π   

                 = 𝟑   

∞ x dx   

∞   

  

        
−   ∞   

𝑧   2       

∞       

∞  



3) Evaluate   using residue theorem.   

 ∞ Solution:          ∞ f x dx   
R  

          = −R f z dz +  r f z dz     [ r f z dz  = 0]   

          =  c f z dz    
R  

            −R f z dz =  c f z dz    
   

      The poles are  , e 2n+1 π𝑖/6 where n=0,1,2,3,4,5   
   

 
   πi   πi   

         Res at z → e 6 = lim (z- e  6 )f(z)                               form   

 πi z →e 6  πi   

z2(z− e 6 )  

            = lim         
   πi   

   z →e 6  πi   

            = lim           
πi   

   z →e 6  πi   

sin   (2n+1)   π   

6   

6   6   

[ - cos 1= π isin + π    = e πi   = cos (2n+1) π + isin  2 n+1 π    

  (−1) =     +  i      =   e  n+1  2 π 𝑖 / 6      
  πi    πi  3   5 πi    

When n = 0, 1, 2 i.e ,  e  6   ,  e  ,  e   lie on  u pper half plane.    

┌    
    

-   R    R    

  



2 

− 

           = lim         

πi z →eπi 6  

  −3πi   1   π   π   𝐢   

            =     =  e 6 = (cos  -i sin ) = -    
   2  2  𝟔    

6e  

   
   3πi   πi   

         Res at z → e   =    (z- e  2 )f(z)                      form            
3πi   

  

z2(z− e 2 )  

            = lim         
   πi   

   z →e 2  πi   

            = lim           
πi   

   z →e 2 πi   

            = lim      
πi   

   z →e 32π  1   3π   3π   𝐢   

1   

            =  e =  (c6o s   2  -i sin ) =     

      𝟔  

            
   5πi  5πi   

  

2   πi    
3   6   

e  6   1   

  

z  →e    πi    

  

  



            Res at z → e =  (z- e)f(z)                                form   
5πi   

z →e  

   
5πi   

z2(z− e 6 )  

             =    

5πi z →e  

5πi   

 

→e  

   15π   𝐢   

             =   = (cos   
5πi   

 

z →e  

   

      According to residue theorem    

2πi (sum of residues)            c f Z dz =  

            = 2 (  -  -  ) =     

  𝟔  𝟔  𝟔  𝟑  

2 − z 2   e    6 )   

          

    

  =   z  

lim   
πi    5   
6   

    (3   z   

z   6   5   
       

lim   
    1       

6   

    e   

πi    − 15   
6   

    1   

6   

15   π    

6   

    

π    

π    

   



 𝐢 𝐢   𝐢    

   π   

   ∞ xdx   

               ∞ = 𝟑   

   ∞ xdx   

               =    
𝟔  

    

  -i sin ) = -     

 𝟔     

  



=     c  f z dz      

R   
  

    

 ∞  dx   

 4) Evaluate   using residue theorem.   

∞  

Solution:      ∞ f x dx   
  

R  

          =  −R f z dz +  r f z dz     [ r f z dz  = 0]   

         

          −R f z dz =  c f z dz     

    The function is f(z) = -R   R   

       The poles are i and –i of order 3, z=i lies on upper half plan and inside the semicircle    

   Res at z=i = lim 1 𝑑𝑧𝑑22  [(𝑧 − 𝑖)3𝑓(𝑧)] z → i   

   1 𝑑2   1   

           = lim 𝑑𝑧2(  )   

   

  

         

       

┌    
    

z  →   2 i    

  
          =   

lim       z  
→   i    

  𝟑     

=     =   𝐢     

    
      



   𝟏𝟔  

   According to residue theorem             c f Z dz  =  2

  (residue at z = i)   

   3   𝟑π  

          = 2πi    =      
   16𝑖  𝟖  

   ∞  𝐝𝐱   𝟑𝝅  

              
𝟑 = 𝟖   

Evaluation of the integrals of the type   

   ∞  imxf(x) dx   

       ∞ e Jordan’s 

Lemma   

If f(z) is a function of z satisfying the following properties:   

(i) f(z) is analytic in upper half plane except at a finite number of poles   

(ii) f(z) → 0 uniformly as z → ∞ with 0 ≤ arg z ≤ π   

(iii) a is a positive integer, then   

          r  ∞  c f z eiazdz = 0   
→  

      Where C is a semicircle with radius r and centre at the origin   

∞  



   ∞  imxf(x) dx =  c eimxf z dz = 2πi   

         ∞ e  

         (sum of the residues which lie on upper half plane)   

   

Problems   

1) Evaluate    using residue theorem.   

=  𝑟 eimxf z dz +  RR eimxf(z) dz    Solution:  c f z eimzdz 

=>  𝑟 eimxf z dz  = 0 (Jordan’s Lemma)   

   ∞  imxf(x) dx =  c eimxf z dz = 2πi   -R   R   

        ∞ e  

   
   

         (sum of the residues which lie on upper half plane)   

𝑒𝑖𝑧𝑑𝑧 

  

     c (𝑧2+16)(𝑧2+9)  z=3i , -3i, 4i and -4i are simple poles. 3i and 4i lie on upper half 

plane.   

R   → ∞ 
  



       Res at z =  

3i = lim (z- 

3i)f(z)  z → 3i  
𝑒𝑖𝑧 

  

            = z lim→ 3i (𝑧
2+16)(𝑧+3𝑖)   

  𝑒−3  −𝒊𝒆−𝟑            =  =      
   (−9+16)(6𝑖)  𝟒𝟐  

        Res at z =  

4i = lim (z- 

4i)f(z)  z → 4i  
𝑒𝑖𝑧  

  

            = z lim→ 4i (𝑧+4𝑖)(𝑧2+9)   

  𝑒−4  𝒊𝒆−𝟒            =  =     
   (9−16)(8𝑖)  𝟓𝟔  

   𝑒𝑖𝑧𝑑𝑧  −𝑖  𝑖  π(𝟒𝒆−𝟑−𝟑𝒆−𝟒)  

           c  (𝑧2+16)(𝑧2+9) = 2πi (  + 56𝑒4)  =  𝟖𝟒      

 
   

𝑒 𝑖𝑧 𝑑𝑧   𝑐𝑜𝑠𝑧   𝑑𝑧   

R.P      c =       c  

        



∞ xsinx dx   

2) Evaluate      

Solution: :  c f z eimzdz =  r eimxf z dz + 

 
R

R eimxf(z) dz   

         =>  r eimxf z dz  = 0   

z  

            f(z) = (a2+𝑧2)   

 -R   R  
         z = ai and –ai are simple poles.     

        Res at z =  

ai = lim (zai)f(z)  

z → ai  
zeiz  

         

  

R  → ∞ 
  



            =  
  

e−a −𝐚              c 

   −𝐚   

         i 𝐞  

𝟐  −𝐚              0
  

    =     

  z  ai  
  

  − 𝒂   

  =         
  𝟐   

zsinx dz    =   

∞  xsinx dx    

    



Unit -3  

LAPLACE TRANSFORMS  

LAPLACE TRANSFORM  

Definition:  

Let f(t) be a function of t, defined    t≥0. If the integral                          

ꝏ −𝒔𝒕 f(t) dt exists, then it is called the  Laplace Transform of   

  𝒆 ׬𝟎  

f(t ) and it is denoted by L{f(t)} or f(s).  

Here s is parameter, real or complex.L is called Laplace 

Transform operator.  



  

Def: Piece-wise Continuous Function:  

Afunction is said to be  piece-wise continuous (or)  Sectionally 

Continuous) over the closed interval [a,b] if it is defined on that interval 
and is such that the interval can be divided into a finite number of sub 
intervals, in each of which f(t) is  continuous and both right and left 
hand limits at every end point if the sub intervals.  

Def:Functions of Exponential Order:  

A function f(t) is said to be of exponential order as t →ꝏ if   

 
  

If  for  a given positive integer T,  a positive number M   

  Such that 𝒇 𝒕  < M𝒆𝒂𝒕   𝑻,  

L{f(t)} =    𝟎   ׬   

ꝏ   𝒆   
−   𝒔𝒕   

f(t)    dt   



Sufficient Conditions for existence  of Laplace Transform are 1)  

 f(t)  is Piece-wise Continuous Function in [a, b] where  a>0, 2)     

f(t)  is of Exponential Order function.  

Linear Property:  

Theorem: If c₁, c₂ are constants and f₁, f₂ are functions of t, then 

L[c₁ f₁(t) + c₂ f₂(t)]=c₁ L[f₁(t)]+ c₂ L[f₂(t)]  

Proof: The definition of Laplace Transform is   

  L[f(t)] )]=  f(t) dt -----(1)  

By definition   

L[c₁ f₁(t) + c₂ f₂(t)]=  [c₁ f₁(t)+ c₂ f₂(t)] dt  

t) dt  



=c₁ L[f₁(t)] +c₂ L[f(t)]  

Laplace Transform   (L.T)  of some Standard Functions:  

𝟏  

1)Show that   L{1}=    
𝒔  

Solution:   By definition of  L.T   L[f(t)]= f(t) dt----------(1)    

  Put f(t)=1   o.b.s  L[1] = .1. dt  

−𝟏 = =       (0-1) =  

1/s  

 −𝒔  𝒔 o  

2) L[c] = L[c.1] =c. L[1]= c.(1/s)  = c/s  

3) Show that   L[   

Solution:   By definition of  L.T ,     

L[f(t 

∞   

𝒆 − 𝒔 𝒕   



Put f(t) = 𝒆𝒂𝒕 o.b.s in (1)                    L[ 

Note:  L[   

  𝒔  𝒂  

4) Show that  L[ Cos at]=   and     L[ Sin at] = =   

Solution:       W.k.t    𝒆𝒊𝜽 = cos 𝜽 + i sin𝜽  

𝒆𝒊𝒂𝒕= cos at + i sin at  

L[𝒆𝒊𝒂𝒕] = L[cos at + i sin at ]  

L[cos at + i sin at]= L[𝒆𝒊𝒂𝒕]  

 
  

Equte real and imaginary parts we get  

  𝒔  𝒂  

  L[ Cos at]=   and  L[ Sin at] = =   

5) Find L [ Sin hat ]  



 Solution: L [ Sin hat ] = L [ ] = ½ [ L {𝒆𝒂𝒕} –L {𝒆−𝒂𝒕} ]   
  

= ½ [   

 
  

6) Find L [ Cos hat ]  

   𝒂𝒕  𝒂𝒕  

Solution: L [ Cos hat ] = L [] = ½ [ L {𝒆𝒂𝒕} +L {𝒆−𝒂𝒕} ]   

 
  

𝒔  

  = ½ [  ]  =  =    

7) Show  that    (i) )   L [𝒕𝒏] = 𝜌(n+1)/𝒔𝒏+𝟏,    n>-1  

(ii)     L [𝒕𝒏] = n!/𝒔𝒏+𝟏,    n is +ve integer  



Solution: :  By definition of  L.T    

L[f(t)] =  f(t) dt--------(1)   

  L [ dt  put st =x   i.e t =  x/s  

    dt   

 dx  

(n+1) ,      for   (n+1) >0  

L [𝒕𝒏]  = 𝜌(n+1)/𝒔𝒏+𝟏,    n>-1  

L [𝒕𝒏]= n!/𝒔𝒏+𝟏,    n is +ve integer       FORMULAE  

𝟏  

1) L{1}=    

𝒔  

𝒄  

2) L{c}=    

𝒔  

3) L [  ,   L[𝒆 −𝒂𝒕   ] = 𝒔+ 𝟏 𝒂   



𝒔  

4) L[ Cos at]=   

𝒂  

5) L[ Sin at] =  

6) L[ Sin hat] = 

7) L[ Cos hat]=    

8) L(tn)=𝜌(n+1)/𝒔𝒏+𝟏,    n>-1  

9) L(tn)= n!/𝒔𝒏+𝟏,    n is +ve integer  

PROBLEMS  

1.Find the Laplace Transformation (L.T) of  𝒕𝟐 + 𝟐𝒕 +3  

Solution: L [𝒕𝟐 + 𝟐𝒕 +3] = L[𝒕𝟐] + 𝟐𝑳[𝒕] + 𝑳[3]  

   𝟐 𝟏  𝟑  

  

  



2. Find  

  

3. Find L[ 

Solution:      L[𝒆𝟑𝒕+ 3𝒆−𝟐𝒕]=   L[𝒆𝟑𝒕] +  

3L[𝒆−𝟐𝒕]   

4. Find   L[Sin 3t +   

Solution:   L[Sin 3t +𝐶𝑜𝑠𝟐 𝟐𝒕]=L[Sin 3t]  +  L[𝐶𝑜𝑠𝟐 𝟐𝒕]  

   𝟑  𝟏  𝑪𝒐𝒔 𝟒𝒕  

]   

{ L[1] + L[Cos 4t] }  

 
  

5.Find L[f(t)] if      f(t)= 0,    0< 𝒕 < 𝟐  

= 3,    t> 𝟐  

Solution: By definition of L.T   

L[   

𝟓   

Solution:  L [ 

  



ꝏ −𝒔𝒕 f(t) dt  

  L[f(t)]= 𝟎׬  𝒆  

  ꝏ −𝒔𝒕 f(t) dt  

 f(t)  dt  +  𝟐׬  𝒆  

 

  2  𝒆 = 0  

𝒆−𝟐𝒔  

 =    3    

𝒔  

First shifting Theorem (F.S.T):  

If L[f(t)]=f (s) then L[𝒆𝒂𝒕 f(t)]= f(s-a)  

Proof :   By definition of  L.T   

ꝏ   

=   
   𝟐   ׬    +  0         

𝒆   
−   𝒔𝒕   

.3   .     dt   

∞   

=   
  3 

   
  
𝒆   

−   𝒔𝒕   

−   𝒔   



L[f(t)]=  f(t) dt = f(s)--------(1)  

L[𝒆𝒂𝒕f(t)]=  f(t)dt    

 f(t) dt Put   s-a=p  f(t)   

dt  

= f(p)  =  f(s-a)  

Note:   L[𝒆−𝒂𝒕 f(t)] = f(s+a)  

Problems:  

1) Find  L[t³ 𝒆−𝟑𝒕 ]  

Solution :  let  f(t) =  t³    

L[ f(t)] = L[ t³]  =   

By F.S.T , L[𝒆−𝒂𝒕 f(t)] = f(s+a)                   a=3 L[𝒆−𝟑𝒕 

f(t)] = f(s+3)  

L[𝒆−𝟑𝒕 t³]  =     



2) Find    L  [ 𝒆−𝒕(3 sin 2t – 5 cosh 2t)]  

Solution : Let f(t) = (3 sin 2t – 5 cosh 2t) L 

[f(t)] = L[(3 sin 2t – 5 cosh 2t)]  

 
  

By F.S.T ,   L[𝒆−𝒂𝒕 f(t)] = f(s+a)                   a=1   

L[𝒆−𝟏𝒕 f(t)] = f(s+1)  

L  [ 𝒆−𝒕(3 sin 2t – 5 cosh 2t)]   

Second Shifting Theorem (S.S.T)  

STATEMENT:- If L[f(t)]=f(s) and  g(t)=f(t-a),  t>a  

= 0,      t<a         then L{g(t)}=𝒆−𝒂𝒔 f(s)  

PROOF:- By definition of  L.T   

  



 L[f(t)]=  f(t) dt = f(s)--------(1)  

L[g(t)]=  g(t) dt =  g(t) 

dt  g(t) dt  

-a) dt  put    t-a=x  f(x) dx  =  0  + 

   t=a+x  
 

   f(x) dx   

= 𝒆−𝒂𝒔 f(s)  

Example :  

dt=dx,  (x=0 to ∞)  

𝟐𝝅  

  Find Laplace Transform of    g( t ) =  )  ,  if t >   

𝟑 𝟐𝝅  

= 0,                   if t <   

𝟑  
𝟐𝝅  

Solution:  Let  f ( t ) = cos t    ,          a =    

𝟑  



f ( t-a ) = cos ( t-a ) f ( t  

  

L [f(t)] = L 

[ 

By S.S.T     L [g(t)] = 𝒆−𝒂𝒔 f(s)  

 
  

Change of scale property:  

If  L[f(t)] = f(s)  then  L [f(at)] =   

NOTE:   L [f(  )] = a f(as)  

- 

  



  Example: If   L [f(t)] =  then find L [f(3t)]  

Solution:        Given   

L[f(t)] = by Change of 

scale property, L [f(at)] 

=  

 
  

Laplace transformof the derivative of f(t)  

 If f(t)is continousfor all t  0 and f (t)is piecewisecontinous,   then 

L{f (t)}exists,providedlim e stf(t) 0 and  

L{f (t)} sL{f(t)}-f(0) sf(s)-f(0)  

L{f n (t)} snf(s)-sn-1f(0)-sn-2f (0)....fn-1(0)  

  

L [f(3t)] =    



Example Derivelaplace transformof sin at  

Let f(t) sinat thenf’(t)  =   a cosat and f’’( t )  -a2sinat  

Also f(0) = 0, f’ (0) = a from this also f”(0) = 0, also from this  

By derivative formula,   

L[f’’(t)] = s2 L[f(t)] – s f(0) – f’(0)-------(1)  

L{-a2sinat} s2 L(sin at)–a  

(−𝑎2) L(Sin at) +  a   = s2 L(sin at) a =   

(s2 + 𝑎2) L(sin at)  

 
  

Laplace transform of the integration of f(t)  

If L[f(t)]=f(s)  then  L[   

Example:  



Find L.T. of   Solution:   

Let 

f(t) = 

sin at  

 = f(s)  

L[ 

  

Multiplication by t :  

If L[f(t)]=f(s)  then   L[t f(t)] = - 

L[𝒕𝟐 f(t)] 

=  

L[𝒕𝒏 f(t)] =   

L[f(t)] = L[sin at] =  

  

𝑎   

𝑠   
2   +   𝑎   

2   

  

  



Example : Find L[t 𝒔𝒊𝒏𝟐t]  

Solution:  Let  f(t) = 𝒔𝒊𝒏𝟐𝒕  

let  L[f(t)] = L[ 

  

By theorem  L[t f(t)]  

] (3s²+4)  Division 

by t:  

  

  (  L[1]  –   L[ Cos 2t] ) =  

  

( s³+4s )   



, provided     exists.   If L[f(t)]=f(s)  then  L[
 𝟑𝒕  𝟒𝒕  

Problems: (1) Find    

L[   

Solution:   Let f(t) = 𝒆−𝟑𝒕 − 𝒆−𝟒𝒕
  

L[f(t)] = L[  w.k.t 

,   L[ 

   𝟑𝒕  𝟒𝒕  

L[  

∞  

=  log (s+3) - log (s+4)  

∞s          ∞  

𝒔+𝟑  
𝟑  

  =  log (  )     =    log   𝒔 ( 𝟏 + 𝒔 
)  

𝟒  

 𝑺+𝟒 s                               s𝒔 ( 𝟏 + 𝒔 )    

 = log 1 - log (  )   

=  0 - log ( )      = log ( )   

(2). Find   L.T of      

  

  ,   



Solution:  Let f(t) = cos at – cos bt  

L[f(t)] = L[cos at – cos bt]  

 L[    

 

∞  

 1  2 + 𝑎2) – log (𝑠2 + 𝑏2)]  

=  [ log (𝑠  

2  

  ∞  s  

1 = 𝑠𝑠 2 ² + +𝑎 𝑏 ² 2  

) log ( 2  

s  

  

f(s) =    

w.k.t ,   L[   



Evaluation of integrals by Laplace transforms:  

   𝑡  2𝑡  

(1). Using L.T. Evaluate   ] dt  

Solution:   First we will find   L[ let  

f(t) = 𝑒−𝑡 − 𝑒−2𝑡  

 = log (s+1)  - log (s+2)         = log (

   

s                            s  

∞  

 =   log     

s  

∞∞   

) 
  

L[f(t)] = L[ 𝑒 
− 𝑡   − 

  𝑒 
− 2 𝑡 ]   

  

w.k.t ,   L[ 
  ,   

L[   



= log 1 - log ( )   

)      = log ( 

)   

therefore,   L [ 

The definition of Laplace Transform is   

L[f(t  f(t) dt  

  −𝑡  −2𝑡  

  L[ ]     =      ] dt =   log ( )      

Put  s=0 on both sides  

] dt  =   log ( )    = log 2   

2.  Using LT find       

 Solution: First we find L[  ]   

:  Let f(t) = cos at – cos bt  

L[f(t)] = L [cos at – cos bt] f(s) 

=   

- 
  log (  

]  = log (    

𝑠   (   1   +   
1   
𝑠   )   

𝑠   (   1   +   
2   
𝑠   )   

)  dt   



w.k.t ,    

L [ 

L 

[   

  

 𝟏  𝟐 +𝒂𝟐) – log (𝒔𝟐 +𝒃𝟐)]   

  

  

  

By definition of LT,   

Put s=0     o.b.s  

=  =  log (3/5)              Note: put a=5, b=3 in above problem  

Laplace Transform of Periodic Function:  

Definition : A function f(t) is said to be periodic with period T , if 

 𝑡 , f(t+T) = f(t) where T is positive constant.  

The least value of T > 0 is called the periodic function of f(t).  

  

=       [  log  ( 𝒔   

𝟐   

∞   s   

𝟏   𝒔 ²+ 𝒂 ²   

=     𝟐   log ( 𝒔 𝟐 + 𝒃 𝟐   )  s   

)   =  log (b/a )   



Example: sin t   = sin (2𝜋 + 𝑡) = sin 4𝜋 + 𝑡  =−−−− − Here 

sint is periodic  function with period 2𝜋.  

Formula :- If f(t) is periodic function with period T 𝑒𝑛  

L[f(t)] =  f(t) dt  

Problem :  Find the L. T of the function f(t) = 𝑒𝑡, 0< 𝑡 <5 and f(t)=f(t+5)  

Solution : Here T=5   L[f(t)=  

The unit step function or Heaviside’s unit function :  

It is denoted by   u(t-a)  or  H(t-a)  and is defined as   H(t-a) =  0,  t<a  

=1,     t>a L.T. 

of unit step function:  

𝒆−𝒂𝒔  

Prove that   L[H(t-a)] =   

𝒔  



Solution :  L[H(t- a)] =  

-a) dt  

Inverse Laplace Transform :  

Definition : If  f(s)  is the Laplace Transform of f(t)  then  f(t)  is called the inverse 

Laplace Transform of f(s)  and is denoted by  𝐿−1 𝑓 𝑠 . i.e.,  f(t) =   

 𝐿−1 𝑓 𝑠   

𝐿−1 is called inverse Laplace Transform operator, but not reciprocal.  

  Example : If  L [ then   

Linear Property :  

If f₁(s)  and f₂(s) are L.T. of f₁(t)  and f₂(t) respectively then    

- a) dt   

- a) dt  

  .  dt   



𝐿−1[c₁ f₁(s) + c₂ f₂(s)]  =  c₁ 𝐿−1[f₁(s) ]  +  c₂ 𝐿−1[f₂(s) ]  where c₁ 

, c₂ constants.  

Standard Formulae :  

𝟏  

(1) L  

[1] =   

𝒔  

(4) L [sin at] =  sin at  

(5) L [ Cos at]=  

5) L [ Sin hat] = at  

6) L [ Cos hat]=  ] = cosh at  

𝒏  

  

𝒔   

  at   



7) L (tn)=𝝆(n+1)/𝒔𝒏+𝟏,    n   

𝒏  

8) L (tn)= 𝒏!/𝒔𝒏+𝟏,    n is +ve integer Problems:  

(1) Find  

 solution :     

(2)Find solution 

:   

(3) Find   

𝟓  

  

  sin 2t + cosh 3t.   

] 
  
  

  

  



solution  :  

] }   

=   ¾ Cos 

(¼ x  8 x  t                  

a=5/2  𝟐𝟓  )    

Sin  𝟓  

𝟐 𝟓  

  = ¾ Cos 4/5 Sin  t   
𝟐  

FIRST SHIFTING THEOREM OF INVERSE L.T:   

If   𝑳−𝟏[ f(s) ]  = f(t) then   𝑳−𝟏[  f(s-a) ] = 𝒆𝒂𝒕 𝒇 𝒕   

= 𝒆𝒂𝒕 𝑳−𝟏[  f(s) ]  

  PROOF:  By definition of  L.T   

L[f(t)]=  

solution :      

(4) 
  
Find  

  

(5) 
  
Find    

solution:   ]     

  f(t) dt = f(s) -------- (1)   

f(t)]=    f(t)dt     



L[𝒆𝒂𝒕 

 f(t) dt Put   s-a=p  f(t)   

dt  

= f(p)  =  f(s-a)                  

L[𝒆𝒂𝒕f(t)]= f(s-a)  

  ⇒   𝐿−1[  f(s-a) ] = 𝑒𝑎𝑡 𝑓 𝑡  (or) 𝑳−𝟏[  f(s-a) ] =  = 𝒆𝒂𝒕 𝑳−𝟏[  f(s) ]  

Note:  𝑳−𝟏[  f(s+a) ] =  = 𝒆−𝒂𝒕 𝑳−𝟏[  f(s) ]  

PROBLEMS  

1) Find  

 Solution :  ]            by F.S.T  

= 𝒆−𝟑𝒕 

Cos 8t.  

2) Find  

 Solution :   ½ Sin 2t  

] 
  
  

] 
  
  

] 
  
  

  t    



3) Find  

Solution :   

𝒔  

Solution :    

  

5) Find  

Solution :   

]             (By F.S.T)  

4) 
  
Find Inverse L.T of      

] 
  
  

] 
  
  

] 
  
  

]  }       



=  𝒆𝟓𝒕 [ Cos 2t + 8 x ½ x Sin 2t ]                     a=2  

 [ Cos 2t + 4 Sin 2t ]  

  If   𝑳−𝟏[ f(s) ]  = f(t) then  𝑳−𝟏[ 𝒆−𝒂𝒔 f(s) ] = 𝐠 𝒕  𝒘𝒉𝒆𝒓𝒆 g(t) = f(t-a), t>a  

=0,         t<a  

Proof:  By S.S.T  of L.T ,  L [g(t)] = 𝒆−𝒂𝒔 f(s)     (write proof of SST)  

⇒ 𝑳−𝟏[ 𝒆−𝒂𝒔 f(s) ] = 𝐠 𝒕   

⇒ 𝑳−𝟏[ 𝒆−𝒂𝒔 f(s) ] = f(t-a), t>a  

=0,         t<a Note: 

We can also written as 𝑳−𝟏[ 𝒆−𝒂𝒔 f(s) ] = f(t-a) H(t-a) 

Problem:  

−𝝅𝒔  

Find   

  𝝅𝒔  

Solution:    

𝟏  

Let  f(s) =   

 𝑳−𝟏 [ f(s)] =   = Sin t = f(t)  



by S.S.T 𝑳−𝟏[ 𝒆−𝒂𝒔 f(s) ] =  f(t-a), t>a  

=0,         t<a  

  𝑺𝒐  𝑳−𝟏[ 𝒆−𝝅𝒔 f(s) ] =  f(t-𝝅), t>𝝅  

=0,         t<𝝅  

] = Sin (t-𝝅), t>𝝅 =0,               

t<𝝅  

Chang of scale property :   

  If 𝐿−1[f(s)] = f(t)  then  )] = a f(at)  

( or )   𝐿−1[f(as)] =   

Proof :   By the change of scale property,  

  

L[f(at)] =  

)]  = a f(at )   



(or)  

𝐿−1[f(as)] = )   

Problem(1):  If ] = t cost ,  then find  ]    

𝟐  

Solution : Given  ] = t cost  

  i.e.,   𝑳−𝟏[f(s)] = f(t)  

   ,             f(t) = t cost  

 Now      ]   =   ]     

=  𝑳−𝟏[ f(3s) ]               By change of scale property ,       

 𝑳−𝟏[f(as)] =   a = 3  

Inverse Laplace Transform of partial fractions :  

Here     f(s) =  



Proof : By theorem of  

L.T.   L[𝑡𝑛 f(t)] 

  = f(s) 

 f(s)] = (−1)𝑛 

𝑡𝑛 f(t) Note:- 𝐿−1[f’(s)] = 

- t f(t)   

Problem (1):- Find   

 Solution : Let   f(s) = 

log ( ) = log (s+3) – log 

(s+4)  

1 1 f’(s) =  

Problems : (1) Find     

Solution : Given      

] 
  
  

=  1  – 
  t +    

(2) . Find  solution : Here   f(s) =  
  

reduce into partial  fractions   

f(s) =    

  

Inverse Laplace Transform of derivatives : -   

𝑛   

If  𝐿 − 1 [ f(s)] = f(t)   then  f(s)] =  (−1) 𝑛   𝑡 𝑛   f(t)   

𝑛   



𝐿   

= 𝑒−3𝑡 - 𝑒−4𝑡  

 𝑒−4𝑡 H.W. Find   By theorem,      - t f(t) = 𝑒−3𝑡 - 

f(t) = Ans: 𝐿−1[f(s)] =   

   [replace   3  by  1  and   4  by  (-1)]  

 (2) Find  ]       

Solution: W.K.T     sin at  

i.e 𝐿−1[ f(s)  ]  = f(t) 1 Let   f(s)  

 = ,      f(t) =  sin at  

𝑎  

  

− 1 [ f’(s)] =  

  

4 𝑡 𝑡   so,          

⇒  𝐿 − 1 [ f(s)] =  



 

Inverse L.T. of integrals :-  

If 𝐿−1[f(s)] = f(t)   then    

  Proof : We have    L[   provided                          

exist  

-  

We have     𝐿 
− 1 f’(s)] =  [ - 

  

t f(t)   

  

sin at  

  

sin at  

  

sin at   

𝐿   
−   1   

[   

  
  −   𝑠   2   

(   𝑠 ²   +   𝑎 ²   )   
2   ]   

    

=   -   

𝑡   

𝑎   



If 𝐿−1[f(s)] = f(t)  and   f(0) = 0, then 𝐿−1[s f(s)] = f’(t) Proof : 

W.K.T.   L[f’(t)] = s L[f(t)] – f(0)  

= s f(s) – 0  

⇒ 𝐿−1[s f(s)] = f’(t)  

In general we have, ⇒ 𝐿−1 [𝑠𝑛 f(s) ] = 𝑓𝑛 (t)   if = 𝑓𝑛 (0) = 0  

Problems :  

(1) Find  

²  

solution :    

𝒔  

Let f(s) =  

  



 𝑳−𝟏[f(s)] = f’(t) =  

 [ sin at + t a cos at ]  

We have   𝑳−𝟏[s f(s)] = f’(t)  

 ( sin at + at cos at )  

𝒔  

Solution 

:  

Let f(s) = 𝑳−𝟏 

(2) 

  

Find    

f(t) =   

  

[ f(s)] =    



]      by F.S.T.  

  

 Now   f’(t) =     

  By theorem   𝑳−𝟏[s f(s)] = f’(t)  

 (t + t² +  Division 

by power of S :  

  Theorem: If 𝑳−𝟏 𝒇 𝒔  = 𝒇 𝐭 , then 𝑳−𝟏 

 𝒔  = 𝟎׬𝒕 𝒇 𝒕 𝒅𝒕  

Prof: we have by LT,  

= 
  𝒆 

𝒕   ( t + t² +    

𝒇   𝒔   



L [ 

 Note:   

Problem:  

1) Find   

 

𝟏   

solution: Let f (s) =    

  

  By theorem ,  𝑳 
− 𝟏   𝟏 𝒔   .  𝒇 

  𝒔 
  = 

  
 ׬ 𝟎

𝒕   𝒇 ( t)dt   

  

2) 
  
Find    

𝟏   

Solution : let f(s)    [f(s)] = sinat = f(t ) =   

𝒂   

t) dt] =  (   

  ⇒  𝑳 − 𝟏 = 
 𝒕   𝒇 𝟎 ׬  

  𝒕 
  𝒅𝒕   

  𝒕   𝒕   

𝑳 = 
  
 𝒇   ׬ 𝟎 ] ׬ 𝟎

  𝒕 
  𝒅𝒕 ] dt  

𝒇   𝒔   

𝒔   

−   𝟏   𝒇   𝒔   

𝒔   𝟐   



By 

theorem  

)   

3) Find   

 

𝟏 𝟏 solution : let f(s)  

 =   , f (t) =  sin at  

𝒂  

theorem,  f(s)] = by 

(t)dt  

𝒕 

𝟏  

  

  f(s)] =  ( t)dt   

- cos at )   

  sin at dt ]dt   

  at ) dt  

=   

  
  
   𝟎   ׬

𝒕   

   𝒂   𝟎   ׬   ]



Convolution : -  

If  f(t)  and  g(t)   are two functions defined for  t   

. 

f(t)  *  g(t)  can also be written as  (f   *   g)(t). Note:- The convolution 

operation       is commutation   

i.e. ,   ( f  * g ) (t) = (g *  t)  (t)  

.  

If  L[f(t)] = f(s)  and  L[g(t)] = g(s)  then  L[ f(t)  *  g(t)] = L[f(t)] .  L[g(t)]   

(or)  

= f(s). g(s)  

So,    L[( f * g) (t)] = f(s) . g(s)  

Corollary :- [f(s). g(s)] = (f  *  g) t  

.  

Problems:  

(1). Find ]  by using convolution theorem.  



𝟏 𝟏 solution:  Let f(s) =  

 ,  g(s) =   

𝑳−𝟏 [f(s)] =  [g(s)] = ] = sin t  

By convolution theorem ,  

  

2 sin u – 

cos u)]  

2 sin t –   

 2 sin t – cos t) +    

𝟓  

𝑳 
− 𝟏 [ f(s). g(s)] =     



2) Find   

  1  1  

  Solution :  Let  f(s) =  ,                 g(s) =   

  

Application of L . T to  Ordinary Differential Equations :  

2  sin t  – 
  cos t]   

𝑠   

𝐿 
− 1 [ f(s)] =  ]  = 1 = f(t) ,      𝐿 

− 1 g(s)]  =   [   

  
at = g(t) By convolution theorem , 

  

𝐿 
− 1 [ f(s). g(s)] =   

  

]  , (apply limits o to t )   

  
( cosh at  – 

  
1) 

   
  



The L . T   method is easier , time – saving and excellent tool for 

solving O.D.Es  

Working rule for finding solution of D . E by L . T:   

1) Write down the given equation and apply L . T    O . B . S   

2) Use the given conditions   

3) Re arrange the given equation to given transformation of the 

solution   

4) Take inverse L.T  O. B. S to obtain the desireds obesve Sali 

stying the given conditions   

The formulae to be  used in this process are:  

L [ f¹ (t) ] = s f (s) – f(0)  

L [ f¹¹ (t) ] = s² f (s) – s f(0)-f¹(0)  

L [ f¹¹¹ (t)] = s³ f (s) - s² f(0) – sf (0) – f¹¹ (0)  

Note : let f(t) = y (t) and f (s) = y (s) Problems :  

1) Solve 4 y¹¹+ y = 0 , y (0) = 2 , y¹ (0)= 0   



Solution :       Here y = y (t)  

Given  D .  E           4 y¹¹ (t)+ ²y (t) = 0       Let L . T     O.B.S   

² L [ y (t) 

] = L [0] ² 

L [y]= 0  

Let  O . B . S,   we get      y (t) = 8  

]   

  2. cos is solution of 

gven D.E  

3) Solve y¹¹¹+2y¹¹- y¹- 2y = 0 with y (0)= y¹ (0) = 0 , y¹¹ (0) = 6   

Solution : given D . E   

4  L [ y¹¹ (t)] +  

4 s(2)  – 
  
0  =  0   

] 
  

  



Let      L . T         On Both Sides   

L[ y¹¹¹ ] + 2  L [ y¹¹ ]- L [ y¹ ] – 2 L [ y ] = 0  

 -  

6= A (s + 1 ) (s +2 ) + B (s - 1 ) (s + 2) + C (s – 1 ) (s+1) _ _ _  

_(2) Put     s = 1  in   _ _ _ (2) 6 = A (2) (3)   

 
  

  

      
  

L [y] =  
  
_ _ _ _ _ (1)   



Substitute A , B , C  in (1)  

 
  

is the solution of  given D . E   

  HW: Solve the D.E  + 5y =  sin t  

Ans: y(t) =  (sin t – 2 sin 2t)  

  

  

  

  

  

  

  

  

  

UNIT – IV  

  



FOURIER SERIES  

Periodic Function :  

Definition : A function f(x) is said to be periodic with period T , if 

𝒙 , f(x+T) = f(x) where T is positive constant.  

The least value of T > 0 is called the periodic function of f(x). 

Example: sin x   = sin (2𝝅 + 𝒙) = 𝐬𝐢𝐧 𝟒𝝅 + 𝒙  =−−−− − 

Here sinx is periodic  function with period 2𝝅. Def: 

Piecewise Continuous Function:  

A function is said to be  piece-wise continuous (or)  Sectionally 

Continuous) over the closed interval [a,b] if it is defined on that 

interval and is such that the interval can be divided into a finite 

number of sub intervals, in each of which f(x) is  continuous and both 

right and left hand limits at every end point if the sub intervals. 

Dirichlet Conditions:   

A function   f(x)   satisfies Dirichlet conditions if  

(1) f(x) is well defined and single valued except at a finite no. of points  

in  (-l,l)  



(2) f(x) is periodic function with period   2l  

(3) f(x) and f’(x) are piece wise continuous in (-l,l)  

Fourier Series:   If  f(x) satisfies Dirichlet conditions , then it can be 

represented by an infinite series called  Fourier Series in an interval (-l,l) as  

   (1)    where  

Here   𝒂₀ , an and bn are called Fourier coefficients.  

These are also 

calle Euler’s formula.  

Note (1): If  x 𝝅, 𝝅  

Then f(x) 

=  

 Where a₀ =    

f(x)  = 
  

  

bn    

( 𝒊 .  𝒆 . ,  𝒊𝒏𝒕𝒆𝒗𝒂𝒍 
  𝒊𝒔 

  (− 𝝅 ,  𝝅 )   

  

  ,  an =  



 

range expansion series  

Note (4): The above series (1) converges to f(x) if x  is a point of continuity  

The above series (1) converges to   if  x  is a 

point of   discontinuity  

f(𝝅−𝟎)+𝒇(−𝝅+𝟎)  

  Note (5) : At  x=  , f(x) =   here    x 𝝅, 𝝅)  

𝟐  

Even and odd functions:  

Case (1):  If the function  f(x)  is an even function in the interval (-l,l)  

i.e., f(-x) = f(x)  then a₀ =   2𝑙 
 0

 𝑙׬
 
 𝑓 𝑥  dx  

bn    

Note (2):  In interval (0,2   

Where a₀ =    , an =    

bn    

Note (3):  The Fourier Series in ( - l,l) , ( - 𝝅 ,  𝝅  ,  ) 𝒐 ,  𝟐𝝅 
  , ( 𝒄 ,  𝒄 

  + 
  𝟐𝝅 ) 

  are called Full        



an =  dx   (since f(x) &  are even functions)  

bn  is odd function)  

Therefore, in this case we get (only) Fourier cosine series only.  

Case (2):  If function f(x) is odd  i.e., f(-x) = - f(x) then   

an = 0  (since f(x)  is odd)    (a₀=0  also)   

And     bn   

In this case we get fourier sine series only.  

[only for intervals (-l,l) , (-  Problems 

:  

1)Find Fourier series for the function f(x) = 𝒆𝒂𝒙 in (0,2𝝅) Solution : Given 

function f(x) = 𝒆𝒂𝒙 in (0,2𝝅)   

 

𝒂𝒙 a₀ = )   apply limits 0  

to 2𝝅  

1)   



an = 

  

 (a + 0)]     apply limits 0 to 2𝝅  

  

  ( a cos nx + n sin nx)]            apply limits 0 to  2 𝝅   

  

  ( a sin nx + n cos nx)]       apply limits 0 to  2 𝝅   

- 
  n)]   



bn  

  

 Now  the  fourier  series  is  f(x)  =  

 
  

 cosnx   

  (2): Find Fourier series for the function f(x) = 𝒆𝒙  in (0,2𝝅)   

Solution : Given function f(x) = 𝒆𝒙 in (0,2𝝅) a₀ =  



  apply limits 0 to 2𝝅  

  

bn 

 
  

  

  (  sin nx + n cos nx)]       apply limits 0 to  2 𝝅   

- 
  n)]   

  

)         apply limits 0 to  2 𝝅 
  

1) 
     

an =    

  

  nx + n sin nx)] 
  



Now the fourier series is f(x) =  

 
  

Problem (3): H.W  

  Find Fourier series for the function f(x) = 𝒆−𝒙  in (0,2𝝅)  

  (Hint:- put  a = - 1  in problem (1)     we get the solution.)  

(4) Express f(x) = x - 𝝅 as Fourier Series in the interval   - 𝝅 < x < 𝝅 Solution:   

Given function f(x) = x - 𝝅 a₀  

=   

 
  

= 0 – [x]  with limits - 𝝅 to 𝝅  

 =  0  –  [𝝅  +  𝝅]  =  2𝝅  an  =  

  

  



 dx (since 

even)  

=   0 + 2   [ ] 0 to 𝝅 limits apply we get  an = 

0+0 = 0  

  

(even)                                 (odd)  

 dx – 0   ( since sin nx is odd)  

 dx ]  

)]          apply  limits 0 to 𝜋  

 cos n  , n=1,2,3…………  

Now the Fourier Series of  f(x)  is f(x)  

bn  

  

  

(0) ( since x cosnx is odd)  +  2 



  

(5)Obtain the Fourier series for f(x) = x - x²   in the 

interval [-𝜋, 𝜋]  

2  

Hence show  

that (or)  

𝜋2  

 + …………. =   

12  

Solution :  Given function is f(x) = x - x²   in    [-𝜋, 𝜋]  

 

f(x)  

  

a₀ =    

  

  0 (odd)     = - 
  /3   

1   

𝜋   
[   

  
  𝑥   

3   

3   
]   
     = 

  
  -   2   𝜋 ²   



an =   

  

(odd)                     (even)  

 u = x² ,       dv = cos nx dx  

]                     du = 2x dx , dv = ׬ cos 𝑛𝑥 

𝑑𝑥  

apply  limits 0 to 𝜋  

 =   - 𝜋2  [  0 -  𝜋2  {(   − x cos𝑛  𝑛𝑥 )  +  0׬𝜋   cos𝑛  𝑛𝑥 =  𝑛  sin 𝑛𝑥 dx            

apply  limits 0 to 𝜋  

   ( sin nx )]  ׬ 𝑢𝑑𝑣 =  𝑢𝑣 − ׬ 𝑣𝑑𝑢  

 an =   if n is odd  a1 =   

  

  



𝑛²  

  -  if n is even  a2 =   

a3 =   

(even) (odd)   

sin nx )] b1 = 2/1 = 2  if n is   ( 

odd  b2  

= - 2/2 = -1  

  b3 = 2/3  

Now 

, f(x) 

in 

(1)  

bn  =     

  if n is even 
  

substitute  

  



 put x = 0 in (2)  

f(0) = 0 = …….)  

𝜋²  

  + ……..=    

12  

Half range series  

  

where  bn   

where  

Note :2) The half range sine series in (0,𝜋) is  f(x) =  where    

bn   

(1)  The half range cosine series in (0,l) is  f(x) =  

  

(2) The half range sine series in (0,l) is f(x) =    

Note :1) The half range cosine series in (0, 𝜋 )  is  f(x) =  

  



(1)Express  f(x) = 𝜋-x  as Fourier cosine and sine series in (0, 𝜋) 

Solution :    

The half range cosine series for f(x) is          f(x) =  ………(1)  

  where  a₀=  

  

an =  

  

(apply o to 𝜋)  

 Now (1) ⇒ :   f(x) =    

  H.W.) Express f(x) = 𝜋-x  as fourier sine series  in (o, 𝜋  Ans : 2   (bn =   

2) Find the half range sine series of   f(x) = x   in the range  0 < x <  𝝅  

𝝅𝟐  

)]   apply o to  𝜋   

  

  dx =  − x dx    

]  apply limits o to  𝜋   

  



  Hence deduce that         + …………. =    

𝟖  

Solution : The half range cosine series for f(x) is         f(x) 

=  ………(1)  

  where  a₀= x dx  ] apply limits o to 𝜋  

= 𝜋  

 

  dx =  



 if n is  odd  

Now 

(1)  

  

Put x=0 on both sides  

 ⇒  0 =  𝜋 − 4  (   ²  +    ²  +    ²  − … … . .)   

 2  𝜋    

 ⇒ 4  (   ²  +   3 ²  +   5 ²  − … … . . )  =    𝜋2   

 𝜋    

  

 ⇒    +      +      +  …………. = 𝜋       

3) Express  f(x) =  ,   0 < x <  in half range sine series   

  :    f(x) =  
  if n is odd   

x =   



 Solution :  The half range sine series in (0, ) is  f(x) =   where    

  

]  apply limits o to  𝜋   

  

]  (n not equal to 1)    



bn  

]   

]   , n is not equal to 1  

bn = 0  if n is odd.  

   if n is even  b1 = b3 = b5 = -------- = 0  

(1) ⇒ f(x) =   ,       for n is even  

4)Find half range sine series for f(x) = x(𝝅 −x) , in 0 < x < 𝝅  

𝝅𝟑  

Deduce that +…….=     

𝟑𝟐  



Solution : Fourier series is f(x) = bn  

=  

  

  (apply 

0 to 𝜋) 

 (apply 

o to 𝜋)  

  

  



bn  

(1) ⇒ f(x) =   

(1) ⇒ f(x) = b1 sin x + b2 sin 2x + b3 sin 3x + …..  

(2) sin 3x + …… Put 

x = π/2 on both sides  

𝜋 𝜋  
   [   −  ³  +  …..]  ⇒  

( 2 ) =     ³    

2  

 ⇒  𝜋4 ² (𝜋 8  ) =   [  ³  −   ³  +   5 ³  …..]  

  

 ⇒ [    −  ³  +   5 ³  …..] = 𝜋       

 ³    

• FOURIER SERIES IN AN ARBITRARY INTERVAL I,e in (-l,l) & (0,2l)  



• Problem : 1)  Obtain the half range sine series for 𝒆𝒙 in 0<x<1 Solution :  Given 

f(x) = 𝑒𝑥 in (0,l)  

The half range sine series for f(x) in (0,l) is f(x)=  ……(1)  

   l=1  

bn  

 dx   

 ( sin n𝜋𝑥 - n𝜋 . cos n𝜋𝑥 ) apply limits 0 to 1  

bn 

(1)     ⇒     f(x)=     

Where  bn  

  

  .  cos n 𝜋 ) 
  - 

  𝑒 
0 ( 0 

  - 
  n 𝜋 

  .  cos 0)]     

  .  cos n 𝜋 
  + 

  𝑛𝜋 ]   

  



2) Find the half 

range sine 

series of   f(x) = 

1  in (0,l) Solution :  The half range sine series in 

(0,l) is f(x) =  

 where  bn    

 

 if n is odd    

  
…….(1)  



Now (1)  ,    if n is odd  

3)Find the half range cosine series of   f(x) = x(2-x)   in the range  0 ⪯ x ⪯ 𝟐  

  Hence find  sum of series         + ………….   

Solution : Given function f(x) = x(2-x) = 2x - x²  

The half range cosine series for f(x) is       f(x) =  ………(1)  

where a₀ =  dx =  dx   

] apply 0 to   

an =   

]   

apply limits  0 to 2  

  

an =  

  

  dx            (using integration by parts)   

=  [(2x  - 
  

  when n is even   



= 0        when n is odd  

Substitute the values of a₀ and an in (1) we get  

(1) ⇒   2x - x² =  

⇒  2x - x² =   

Putting x = 1 

in (2) we get   

 
  

 - ………….)  

+ ………….)  

𝜋2  

 +  ………….) =    

12  

(4) Expand f(x) = 𝒆−𝒙 𝒂𝒔 𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝒔𝒆𝒓𝒊𝒆𝒔 in (-1,1)  

  

  



Solution : Here l = 1  

an =    

 . sin n𝜋𝑥 ) apply limits -1 to 1  

  

) apply limits  - 1  to  1   

  dx    



- sin n𝜋𝑥 - 

n𝜋 . cos 

n𝜋𝑥 )     

apply 

limits -1 

to 1  

Now Fourier series of f(x) 

in (-l,l) is  

f(x) = 

………..(1)  

bn  bn  

bn  

  

  dx    

  .  cos n 𝜋 ) 
  - 

  𝑒 
1 ( 

  0 - 
  n 𝜋 

  .  cos n 𝜋 )]   

  .  cos n 𝜋 
  ( e −  𝑒 

− 1 )   

  



  

⇒ f(x) = 2 sinh1 + [  x}]  

• Functions having points of discontinuity : Problems:  

(1) If  f(x) is a function with period 2𝝅 is defined by f(x) = 

0 ,  for - 𝝅 < x ⪯ 0  

  = x , for  0 ⪯ x < 𝝅  then write the fourier series for f(x)  

𝝅𝟐  

  Hence deduce that         + …………. =    

𝟖  

Solution :  The Fourier series in (- 𝜋, 𝜋) is f(x) =  

 
  

f(x) =  

  

  

Where  a₀ =    



an =   

 

Put x = 0 on both sides           f(0) = 0  

  ] 
 ׬                       

  𝑢 
  𝑑𝑣 

    = uv  - 
 ׬  

  𝑣 
  𝑑𝑢   

  u = x ,       dv = cos nx dx = 0 ,  if n is even   

  , if n is odd   

bn    

  ( apply 0 to  𝜋 )   

)  0 to  𝜋 ]   

+  0 + 0  =  - 
  

  

bn  
  ,  if  n is odd   

  ,  if  n is even   
=   

  
  
-   

1   

𝑛   



) + 0    

Problem (2) : Find Fourier series to represent the function f(x) given by 

f(x) =  - k  ,  for - 𝝅 < x < 0  

k ,   for  0 < x < 𝝅 hence show  

that 1 Solution :   In  

- < x < 0  

i.e., x − 𝝅,0) ,   f(x) = - k   

f(-x) = - f(x)  in (0, 𝝅)  

In   0 < x < 𝝅 i.e.,   x ) f(x)  

=  k f(-x) = k = -  

(-k)  

= - f(x)   in (−  

𝝅,0) There fore  f(x)  is odd function in (- 𝝅, 𝝅) 

so  a₀ = 0 , an = 0  

bn   



bn   

) apply limits 0 to 𝝅  

= 0 ,  if n is even  

 Now f(x) =    

= b₁ sin 1x + b₂ sin 2x + b₃ sin 3x + b₄ sin 4x --------f(x)  

 𝟒𝒌  𝟒𝒌 sin 3x   

 = 𝝅 sinx +  0 +  𝝅  3  +  0 +  ---------(1)     

𝜋  

Deduction :  put x =  on both sides in (1) 2  

  ,  if n is odd   

  



 
  

Parseval’s Formula :-  

Prove That     dx = l [   

Proof :- We know that the Fourier series of f(x) in (-l,l) is f(x)  

=   

Multiplying  on both sides of (1) by f(x)  and integrate term by  

 term  from  -l  to  l  we  get    dx  =  

  

  

Now   

an =  
  =  l an  

and   bn 
  =  l bn   



Substitute these in (2)  

  dx =  . l bn  

This is called parseval’s formula.  

Note 1): In (0,2l) the parseval’s formula is   

 dx= l [   

Note :2) If 0 < x < l (for half range cosine series of f(x)) parsevel’s formula is  

 dx=   

Note :3) If 0 < x < l (for half range sine series of f(x)) parsevel’s formula is  

 dx =   

) and hence   

𝟒  

deduce that    

  a₀ +  . l an +  

  

  

Problem : prove that in 0 < x < l,  x =  



Solution : Let f(X) = x , 0 < X < l  

The Fourier cosine series for f(x) in (0,l) is  

 

an =  

dv =  dx    u = x, 

  dx]  

 −4𝑙  −4𝑙 an = 0 ,   

f(x) =    

Here a₀ =  
  dx    

  dx    

]         apply  limits  0 to  l    

]  = l   

  

  

}  0 to l     - 
  

}  0 to l ]   

  



 n is even  a₁ =   ,  a₃ =    

   ,  n is odd  a₂ = 0 , a₄ = 0 …………  

Substitute a₀,an in (1)   

 
  

Now a₀ = l,    a₁ =  ,  a₃ =   

From parseval’s formula , we have   

  + a₁² + a₂² + a₃² + -------]  

 ²  2   2  

dx =  + 0² +   

𝑙  

) 0 to l =  .  

l² [ 2  

  dx =  



  

COMPLEX FOURIER SERIES in (-l,l) or (0,2l):-  

The complex form of Fourier series of a periodic function  f(x)  of period 2l 

is defined by   

𝑖𝑛𝜋𝑥  

  f(x) =  (1)    where  cndx  , n=0,-1,1,2….  

Note (1) : If period of function is 2𝜋,  i.e., in (- 𝜋 , 𝜋 ) or (0,2 𝜋 ) then 

complex fourier series is f(x) =   

Where cn  dx    ,  n = 0,-1,1,-2,2 ………  

Problem : Find complex fourier series of f(x) = 𝑒𝑥 if - 𝜋 < x < 𝜋 and f(x) = f(x 

+ 2 𝜋)  

Solution : Complex fourier series of f(x) = 𝑒𝑥 is f(x) =   

There fore         



  

 ]               𝑒 = cos n  𝜋 + I  

sin n 𝜋  

 (1  −𝑖𝑛   )  1 +𝑖𝑛  *   

When cn =  
  dx    

cn  
  dx   =     

]  limits  ( 

± 𝑖𝑛𝜋   



 (sin h 𝜋)     sub in (1)  

 (sin h 𝜋) 𝑒𝑖𝑛𝑥
  

 Problem : Find the complex form of the fourier 

series of  f(x) =  ,-1  x    

] limits(-1,1)  

    

  

f(x) =    

Where    cn =  
  dx  =  

  dx   

]   2 sin h )   

  

  . (2 sin h  𝜋 ) 
  

Therefore  cn  



UNIT V  

FOURIER TRANSFORMS  

&  

Z- TRANSFORMS  

•  

  •  FOURIER TRANSFORMS  

Fourier Integral Theorem:-  

Statement :  If f(x) is a given function defined in (-l,l) and satisfies Dirichlet’s  

condition then f(x) = -x) dt dλ.  

The representation of f(x) is known as Fourier Integral of f(x)  

Problems on integral theorem:  

(1) Express the function  f(x) = 1 , |x|   



 < x < -1 = 

0 , 1 < x <  

 as fourier integral and hence evaluate    (i)    

 ∞ sin 𝑥   𝜋   

 (ii)   0׬    𝑥  𝑑𝑥 = 2   

• Solution: The Fourier Integral theorem is given by f(x)  

=   -x) dt dλ.   

 

Deduction :  

  



 f(x)  

 , |x|   

 |x|> 1   --------

(2)  

Put x = 0  

 
  

Fourier cosine & sine Integrals:  

1) Fourier cosine Integral of f(x) is   

f(x) = t dt dλ  

2) Fourier sine Integral of f(x) is   

f(x) =  t dt dλ  

Problems:-  

2)  Express f(x) = 1 , 0 ⪯ x ⪯ 𝜋  



  0 , x > 𝜋  as a fourier sine integral and   

Hence evaluate    

Solution : Fourier sine integral of  f(x)  is given by  

 f(x) =    

f(x) =  

f(x) .   

2  

 . 1 , 0 ⪯ x ⪯ 𝜋  

0   , x > 𝜋  

Problem : 3) Using Fourier Integral show that  

 
  

0  ,  x >  

  

)  (0 to  𝜋 )  d λ   

  

𝜋   = 
  



Solution : Let f(x) =1 , 0   

0  , x >   

then write above solution  (problem.(2)  solution).  

Problem :4) Using Fourier Integral , show that   

Solution : Let f(x) =   

The Fourier Cosine Integral is given by f(x)  

=    

Now f(t) = 𝑒−𝑎𝑡
  

Therefore  

Now  -a cos λt + λ sin λt)(0 to ∞)]  

𝑎  

-a.1 + 0 ) =   

  



sub in (1)  

Problem 5 ): Prove that     , put a = 1 in 

above problem(4)  

Solution : Let f(x) = 𝑒−𝑥
  

Problem 6): Using Fourier Integral , show that       

  

The Fourier Sine integral is given by f(x) 

=   

  

-a sin λt - λ cos λt)(0 to   

  

Solution  :  Let f(x) =    

f(x) =  

  



sub in (1)  

 

FOURIER TRANSFORMATION:  

Definition : 1)The fourier transform of f(x) ,  is denoted by f(s) or    

F{f(x)} and is defined as ,  
 

 F{f(x)} =  f(x) dx = f(s) -------(1)  

The inverse fourier transform is given by   

  f(x) = 𝐹−1{f(s)} =   f(s) ds -----(2)  F{f(x)} =  f(s)   

  

similarly ,    

There fore ,    



Note 2): Some authors also defined as   

F{f(x)} =  f(x) dx  

and inverse fourier transform as f(x) =  f(s) ds  

Def : 3) :  F{f(x)} =  f(x) dx     and  

Inverse Fourier Transform as f(x) =  f(s) ds   

Def: Fourier Sine  Transform:-  

The Fourier Sine Transform  of f(x), 0 < x <  is denoted by fs(s) or Fs{f(x)} and 

defined by     

Fs{f(x)} = sx dx = fs(s) -----(3)  

Fs{f(x)} = sx dx = fs(s) -----(3) The 

inverse Fourier Sine Transform is given by  

f(x) = sx ds -------(4)  

Note : Some authors also defined as   

Fs{f(x)} =  sx dx = fs(s)   

2   

𝜋   
   0   ׬

∞   

𝑓   (   𝑥   )   sin    



 2  ∞  

and inverse fourier sine transform as f(x) =  𝜋 
 𝑓𝑠  (𝑠  )  ׬0

sin 
sx ds  

  

Def : Fourier Cosine Transform :-  

The Fourier Cosine Transform of f(x) , 0 < x < ∞ is denoted by fc(s) or Fc{f(x)} and 

defined by  

Fc{f(x)} = sx dx = fc(s) -----(5) and  

The inverse Fourier Cosine Transform is given by,  

f(x) = sx ds -------(6)  

Note : Some authors also defined as   

 Fc{f(x)} = sx dx    

 2  ∞  

 and inverse fourier cosine transform as f(x) =  𝜋 
 𝑓𝑐  (𝑠  )  ׬0

cos 
sx ds  

  

Linear Property: If f(s) , g(s) are Fourier Transform  of f(x) & g(x) then  

F{c₁ f(x) + c₂ g(x)} = c₁ F{f(x)} + c₂ F{g(x)}  

= c₁ f(S) + c₂ g(s)  

2   

𝜋   
   0   ׬

∞   

𝑓   (   𝑥   )   cos    



Proof:- The definition of Fourier Transform is  

F{f(x)} =  f(x) dx = f(s) -----(1)  

By definition F{c₁ f(x) + c₂ g(x)} =  [c₁ f(x) + c₂ g(x)] dx  

 f(x) dx  + c₂  g(x) dx   

= c₁ f(s) + c₂ g(s)   by (1) Note:- 

Linear Property:  

(I) Fs{c₁ f(x) + c₂ g(x)} = c₁ fs(s) + c₂ gs(s)  

(II) Fc{c₁ f(x) + c₂ g(x)} = c₁ fc(s) + c₂ gc(s)  

Proof:- (I) The definition of Fourier Sine Transform is   

Fs{f(x)} = sx dx = fs(s) -----(1)  

By the definition , Fs{c₁ f(x) + c₂ g(x)} =   [c₁ f(x) + c₂ g(x)] sin sx dx  

sx dx + c₂ sx dx   

= c₁ fs(s) + c₂ gs(s)     by (1) Change 

of scale property:  

Statement : If F{f(X)} = f(s) then   F{f(ax)} =   

Proof :- The definition of Fourier Transform of f(x) is   

F{f(x)} =  f(x) dx = f(s) --------(1)   



f(ax) dx               let ax =t    x = t/a  By definition F{f(ax)} 
1  

  f(t) dt  dx = dt  

 f(x) dx ( by property of def. integral)  

 Note : 1) If Fs{f(x)} = fs(s)  then Fs   

2) If Fc{f(x)} = fc(s)  then Fc{f( 

Proof: (I) The definition of Fourier Sine Transform is  

Fs{f(x)} 

=  

 By definition Fssx dx             let ax =t  

1  

 s( dt  dx = dt  

𝑎  

= 
  

  1   

𝑎   𝑎     f(t) dt   

  fs( 

  

sx dx = fs(s)   ----- (1)   

sin  



)t. dt  

)x. dx =  

  

Shifting Property:-  

If F{f(x)} = f(s) then F{f(x-a)} = 𝑒𝑖𝑠𝑎 𝑓(𝑠)  

Proof : F{f(x)} 

=  

  By definition F{f(x-a)} =  -a) dx   let 

x-a=t     f(t) dt  x=t+a  

 f(t) dt dx= dt  

 f(x) dx   

=  𝑒𝑖𝑠𝑎 f(s)  by (1)  

Modulation Theorem :-  

If F{f(x)} = f(s) then  F{f(x) -a) + f(s+a)}  

  f(x) dx =f(s) ---- (1)   



Proof: The defination of Fourier 

F{f(x)} =  f(x) dx Transform is 

=f(s)----(1) By definition F{f(x) 

f(x) dx   

f(x) dx + f(x) dx   

-a) + f(s+a)}  

Note: If Fs(s) & Fc(s) are Fourier Sine & Cosine Transform of f(x) respectively  

  Then       (i) Fs{f(x) cos ax} =  -a)}  

(ii) Fs{f(x) sin ax} =    -a)}  

(iii) Fs{f(x) sin ax} =    -a)}  

Proof: The definition of Fourier Sine Transform of f(x) is   

Fs{f(x)} = sx dx = fs(s) -----(1)  

  By definition  Fs{f(x) cos ax} =  sx dx   

sx. Cos ax) dx  

  f(x) cos ax dx    



 sin (s-a)x dx ]  

Similarly we get (ii) & (iii) Problems:  

1) Find Fourier Transform of   f(x) = 𝑒𝑖𝑘𝑥 , a < x < b  

0 ,   x <a  ,  x > b  

Solution : By definition ,    F{f(x)} = ∞  

]    (apply limits a to 

b)  

  

2) Find ,    F{f(x)}   if   f(x) = x, |x| < a  

)] dx   

) x dx +  

- a)]   

  f(x) dx                   - ∞ 
  

  dx   

  dx   



  0 , |x| > a  |x| < a means –a < x < a  

Solution : By definition ,    F{f(x)} =  f(x) dx  

 x dx  

 use integration by parts ,     

  dx    ׬  𝑢𝑑𝑣 = 𝑢𝑣 −  ׬  𝑣𝑑𝑢  

  (apply –a to a)  u=x,       dv= 𝑒𝑖𝑠𝑥dx  

)   (apply –a to a)            du=dx,  v=  ׬ . 𝑒𝑖𝑠𝑥 dx   

3) If f(x) = 1 , |x| < a  

0 , |x| > a , Find Fourier Transform of f(x)  

Deduce that 

(i)   

  Solution : F{f(X)} =   |x| < a means –a < x < a  

 𝑎 𝑒𝑖𝑠𝑥 .1. dx− ׬   =

-a to a)  

  dx   ,    

  f(x) dx 
  



  

  f(s) =    F{f(x)} = f(s)   
𝑠  

Deduction :  

Inverse Fourier Transform is defined by    f(x) =   f(s) ds  

f(x) =  

 

ds]  

  (even)  (odd)  

 

0, |x| > a  

(2 i sin as )   

  ds   - 
  0]   

x)  (   

1 , |x| < a   

(   i)    0   ׬   

∞   sin   𝑎𝑠   cos   𝑠𝑥   

𝑠   
𝑑𝑠   =   

  
  𝜋   

2   
.   f   

  ds   

  ds  – 
  i  



(ii)  Put a = 1 , x = 0  in (i) we get   

 

4)  Find Fourier Transform of f(x) = 1 - x² , |x| ⪯ 1  

0, |x| > 1  

Evaluate  

  𝑣𝑑𝑢 ׬ − 𝑢𝑑𝑣 = 𝑢𝑣 ׬ 

  

  (limits -1 to 1)  u= (1 − x²) dv= 𝑒𝑖𝑠𝑥dx  

 = [ 0 –  dx  du =-2x  

dx,  v=  ׬. 𝑒𝑖𝑠𝑥 dx   

1 to 1)  - 

  

   0   ׬

∞   sin   𝑠   

𝑠   
𝑑𝑠   =   

  
  𝜋   

2   
.1   

   0   ׬   ⇒

∞   sin   𝑠   

𝑠   
𝑑𝑠   =   

  
  𝜋   

2   

  dx   

Solution: - 
  F{f(x)} =  

  f(x) dx   

- 
  x² ) dx   

  dx 
  

  

  dx]   



 =   𝑖𝑠2  [1.(   𝑒 𝑖𝑠 +𝑖𝑠𝑒   −𝑖𝑠  )  -  𝑖𝑠1  𝑒 𝑖𝑠𝑖𝑠𝑥  ]    (- 1   to 1)    𝑖𝑠 -  2i sin s)  

  [ sin s – s =   𝑖𝑠2 [ 2 cos𝑖𝑠 𝑠 - 𝑖𝑠1 (𝑒  𝑖𝑠 −𝑖𝑠𝑒  −𝑖𝑠  ) ]  cos s] =  f(s)  

        

Deduction :   =   𝑖𝑠2  .  𝑖𝑠1  (2  cos s  1  Inverse  

 Fourier  =    - 𝑠2 ²  . 2[  cos s -  sin𝑠  𝑠 ]    

Transform is defined by   f(x) =    f(s) ds  

  

  (even function)   (odd function)  

 0   

ds =  f(x)  

.  
  [  sin s  – 

  s cos s] ds   

  ds =    

  ds]   

f(x)  =  

𝜋   



2  

- x²) , |x| ⪯ 1  

0, |x| > 1  

At x =  ds =  put 

s = x  

  

  dx =  

  dx  = 
  

  dx =  - 
  

  

  

5) 
  
Find Fourier Transform  of f(x) =  

  if |x|    



  

0    ,   otherwise 

Solution : By definition,  

  

  

F{f(x)} = f(s) =  
  f(x) dx    

6) 
  
Find Fourier Transform of f(x) =  sin x ,   if 0 < x <    

F{f(x)} = f(s) =  
  f(x) dx    

  sin x  dx    

1 .cosx]    apply 0 to  𝜋   

  



7) Find Fourier Transform of f(x) = x𝑒   

Solution : By definition,  

F{f(x)} = f(s) =  

] (0 to )  

 
  

  −𝑥²  −𝑥²  

  f(x) dx    

  dx    

  dx    



8) Find Fourier Transform of 𝑒 2 .    Show that 𝑒 2 is reciprocal Solution : By 

definition,  

 dy  

Therefore Function is self reciprocal  

  dy  

  dy   

F{f(x)} = f(s) =  
  f(x) dx    

  dx    

  dx  
  x ( - is)² /2= y²  

  dx  
  x - is =  2 y  

  dx  
  dx =  dy 2   

=   
  
  1   

2   𝜋   
𝑒   

−   𝑠   ²   

   ∞   −   ׬   2

∞   
𝑒   

−   1   

2   
𝑥   −   𝑖𝑠   

2   



9) Find the inverse Fourier Transform of f(x) of f(s) = 𝑒−|𝑠|𝑦
  

Solution : We have |s| =  -s , if s < 0  

s , if s > 0  

From inverse Fourier Transform, we have  

 f(x) =   f(s) ds  

 f(s) ds +  f(s) ds]  

 ds +  ds]  

 ds   

 ] (0 to ∞)     

  ds +  



Problems on sine and cosine Transform:-  

1) Find Fourier cosine Transform of f(x) defined by f(x) =  cos x , 0 < x < a  

=  0  ,   x > a  

Solution :  Fc{f(x)} =  sx dx  

 sx dx  sx dx 

  

 2cosAcosB=cos(A+B)+cos(A-B)  

+ cos (x-sx)] dx                           A=x, B=sx  

 dx]  

  dx +  

]    (apply 0 to a )   

  



2) Find Fourier cosine Transform of f(x) defined by f(x) =  x ,  0 < x < 1  

2-x , 1 < x < 2  

0   ,  x > 2  

Solution :  Fc{f(x)} =  sx dx  

 sx dx +  sx dx sx dx  

 sx dx + 0  

sx dx   + 

)]  ( apply 0 to 1)   +   [(2 

)  + ( 0  - 
  

  

  

2  cos² s )   

  s)   



 )]  (1to 2)   

3)Find Fourier sine & cosine Transform of    2𝑒−5𝑥 + 5𝑒−2𝑥
  

Solution : Given f(x) = 2𝑒−5𝑥 + 5𝑒−2𝑥
  

Fs{f(x)} = sx dx  

sx 

dx  

sx dx   +  5 sx dx   

5  sin sx  – 
  s cos sx )}  (apply 0 to  ∞) } 

  
  



2 sin sx – s cos sx )}  (apply 0 to ∞)}   

-     0 )} + 5 {0 

 Similarly (ii) Fc{f(x)} = [    

4) Find Fourier  cosine Transform of (i) 𝑒−𝑎𝑥 

cos ax , (ii) 𝑒−𝑎𝑥 sin ax Solution  

=  [ 2 { 0  - 
  

  



:  Given f(x) = 𝑒−𝑎𝑥 cos ax (i) 

Fc{f(x)} 

=  

x dx]  

)x} (apply 

0 to ∞)  

  0)}]   

(ii) Similarly  Fs{f(x)} = Fs ]   

5) Find Fourier  cosine & sine Transform of 𝑒−𝑎𝑥 , a > 0 hence  

  sx dx   

  sx dx  

  sx dx   

x dx +   

- s)x + (a - s) sin (a - s)x} (apply 0 to  ∞)   

0  )}  + {0  - 
  



deduce (i)  ds       (ii)  ds   

Solution : Let f(x) = 𝑒−𝑎𝑥
  

+ s sin sx )]   (apply 0 to ∞)  

= = Fc(s)-----------(1)     ( – a + 0)] 

Fs{f(x)} =  

-a sin sx - s cos sx )]   (apply 0 to 

∞)  

Fs{f(x)}  =  

By Inverse cosine Transform  

f(x) =  sx ds  

sx ds  

Fc{f(x)} =  
  sx dx   

  sx dx   

sx dx   

sx dx   

  



−𝑎𝑥  

sx ds  =    

By inverse sine Transform ,  

f(x) = sx ds  

  sx  ds  

1  

6) Find Fourier  sine Transform of f(x) =   

𝑥  

Solution : Fs{f(x)} =  

  

𝑒−𝑎𝑥  

7) Find Fourier  sine Transform of   , hence deduce 

that   

𝑥  

sx ds  =  

sx dx   

  



Solution : Fs{f(x)} = sx dx  

sx dx = I ---(1)  

+ s sin sx )]   (apply 0 

to ∞)  

Integrate on both sides w.r.t.  s   we get  

  I= a + c  

 
  

put s = 0 on both sides we get  {in (1) & (2)}  

0 = (0) + c   

  ds = a . 

  sx dx    

  sx dx   

  ( 
  – 

  a + 0)]   



) = Fs{f(x)}  

8)Find Fourier cosine Transform  of   , and  

(ii) Fourier sine Transform  of   

 , We will find Fc{f(x)} = Fc{

  

Fc{f(x)} 

 sx dx = I -------(1)  

Differentiate on both sides w.r.t   s  

  

Solution : Let f(x) =  

  sx dx   



 dx  Diff 

on both sides w.r.t  ‘s’  

We get  dx   

  

  dx    

  dx  

  



  

Put  s = 0   on both sides  

=  I  by (1)  
  - 

  I = 0  

  

  dx    



 

  

i.e., Fc {f(x)} = Fc{   

Now   I =   

  

From (2)  &  (8) , we have   

-   

  dx   

there fore ,     

From (3) & (5) ,  
  dx    

  

solve (6) & (7) we get  
  sub in (4)   

  dx =  - 



  

9) Find the Inverse Fourier Cosine Transform of f(x) of fc(s) = ) ,  s < 2a  

0     ,    s   

Fourier Cosine Transform  , we have  

sx ds]  

 sx ds   

}(0 to 2a)    -   

)(0 to 2a)]  

10) Find f(x) if its Fourier Sine Transform is 𝑒−𝑎𝑠
  

Solution : Given f(s) = 𝑒−𝑎𝑠
  

  dx =   

There fore     Fs   

2 ax + cos  0)   

  

f(X) =  
  sx ds   

sx ds +  



By definition of inverse sine transform  

f(x) = sx ds  

sx ds  

-a sin sx – x cos sx)(0 to ∞)  

-x)]  

11) Find the Inverse Fourier Sine Transform f(x) of Fs   

(or)  

Find f(x) if its Fourier sine Transform is   

Solution : By Fourier Inverse sine Transform f(x) = f(x) = sx ds = I  



 

We get   

Diff w.r.t. x   

  

  

  

=  I  from (1)  

Solution of (4) is  I =   ----------- (5)   



From (2) & (5)   

If x = 0 ,I = 1 ,   

Substitute in (5)  

(5)  ⇒ f(x) = I = 0 +  

c₂ 𝑒 
−𝑥   

⇒ f(x) = 𝑒  
−𝑥  

 

  (5) From  

 & (6)  (3)     

If x = 0 , (3)     

if x = 0 , (6) ⇒ c₁    -   c₂ =    -   
2   

𝜋   
(   𝑡𝑎𝑛   

−   1   s   )(0   
  to    ∞   )   

  
  =   -   

2   

𝜋   

𝜋   

2   

  
  =   -   1   

Now solve   c₁ + c₂ = 1 &    

c₁    -   c₂ =    -   1   
     we get   c₁ = 0  &  c₂ =    1   



  

Relation between Fourier and Laplace Transform:  

Statement: If f(t) =  g(t) , t > 0 then F{f(t)} = L{g(t)}  

0     ,   t < 0  

Proof :   F{f(t)} =   



  

  f(x)]( -   

=   0  – 
  is    



 
  

Finite Fourier Transforms :-  

Definition : The Finite Fourier sine Transform of f(x) , 0 < x < l is defined by   

Fs{f(x)} = fs 

 If 0 < x < 𝜋 ,  Fs{f(x)} = fs sx dx   

The function f(x) is called the inverse finite Fourier sine transform of fs(s) and is   

given by f(x) =  ds  

  dx   



 If 0 < x < 𝜋, f(x) =  sx  

Definition : The finite Fourier sine Transform of f(x) , 0 < 

x < l is defined by  

Fc{f(x)} = fc(s) =  dx  

If 0 < x < 𝜋 , Fc{f(x)} = sx dx   

The function f(x) is called inverse finite Fourier cosine transform of f(x) and is 

given   

by   f(x) = 𝐹𝑐−1{fc(s)} =  fc(0) +  ds f(x) 

= 𝐹𝑐−1{fc(s)}  = 1 fc(0) + sx , (0, 𝜋)  

𝜋  

Problem :   

1) Find the Fourier Finite  cosine transform of f(x) = x , 0 < x < 𝜋 Solution : Fc{f(x)} 

= fc(s) = sx dx   

 dx   

= (0 – 0)   

2   

𝜋   
σ   𝑠   =   1   

∞   𝑓   𝑐   (   𝑠   )   cos   

sx dx  = ( )  (0 to  



   s = 1,2,3,……..  

If    s = 0 , fc(s) =  

Therefore fc(s) =  

  

𝑥  

2) Find the Fourier Finite  sine transform of f(x) 

=  , 0 < x < 𝜋  

𝜋  

  

3) Find the Fourier Finite  sine transform of f(x) = x³ in (0 , 𝜋) Solution : By definition 

the finite Fourier sine Transform is   

Fs{f(x)} = sx dx   

sx dx   

Solution :  Fs nx dx  =  nx dx   

  )   

  cos n 

(   n) =    0   ׬   

𝜋   𝑥   

𝜋   
sin    

  dx =    

]   ,     s >  0   

  ,             s =0    



u = x³ 3x² 6x 6 0 dv= sin nx dx   

)   

4) Find Finite sine Transform of f(x) = x in 0 < x < 4  

Solution : Let f(x) is Fs{f(x)} =  dx  

  

  Similarly Fc{f(x)} = 1] = fc(n)  

    

)   + 6x  ( 

  

²] ,  n = 1,2,3……   

  sin  )(0  to  

4) 
  – 

  

. 4 . Cos n  

  cos n   



if n = 0 , fc(0) =  dx = ) ( 0 to 4 ) = 8  

Parseval’s Identity for  Fourier Transforms :-  

Statement : If f(s) & g(s) are Fourier Transform of   f(x)  &  g(x) respectively then  

 g(x) dx  

Proof : By  the inverse Fourier Transform  we have  

g(x) =   

Taking cojugate Complex on both sides in (1)  

 ds   

 ds 

] 

  g(x) dx   

² ds =  ² dx   

Now (iii)  
  gc(s) ds =  

  g(x) dx =   

  f(s) ds   

  g(s) ds =  
  g(x) dx  --------- (2)   



dx  dx ] 

ds  

(ii) Putting g(x) = f(x)  in (2)  we get  

 Therefore  (3)   

For Sine Transform:  

 gs(s) ds =  g(x) dx  

² ds = ² dx  

Similarly for Cosine  

Problem 1):) If f(x) = 1 , |x| < a  

0 , |x| > a , Find Fourier Transform of f(x)  

 ²  

Deduce that   

Solution : F{f(X)} =   f(x) dx  |x| < a means –a < x < a  

  𝑎 𝑒𝑖𝑠𝑥 .1. dx−׬  =

  f(s) ds =  
  f(x) dx   

² ds  =  



-a to a)  

(2i sin as)    

 f(s)  F{f(x)} = f(s)   

By parseval’s identity for Fourier Transform  

  

Therefore ds =   

² dx =  ² ds  

  dx =  ² ds    

  ds   

  ds  

  ds = a   

² ds = a  

  ds = a   

  
  a 



2)Find Fourier Transform of f(x) = 1 - x² , |x| ⪯ 1  

0, |x| > 1     is     [ sin s – s cos s]  

Using Parseval’s Identity Prove That 

 dx =   

Solution : :- F{f(x)} =  

  𝑣𝑑𝑢 ׬ − 𝑢𝑑𝑣 = 𝑢𝑣 ׬ 

  

  (limits -1 to 1)  u= (1 − x²) dv= 𝑒𝑖𝑠𝑥dx  

 du =-2x dx,  v= ׬. 𝑒𝑖𝑠𝑥 dx   

  f(x) dx   

- 
  x² ) dx   

  dx 
  



]   

By parseval’s identity for 

Fourier Transform  

 dx =  ² dx =  ² ds  



  ]²  

ds =    
15  

𝜋  

 ]²  dx =    

15  

  s  – 
  s cos  𝑠 ) ] ² ds  

  dx =  
  

. 2. 16  ] ²  ds    

8   

] ²  ds = 2 .    

15   

𝜋   



-  

If Z[f(n)]=F(Z) then Z[f(n-k)]=𝑍−𝑘F(Z)  

   Proof: we know that         0               k     k+1    k+2   k+3 - - - - - - - ∞  

Z[f(n)]=

 consider Z[f(n- 

 -  

Z[f(n-k)]=𝑍−𝑘𝐹(𝑍)  

  are different forms)   

  ( since we are shifting f(n) to right)  



NOTE :- Z[f(n-k)]=𝑍−𝑘F(Z) putting k=1 ,we have  

Z[f(n-1)]=𝑍−1𝐹(𝑍) putting k=2 ,we have Z[f(n-2)]=𝑍−2𝐹(𝑍) 

putting k=3 ,we have  

Z[f(n-3)]=𝑍−3𝐹(𝑍)  

2.Shifting f(n) to left :-  

 If Z[f(n)]=F(Z) then Z[f(n+k)]=𝑍𝑘[F(Z)-f(0)-f(1)𝑍−1 − f 2 𝑍−2 − −−−−−− −  f(k-1)𝑍−(𝑘−1)]  

In particular  

(a)If k=1 then Z[f(n+1)]=Z[F(Z)-f(0)]  

(b) If k=2 then Z[f(n+2)]=𝑍2[F(Z)-f(0)-f(1)𝑍−1]  



(c) If k=3 then Z[f(n+3)]=𝑍3[F(Z)-f(0)-f(1)𝑍−1-f(2)𝑍2]   - - - - - - - - - - - - - - and so on.  

Problems:1.Prove Z( 

 
  

Solution- let f(n)=Z(   

Z[ 

 - expansion needs ‘Z’ in 

denominator’s, for this,multiply &divide with ’Z’                                     

   ]                                                     [x +  -x) ]  

we know that Z[f(n)]=   

  



evaluate (a)Z( 

Solution- we know that Z[f(n)]=   

1  

   let f(n)=  for n=0,1,2,3 - - -  

𝑛!  

Z[   

 

=F(Z) (say)    By 

shifting theorem  

  -   

2 .Find Z [ ]  and using shifting theorem  

  and (b)Z(   



-> Z[f(n+1)]=Z[F(Z)-F(0)]  

- >Z[f(n+2)]=𝑍 𝐹 𝑍 − 𝐹 0 − 𝐹 1 𝑍 

𝑛!  

 f(n+   

! f(n+   

!  

2   − 1   

1   

f(n)=   



Multiplication by ‘n’:If  Z[f(n)]=F(Z) then 

Z[nf 



5𝑍2+3𝑍+12  

5𝑍2+3𝑍+12  

 

   = lim 𝑍35𝑍4+3𝑍3+2(12𝑍−𝑍12)−45 𝑍−1 4  

      1   

- f(0)] = 0   

  



 

  = lim 𝑍323−18𝑍3−[11+−20𝑍−𝑍1−24−5𝑍−3   𝑧   𝑧  

= 23  

→ (𝑍 − 1)4= (𝑧 − 1)2.(𝑧 − 1)2
  

=(𝑍2 + 1 − 2𝑍)(𝑍2 + 1 − 2𝑍)  

=𝑍4 + 𝑍2 − 2𝑍3 + 𝑍2 + 1 − 2𝑍 − 2𝑍3 − 2𝑍 + 4𝑍2 =𝑍4 +  

6𝑍2 − 4𝑍3 − 4𝑍 + 1  

INVERSE  Z-TRANSFORM  

  𝑧 →∞   𝑍   

  = 
  lim  𝑍 

3 5 𝑍 4 +3 𝑍 3 +12 𝑍 2 − 2 5(( 𝑍𝑍 − 4 1−)4 4 𝑍 3 +6 𝑍 2 − 4 𝑍 +1)   

  𝑧 →∞   𝑍   

  = 
  lim  𝑍 

3 5 𝑍 4 +3 𝑍 3 +12 𝑍 2 − 5 2 𝑍 ( 𝑍 4 +−201) 4 𝑍 3 − 30 𝑍 2 +20 𝑍 − 5   

  𝑧 →∞   𝑍   

  = 
  lim  𝑍 

3 23 𝑍 2 3 .− 𝑍 18 4   1 𝑍 − 2 𝑍 + − 20   1 𝑍 4 − 5   

  𝑧 →∞   𝑍   



We have Z[f(n)]=F(Z)  which can be also written as f(n)=𝑍−1[𝐹(𝑍)].  

Then f(n) is called inverse Z-transform of F(Z)  

Thus finding the sequence {f(n)} from F(Z) is defined as Inverse Z-Transform.  

The symbol 𝑍−1 is the Inverse Z − 

Transform.  

CONVOLUTION 

THEOREM(v.v.imp):-  
  

   [where * is convolution operator]  

  

F(Z).G(Z) = [f(0) + f(1)𝑍−1 + f 2 𝑍−2 + f 3 𝑍−3 + - - - - - +f(n)𝑍−𝑛 + - - - - -]   
  

=Z[f(0)g(n)+f(n)g(n-1)+ - - - - - - -+f(n)g(0)] 𝑍−1[F(Z).G(Z)]  

=f(0)g(n)+f(n)g(n-1)+ - - - - - - -+f(n)g(0)  

If  𝑍 
− 1   𝐹 

  𝑍 
    = 𝑓 

  𝑛 
  and  𝑍 

− 1   𝐺 
  𝑍 

  = 
  𝑔 

  𝑛 
  then   

  

Proof: - 
  We have F(Z)= 

(1) [ g(0) + g 𝑍 
− 1   +  g 2  𝑍 

− 2   +  g 3  𝑍 
− 3   + 

  - 
  - 

  - 
  - 

  - 
  + g(n ) 𝑍 

− 𝑛   + 
  - 

  - 
  - 

  - 
  - ]   



 

Solution:-  

(a) 𝑍−1  

  [  ]  

   𝑍−𝑎  𝑍−𝑎  

  F(Z)=  𝑍 => f n  

  𝑍−𝑎  

  G(Z)=   𝑍 => g n  
  𝑍−𝑎  

= 𝑍−1  𝑍  

𝑍−𝑎  

= 𝑍−1  𝑍  

𝑍−𝑎  

= 𝑎𝑛  

= 𝑎𝑛  

 by convolution theorem , 𝑍 𝑔  𝑍−1 𝐹  

𝑍 . 𝐺 𝑍 = 𝑍−1 𝑍 . 𝑍  

   𝑍−𝑎  𝑍−𝑎  

=σ𝑛𝑚=0 𝑎𝑚. 𝑎𝑛−𝑚  

  

Problems: -   

) .Evaluate (a 1 𝑍 
−   1   𝑏 

  𝑍 
− 1     

𝑍   

𝑍   −   𝑎   

2   

𝑍   

𝑍   −   𝑎   

2   

=   𝑍   
−   1   𝑍   

.   
𝑍   



=σ𝑛𝑚=0 𝑎𝑛  

=𝑎𝑛 σ𝑛𝑚=0 1  

=𝑎𝑛[1 + 1 + 1 + - - - - -+1]     (n+1)times  

=(n+1)𝑎𝑛
  

𝑓 𝑚 𝑔(𝑛 − 𝑚)   

  𝑏  𝑍−1  𝑍2  

  

  

  

 = 𝑍−1  𝑍  = 𝑎𝑛  

  

  G(Z)=  𝑍 => g n  = 𝑍−1 = 𝑏𝑛
  

  𝑍−𝑏  𝑍−𝑏 by convolution 

theorem ,    

  𝑍−1 𝐹 𝑍 . 𝐺 𝑍  = 𝑍−1  

  𝑍−𝑎  𝑍−𝑏  

= σ𝑛𝑚=0 𝑎𝑚 . 𝑏𝑛−𝑚  

− 1   𝐹 
  𝑍 

  .  𝐺 
  𝑍 

  = 
  𝑓 

  𝑛 
  ∗  

𝑍 − 𝑎   𝑍 − 𝑏   

= 𝑍 − 1   𝑍   .   𝑍   

𝑍 − 𝑎   𝑍 − 𝑏   

F(Z)= 
  𝑍   =>  f n 

  

𝑍 − 𝑎   𝑍 − 𝑎   

𝑍   

𝑍   .   𝑍   



= σ𝑛𝑚=0 𝑏𝑛. ( 𝑎𝑏)𝑚  

= 𝑏𝑛 σ𝑛𝑚=0 (𝑎𝑏)𝑚  

= 𝑏𝑛[(𝑎)0 + ( 𝑎)1 + ( 𝑎)2 + (𝑎)3 + - - - - - - - - +(𝑎)𝑛]  

  𝑏  𝑏  𝑏  𝑏  𝑏  

this is in geometric progression,  

2+a𝑟3+ - - - -+a𝑟𝑛−1+ - - - -  =𝑎(1−𝑟𝑛) , r<1 a+a𝑟  

1−𝑟  

𝑎(𝑟𝑛−1)  

 =  , r>1  

1−𝑟  

𝑏𝑛 1− 𝑎 𝑛+1  

  =  𝑏𝑎  

1−  

𝑏  

 

𝑏 𝑛   1− 𝑎𝑏𝑛𝑛 ++11   



 =   𝑏−𝑎   

Put a=3 and b=4 we get  

 𝑍−1  𝑍2 = 4𝑛+1−3𝑛+1 = 4𝑛+1 − 3𝑛+1 𝑍−3 𝑍−4 4−3  

2.Using Convolution  theorem   

𝑍−1 2𝑛 where ∗ is convolution operator    show that 
 𝑛!  𝑛!  𝑛!   

  1    

  Solution: f(n)=  g(n)=  

  𝑛!  𝑛!  

1   ∗ 
  1   = 

  

  



  

!   

  - 
  to (n+1) terms]   



 

= 5𝑛 σ𝑛𝑚=0 (45)𝑚  

=5𝑛[(4)0 + (4)1 + (4)1 + ( 4)3 + - - - - - - - - +(4)𝑛]  

  5  5  5  5  5  

=5𝑛 [1 + 4 + (4)2 + (4)3 + − − − − − − − − +(4)𝑛]  

  5  5  5  5  

this is in geometric progression,  
 

1 +a𝑟3+ - - - -+a𝑟𝑛−1+ - - - -  =𝑎(1−𝑟𝑛) , r<1 a+a𝑟  

1−𝑟  

𝑎(𝑟𝑛−1)  



 =  , r>1  

1−𝑟  

Partial Fractions Method:-  

1.Find 𝑍−1  

𝑍 2 +11 𝑍 𝑍 +24   ( non repeated linear factors)  𝑣 .  𝑖𝑚𝑝   



   { 𝑍 + 8 = 0 ⇒ 𝑍 = −8 & 𝑍 + 3 = 0 ⇒ 𝑧 = −3}  

1 A=  

5  

now substitute  A and B values in equation -1 we get  



   𝑍−1 𝐹 𝑍 (𝑍−1 𝑎𝑛 = 𝑍  ⇒ 𝑍−1  𝑍 =𝑎𝑛)  

   𝑍−𝑎  𝑍−𝑎  

 2.Find  the Inverse Z-Transform of   

(𝑍−1)(𝑍−2)  

𝑍  

Solution:- let F(Z) =  here we can resolve F(Z) into partial 

fractions  directly as follows  

  1  1  1  

  F(Z) = Z[ ] = 𝑍  

  (𝑍−1)(𝑍−2)  𝑍−2  𝑍−1  

  𝑍  𝑍  

F(Z)             =   

  hence 𝑍−1 𝐹 𝑍  = 𝑍−1 − 𝑍−1  

 𝑍−2 𝑍−1  

  = 2𝑛 − 1𝑛  

−   

𝑍   

  

𝑍   

  



  3.Find 𝑍−1  3𝑍2+𝑍  
 

  



 

Geometric Progression:a) 

   Finite –  

a   

  b)  Infinite –  

  

eg; 1 

a  

  



 

put Z=-3 =>1=c(-3-2)  

1 = -5c c= 

 
  

now comparing the co-efficients of 𝑍2 on both sides  

0=A+B  



B=  substituting A,B and C 

values in equation-1,we get  

 

Solutions Of Difference Equations   

Difference Equations:-  

Just as the Differential equations are used for dealing with continuous process in nature , the   

difference equations are used for dealing of discrete process.  

Definition:-  

A difference equation is a relation between the difference of an unknown function at one (or) 

more   

general value of the argument.  

  𝐹 ( 𝑍 )   1   1   1   1   1   1   1   

  

F(Z) =    

𝑍 − 1   𝑍 +3   𝑍 2   𝑍 − 2   = 
  𝑍 − 1 [ 251   .  𝑍𝑍 − 2   − 

  251   𝑍 + 𝑧   3   − 
    15 .  ( 𝑍 + 𝑧 3) 2   ]   

  = 
  1   2 

𝑛   − 
  1   − 3 

  𝑛   − 
    1 𝑛 (−3) 

𝑛   

  25   25   5   

  ∴  𝑍 − 1   𝑍 +3   𝑍 2   𝑍 − 2   = 
  251   2 𝑛   − 

  251   − 3 
  𝑛   − 

    15 𝑛 (−3) 𝑛   



thus ∆𝑦𝑛 + 2𝑦𝑛 = 0 𝑎𝑛𝑑  

.  

The solution of a difference equation is an expression for 𝑦𝑛 which satisfies the given   

.  

The general solution of a difference equation is that in which the number of arbitrary constants is   

equal to the order of the difference equation.  

Linear Difference Equation:-  
The Linear difference equation is that in which 𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+3− − − − − − − etc occur to the 1𝑠𝑡

  

degree only and are not multiplied together.  

The difference equation is called Homogeneous if f(n)=0,Otherwise it is called as  

NonHomogeneous equation (i.e:-f(n)   

Working rule (or) Working Procedure:-  
To solve a given linear difference equation with constant co-efficient by Z-transforms.  

Step-1 :- Let Z(𝑦𝑛)=Z[y(n)] =Y(Z)   

Step-2 :-Take Z-Transform on bothsides of the given difference equation.  



Step-3 :-Use the formulae Z(𝑦𝑛) = 𝑌 𝑍  

Z[𝑦𝑛 + 1] =Z[Y(Z)-𝑦0]  

Z[𝑦𝑛 + 2] = 𝑍2[Y(Z)-𝑦0 − 𝑦1𝑍−1]  

Step-4:-Simplify and find Y(Z) by transposing the terms to the right and dividing by the co-efficient of y(Z).  

Step-5:-Take the Inverse Z-Transform of Y(Z) and find the solution 𝑦𝑛 

This gives 𝑦𝑛 as a function of n which is the desired solution. Problems:-  

  1.Solve 𝑦𝑛+1 − 2𝑦𝑛 = 0 using  Z −Transforms.  

Solution:-let Z[𝑦𝑛] = 𝑌 𝑍  

 

Z[𝑦𝑛+1] = 𝑍 𝑌 𝑍 − 𝑦0 taking  Z-Transform  of  the given equation we get Z[𝑦𝑛+1] − 

2𝑍 𝑦𝑛 = 0  

  𝑍 𝑌 𝑍  − 𝑦0 - 2Y(Z)  = 0   

Y(Z)[Z-  

Y(Z) = 𝑍−2 𝑦0  

  𝑍−1 𝑌 𝑍  = 𝑍−1 𝑍𝑍−2 𝑦𝑜  =>  Z[Y(n)]=Y(Z)  

   𝑦𝑛 =2𝑛𝑦𝑜  𝑍−1 𝑌 𝑍  = 𝑦𝑛  

2.Solve the difference equation using Z-Transforms  



𝜇𝑛+2 − 3𝜇𝑛+1 + 2𝜇𝑛 = 0 Given that 

𝜇0=0  , 𝜇1 = 1  

Solution:-let Z(𝜇𝑛) = 𝜇 𝑍  

   Z(𝜇𝑛+1) = 𝑍[𝜇 𝑍  − 𝜇0]  

Z(𝜇𝑛+2) = 𝑍2 𝜇 𝑍 − 𝜇0 − 𝜇𝑍1 now taking Z-Transform on both sides of 

the given equation we get  

𝑍(𝜇𝑛+2) − 3𝑍(𝜇𝑛+1) + 2𝑍(𝜇𝑛) = 0 𝑍2− 𝜇0 − 𝜇𝑍
1 

- 3𝑍[𝜇 𝑍 − 𝜇0] +2𝜇 𝑍 = 0 using the given 

conditions it reduces to  

𝑍2− 0 − 1 - 3𝑍𝜇[𝜇𝑍 𝑍[ 𝑍−2  0] − 3+2 𝑍𝜇 + 𝑍 2  ] = 0  

        

 𝑍  𝑍  

𝜇 

    𝑍 = 𝑍 2 −3  𝑍 +2   = Z   (or)  

=   ( 𝑍 −1  )𝑍 (  𝑍 −2  )  

    

 =  Z [ 𝑍    − 𝑍    ]  

𝜇   𝑍   

𝜇   𝑍   



 𝑍  𝑍  

= 𝑍 −2  − 𝑍 −1   

on taking Inverse Z-Transform on both sides we get  

   𝑍−1 𝜇 𝑍  = 𝑍−1  𝑍 − 𝑍  

    𝑍−2  𝑍−1  

   𝜇𝑛 =𝑍−1  2    

𝜇𝑛 = 2𝑛 − 1  

3.Solve the difference equation using Z-Transform  

𝑦𝑛+2 − 4𝑦𝑛+1 + 3𝑦𝑛 = 0  

Given that 𝑦0 = 2 𝑎𝑛𝑑 𝑦1 = 4  

Solution:- let Z[𝑦𝑛] = 𝑌 𝑍  

Z[𝑦𝑛+1] = 𝑍 𝑌 𝑍 − 𝑦0 Z[𝑦𝑛+2]  = 𝑍2 𝑌 𝑍 − 𝑦0 − 𝑦1𝑍−1 

taking  Z-Transform  of  the given equation we get  

Z(𝑦𝑛+2) − 4𝑍(𝑦𝑛+1) + 3𝑍(𝑦𝑛) = 0  

𝑍2 𝑌 𝑍 − 𝑦0 − 𝑦1𝑍−1  - 4 𝑍 𝑌 𝑍 − 𝑦0 +3Y(Z) = 0 using 

the given conditions it reduces to  

𝑍2 𝑌 𝑍 − 2 − 4𝑍−1  - 4 𝑍 𝑌 𝑍 − 2 +3Y(Z) = 0  

𝑍𝑍− − 𝑍−1  𝑍𝑍−1 



   i.e:-  Y(Z)[𝑍2 − 4𝑍 + 3] − 2𝑍2 − 4𝑍 + 8𝑍 =0  

Y(Z)[𝑍2 − 4𝑍 + 3] =Z(2Z-4)  

  

   𝑍−1[𝑌 𝑍 ] = 𝑍−1  

 𝑍−1  𝑍−3    

𝑦𝑛 = 1+3𝑛  

𝑍  + 𝑍−1  𝑍  

  (   )   

Y(Z)=  on taking Inverse Z - Transform on both  

sides we obtain   



  


