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Chapter 11  

Linear Differential Equations of Second 
and Higher Order 

 

11.1  Introduction 

A differential equation of the form =0 in which the 

dependent variable  and its derivatives viz.   ,  etc occur in first 

degree and are not multiplied together is called a Linear Differential Equation. 

11.2    Linear  Differential Equations (LDE) with Constant Coefficients 

A general linear differential equation of n
th

 order with constant coefficients is 

given by: 

   

where  are constant and  is a function of  alone or constant.  

  

Or , where ,  , …..,  are called 

differential operators.                         

11.3  Solving Linear Differential Equations with Constant Coefficients 

Complete solution of equation    is given by  C.F + P.I. 

where C.F. denotes complimentary function and P.I. is particular integral. 

When , then solution of equation  is given by  C.F 

11.3.1 Rules for Finding Complimentary Function (C.F.) 

Consider the equation    

  

Step 1:  Put ,  auxiliary equation (A.E) is given by  

 ……③ 

Step 2:  Solve the auxiliary equation given by ③ 
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I. If the n roots of A.E. are real and distinct say  , ,…  

C.F. =   

II. If two or more roots are equal i.e. = =… ,   

C.F. =   

III.  If A.E. has a pair of imaginary roots i.e. ,    

           C.F. =   

IV. If 2 pairs of imaginary roots are equal i.e. , 

   

C.F. =   

Example 1 Solve the differential equation:   

Solution:   

Auxiliary equation is:   

  

  

C.F. =   

Since solution is given by   C.F 

  

Example 2 Solve the differential equation:   

Solution:   

Auxiliary equation is: …….①  

By hit and trial  is a factor of ①  

∴① May be rewritten as 
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C.F. =   

Since solution is given by   C.F 

  

Example 3 Solve  

Solution:  Auxiliary equation is: 

…….①  

By hit and trial  is a factor of ①  

∴① May be rewritten as 

  

  

……② 

By hit and trial  is a factor of ②  

∴② May be rewritten as 

  

  

  

  

  

C.F. =   

Since solution is given by   C.F 

  

Example 4 Solve the differential equation:   

Solution:   

Auxiliary equation is:   
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C.F. =   

Since solution is given by   C.F 

  

Example 5 Solve the differential equation:   

Solution:   

Auxiliary equation is:    

  

  

  

C.F. =   

Since solution is given by   C.F 

  

Example 6 Solve the differential equation:   

Solution:   

Auxiliary equation is: …….①  

By hit and trial  is a factor of ①  

∴① May be rewritten as 
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C.F. =   

Since solution is given by   C.F 

  

Example 7 Solve the differential equation:   

Solution:  Auxiliary equation is:  …….①  

Solving ①, we get 

  

C.F. =   

Since solution is given by   C.F 

] 

Example 8 Solve the differential equation:   

Solution:  Auxiliary equation is: …….①  

Solving ①, we get 

  

C.F. =  

Since solution is given by   C.F 

  

  11.3.2 Shortcut Rules for Finding Particular Integral (P.I.) 

Consider the equation  ,  

  

Then P.I =   , Clearly P.I. = 0 if   

Case I: When   

 Use the rule P.I  =  ,  

In case of failure i.e. if  
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P.I =  =    ,  

 If   , P.I. =  ,  and so on 

Example 9 Solve the differential equation:   

Solution:   

Auxiliary equation is:   

  

C.F. =   

 P.I. =    =  , by putting  

            

Complete solution is:   C.F. + P.I 

  +  

Example 10 Solve the differential equation:   

Solution:   

Auxiliary equation is:   

  

  

C.F. =   +  

 P.I. =    , putting ,  

∴P.I =                     if   

 P.I. = =  ,  

 P.I. =  
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Complete solution is:   C.F. + P.I 

  +  +  

Example 11 Solve the differential equation:   

Solution:   

Auxiliary equation is:   

  

C.F. =   

 P.I. =   

  (  

 +      

                                                      and  

 +   

Putting   and  in the three terms respectively 

 and    for first two terms 

∴ P.I.       

                                                          if   

Now putting   in first two terms respectively 

P.I.           =  

P.I.      

P.I.                
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Complete solution is:   C.F. + P.I 

  +   

Case II: When   

 If   , put ,  

  , ,…… 

This will form a linear expression in  in the denominator. Now rationalize the 

denominator to substitute    . Operate on the numerator term by term 

by taking    

In case of failure  i.e. if  

   P.I.   ,  

If , P.I. ,  

Example 12 Solve the differential equation:   

Solution:  Auxiliary equation is:   

  

  

C.F. =   +  

 P.I. =    

 putting  

P.I =    =     , Rationalizing the denominator 

      = ,  Putting  

   )  

            =  )  
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Complete solution is:   C.F. + P.I 

  +    ) 

Example 13 Solve the differential equation:   

Solution:  Auxiliary equation is:   

  

  

C.F. =   

 P.I. =    

         =  

 Putting  in the 1
st
 term and   in the 2

nd
 term 

P.I =     

      =    , Rationalizing the denominator  

      =    , Putting  

    

Now  C.F. + P.I 

    

Example 14 Solve the differential equation:   

Solution:  Auxiliary equation is:   

  

C.F. =   

 P.I. =    
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         =  

 Putting  in the 1
st
 term and   in the 2

nd
 term 

We see that   for the 1
st
 term 

 P.I.     

                                         P.I. ,  

P.I. =   

Complete solution is:   C.F. + P.I 

  

Case III: When   

  P.I  =    

1. Take the lowest degree term common from  to get an expression         

of the form   in the denominator and take it to numerator to 

become    

2. Expand   using binomial theorem up to n
th

 degree as 

(n+1)
th

 derivative of   is zero 

3. Operate on the numerator term by term by taking  

Following expansions will be useful to expand  in ascending 

powers of   

   

   

   

   

Example 15 Solve the differential equation:   

Solution:   

Auxiliary equation is:   
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C.F. =   +  

 P.I. =      

         

         

         

          

∴P.I =  

Complete solution is:   C.F. + P.I 

  +   

Example 16 Solve the differential equation:   

Solution:  Auxiliary equation is:   

  

  

C.F. =    

 P.I. =      
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 ∴ P.I   

Complete solution is:   C.F. + P.I 

   

Example 17 Solve the differential equation:   

Solution:  Auxiliary equation is:   

  

  

C.F. =  

 P.I.  =      
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∴ P.I =  

Complete solution is:   C.F. + P.I 

  

Case IV: When     

Use the rule:  

Example 18 Solve the differential equation:   

Solution:  Auxiliary equation is:   

  

  

C.F. =  

 P.I.  =     
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Complete solution is:   C.F. + P.I 

  

Example 19 Solve the differential equation:   

Solution:  Auxiliary equation is:   

  

  

C.F. =  

 P.I.  =     

              

               

             , Putting  

              

            , Rationalizing the denominator 

             , Putting  

∴ P.I      

Complete solution is:   C.F. + P.I 
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Example 20 Solve the differential equation:   

Solution:   

Auxiliary equation is:   

  

C.F. =   

 P.I. =   

        (  

                              

         

         

         

          

          

          

          

           

   ∴ P.I.   

Complete solution is:   C.F. + P.I 
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Example 21 Solve the differential equation:   

Solution:  Auxiliary equation is:   

  

  

C.F. =  

 P.I.  =     

        = Imaginary part of  

Now  =  

                               

                              

                               

                             =    

                             =   

                             =  

                             =  

                             =  

                             =  

∴ P.I. = Imaginary part of  =  

          =    
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Complete solution is:   C.F. + P.I 

         

Example 22 Solve the differential equation:  

Solution:  Auxiliary equation is:   

  

  

C.F. =  

 P.I.  =     

             

                

                        

              

              

              

            

                           12 −cos2 2−1−sin2 4+14sin2 2    

    ∴ P.I.   

Complete solution is:   C.F. + P.I 

  

Case V: When   

Use the rule:  =   
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Example 23 Solve the differential equation:   

Solution:  Auxiliary equation is:   

  

  

C.F. =  

 P.I.  =     

           

          ,            Putting  

             

             

  P.I. =   

Complete solution is:   C.F. + P.I 

  

Example 24 Solve the differential equation: 

                                                

Solution:  Auxiliary equation is:   

  

C.F. =  

 P.I.  =     

           

Now  =  
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          ,            Putting  

            

        Also     

                      

                      

                     

                      

                    

                    

                  

         P.I. =   

 Complete solution is:   C.F. + P.I 

   

Case VI: When  is any general function of  not covered in shortcut 

methods I to V above 

Resolve   into partial fractions and use the rule: 

   

Example 25 Solve the differential equation:  

Solution:  Auxiliary equation is:   
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C.F. =  

 P.I.  =     

             

              

                      

               

             , Integrating 2
nd

 term by parts 

              

              

      ∴ P.I.   

Complete solution is:   C.F. + P.I 

  

Example 26 Solve the differential equation:  

Solution:  Auxiliary equation is:   

  

C.F. =  

 P.I.  =     

             

             

P.I.  …….① 
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Now  

                             

                             

                              

 

 

            =  …② 

                                  Replacing  by –  

           …③ 

              Using ②and ③ in ① 

   P.I. =  

                    

      =  

        

P.I   

 Complete solution is:   C.F. + P.I. 

  

                                            Exercise 11A 

Solve the following differential equations: 

1.          Ans.   
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2.         Ans.  

 

3.   

                                       Ans.  

4.   

Ans.  

5.  

              Ans.   

 

6.  

              Ans.  

 

7.  

 
 

8.  (1+2tan   

            Ans.  

 

9.  

           Ans.  

 

10. , given  when  

           Ans.  

 

11.4 Differential Equations Reducible to Linear Form with Constant              

Coefficients 

Some special type of homogenous and non homogeneous linear differential 

equations with variable coefficients after suitable substitutions can be reduced 

to linear differential equations with constant coefficients. 

11.4.1 Cauchy’s Linear Differential Equation 

The differential equation of the form: 
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is called Cauchy’s linear equation and it can be reduced to linear differential 

equations with constant coefficients by  following substitutions: 

      

  

, where  

Similarly  ,  and so on. 

Example 27 Solve the differential equation: 

 ,           ….…① 

Solution: This is a Cauchy’s linear equation with variable coefficients. 

Putting      

,   and   

∴① May be rewritten as 

  

 ,  

  Auxiliary equation is:   

  

  

C.F. =   +  

        

 P.I. =    

        =    , Putting  

      =          Putting  
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   )  

            =  )  

             =   

Complete solution is:   C.F. + P.I 

 

                                                   

Example 28 Solve the differential equation: 

                               ….…① 

Solution: This is a Cauchy’s linear equation with variable coefficients. 

Putting      

,    

∴① May be rewritten as 

  

 ,   

  Auxiliary equation is:   

  

C.F. =    

         

 P.I. =   
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Put  

   

            

             

             

             

             

             

Complete solution is:   C.F. + P.I 

  

  ,  

Example 29 Solve the differential equation: 

  ,              ….…① 

Solution: This is a Cauchy’s linear equation with variable coefficients. 

Putting      

,   ,  

∴① May be rewritten as 
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  Auxiliary equation is:   

  

  

C.F. =   

        

 P.I. =     

          

           Putting  in the 1
st
 term 

                

          

         

  

 Complete solution is:   C.F. + P.I 

  

11.4.2 Legendre’s Linear Differential Equation 

The differential equation of the form:      

 

is called Legendre’s linear equation and it can be reduced to linear differential 

equations with constant coefficients by  following substitutions: 
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, where  

Similarly     

  and so on. 

Example 30 Solve the differential equation: 

                 ….…① 

Solution: This is a Legendre’s linear equation with variable coefficients. 

Putting      

,    

Also  

                                  

                                   

                                  

∴① May be rewritten as 

  

  

  Auxiliary equation is:   

  

C.F. =    
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 P.I. =   

                             

                             , Putting  in 1
st
 term, it is a 

case of failure  , also  in the 2
nd

 term. 

 P.I. =  

           =  

           =  

Complete solution is:   C.F. + P.I 

  

Example 31 Solve the differential equation: 

        ….…① 

Solution: This is a Legendre’s linear equation with variable coefficients. 

Putting      

,    

∴① May be rewritten as 

  

  

  Auxiliary equation is:   

  

C.F. =    

        =  
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 P.I. =   

              = , Putting  , case of failure  

                                                                         

                   =  

  P.I  

  Complete solution is:  C.F. + P.I 

   

11.5  Method of Variation of Parameters for Finding Particular Integral 

Method of Variation of Parameters enables us to find the solution of 2
nd

 and 

higher order differential equations with constant coefficients as well as variable 

coefficients. 

Working rule 

Consider a  2
nd

 order linear differential equation: 

 ….…① 

1. Find complimentary function given as:  C.F. =  , 

     where  and  are two linearly independent solutions of ① 

2. Calculate 
  

,  is called Wronskian of  and   

 

3. Compute  ,  

4. Find P.I. =  

5. Complete solution is given by:  C.F. + P.I 

Note: Method is commonly used to solve 2
nd

 order differential but it can be 

extended to solve differential equations of higher orders. 

Example 32 Solve the differential equation:   
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using method of variation of parameters.  

Solution:   

  Auxiliary equation is:   

  

C.F. =    

 and  

 

  

  

  P.I  

         =  

Complete solution is:  C.F. + P.I 

  

Example 33 Solve the differential equation:   

using method of variation of parameters.  

Solution: Auxiliary equation is:   

  

C.F. =    

 and  
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  P.I  

         =  

   Complete solution is:  C.F. + P.I 

   

Example 34 Solve the differential equation:   

using method of variation of parameters.  

Solution:   

  Auxiliary equation is:   

  

C.F. =    

 and  

 

  

       

        

  

       

       

  P.I  

         =  
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       =       

            =  

Complete solution is:  C.F. + P.I 

   

Example 35 Solve the differential equation:   

using method of variation of parameters.  

Solution: Auxiliary equation is:   

  

C.F. =   

 and  

 

  

      = , Putting  

  

  

  

  P.I  

           

            

   Complete solution is:  C.F. + P.I 
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Example 36 Given that  and  are two linearly independent 

solutions of the differential equation: ,  

Find the particular integral and general solution using method of variation of 

parameters.  

Solution: Rewriting the equation as:  

Given that  and   

C.F. =   

 

       

  

  P.I  

           

 Complete solution is:  C.F. + P.I 

   

Example 37 Solve the differential equation:     

using method of variation of parameters.        

Solution: This is a Cauchy’s linear equation with variable coefficients. 

Putting      

,    
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∴ Given differential equation may be rewritten as 

  

  

  Auxiliary equation is:   

  

C.F. =    

    and  

 

  

  

        

  P.I  

         =  

            

   Complete solution is:  C.F. + P.I 

   

or  

,  

11.6  Solving Simultaneous Linear Differential Equations  

Linear differential equations having two or more dependent variables with 

single independent variable are called simultaneous differential equations and   

can be of two types: 
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Type 1: ,  ,  

Consider a system of ordinary differential equations in two dependent variables 

 and y and an independent variable : 

,  ,  

Given system can be solved as follows: 

1.  Eliminate  from the given system of equations resulting a differential 

equation exclusively in . 

2.  Solve the differential equation in   by usual methods to obtain  as a 

function of   . 

3. Substitute value of  and its derivatives in one of the simultaneous 

equations to get an equation in  .   

4. Solve for  by usual methods to obtain its value as a function of  

Example 38 Solve the system of equations:  ,    

Solution: Rewriting given system of differential equations as: 

……① 

 …..②,  

Multiplying ① by  

 …..③ 

Subtracting ② from ③, we get 

 …….④ 

which is a linear differential equation in  with constant coefficients. 

To solve ④ for , Auxiliary equation is   

  

C.F. =   

 P.I. =    

, Putting  and  in 1
st
 and 2

nd
 terms respectively 

 …….⑤ 
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Using ⑤in ①  

  

 ……⑥ 

⑤ and ⑥ give the required solution. 

Example 39 Solve the system of equations:  ,    

given that  ,   

Solution: Given system of equations is: 

……① 

 …...②, 

Multiplying ① by  

  

 ……③ 

Subtracting ② from ③, we get 

…….④ 

which is Cauchy’s linear differential equation in  with variable coefficients. 

.Putting      

,   ,  

 ④ may be rewritten as 

  ……⑤ 

  

To solve ⑤ for , Auxiliary equation is   

  

C.F. =   
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  …….⑥ 

Using ⑥in ①  

  

 ……..⑦ 

Also given that at    and at   

Using in ⑥and ⑦ ,    

Using   in ⑥and ⑦, we get 

 ,   

Example 40 Solve the system of equations: 

  ,    

Solution: Rewriting given system of differential equations as: 

……① 

 …..②,  

Multiplying ① by  

  

 …..③ 

Subtracting ② from ③, we get 

 …….④ 

which is a linear differential equation in  with constant coefficients. 

To solve ④ for , Auxiliary equation is   

  

  

C.F. =   

 P.I. =    
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 Putting   i.e.  in 1
st
 and 2

nd
 terms, it is a case of failure  

  P.I.  

                       putting  

            

 …….⑤ 

                                      Using ⑤in ① 

  

 

 

 …⑥  

⑤ and ⑥ give the required solution. 

Type II: Symmetric simultaneous equations of the form  

Simultaneous differential equations in the form   can be solved 

by the method of grouping or the method of multipliers or both to get two 

independent solutions:    where  and  are arbitrary 

constants.  

Method of grouping: In this method, we consider a pair of fractions at a time 

which can be solved for an independent solution. 

Method of multipliers: In this method, we multiply each fraction by suitable 

multipliers (not necessarily constants) such that denominator becomes zero. 
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  If  , ,  are multipliers, then     

Example 41 Solve the set of simultaneous equations: 

                       

Taking  as multipliers, each fraction equals 

  

       

Integrating, we get   

1
st
 independent solution is: ……①  

Now for 2
nd

 independent solution, taking last two members of the set of 

equations:   

  

  

  

Integrating, we get 

  

  ……….② 

 ① and ② give the required solution. 

                                         Exercise 11B 

Q1. Solve the following differential equations: 
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i.          

           Ans.  

 

ii.        

            Ans.  

 

iii.   

       Ans.  

iv.  

Ans.

1. log +1  

Q2. Solve the following differential equations using method of variation of 

parameters 

i.  

                        Ans.   

ii.  

        Ans.   

 

iii.  

                Ans.   

 

iv.  

                   Ans:   

Q2. Solve the following set of simultaneous differential equations 

i. ,    

Ans:  

 

ii.  ,  
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Ans:  

iii.   

Ans:  

  11.7  Previous Years Solved Questions 

Q1. Solve        

 

Solution:  Auxiliary equation is:  …….①  

Solving ①, we get 

  

C.F. =   

Since solution is given by   C.F 

  

Q2. Solve    

                                           

Solution:  Auxiliary equation is:   

  

C.F. =   

 P.I. =   
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                Putting   

        

         Putting  

       

         

   ∴ P.I.  

Complete solution is:   C.F. + P.I 

  

Q3. Solve  by the method of variation of parameters.        

                                                                    

Solution:   

  Auxiliary equation is:   

  

C.F. =    

 and  
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       P.I  

         =  

         =  

  Complete solution is:  C.F. + P.I 

   

Q4. Solve the system of equations:  ,        

                               

Solution: Rewriting given system of differential equations as: 

……① 

 …..②,  

Multiplying ① by  

  

…..③ 

Adding ② and ③, we get 

 …….④ 

which is a linear differential equation in  with constant coefficients. 

To solve ④ for , Auxiliary equation is   

  

C.F. =   

 P.I. =    

                      Putting   

 …….⑤ 
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Using ⑤in ①  

  

 ……⑥ 

⑤ and ⑥ give the required solution. 

Q5. Solve by method of variation of parameters    

 ,  

Solution: Auxiliary equation is:    

   

  

C.F. =    

 and  

 

  

  

  P.I  

         =  

   Complete solution is:  C.F. + P.I 

  

Q6. Solve the differential equation:   

                                                 

Solution:   

Auxiliary equation is:   
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C.F. =    

 P.I. =     

  

 , putting  in 1
st
 term,  in the 2

nd
 term 

   

   

   

Complete solution is:   C.F. + P.I 

     

Q7.  Solve   

                                                   

Solution:  Auxiliary equation is:   

  

  

C.F. =  

 P.I.  =     
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    ∴ P.I.   

Complete solution is:   C.F. + P.I 

  

Q8. Solve by M.O.V.P.          

                                                                                

Solution:  Given differential equation may be rewritten as 

  

  :  Auxiliary equation is:   

  

  

C.F. =  
    and  

 

  

         =   
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  P.I  

       =  

       =  

Complete solution is:  C.F. + P.I 

   

Q9. Solve    

                                       

Solution:  Auxiliary equation is:   

  

C.F. =   

 P.I. =     

  

=  

Now   , putting  

 Also  putting  

  Again     as , a case of failure 2 times 
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      ,   putting  

And  

∴ P.I.=    

Complete solution is:   C.F. + P.I 

  

Q.10 Solve             

                           

Solution: This is a Cauchy’s linear equation with variable coefficients. 

Putting      

,    

∴ Equation may be rewritten as 

  

 ,   

  Auxiliary equation is:   

  

  

C.F. =    

        =  

 P.I. =   
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        = =  

        =  

                                             

          =   

                            Solving the two integrals by putting  

 = =  

  Complete solution is:   C.F. + P.I 
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2.2. First Order Linear Partial Di¤erential Equations, Lagrange�s Method

Let P (x; y; z), Q(x; y; z) and R(x; y; z) be continuous di¤erentiable functions with respect to

each of the variables. Being x; y independent variables and z = z(x; y) dependent variable,

consider

P (x; y; z)
@z

@x
+Q(x; y; z)

@z

@y
= R(x; y; z) (1)

This equation is called the �rst order quasi-linear partial di¤erential equation. A method for

solving such an equation was �rst given by Lagrange. For this reason, equation (1) is also

called the Lagrange linear equation. If P and Q are independent of z and

R(x; y; z) = G(x; y)� C(x; y)z;

(1) gives the equation with linear partial di¤erential, so a linear partial di¤erential equation

can also be considered as a quasi-linear partial di¤erential equation. Therefore, the Lagrange

method is also valid for linear partial di¤erential equations.

Lagrange�s Method

Let�s assume that in a region of three-dimensional space, the functions P and Q are not both

zero, and that the function z = f(x; y) has a solution to the equation (1). Considering a �xed

point M(x; y; z) on the S surface de�ned by z = f(x; y), we can give a simple geometrical

1



meaning to equation (1).

Figure 2.2.1

The normal vector N of surface S at point M is given by

!
n = grad ff(x; y)� zg

= (fx; fy;�1)

= (p; q;�1):

If we write the equation (1) in the form

Pp+Qq �R = 0; (2)

it is seen that the scalar product of the vectors (p; q;�1) and (P;Q;R) is zero. These two

vectors are perpendicular to each other. This means that there is a line L that passes through

the point M and is perpendicular to the normal vector n, such that the direction cosines

(P;Q;R) of L is tangent to the surface S. Let the plane passing through N and L cut the

surface S along a curve C. The direction cosines of the tangent of C on M is (dx; dy; dz)

and this tangent is parallel to L. Therefore, the direction cosines of these two lines must be

2



proportional. That is,
dx

P
=
dy

Q
=
dz

R
: (3)

The �rst order ordinary di¤erential equation system formed by the equations (3) is called the

auxiliary system of the Lagrange equation or the Lagrange system. A system equivalent to

system (3), being x independent variable, is

dy

dx
=
Q

P
;
dz

dx
=
R

P
: (4)

The general solution of (4) is

y = y(x; c1; c2) ; z = z(x; c1; c2) (5)

where c1 and c2 are arbitrary constants. If these equations are solved according to c1 and c2 ,

the general solution of the system (3) can be as follows

u(x; y; z) = c1 ; v(x; y; z) = c2: (6)

Each of u = c1 and v = c2 is called �rst integral of Lagrange system. The functions u and v

must also be functionally independent. So at any point M(x; y; z) 2 
, all Jacobians

@(u; v)

@(x; y)
;
@(u; v)

@(x; z)
;
@(u; v)

@(y; z)

should not be zero at once. Each of the �rst integrals obtained by (6) is a surface family of

one-parameter. Intersection curves of surfaces de�ned by (6) form the surfaces

F (u; v) = 0 (7)

The equation (7), where F is an arbitrary function, gives the general solution to the partial

di¤erential equation (1).

It is also possible to explain this situation as follows: exact di¤erential of (6) is in the form

uxdx+ uydy + uzdz = 0

vxdx+ vydy + vzdz = 0

9=; (8)

3



Since u and v are the solutions of the system (3), the equations (3) and (8) show that u and

v functions satisfy

uxP + uyQ+ uzR = 0

vxP + vyQ+ vzR = 0

9=; : (9)

If we solve the system (9) according to P;Q and R; we obtain

P
@(u;v)
@(y;z)

=
Q

@(u;v)
@(z;x)

=
R

@(u;v)
@(x;y)

(10)

On the other hand, from the equation F (u; v) = 0, we eliminate the arbitrary function F; we

obtain the partial di¤erential equation

@(u; v)

@(y; z)
p+

@(u; v)

@(z; x)
q =

@(u; v)

@(x; y)
: (11)

If the expressions P;Q;R in (10), which are proportional with Jacobians, are written in (11),

we have

Pp+Qq = R;

which shows that (7) is the solution of (1). Since F is arbitrary in this solution, it is the general

solution.

Example 1. Find the general solution of the equation x2
@z

@x
+ y2

@z

@y
= (x+ y)z.

Solution: The corresponding Lagrange system is in the form

dx

x2
=
dy

y2
=

dz

(x+ y)z
:

From this system, the �rst integrals are obtained as follows:

i) From
dx

x2
=
dy

y2
;we have �1

x
= �1

y
+ c1 or u =

1

y
� 1

x
= c1

ii) From
dx

x2
=
dy

y2
=
dx� dy
x2 � y2 =

dx� dy
(x� y)(x+ y) =

dz

(x+ y)z
it follows

d(x� y)
(x� y) =

dz

z
:

) ln(x� y) = ln z + ln c2 ) v =
x� y
z

= c2.

4



So, the general solution of the given equation is

F (
1

y
� 1

x
;
x� y
z
) = 0

where F is arbitrary function.

Remark: The general solution given above is also written as

z = (x� y)f(1
y
� 1

x
)

where f is arbitrary function.

Example 2. Find the general solution of the equation xzp+ yzq = �(x2 + y2).

Solution: The corresponding Lagrange system is

dx

xz
=
dy

yz
=

dz

�(x2 + y2) :

The �rst integrals:

i)
dx

xz
=
dy

yz
) dx

x
=
dy

y
) lnx� ln y = ln c1 ) u =

x

y
= c1.

ii)
dx

xz
=
dy

yz
=
xdx

x2z
=
ydy

y2z
=
xdx+ ydy

z(x2 + y2)
=

dz

�(x2 + y2)

) xdx+ ydy = �zdz ) xdx+ ydy + zdz ) v = x2 + y2 + z2 = c2.

The general solution of the given equation is

F (
x

y
; x2 + y2 + z2) = 0

where F is arbitrary function.

Example 3. Find the general solution of the equation (y + x)
@z

@x
+ (x� y)@z

@y
=
x2 + y2

z
..

5



Solution: The corresponding Lagrange system is

dy

x� y =
dx

y + x
=

dz

x2 + y2

z

:

The �rst integrals:

i) From
dy

x� y =
dx

y + x
=
dx+ dy

2x
we have

dx

y + x
=
dx+ dy

2x
.

(x+ y)d(x+ y)� 2xdx = 0 ) d

�
(x+ y)2

2
� x2

�
= 0) (x+ y)2 � 2x2 = c1 or

) u(x; y; z) = y2 + 2xy � x2 = c1.

ii) From
ydy � xdx

y(x� y)� x(x+ y) =
zdz

x2 + y2
;
ydy � xdx
�(x2 + y2) =

zdz

x2 + y2
) ydy � xdx+ zdz = 0

) v(x; y; z) = y2 � x2 + z2 = c2

The general solution is

F (y2 + 2xy � x2; y2 � x2 + z2) = 0

where F is arbitrary function.

Remark: It should be noted that the �rst independent pair of integrals obtained above is not

the only pair used to write the general solution. In the last example, the pair of �rst integrals

w(x; y; z) = z2 + 2xy = c1

v(x; y; z) = y2 � x2 + z2 = c2

form an independent pair of the �rst integrals of the auxiliary equation system. Hence the

general solution can writen as

F (z2 + 2xy; y2 � x2 + z2) = 0

where F is an arbitrary function.
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Formation of Partial Differential Equations 

  

Partial differential equations can be obtained by the elimination of arbitrary 

constants or by the elimination of arbitrary functions. 

  

By the elimination of arbitrary constants 

Let us consider the function 

( x, y, z, a, b  ) = 0  -------------  (1) 

where a & b are arbitrary constants         

Differentiating equation (1) partially      w.r.t x & y, we get 

 

Eliminating a and b from equations (1), (2) and (3), we get a partial differential 

equation of the first order of the form f (x,y,z, p, q) = 0 

  

Example 1 

Eliminate      the arbitrary constants a & b        from  z = ax + by + ab 

Consider      z  = ax + by + ab     ____________ (1) 

Differentiating        (1) partially w.r.t     x & y, we get 

 

Using (2)      & (3)  in (1), we get 

          z        = px +qy+ pq 

which is the required partial differential equation. 

Example 2 

Form the partial differential equation by eliminating the arbitrary constants a and b 

from  

z = ( x2 +a2 ) ( y2 + b 2) 

Given z = ( x2 +a2 ) ( y2 + b2)         ……..(1) 

Differentiating        (1) partially w.r.t     x & y , we get 



p        = 2x   (y2 + b2 )        

q        = 2y   (x  + a  )        

  

Substituting the values of p and q in (1), we get  

4xyz = pq 

which is the required partial differential equation. 

Example 3 

  

Find the partial differential equation of the family of spheres of radius one whose 

centre lie in the xy - plane. 

  

The equation of the sphere is given by 

  

( x –a )2 + ( y- b) 2 +  z2  = 1    _____________ (1) 

  

Differentiating (1) partially w.r.t x & y , we get 

2        (x-a ) + 2 zp   =       0 

2 ( y-b ) + 2 zq  =    0 

  

From these equations we obtain 

x-a = -zp _________ (2)  

y -b = -zq _________ (3) 

Using (2) and (3) in (1),  we get 

z2p2 + z2q2 + z 2    = 1 

  

or  z2 ( p2  + q2  + 1) = 1 

  

  

Example 4 

Eliminate the arbitrary constants a, b & c  from  

 

and form the partial differential equation. 

The given equation is 



 

or  -zp + xzr + p2x = 0 

  



 

 

By the elimination of arbitrary functions 

     Let   u and v   be   any two   functions arbitrary function. This relation can be 

expressed as 

u = f(v)  ______________ (1) 

Differentiating  (1)  partially w.r.t    x &  y and eliminating    the arbitrary 

functions from these  relations, we get  a partial differential equation  of the 

first  order of the form   

f(x, y, z, p, q )  = 0.  

  

Example 5 

  

Obtain the partial differential equation  by eliminating „f„from  z = ( x+y ) f ( x2 -

  y2 ) 

  

Let us now consider the equation 

  

z = (x+y ) f(x2- y2) _____________ (1)  

Differentiating (1) partially w.r.t x & y , we get 

p  = ( x + y ) f ' ( x2 -  y2 ) . 2x  +  f ( x2 -  y2 ) 

 q  =  ( x + y ) f ' ( x2 -  y2 ) . (-2y)     + f ( x2 -  y2 )         

 

i.e, py - yf( x2 - y2 ) = -qx +xf ( x2 - y2 ) 

i.e, py +qx   = ( x+y ) f ( x2 -  y2 ) 

Therefore, we have by(1),  py +qx  = z 

  

  

Example 6 

  

Form the partial differential equation by eliminating the arbitrary function f 

from 

  



z = ey f (x + y) 

  

Consider  z  = ey f ( x +y )  ___________  ( 1) 

  

Differentiating  (1) partially  w .r. t  x & y, we get 

  

p     = ey f ' (x  + y)  

  

q     = ey f '(x  + y) + f(x + y). ey 

Hence, we have 

  

q = p + z 

  

Example 7 

 

 

 

Exercises: 

1. 1. Form the partial differential equation by eliminating the arbitrary constants 

„a‟ & „b‟ from the following equations. 



 

  

2.                 Find the PDE of the family of spheres of radius 1 having their centres lie on 

the xy plane{Hint: (x –a)2 + (y –b)2 + z2 = 1}  

  

3.                 Find the PDE of all spheres whose centre lie on the (i) z axis (ii) x-axis 

4.                 Form the partial differential equations by eliminating the arbitrary functions 

in the following cases.  

  

(i)                z = f (x + y)  

(ii)             z = f (x2 –y2)  

(iii)           z = f (x2 + y2 + z2) 

(iv)           (xyz, x + y + z) = 0 

(v)             F (xy + z2, x + y + z) = 0 

(vi)           z = f (x + iy) +f (x –iy) 

(vii)        z = f(x3 + 2y) +g(x3 –2y) 
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Lecture 21: The one dimensional Wave Equation:
D’Alembert’s Solution

(Compiled 3 March 2014)

In this lecture we discuss the one dimensional wave equation. We review some of the physical situations in which the

wave equations describe the dynamics of the physical system, in particular, the vibrations of a guitar string and elastic

waves in a bar. We describe the relationship between solutions to the the wave equation and transformation to a moving

coordinate system known as the Galilean Transformation. The galilean transformation can be used to identify a general

class of solutions to the wave equation requiring only that the solution be expressed in terms of functions that are

sufficiently differentiable. We show how the second order wave equation can be decomposed into two first order wave

operators, one representing a left-moving and the other a right moving wave. This decomposition is used to derive the

classical D’Alembert Solution to the wave equation on the domain (−∞,∞) with prescribed initial displacements and

velocities. This solution fully describes the equations of motion of an infinite elastic string that has a prescribed shape

and initial velocity.

Key Concepts: The one dimensional Wave Equation; Characteristics; Traveling Wave Solutions; Vibrations in a
Bar; a Guitar String; Galilean Transformation; D’Alembert’s Solution.

Reference Section: Boyce and Di Prima Section 10.7

21 The one dimensional Wave Equation

21.1 Types of boundary and initial conditions for the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
(21.1)

∂2u

∂t2
→ expect 2 initial conditions u(x, 0) = f(x)

∂u
∂t (x, 0) = g(x)

∂2u

∂x2
→ expect 2 boundary conditions u(0, t) = 0

u(L, t) = 0.

(21.2)
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21.2 Some examples of physical systems in which the wave equation governs the dynamics

21.2.1 The Guitar String

Figure 1. Initial condition and transient solution of the plucked guitar string, whose dynamics is governed by (21.1).

21.2.2 Longitudinal Vibrations of an elastic bar

Figure 2. Compression and rarefaction waves in an elastic bar, whose dynamics is governed by (21.1).

21.3 A sneak preview - exponential solutions and the dispersion relation

To investigate the nature of the solutions to the wave equation that we might expect, let us look for exponential

solutions of the form:

u = eikx+σt

Substituting this trial solution into (21.1) yields

utt − c2uxx =
[
σ2 − c2 (ik)2

]
eikx+σt = 0

Therefore in order that the exponential function (21.3 be a solution of (21.1), we require that σ satisfy the dispersion

relation

σ2 = −c2k2
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or

σ = ±kc

which implies that there are two solutions of the form

u = eik(x±ct) = e±ikcteikx

We will now demonstrate physical significance of the argument (x ± ct) of the exponential and show that this leads

to a much more general class of solutions. The products of time varying sinusoids with arguments ikct with spatially

varying sinusoids with arguments kx are precisely the same form as the solutions one would obtain by separation of

variables for the wave equation defined on a finite domain. The selection of permissable wavenumbers k that apply

in a particular problem will be determined by solving the appropriate eigenvalue problem.

21.4 The Galilean Transformation and solutions to the wave equation

Claim 1 The Galilean transformation x′ = x + ct associated with a coordinate system O′x′ moving to the left at a

speed c relative to the coordinates Ox, yields a solution to the wave equation: i.e., u(x, t) = G(x + ct) is a solution to

(21.1)

ut = cG′ utt = c2G′′ (21.3)

ux = G′ uxx = G′′. (21.4)

Therefore

utt − c2uxx = c2G′′ − c2G′′ = 0. (21.5)

Similarly u(x, t) = F (x− ct) is also a solution to (21.1) associated with a right moving coordinate system O′x′ such

that x′ = x − ct. Is the sum of two solutions also a solution?

Claim 2 Because the wave equation is linear, superposition applies: i.e., If u1 and u2 are solutions to (21.1) then

u(x, t) = α1u1(x, t) + α2u2(x, t) is also a solution.

∂2

∂t2
(α1u1 + α2u2) = α1

∂2u1

∂t2
+ α2

∂2u2

∂t2

= α1c
2 ∂2u1

∂x2
+ α2c

2 ∂2u2

∂x2
since u1 and u2 solve (21.1)

Thus

∂2

∂t2
(α1u1 + α2u2) = c2 ∂2

∂x2
(α1u1 + α2u2).

Therefore, the general solution to the one dimensional wave equation (21.1) can be written in the form

u(x, t) = F (x − ct) + G(x + ct) (21.6)

provided F and G are sufficiently differentiable functions.
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Observations:

(1) This property is due to the linearity of utt = c2uxx (21.1).

(2) Every solution for (21.1) on (−∞,∞) is of this form.

21.4.1 Decomposition of the wave operator into left and right moving waves

We observe that the wave operator can be decomposed as follows:
(

∂2

∂t2
− c2 ∂2

∂x2

)
u(x, t) =

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u(x, t) = 0. (21.7)

Let w =
(

∂

∂t
− c

∂

∂x

)
u then solving the wave equation can be reduced to solving the following system of first order

wave equations:

∂u

∂t
− c

∂u

∂x
= w and

∂w

∂t
+ c

∂w

∂x
= 0. (21.8)

In Lecture 2 we used the Galilean Transformation to interpret and identify solutions to these two first order wave

operators.

In particular,

∂
∂t + c ∂

∂x → {right moving pulse} =⇒
and

∂
∂t − c ∂

∂x → {left moving pulse} =⇒

21.5 D’Alembert’s Solution

Motivated by the left and right moving coordinate systems we consider the following change of variables.

r = x + ct s = x − ct

x = 1
2 (r + s) t = 1

2c (r − s)
. (21.9)

∂

∂r
=

∂

∂x

∂x

∂r
+

∂

∂t

∂t

∂r
=

1
2c

(
∂

∂t
+ c

∂

∂x

)
(21.10)

∂

∂s
=

∂

∂x

∂x

∂s
+

∂

∂t

∂t

∂s
= − 1

2c

(
∂

∂t
− c

∂

∂x

)
(21.11)

Therefore

−4c2 ∂2u

∂r∂s
=

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u =

∂2u

∂t2
− c2 ∂2u

∂x2
= 0. (21.12)
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Therefore

∂2u

∂r∂s
(r, s) = 0 (21.13)

⇒ ∂u

∂s
(r, s) = φ̄1(s) (21.14)

⇒ u(r, s) =
∫

φ̄1(s) ds + φ2(r) = φ1(s) + φ2(r). (21.15)

Say we have the IC:

u(x, 0) = u0(x) displacement (21.16)
∂u

∂t
(x, 0) = v0(x) velocity (21.17)

u(x, t) = F (x − ct) + G(x + ct) (21.18)

u(x, 0) = F (x) + G(x) = u0(x) (21.19)
∂u

∂t
(x, 0) = −cF ′(x) + cG′(x) = v0(x) (21.20)

−cF (x) + cG(x) =

x∫

0

v0(ξ) dξ + A (21.21)

[
1 1
−c c

] [
F

G

]
=




u0
x∫
0

v0(ξ) dξ + A


 (21.22)

F =
1
2c



cu0 −




x∫

0

v0(ξ) dξ + A






 (21.23)

G =
1
2c





x∫

0

v0(ξ) dξ + A + cu0



 (21.24)

Therefore

u(x, t) =
1
2

[u0(x − ct) + u0(x + ct)] +
1
2c

∫ x+ct

x−ct

v0(ξ) dξ (21.25)

D’Alembert’s Solution to the wave equation on (−∞,∞).
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Partial Differential Equations

• An equation which involves several independent
variables (usually denoted x, y, z, t, …..), a dependent
function u of these variables, and the partial
derivatives of the dependent function u with respect to
the independent variables such as

F(x, y, z, t, ….., u , u , u , u , ….., u , u , ….., u , …..)=0F(x, y, z, t, ….., ux, uy, uz, ut, ….., uxx, uyy, ….., uxy, …..)=0

is called a partial differential equation.

• Partial differential equations are used to formulate,
and thus aid the solution of, problems involving
functions of several variables; such as the propagation
of sound or heat, electrostatics, electrodynamics, fluid
flow, and elasticity.



Partial Differential Equations cont.

• Examples:

i. ut=k(uxx + uyy + uzz) [linear three-dimensional
heat equation]

ii. uxx + uyy + uzz=0 [Laplace equation in threeii. uxx + uyy + uzz=0 [Laplace equation in three
dimensions]

iii. utt=c2(uxx + uyy + uzz) [linear three-dimensional
wave equation]

iv. ut + uux=µuxx [nonlinear one-dimensional
Burger equation]



Partial Differential Equations cont.

• The order of a partial differential equation is

the order of the highest derivative occurring in

the equation.

• All the above examples are second order• All the above examples are second order

partial differential equations.

• ut=uuxxx + sin x is an example for third order

partial differential equation.



Ordinary Differential Equations vs.

Partial Differential Equations

Partial Differential Equations

• A relatively simple partial

differential equation is

ux(x, y)=0

Ordinary Differential Equations

• The analogous ordinary

differential equation is

u’(x)=0

• General solution of the

above equation is

u(x, y)=f(y)

• General solution involves

arbitrary functions

• General solution of the

above equation is

u(x)=c

• General solution involves

arbitrary constants



Linear Partial Differential

Equations

• The equation is called linear if the unknown

function only appears in a linear form.

a(x, y)ux + b(x, y)uy + c(x, y)u=d(x, y)

• Almost linear partial differential equations• Almost linear partial differential equations

P(x, y)ux + Q(x, y)uy=R(x, y, u)

• Quasi-linear partial differential equations

P(x, y, u)ux + Q(x, y, u)uy= R(x, y, u)



Classification of second order linear

PDEs

Consider the second order linear PDE in two variables
Auxx + Buxy +Cuyy +Dux+ Euy+ Fu=G (1)

The discriminant

d=B2(x0, y0) – 4A(x0, y0)C(x0, y0)

At (x0, y0), the equation is said to beAt (x0, y0), the equation is said to be

� Elliptic if d<0

� Parabolic if d=0

� Hyperbolic if d>0

If this is true at all points in a domain Ω, then the
equation is said to be elliptic, parabolic, or hyperbolic
in that domain



Classification of second order linear

PDEs cont.

• If there are n independent variables x1, x2 , ...,

xn, a general linear partial differential equation

of second order has the form

• ∑∑a u plus lower order terms =0• ∑∑ai,juxixj
plus lower order terms =0

• The classification depends upon the signature

of the eigenvalues of the coefficient matrix.



Classification of second order linear

PDEs cont.

i. Elliptic: The eigenvalues are all positive or all

negative.

ii. Parabolic : The eigenvalues are all positive or

all negative, save one which is zero.all negative, save one which is zero.

iii. Hyperbolic: There is only one negative

eigenvalue and all the rest are positive, or

there is only one positive eigenvalue and all

the rest are negative.



Canonical Forms

• Transformation of independent variables x

and y of eq.(1) to new variables ξ, η, where

ξ = ξ(x, y), η= η(x, y)

i. Elliptic: u + u =φ(ξ, η, u, u , u )i. Elliptic: uξξ + uηη=φ(ξ, η, u, uξ, uη)

ii. Parabolic: uξξ=φ(ξ, η, u, uξ, uη) or

uηη=φ(ξ, η, u, uξ, uη)

iii. Hyperbolic: uξξ - uηη=φ(ξ, η, u, uξ, uη) or

uξη=φ(ξ, η, u, uξ, uη)



Characteristics

• Consider L[u]=f(x, y, u, ux, uy) --(2) where

L[u]=a(x, y)uxx + b(x, y)uxy + c(x, y)uyy

• L[u] is the principle part of the equation

• ξ=ξ(x, y), η=η(x, y)• ξ=ξ(x, y), η=η(x, y)

• Transformed equation: M[u]=g(ξ, η, u, uξ, uη) with

principle part

M[u]=A(ξ, η)uξξ + B(ξ, η)uξη + C(ξ, η)uηη where

A=aξx
2 + bξxξy + cξy

2

B=2aξxηx + b(ξxηy + ξyηx) + 2cξyηy

C=aηx
2 + bηxηy + cηy

2



Characteristics cont.

• An integral of an ordinary differential equation is a

function φ whose level curves, φ(x, y)=k, characterize

solutions of the equation implicitly.

• a(x, y)ξx
2 + b(x, y)ξxξy + c(x, y)ξy

2=0 iff ξ is an integral of

the ordinary differential equationthe ordinary differential equation

a(x, y)y’2 - b(x, y)y’ + c(x, y)=0     --(3)

=>y’=[b(x, y) ± {b2(x, y) – 4a(x, y)c(x, y)}1/2]/2a

• An integral curve, φ(x, y)=k, of (3) is a characteristic

curve, and (3) is called the characteristic equation for

the partial differential equation (2)



Characteristics cont.

• Therefore,

i. Elliptic partial differential equations have no

characteristic curves

ii. Parabolic partial differential equations have aii. Parabolic partial differential equations have a

single characteristic curve

iii. Hyperbolic partial differential equations have

two characteristic curves



Initial and Boundary Conditions

(a) Elliptic Equations: Boundary conditions

e.g. uxx + uyy=G in a finite region R bounded by a

closed curve C.

yy

C

x

R



Initial and Boundary Conditions cont.

We must specify

(i) u on curve C or

(ii) un on C (n is outward normal to C) or

(iii) αu + βun on C (α and β are given constants) or

(iv) a combination of (i), (ii) and (iii) on different parts of(iv) a combination of (i), (ii) and (iii) on different parts of
C

• In Cartesian coordinates the simplest case is if R is
rectangular with boundary condition (i).

• R can extend to infinity, in which case we must specify
how the solution behaves as x or y (or both x and y)
tend to infinity.



Initial and Boundary Conditions cont.

(b) Parabolic Equations: Initial conditions and

boundary conditions.

e.g. uxx=ut in the open region R in the (x, t)

plane. R is the region a ≤ x ≤ b, 0 ≤ t < ∞

R

plane. R is the region a ≤ x ≤ b, 0 ≤ t < ∞

t

a u b x

u or ux

or

αu + βux

u or ux

or

αu + βux



Initial and Boundary Conditions cont.

• We must specify u on t=0 (i.e. u(x, 0)) for a ≤ x ≤

b. This is an initial condition (e.g. an initial

temperature distribution) and suitable boundary

conditions x on a and b are as shown.conditions x on a and b are as shown.

(c) Hyperbolic Equations: e.g. uxx=utt Initial

conditions and boundary conditions as for (b)

except that we must also specify ut at t=0 for a ≤ x

≤ b (in addition to u) and R is the region a ≤ x ≤ b,

-∞ < t < ∞



Elliptic Partial Differential Equations

• The discriminant B2 - 4AC < 0

• Solutions of elliptic PDEs are as smooth as the

coefficients allow, within the interior of the

region where the equation and solutions areregion where the equation and solutions are

defined.

• For example, solutions of Laplace's equation

are analytic within the domain where they are

defined, but solutions may assume boundary

values that are not smooth.



Elliptic Partial Differential Equations

cont.

• Region of Influence: Entire domain

• Region of Dependence: Entire domain

• Any disturbance at P is felt throughout the

domain

P



Elliptic Partial Differential Equations cont.

Examples:

(i) Laplace Equation: ∆u=0

• The Laplace equation is often encountered in heat and
mass transfer theory, fluid mechanics, elasticity,
electrostatics, and other areas of mechanics andelectrostatics, and other areas of mechanics and
physics.

• The two dimensional Laplace equation has the
following form:

uxx + uyy=0 in the Cartesian coordinate system,

(1/r)(rur)r +(1/r2)uθθ=0 in the polar coordinate system



Laplace Equation cont.

• A function which satisfies Laplace's equation is
said to be harmonic.

• A solution to Laplace's equation has the property
that the average value over a spherical surface is
equal to the value at the center of the sphereequal to the value at the center of the sphere
(Gauss’ harmonic function theorem).

• Solutions have no local maxima or minima.

• Because Laplace's equation is linear and
homogeneous, the superposition of any two
solutions is also a solution



Laplace Equation cont.

Solution of Laplace’s equation:

Consider uxx + uyy=0     (2)

Solve by separation of variables

Let u=X(x)Y(y)Let u=X(x)Y(y)

Substituting it in (2), we get 

(1/X)X’’=-(1/Y)Y’’=k



Solution of Laplace Equation cont.

i. k=p2: X=c1epx + c2e-px, Y=c3cos py + c4sin py

ii. k=-p2: X=c5cos px + c6sin px, Y=c7epy + c8e-py

iii. k=0: X=c9x + c10, Y=c11y + c12

Thus, various possible solutions are:Thus, various possible solutions are:

u=(c1epx + c2e-px)(c3cos py + c4sin py)

u=(c5cos px + c6sin px)(c7epy + c8e-py)

u=(c9x + c10)(c11y + c12)



Laplace Equation cont.

Analytic functions:

• The real and imaginary parts of a complex analytic
function both satisfy the Laplace equation.

• If f(x + iy)=u(x, y) + iv(x, y) is an analytic function, then
u + u =0, v + v =0uxx + uyy=0, vxx + vyy=0

• The close connection between the Laplace equation
and analytic functions implies that any solution of the
Laplace equation has derivatives of all orders, and can
be expanded in a power series, at least inside a circle
that does not enclose a singularity.



Elliptic Partial Differential Equations

cont.

(ii) Poisson Equation: ∆u + Φ=0

• The two dimensional Poisson equation has the
following form:

uxx + uyy + f(x, y)=0 in the Cartesian coordinate system,

(1/r)(ru ) +(1/r2)u + g(r, θ)=0 in the polar coordinate (1/r)(rur)r +(1/r2)uθθ + g(r, θ)=0 in the polar coordinate 
system

• Poisson’s equation is a partial differential equation
with broad utility in electrostatics, mechanical
engineering and theoretical physics.

• E.g. In electrostatics: ∆V=-ρ/ε



Elliptic Partial Differential Equations

cont.

(iii) Helmholtz Equation: ∆u + λu=-Φ

• Many problems related to steady state

oscillations (mechanical, acoustical, thermal,

electromagnetic) lead to the two dimensionalelectromagnetic) lead to the two dimensional

Helmholtz equation. For ¸ λ< 0, this equation

describes mass transfer processes with

volume chemical reactions of the first order.



Helmholtz Equation cont.

• The two dimensional Helmholtz equation has

the following form:

uxx + uyy + λu=-f(x, y) in the Cartesian coordinate 

system,system,

(1/r)(rur)r +(1/r2)uθθ + λu=-g(r, θ) in the polar 

coordinate system



Parabolic Partial Differential

Equations

• The discriminant B2 - 4AC = 0

• Equations that are parabolic at every point can

be transformed into a form analogous to the

heat equation by a change of independentheat equation by a change of independent

variables.

• Solutions smooth out as the transformed time

variable increases



Parabolic Partial Differential Equations

cont.

• Region of influence: Part of domain away from

initial data line from the characteristic curve

• Region of dependence: Part of domain from

the initial data line to the characteristic curvethe initial data line to the characteristic curve

P
Region
of
influence

Region
of
dependence

Boundary

Boundary

Characteristic curve at P



Parabolic Partial Differential Equations

cont.

Examples:

i. ut=auxx heat equation (linear heat equation)

ii. ut=auxx + f(x, t) non-homogeneous heat

equationequation

iii. ut=auxx + bux + cu + f(x, t) convective heat

equation with a source

iv. ut=a(urr + (1/r)ur) heat equation with axial

symmetry



Parabolic Partial Differential Equations

cont.

v. ut=a(urr + (1/r)ur) + g(r, t) heat equation with

axial symmetry (with a source)

vi. ut=a(urr + (2/r)ur) heat equation with central

symmetrysymmetry

vii. ut=a(urr + (2/r)ur) + g(r, t) heat equation with

central symmetry (with a source)

viii.iħut=-(ħ2/2m)uxx + h(x)u Schrodinger

equation (linear schrodinger equation)



Parabolic Partial Differential Equations

cont.

• Heat equation: ut=a∆u

• The maximum value of u is either earlier in time than

the region of concern or on the edge of the region of

concern.

• even if u has a discontinuity at an initial time t = t , the• even if u has a discontinuity at an initial time t = t0, the

temperature becomes smooth as soon as t > t0. For

example, if a bar of metal has temperature 0 and

another has temperature 100 and they are stuck

together end to end, then very quickly the temperature

at the point of connection is 50 and the graph of the

temperature is smoothly running from 0 to 100.



Parabolic Partial Differential Equations 

cont.

Solution of the heat equation:

Consider ut=auxx (3)

• In plain English, this equation says that the 
temperature at a given time and point will rise or fall at 
a rate proportional to the difference between the 
temperature at that point and the average temperature 
a rate proportional to the difference between the 
temperature at that point and the average temperature 
near that point.

Solve by separation of variables

Let u(x, t)=X(x)T(t)

Substituting this in (3), we get

X’’/X=T’/aT=k



Solution of heat equation cont.

i. k=p2: X=c1epx + c2e-px, T=c3eap2t

ii. k=-p2: X=c4cos px + c5sin px, T=c6e-ap2t

iii. k=0: X=c7x + c8, T=c9

Thus, various possible solutions are:Thus, various possible solutions are:

u=(c1epx + c2e-px)(c3eap2t)

u=(c4cos px + c5sin px)(c6e-ap2t)

u=(c7x + c8)c9



Parabolic Partial Differential Equations 

cont.

• Let u(x, t) be a continuous function and a 

solution of ut=auxx for 0 ≤ x ≤ l, 0 ≤ t ≤ T, where 

T > 0 is a fixed time. Then the maximum and 

minimum values of u are attained either at minimum values of u are attained either at 

time t=0 or at the end points x=0 and x=l at 

some time in the interval 0 ≤ t ≤ T



Hyperbolic Partial Differential

Equations

• The discriminant B2 - 4AC > 0

• Hyperbolic equations retain any discontinuities of

functions or derivatives in the initial data

• If a disturbance is made in the initial data of a• If a disturbance is made in the initial data of a

hyperbolic differential equation, then not every point

of space feels the disturbance at once. Relative to a

fixed time coordinate, disturbances have a finite

propagation speed. They travel along the

characteristics of the equation

• An example is the wave equation



Hyperbolic Partial Differential

Equations cont.

• Region of influence: Part of domain, between the

characteristic curves, from point P to away from the

initial data line

• Region of dependence: Part of domain, between the

characteristic curves, from the initial data line to thecharacteristic curves, from the initial data line to the

point P

Region
of
dependence

Region
of
influence

P

Characteristic curves at P



Hyperbolic Partial Differential

Equations cont.

Examples:

i. utt=a2uxx wave equation (linear wave

equation)

ii. u =a2u + f(x, t) non-homogeneous waveii. utt=a2uxx + f(x, t) non-homogeneous wave

equation

iii. utt=a2uxx – bu Klein-Gordon equation

iv. utt=a2uxx – bu + f(x, t) non-homogeneous

Klein-Gordon equation



Hyperbolic Partial Differential

Equations cont.

v. utt=a2(urr + (1/r)ur) + g(r, t) non-

homogeneous wave equation with axial

symmetry

vi. u =a2(u + (2/r)u ) + g(r, t) non-vi. utt=a2(urr + (2/r)ur) + g(r, t) non-

homogeneous wave equation with central

symmetry

vii. utt + kut=a2uxx + bw Telegraph equation



Hyperbolic Partial Differential 

Equations cont.

Solution of the wave equation:

Consider utt=a2uxx (4)

• The equation has the property that, if u and its first time 
derivative are arbitrarily specified initial data on the initial 
line t = 0 (with sufficient smoothness properties), then 
there exists a solution for all time.there exists a solution for all time.

D’Alembert’s solution

Introduce new independent variables:

y=x + at, z=x – at

Substituting these in (4), we get

uyz=0     (5)



Solution of Wave Equation cont.

Integrating (5) w.r.t. z, we get uy=f(y)     (6)

Integrating (6) w.r.t. y, we obtain

u=φ(y) + ψ(z), where φ(y)=∫f(y)dy

Thus, u(x, t)= φ(x + at) + ψ(x – at) (7)     is the Thus, u(x, t)= φ(x + at) + ψ(x – at) (7)     is the 
general solution of (4)

Now suppose, u(x, 0)=g(x) and ut(x, 0)=0, then (7) 
takes the form u(x, t)=g(x + at) + g(x - at)

which is the d’Alembert’s solution of the wave 
equation (4)



Summary

• Second order semi-linear equation in two

variables: A(x, y)uxx + B(x, y)uxy + C(x, y)uyy =

φ(x, y, u, ux, uy) classified as

i. Elliptic: B2 - 4AC < 0i. Elliptic: B2 - 4AC < 0

ii. Parabolic: B2 - 4AC = 0

iii. Hyperbolic: B2 - 4AC > 0



Summary & Conclusion

General relation between the physical problems

and the type of PDEs

• Propagation problems lead to parabolic or

hyperbolic PDEs.hyperbolic PDEs.

• Equilibrium equations lead to elliptic PDE.

• Most fluid equations with an explicit time

dependence are Hyperbolic PDEs

• For dissipation problem, Parabolic PDEs
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The One-Dimensional Heat Equation 

1-D Heat Equation 



The heat equation Homogeneous Dirichlet conditions Inhomogeneous Dirichlet conditions 

Introduction 
 

Goal: Model heat flow in a one-dimensional object (thin rod). 

Set  up:  Place rod of length L along x -axis, one end at origin: 

x 
0 L 

heated rod 

 
Let u(x , t) = temperature in rod at position x , time t. 

(Ideal) Assumptions: 

Rod is given some initial temperature distribution f (x ) along  

its length. 

Rod is perfectly insulated, i.e. heat only moves horizontally.  

No internal heat sources or sinks. 

1-D Heat Equation 



Inhomogeneous Dirichlet conditions 
The heat equation Homogeneous Dirichlet conditions 

 

The Heat Equation 

One can show that u satisfies the one-dimensional heat equation 
 

ut  = c2uxx . 

Remarks: 

This can be derived via conservation of energy and Fourier’s  

law of heat conduction (see textbook pp. 143-144). 
 

The constant c2 is the thermal diffusivity: 

sρ 
c2 = 

K0 , 

K0 = thermal conductivity, 

s = specific heat, 

ρ =  density. 

1-D Heat Equation 



Inhomogeneous Dirichlet conditions 
The heat equation Homogeneous Dirichlet conditions 

 

Initial and Boundary Conditions 

To completely determine u we must also specify: 

 
Initial conditions: The initial temperature profile 

 

u(x , 0) = f (x ) for 0 < x < L. 
 

Boundary conditions: Specific behavior at x0 = 0, L: 

1. Constant temperature: u(x0, t) = T for t > 0. 

 
2. Insulated end: ux (x0, t) = 0 for t > 0. 

 
3. Radiating end: ux (x0, t ) = Au(x0, t ) for t > 0. 

1-D Heat Equation 



Inhomogeneous Dirichlet conditions 
The heat equation Homogeneous Dirichlet conditions 

 

Solving the Heat Equation 
Case 1: homogeneous Dirichlet boundary conditions 

We now apply separation of variables to the heat problem 

ut = c2uxx 

u(0, t ) = u(L, t ) = 0 
u(x , 0) = f (x ) 

(0 < x < L, t > 0), 
(t > 0), 

(0 < x < L). 

ut  = XT ′ 

uxx  = X ′′T 

We seek separated solutions of the form u(x , t) = X (x )T (t). In  

this case 
  

   ′ 2 ′′ 
⇒  XT  = c X T  ⇒ 

   

X 

X ′′ T ′ 
= 

c2T 
= k. 

Together with the boundary conditions we obtain the system 

X ′′ − kX = 0,  X (0) = X (L) = 0, 

T ′ − c2kT = 0. 

1-D Heat Equation 



The heat equation Homogeneous Dirichlet conditions Inhomogeneous Dirichlet conditions 

Already know: up to constant multiples, the only solutions to the  

BVP in X are 

2 
n k = −µ = − 

  nπ 2 

L 
, 

X = Xn  = sin (µnx ) = sin 
  nπx   

L 
,  n ∈ N. 

Therefore T must satisfy 

T ′ − c2kT = T ′ + 
L 

  cnπ 2 

` ˛¸ x 
λn 

T = 0 

′ 2 
n n n 

2 
n −λ t T  = −λ T   ⇒  T = T   = b  e . 

We thus have the normal modes of the heat equation: 

−λ2 t un(x , t ) = Xn(x )Tn (t ) = bne n    sin(µnx ),  n ∈ N. 

1-D Heat Equation 



Inhomogeneous Dirichlet conditions 
The heat equation Homogeneous Dirichlet conditions 

 

Superposition and initial condition 

Applying the principle of superposition gives the general solution 

Σ∞ Σ∞ 
−λ2 t u(x , t ) = un(x , t ) = bne n    sin(µnx ). 

n=1 n=1 

If we now impose our initial condition we find that 

Σ∞ 

f (x ) = u(x , 0) = bn sin 

n=1 

  nπx   

L 
, 

which is the sine series expansion of f (x ). Hence 

bn = 
L 

∫  L 
2 

0 

f (x ) sin 
  nπx   

L 
dx . 

1-D Heat Equation 



The heat equation Homogeneous Dirichlet conditions Inhomogeneous Dirichlet conditions 

Remarks 

As before, if the sine series of f (x ) is already known, solution  

can be built by simply including exponential factors. 
 

One can show that this is the only solution to the heat  

equation with the given initial condition. 
 

Because of the decaying exponential factors: 
 

∗ The normal modes tend to zero (exponentially) as t  → ∞. 

∗ Overall, u(x , t) → 0 (exponentially) uniformly in x as t  → ∞. 

∗ As c increases, u(x , t) → 0 more rapidly. 

This agrees with intuition. 

1-D Heat Equation 



The heat equation Homogeneous Dirichlet conditions Inhomogeneous Dirichlet conditions 

Example 

Solve the heat problem 

ut = 3uxx 

u(0, t ) = u(2, t ) = 0 
u(x , 0) = 50 

(0 < x < 2, t > 0), 
(t > 0), 

(0 < x < 2). 

We have c = 
√

3, L = 2 and, by exercise 2.3.1 (with p = L = 2) 

f (x ) = 50 = 
200 Σ∞ 1 

π  
k=0 

2k + 1 
sin 

2 

     
(2k + 1)πx 

. 

Since λ2k+1 = 
c(2k + 1)π 

√
3(2k + 1)π 

L 2 
= , we obtain 

u(x , t ) = 
200 Σ∞ 1 

π  
k=0 

2k + 1 
e−3(2k+1)2 π2t/4 sin 

2 

     
(2k + 1)πx 

. 

1-D Heat Equation 



Inhomogeneous Dirichlet conditions 
The heat equation Homogeneous Dirichlet conditions 

 

Solving the Heat Equation 
Case 2a: steady state solutions 

Definit ion:  We say that u(x , t ) is a steady state solution if ut  ≡ 0  

(i.e. u is time-independent). 

If u(x , t) is a steady state solution to the heat equation then 
 

ut  ≡ 0  ⇒  c2uxx  = ut  = 0  ⇒  uxx  = 0  ⇒  u = Ax + B . 

 
Steady state solutions can help us deal with inhomogeneous  

Dirichlet boundary conditions. Note that 

u(0, t ) = T 

u(L, t ) = T2 

 
1  

 
⇒ 

B = T 

AL + B = T2 

 
1  

 
⇒ u = 

T2 − T1 

L 

 

    x +T1. 

1-D Heat Equation 



Inhomogeneous Dirichlet conditions 
The heat equation Homogeneous Dirichlet conditions 

 

Solving the Heat Equation 
Case 2b: inhomogeneous Dirichlet boundary conditions 

Now consider the heat problem 

ut = c2uxx 

u(0, t ) = T1,  u(L, t ) = T2 

u(x , 0) = f (x ) 

(0 < x < L,  t > 0), 
(t > 0), 

(0 < x < L). 

Step 1: Let u1 denote the steady state solution from above: 

1 u = 
T2 − T1 

L 

 

    
1 x + T  . 

Step 2:  Let u2 = u − u1. 

Remark: By superposition, u2 still solves the heat equation. 

1-D Heat Equation 



The heat equation Homogeneous Dirichlet conditions Inhomogeneous Dirichlet conditions 

t→∞  

The boundary and initial conditions satisfied by u2 are 

u2(0, t ) = u(0, t ) − u1(0) = T1 − T1 = 0, 

u2(L, t ) = u(L, t ) − u1(L) = T2 − T2 = 0, 

u2(x , 0) = f (x ) − u1(x ). 

Step 3: Solve the heat equation with homogeneous Dirichlet  

boundary conditions and initial conditions above. This yields u2. 

Step 4:  Assemble u(x , t ) = u1(x ) + u2(x , t ). 

Remark: According to our earlier work, lim u2(x , t) = 0. 

We call u2(x , t ) the transient portion of the solution. 
 

We have u(x , t) → u1(x ) as t → ∞, i.e. the solution tends to  

the steady state. 

1-D Heat Equation 



The heat equation Homogeneous Dirichlet conditions Inhomogeneous Dirichlet conditions 

Example 

Solve the heat problem. 

u(2, t ) = 0 
ut = 3uxx 

u(0, t ) = 100, 
u(x , 0) = 50 

(0 < x < 2, t > 0), 
(t > 0), 

(0 < x < 2). 

We have c = 
√

3, L = 2, T1 = 100, T2 = 0 and f (x ) = 50.  

The steady state solution is 

1 u = 
0 − 100 

2 

 

    x + 100 = 100 − 50x . 

The corresponding homogeneous problem for u2 is thus 

ut = 3uxx (0 < x < 2, t > 0), 
u(0, t) = u(2, t) = 0 (t > 0), 
u(x , 0) = 50 − (100 − 50x 
) 

= 50(x − 1) (0 < x < 2). 

1-D Heat Equation 



The heat equation Homogeneous Dirichlet conditions Inhomogeneous Dirichlet conditions 

According to exercise 2.3.7 (with p = L = 2), the sine series for 
50(x − 1) is 

∞  

k=1 
k 

−100 Σ  1 
sin 

2kπx 

π 2 

 

    , 

L 

c2kπ 
i.e. only even modes occur. Since λ2k = = 

√
3kπ, 

2 u  (x , t ) = 
−100 

π 

Σ∞ 

k=1 
k 

1 
e−3k2 π2t sin (kπx ) . 

Hence 

u(x , t ) = u1(x )+u2(x , t ) = 100−50x − 

k=1 

100 Σ∞    1 

π k 
e−3k2 π2t sin (kπx ) . 

1-D Heat Equation 



 

 
 

UNIT-4 
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UNIT - II 

  VECTOR CALCULUS 

INTRODUCTION 

                 In this chapter we study the basics of vector calculus with the help of a standard vector differential 

operator. Also we introduce concepts like gradient of a scalar valued function, divergence and curl of a 

vector valued function, discuss briefly the properties of these concepts and study the applications of the 

results to the evaluation of line and surface integrals in terms of multiple integrals. 

2.1 GRADIENT – DIRECTIONAL DERIVATIVE 

Vector differential operator 

               The vector differential operator ∇ (read as Del) is denoted by ∇ =  𝑖
𝜕

𝜕𝑥
+  𝑗

𝜕

𝜕𝑦
+ 𝑘⃗⃗

𝜕

𝜕𝑧
 where 𝑖, 𝑗, 𝑘⃗⃗ are 

unit vectors along the three rectangular axes 𝑂𝑋, 𝑂𝑌 𝑎𝑛𝑑 𝑂𝑍. 

                It is also called Hamiltonian operator and it is neither a vector nor a scalar, but it behaves like a 

vector. 

The gradient of a scalar function 

If𝜑(𝑥, 𝑦, 𝑧) is a scalar point function continuously differentiable in a given region of space, then the gradient 

of 𝜑 is defined as ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

It is also denoted as Grad 𝜑. 

Note  

(i) ∇𝜑 is a vector quantity. 

(ii) ∇𝜑 = 0 if 𝜑 is constant. 

(iii) ∇(𝜑1𝜑2) =  𝜑1∇𝜑2 +  𝜑2∇𝜑1 

(iv) ∇ (
𝜑1

𝜑2
) =  

𝜑2∇𝜑1− 𝜑1  ∇ 𝜑2

𝜑2
2

 if 𝜑2 ≠ 0 

(v) ∇(𝜑 ± 𝜒) =  ∇𝜑 ± ∇𝜒 

Problems based on Gradient 

Example: 2.1 Find the gradient of 𝝋 where 𝝋 is 𝟑𝒙𝟐𝒚 −  𝒚𝟑𝒛𝟐 at (𝟏, −𝟐, 𝟏). 

Solution:  

              Given  𝜑 = 3𝑥2𝑦 −  𝑦3𝑧2 

Grad 𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

Now 
𝜕𝜑

𝜕𝑥
= 6𝑥𝑦,   

𝜕𝜑

𝜕𝑦
=  3𝑥2 −  3𝑦2𝑧2 ,   

𝜕𝜑

 𝜕𝑧
=  −2𝑦3𝑧 

      ∴ grad 𝜑 =  𝑖 6𝑥𝑦 +  𝑗(3𝑥2 −  3𝑦2𝑧2) − 𝑘⃗⃗2𝑦3𝑧 

  ∴ (𝑔𝑟𝑎𝑑 𝜑)(1,−2,   1) =  −12𝑖 − 9𝑗 + 16𝑘⃗⃗ 

Example: 2.2 If 𝝋 = 𝐥𝐨𝐠(𝒙𝟐 +  𝒚𝟐 +  𝒛𝟐) then find 𝛁𝝋. 
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Solution:  

            Given 𝜑 = log(𝑥2 +  𝑦2 +  𝑧2) 

    ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 =  𝑖  (
2𝑥

𝑥2+ 𝑦2+ 𝑧2) +  𝑗  (
2𝑦

𝑥2+ 𝑦2+ 𝑧2) +  𝑘⃗⃗  (
2𝑧

𝑥2+ 𝑦2+ 𝑧2)  

 =  
2

𝑥2+ 𝑦2+ 𝑧2  (𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗)  =  
2

𝑟2  𝑟 

Example: 2.3 Find 𝛁(𝒓), 𝛁 (
𝟏

𝒓
) , 𝛁(𝐥𝐨𝐠 𝒓) where 𝒓 =  |𝒓⃗⃗| and  𝒓⃗⃗ =  𝒙𝒊  + 𝒚 𝒋 +  𝒛 𝒌⃗⃗⃗. 

Solution: 

            Given  𝑟 =  𝑥𝑖  + 𝑦 𝑗 +  𝑧 𝑘⃗⃗ 

                     ⇒ |𝑟| = 𝑟 =  √𝑥2 +  𝑦2 + 𝑧2 

               ⇒ 𝑟2 =  𝑥2 +  𝑦2 +  𝑧2  

 2𝑟
𝜕𝑟

𝜕𝑥
= 2𝑥,       2𝑟 

𝜕𝑟

𝜕𝑦
= 2𝑦,        2𝑟 

𝜕𝑟

𝜕𝑧
= 2𝑧 

 ⇒
𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
,        

𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
,        

𝜕𝑟

𝜕𝑧
=

𝑧

𝑟
 

(i) ∇(𝑟) =  𝑖
𝜕𝑟

𝜕𝑥
+ 𝑗

𝜕𝑟

𝜕𝑦
+  𝑘⃗⃗

𝜕𝑟

𝜕𝑧
 

   =  𝑖
𝑥

𝑟
+ 𝑗

𝑦

𝑟
+  𝑘⃗⃗

𝑧

𝑟
 

    =
1

𝑟
(𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗) =  

1

𝑟
 𝑟  

(ii) ∇ (
1

𝑟
) =  𝑖

𝜕(
1

𝑟
)

𝜕𝑥
+ 𝑗

𝜕(
1

𝑟
)

𝜕𝑦
+  𝑘⃗⃗

𝜕(
1

𝑟
)

𝜕𝑧
 

     =  𝑖 ⃗⃗  (
−1

𝑟2 )
𝜕𝑟

𝜕𝑥
+ 𝑗 ⃗⃗⃗  (

−1

𝑟2)
𝜕𝑟

𝜕𝑦
+  𝑘 ⃗⃗⃗ ⃗ (

−1

𝑟2 )
𝜕𝑟

𝜕𝑧
            

                = (−
1

𝑟2) [𝑖
𝑥

𝑟
+ 𝑗

𝑦

𝑟
+  𝑘⃗⃗

𝑧

𝑟
] 

     = −
1

𝑟3
(𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗) = − 

1

𝑟3  𝑟 

(iii) ∇(log 𝑟) =  ∑ 𝑖 
𝜕(log 𝑟)

𝜕𝑥
 

    =  ∑ 𝑖 
1

𝑟
 

𝜕𝑟

𝜕𝑥
 

  =  ∑ 𝑖 
1

𝑟
 
𝑥

𝑟
 

  =  ∑ 𝑖  
𝑥

𝑟2 

  =
1

𝑟2
(𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗) =  

1

𝑟2  𝑟 

Example: 2.4 Prove that 𝛁(𝒓𝒏) =  𝒏𝒓𝒏−𝟐   𝒓⃗⃗ 

Solution:  

             Given  𝑟 =  𝑥𝑖  + 𝑦 𝑗 +  𝑧 𝑘⃗⃗ 

 ∇(𝑟𝑛) =  𝑖
𝜕𝑟𝑛

𝜕𝑥
+ 𝑗

𝜕𝑟𝑛

𝜕𝑦
+  𝑘⃗⃗

𝜕𝑟𝑛

𝜕𝑧
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 =  𝑖 ⃗⃗  𝑛𝑟𝑛−1 𝜕𝑟

𝜕𝑥
+ 𝑗 ⃗⃗⃗  𝑛𝑟𝑛−1 𝜕𝑟

𝜕𝑦
+  𝑘 ⃗⃗⃗ ⃗𝑛𝑟𝑛−1 𝜕𝑟

𝜕𝑧
 

                        = 𝑛𝑟𝑛−1 [𝑖 (
𝑥

𝑟
) + 𝑗 (

𝑦

𝑟
) +  𝑘⃗⃗ (

𝑧

𝑟
)] 

                         =
𝑛𝑟𝑛−1

𝑟
(𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗) = 𝑛𝑟𝑛−2𝑟 

Example: 2.5 Find |𝛁𝝋| 𝒊𝒇 𝝋 = 𝟐𝒙𝒛𝟒 −  𝒙𝟐𝒚 𝒂𝒕 (𝟐, −𝟐, −𝟏) 

Solution:  

             Given  𝜑 = 2𝑥𝑧4 −  𝑥2𝑦 

 ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

Now 
𝜕𝜑

𝜕𝑥
= 2𝑧4 −  2𝑥𝑦,   

𝜕𝜑

𝜕𝑦
=  −𝑥2 ,   

𝜕𝜑

 𝜕𝑧
=  8𝑥𝑧3 

      ∴ ∇ 𝜑 =  𝑖 (2𝑧4 −  2𝑥𝑦) +  𝑗(−𝑥2) +  𝑘⃗⃗(8𝑥𝑧3) 

  ∴ (∇ 𝜑)(2,−2,−1) =  10𝑖 − 4𝑗 − 16𝑘⃗⃗ 

   |∇𝜑| =  √100 + 16 + 256 =  √372 

Directional Derivative (D.D) of a scalar point function 

           The derivative of a point function (scalar or vector) in a particular direction is called its directional 

derivative along the direction. 

             The directional derivative of a scalar function 𝜑 in a given direction 𝑎⃗ is the rate of change of 𝜑 in 

that direction. It is given by the component of  ∇𝜑 in the direction of 𝑎⃗. 

            The directional derivative of a scalar point function in the direction of  𝑎⃗ is given by  

D.D =   
𝛁𝝋 ∙ 𝒂⃗⃗⃗

|𝒂⃗⃗⃗|
 

The maximum directional derivative is|∇𝜑| or |grad 𝜑|. 

Problems based on Directional Derivative 

Example: 2.6 Find the directional derivative of 𝝋 = 𝟒𝒙𝒛𝟐 +  𝒙𝟐𝒚𝒛 at (𝟏, −𝟐, 𝟏) in the direction of 𝟐𝒊  −

 𝒋 −  𝟐𝒌⃗⃗⃗. 

Solution:  

             Given 𝜑 = 4𝑥𝑧2 +  𝑥2𝑦𝑧 

 ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (2𝑥𝑦𝑧 + 4𝑧2) +  𝑗 (𝑥2𝑧) +  𝑘⃗⃗ (𝑥2𝑦 + 8𝑥𝑧) 

 ∴ (∇ 𝜑)(1,−2,−1) =  8𝑖 − 𝑗 − 10𝑘⃗⃗ 

Given 𝑎⃗ =  2𝑖  −  𝑗 −  2𝑘⃗⃗ 

 |a⃗⃗| =  √4 + 1 + 4 =  3 

            D. D =   
∇𝜑 ∙ 𝑎⃗⃗

|𝑎⃗⃗|
 

  =  (8𝑖 − 𝑗 − 10𝑘⃗⃗) ∙  
(2𝑖 − 𝑗− 2𝑘⃗⃗)

3
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  =  
1

3
 (16 + 1 + 20) =  

37

3
 

Example: 2.7 Find the directional derivative of 𝝋(𝒙, 𝒚, 𝒛) = 𝒙𝒚𝟐 +  𝒚𝒛𝟑 at the point P(𝟐, −𝟏, 𝟏) in the 

direction of PQ where Q is the point  (𝟑, 𝟏, 𝟑) 

Solution:  

           Given  𝜑 = 𝑥𝑦2 +  𝑦𝑧3 

  ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (𝑦2) +  𝑗 (2𝑥𝑦 +  𝑧3) +  𝑘⃗⃗ (3𝑦𝑧2) 

 ∴ (∇ 𝜑)(2,−1,   1) =  𝑖 − 3𝑗 − 3𝑘⃗⃗ 

Given 𝑎⃗ =  𝑃𝑄⃗⃗⃗⃗ ⃗⃗ =  𝑂𝑄⃗⃗⃗⃗⃗⃗⃗ − 𝑂𝑃⃗⃗⃗⃗ ⃗⃗  

 =  (3𝑖 +  𝑗 +  3𝑘⃗⃗) −  (2𝑖 −  𝑗 +  𝑘⃗⃗) 

 =  𝑖 +  2𝑗 +  2𝑘⃗⃗ 

 |a⃗⃗| =  √1 + 4 + 4 =  3 

            D. D =   
∇𝜑 ∙ 𝑎⃗⃗

|𝑎⃗⃗|
 

  =  
(𝑖−3𝑗⃗⃗⃗⃗⃗−3𝑘⃗⃗) ∙ (𝑖+ 2𝑗+ 2𝑘⃗⃗)

3
 

  =  
1

3
 (1 − 6 − 6) =  −

11

3
 

Example: 2.8 In what direction from (−𝟏, 𝟏, 𝟐) is the directional derivative of  𝝋 = 𝒙𝒚𝟐 𝒛𝟑 a 

maximum? Find also the magnitude of this maximum. 

Solution:  

             Given 𝜑 = 𝑥𝑦2 𝑧3 

  ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (𝑦2𝑧3) +  𝑗 (2𝑥𝑦 𝑧3) +  𝑘⃗⃗ (3𝑥𝑦2𝑧2) 

 ∴ (∇ 𝜑)(−1,   1,   2) =  8𝑖 − 16𝑗 − 12𝑘⃗⃗ 

The maximum directional derivative occurs in the direction of ∇ 𝜑 =  8𝑖 − 16𝑗 − 12𝑘⃗⃗. 

∴ The magnitude of this maximum directional derivative 

 |∇𝜑| =  √64 + 256 + 144 =  √464 

Example: 2.9 Find the directional derivative of the scalar function 𝝋 = 𝒙𝒚𝒛 in the direction of the 

outer normal to the surface  𝒛 = 𝒙𝒚 at the point(𝟑, 𝟏, 𝟑). 

Solution:  

              Given 𝜑 = 𝑥𝑦𝑧 

 ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (𝑦𝑧) +  𝑗 (𝑥𝑧) +  𝑘⃗⃗ (𝑥𝑦) 
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 ∴ (∇ 𝜑)(3,   1,   3) =  3𝑖 + 9𝑗 + 3𝑘⃗⃗ 

Given surface is 𝑧 = 𝑥𝑦 ⇒ 𝑧 − 𝑥𝑦 = 0 

 ∇𝜒 =  𝑖
𝜕𝜒

𝜕𝑥
+ 𝑗

𝜕𝜒

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜒

𝜕𝑧
 

 = 𝑖 (−𝑦) +  𝑗 (−𝑥) +  𝑘⃗⃗ (1) 

 Let 𝑎⃗ =  ∇𝜒(3,1 ,3) =  −𝑖 −  3𝑗 +  𝑘⃗⃗ 

                         ⇒ |a⃗⃗| =  √1 + 9 + 1 =  √11 

                D. D =   
∇𝜑 ∙ 𝑎⃗⃗

|𝑎⃗⃗|
 

              =  
(3𝑖+9𝑗+3𝑘⃗⃗) ∙ (−𝑖− 3𝑗+ 𝑘⃗⃗)

√11
 

  =  
1

√11
 (−3 − 27 + 3) =  −

27

√11
 

Example: 2.10 Find the directional derivative of 𝝋 = 𝒙𝒚 +  𝒚𝒛 + 𝒛𝒙 at (𝟏, 𝟐, 𝟎) in the direction of 𝒊 +

𝟐 𝒋 +  𝟐𝒌⃗⃗⃗. Find also its maximum value. 

Solution:  

             Given 𝜑 = 𝑥𝑦 +  𝑦𝑧 + 𝑧𝑥 

  ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (𝑦 + 𝑧) +  𝑗 (𝑥 + 𝑧) +  𝑘⃗⃗ (𝑦 + 𝑥) 

 ∴ (∇ 𝜑)(1,   2,   0) =  2𝑖 + 𝑗 + 3𝑘⃗⃗ 

Given 𝑎⃗ =  𝑖 +  2𝑗 +  2𝑘⃗⃗  

 |a⃗⃗| =  √1 + 4 + 4 =  3 

            D. D =   
∇𝜑 ∙ 𝑎⃗⃗

|𝑎⃗⃗|
 

  =  
( 2𝑖+𝑗+3𝑘⃗⃗) ∙ (𝑖+ 2𝑗+ 2𝑘⃗⃗)

3
 

  =  
1

3
 (2 + 2 + 6) =  

10

3
 

Maximum value is |∇𝜑| =  √4 + 1 + 9 =  √14 

Unit normal vector to the surface  

If 𝜑(𝑥, 𝑦, 𝑧) be a scalar function, then 𝜑(𝑥, 𝑦, 𝑧) = 𝑐 represents a surface and the unit normal vector to the 

surface 𝜑 is given by n̂ =  
∇𝜑

|∇𝜑|
 

Normal Derivative = |∇𝜑|  

Problems based on unit normal vector 

Example: 2.11 Find the unit normal to the surface 𝒙𝟐 +  𝒚𝟐 = 𝒛 at the point (𝟏, −𝟐, 𝟓). 

Solution: 

              Given 𝜑 =  𝑥2 +  𝑦2 − 𝑧 
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  ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (2𝑥) +  𝑗 (2𝑦) +  𝑘⃗⃗ (−1) 

 ∴ (∇ 𝜑)(1,−2,   5) =  2𝑖 − 4𝑗 − 𝑘⃗⃗ 

 |∇𝜑| =  √4 + 16 + 1 =  √21 

Unit normal n̂ =  
∇𝜑

|∇𝜑|
=  

2𝑖−4𝑗−𝑘⃗⃗

√21
 

Example: 2.12 Find the unit normal to the surface 𝒙𝟐 + 𝒙𝒚 +  𝒚𝟐 + 𝒙𝒚𝒛 at the point (𝟏, −𝟐, 𝟏). 

Solution: 

              Given 𝜑 =  𝑥2 + 𝑥𝑦 +  𝑦2 + 𝑥𝑦𝑧 

  ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (2𝑥 + 𝑦 + 𝑦𝑧) +  𝑗 (𝑥 +  2𝑦 + 𝑥𝑧) +  𝑘⃗⃗ (𝑥𝑦) 

 ∴ (∇ 𝜑)(1,−2,   1) =  −2𝑖 − 2𝑗 − 2𝑘⃗⃗ 

 |∇𝜑| =  √4 + 4 + 4 =  √12 = 2√3 

Unit normal n̂ =  
∇𝜑

|∇𝜑|
=  

−2𝑖−2𝑗−2𝑘⃗⃗

2√3
 

   =
−1

√3
(𝑖 + 𝑗 + 𝑘⃗⃗) 

Example: 2.13 Find the normal derivative to the surface 𝒙𝟐𝒚 +  𝒙𝒛𝟐 at the point (−𝟏, 𝟏, 𝟏). 

Solution: 

              Given 𝜑 =  𝑥2𝑦 +  𝑥𝑧2 

  ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (2𝑥𝑦 +  𝑧2) +  𝑗 (𝑥2) +  𝑘⃗⃗ (2𝑥𝑧) 

 ∴ (∇ 𝜑)(−1,   1,   1) =  −𝑖 + 𝑗 − 2𝑘⃗⃗ 

Normal derivative |∇𝜑| =  √1 + 1 + 4 =  √6 

Example: 2.14 What is the greatest rate of increase of 𝝋 =  𝒙𝒚𝒛𝟐 at the point (𝟏, 𝟎, 𝟑). 

Solution: 

              Given 𝜑 =  𝑥𝑦𝑧2 

  ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (𝑦 𝑧2) +  𝑗 (𝑥𝑧2) +  𝑘⃗⃗ (2𝑥𝑦𝑧) 

 ∴ (∇ 𝜑)(1,   0,   3) =  0𝑖 + 9𝑗 + 0𝑘⃗⃗ 

∴ Greatest rate of increase |∇𝜑| =   √92 = 9  

Angle between the surfaces 

 cos θ =  
∇ φ1 ∙ ∇ φ2 

|∇φ1 ||∇φ2|
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 ⇒  𝜃 =  𝑐𝑜𝑠−1  [
∇ φ1 ∙ ∇ φ2 

|∇φ1 | |∇φ2|
] 

Problems based on angle between two surfaces 

Example: 2.15 Find the angle between the surfaces 𝒛 =  𝒙𝟐 +  𝒚𝟐 − 𝟑 and 𝒙𝟐 +  𝒚𝟐 +  𝒛𝟐 = 𝟗 at the 

point (𝟐, −𝟏, 𝟐). 

Solution:  

             Given 𝜑 =  𝑥2 +  𝑦2 − 𝑧 − 3 

  ∇𝜑1 =  𝑖
𝜕𝜑1

𝜕𝑥
+ 𝑗

𝜕𝜑1

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑1

𝜕𝑧
 

 = 𝑖 (2𝑥) +  𝑗 (2𝑦) +  𝑘⃗⃗ (−1) 

 ∴ (∇ 𝜑1)(2,−1,   2) =  4𝑖 − 2𝑗 − 𝑘⃗⃗ 

 |∇𝜑1| =  √16 + 4 + 1 =  √21 

  ∇𝜑2 =  𝑖
𝜕𝜑2

𝜕𝑥
+ 𝑗

𝜕𝜑2

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑2

𝜕𝑧
 

 = 𝑖 (2𝑥) +  𝑗 (2𝑦) +  𝑘⃗⃗ (2𝑧) 

 ∴ (∇ 𝜑2)(2,−1,   2) =  4𝑖 − 2𝑗 + 4𝑘⃗⃗ 

 |∇𝜑2| =  √16 + 4 + 16 =  √36 = 6 

The angle between the surfaces is cos θ =  
∇ φ1 ∙ ∇ φ2 

|∇φ1 | |∇φ2|
 

    =  
(4𝑖−2𝑗−𝑘⃗⃗) (4𝑖−2𝑗+4𝑘⃗⃗)

√21(6)
 

    =  
16+4−4

√21(6)
 

    =  
16

√21(6)
 =  

8

3 √21
 

 ⇒  𝜃 =  𝑐𝑜𝑠−1  [
8

3 √21
] 

Example: 2.16 Find the angle between the normals to the surfaces  𝒙𝟐 = 𝒚𝒛 at the point  

(𝟏, 𝟏, 𝟏) 𝒂𝒏𝒅 (𝟐, 𝟒, 𝟏). 

Solution:  

             Given 𝜑 =  𝑥2 − 𝑦𝑧  

 ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (2𝑥) +  𝑗 (−𝑧) +  𝑘⃗⃗ (−𝑦) 

 ∴ (∇ 𝜑1)(1,   1,   1) =  2𝑖 − 𝑗 − 𝑘⃗⃗ 

 |∇𝜑1| =  √4 + 1 + 1 =  √6 

 ∴ (∇ 𝜑2)(2,   4,   1) =  4𝑖 − 𝑗 − 4𝑘⃗⃗ 

 |∇𝜑2| =  √16 + 1 + 16 =  √33 

The angle between the surfaces is cos θ =  
∇ φ1 ∙ ∇ φ2 

|∇φ1 | |∇φ2|
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    =  
(2𝑖−𝑗−𝑘⃗⃗) (4𝑖−𝑗−4𝑘⃗⃗)

√6√33
 

    =  
8+1+4

√6√33
 

    =  
13

√2(3)√11(3)
 =  

13

3 √22
 

 ⇒  𝜃 =  𝑐𝑜𝑠−1  [
13

3 √22
] 

Example: 2.17 Find the angle between the surfaces  𝒙 𝒍𝒐𝒈 𝒛 = 𝒚𝟐 −  𝟏  and 𝒙𝟐𝒚 = 𝟐 − 𝒛 at the point 

(𝟏, 𝟏, 𝟏). 

Solution:  

             Given 𝜑1 =  𝑦2 − 𝑥 𝑙𝑜𝑔 𝑧 −  1    

 ∇𝜑1 =  𝑖
𝜕𝜑1

𝜕𝑥
+ 𝑗

𝜕𝜑1

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑1

𝜕𝑧
 

 = 𝑖 (– log 𝑧) +  𝑗 (2𝑦) + 𝑘⃗⃗  (−
𝑥

𝑧
) 

 ∴ (∇ 𝜑1)(1,   1,   1) =  0𝑖 + 2𝑗 − 𝑘⃗⃗ 

 |∇𝜑1| =  √0 + 4 + 1 =  √5 

  ∇𝜑2 =  𝑖
𝜕𝜑2

𝜕𝑥
+ 𝑗

𝜕𝜑2

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑2

𝜕𝑧
 

 = 𝑖 (2𝑥𝑦) +  𝑗 (𝑥2) + 𝑘⃗⃗ (1) 

 ∴ (∇ 𝜑2)(1,   1,   1) =  2𝑖 + 𝑗 + 𝑘⃗⃗ 

 |∇𝜑2| =  √4 + 1 + 1 =  √6 

The angle between the surfaces is cos θ =  
∇ φ1 ∙ ∇ φ2 

|∇φ1 |  |∇φ2|
 

    =  
(0𝑖+2𝑗−𝑘⃗⃗)  ∙ (2𝑖+𝑗+𝑘⃗⃗)

√5√6
 

    =  
0+2 −1

√30
 

    =  
1

√30
  

     ⇒  𝜃 =  𝑐𝑜𝑠−1  [
1

√30
] 

Problems based on orthogonal surfaces 

Two surfaces are orthogonal if  ∇𝜑1  ∙  ∇ 𝜑2 = 0 

Example: 2.18 Find 𝒂 and 𝒃 such that the surfaces 𝒂𝒙𝟐 −  𝒃𝒚𝒛 =  (𝒂 + 𝟐)𝒙 and 

 𝟒𝒙𝟐𝒚 +  𝒛𝟑 = 𝟒 cut orthogonally at (𝟏, −𝟏, 𝟐). 

Solution:  

              Given 𝑎𝑥2 −  𝑏𝑦𝑧 =  (𝑎 + 2)𝑥 

Let 𝜑1 =  𝑎𝑥2 −  𝑏𝑦𝑧 −  (𝑎 + 2)𝑥 

 ∇𝜑1 =  𝑖
𝜕𝜑1

𝜕𝑥
+ 𝑗

𝜕𝜑1

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑1

𝜕𝑧
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 = 𝑖 (2𝑎𝑥 − (𝑎 + 2)) +  𝑗 (−𝑏𝑧) +  𝑘⃗⃗ (−𝑏𝑦) 

 ∴ (∇ 𝜑1)(1,−1,   2) =  𝑖(𝑎 − 2) + 𝑗 (−2𝑏) + 𝑘⃗⃗(𝑏) 

Let 𝜑2 =  4𝑥2𝑦 +  𝑧3 − 4  

  ∇𝜑2 =  𝑖
𝜕𝜑2

𝜕𝑥
+ 𝑗

𝜕𝜑2

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑2

𝜕𝑧
 

 = 𝑖 (8𝑥𝑦) +  𝑗 (4𝑥2) +  𝑘⃗⃗ (3𝑧2) 

 ∴ (∇ 𝜑2)(1,−1,   2) =  −8𝑖 + 4𝑗 + 12𝑘⃗⃗ 

Since the two surfaces are orthogonal if  ∇𝜑1  ∙  ∇ 𝜑2 = 0 

 ⇒ (𝑖(𝑎 − 2) + 𝑗 (−2𝑏) + 𝑘⃗⃗(𝑏))  ∙ (−8𝑖 + 4𝑗 + 12𝑘⃗⃗ ) = 0 

 ⇒  −8 (𝑎 − 2) −  8𝑏 + 12𝑏 = 0 

 ⇒  −8𝑎 + 16 − 8𝑏 + 12𝑏 = 0  

 ⇒  −8𝑎 + 16 + 4𝑏 = 0 

÷ by 4 ⇒  −2𝑎 + 4 + 𝑏 = 0 

  ⇒ 2𝑎 − 𝑏 − 4 = 0  … (1) 

To find 𝑎 and 𝑏 we need another equation in 𝑎 and 𝑏. 

The point (1, −1, 2) lies in 𝑎𝑥2 −  𝑏𝑦𝑧 −  (𝑎 + 2)𝑥 = 0 

 ∴ 𝑎 − 𝑏 (−1) (2) −  (𝑎 + 2) (1) = 0 

 ⇒ 𝑎 + 2𝑏 − 𝑎 − 2 = 0 

 ⇒ 2𝑏 − 2 = 0 

 ⇒ 𝑏 = 1 

Substitute 𝑏 = 1 in (1) we get 

 ⇒ 2𝑎 − 1 − 4 = 0 

 ⇒ 2𝑎 − 5 = 0 

 ⇒ 𝑎 =  
5

2
 

Example: 2.19 Find the values of 𝒂 and 𝒃 so that the surfaces 𝒂𝒙𝟑 −  𝒃𝒚𝟐𝒛 =  (𝒂 + 𝟑)𝒙𝟐 and 

 𝟒𝒙𝟐𝒚 −  𝒛𝟑 = 𝟏𝟏  may cut orthogonally at (𝟐, −𝟏, −𝟑). 

Solution:  

              Given 𝑎𝑥3 −  𝑏𝑦2𝑧 =  (𝑎 + 3)𝑥2  

Let 𝜑1 =  𝑎𝑥3 −  𝑏𝑦2𝑧 −  (𝑎 + 3)𝑥2 

 ∇𝜑1 =  𝑖
𝜕𝜑1

𝜕𝑥
+ 𝑗

𝜕𝜑1

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑1

𝜕𝑧
 

 = 𝑖 (3𝑎𝑥2 −  2𝑥(𝑎 + 3)) +  𝑗 (−2𝑏𝑦𝑧) +  𝑘⃗⃗ (−𝑏𝑦2) 

 ∴ (∇ 𝜑1)(2,−1,−3) =  𝑖(8𝑎 − 12) + 𝑗 (−6𝑏) + 𝑘⃗⃗(−𝑏) 

Let 𝜑2 =  4𝑥2𝑦 −  𝑧3 − 11  

  ∇𝜑2 =  𝑖
𝜕𝜑2

𝜕𝑥
+ 𝑗

𝜕𝜑2

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑2

𝜕𝑧
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 = 𝑖 (8𝑥𝑦) +  𝑗 (4𝑥2) +  𝑘⃗⃗ (−3𝑧2) 

 ∴ (∇ 𝜑2)(2,−1,−3) =  −16𝑖 + 16𝑗 − 27𝑘⃗⃗ 

Given the two surfaces cut orthogonally if  ∇𝜑1  ∙  ∇ 𝜑2 = 0 

 ⇒ (𝑖(8𝑎 − 12) + 𝑗 (−6𝑏) − 𝑘⃗⃗(𝑏)) ∙ (−16𝑖 + 16𝑗 − 27𝑘⃗⃗ ) = 0 

 ⇒  −16 (8𝑎 − 12) −  16(6𝑏) + 27𝑏 = 0 

 ⇒  −128𝑎 + 192 − 69𝑏 = 0  

  ⇒ 128𝑎 + 69𝑏 − 192 = 0  … (1) 

To find 𝑎 and 𝑏 we need another equation in 𝑎 and 𝑏. 

The point (2, −1, −3) lies in 𝑎𝑥3 −  𝑏𝑦2𝑧 − (𝑎 + 3)𝑥2 = 0 

 ∴ 8𝑎 − 𝑏 (1) (−3) −  (𝑎 + 3) (4) = 0 

 ⇒ 4𝑎 + 3𝑏 − 12 = 0 … (2) 

Solving (1) and (2) we get, 𝑎 =  −
7

3
 & 𝑏 =  

64

9
 

Equation of the tangent plane and normal to the surface 

Equation of the tangent plane is (𝑟 −  𝑎⃗)  ∙  ∇𝜑 = 0  

Equation of the normal line is (𝑟 −  𝑎⃗)  ×  ∇𝜑 = 0⃗⃗ 

Problems based on tangent plane 

Example: 2.20 Find the equation of the tangent plane and normal line to the surface 𝒙𝒚𝒛 = 𝟒 at the 

point 𝒊 + 𝟐𝒋 + 𝟐𝒌⃗⃗⃗ . 

Solution: 

               Given 𝜑 =  𝑥𝑦𝑧 − 4 

 ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 = 𝑖 (𝑦𝑧) +  𝑗 (𝑥𝑧) +  𝑘⃗⃗ (𝑥𝑦) 

 ∴ (∇ 𝜑)(1,   2,   2) =  4𝑖 + 2𝑗 + 2𝑘⃗⃗ 

Equation of the tangent plane at the point 𝑎⃗ =  𝑖 + 2𝑗 + 2𝑘⃗⃗  is (𝑟 − 𝑎⃗)  ∙  ∇𝜑 = 0 

 ⇒ [(𝑥𝑖 +  𝑦𝑗 +  𝑧𝑘⃗⃗) −  𝑖 + 2𝑗 + 2𝑘⃗⃗]  ∙ (4𝑖 + 2𝑗 + 2𝑘⃗⃗) = 0  

 ⇒ [(𝑥 − 1) 𝑖 + (𝑦 − 2) 𝑗 +  (𝑧 − 2) 𝑘⃗⃗]  ∙ (4𝑖 + 2𝑗 + 2𝑘⃗⃗) = 0  

 ⇒ 4(𝑥 − 1) +  2(𝑦 − 2) +  2(𝑧 − 2) = 0 

 ⇒ 4𝑥 − 4 + 2𝑦 − 4 + 2𝑧 − 4 = 0 

 ⇒ 4𝑥 +  2𝑦 + 2𝑧 = 12 

 ⇒ 2𝑥 + 𝑦 + 𝑧 = 6 

Equation of the normal line (𝑟 −  𝑎⃗)  × ∇𝜑 = 0⃗⃗ 
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  |
𝑖 𝑗 𝑘⃗⃗

𝑥 − 1 𝑦 − 2 𝑧 − 2
4 2 2

| = 0⃗⃗ 

⇒ 𝑖 [2 (𝑦 − 2) −  2 (𝑧 − 2)] −  𝑗 [2 (𝑥 − 1) −  4 (𝑧 − 2)] +  𝑘⃗⃗ [2 (𝑥 − 1) −  4 (𝑦 − 2)] 

       = 0 𝑖 +  0 𝑗 +  0𝑘⃗⃗  

Equating the coefficients of  𝑖, 𝑗, 𝑘⃗⃗ we get 

  ⇒ 2 (𝑦 − 2) −  2 (𝑧 − 2) = 0  

  ⇒  (𝑦 − 2) =   (𝑧 − 2)   … (1)  

  ⇒ 2 (𝑥 − 1) −  4 (𝑧 − 2) = 0  

  ⇒  (𝑥 − 1) =  2 (𝑧 − 2)  

  ⇒  
𝑥−1

2
=  (𝑧 − 2) … (2)    

  ⇒ 2 (𝑥 − 1) −  4 (𝑦 − 2) = 0  

  ⇒  (𝑥 − 1) =  2 (𝑦 − 2) 

  ⇒  
𝑥 −1

2
=  (𝑦 − 2) … (3) 

From (1), (2) 𝑎𝑛𝑑  (3) we get      
𝑥 −1

2
=

𝑦 − 2

1
=  

𝑧 − 2

1
   

Which is the required equation of the normal line. 

Exercise: 2.1 

1. Find ∇𝜑 if 𝜑 =  
1

2
log(𝑥2 +  𝑦2 + 𝑧2)                                                  Ans: 

𝑟

𝑟2 

2. Find the directional derivative of  

   (i)  𝜑 =  2𝑥𝑦 +  𝑧2 at the point (1, −1, 3) in the direction  𝑖 + 2𝑗 + 2𝑘⃗⃗ . Ans: 
14

3
        

   (ii)  𝜑 =  𝑥𝑦2 +  𝑦𝑧3 at the point (2, −1, 1) in the direction of PQ where Q is the point    

          (3, 1, 3) .                                                                                             Ans: 
−11

3
        

3. Prove that the directional derivative of 𝜑 =   𝑥3𝑦2𝑧 at  (1, 2, 3)is maximum along the  

    direction 9𝑖 + 3𝑗 + 𝑘⃗⃗. Also, find the maximum directional derivative.     Ans: 4√91 

4. Find the unit tangent vector to the curve   𝑟 = (𝑡2 + 1)𝑖 + (4𝑡 − 3)𝑗 + (2𝑡2 −  65)𝑘⃗⃗ at  

     𝑡 = 1.                                                                                                            Ans: 
 𝑖+2𝑗−𝑘⃗⃗

√6
 

5. Find a unit normal to the following surfaces at the specified points. 

    (i) 𝑥2𝑦 + 2𝑥𝑧 = 4 at (2, −2, 3)                                                        Ans: ±
1

3
(𝑖 − 2𝑗 − 2𝑘⃗⃗) 

    (ii) 𝑥2 + 𝑦2 = 𝑧 at (1, −2, 5)                                                           Ans: 
1

√21
(2𝑖 − 4𝑗 − 𝑘⃗⃗) 

    (ii) 𝑥𝑦3𝑧2 = 4 at (−1, −1, 2)                                                           Ans: 
1

√11
(−𝑖 − 3𝑗 + 𝑘⃗⃗) 

    (iv) 𝑥2 + 𝑦2 = 𝑧 at (1, 1, 2)                                                               Ans: 
1

3
(2𝑖 + 2𝑗 − 𝑘⃗⃗) 

6. Find the angle between the surfaces 𝑥2 − 𝑦2 − 𝑧2 = 𝑧 and 𝑥𝑦 + 𝑦𝑧 − 𝑧𝑥 − 18 = 0 at the  
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     point (6, 4, 3).                                                                               Ans: 𝑐𝑜𝑠−1 [
−24

√86√61
] 

7. Find the angle between the surfaces 𝑥𝑦2𝑧 = 3𝑥 + 𝑧2and 3𝑥2 − 𝑦2 + 2𝑧 = 1 at the point  

    (1, −2, 1).                                                                                       Ans: 𝑐𝑜𝑠−1 [
−3

7√6
] 

8. Find the equation of the tangent plane to the surfaces 2𝑥𝑧2 − 3𝑥𝑦 − 4𝑥 = 7 at the point  

     (1, −1, 2).                                                                             Ans: 7𝑥 − 3𝑦 + 8𝑧 − 26 = 0 

9. Find the equation of the tangent plane to the surfaces 𝑥𝑧2 + 𝑥2𝑦 = 𝑧 − 1 at the point  

   (1, −3, 2).                                                                   Ans: 2𝑥 − 𝑦 − 3𝑧 + 1 = 0 

10. Find the angle between the surfaces 𝑥 log 𝑧 =  𝑦2 −  1 and 𝑥2𝑦 = 2 − 𝑧 at the point  

  (1, 1, 1).                                                                      Ans: 𝑐𝑜𝑠−1 [
1

√30
] 

2.2 DIVERGENCE, CURL – IRROTATIONAL AND SOLENOIDAL VECTORS 

Divergence of a vector function 

If  F⃗⃗(𝑥, 𝑦, 𝑧) is a continuously differentiable vector point function in a given region of space, then the 

divergence of F⃗⃗ is defined by  

∇. F⃗⃗ = div F⃗⃗ = (𝑖
∂

∂𝑥
+ j⃗

∂

∂y
+ k⃗⃗

∂

∂z
).(F1i⃗ + F2j⃗ + F3k⃗⃗) 

divF⃗⃗  =
𝜕𝐹1

𝜕𝑥
+  

𝜕𝐹2

𝜕𝑦
+ 

𝜕𝐹3

𝜕𝑧
  where𝐹⃗ =  𝐹1𝑖 +  𝐹2𝑗 + 𝐹3𝑘⃗⃗ 

Note: ∇. F⃗⃗  Is a scalar point function. 

Solenoidal vector  

 A vector F⃗⃗  is said to be solenoidal if 𝑑𝑖𝑣 F⃗⃗= 0  (i.e)∇. F⃗⃗ = 0 

Curl of a vector function 

If F⃗⃗(𝑥, 𝑦, 𝑧) is a differentiable vector point function defines at each point (𝑥, 𝑦, 𝑧) in some region of 

space, then the curl of F⃗⃗ is defined by 

Curl F⃗⃗ = ∇  ×  F⃗⃗ =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐹1 𝐹2 𝐹3

| 

     =  𝑖 (
𝜕𝐹3

𝜕𝑦
−  

𝜕𝐹2

𝜕𝑧
 ) −  𝑗  (

𝜕𝐹3

𝜕𝑥
−  

𝜕𝐹1

𝜕𝑧
) +  𝑘⃗⃗  (

𝜕𝐹2

𝜕𝑥
−  

𝜕𝐹1

𝜕𝑦
) 

Where 𝐹⃗ =  𝐹1𝑖 +  𝐹2𝑗 + 𝐹3𝑘⃗⃗ 

Note: ∇ × F⃗⃗  Is a vector point function. 

Irrotational vector 

 A vector is said to be irrotational if Curl F⃗⃗ = 0 (𝑖. 𝑒)  ∇ × F⃗⃗ = 0 

Scalar potential 
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If F⃗⃗ is an irrotational vector, then there exists a scalar function φ such that F⃗⃗ = ∇φ. Such a scalar 

function is called scalar potential of F⃗⃗. 

Problems based on Divergence and Curl of a vector 

Example: 2.21 If 𝒓⃗⃗ =  𝒙𝒊 +  𝒚𝒋 + 𝒛𝒌⃗⃗⃗ then find div 𝐫⃗ and curl𝐫⃗ 

Solution:     

             Given 𝑟 =  𝑥𝑖 +  𝑦𝑗 + 𝑧𝑘⃗⃗ 

Now div r⃗ = ∇  ∙ 𝑟 

                             = 
∂

∂𝑥
(𝑥) +  

∂

∂y
(y) +

∂

∂z
(z) 

                            =  1 + 1 + 1 = 3 

And curl 𝑟= ∇  × r⃗  

              ∇ × r⃗ =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥 𝑦 𝑧

| 

 =  𝑖 (
𝜕

𝜕𝑦
(𝑧) −  

𝜕

𝜕𝑧
(𝑦) ) −  𝑗 (

𝜕

𝜕𝑥
(𝑧) − 

𝜕

𝜕𝑧
(𝑥)) +  𝑘⃗⃗  (

𝜕

𝜕𝑥
(𝑦) −  

𝜕

𝜕𝑦
(𝑥)) 

 =  𝑖(0) + 𝑗(0) + 𝑘⃗⃗(0) =  0⃗⃗. 

Example: 2.22 If 𝐅⃗ = 𝒙𝒚𝟐𝒊 + 𝟐𝒙𝟐𝒚𝒛𝒋 − 𝟑𝒚𝒛𝟐𝒌⃗⃗⃗  find 𝛁. 𝐅⃗  and 𝛁 × 𝐅⃗  at the point (1,-1, 1). 

Solution: 

Given F⃗⃗ = 𝑥𝑦2𝑖 + 2𝑥2𝑦𝑧𝑗 − 3𝑦𝑧2𝑘⃗⃗ 

(i) ∇. F⃗⃗ = 
𝜕

𝜕𝑥
(𝑥𝑦2) +  

𝜕

𝜕𝑦
(2𝑥2𝑦𝑧) +

𝜕

𝜕𝑧
(−3𝑦𝑧2) 

= y2+2x2z − 6yz 

     ∇. F⃗⃗(1,−1,1) =  1 + 2 + 6 = 9 

  (ii)        ∇ × r⃗  = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥𝑦2 2𝑥2𝑦𝑧 3𝑦𝑧2

| 

                         = i⃗ [
∂(−3yz2)

∂y
−

∂(2x2yz)

∂z
]-j⃗ [

∂(−3yz2)

∂x
−

∂(xy2)

∂z
]+k⃗⃗ [

∂(2x2yz)

∂x
−

∂(xy2)

∂y
] 

                        =  𝑖 ⃗⃗ (−3𝑧2 − 2𝑥2𝑦) − 𝑗 ⃗⃗⃗ (0) + 𝑘⃗⃗(4𝑥𝑦𝑧 − 2𝑥𝑦) 

     ∇ × F⃗⃗(1,−1,1)  =  𝑖 ⃗⃗ (−3 + 2) + 𝑘⃗⃗(−4 + 2) 

                       = −𝑖 ⃗⃗ −  2𝑘⃗⃗ 

Example: 2.23 If 𝐅⃗ = (𝒙 2− 𝒚 2+2 𝒙 𝒛)𝐢 +( 𝒙 z− 𝒙 𝒚 +  𝒚 z)𝐣 ⃗⃗ +(z2+ 𝒙 2)𝐤⃗, then find 𝛁 ∙ 𝐅⃗  , 𝛁(𝛁 ∙ 𝐅⃗), 𝛁 × 𝐅⃗, 

𝛁 ∙ (𝛁 × 𝐅⃗), and 𝛁 × (𝛁 × 𝐅⃗) at the point (1,1,1). 

Solution: 

         Given F⃗⃗ = (𝑥 2− 𝑦 2+2 𝑥 z)i⃗ +( 𝑥 z− 𝑥 𝑦 +yz)j ⃗⃗ +(z2+ 𝑥 2)k⃗⃗ 
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(i) ∇ ∙ F⃗⃗ = 
∂

∂x
(𝑥2 − y2 + 2𝑥z) +  

∂

∂y
( 𝑥 z −  𝑥 𝑦 + 𝑦z) +

∂

∂z
(z2 + 𝑥2) 

                         =  (2𝑥 + 2𝑧) + (−𝑥 + 𝑧) + 2𝑧 

                         = 𝑥 + 5𝑧 

        ∴ ∇ ∙ F⃗⃗(1,1,1) = 6 

(ii) ∇ × F⃗⃗ = |

i⃗ j⃗ k⃗⃗
∂

∂x

∂

∂y

∂

∂z

𝑥2 − y2 + 2𝑥z 𝑥 z −  𝑥 𝑦 + 𝑦z z2 + 𝑥2

| 

= i⃗ [
∂(z2+x2)

∂y
−

∂(xz−xy+yz)

∂z
] − j⃗ [

∂(z2+x2)

∂x
−

∂(x2−y2+2xz)

∂z
] + k⃗⃗ [

∂(xz−xy+yz)

∂x
−

∂(x2−y2+2xz)

∂y
] 

                        =  −(𝑥 + 𝑦)𝑖 ⃗⃗ − (2𝑥 − 2𝑥)𝑗 ⃗⃗⃗ + (𝑦 + 𝑧)𝑘⃗⃗ 

         ∴ ∇ × F⃗⃗(1,1,1) =  −2𝑖 ⃗⃗ + 2𝑘⃗⃗ 

(iii) ∇(∇ ∙ F⃗⃗) = i⃗
∂

∂x
(x + 5z) + j⃗

∂

∂y
(x + 5z) + k⃗⃗

∂

∂z
(x + 5z) 

                     =  𝑖  +  5𝑘⃗⃗ 

 ∴ ∇(∇ ∙ F⃗⃗)(1,1,1) =  𝑖  +  5𝑘⃗⃗ 

(iv) ∇ ∙ (∇ × F⃗⃗) = 
∂

∂x
(−(x + y)) +  

∂

∂y
(0) +

∂

∂z
(y + z) 

   = −1 + 0 + 1 

             ∇ ∙ (∇ × F⃗⃗)(1, 1, 1) = 0 

 (v)  ∇ × (∇ × F⃗⃗) = |

i⃗ j⃗ k⃗⃗
∂

∂x

∂

∂y

∂

∂z

−(x + y) 0 y + z

| 

∴∇ × (∇ × F⃗⃗)(1,1,1)  =  𝑖  +  𝑘⃗⃗ 

Example: 2.24 Find div 𝐅⃗ and curl 𝐅⃗, where 𝐅⃗ = grad(𝒙3+𝒚3+𝒛3−3𝒙𝒚𝒛) 

Solution: 

        Given  F⃗⃗ = grad(𝑥3+𝑦3+𝑧3−3𝑥𝑦𝑧) 

          =  i⃗
∂

∂x
(x3 + y3 + z3 − 3xyz) + j⃗

∂

∂y
(x3 + y3 + z3 − 3xyz) + k⃗⃗

∂

∂z
(x3 + y3 + z3 − 3xyz) 

 F⃗⃗ = i⃗(3x2 − 3yz) + j⃗(3y2 − 3xz) + k⃗⃗(3z2 − 3xy) 

Now div F⃗⃗ = ∇ ∙ F⃗⃗ =
∂

∂x
(3x2 − 3yz) +

∂

∂y
(3y2 − 3xz) +

∂

∂z
(3z2 − 3xy) 

                           = 6𝑥 + 6𝑦 + 6𝑧 

                           = 6(𝑥 + 𝑦 + 𝑧) 

Curl F⃗⃗ = ∇  ×  F⃗⃗ = |

i⃗ j⃗ k⃗⃗
∂

∂x

∂

∂y

∂

∂z

3x2 − 3yz 3y2 − 3xz 3z2 − 3xy

| 

 = i⃗[−3x + 3x] − j⃗[−3y + 3y] + k⃗⃗ [−3z + 3z] 
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 = 0⃗⃗ 

Example: 2.25 Find div(grad 𝛗) and curl(grad 𝛗) at (1,1,1) for 𝛗 = 𝐱𝟐𝐲𝟑𝐳𝟒 

Solution:  

              Given φ = x2y3z4 

                  grad φ = ∇ φ = i⃗
∂φ 

∂x
+ j⃗

∂φ 

∂y
+ k⃗⃗

∂φ 

∂z
 

              = i⃗(2xy3z4) + j⃗(x23y2z4) + k⃗⃗(x2y34z3) 

           Div(grad φ) = ∇ ∙ (grad φ)  

         = 
∂

∂x
(2xy3z4) +

∂

∂y
(x23y2z4) +

∂

∂z
(x2y34z3) 

       = 2𝑦3𝑧4 +6x2yz4+12x2y3z4 

∴Div(grad φ)(1,1,1) = 2 + 6 + 12 = 20 

Curl(grad φ) =  |

i⃗ j⃗ k⃗⃗
∂

∂x

∂

∂y

∂

∂z

2xy3z4 x23y2z4 x2y34z3

| 

 = i ⃗⃗ (12x2y2z3 − 12x2y2z3) − j ⃗⃗ (8xy3z3 − 8xy3z3)+k⃗⃗(6xy2z4 − 6xy2z4) 

 =  0⃗⃗ 

∴Curl gradφ
(1,1,1)

= 0⃗⃗ 

Vector Identities 

1) ∇ ∙ (φ F⃗⃗) = φ(∇ ∙ F⃗⃗) +  F⃗⃗ ∙ ∇φ  

2) ∇ × (φ F⃗⃗) = φ(∇ × F⃗⃗) + (∇φ)× F⃗⃗ 

3) ∇ ∙ (A⃗⃗⃗ × B⃗⃗⃗) = B⃗⃗⃗ ∙ (∇ × A⃗⃗⃗) −A⃗⃗⃗ ∙ (∇ × B⃗⃗⃗) 

4) ∇ × (A⃗⃗⃗ × B⃗⃗⃗) = A⃗⃗⃗(∇ ∙ B⃗⃗⃗)−B⃗⃗⃗(∇ ∙ A⃗⃗⃗) +(B⃗⃗⃗ ∙ ∇)A⃗⃗⃗ − (A⃗⃗⃗ ∙ ∇)B⃗⃗⃗ 

5) ∇(A⃗⃗⃗ ∙ B⃗⃗⃗) =  A⃗⃗⃗ × (∇ × B⃗⃗⃗)−(A⃗⃗⃗ ∙ ∇)B⃗⃗⃗ +B⃗⃗⃗ × (∇ × A⃗⃗⃗) − (B⃗⃗⃗ ∙ ∇)A⃗⃗⃗ 

6) ∇ ∙ (∇φ) = 0⃗⃗ 

7) ∇ ∙ (∇ × F⃗⃗) = 0 

8) ∇ × (∇ × F⃗⃗) = ∇(∇ ∙ F⃗⃗) − ∇2 F⃗⃗ 

9) ∇ ∙ ∇φ = (∇ ∙ ∇)φ =  ∇2φ where  ∇2=  
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is a laplacian operator 

1) If 𝛗 is a scalar point function, 𝐅⃗ is a vector point function, then 𝛁. (𝛗 𝐅⃗) = 𝛗(𝛁 ∙ 𝐅⃗) +  𝐅⃗ ∙ 𝛁𝛗  

      Proof: 

    ∇ ∙ (φ F⃗⃗) = (𝑖
∂

∂𝑥
+ j⃗

∂

∂y
+ k⃗⃗

∂

∂z
) ∙ (φ F⃗⃗) 

  = ∑ 𝑖 ∙
∂

∂𝑥
(φ F⃗⃗)  

                         = ∑ 𝑖 ∙ (φ
∂F⃗⃗⃗

∂𝑥
+ F⃗⃗

∂φ

∂𝑥
) 
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                         = φ (∑ 𝑖 ∙
∂F⃗⃗⃗

∂𝑥
+ F⃗⃗

∂φ

∂𝑥
) + F⃗⃗ ∙ (∑ 𝑖

∂φ

∂𝑥
) 

∴∇ ∙ (φ F⃗⃗) = φ(∇ ∙ F⃗⃗) +  F⃗⃗ ∙ ∇φ 

2) If 𝛗 is a scalar point fuction, 𝐅⃗ is a vector point function, then𝛁 × (𝛗 𝐅⃗) = 𝛗(𝛁 × 𝐅⃗) + (𝛁𝛗)× 𝐅⃗ 

Proof: 

∇ × (φ F⃗⃗) = ∑ 𝑖 ×
∂

∂𝑥
(φ F⃗⃗) 

                          =∑ 𝑖 × [φ
∂F⃗⃗⃗

∂𝑥
+  F⃗⃗

∂φ

∂𝑥
] 

                          =∑ 𝑖 × (
∂φ

∂𝑥
F⃗⃗ +  φ

∂F⃗⃗⃗

∂𝑥
) 

                           =(∑ 𝑖
∂φ

∂𝑥
) × F⃗⃗ + φ [∑ 𝑖 ×

∂F⃗⃗⃗

∂𝑥
] 

∴∇ × (φ F⃗⃗) = ∇φ × F⃗⃗ + φ(∇ × F⃗⃗) 

   3) If  𝐀⃗⃗⃗ and 𝐁⃗⃗⃗ are vector point functions, then 𝛁 ∙ (𝐀⃗⃗⃗ × 𝐁⃗⃗⃗) = 𝐁⃗⃗⃗ ∙ (𝛁 × 𝐀⃗⃗⃗) −𝐀⃗⃗⃗ ∙ (𝛁 × 𝐁⃗⃗⃗) 

     Proof:  

     ∇. (A⃗⃗⃗ × B⃗⃗⃗) = ∑ 𝑖 ∙
∂

∂x
(A⃗⃗⃗ × B⃗⃗⃗) 

                      =∑ 𝑖 ∙ (A⃗⃗⃗ ×
∂B⃗⃗⃗

∂𝑥
+

∂A⃗⃗⃗

∂𝑥
× B⃗⃗⃗) 

                      =∑ 𝑖 ∙ (A⃗⃗⃗ ×
∂B⃗⃗⃗

∂𝑥
) + ∑ 𝑖 ∙ (

∂A⃗⃗⃗

∂𝑥
× B⃗⃗⃗)  

                      = − (∑ 𝑖 ×
∂B⃗⃗⃗

∂𝑥
) ∙ A⃗⃗⃗ + (∑ 𝑖 ×

∂A⃗⃗⃗

∂𝑥
) . B⃗⃗⃗ 

                      = −(∇ × B⃗⃗⃗). A⃗⃗⃗ + (∇ × A⃗⃗⃗) ∙ B⃗⃗⃗ 

             ∴ ∇ ∙ (A⃗⃗⃗ × B⃗⃗⃗) = B⃗⃗⃗ ∙ (∇ × A⃗⃗⃗) −A⃗⃗⃗ ∙ (∇ × B⃗⃗⃗)                   [∵ (∇ × A⃗⃗⃗) ∙ B⃗⃗⃗ = B⃗⃗⃗ ∙ (∇ × A⃗⃗⃗)] 

(4) If  𝐀⃗⃗⃗ and 𝐁⃗⃗⃗ are vector point functions, then 

 𝛁 × (𝐀⃗⃗⃗ × 𝐁⃗⃗⃗) =  𝐀⃗⃗⃗(𝛁 ∙ 𝐁⃗⃗⃗)−𝐁⃗⃗⃗(𝛁 ∙ 𝐀⃗⃗⃗) +(𝐁⃗⃗⃗ ∙ 𝛁)𝐀⃗⃗⃗ − (𝐀⃗⃗⃗ ∙ 𝛁)𝐁⃗⃗⃗ 

Proof:  

∇ × (A⃗⃗⃗ × B⃗⃗⃗) =  ∑ 𝑖 ×
∂

∂𝑥
(A⃗⃗⃗ × B⃗⃗⃗) 

                     =∑ 𝑖 × (
∂A⃗⃗⃗

∂𝑥
× B⃗⃗⃗ + A⃗⃗⃗ ×

∂B⃗⃗⃗

∂𝑥
) 

                       =∑ 𝑖 × (
∂A⃗⃗⃗

∂𝑥
× B⃗⃗⃗) + ∑ 𝑖 × (A⃗⃗⃗ ×

∂B⃗⃗⃗

∂𝑥
) 

We know that 𝑎⃗  ×  (𝑏⃗⃗  ×  𝑐) =  (𝑎⃗  ∙  𝑐) 𝑏⃗⃗ −  (𝑎⃗  ∙  𝑏⃗⃗) 𝑐 

∇ × (A⃗⃗⃗ × B⃗⃗⃗) =∑ [(𝑖 ∙ B⃗⃗⃗)
∂A⃗⃗⃗

∂𝑥
− (𝑖 ∙

∂A⃗⃗⃗

∂𝑥
) B⃗⃗⃗] +∑ [(𝑖 ∙

∂B⃗⃗⃗

∂𝑥
) A⃗⃗⃗ − (𝑖  ∙ A⃗⃗⃗)

∂B⃗⃗⃗

∂𝑥
] 

                    =(∑ 𝑖 ∙
∂B⃗⃗⃗

∂𝑥
) A⃗⃗⃗ − (∑ 𝑖 ∙

∂A⃗⃗⃗

∂𝑥
) B⃗⃗⃗ + ∑(B⃗⃗⃗  ∙ 𝑖)

∂A⃗⃗⃗

∂𝑥
− ∑(A⃗⃗⃗ ∙ 𝑖)

∂B⃗⃗⃗

∂𝑥
 

                    =(∑ 𝑖 ∙
∂B⃗⃗⃗

∂𝑥
) A⃗⃗⃗ − (∑ 𝑖 ∙

∂A⃗⃗⃗

∂𝑥
) B⃗⃗⃗ + (B⃗⃗⃗ ∙ ∑ 𝑖

∂

∂𝑥
) A⃗⃗⃗ − (A⃗⃗⃗ ∙ ∑ 𝑖

∂

∂𝑥
) B⃗⃗⃗ 

∴ ∇ × (A⃗⃗⃗ × B⃗⃗⃗) =  A⃗⃗⃗(∇ ∙ B⃗⃗⃗)−B⃗⃗⃗(∇ ∙ A⃗⃗⃗) +(B⃗⃗⃗ ∙ ∇)A⃗⃗⃗ − (A⃗⃗⃗ ∙ ∇)B⃗⃗⃗ 
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(5) If 𝑨⃗⃗⃗ and 𝑩⃗⃗⃗ are vector point functions, then 

 𝛁(𝑨⃗⃗⃗  ∙  𝑩⃗⃗⃗) =  𝑨⃗⃗⃗  × (𝛁 × 𝑩⃗⃗⃗) +  (𝑨⃗⃗⃗  ∙  𝛁) 𝑩⃗⃗⃗ +  𝑩⃗⃗⃗  ×  (𝛁 × 𝑨⃗⃗⃗) +  (𝑩⃗⃗⃗  ∙  𝛁) 𝑨⃗⃗⃗  

Proof: 

 ∇(𝐴  ∙  𝐵⃗⃗) =  ∑ 𝑖 
𝜕

𝜕𝑥
 (𝐴  ∙  𝐵⃗⃗)  

  =  ∑ 𝑖 (
𝜕𝐴⃗

𝜕𝑥
 ∙  𝐵⃗⃗ +  𝐴  ∙  

𝜕𝐵⃗⃗

𝜕𝑥
) 

  =  ∑ 𝑖 (𝐵⃗⃗  ∙  
𝜕𝐴⃗

𝜕𝑥
) +  ∑ 𝑖 (𝐴 ∙  

𝜕𝐵⃗⃗

𝜕𝑥
) 

  =  ∑ (𝐵⃗⃗  ∙  
𝜕𝐴⃗

𝜕𝑥
) 𝑖 +  ∑ (𝐴 ∙  

𝜕𝐵⃗⃗

𝜕𝑥
) 𝑖       … (1) 

We know that 𝑎⃗  ×  (𝑏⃗⃗  ×  𝑐) =  (𝑎⃗  ∙  𝑐) 𝑏⃗⃗ −  (𝑎⃗  ∙  𝑏⃗⃗) 𝑐  

 ∴ (𝑎⃗  ∙  𝑏⃗⃗) 𝑐 = (𝑎⃗  ∙  𝑐) 𝑏⃗⃗ − 𝑎⃗  × (𝑏⃗⃗  ×  𝑐)  

Consider ∑ (𝐵⃗⃗  ∙  
𝜕𝐴⃗

𝜕𝑥
) 𝑖 =  ∑ [(𝐵⃗⃗  ∙ 𝑖)

𝜕𝐴⃗

𝜕𝑥
− 𝐵⃗⃗  ×  (

𝜕𝐴⃗

𝜕𝑥
 ×  𝑖) ] 

   =   ∑ (𝐵⃗⃗  ∙  𝑖  
𝜕

𝜕𝑥
) 𝐴 +  ∑ [𝐵⃗⃗  ×  (𝑖  × 

𝜕𝐴⃗

𝜕𝑥
)] 

   =  (𝐵⃗⃗  ∙  ∇) 𝐴 +  ∑ [𝐵⃗⃗  × (𝑖 
𝜕

𝜕𝑥
 ×  𝐴)] 

   =  (𝐵⃗⃗  ∙  ∇) 𝐴 +  𝐵⃗⃗  × (∇ × 𝐴)     … (2) 

In (2) interchanging 𝐴 and 𝐵⃗⃗ we get, 

∑ (𝐴 ∙  
𝜕𝐵⃗⃗

𝜕𝑥
) 𝑖 =  (𝐴  ∙  ∇) 𝐵⃗⃗ +  𝐴  ×  (∇ × 𝐵⃗⃗)     … (3) 

Substitute in equation (1) 

 (1) ⇒ ∇(𝐴  ∙  𝐵⃗⃗) = (𝐵⃗⃗  ∙  ∇) 𝐴 +  𝐵⃗⃗  ×  (∇  × 𝐴) + (𝐴 ∙  ∇) 𝐵⃗⃗ +  𝐴  × (∇ × 𝐵⃗⃗)   

(6) If  𝝋 is a scalar point function, then 𝛁 × (𝛁𝝋) =  𝟎⃗⃗⃗.  

(or) 

Prove that 𝒄𝒖𝒓𝒍(𝒈𝒓𝒂𝒅 𝝋) = 𝟎. 

Solution: 

              ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

              ∇ × ∇𝜑 =  |
|

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦

𝜕𝜑

𝜕𝑧

|
| 

  =  ∑ 𝑖 [
𝜕2𝜑

𝜕𝑦𝜕𝑧
− 

𝜕2𝜑

𝜕𝑧𝜕𝑦
] 

  = ∑ 𝑖 (0⃗⃗) =  0⃗⃗ 

(7) If  𝑭⃗⃗⃗ is a vector point function, then 𝛁 ∙  (𝛁 × 𝑭⃗⃗⃗) = 𝟎.  

(or) 
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Prove that 𝒅𝒊𝒗(𝒄𝒖𝒓𝒍 𝑭⃗⃗⃗) = 𝟎. 

Solution: 

              Let 𝐹⃗ =  𝐹1𝑖 +  𝐹2𝑗 + 𝐹3𝑘⃗⃗ 

          ∇ × F⃗⃗ =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐹1 𝐹2 𝐹3

| 

   =  𝑖  (
𝜕𝐹3

𝜕𝑦
−  

𝜕𝐹2

𝜕𝑧
 ) −  𝑗 (

𝜕𝐹3

𝜕𝑥
−  

𝜕𝐹1

𝜕𝑧
) +  𝑘⃗⃗  (

𝜕𝐹2

𝜕𝑥
−  

𝜕𝐹1

𝜕𝑦
) 

 ∇ ∙ (∇  ×  𝐹⃗) = (𝑖 
𝜕

𝜕𝑥
+  𝑗  

𝜕

𝜕𝑦
+ 𝑘⃗⃗  

𝜕

𝜕𝑧
) ∙  

     [𝑖  (
𝜕𝐹3

𝜕𝑦
−  

𝜕𝐹2

𝜕𝑧
 ) −  𝑗 (

𝜕𝐹3

𝜕𝑥
−  

𝜕𝐹1

𝜕𝑧
) +  𝑘⃗⃗  (

𝜕𝐹2

𝜕𝑥
−  

𝜕𝐹1

𝜕𝑦
)] 

                      =  
𝜕2𝐹3

𝜕𝑥𝜕𝑦
−  

𝜕2𝐹2

𝜕𝑥𝜕𝑧
−  

𝜕2𝐹3

𝜕𝑦𝜕𝑥
+  

𝜕2𝐹1

𝜕𝑦𝜕𝑧
+  

𝜕2𝐹2

𝜕𝑧𝜕𝑥
−  

𝜕2𝐹1

𝜕𝑧𝜕𝑦
 

           = 0 

(8) If is a vector point function, then 𝛁 ×  (𝛁 × 𝑭⃗⃗⃗) =  𝛁 (𝛁 ∙  𝑭⃗⃗⃗) −  𝛁𝟐𝑭⃗⃗⃗  

(or) 

Prove that 𝒄𝒖𝒓𝒍 (𝒄𝒖𝒓𝒍 𝑭⃗⃗⃗) = 𝒈𝒓𝒂𝒅 (𝒅𝒊𝒗 𝑭⃗⃗⃗) −  𝛁𝟐𝑭⃗⃗⃗ 

Solution: 

               Let 𝐹⃗ =  𝐹1𝑖 +  𝐹2𝑗 + 𝐹3𝑘⃗⃗ 

 ∇ ×  (∇ × 𝐹⃗) = 𝑖 (
𝜕𝐹3

𝜕𝑦
− 

𝜕𝐹2

𝜕𝑧
 ) − 𝑗  (

𝜕𝐹3

𝜕𝑥
−  

𝜕𝐹1

𝜕𝑧
) +  𝑘⃗⃗  (

𝜕𝐹2

𝜕𝑥
−  

𝜕𝐹1

𝜕𝑦
) 

And ∇ ∙ 𝐹⃗ =
𝜕𝐹1

𝜕𝑥
+  

𝜕𝐹2

𝜕𝑦
+  

𝜕𝐹3

𝜕𝑧
 

L.H.S    ∇ × (∇ × F⃗⃗) =  |
|

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
+

𝜕𝐹1

𝜕𝑧
 
𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦

|
| 

                             = 𝑖 [
𝜕2𝐹2

𝜕𝑦𝜕𝑥
−  

𝜕2𝐹1

𝜕𝑦2 −  
𝜕2𝐹3

𝜕𝑧𝜕𝑥
+  

𝜕2𝐹1

𝜕𝑧2
] − 𝑗 [

𝜕2𝐹2

𝜕𝑥2 −  
𝜕2𝐹1

𝜕𝑥𝜕𝑦
− 

𝜕2𝐹3

𝜕𝑧𝜕𝑦
+  

𝜕2𝐹2

𝜕𝑧2
] 

      +𝑘⃗⃗  [−
𝜕2𝐹3

𝜕𝑥2 + 
𝜕2𝐹1

𝜕𝑥𝜕𝑧
−  

𝜕2𝐹3

𝜕𝑦2 +  
𝜕2𝐹2

𝜕𝑦𝜕𝑧
]  

R.H.S   ∇ (∇ ∙  𝐹⃗) −  ∇2𝐹⃗ 

 =  (𝑖 
𝜕

𝜕𝑥
+ 𝑗  

𝜕

𝜕𝑦
+  𝑘⃗⃗  

𝜕

𝜕𝑧
) (

𝜕𝐹1

𝜕𝑥
+  

𝜕𝐹2

𝜕𝑦
+  

𝜕𝐹3

𝜕𝑧
) −  ( 

𝜕2

𝜕𝑥2 +   
𝜕2

𝜕𝑦2 +   
𝜕2

𝜕𝑧2) (𝐹1𝑖 +  𝐹2𝑗 + 𝐹3𝑘⃗⃗) 

 = 𝑖 [
𝜕2𝐹1

𝜕𝑥2 +
𝜕2𝐹2

𝜕𝑥𝜕𝑦
+

𝜕2𝐹3

𝜕𝑥𝜕𝑧
] + 𝑗 [

𝜕2𝐹1

𝜕𝑦𝜕𝑥
+

𝜕2𝐹2

𝜕𝑦2 +
𝜕2𝐹3

𝜕𝑦𝜕𝑧
] + 𝑘⃗⃗  [

𝜕2𝐹1

𝜕𝑧𝜕𝑥
+

𝜕2𝐹2

𝜕𝑧𝜕𝑦
+

𝜕2𝐹3

𝜕𝑧2
] 

                                        − (
𝜕2

𝜕𝑥2 +   
𝜕2

𝜕𝑦2 +   
𝜕2

𝜕𝑧2) (𝐹1𝑖 +  𝐹2𝑗 + 𝐹3𝑘⃗⃗) 

 = 𝑖 [
𝜕2𝐹2

𝜕𝑥𝜕𝑦
+ 

𝜕2𝐹3

𝜕𝑥𝜕𝑧
−  

𝜕2𝐹1

𝜕𝑦2  −  
𝜕2𝐹1

𝜕𝑧2
] −  𝑗⃗⃗⃗  [

𝜕2𝐹2

𝜕𝑥2  −  
𝜕2𝐹1

𝜕𝑥𝜕𝑦
 −  

𝜕2𝐹3

𝜕𝑧𝜕𝑦
 +  

𝜕2𝐹2

𝜕𝑧2
] + 

                                                          𝑘⃗⃗ [−
𝜕2𝐹3

𝜕𝑥2  +
𝜕2𝐹1

𝜕𝑥𝜕𝑧
−  

𝜕2𝐹3

𝜕𝑦2 +  
𝜕2𝐹2

𝜕𝑦𝜕𝑧
] 
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   L.H.S  =  R.H.S 

  ∴ ∇ ×  (∇ × 𝐹⃗) =  ∇ (∇ ∙  𝐹⃗) −  ∇2𝐹⃗ 

(9) 𝛁 ∙  (𝛁𝝋) =  (𝛁 ∙  𝛁) 𝝋 =  𝛁𝟐𝝋 

Proof:  

         ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

 ∴  ∇ ∙  (∇𝜑) =  
𝜕

𝜕𝑥
(

𝜕𝜑

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕𝜑

𝜕𝑦
) +  

𝜕

𝜕𝑧
(

𝜕𝜑

𝜕𝑧
) 

          =
𝜕2𝜑

𝜕𝑥2 +  
𝜕2𝜑

𝜕𝑦2 +  
𝜕2𝜑

𝜕𝑧2  

          ∇ ∙  ∇ =  ∇2=
𝜕2

𝜕𝑥2 +   
𝜕2

𝜕𝑦2 +  
𝜕2

𝜕𝑧2  

          ∇ ∙  (∇𝜑) = (
𝜕2

𝜕𝑥2 +   
𝜕2

𝜕𝑦2 +   
𝜕2

𝜕𝑧2)  𝜑 =  ∇2𝜑  

Example: 2.26 Find (i) 𝛁 ∙  𝒓⃗⃗  (ii) 𝛁 × 𝒓⃗⃗ 

Solution: 

     Let 𝑟 = 𝑥 𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗ 

(i) ∇ ∙  𝑟 =  (𝑖 
𝜕

𝜕𝑥
+  𝑗  

𝜕

𝜕𝑦
+  𝑘⃗⃗  

𝜕

𝜕𝑧
)  ∙   (𝑥 𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗) 

  =  
𝜕

𝜕𝑥
 (𝑥) +  

𝜕

𝜕𝑦
 (𝑦) + 

𝜕

𝜕𝑧
(𝑧) 

  = 1 + 1 + 1 = 3 

(ii) ∇ ×  𝑟 =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥 𝑦 𝑧

|  

   =  𝑖(0) +  𝑗 (0) +  𝑘⃗⃗ (0) =  0⃗⃗ 

Example: 2.27 Find 𝛁 ∙  (
𝟏

𝒓
 𝒓⃗⃗) where 𝒓⃗⃗ = 𝒙 𝒊 +  𝒚 𝒋 +  𝒛 𝒌⃗⃗⃗ 

Solution:  

               ∇  ∙  (
1

𝑟
 𝑟) =  ∇  ∙  [

1

𝑟
 (𝑥 𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗)] 

  =  (𝑖 
𝜕

𝜕𝑥
+  𝑗

𝜕

𝜕𝑦
+  𝑘⃗⃗  

𝜕

𝜕𝑧
) ∙  (

𝑥

𝑟
 𝑖 +

𝑦

𝑟
 𝑗 +

𝑧

𝑟
 𝑘⃗⃗) 

  =  ∑
𝜕

𝜕𝑥
(

𝑥

𝑟
) 

  = ∑ [
1

𝑟
(1) + 𝑥 (−

1

𝑟2)
𝜕𝑟

𝜕𝑥
] 

  =  ∑ [
1

𝑟
−

𝑥

𝑟2 (
𝑥

𝑟
)]            (∵

𝜕𝑟

𝜕𝑥
=  

𝑥

𝑟
) 

 ` =  ∑ [
1

𝑟
−

𝑥2

𝑟3
] 

  =  
3

𝑟
−  

1

𝑟3  (𝑥2 + 𝑦2 + 𝑧2) 

  =  
3

𝑟
−  

𝑟2

𝑟3                                  ∵ 𝑟2 = (𝑥2 + 𝑦2 + 𝑧2)              
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  =  
3

𝑟
−  

1

𝑟
=  

2

𝑟
 

Example: 2.28 If is a constant vector and is the position vector of any point, prove that  

(i) 𝛁 ∙  (𝒂⃗⃗⃗ × 𝒓⃗⃗) = 𝟎 (ii) 𝛁 × (𝒂⃗⃗⃗ × 𝒓⃗⃗) = 𝟐𝒂⃗⃗⃗ 

Solution: 

              Let 𝑟 = 𝑥 𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗ 

             𝑎⃗ = 𝑎1 𝑖 +  𝑎2 𝑗 +  𝑎3 𝑘⃗⃗ 

 𝑎⃗  ×  𝑟 =  |
𝑖 𝑗 𝑘⃗⃗

𝑎1 𝑎2 𝑎3

𝑥 𝑦 𝑧

| 

 =  𝑖(𝑎2𝑧 −  𝑎3𝑦) −  𝑗(𝑎1𝑧 −  𝑎3𝑥) +  𝑘⃗⃗(𝑎1𝑦 −  𝑎2𝑥) 

 (i) ∇  ∙  (𝑎⃗ × 𝑟) =
𝜕

𝜕𝑥
(𝑎2𝑧 − 𝑎3𝑦) +  

𝜕

𝜕𝑦
(−𝑎1𝑧 +  𝑎3𝑥) + 

𝜕

𝜕𝑧
(𝑎1𝑦 −  𝑎2𝑥) 

  = 0 + 0 + 0 = 0 

(ii) ∇ × (𝑎⃗ × 𝑟) = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑎2𝑧 − 𝑎3𝑦 −𝑎1𝑧 + 𝑎3𝑥 𝑎1𝑦 − 𝑎3𝑥

| 

  `=  𝑖(𝑎1 +  𝑎1) −  𝑗(−𝑎2 −  𝑎2) +  𝑘⃗⃗(𝑎3 +  𝑎3) 

  = 2𝑎1𝑖 +  2𝑎2𝑗 +  2𝑎3𝑘⃗⃗ 

  = 2(𝑎1𝑖 +  𝑎2𝑗 +  𝑎3𝑘⃗⃗) = 2𝑎⃗ 

Example: 2.29 Prove that 𝒄𝒖𝒓𝒍(𝒇(𝒓)𝒓⃗⃗) =  𝟎⃗⃗⃗ 

Solution: 

              Let 𝑓(𝑟)𝑟 = 𝑓(𝑟)[𝑥 𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗] 

   = 𝑥𝑓(𝑟)𝑖 +  𝑦𝑓(𝑟)𝑗 +  𝑧𝑓(𝑟)𝑘⃗⃗ 

 ∇ × (𝑓(𝑟)𝑟) = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥𝑓(𝑟) 𝑦𝑓(𝑟) 𝑧𝑓(𝑟)

| 

  =  ∑ 𝑖 [𝑧𝑓′(𝑟) 
𝜕𝑟

𝜕𝑦
−  𝑦𝑓′(𝑟) 

𝜕𝑟

𝜕𝑧
] 

  = ∑ 𝑖 [𝑧𝑓′(𝑟) (
𝑦

𝑟
) −  𝑦𝑓′(𝑟) (

𝑧

𝑟
)]  

  = ∑ 𝑖 [
𝑧𝑦

𝑟
𝑓′(𝑟)  −  

𝑧𝑦

𝑟
𝑓′(𝑟)]  

  =  ∑ 𝑖 (0) 

  = 0 𝑖 +  0 𝑗 +  0 𝑘⃗⃗ =  0⃗⃗ 

Example: 2.30 Prove that 𝒄𝒖𝒓𝒍[𝝋 𝛁𝝋] =  𝟎⃗⃗⃗ 

(or) 

Prove that  𝛁 × [𝝋 𝛁𝝋] =  𝟎⃗⃗⃗ 
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Solution: 

              𝜑∇𝜑 =  𝜑 [𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
] 

  =  𝑖 (𝜑
𝜕𝜑

𝜕𝑥
) + 𝑗 (𝜑

𝜕𝜑

𝜕𝑦
) + 𝑘⃗⃗ (𝜑

𝜕𝜑

𝜕𝑧
) 

           ∇ ×  (𝜑𝛻𝜑) =  |
|

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜑
𝜕𝜑

𝜕𝑥
𝜑

𝜕𝜑

𝜕𝑦
𝜑

𝜕𝜑

𝜕𝑧

|
| 

  =  ∑ 𝑖 [
𝜕

𝜕𝑦
(𝜑

𝜕𝜑

𝜕𝑧
) −  

𝜕

𝜕𝑧
(𝜑

𝜕𝜑

𝜕𝑦
)] 

  =  ∑ 𝑖 [𝜑
𝜕2𝜑

𝜕𝑦𝜕𝑧
+  

𝜕𝜑

𝜕𝑦
 ∙  

𝜕𝜑

𝜕𝑧
− 𝜑

𝜕2𝜑

𝜕𝑧𝜕𝑦
−

𝜕𝜑

𝜕𝑦
 ∙  

𝜕𝜑

𝜕𝑧
] 

  =  ∑ 𝑖 (0) 

  = 0 𝑖 +  0 𝑗 +  0 𝑘⃗⃗ =  0⃗⃗ 

Example: 2.31 If 𝝎⃗⃗⃗⃗ is a constant vector and 𝒗⃗⃗⃗ =  𝝎⃗⃗⃗⃗ × 𝒓⃗⃗, then prove that 𝝎⃗⃗⃗⃗ =  
𝟏

𝟐
(𝛁 × 𝒗⃗⃗⃗). 

Solution:  

               Let 𝑟 = 𝑥 𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗ 

             𝜔⃗⃗⃗ = 𝜔1 𝑖 +  𝜔2 𝑗 +  𝜔3 𝑘⃗⃗ 

 𝜔⃗⃗⃗  ×  𝑟 =  |
𝑖 𝑗 𝑘⃗⃗

𝜔1 𝜔2 𝜔3

𝑥 𝑦 𝑧

| 

 =  𝑖(𝜔2𝑧 −  𝜔3𝑦) −  𝑗(𝜔1𝑧 −  𝜔3𝑥) +  𝑘⃗⃗(𝜔1𝑦 −  𝜔2𝑥) 

 ∇ × 𝑣 = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜔2𝑧 − 𝜔3𝑦 −𝜔1𝑧 + 𝜔3𝑥 𝜔1𝑦 − 𝜔2𝑥

| 

 =  𝑖(𝜔1 +  𝜔1) −  𝑗(−𝜔2 −  𝜔2) +  𝑘⃗⃗(𝜔3 +  𝜔3) 

 = 2𝜔1𝑖 +  2𝜔2𝑗 +  2𝜔3𝑘⃗⃗ 

 = 2(𝜔1𝑖 +  𝜔2𝑗 +  𝜔3𝑘⃗⃗) = 2𝜔⃗⃗⃗ 

        𝜔⃗⃗⃗ =  
1

2
(∇ × 𝑣) 

Problems based on solenoidal vector and irrotational vector and scalar potential 

Example: 2.32 Prove that the vector 𝑭⃗⃗⃗ = 𝒛 𝒊 +  𝒙 𝒋 +  𝒚 𝒌⃗⃗⃗ is solenoidal. 

Solution:  

           Given  𝐹⃗ = 𝑧 𝑖 +  𝑥 𝑗 +  𝑦 𝑘⃗⃗ 

To prove ∇ ∙  𝐹⃗ = 0 

           ∇ ∙  𝐹⃗ =  
𝜕

𝜕𝑥
(𝑧) +  

𝜕

𝜕𝑦
(𝑥) +  

𝜕

𝜕𝑧
(𝑦) 

  = 0 
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 ∴  𝐹⃗ is solenoidal. 

Example: 2.33 Show that the vector 𝑭⃗⃗⃗ = 𝟑𝒚𝟒𝒛𝟐𝒊 + 𝟒𝒙𝟑𝒛𝟐𝒋 −  𝟑𝒙𝟐𝒚𝟐𝒌⃗⃗⃗ is solenoidal. 

Solution: 

              Given 𝑭⃗⃗⃗ = 𝟑𝒚𝟒𝒛𝟐𝒊 + 𝟒𝒙𝟑𝒛𝟐𝒋 −  𝟑𝒙𝟐𝒚𝟐𝒌⃗⃗⃗ 

To prove ∇ ∙  𝐹⃗ = 0 

  ∇ ∙  𝐹⃗ =  
𝜕

𝜕𝑥
(3𝑦4𝑧2) + 

𝜕

𝜕𝑦
(4𝑥3𝑧2) +  

𝜕

𝜕𝑧
(3𝑥2𝑦2) 

  = 0 + 0 + 0 = 0 

 ∴  𝐹⃗ is solenoidal. 

Example: 2.34 If 𝑭⃗⃗⃗ =  (𝒙 + 𝟑𝒚)𝒊 +  (𝒚 − 𝟐𝒛)𝒋 +  (𝒙 +  𝝀𝒛)𝒌⃗⃗⃗ is solenoidal, then find the value of  𝝀. 

Solution:  

              Given 𝐹⃗ is solenoidal. 

  (𝑖𝑒)∇ ∙  𝐹⃗ = 0 

           ⇒
𝜕

𝜕𝑥
(𝑥 + 3𝑦) +  

𝜕

𝜕𝑦
(𝑦 − 2𝑧) +  

𝜕

𝜕𝑧
(𝑥 +  𝜆𝑧) = 0 

 ⇒ 1 + 1 + 𝜆 = 0  

 ∴  𝜆 =  −2  

Example: 2.35 Find a such that (𝟑𝒙 − 𝟐𝒚 + 𝒛)𝒊 +  (𝟒𝒙 + 𝒂𝒚 − 𝒛)𝒋 +  (𝒙 − 𝒚 +  𝟐𝒛)𝒌⃗⃗⃗  is solenoidal. 

Solution:  

               Given (3𝑥 − 2𝑦 + 𝑧)𝑖 +  (4𝑥 + 𝑎𝑦 − 𝑧)𝑗 +  (𝑥 − 𝑦 +  2𝑧)𝑘⃗⃗  is solenoidal. 

    (𝑖𝑒)∇ ∙  𝐹⃗ = 0 

           ⇒
𝜕

𝜕𝑥
(3𝑥 − 2𝑦 + 𝑧) +  

𝜕

𝜕𝑦
(4𝑥 + 𝑎𝑦 − 𝑧) +  

𝜕

𝜕𝑧
(𝑥 − 𝑦 +  2𝑧) = 0 

 ⇒ 3 + 𝑎 + 2 = 0  

 ∴  𝑎 =  −5 

Example: 2.36 Show that the vector 𝑭⃗⃗⃗ =  (𝟔𝒙𝒚 + 𝒛𝟑)𝒊 +  (𝟑𝒙𝟐 − 𝒛)𝒋 +  (𝟑𝒙𝒛𝟐 − 𝒚)𝒌⃗⃗⃗  is irrotational. 

Solution:  

             Given 𝐹⃗ =  (6𝑥𝑦 + 𝑧3)𝑖 +  (3𝑥2 − 𝑧)𝑗 +  (3𝑥𝑧2 − 𝑦)𝑘⃗⃗ 

To prove 𝑐𝑢𝑟𝑙 𝐹⃗ = 0 

  (𝑖. 𝑒)𝑇𝑜 𝑝𝑟𝑜𝑣𝑒 ∇ ×  𝐹⃗ = 0 

 ∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

6𝑥𝑦 + 𝑧3 3𝑥2 − 3𝑧2 3𝑥𝑧2 − 𝑦

| 

 =  𝑖(−1 + 1) −  𝑗(3𝑧2 −  3𝑧2) +  𝑘⃗⃗(6𝑥 − 6𝑥) = 0⃗⃗ 

∴  𝐹⃗ is irrotational. 

Example: 2.37 Find the constants 𝒂, 𝒃, 𝒄 so that the vectors is irrotational 



 

 
 

UNIT-5 
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   𝑭⃗⃗⃗ =  (𝒙 + 𝟐𝒚 + 𝒂𝒛)𝒊 +  (𝒃𝒙 + 𝟑𝒚 − 𝒛)𝒋 +  (𝟒𝒙 + 𝒄𝒚 +  𝟐𝒛)𝒌⃗⃗⃗ . 

Solution:  

Given  𝑭⃗⃗⃗ =  (𝒙 + 𝟐𝒚 + 𝒂𝒛)𝒊 +  (𝒃𝒙 + 𝟑𝒚 − 𝒛)𝒋 +  (𝟒𝒙 + 𝒄𝒚 +  𝟐𝒛)𝒌⃗⃗⃗ is irrotational. 

  (𝑖𝑒)∇ × 𝐹⃗ = 0 

      ∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥 + 2𝑦 + 𝑎𝑧 𝑏𝑥 + 3𝑦 − 𝑧 4𝑥 + 𝑐𝑦 + 2𝑧

| =  0⃗⃗ 

 ⇒  𝑖(𝑐 + 1) −  𝑗(4 −  𝑎) +  𝑘⃗⃗(𝑏 − 2) =  0⃗⃗  

 ⇒ 𝑐 + 1 = 0  ;            4 − 𝑎 = 0  ;          𝑏 − 2 = 0 

 ⇒ 𝑐 =  −1 ;                  4 = 𝑎 ;                   𝑏 = 2 

Example: 2.38 Prove that  𝑭⃗⃗⃗ =  (𝟔𝒙𝒚 + 𝒛𝟑)𝒊 +  (𝟑𝒙𝟐 − 𝒛)𝒋 + (𝟑𝒙𝒛𝟐 − 𝒚)𝒌⃗⃗⃗  is irrotational and find 𝝋 

such that 𝑭⃗⃗⃗ =  𝛁𝝋. 

Solution:  

              Given 𝐹⃗ =  (6𝑥𝑦 + 𝑧3)𝑖 +  (3𝑥2 − 𝑧)𝑗 +  (3𝑥𝑧2 − 𝑦)𝑘⃗⃗ 

To prove ∇ ×  𝐹⃗ = 0 

         ∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

6𝑥𝑦 + 𝑧3 3𝑥2 − 𝑧 3𝑥𝑧2 − 𝑦

| 

     =  𝑖(−1 + 1) −  𝑗(3𝑧2 −  3𝑧2) +  𝑘⃗⃗(6𝑥 − 6𝑥) 

                = 0⃗⃗ 

∴  𝐹⃗ is irrotational. 

To find 𝜑 such that 𝐹⃗ =  ∇𝜑. 

 ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
  

Equating the coefficients of 𝑖, 𝑗 and 𝑘⃗⃗ we get, 

𝜕𝜑

𝜕𝑥
= 6𝑥𝑦 + 𝑧3;        

𝜕𝜑

𝜕𝑦
=  3𝑥2 − 𝑧;         

𝜕𝜑

𝜕𝑧
= 3𝑥𝑧2 − 𝑦  

Integrating the above equations partially with respect to 𝑥, 𝑦, 𝑧 respectively 

 𝜑 =  3𝑥2𝑦 + 𝑥𝑧3 +  𝑓1(𝑦, 𝑧) 

 𝜑 =  3𝑥2𝑦 − 𝑦𝑧 +  𝑓2(𝑥, 𝑧) 

 𝜑 =  𝑥𝑧3 − 𝑦𝑧 +  𝑓3(𝑥, 𝑦) 

 ∴ 𝜑 =  3𝑥2𝑦 + 𝑥𝑧3 −  𝑦𝑧 + 𝑐 where c is constant. 

Example: 2.39 Prove that  𝑭⃗⃗⃗ =  (𝒚𝟐𝒄𝒐𝒔 𝒙 + 𝒛𝟑)𝒊 +  (𝟐𝒚 𝒔𝒊𝒏𝒛 − 𝟒)𝒋 +  (𝟑𝒙𝒛𝟐)𝒌⃗⃗⃗ is irrotational and find 

its scalar potential. 

Solution:  
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Given 𝐹⃗ =  (𝑦2𝑐𝑜𝑠 𝑥 + 𝑧3)𝑖 +  (2𝑦 𝑠𝑖𝑛𝑧 − 4)𝑗 +  (3𝑥𝑧2)𝑘⃗⃗  

To prove ∇ ×  𝐹⃗ = 0 

           ∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑦2𝑐𝑜𝑠 𝑥 + 𝑧3 2𝑦 𝑠𝑖𝑛𝑧 − 4 3𝑥𝑧2

| 

         =  𝑖(0 − 0) −  𝑗(3𝑧2 −  3𝑧2) +  𝑘⃗⃗(2𝑦 cos 𝑥 − 2𝑦𝑐𝑜𝑠 𝑥) 

                     = 0⃗⃗ 

∴  𝐹⃗ is irrotational. 

To find 𝜑 such that 𝐹⃗ =  ∇𝜑. 

 ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗

𝜕𝜑

𝜕𝑧
  

Equating the coefficients of 𝑖, 𝑗 and 𝑘⃗⃗ we get, 

𝜕𝜑

𝜕𝑥
= 𝑦2 cos 𝑥 + 𝑧3;        

𝜕𝜑

𝜕𝑦
=  2𝑦𝑠𝑖𝑛 𝑥 − 4;         

𝜕𝜑

𝜕𝑧
= 3𝑥𝑧2  

Integrating the above equations partially with respect to 𝑥, 𝑦, 𝑧 respectively 

 𝜑 =  𝑦2 sin 𝑥 + 𝑧3𝑥 +  𝑓1(𝑦, 𝑧) 

 𝜑 =  𝑦2 sin 𝑥 − 4𝑦 +  𝑓2(𝑥, 𝑧) 

 𝜑 =  𝑥𝑧3 +  𝑓3(𝑥, 𝑦) 

 ∴ 𝜑 =  𝑦2 sin 𝑥 + 𝑧3𝑥 − 4𝑦 + 𝑐 is scalar potential. 

Example: 2.40 Prove that  𝑭⃗⃗⃗ =  (𝟐𝒙 + 𝒚𝒛)𝒊 +  (𝟒𝒚 + 𝒛𝒙)𝒋 +  (𝟔𝒛 − 𝒙𝒚)𝒌⃗⃗⃗ is solenoidal as well as 

irrotational also find the scalar potential of 𝑭⃗⃗⃗. 

Solution:  

              Given 𝐹⃗ =  (2𝑥 + 𝑦𝑧)𝑖 +  (4𝑦 + 𝑧𝑥)𝑗 +  (6𝑧 − 𝑥𝑦)𝑘⃗⃗ 

(i) To prove 𝐹⃗ is solenoidal. 

      (𝑖𝑒) 𝑇𝑜 𝑝𝑟𝑜𝑣𝑒 ∇ ∙  𝐹⃗ = 0 

∇ ∙  𝐹⃗ =
𝜕

𝜕𝑥
(2𝑥 + 𝑦𝑧) +  

𝜕

𝜕𝑦
(4𝑦 + 𝑧𝑥) +  

𝜕

𝜕𝑧
(−6𝑧 +  𝑥𝑦) 

   = 2 + 4 − 6 = 0 

∴  𝐹⃗ is solenoidal. 

(ii) To prove 𝐹⃗ is irrotational. 

       (𝑖𝑒) 𝑇𝑜 𝑝𝑟𝑜𝑣𝑒 ∇ × 𝐹⃗ = 0 

 ∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

2𝑥 + 𝑦𝑧 4𝑦 + 𝑧𝑥 −6𝑧 + 𝑥𝑦

| 

         =  𝑖(𝑥 − 𝑥) −  𝑗(𝑦 − 𝑦) + 𝑘⃗⃗(𝑧 − 𝑧)  
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                     = 0⃗⃗ 

∴  𝐹⃗ is irrotational. 

(iii) To find 𝜑 such that 𝐹⃗ =  ∇𝜑. 

       (2𝑥 + 𝑦𝑧)𝑖 +  (4𝑦 + 𝑧𝑥)𝑗 + (6𝑧 − 𝑥𝑦)𝑘⃗⃗ =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
  

Equating the coefficients of 𝑖, 𝑗 and 𝑘⃗⃗ we get, 

𝜕𝜑

𝜕𝑥
= 2𝑥 + 𝑦𝑧;        

𝜕𝜑

𝜕𝑦
=  4𝑦 + 𝑧𝑥;         

𝜕𝜑

𝜕𝑧
= −6𝑧 + 𝑥𝑦  

Integrating the above equations partially with respect to 𝑥, 𝑦, 𝑧 respectively 

 𝜑 =  𝑥2 + 𝑥𝑦𝑧 +  𝑓1(𝑦, 𝑧) 

 𝜑 =  2𝑦2 + 𝑥𝑦𝑧 + 𝑓2(𝑥, 𝑧) 

 𝜑 =  −3𝑧2 +  𝑥𝑦𝑧 + 𝑓3(𝑥, 𝑦) 

 ∴ 𝜑 =  𝑥2 + 2𝑦2 − 3𝑧2 + 𝑥𝑦𝑧 + 𝑐 where c is a constant. 

          ∴  𝜑 is a scalar potential of 𝐹⃗. 

Example: 2.41 If 𝛁𝝋 = 𝟐𝒙𝒚𝒛𝟑𝒊 +  𝒙𝟐𝒛𝟑𝒋 +  𝟑𝒙𝟐𝒚𝒛𝟐𝒌⃗⃗⃗ find 𝝋 if 𝝋(−𝟏, 𝟐, 𝟐) = 𝟒 

Solution: 

             Given ∇𝜑 = 2𝑥𝑦𝑧3𝑖 + 𝑥2𝑧3𝑗 +  3𝑥2𝑦𝑧2𝑘⃗⃗       … (1) 

We know that ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+ 𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
      … (2) 

Comparing (1) and (2) 

 
𝜕𝜑

𝜕𝑥
= 2𝑥𝑦𝑧3;        

𝜕𝜑

𝜕𝑦
=  𝑥2𝑧3;         

𝜕𝜑

𝜕𝑧
= 3𝑥2𝑦𝑧2 

Integrating the above equations partially with respect to 𝑥, 𝑦, 𝑧 respectively 

 𝜑 =  𝑥2𝑦𝑧3 +  𝑓1(𝑦, 𝑧) 

 𝜑 =  𝑥2𝑦𝑧3 +  𝑓2(𝑥, 𝑧) 

 𝜑 =  𝑥2𝑦𝑧3 + 𝑓3(𝑥, 𝑦) 

 ∴ 𝜑 =  𝑥2𝑦𝑧3 + 𝑐 where c is a constant. 

Given 𝜑(−1, 2, 2) = 4 

      ⇒ 16 + 𝑐 = 4 

      ⇒ 𝑐 = −12 

          ∴  𝜑 = 𝑥2𝑦𝑧3 −  12   

Example: 2.42 If 𝑨⃗⃗⃗ and 𝑩⃗⃗⃗ are irrotational, then prove that 𝑨⃗⃗⃗  ×  𝑩⃗⃗⃗ is solenoidal. 

Solution: 

              Given 𝐴 and 𝐵⃗⃗ are irrotational. 

     (𝑖𝑒)∇ × 𝐴 = 0 and ∇ × 𝐵⃗⃗ = 0 

We know that ∇ ∙ (𝐴  × 𝐵⃗⃗ ) =  (∇ × 𝐴)  ∙  𝐵⃗⃗ −  (∇ × 𝐵⃗⃗)  ∙  𝐴 

    = 0 ∙ 𝐴 −  0 ∙  𝐵⃗⃗ 



Engineering Mathematics - II 
 

Vector Calculus Page 27 
 

    = 0 

Hence  𝐴 × 𝐵⃗⃗ is solenoidal. 

Example: 2.43 if 𝑨⃗⃗⃗ is a constant vector, then prove that (i) 𝒅𝒊𝒗 𝑨⃗⃗⃗ = 𝟎 and (ii) 𝒄𝒖𝒓𝒍 𝑨⃗⃗⃗ = 𝟎 

Solution: 

               Let 𝐴 = 𝐴1𝑖 +  𝐴2 𝑗 + 𝐴3 𝑘⃗⃗ 

𝜕𝐴1

𝜕𝑥
= 0;        

𝜕𝐴2

𝜕𝑦
=  0;         

𝜕𝐴3

𝜕𝑧
= 0 

   (i)  ∇ ∙  𝐴 =
𝜕𝐴1

𝜕𝑥
+

𝜕𝐴2

𝜕𝑦
+  

𝜕𝐴3

𝜕𝑧
   

     = 0 + 0 + 0 = 0 

Hence 𝑑𝑖𝑣 𝐴 = 0. 

(ii) ∇ ×  𝐴 =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐴1 𝐴2 𝐴3

| 

                 =  𝑖(0 − 0) −  𝑗(0 − 0) +  𝑘⃗⃗(0 − 0)  

                     = 0⃗⃗ 

            ∴  𝑐𝑢𝑟𝑙 𝐹⃗ = 0⃗⃗ 

Example: 2.44 If 𝝋 and  𝝌 are differentiable scalar fields, prove 𝛁𝝋 ×  𝛁𝝌 is solenoidal. 

Solution: 

              Consider ∇ ∙  (𝛻𝜑 ×  𝛻𝜒) 

 =  𝛻𝜒 ∙ 𝛻 × (∇𝜑) − ∇𝜑 ∙  [∇  × (𝛻𝜒)]          [∵ ∇ ∙  (𝐴 × 𝐵⃗⃗) =  𝐵⃗⃗  ∙  (∇ × 𝐴) −  𝐴  ∙  (∇ × 𝐵⃗⃗)] 

 =  𝛻𝜒 ∙ 0 −  ∇𝜑 ∙ 0 

 = 0 

 ∴ 𝛻𝜑 ×  𝛻𝜒 is solenoidal. 

Example: 2.45 Find 𝒇(𝒓) if the vector 𝒇(𝒓)𝒓⃗⃗  is both solenoidal and irrotational. 

Solution: 

  (i)  Given 𝑓(𝑟)𝑟 is solenoidal. 

                           ∴  ∇ ∙  (𝑓(𝑟)𝑟) = 0 

We know that 𝑟 = 𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗ 

 ∴  𝑓(𝑟)𝑟 = 𝑓(𝑟) 𝑥𝑖 + 𝑓(𝑟) 𝑦 𝑗 + 𝑓(𝑟) 𝑧 𝑘⃗⃗  

Now ∇ ∙  (𝑓(𝑟)𝑟) = 0 

 ⇒ (𝑖 
𝜕

𝜕𝑥
+ 𝑗  

𝜕

𝜕𝑦
+  𝑘⃗⃗  

𝜕

𝜕𝑧
) ∙   (𝑓(𝑟) 𝑥 𝑖 +  𝑓(𝑟) 𝑦 𝑗 +  𝑓(𝑟) 𝑧 𝑘⃗⃗) = 0 

 ⇒  
𝜕

𝜕𝑥
 (𝑓(𝑟) 𝑥) +  

𝜕

𝜕𝑦
 (𝑓(𝑟) 𝑦) +  

𝜕

𝜕𝑧
(𝑓(𝑟) 𝑧) = 0 

 ⇒ ∑
𝜕

𝜕𝑥
(𝑓(𝑟) 𝑥) = 0 
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 ⇒ ∑ [𝑓(𝑟)  ∙ 1 + 𝑥 𝑓′(𝑟)
𝜕𝑟

𝜕𝑥
] = 0 

 ⇒ ∑ [𝑓(𝑟) + 𝑥 𝑓′(𝑟)
𝑥

𝑟
] = 0 

 ⇒ ∑ [𝑓(𝑟) +
𝑥2

𝑟
 𝑓′(𝑟)] = 0 

 ⇒ 3𝑓(𝑟) + 𝑓′(𝑟) [
𝑥2

𝑟
+  

𝑦2

𝑟
+  

𝑧2

𝑟
] = 0    

 ⇒ 3𝑓(𝑟) +
𝑓′(𝑟)

𝑟
[𝑟2] = 0     [∵  𝑥2 +  𝑦2 +  𝑧2 =  𝑟2] 

 ⇒ 3𝑓(𝑟) + 𝑓′(𝑟) 𝑟 = 0 

 ⇒ 𝑓′(𝑟) 𝑟 =  −3𝑓(𝑟) 

 ⇒
𝑓′(𝑟)

𝑓(𝑟)
 =  

−3

𝑟
 

Integrating with respect to r, we get 

 ⇒ ∫
𝑓′(𝑟)

𝑓(𝑟)
 𝑑𝑟 =  ∫

−3

𝑟
 𝑑𝑟 

            ⇒ log 𝑓(𝑟) =  −3 log 𝑟 + log 𝑐 

                              = log 𝑟−3 + log 𝑐 

                              = log (
1

𝑟3) + log 𝑐 

                              = log (
𝑐

𝑟3) 

          ∴ 𝑓(𝑟) =
𝑐

𝑟3 

(ii) Given 𝑓(𝑟)𝑟 is irrotational. 

                 ∇ × 𝑓(𝑟)𝑟 = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥𝑓(𝑟) 𝑦𝑓(𝑟) 𝑧𝑓(𝑟)

| 

                                =  ∑ 𝑖 [𝑧
𝜕

𝜕𝑦
 𝑓(𝑟) −  𝑦 

𝜕

𝜕𝑧
 𝑓(𝑟)] 

                                =  ∑ 𝑖 [𝑧𝑓′(𝑟)
𝜕𝑟

𝜕𝑦
 −  𝑦 𝑓′(𝑟)

𝜕𝑟

𝜕𝑧
 ] 

                               =  ∑ 𝑖 [𝑧𝑓′(𝑟)
𝑦

𝑟
 −  𝑦 𝑓′(𝑟)

𝑧

𝑟
] 

                               =  ∑ 𝑖 𝑓′(𝑟) [
𝑧𝑦

𝑟
−  

𝑧𝑦

𝑟
] 

                               =  0⃗⃗ for all 𝑓(𝑟) 

Example: 2.46 Prove that 𝒓𝒏𝒓⃗⃗ is irrotational for every n and solenoidal only for 𝒏 =  −𝟑. 

Solution: 

                We know that 𝑟 = 𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗ 

                     ∴  𝑟𝑛𝑟 = 𝑟𝑛  𝑥𝑖 + 𝑟𝑛 𝑦 𝑗 + 𝑟𝑛 𝑧 𝑘⃗⃗  

(i) To prove 𝑟𝑛𝑟 is irrotational. 
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                 ∇ × (𝑟𝑛𝑟) = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑟𝑛 𝑥 𝑟𝑛 𝑦 𝑟𝑛 𝑧

| 

                                =  ∑ 𝑖 [𝑧 𝑛𝑟𝑛−1 𝜕𝑟

𝜕𝑦
 −  𝑦 𝑛𝑟𝑛−1  

𝜕𝑟

𝜕𝑧
 ] 

                                =  ∑ 𝑖 [𝑧 𝑛𝑟𝑛−1 𝑦

𝑟
 −  𝑦 𝑛𝑟𝑛−1  

𝑧

𝑟
 ] 

                                =  ∑ 𝑖 [ 𝑛𝑟𝑛−1 𝑧𝑦

𝑟
 −   𝑛𝑟𝑛−1  

𝑧𝑦

𝑟
 ]  

                                =  ∑ 𝑖 (0) 

          = 0 𝑖 +  0 𝑗 +  0 𝑘⃗⃗ =  0⃗⃗ 

 ∴  𝑟𝑛𝑟 is irrotational for every n. 

(ii) To prove 𝑟𝑛𝑟 is solenoidal. 

          ∇ ∙ (𝑟𝑛𝑟) =  ∇ ∙ (𝑟𝑛 𝑥𝑖 + 𝑟𝑛 𝑦 𝑗 + 𝑟𝑛 𝑧 𝑘⃗⃗)  

      =  ∑
𝜕

𝜕𝑥
 (𝑟𝑛 𝑥) 

       =  ∑ [𝑟𝑛 (1) +  𝑥𝑛𝑟𝑛−1  
𝜕𝑟

𝜕𝑥
] 

        =  ∑ [𝑟𝑛  +  𝑥𝑛𝑟𝑛−1  
𝑥

𝑟
] 

       =  ∑[𝑟𝑛  +  𝑥2𝑛𝑟𝑛−2 ] 

       = 3𝑟𝑛  + 𝑛𝑟𝑛−2(𝑥2 +  𝑦2 +  𝑧2)              

       = 3𝑟𝑛  + 𝑛𝑟𝑛−2(𝑟2)    

       = 3𝑟𝑛  + 𝑛𝑟𝑛  

          = 𝑟𝑛(3 + 𝑛) 

When 𝑛 = −3, we get ∇ ∙ (𝑟𝑛𝑟) = 0 

∴  𝑟𝑛𝑟 is solenoidal only if  𝑛 = −3. 

Problems based on Laplace operator 

Example: 2.47 Find 𝛁𝟐(𝐥𝐨𝐠 𝒓) 

Solution: 

              ∇2(log 𝑟) =  ∑
𝜕2

𝜕𝑥2
(log 𝑟) 

         =  ∑
𝜕

𝜕𝑥
 (

1

𝑟
 

𝜕𝑟

𝜕𝑥
) 

         =  ∑
𝜕

𝜕𝑥
 (

1

𝑟2  𝑥) 

         = ∑ [
1

𝑟2
(1) +  𝑥 (−

2

𝑟3) 
𝜕𝑟

𝜕𝑥
] 

        = ∑ [
1

𝑟2 −  𝑥 (
2

𝑟3) 
𝑥

𝑟
] 

         = ∑ [
1

𝑟2 −  
2𝑥2

𝑟4
] 

         =  
3

𝑟2 −  
2

𝑟4
(𝑥2 +  𝑦2 +  𝑧2) 
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        =  
3

𝑟2 − 
2

𝑟4
(𝑟2) 

        =  
3

𝑟2 − 
2

𝑟2 =  
1

𝑟2 

Example: 2.48 Prove that 𝛁𝟐(𝒓𝒏) =  𝒏(𝒏 + 𝟏)𝒓𝒏−𝟐, where 𝒓⃗⃗ = 𝒙𝒊 +  𝒚 𝒋 +  𝒛 𝒌⃗⃗⃗ and 

 𝒓 =  |𝒓⃗⃗|and hence deduce 𝛁𝟐 (
𝟏

𝒓
). 

(or) 

Prove that 𝒅𝒊𝒗 (𝒈𝒓𝒂𝒅 𝒓𝒏) = 𝒏(𝒏 + 𝟏) 𝒓𝒏−𝟐 

Solution:  

              Let 𝑟 =  |𝑟| =  √𝑥2 +  𝑦2 + 𝑧2  

Hence  
𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
;        

𝜕𝑟

𝜕𝑦
=  

𝑦

𝑟
;         

𝜕𝑟

𝜕𝑧
=

𝑧

𝑟
 

                    ∇2(𝑟𝑛) =  ∑
𝜕2

𝜕𝑥2
(𝑟𝑛) 

           =  ∑
𝜕

𝜕𝑥
[𝑛𝑟𝑛−1  

𝜕𝑟

𝜕𝑥
] 

           =  ∑
𝜕

𝜕𝑥
[𝑛𝑟𝑛−1  

𝑥

𝑟
] 

          =  ∑
𝜕

𝜕𝑥
[𝑛 𝑥𝑟𝑛−2 ] 

          =  ∑ 𝑛 [𝑥(𝑛 − 2)𝑟𝑛−3  
𝜕𝑟

𝜕𝑥
+  𝑟𝑛−2 (1) ]  

          =  ∑ 𝑛 [𝑥(𝑛 − 2)𝑟𝑛−3  
𝑥

𝑟
+  𝑟𝑛−2 ] 

   =  ∑[𝑛[(𝑛 − 2)𝑟𝑛−4 𝑥2 +  𝑟𝑛−2] ] 

   =  ∑[𝑛(𝑛 − 2)𝑟𝑛−4 𝑥2 +  𝑛 𝑟𝑛−2 ] 

   =  𝑛(𝑛 − 2)𝑟𝑛−4 (𝑥2 +  𝑦2 +  𝑧2) + 3 𝑛 𝑟𝑛−2 

   =  𝑛(𝑛 − 2)𝑟𝑛−4 𝑟2 + 3 𝑛 𝑟𝑛−2 

   =  𝑛(𝑛 − 2)𝑟𝑛−2  + 3 𝑛 𝑟𝑛−2 

   =  𝑛 𝑟𝑛−2 (𝑛 − 2 + 3) 

   =  𝑛 𝑟𝑛−2 (𝑛 + 1)      … (1) 

(ii) ∇2 (
1

𝑟
) =  ∇2(𝑟−1) 

       =  (−1) (−1 + 1) 𝑟−1−2   by (1) 

       =  (−1) (0) 𝑟−3 = 0 

Example: 2.49 Prove that 𝛁𝟐(𝒓𝒏𝒓⃗⃗) = 𝒏 (𝒏 + 𝟑)𝒓𝒏−𝟐𝒓⃗⃗ 

Solution:  

              We have 𝑟 = 𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗ 

Hence  
𝜕𝑟

𝜕𝑥
= 𝑖;        

𝜕𝑟

𝜕𝑦
=  𝑗;         

𝜕𝑟

𝜕𝑧
= 𝑘⃗⃗ 

Also 𝑟 =  |𝑟| =  √𝑥2 +  𝑦2 +  𝑧2 
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Hence  
𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
;        

𝜕𝑟

𝜕𝑦
=  

𝑦

𝑟
;         

𝜕𝑟

𝜕𝑧
=

𝑧

𝑟
 

                  ∇2(𝑟𝑛𝑟) =  ∑
𝜕2

𝜕𝑥2
(𝑟𝑛𝑟)  

           =  ∑
𝜕

𝜕𝑥
 [𝑟𝑛  

𝜕𝑟

𝜕𝑥
+ 𝑛 𝑟𝑛−1  

𝜕𝑟

𝜕𝑥
𝑟] 

           =  ∑
𝜕

𝜕𝑥
 [𝑟𝑛 𝑖 + 𝑛 𝑟𝑛−1  

𝑥

𝑟
𝑟] 

                      =  ∑
𝜕

𝜕𝑥
 [𝑟𝑛 𝑖 + 𝑛 𝑟𝑛−2 𝑥 𝑟] 

          = ∑ [𝑛 𝑟𝑛−1  
𝜕𝑟

𝜕𝑥
𝑖 +  𝑛 [𝑟𝑛−2𝑥 (

𝜕𝑟

𝜕𝑥
) + 𝑟𝑛−2(1)𝑟 + [(𝑛 −  2) 𝑟𝑛−3  

𝜕𝑟

𝜕𝑥
] 𝑥𝑟]] 

          =  ∑ [𝑛 𝑟𝑛−1  
𝑥

𝑟
𝑖 + 𝑛 𝑟𝑛−2 𝑥𝑖 + 𝑛 𝑟𝑛−2𝑟 + 𝑛(𝑛 −  2) 𝑟𝑛−3  

𝑥

𝑟
 𝑥𝑟] 

                     =  ∑[𝑛 𝑟𝑛−2𝑥𝑖 + 𝑛 𝑟𝑛−2 𝑥𝑖 + 𝑛 𝑟𝑛−2𝑟 + 𝑛(𝑛 −  2) 𝑟𝑛−4 𝑥2𝑟] 

                      = 𝑛 𝑟𝑛−2(𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗) + 𝑛 𝑟𝑛−2(𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗) + 3𝑛 𝑟𝑛−2𝑟 

                                                                     𝑛(𝑛 −  2) 𝑟𝑛−4𝑟(𝑥2 +  𝑦2 +  𝑧2)  

                       = 𝑛 𝑟𝑛−2𝑟 +  𝑛 𝑟𝑛−2𝑟 +  3𝑛 𝑟𝑛−2𝑟 +  𝑛(𝑛 − 2)𝑟𝑛−4𝑟𝑟2 

                       = 5𝑛 𝑟𝑛−2𝑟 + 𝑛(𝑛 − 2)𝑟𝑛−2𝑟 

                       = 𝑛 𝑟𝑛−2𝑟(5 + 𝑛 − 2) 

                       = 𝑛 𝑟𝑛−2𝑟(𝑛 + 3)  

                           =  𝑛(𝑛 + 3)𝑟𝑛−2𝑟 

Example: 2.50 Prove that 𝛁𝟐𝒇(𝒓) = 𝒇′′(𝒓) + (
𝟐

𝒓
) 𝒇′(𝒓) 

Solution: 

             ∇2𝑓(𝑟) = ∑
𝜕2

𝜕𝑥2 𝑓(𝑟) 

                           =  ∑
𝜕

𝜕𝑥
 [𝑓′(𝑟) 

𝜕𝑟

𝜕𝑥
]  

                          =  ∑
𝜕

𝜕𝑥
 [𝑓′(𝑟) 

𝑥

𝑟
]  

                          =  ∑
𝜕

𝜕𝑥
 [𝑓′(𝑟)𝑥 

1

𝑟
]  

                          = ∑ [𝑓′(𝑟)𝑥 [
−1

𝑟2

𝜕𝑟

𝜕𝑥
] +  𝑓′(𝑟) (1) 

1

𝑟
+ 𝑓′′(𝑟) 

𝜕𝑟

𝜕𝑥
 𝑥

1

𝑟
] 

                          = ∑ [𝑓′(𝑟)𝑥 
−1

𝑟2

𝑥

𝑟
+  𝑓′(𝑟)  

1

𝑟
+ 𝑓′′(𝑟) 

𝑥

𝑟
 𝑥

1

𝑟
] 

                          = ∑ [𝑓′(𝑟) 
−1

𝑟3 𝑥2 +  𝑓′(𝑟)  
1

𝑟
+ 𝑓′′(𝑟) 

1

𝑟2  𝑥2]  

                          = 𝑓′(𝑟) 
−1

𝑟3
(𝑥2 + 𝑦2 +  𝑧2) +

3

𝑟
𝑓′(𝑟) + 𝑓′′(𝑟) 

1

𝑟2  (𝑥2 +  𝑦2 +  𝑧2) 

                          = −𝑓′(𝑟) 
1

𝑟3
(𝑟2) +

3

𝑟
𝑓′(𝑟) + 𝑓′′(𝑟) 

1

𝑟2  (𝑟2) 

                          = −𝑓′(𝑟) 
1

𝑟
+

3

𝑟
𝑓′(𝑟) + 𝑓′′(𝑟)  

                           = 𝑓′′(𝑟) +
2

𝑟
𝑓′(𝑟)  

Exercise: 2.2 
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1. When 𝜑 =  𝑥3 +  𝑦3 + 𝑧3 −  3𝑥𝑦𝑧, find ∇𝜑, ∇ ∙ ∇𝜑, ∇ × ∇𝜑 at the point (1, 2, 3). 

                                                  Ans: (∇𝜑)(1,2,3) =  −15𝑖 +  3𝑗 +  21𝑘⃗⃗  

                                                           (∇ ∙ 𝜑)(1,2,3) =  36 

                                                           (∇ × ∇𝜑)(1,2,3) =  0⃗⃗ 

2. Show that, 𝑑𝑖𝑣 (
𝑟

𝑟
) =  

2

𝑟
                    

3. Find ∇  ∙  𝐹⃗ 𝑎𝑛𝑑 ∇  × 𝐹⃗ of the vector point function 𝐹⃗ = 𝑥𝑧3 𝑖 −  2𝑥2𝑦𝑧 𝑗 +  2𝑦𝑧4 𝑘⃗⃗ at  

     (1, −1, 1).                                    Ans: (∇ ∙ 𝐹⃗)
(1,−1,1)

=  −9, (∇ × 𝐹⃗)
(1,−1,1)

=  3𝑗 +  4𝑘⃗⃗  

4. Show that the vector 𝐹⃗ =  (sin 𝑦 + 𝑧)𝑖 +  (𝑥 cos 𝑦 − 𝑧) 𝑗 +  (𝑥 − 𝑦) 𝑘⃗⃗ is irrotational. 

5. Show that the vector 𝐹⃗ =  (2𝑥𝑦 − 𝑧2)𝑖 +  (𝑥2 +  2𝑦𝑧) 𝑗 +  (𝑦2 − 2𝑧𝑥) 𝑘⃗⃗ is irrotational  

     and find its scalar potential.  Ans: 𝑥2𝑦 − 𝑥𝑧2 +  𝑦2𝑧 + 𝑐 

6. Show that the vector 𝐹⃗ =  (3𝑥2 +  2𝑦2 +  1)𝑖 +  (4𝑥𝑦 −  3𝑦2𝑧 − 3) 𝑗 +  (2 −  𝑦3) 𝑘⃗⃗ is  

     irrotational and find its scalar potential.  Ans: 𝑥3 + 2𝑦2𝑥 + 𝑥 −  𝑦3𝑧 − 3𝑦 + 2𝑧 + 𝑐 

7. Show that the vector 𝐹⃗ =  (𝑦2 +  2𝑥𝑧2)𝑖 +  (2𝑥𝑦 −  𝑧) 𝑗 +  (2𝑥2𝑧 − 𝑦 + 2𝑧) 𝑘⃗⃗ is  

     irrotational and find its scalar potential.  Ans: 𝑥𝑦2 + 𝑥2𝑧2 − 𝑦𝑧 +  𝑧2 + 𝑐 

8. Prove that 𝐹⃗ =  (𝑥2 − 𝑦2 + 𝑥)𝑖 −  (2𝑥𝑦 +  𝑧) 𝑗 is irrrotational and hence, find its scalar  

       potential.  Ans: 
𝑥3

3
−  𝑥𝑦2 +  

𝑥2

2
−  

𝑦2

2
+  𝑐 

9. Find the constants a, b, c so that the following vector is irrotational. 

(i) 𝐹⃗ =  (𝑎𝑥𝑦 +  𝑏𝑧3)𝑖 +  (3𝑥2 − 𝑐𝑧) 𝑗 +  (3𝑥𝑧2 − 𝑦) 𝑘⃗⃗   Ans: 𝑎 = 6, 𝑏 = 1, 𝑐 = 1 

(ii) 𝐴 =  (𝑎𝑥𝑦 −  𝑧3)𝑖 +  (𝑎 −  2)𝑥2 𝑗 +  (1 − 𝑎)𝑥𝑧2 𝑘⃗⃗ Ans: 𝑎 = 4  

10. Show that the following vectors are solenoidal. 

      (i) 𝑎⃗ =  (𝑥 +  3𝑦)𝑖 +  (𝑦 −  3𝑧) 𝑗 + (𝑥 − 2𝑧) 𝑘⃗⃗ 

      (ii) 𝑎⃗ =  5𝑦4𝑧3𝑖 +  8𝑥𝑧2 𝑗 −  𝑦2𝑥 𝑘⃗⃗ 

2.3 VECTOR INTEGRATION 

Line Integral  

An integral which is evaluated along a curve then it is called line integral. 

Let C be the curve in same region of space described by a vector valued function 

 𝑟 = 𝑥𝑖 +  𝑦 𝑗 +  𝑧 𝑘⃗⃗ of a point (𝑥, 𝑦, 𝑧) and let 𝐹⃗ = 𝐹1𝑖 + 𝐹2 𝑗 +  𝐹3 𝑘⃗⃗ be a continuous vector valued 

function defined along a curve C. Then the line integral 𝐹⃗ over C is denoted by 

 
c

𝐹⃗  ∙ 𝑑𝑟. 

Work done by a Force 

  If 𝐹⃗(𝑥, 𝑦, 𝑧) is a force acting on a particle which moves along a given curve C, then  
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
c

𝐹⃗  ∙ 𝑑𝑟 gives the total work done by the force 𝐹⃗ in the displacement along C. 

Thus work done by force 𝐹⃗ =  
c

𝐹⃗  ∙ 𝑑𝑟 

Conservative force field 

                  The line integral ∫ 𝐹⃗  ∙ 𝑑𝑟
𝐵

𝐴
 depends not only on the path C but also on the end points A and B. 

If the integral depends only on the end points but not on the path C, then 𝐹⃗ is said to be conservative vector 

field. 

If 𝐹⃗ is conservative force field, then it can be expressed as the gradient of some scalar function 𝜑. 

 (𝑖𝑒) 𝐹⃗ = ∇𝜑 

 𝐹⃗ = ∇𝜑 = (𝑖 
𝜕𝜑

𝜕𝑥
+  𝑗  

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗  

𝜕𝜑

𝜕𝑧
) 

 𝐹⃗ ∙ 𝑑𝑟 = (𝑖 
𝜕𝜑

𝜕𝑥
+ 𝑗  

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗  

𝜕𝜑

𝜕𝑧
)  ∙   (𝑑𝑥 𝑖 +  𝑑𝑦 𝑗 + 𝑑𝑧 𝑘⃗⃗) 

              =  
𝜕𝜑

𝜕𝑥
 𝑑𝑥 +  

𝜕𝜑

𝜕𝑦
 𝑑𝑦 +   

𝜕𝜑

𝜕𝑧
 𝑑𝑧 =  𝜕𝜑 


c

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 𝜕𝜑
𝐵

𝐴
 

                =  [𝜑]𝐴
𝐵 

                 =  𝜑[𝐵] −  𝜑[𝐴] 

 ∴ work done by 𝐹⃗  =  𝜑[𝐵] −  𝜑[𝐴] 

Note: 

If 𝐹⃗ is conservative, then ∇ × 𝐹⃗ =  ∇ × (∇𝜑) =  0⃗⃗ and hence 𝐹⃗ is irrotational. 

Problems based on line integral 

Example: 2.51 If 𝑭⃗⃗⃗ = 𝟑𝒙𝒚𝒊 −  𝒚𝟐𝒋, evaluate 
c

𝑭⃗⃗⃗  ∙ 𝒅𝒓⃗⃗ where c is the curve 𝒚 = 𝟐𝒙𝟐 from (𝟎, 𝟎) to 

(𝟏, 𝟐). 

Solution: 

               Given 𝐹⃗ = 3𝑥𝑦𝑖 −  𝑦2𝑗 

                         𝑑𝑟 = 𝑑𝑥𝑖 +  𝑑𝑦 𝑗 

 𝐹⃗ ∙ 𝑑𝑟 = 3𝑥𝑦 𝑑𝑥 − 𝑦2𝑑𝑦 

Given C is 𝑦 = 2𝑥2 

                 ∴ 𝑑𝑦 = 4𝑥𝑑𝑥 

Along C,  𝑥 varies from 0 to 1. 


c

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 3𝑥 (2𝑥2)𝑑𝑥 − 4𝑥4(4𝑥𝑑𝑥)
1

0
 

                 =  ∫ 6𝑥3 −  16𝑥5 𝑑𝑥
1

0
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                = [6
𝑥4

4
−  16 

𝑥6

6
] 

                 =  
6

4
−  

16

6
=  − 

7

6
 units. 

Example: 2.52 Find the work done, when a force 𝑭⃗⃗⃗ =  (𝒙𝟐 −  𝒚𝟐 +  𝒙)𝒊 −  (𝟐𝒙𝒚 + 𝒚)𝒋 moves a particle 

from the origin to the point (𝟏, 𝟏) along 𝒚𝟐 = 𝒙. 

Solution: 

               Given 𝐹⃗ =  (𝑥2 −  𝑦2 +  𝑥)𝑖 −  (2𝑥𝑦 + 𝑦)𝑗 

                          𝑑𝑟 = 𝑑𝑥𝑖 +  𝑑𝑦𝑗 

 𝐹⃗ ∙ 𝑑𝑟 = (𝑥2 −  𝑦2 +  𝑥)𝑑𝑥 −  (2𝑥𝑦 + 𝑦)𝑑𝑦 

Given 𝑦2 = 𝑥   ⇒ 2𝑦𝑑𝑦 = 𝑑𝑥  

Along the curve C, 𝑦 varies from 0 to 1. 


c

𝐹⃗  ∙ 𝑑𝑟 =  ∫ ((𝑦2)2 −  𝑦2 + 𝑦2) 2𝑦𝑑𝑦 − (2(𝑦2)𝑦 + 𝑦)𝑑𝑦
1

0
 

                 =  ∫ (2𝑦5 − 2𝑦3 + 2𝑦3 −  2𝑦3 −  𝑦)
1

0
 𝑑𝑦 

                 = ∫ (2𝑦5 − 2𝑦3 −  𝑦) 𝑑𝑦
1

0
 

                 =  [2
𝑦6

6
−  2

𝑦4

4
−  

𝑦2

2
]

0

1

 

                 =
2

6
−  

2

4
−  

1

2
=  − 

2

3
   

Example: 2.53 Find the work done in moving a particle in the force field 

 𝑭⃗⃗⃗ =  𝟑𝒙𝟐𝒊 +  (𝟐𝒙𝒛 − 𝒚)𝒋 − 𝒛𝒌⃗⃗⃗ from 𝒕 = 𝟎 to 𝒕 = 𝟏  along the curve 𝒙 = 𝟐𝒕𝟐 , 𝒚 = 𝒕, 𝒛 = 𝟒𝒕𝟑. 

Solution: 

              Given 𝐹⃗ =  3𝑥2𝑖 +  (2𝑥𝑧 − 𝑦)𝑗 − 𝑧𝑘⃗⃗ 

                        𝑑𝑟 = 𝑑𝑥𝑖 +  𝑑𝑦𝑗 +  𝑑𝑧𝑘⃗⃗ 

 𝐹⃗ ∙ 𝑑𝑟 = 3𝑥2𝑑𝑥 +  (2𝑥𝑧 − 𝑦)𝑑𝑦 − 𝑧𝑑𝑧 

Given 𝑥 = 2𝑡2 ,      𝑦 = 𝑡,      𝑧 = 4𝑡3 

          𝑑𝑥 = 4𝑡𝑑𝑡 ,     𝑑𝑦 = 𝑑𝑡,      𝑑𝑧 = 12𝑡2𝑑𝑡 


c

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 48𝑡5𝑑𝑡 +  (16𝑡5 −  𝑡)𝑑𝑡 − 48𝑡5 𝑑𝑡
1

0
 

                 =  ∫ (16𝑡5 −  𝑡)𝑑𝑡
1

0
 

                  =  [
16 𝑡6

6
−  

𝑡2

2
]

0

1

=  
16

6
−  

1

2
=  

13

6
 

Example: 2.54 If 𝑭⃗⃗⃗ = (𝟑𝒙𝟐 +  𝟔𝒚)𝒊 +  𝟏𝟒𝒚𝒛𝒋 +  𝟐𝟎𝒙𝒛𝟐𝒌⃗⃗⃗, evaluate 
c

𝑭⃗⃗⃗  ∙ 𝒅𝒓⃗⃗ from (𝟎, 𝟎, 𝟎) to (𝟏, 𝟏, 𝟏) 

along the curve 𝒙 = 𝒕, 𝒚 =  𝒕𝟐, 𝒛 =  𝒕𝟑. 

Solution: 
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              Given 𝐹⃗ = (3𝑥2 +  6𝑦)𝑖 +  14𝑦𝑧𝑗 +  20𝑥𝑧2𝑘⃗⃗ 

                         𝑑𝑟 = 𝑑𝑥𝑖 +  𝑑𝑦𝑗 +  𝑑𝑧𝑘⃗⃗ 

 𝐹⃗ ∙ 𝑑𝑟 = (3𝑥2 +  6𝑦)𝑑𝑥 +  14𝑦𝑧𝑑𝑦 +  20𝑥𝑧2𝑑𝑧 

Given 𝑥 = 𝑡 ,      𝑦 = 𝑡2,      𝑧 = 𝑡3 

          𝑑𝑥 = 𝑑𝑡 ,     𝑑 𝑦 = 2𝑡𝑑𝑡,      𝑑𝑧 = 3𝑡2𝑑𝑡 

The point (0, 0, 0) to (1, 1,1) on the curve correspond to 𝑡 =  0 and 𝑡 =  1. 


c

𝐹⃗  ∙ 𝑑𝑟 =  ∫ (3𝑡2 +  6𝑡2)𝑑𝑡 +  14𝑡5(2𝑡 𝑑𝑡) +  20𝑡7(3𝑡2)𝑑𝑡
1

0
 

                 =  ∫ (9𝑡2 +  28 𝑡6 +  60𝑡9) 𝑑𝑡
1

0
 

                 =  [9
𝑡3

3
+ 28

𝑡7

7
+  60 

𝑡9

9
 ]

0

1

 

                 =  
9

3
+  

28

7
+  

60

10
= 3 + 4 +  6 = 13units. 

Example: 2.55 Find 
c

𝑭⃗⃗⃗  ∙ 𝒅𝒓⃗⃗ where 𝑭⃗⃗⃗ = (𝟐𝒚 +  𝟑)𝒊 +  𝒙𝒛𝒋 +  (𝒚𝒛 − 𝒙)𝒌⃗⃗⃗ along the line joining the 

points (𝟎, 𝟎, 𝟎) to (𝟐, 𝟏, 𝟏). 

Solution: 

                Given 𝐹⃗ = (2𝑦 +  3)𝑖 +  𝑥𝑧𝑗 +  (𝑦𝑧 − 𝑥)𝑘⃗⃗ 

                          𝑑𝑟 = 𝑑𝑥𝑖 +  𝑑𝑦𝑗 +  𝑑𝑧𝑘⃗⃗ 

 𝐹⃗ ∙ 𝑑𝑟 = (2𝑦 +  3)𝑑𝑥 +  𝑥𝑧𝑑𝑦 +  (𝑦𝑧 − 𝑥)𝑑𝑧 

Equation of Straight line 
𝑥− 𝑥1

𝑥2− 𝑥1
=  

𝑦− 𝑦1

𝑦2− 𝑦1
=  

𝑧− 𝑧1

𝑧2− 𝑧1
 

The equation of the straight line joining (0, 0, 0) to (2, 1, 1). 

                                       ⇒
𝑥− 0

2− 0
=  

𝑦− 0

1−0
=  

𝑧− 0

1− 0
  

                                       ⇒
𝑥

2
=  

𝑦

1
=  

𝑧

1
= 𝑡  (say) 

            𝑥 = 2𝑡 ,      𝑦 = 𝑡,      𝑧 = 𝑡 

          𝑑𝑥 = 2𝑑𝑡 ,     𝑑 𝑦 = 𝑑𝑡,      𝑑𝑧 = 𝑑𝑡 

When t = 0 we get (0, 0, 0) 

When t = 1 we get (2, 1, 1) 

   ∴ 𝑡 varies from 0 to 1. 


c

𝐹⃗  ∙ 𝑑𝑟 =  ∫ (2𝑡 +  3)2𝑑𝑡 +  (2𝑡)𝑡𝑑𝑡 +  (𝑡2 − 2𝑡)𝑑𝑡
1

0
 

                 =  ∫ (4𝑡 + 6 + 2𝑡2 +  𝑡2 −  2𝑡) 𝑑𝑡
1

0
 

                 =  ∫ (3𝑡2 +  2𝑡 + 6) 𝑑𝑡
1

0
 

                 =  [3
𝑡3

3
+ 2

𝑡2

2
+  6𝑡 ]

0

1
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                =  
3

3
+  

2

2
+  6 = 8 units 

Example: 2.56 Find the work done in moving a particle in the force field 

 𝑭⃗⃗⃗ = 𝟑𝒙𝟐𝒊 +  (𝟐𝒙𝒛 − 𝒚)𝒋 +  𝒛𝒌⃗⃗⃗ along the straight line (𝟎, 𝟎, 𝟎) to (𝟐, 𝟏, 𝟑). 

Solution: 

             Given  𝐹⃗ = 3𝑥2𝑖 +  (2𝑥𝑧 − 𝑦)𝑗 +  𝑧𝑘⃗⃗ 

                         𝑑𝑟 = 𝑑𝑥𝑖 +  𝑑𝑦𝑗 +  𝑑𝑧𝑘⃗⃗ 

  𝐹⃗ ∙ 𝑑𝑟 = 3𝑥2𝑑𝑥 +  (2𝑥𝑧 − 𝑦)𝑑𝑦 +  𝑧𝑑𝑧 

Equation of Straight line 
𝑥− 𝑥1

𝑥2− 𝑥1
=  

𝑦− 𝑦1

𝑦2− 𝑦1
=  

𝑧− 𝑧1

𝑧2− 𝑧1
 

The equation of the line joining two points (0, 0, 0) to (2, 1, 3) is 

                                       ⇒
𝑥− 0

2− 0
=  

𝑦− 0

1−0
=  

𝑧− 0

3− 0
  

                                       ⇒
𝑥

2
=  

𝑦

1
=  

𝑧

3
= 𝑡  (say) 

            𝑥 = 2𝑡 ,      𝑦 = 𝑡,      𝑧 = 3𝑡 

          𝑑𝑥 = 2𝑑𝑡 ,     𝑑 𝑦 = 𝑑𝑡,      𝑑𝑧 = 3𝑑𝑡 

When 𝑡 =  0 we get (0, 0, 0) 

When 𝑡 =  1 we get (2, 1, 3) 


c

𝐹⃗  ∙ 𝑑𝑟 = ∫ 3(4𝑡2)2𝑑𝑡 +  [2(2𝑡)(3𝑡) − 𝑡]𝑑𝑡 +  (3𝑡)3𝑑𝑡
1

0
 

                 =  ∫ (24𝑡2 + 12𝑡2 −  𝑡 + 9𝑡) 𝑑𝑡
1

0
 

                 =  ∫ (36𝑡2 + 8𝑡) 𝑑𝑡
1

0
 

                 =  [36
𝑡3

3
+ 8

𝑡2

2
 ]

0

1

  

                 =  12 + 4 = 16 units 

Example: 2.57 Find 
c

𝑭⃗⃗⃗  ∙ 𝒅𝒓⃗⃗ where c is the circle 𝒙𝟐 + 𝒚𝟐 = 𝟒 in the 𝒙𝒚 plane where 

 𝑭⃗⃗⃗ =  (𝟐𝒙𝒚 + 𝒛𝟑)𝒊 + 𝒙𝟐𝒋 +  𝟑𝒙𝒛𝟐𝒌⃗⃗⃗. 

Solution:  

              Given 𝐹⃗ =  (2𝑥𝑦 + 𝑧3)𝑖 + 𝑥2𝑗 +  3𝑥𝑧2𝑘⃗⃗ 

                     In 𝑥𝑦 plane 𝑧 = 0 ⇒ 𝑑𝑧 = 0 

                         𝑑𝑟 = 𝑑𝑥𝑖 +  𝑑𝑦𝑗 +  𝑑𝑧𝑘⃗⃗ 

  𝐹⃗ ∙ 𝑑𝑟 = 2𝑥𝑦𝑑𝑥 +  𝑥2𝑑𝑦 

Given C is 𝑥2 + 𝑦2 = 4 

The parametric form of circle is 

           𝑥 = 2 cos 𝜃 ,                  𝑦 = 2 sin 𝜃 

       𝑑𝑥 =  −2 sin 𝜃𝑑𝜃,     𝑑𝑦 = 2 cos 𝜃𝑑𝜃 
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And 𝜃 varies from 0 to 2𝜋 


c

𝐹⃗  ∙ 𝑑𝑟 = ∫ [2(2 cos 𝜃)(2 sin 𝜃)] (−2 sin 𝜃𝑑𝜃) +  (2 cos 𝜃)22 cos 𝜃 𝑑𝜃
2𝜋

0
 

                 = ∫ −16 cos 𝜃𝑠𝑖𝑛2𝜃 +  8 cos3 𝜃 𝑑𝜃
2𝜋

0
 

                 = ∫ −16 cos 𝜃(1 −  𝑐𝑜𝑠2𝜃) +  8 cos3 𝜃 𝑑𝜃
2𝜋

0
 

                 = ∫ −16 cos 𝜃 + 16 𝑐𝑜𝑠3𝜃 +  8 cos3 𝜃 𝑑𝜃
2𝜋

0
 

                 =  −16 ∫ cos 𝜃 𝑑𝜃 + 24 ∫ cos3 𝜃 𝑑𝜃
2𝜋

0
 

2𝜋

0
        

                 =  −16 ∫ cos 𝜃 𝑑𝜃 + 24 ∫
3 cos 𝜃+cos 3𝜃

4
𝑑𝜃

2𝜋

0
 

2𝜋

0
 

                = 16 [sin 𝜃]0
2𝜋 +  

24

4
[3 sin 𝜃 +

𝑠𝑖𝑛3𝜃

3
]

0

2𝜋

 

                 = 0                            [∵ sin 𝑛𝜋 =  0, 𝑠𝑖𝑛0 = 0] 

Example: 2.58 State the physical interpretation of the line integral ∫ 𝑭⃗⃗⃗  ∙ 𝒅𝒓⃗⃗
𝑩

𝑨
. 

Solution:  

               Physically ∫ 𝐹⃗  ∙ 𝑑𝑟
𝐵

𝐴
 denotes the total work done by the force 𝐹⃗, displacing a particle from A to B 

along the curve C. 

Example: 2.59 If 𝑭⃗⃗⃗ =  (𝟒𝒙𝒚 − 𝟑𝒙𝟐𝒛𝟐)𝒊 + 𝟐𝒙𝟐𝒋 −  𝟐𝒙𝟐𝒛𝒌⃗⃗⃗, check whether the integral  


c

𝑭⃗⃗⃗  ∙ 𝒅𝒓⃗⃗ is independent of the path C. 

Solution: 

                Given 𝐹⃗ =  (4𝑥𝑦 − 3𝑥2𝑧2)𝑖 + 2𝑥2𝑗 −  2𝑥2𝑧𝑘⃗⃗ 

                          𝑑𝑟 = 𝑑𝑥𝑖 +  𝑑𝑦𝑗 +  𝑑𝑧𝑘⃗⃗ 

  𝐹⃗ ∙ 𝑑𝑟 =  (4𝑥𝑦 − 3𝑥2𝑧2)𝑑𝑥 + 2𝑥2𝑑𝑦 −  2𝑥2𝑧𝑑𝑧 

Then 
c

𝐹⃗  ∙ 𝑑𝑟 is independent of path C if ∇ × 𝐹⃗ = 0 

                   ∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

4𝑥𝑦 − 3𝑥2𝑧2 2𝑥2 −2𝑥3𝑧

| 

                                =  𝑖(0 − 0) −  𝑗(−6𝑥2𝑧 + 6𝑥2𝑧) +  𝑘⃗⃗(4𝑥 − 4𝑥)  

                                 = 0⃗⃗ 

Hence the line integral is independent of path. 

Example: 2.60 Show that  𝑭⃗⃗⃗ =  𝒙𝟐𝒊 +  𝒚𝟐𝒋 +  𝒛𝟐𝒌⃗⃗⃗ is a conservative vector field. 

Solution: 

               If 𝐹⃗ is conservative, then ∇ × 𝐹⃗ =  0⃗⃗. 
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 Now, ∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥2 𝑦2 𝑧2

| 

                         =  𝑖(0 − 0) −  𝑗(0 − 0) +  𝑘⃗⃗(0 − 0)  

                         = 0⃗⃗ 

 ∴  𝐹⃗ is a conservative vector field. 

Surface Integral 

An integral which is evaluated over a surface is called a surface integral. 

Consider a surface S. Let 𝐹⃗ be a vector valued function which is defined at each point on the surface and let P 

be any point on the surface and 𝑛⃗⃗ be the unit outward normal to the surface at P. The normal component of 𝐹⃗ 

at P is 𝐹⃗  ∙  𝑛⃗⃗. 

The integral of the normal component of 𝐹⃗ is denoted by 
S

𝐹⃗  ∙  𝑛⃗⃗ 𝑑𝑠 and is called the surface integral. 

Evaluation of surface integral 

            Let 𝑅1 be the projection of S on the 𝑥𝑦 − plane, 𝑘⃗⃗ is the unit vector normal to the 𝑥𝑦 − plane then 

𝑑𝑠 =  
𝑑𝑥 𝑑𝑦

|𝑛⃗⃗ ∙ 𝑘⃗⃗|
  

      ∴ 
S

𝐹⃗  ∙  𝑛⃗⃗ 𝑑𝑠 = 
1R

𝐹⃗  ∙  𝑛⃗⃗  
𝑑𝑥 𝑑𝑦

|𝑛⃗⃗ ∙ 𝑘⃗⃗|
   

If 𝑅2 be the projection of s on 𝑦𝑧 − plane 

∴ 
S

𝐹⃗  ∙  𝑛⃗⃗ 𝑑𝑠 = 
2R

𝐹⃗  ∙  𝑛⃗⃗  
𝑑𝑥 𝑑𝑦

|𝑛⃗⃗ ∙ 𝑖|
   

If 𝑅3 be the projection of s on 𝑥𝑧 − plane 

∴ 
S

𝐹⃗  ∙  𝑛⃗⃗ 𝑑𝑠 = 
3R

𝐹⃗  ∙  𝑛⃗⃗  
𝑑𝑥 𝑑𝑦

|𝑛⃗⃗ ∙ 𝑗|
   

Problems based on surface integral 

Example: 2.61 Evaluate 
S

𝑭⃗⃗⃗  ∙  𝒏⃗⃗⃗ 𝒅𝒔 if 𝑭⃗⃗⃗ =  (𝒙 + 𝒚𝟐)𝒊 −  𝟐𝒙𝒋 +  𝟐𝒚𝒛𝒌⃗⃗⃗ and s is the surface of the plane 

𝟐𝒙 + 𝒚 + 𝟐𝒛 = 𝟔 in the first octant.   

Solution: 

              Given 𝐹⃗ =  (𝑥 + 𝑦2)𝑖 −  2𝑥𝑗 +  2𝑦𝑧𝑘⃗⃗ 

Let 𝜑 =  2𝑥 + 𝑦 + 2𝑧 − 6 

Then ∇𝜑 = 𝑖 
𝜕𝜑

𝜕𝑥
+  𝑗  

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗  

𝜕𝜑

𝜕𝑧
 

                = 2𝑖 +  1𝑗 +  2𝑘⃗⃗ 

 |∇𝜑| =  √4 + 1 + 4 =  √9 = 3 
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n̂  =  
∇𝜑

|∇φ|
=  

2𝑖+ 1𝑗+ 2𝑘⃗⃗

3
 

 𝐹⃗ ∙ n̂ = [(𝑥 +  𝑦2)𝑖 − 2𝑥𝑗 +  2𝑦𝑧 𝑘⃗⃗]  ∙  (
2𝑖+ 1𝑗+ 2𝑘⃗⃗

3
) 

         =  
1

3
 [2(𝑥 +  𝑦2) −  2𝑥 + 4𝑦𝑧]  

         =  
2

3
 [𝑦2 +  2𝑦𝑧] 

         =  
2

3
 𝑦[𝑦 + 2𝑧] 

         =  
2

3
 𝑦[𝑦 + 6 − 2𝑥 − 𝑦]                                [∵ 2𝑧 = 6 − 2𝑥 − 𝑦] 

          =  
2

3
 𝑦[6 − 2𝑥] 

           =  
4

3
 𝑦[3 − 𝑥]  

Let R be the projection of S on the 𝑥𝑦 − plane 

                        ∴ 𝑑𝑠 =  
𝑑𝑥 𝑑𝑦

| n̂  ∙ k⃗⃗⃗|
 

 n̂  ∙  k⃗⃗ =  (
2𝑖+ 1𝑗+ 2𝑘⃗⃗

3
)  ∙  k⃗⃗ =  

2

3
 

∴ 
S

𝐹⃗  ∙  n̂  𝑑𝑠 = 
R

𝐹⃗  ∙  n̂
𝑑𝑥 𝑑𝑦

| n̂  ∙ k⃗⃗⃗|
  

                           = 
R

4

3
 𝑦(3 − 𝑥) 

𝑑𝑥 𝑑𝑦

(
2

3
)

 

                           = 2 ∫ ∫(3 − 𝑥)𝑦 𝑑𝑥𝑑𝑦 

In 𝑅1(2𝑥 + 𝑦 = 6), 𝑥 varies from 0 to 
6−𝑦

2
 

          𝑦 varies from 0 to 6 

                              = 2 ∫ ∫ 𝑦 (3 − 𝑥) 𝑑𝑥𝑑𝑦
6−𝑦

2
0

6

0
 

                              = 2 ∫ 𝑦 [3𝑥 −  
𝑥2

2
]

0

6−𝑦

26

0
 𝑑𝑦 

                              = 2 ∫ 𝑦 [3 (
6−𝑦

2
) −  

1

2
 (

6−𝑦

2
)

2

]
6

0
𝑑𝑦 

                               = 2 ∫
1

2
(18𝑦 − 3𝑦2) −  

1

8
(6 − 𝑦)2 𝑑𝑦

6

0
 

                               =  
2

2
 [18 

𝑦2

2
−

3𝑦3

3
−  

1

8

(6−𝑦)3

3(−1)
] 

                                =  [9(6)2 −  (6)3 +  
1

12
(0)] −  [0 − 0 + 

1

12
 (6)3] 

                                 = 81  units 

Example: 2.62 Show that  
S

(𝒚𝒛 𝒊 +  𝒛𝒙 𝒋 +  𝒙𝒚 𝒌⃗⃗⃗)  ∙ n̂  𝒅𝒔 =  
𝟑

𝟖
 where s is the surface of the sphere 

𝒙𝟐 + 𝒚𝟐 +  𝒛𝟐 = 𝟏 in the first octant. 

Solution: 
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               Given 𝐹⃗ = 𝑦𝑧 𝑖 +  𝑧𝑥 𝑗 +  𝑥𝑦 𝑘⃗⃗ 

                        Let 𝜑 = 𝑥2 + 𝑦2 +  𝑧2 − 1   

                            ∇𝜑 = 𝑖 
𝜕𝜑

𝜕𝑥
+  𝑗  

𝜕𝜑

𝜕𝑦
+ 𝑘⃗⃗  

𝜕𝜑

𝜕𝑧
  

                                  = 2𝑥𝑖 +  2𝑦𝑗 +  2𝑧𝑘⃗⃗ 

                         |∇𝜑| =  √4𝑥2 + 4𝑦2 + 4𝑧2 =  2(1)    

 ∴ The unit outward normal is n̂  =  
∇𝜑

|∇φ|
=  

2(𝑥𝑖+ 𝑦𝑗+ 𝑧𝑘⃗⃗)

2
 

𝐹⃗ ∙ n̂ = [𝑦𝑧𝑖 + 𝑧𝑥𝑗 + 𝑥𝑦 𝑘⃗⃗]  ∙  (𝑥𝑖 +  𝑦𝑗 +  𝑧𝑘⃗⃗) 

        = 3𝑥𝑦𝑧 

Let R be the projection of S on 𝑥𝑦 −plane 

                              ∴ 𝑑𝑠 =  
𝑑𝑥 𝑑𝑦

| n̂  ∙ k⃗⃗⃗|
         

 | n̂  ∙  k⃗⃗| = (𝑥𝑖 +  𝑦𝑗 +  𝑧𝑘⃗⃗)  ∙  𝑘⃗⃗     = 𝑧  

 ∴ 
S

𝐹⃗  ∙  n̂  𝑑𝑠 = 
R

𝐹⃗  ∙  n̂
𝑑𝑥 𝑑𝑦

| n̂  ∙ k⃗⃗⃗|
 

                            =  ∫ ∫ 3𝑥𝑦𝑧  
𝑑𝑥𝑑𝑦

𝑧
 

                            =  ∫ ∫ 3𝑥𝑦  𝑑𝑥𝑑𝑦  

In 𝑅1(𝑥2 + 𝑦2 = 1), 𝑥 varies from 0 to √1 −  𝑦2 

          𝑦 varies from 0 to 1 

                              =  ∫ ∫ 3𝑥𝑦 𝑑𝑥𝑑𝑦
√1− 𝑦2

0

1

0
 

                              = 3 ∫  [𝑦 
𝑥2

2
]

0

√1− 𝑦2
6

0
 𝑑𝑦 

                              =  
3

2
∫ 𝑦(1 −  𝑦2)𝑑𝑦

1

0
 

                              =  
3

2
∫ 𝑦 −  𝑦3𝑑𝑦

1

0
     

                              =  
3

2
[

𝑦2

2
−

𝑦4

4
]

0

1

 

                              =  
3

2
(

1

2
−  

1

4
) =  

3

8
 

Volume integral   

An integral which is evaluated over a volume bounded by a surface is called a volume integral. 

If 𝐹⃗ = 𝐹1𝑖 +  𝐹2 𝑗 +  𝐹3 𝑘⃗⃗ is a vector field in V, then the volume integral is defined by  

 
V

𝐹⃗  𝑑𝑣 

Problems based on volume integral 
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Example: 2.63 If  𝑭⃗⃗⃗ =  (𝟐𝒙𝟐 − 𝟑𝒛)𝒊 −  𝟐𝒙𝒚𝒋 − 𝟒𝒙𝒌⃗⃗⃗, evaluate  
V

𝛁 × 𝑭⃗⃗⃗  𝒅𝒗 where v is the volume of 

the region bounded by 𝒙 = 𝟎, 𝒚 = 𝟎, 𝒛 = 𝟎 and 𝟐𝒙 + 𝟐𝒚 + 𝒛 = 𝟒. 

Solution: 

               Given 𝐹⃗ =  (2𝑥2 − 3𝑧)𝑖 −  2𝑥𝑦𝑗 − 4𝑥𝑘⃗⃗ 

                      ∇ × 𝐹⃗ = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

2𝑥2 − 3𝑧 −2𝑥𝑦 −4𝑥

| 

                                =  𝑖(0 − 0) −  𝑗(−4 + 3) +  𝑘⃗⃗(−2𝑦 − 0)  

                                   =   𝑗 −  2𝑦𝑘⃗⃗      

For limits 

Given 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 and 2𝑥 + 2𝑦 + 𝑧 = 4 

 ∴ 𝑧 ∶ 0 → 4 − 2𝑥 − 2𝑦 

Put 𝑧 = 0 ⇒ 2𝑥 + 2𝑦 = 4 (𝑜𝑟) 𝑥 + 𝑦 = 4 

 ∴ 𝑦 ∶ 0 → 2 − 𝑥 

Put 𝑧 = 0, 𝑦 = 0 ⇒ 2𝑥 = 4 (𝑜𝑟) 𝑥 = 2 

 ∴ 𝑥 ∶ 0 → 2 

 ∴ ∫ ∫ ∫  ∇ × 𝐹⃗ 𝑑𝑣 =  ∫ ∫ ∫ (𝑗 −  2𝑦𝑘⃗⃗)𝑑𝑧𝑑𝑦𝑑𝑥
4−2𝑥−2𝑦

0

2−𝑥

0

2

0
 

                  = ∫ ∫ (𝑗 −  2𝑦𝑘⃗⃗ )[𝑧]0
4−2𝑥−2𝑦

 𝑑𝑦𝑑𝑥
2−𝑥

0

2

0
 

                   = ∫ ∫ [(4 − 2𝑥 − 2𝑦)𝑗 −  2𝑦(4 − 2𝑥 − 2𝑦)𝑘⃗⃗] 𝑑𝑦𝑑𝑥
2−𝑥

0

2

0
 

                   = ∫ {[4𝑦 − 2𝑥𝑦 −  
2𝑦2

2
] 𝑗 −  [4𝑦2 −  2𝑥𝑦2 −  

4𝑦

3

3
] 𝑘⃗⃗}

0

2−𝑥
2

0
𝑑𝑥 

                   =  ∫ {[4(2 − 𝑥) −  2𝑥(2 − 𝑥) −  (2 − 𝑥)2] 𝑗 −
2

0
 

                                                            [4(2 − 𝑥)2 −  2𝑥(2 − 𝑥)2 −
4

3
 (2 − 𝑥)3𝑘⃗⃗]} 𝑑𝑥 

                    = ∫ [8 − 4𝑥 − 4𝑥 + 2𝑥2 −  4 + 4𝑥 −  𝑥2] 𝑗 −
2

0
          

                                [16 − 16𝑥 + 4𝑥2 − 8𝑥 + 8𝑥2 −  2𝑥3 −  
4

3
 (8 − 12𝑥 + 6𝑥2 −  𝑥3) 𝑘⃗⃗]  𝑑𝑥  

                      = ∫ [(4 − 4𝑥 + 𝑥2) 𝑗 −  
𝑘⃗⃗

3
 (16 − 24𝑥 + 12𝑥2 −  2𝑥3)]  𝑑𝑥

2

0
 

                      = [4𝑥 − 2𝑥2 +  
𝑥3

3
]

0

2

𝑗 +  
𝑘⃗⃗

3
 [16𝑥 − 12𝑥2 +  4𝑥3 −

𝑥4

2
]

0

2

 

                       =  (8 − 8 +  
8

3
) 𝑗 −  

𝑘⃗⃗

3
 (32 − 48 + 32 − 8)                     

                         =  
8

3
 (𝑗 −  𝑘⃗⃗)    

Exercise: 2.3 
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1. If 𝐹⃗ =  𝑥2𝑖 +  𝑥𝑦2 𝑗, evaluate the line integral 
c

𝐹⃗  ∙ 𝑑𝑟 from (0, 0) 𝑡𝑜 (1, 1)along the  

    path 𝑦 = 𝑥.                                                                                                          Ans: 
1

2
 

2. Evaluate 
c

𝐹⃗  ∙ 𝑑𝑟,where 𝐹⃗ =  𝑥2𝑦2𝑖 +  𝑦 𝑗and C is 𝑦2 = 4𝑥 in the XY plane from 

    (0, 0) 𝑡𝑜 (4, 4).                                                                                                    Ans: 264 

3. If 𝐹⃗ =  𝑥𝑦𝑖 +  (𝑥2 + 𝑦2) 𝑗, then find 
c

𝐹⃗  ∙ 𝑑𝑟, where C is the arc of the parabola  

   𝑦 =  𝑥2 −  4 from (2, 0) 𝑡𝑜 (4, 12)                                                                      Ans: 732 

4. If 𝐹⃗ =  𝑥𝑦𝑖 +  𝑧 𝑗 −  𝑥𝑦𝑧 𝑘⃗⃗, then evaluate 
c

𝐹⃗  ∙ 𝑑𝑟, from the point (0, 0, 0) 𝑡𝑜 (1, 1, 1) where C is the  

    curve 𝑥 = 𝑡, 𝑦 =  𝑡2, 𝑧 = 𝑡                                                               Ans: 
67

60
 

5. Find the work done in moving a particle in the field 

 𝐹⃗ =  3𝑥2𝑖 +  (2𝑥𝑧 − 𝑦) 𝑗 +  (𝑥2 + 𝑦2) 𝑘⃗⃗ along the straight line from (0, 0, 0) 𝑡𝑜 (2, 1, 3). 

                                                                                                                                  Ans: 16 

6. Evaluate the line integral ∫ (𝑥2 + 𝑥𝑦)𝑑𝑥 +  (𝑥2 + 𝑦2)𝑑𝑦
𝐶

, where C is the square formed 

      by the lines 𝑥 =  ±1 𝑎𝑛𝑑 𝑦 =  ±1.                                                                     Ans: 0 

7. Find the total work done in moving a particle by a force field 𝐹⃗ =  𝑦𝑧𝑖 +  𝑥𝑧 𝑗 +  𝑥𝑦 𝑘⃗⃗  

     along the curve 𝑥 = 𝑡, 𝑦 =  𝑡2, 𝑧 = 𝑡3 from (0, 0, 0) 𝑡𝑜 (2, 4, 8)                          Ans: 64 

8. Evaluate  
S

𝐹⃗  ∙  n̂  𝑑𝑠 where 𝐹⃗ =  18𝑧𝑖 −  12 𝑗 +  3𝑦 𝑘⃗⃗ and S is the part of the plane  

    2𝑥 + 3𝑦 + 6𝑧 = 12 which is in the first order.                                                       Ans:24 

9. Evaluate  
S

𝐹⃗  ∙  n̂  𝑑𝑠 where 𝐹⃗ =  (𝑥 + 𝑦2)𝑖 −  2𝑥 𝑗 +  2𝑦𝑧 𝑘⃗⃗ and S is the surface of the 

      plane 2𝑥 + 𝑦 + 2𝑧 = 6 which is in the first order.                                                Ans:24  

10. Evaluate  
V

∇ × 𝐹⃗  𝑑𝑣 where  𝐹⃗ =  (2𝑥2 − 3𝑧)𝑖 −  2𝑦 𝑗 −  4𝑥𝑧 𝑘⃗⃗  and V is bounded 

        by the planes  𝑥 = 0, 𝑦 = 0, 𝑧 = 0 and 2𝑥 + 2𝑦 + 𝑧 = 4                                    Ans: 
8

3
           

2.4 Green’s Theorem 

Green’s theorem relates a line integral to the double integral taken over the region bounded by the closed 

curve. 

Statement 

If 𝑀(𝑥, 𝑦) and 𝑁(𝑥, 𝑦) are continuous functions with continuous, partial derivatives in a region R of the 𝑥𝑦 – 

plane bounded by a simple closed curve C, then  


c

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 
R

 (
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
)  𝑑𝑥 𝑑𝑦,where C is the curve described in the positive direction. 
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Vector form of Green’s theorem 


c

𝐹⃗  ∙  𝑑𝑟 = 
R

 (∇ × 𝐹⃗) ∙  k⃗⃗ dR 

Problems based on Green’s theorem 

Example: 2.64 Verify Green’s theorem in the plane for 
c

(𝟑𝒙𝟐 − 𝟖𝒚𝟐)𝒅𝒙 + (𝟒𝒚 − 𝟔𝒙𝒚)𝒅𝒚

     

where C 

is the boundary of the region defined by 𝒙 = 𝟎, 𝒚 = 𝟎, 𝒙 + 𝒚 = 𝟏. 

Solution: 

                                     

We have to prove that 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Here, 𝑀 =  3𝑥2 −  8𝑦2 𝑎𝑛𝑑 𝑁 = 4𝑦 − 6𝑥𝑦 

         ⇒
𝜕𝑀

𝜕𝑦
=  −16𝑦             ⇒

𝜕𝑁

𝜕𝑥
=  −6𝑦 

          ∴  
c

(3𝑥2 − 8𝑦2)𝑑𝑥 + (4𝑦 − 6𝑥𝑦)𝑑𝑦

 

=  
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 

By Green’s theorem in the plane, 

                         
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦    

        =  ∫ ∫ (10𝑦) 𝑑𝑦 𝑑𝑥
1−𝑥

0

1

0
  

     = 10 ∫ [
𝑦2

2
]

0

1−𝑥

𝑑𝑥
1

0
  

     = 5 ∫ (1 − 𝑥)
1

0

2
𝑑𝑥 

     = 5 [
(1− 𝑥)3

−3
]

0

1

 =  
5

3
 … (1) 

Consider ∫ 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  
OA

+ 
AB

+ 
BO

 

Along 𝑂𝐴, 𝑦 = 0 ⇒ 𝑑𝑦 = 0, 𝑥 varies from 0 to 1 

 ∴ 
OA

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  ∫ 3𝑥2𝑑𝑥 =  [𝑥3]0
11

0
= 1 
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Along 𝐴𝐵, 𝑦 = 1 − 𝑥 ⇒ 𝑑𝑦 = −𝑑𝑥 𝑎𝑛𝑑 𝑥 varies from 1 to 0 

 ∴ 
AB

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  ∫ [3𝑥2 −  8 (1 − 𝑥)2 −  4(1 − 𝑥) +  6𝑥(1 − 𝑥)]𝑑𝑥
0

1
 

    = [
3𝑥3

3
−  

8(1− 𝑥)3

−3
−  

4(1− 𝑥)2

−2
+  3𝑥2 −  2𝑥3]

1

0

 

    =  
8

3
+  2 − 1 − 3 + 2 =  

8

3
  

Along 𝐵𝑂, 𝑥 = 0 ⇒ 𝑑𝑥 = 0 𝑎𝑛𝑑 𝑦 varies from 1 to 0 

 ∴ 
BO

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  ∫ 4𝑦 𝑑𝑦 =  [2𝑦2]1
00

1
= −2 

  ∴ 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 1 +  
8

3
−  2 =  

5

3
    … (2) 

  ∴ From  (1) and  (2) 

  ∴ 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦              

 Hence Green’s theorem is verified. 

Example: 2.65 Verify Green’s theorem in the 𝑿𝒀 −plane for 
c

(𝒙𝒚 + 𝒚𝟐)𝒅𝒙 + 𝒙𝟐𝒅𝒚

     

where C is the 

closed curve of the region bounded by 𝒚 = 𝒙, 𝒚 = 𝒙𝟐. 

Solution: 

                                   

 We have to prove that 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Here, 𝑀 =  𝑥𝑦 + 𝑦2 𝑎𝑛𝑑 𝑁 = 𝑥2 

         ⇒
𝜕𝑀

𝜕𝑦
=  𝑥 + 2𝑦             ⇒

𝜕𝑁

𝜕𝑥
=  2𝑥 

R.H.S =  
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Limits: 

𝑥 varies from 𝑦 to √𝑦 
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 𝑦 varies from 0 to 1 

   ∴ 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 = ∫ ∫ 2𝑥 − (𝑥 + 2𝑦) 𝑑𝑥 𝑑𝑦

√𝑦

𝑦

1

0
 

                                            =  ∫ [
𝑥2

2
−  2𝑥𝑦]

𝑦

√𝑦

𝑑𝑦
1

0
  

                                             =  ∫ (
𝑦

2
− 2𝑦√𝑦) −  (

𝑦2

2
− 2𝑦2)

1

0
𝑑𝑦 

                                             =  ∫ (
𝑦

2
−  2𝑦

3

2 +  3
𝑦2

2
)  𝑑𝑦

1

0
 

                                              = [
𝑦2

2
−  

4𝑦
5
2

5
+  

𝑦3

2
]

0

1

 

                                                =  
1

4
−  

4

5
+  

1

2
=  −

1

20
        

L.H.S =  
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦      

Consider ∫ 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  
OA

+ 
AO

 

Along 𝑂𝐴, 𝑦 = 𝑥2   ⇒ 𝑑𝑦 = 2𝑥 𝑑𝑥, 𝑥 varies from 0 to 1 

 ∴ 
OA

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  ∫ [(𝑥(𝑥2) + (𝑥2)2)𝑑𝑥 +  𝑥2  ∙ 2𝑥 𝑑𝑥] 
1

0
 

                                              =  ∫ (3𝑥3 + 𝑥4) 𝑑𝑥
1

0
 

                                              =  [
3𝑥4

4
+ 

𝑥5

5
]

0

1

 

                                              =  
3

4
+  

1

5
=  

19

20
 

Along 𝐴𝑂, 𝑦 = 𝑥 ⇒ 𝑑𝑦 = 𝑑𝑥 𝑎𝑛𝑑 𝑥 varies from 1 to 0 

 ∴ 
0A

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  ∫ (𝑥2 +  𝑥2)𝑑𝑥 +  𝑥2 𝑑𝑥
0

1
 

    = ∫ 3𝑥2𝑑𝑥 =  [𝑥3]1
00

1
= −1  

  L.H.S =  
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  
19

20
−  1 =  −

1

20
 

                   ∴ L.H.S = R.H.S 

 Hence Green’s theorem is verified. 

Example: 2.66 Verify Green’s theorem in the plane for 
c

(𝟑𝒙𝟐 − 𝟖𝒚𝟐)𝒅𝒙 + (𝟒𝒚 − 𝟔𝒙𝒚)𝒅𝒚

     

where C 

is the boundary of the region defined by 𝒚 = 𝒙𝟐, 𝒙 = 𝒚𝟐. 

Solution: 
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 We have to prove that 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Here, 𝑀 =  3𝑥2 − 8𝑦2 𝑎𝑛𝑑 𝑁 = 4𝑦 − 6𝑥𝑦 

         ⇒
𝜕𝑀

𝜕𝑦
=  −16𝑦             ⇒

𝜕𝑁

𝜕𝑥
=  −6𝑦 

R.H.S =  
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Limits: 

𝑥 varies from 𝑦2 to √𝑦 

 𝑦 varies from 0 to 1 

   ∴ 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 = ∫ ∫ (−6𝑦 + 16𝑦) 𝑑𝑥 𝑑𝑦

√𝑦

𝑦2

1

0
 

                                            =  ∫ [10𝑥𝑦]
𝑦2
√𝑦

𝑑𝑦
1

0
  

                                            =  10 ∫ (𝑦√𝑦 −  𝑦3)
1

0
𝑑𝑦 

                                            = 10 [
𝑦

5
2

5

2

−   
𝑦4

4
]

0

1

 

                                           =  10 (
2

5
− 

1

4
) =  

3

2
        

L.H.S =  
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦      

Consider ∫ 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  
OA

+ 
AO

 

Along 𝑂𝐴, 𝑦 = 𝑥2   ⇒ 𝑑𝑦 = 2𝑥 𝑑𝑥, 𝑥 varies from 0 to 1 

 ∴ 
OA

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  ∫ (3𝑥2 − 8𝑥4)
1

0
𝑑𝑥 +  (4𝑥2 − 6𝑥3)(2𝑥)𝑑𝑥 

                                              =  ∫ (3𝑥2 − 8𝑥4 + 8𝑥3 − 12𝑥4)𝑑𝑥
1

0
 

                                              =  ∫ (−20𝑥4 + 8𝑥3 +  3𝑥2)
1

0
𝑑𝑥 
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                                              =  [−20
𝑥5

5
+ 8 

𝑥4

4
+ 3

𝑥3

3
]

0

1

 

                                              = −4 + 2 + 1 =  −1 

Along 𝐴𝑂, 𝑥 = 𝑦2  ⇒ 𝑑𝑥 = 2𝑦𝑑𝑦 𝑎𝑛𝑑 𝑦 varies from 1 to 0 

 ∴ 
Ao

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  ∫ (3𝑦4 −  8𝑦2)2𝑦𝑑𝑦 +  (4𝑦 − 6𝑦𝑦2) 𝑑𝑦
0

1
 

           = ∫ (6𝑦5 − 16𝑦3 +  4𝑦 − 6𝑦3)𝑑𝑥 
0

1
 

                                            = ∫ (6𝑦5 − 22𝑦3 +  4𝑦)𝑑𝑥 
0

1
 

                                            =  [6
𝑦6

6
− 22

𝑦4

4
+ 4

𝑦2

2
]

1

0

    

                                            = 0 −  [1 − 
11

2
+  2] 

                                            =  − (3 −  
11

2
) =  

5

2
    

  L.H.S =  
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = − 1 +  
5

2
=  

3

2
 

                   ∴ L.H.S = R.H.S 

 Hence Green’s theorem is verified. 

Example: 2.67 Verify Green’s theorem in the plane for the integral 
c

(𝒙 − 𝟐𝒚)𝒅𝒙 + 𝒙𝒅𝒚

     

taken 

around the circle 𝒙𝟐 + 𝒚𝟐 = 𝟏. 

Solution: 

             We have to prove that 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Here, 𝑀 =  𝑥 − 2𝑦 𝑎𝑛𝑑 𝑁 = 𝑥 

         ⇒
𝜕𝑀

𝜕𝑦
=  −2             ⇒

𝜕𝑁

𝜕𝑥
=  1 

R.H.S =  
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

   ∴ 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 = 

R

(1 + 2)𝑑𝑥𝑑𝑦 

                                            = 3 
R

𝑑𝑥𝑑𝑦  

                                            =  3 (Area of the circle) 

                                            = 3𝜋𝑟2 

                                             = 3𝜋      (∵ 𝑟𝑎𝑑𝑖𝑢𝑠 = 1)  

L.H.S =  
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦  

Given C is 𝑥2 +  𝑦2 = 1   
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The parametric equation of circle is  

  𝑥 = cos 𝜃, 𝑦 = sin 𝜃 

 𝑑𝑥 = −sin 𝜃𝑑𝜃, 𝑑𝑦 = cos 𝜃 𝑑𝜃 

Where 𝜃 varies from 0 to 2𝜋 

    ∴ 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 =  ∫ (cos 𝜃 − 2 sin 𝜃) (– sin 𝜃 𝑑𝜃) + cos 𝜃 (cos 𝜃 𝑑𝜃)
2𝜋

0
      

                           =  ∫ (− sin 𝜃 cos 𝜃 + 2 sin2 𝜃 + cos2 𝜃) 𝑑𝜃
2𝜋

0
 

                           =  ∫ (− sin 𝜃 cos 𝜃 + sin2 𝜃 + 1) 𝑑𝜃
2𝜋

0
    (∵ sin2 𝜃 + cos2 𝜃 = 1) 

                           = ∫ (−
sin 2𝜃

2
+  

1−cos 2𝜃

2
+  1) 𝑑𝜃

2𝜋

0
 

                           =  [−
1

2
(−

cos 2𝜃

2
) +  

𝜃

2
− 

1

2
(

sin 2𝜃

2
) +  𝜃]

0

2𝜋

 

                           =  [
cos(4𝜋)

4
+  

2𝜋

2
−  

sin 4𝜋

4
+  2𝜋] − [

𝑐𝑜𝑠 0

4
+  

0

2
−  

sin 0

4
+  0]          

                           =  
1

4
+  𝜋 + 2𝜋 −  

1

4
= 3𝜋    [∵ sin 𝑛𝜋 = 0, sin 0 = 0, cos 0 = 1], [cos 𝑛𝜋 =  (−1)𝑛] 

                 ∴ L.H.S = R.H.S                                

          Hence Green’s theorem is verified. 

Example: 2.68 Using Green’s theorem evaluate 
c

(𝒚 − 𝒔𝒊𝒏 𝒙)𝒅𝒙 + 𝒄𝒐𝒔 𝒙 𝒅𝒚

 

where C is the triangle 

bounded by 𝒚 = 𝟎, 𝒙 =  
𝝅

𝟐
, 𝒚 =  

𝟐𝒙

𝝅
. 

Solution: 

                                           

 We have to prove that 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Here, 𝑀 =  𝑦 − sin 𝑥  𝑎𝑛𝑑 𝑁 = cos 𝑥 

         ⇒
𝜕𝑀

𝜕𝑦
=  1 − 0             ⇒

𝜕𝑁

𝜕𝑥
=  − sin 𝑥 

Limits: 

𝑥 varies from 
𝑦𝜋

2
 to 

𝜋

2
 

 𝑦 varies from 0 to 1 
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Hence 
c

(𝑦 − 𝑠𝑖𝑛 𝑥)𝑑𝑥 + 𝑐𝑜𝑠 𝑥 𝑑𝑦 =  ∫ ∫ (− sin 𝑥 − 1)
 
𝜋

2
𝑦𝜋

2

1

0
 𝑑𝑥 𝑑𝑦 

                                                             =  ∫ (cos 𝑥 − 𝑥)𝑦𝜋

2

𝜋

21

0
 𝑑𝑦    

                                                             =  ∫ [(cos
𝜋

2
−  

𝜋

2
) − (cos (

𝑦𝜋

2
) −  

𝑦𝜋

2
)]

1

0
 𝑑𝑦 

                                                             = ∫ [0 −  
𝜋

2
− cos

𝑦𝜋

2
+  

𝑦𝜋

2
]

1

0
 𝑑𝑦 

                                                             =  [−
𝜋

2
𝑦 −  

sin
𝑦𝜋

2
𝜋

2

+  
𝜋

2
 
𝑦2

2
]

0

1

    

                                                              =  −
𝜋

2
−  

2

𝜋
sin (

𝜋

2
) +  

𝜋

4
 

                                                              =  −
𝜋

2
−  

2

𝜋
 +  

𝜋

4
 

                                                              =  −
𝜋

4
−  

2

𝜋
 =  − [

𝜋

4
+  

2

𝜋
] 

Example: 2.69 Evaluate by Green’s theorem 
c

[𝒆−𝒙(𝒔𝒊𝒏 𝒚 𝒅𝒙 + 𝒄𝒐𝒔 𝒚 𝒅𝒚)] where C being the 

rectangle with vertices (𝟎, 𝟎), (𝝅, 𝟎), (𝝅,
𝝅

𝟐
)  𝒂𝒏𝒅 (𝟎,

𝝅

𝟐
). 

Solution: 

                                                    

  We have to prove that 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Here, 𝑀 =  𝑒−𝑥 sin 𝑦  𝑎𝑛𝑑 𝑁 = 𝑒−𝑥 cos 𝑦 

         ⇒
𝜕𝑀

𝜕𝑦
=  𝑒−𝑥 cos 𝑦             ⇒

𝜕𝑁

𝜕𝑥
=  −𝑒−𝑥 cos 𝑦 

Limits: 

𝑥 varies from 0 to 𝜋 

 𝑦 varies from 0 to 
𝜋

2
 

 ∴  
c

[𝑒−𝑥(𝑠𝑖𝑛 𝑦 𝑑𝑥 + 𝑐𝑜𝑠 𝑦 𝑑𝑦)] = ∫ ∫ (−𝑒−𝑥 cos 𝑦  − 𝑒−𝑥 cos 𝑦) 𝑑𝑥𝑑𝑦
𝜋

0

𝜋

2
0
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                                                           =  ∫ ∫ −2
𝜋

0

𝜋

2
0

𝑒−𝑥 cos 𝑦  𝑑𝑥 𝑑𝑦 

                                                           =  −2 ∫ [
𝑒−𝑥 cos 𝑦

−1
]

0

𝜋𝜋

2
0

𝑑𝑦 

                                                           = 2 ∫ [𝑒−𝜋 cos 𝑦 −  𝑒0 cos 𝑦]𝑑𝑦
𝜋

2
0

 

                                                          = 2 ∫ [𝑒−𝜋 cos 𝑦 −  cos 𝑦]𝑑𝑦
𝜋

2
0

 

                                                          = 2 [𝑒−𝜋 sin 𝑦 − sin 𝑦]
0

𝜋

2 

                                                          = 2 [(𝑒−𝜋 sin
𝜋

2
− sin

𝜋

2
) − (𝑒−𝜋 sin 0 − sin 0)]                               

                                                         = 2 [𝑒−𝜋 −  1] 

 Example: 2.70 Prove that the area bounded by a simple closed curve C is given by  

𝟏

𝟐
 

c

(𝒙𝒅𝒚 − 𝒚𝒅𝒙). Hence find the area of the ellipse 
𝒙𝟐

𝒂𝟐 +  
𝒚𝟐

𝒃𝟐 = 𝟏 by using Green’s theorem. 

Solution:  

              By Green theorem, 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Let 𝑀 =  −𝑦 𝑎𝑛𝑑 𝑁 = 𝑥 

   ⇒
𝜕𝑀

𝜕𝑦
=  −1             ⇒

𝜕𝑁

𝜕𝑥
=  1 

       ∴ 
c

(𝑥𝑑𝑦 − 𝑦𝑑𝑥) =  
R

(1 + 1) 𝑑𝑥 𝑑𝑦 

   = 2 
R

𝑑𝑥 𝑑𝑦 = 2   (Area enclosed by C) 

 ∴ Area enclosed by 𝐶 =  
1

2
 

c

(𝑥𝑑𝑦 − 𝑦𝑑𝑥) 

Equation of ellipse in parametric form is 𝑥 = 𝑎 cos 𝜃 𝑎𝑛𝑑 𝑦 = 𝑏 sin 𝜃 where 0 ≤ 𝜃 ≤ 2𝜋. 

 ∴ Area of the ellipse  =  
1

2
 ∫ (acos 𝜃)(𝑏 cos 𝜃) − (𝑏𝑠𝑖𝑛 𝜃)(−𝑎 sin 𝜃)  𝑑𝜃

2𝜋

0
 

    =  
1

2
 𝑎𝑏 ∫ (𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃) 𝑑𝜃

2𝜋

0
 

    =  
1

2
 𝑎𝑏 ∫ 𝑑𝜃

2𝜋

0
=  

1

2
 𝑎𝑏 [𝜃]0

2𝜋 =  𝜋𝑎𝑏 

Example: 2.71 Evaluate the integral using Green’s theorem 

 
c

(𝟐𝒙𝟐 −  𝒚𝟐)𝒅𝒙 +  (𝒙𝟐 +  𝒚𝟐)𝒅𝒚 where C is the boundary in the 𝒙𝒚 – plane of the area enclosed by 

the 𝒙 – axis and the semicircle 𝒙𝟐 + 𝒚𝟐 =  𝒂𝟐 in the upper half 𝒙𝒚 – plane. 

Solution:  
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In this figure ′𝑎′ is represented as 1 

By Green theorem, 
c

 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Let 𝑀 =  2𝑥2 −  𝑦2 𝑎𝑛𝑑 𝑁 = 𝑥2 +  𝑦2 

   ⇒
𝜕𝑀

𝜕𝑦
=  −2𝑦             ⇒

𝜕𝑁

𝜕𝑥
=  2𝑥 

Limits: 

𝑦 varies from 0 to √𝑎2 − 𝑥2 

 𝑥 varies from −𝑎 to 𝑎 

   ∴ 
R

(
𝜕𝑁

𝜕𝑥
−  

𝜕𝑀

𝜕𝑦
) 𝑑𝑦 𝑑𝑥 = ∫ ∫ (2𝑥 + 2𝑦)𝑑𝑦𝑑𝑥

√𝑎2−𝑥2

0

𝑎

−𝑎
  

                                            = 2 ∫ [𝑥𝑦 +  
𝑦2

2
]

0

√𝑎2−𝑥2

𝑑𝑥
𝑎

−𝑎
 

                                            = 2 ∫ [𝑥 √𝑎2 − 𝑥2 +  
𝑎2− 𝑥2

2
]

𝑎

−𝑎
𝑑𝑥 

In the first integral, the function is odd function. 

∴ The value is zero. 

 ∴ we get 2 ∫
𝑎2− 𝑥2

2
𝑑𝑥

𝑎

−𝑎
 

               =  [𝑎2𝑥 −  
𝑥3

3
]

−𝑎

𝑎

 

                =  (𝑎3 − 
𝑎3

3
) −  (−𝑎3 + 

𝑎3

3
) 

                =
4𝑎3

3
 

Exercise: 2.4 

1. Using Green’s theorem in the plane, evaluate 
c

(𝑥2 − 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦

 

where C is the   

    closed curve of the region bounded by 𝑦 = 𝑥2𝑎𝑛𝑑 𝑦2 = 𝑥                 Ans: 
3

5
 

2. Find by Green’s theorem the value of  
c

(𝑥2𝑦𝑑𝑥 + 𝑦𝑑𝑦) along the closed curve formed  

    by 𝑦 = 𝑥2𝑎𝑛𝑑 𝑦2 = 𝑥 between (0, 0) 𝑡𝑜 (1, 1)                                  Ans: 
1

28
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3. Verify Green’s theorem for the integral 
c

[(𝑥 − 𝑦)𝑑𝑥 + (𝑥 + 𝑦)𝑑𝑦] taken around the   

     boundary area in the first quadrant between the curves 𝑦 = 𝑥2𝑎𝑛𝑑 𝑦2 = 𝑥.       

                                                                                                              Ans: Common value =
2

3
 

4. Find the area of a circle of radius ‘a’ using Green’s theorem.          Ans: 𝜋𝑎2 

5. Evaluate 
c

[(𝑠𝑖𝑛𝑥 − 𝑦)𝑑𝑥 − cos 𝑥 𝑑𝑦], where C is the triangle with vertices  

    (0, 0), (
𝜋

2
, 0)  𝑎𝑛𝑑 (

𝜋

2
, 1)                                                            Ans: 

2

𝜋
+

𝜋

4
 

6. Using Green’s theorem, find the value of 
c

[(𝑥𝑦 − 𝑥2)𝑑𝑥 + 𝑥2𝑦𝑑𝑦] along the closed  

      curve C formed by 𝑦 = 0, 𝑥 = 1 𝑎𝑛𝑑 𝑦 = 𝑥                            Ans: −
1

12
 

7. Verify Green’s theorem for 
c

[(𝑥2 − 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦], where C is the boundary of the 

       rectangle in the xoy – plane bounded by the lines 𝑥 = 0, 𝑥 = 𝑎, 𝑦 = 0 𝑎𝑛𝑑 𝑦 = 𝑏. 

                                                                                                       Ans: Common value = 2𝑎𝑏2 

8. Verify Green’s theorem for 
c

[(2𝑥 − 𝑦)𝑑𝑥 + (𝑥 + 𝑦)𝑑𝑦], where C is the boundary of the 

     Circle 𝑥2 + 𝑦2 = 𝑎2 in the xoy – plane.                                    Ans: 2𝜋𝑎2 

2.5 STOKE’S THEOREM 

Statement of Stoke’s theorem 

            If S is an open surface bounded by a simple closed curve C if  𝐹⃗ is continuous having continuous 

partial derivatives in S and C, then  


c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠  

(or) 


c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 ∇ × 𝐹⃗ ∙  n̂  𝑑𝑠  

 n̂ is the outward unit normal vector and C is traversed in the anti – clockwise direction. 

 Problems based on Stoke’s theorem 

Example: 2.72 Verify stokes theorem for a vector field defined by 𝑭⃗⃗⃗ = (𝒙2 – 𝒚2)𝒊 + 𝟐𝒙𝒚𝒋 in a 

rectangular region in the xoy plane bounded by the lines 𝒙 =  𝟎, 𝒙 =  𝒂, 𝒚 = 𝟎 , 𝒚 =  𝒃. 

Solution: 
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By Stokes theorem, 
c

𝐹⃗  ∙ 𝑑𝑟 =  
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 

To evaluate: 
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 

Given 𝐹⃗ = (𝑥 2 – 𝑦2)𝑖 + 2 𝑥 𝑦𝑗 

Curl 𝐹⃗ = ∇ × 𝐹⃗ 

  = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥2 − 𝑦2 2𝑥𝑦 0

| 

  = 𝑖 (0) − 𝑗 (0 – 0) + 𝑘⃗⃗[ 2𝑦 – (0 −2𝑦)] 

  = 4y 𝑘⃗⃗ 

Since the surface is a rectangle in the 𝑥𝑦 plane, 𝑛̂ = 𝑘⃗⃗ , 𝑑𝑆 =  𝑑𝑥𝑑𝑦 

Curl 𝐹⃗ ∙  𝑛̂ = 4y  𝑘⃗⃗  ∙ 𝑘⃗⃗ = 4y 

Order of integration is 𝑑𝑥𝑑𝑦 

𝑥 varies from 𝑥 =  0 to 𝑥 =  𝑎 

𝑦 varies from 𝑦 =  0 to 𝑦 =  𝑏         

                  ⇒ 
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆  = ∫ ∫ 4𝑦 𝑑𝑥 𝑑𝑦
𝑎

0

𝑏

0
 

         = ∫ 4𝑦
𝑏

0
[𝑥]0

𝑎dy 

         = ∫ 4𝑎𝑦
𝑏

0
dy 

         =  [
4𝑎𝑦2

2
]

0

𝑏

 

         =  2𝑎𝑏2 

 ⇒ 
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 =  2𝑎𝑏2       … (1) 
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Here the line integral over the simple closed curve C bounding the surface 𝑂𝐴𝐵𝐶𝑂 consisting of the edges 

𝑂𝐴, 𝐴𝐵 ,𝐵𝐶 and 𝐶𝑂. 

Curve  Equation  Limit 

𝑂𝐴 

𝐴𝐵 

𝐵𝐶 

𝐶𝑂 

 𝑦 =  0 

 𝑥 =  𝑎 

        𝑦 =  𝑏 

        𝑥 =  0 

 𝑥 =  0 to 𝑥 =  𝑎 

 𝑦 =  0 to 𝑦 =  𝑏 

 𝑥 =  𝑎 to 𝑥 =  0 

 𝑦 =  𝑏 to 𝑦 =  0 

Therefore, 
c

𝐹⃗  ∙ 𝑑𝑟 = 
OABCO

𝐹⃗  ∙ 𝑑𝑟 

   
c

𝐹⃗  ∙ 𝑑𝑟 = 
OA

+  
AB

+ 
BC

+ 
CO

 

    𝐹⃗  ∙ 𝑑𝑟 = (𝑥2 − 𝑦2) + 2𝑥𝑦d𝑦  … (2)         

On 𝑂𝐴:  𝑦 = 0, 𝑑𝑦 = 0, 𝑥 varies from 0 𝑡𝑜 𝑎   

(2)  ⇒ 𝐹⃗ . d𝑟 = 𝑥2𝑑𝑥  

 
OA

𝐹⃗  ∙ 𝑑𝑟 = ∫ 𝑥2 𝑑𝑥
𝑎

0
 

   = [
𝑥3

3
]

0

𝑎

 = 
𝑎3

3
 

On 𝐴𝐵:  𝑥 = 𝑎, 𝑑𝑥 = 0, 𝑦 varies from 0 𝑡𝑜 𝑏   

(2)  ⇒ 𝐹⃗ . d𝑟 = 2𝑎𝑦 𝑑𝑦   

 
AB

𝐹⃗  ∙ 𝑑𝑟 = ∫ 2𝑎𝑦 𝑑𝑦
𝑏

0
 

       = [
2𝑎𝑦2

2
]

0

𝑏

 = 𝑎𝑏2  

On 𝐵𝐶:  𝑦 = 𝑏, 𝑑𝑦 = 0, 𝑥 varies from 𝑎 𝑡𝑜 0  

(2)  ⇒ 𝐹⃗ . d𝑟 =  (𝑥2 − 𝑏2)𝑑𝑥    


BC

𝐹⃗  ∙ 𝑑𝑟 = ∫ 𝑥2 − 𝑏2 𝑑𝑥
0

𝑎
 

  = [
𝑥3

3
− 𝑏2𝑥 ]

𝑎

0

  

                       = − 
𝑎3

3
 + 𝑎 𝑏2 

On 𝐶𝑂:  𝑥 = 0, 𝑑𝑥 = 0, 𝑦 varies from 𝑏 𝑡𝑜 0  

(2)  ⇒ 𝐹⃗ . d𝑟 = 0  

 
CO

𝐹⃗  ∙ 𝑑𝑟 = 0  

(2) ⇒ 𝐹⃗ . d𝑟  =  
𝑎3

3
+ 𝑎𝑏2 −

𝑎3

3
+ 𝑎𝑏2 = 2𝑎𝑏2          … (3) 
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From (3) and (1) 
c

𝐹⃗  ∙ 𝑑𝑟 =  
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 

Hence Stokes theorem is verified. 

Example: 2.73 Verify Stoke’s theorem for 𝑭⃗⃗⃗ =  (𝒙𝟐 +  𝒚𝟐)𝒊 −  𝟐𝒙𝒚 𝒋 taken around the rectangle 

bounded by the lines 𝒙 =  ±𝒂, 𝒚 = 𝟎, 𝒚 = 𝒃. 

Solution: 

                                    

  By Stokes theorem, 
c

𝐹⃗  ∙ 𝑑𝑟 =  
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 

Given 𝐹⃗ =  (𝑥2 +  𝑦2)𝑖 −  2𝑥𝑦 𝑗 

  𝐶𝑢𝑟𝑙 𝐹⃗ =  |

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥2 + 𝑦2 −2𝑥𝑦 0

| 

   =  𝑖[0 − 0] −  𝑗 [0 − 0] +  𝑘⃗⃗ [−2𝑦 − 2𝑦] 

   = −4𝑦 𝑘⃗⃗ 

Since the region is in 𝑥𝑜𝑦 plane we can take 𝑛̂ = 𝑘⃗⃗ 𝑎𝑛𝑑 𝑑𝑆 = 𝑑𝑥 𝑑𝑦 

Limits: 

𝑥 varies from – 𝑎 to 𝑎. 

𝑦 varies from 0 to 𝑏.  

  ∴  
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 =  −4 ∫ ∫ 𝑦 𝑑𝑥 𝑑𝑦
𝑎

−𝑎

𝑏

0
 

     =  −4 ∫ [𝑥𝑦]−𝑎
𝑎  𝑑𝑦

𝑏

0
 

     =  −8𝑎 [
𝑦2

2
]

0

𝑏

=  − 4𝑎𝑏2     … (1) 

  
c

𝐹⃗  ∙ 𝑑𝑟 = 
AB

+  
BC

+ 
CD

+ 
DA

 

Along 𝐴𝐵: 𝑦 = 0, 𝑑𝑦 = 0, 𝑥 varies from – 𝑎 𝑡𝑜 𝑎 
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    𝑑𝑟 = 𝑑𝑥 𝑖 +  𝑑𝑦 𝑗 

    
AB

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 𝑥2 𝑑𝑥
𝑎

−𝑎
 

           =  [
𝑥3

3
]

−𝑎

𝑎

=  
2𝑎3

3
 

Along 𝐵𝐶, 𝑥 = 𝑎, 𝑑𝑥 = 0, 𝑦 varies from 0 𝑡𝑜 𝑏 

    
BC

𝐹⃗  ∙ 𝑑𝑟 =  ∫ (−2𝑎𝑦) 𝑑𝑦
𝑏

0
 

           =  −𝑎[𝑦2]0
𝑏 =  −𝑎𝑏2 

Along 𝐶𝐷: 𝑦 = 𝑏, 𝑑𝑦 = 0, 𝑥 varies from 𝑎 𝑡𝑜 − 𝑎 

    
CD

𝐹⃗  ∙ 𝑑𝑟 =  ∫ (𝑥2 + 𝑏2) 𝑑𝑥
−𝑎

𝑎
=  [

𝑥3

3
+  𝑏2𝑥]

𝑎

−𝑎

 

           =  −
𝑎3

3
−  𝑎𝑏2 −  

𝑎3

3
−  𝑎𝑏2 =  −

2𝑎3

3
−  2𝑎𝑏2 

Along 𝐷𝐶:  𝑥 = −𝑎, 𝑑𝑥 = 0, 𝑦 varies from 𝑏 𝑡𝑜 0 

    
DC

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 2𝑎𝑦 𝑑𝑦 
0

𝑏
 

           =  𝑎[𝑦2]𝑏
0 =  −𝑏2𝑎 

 ∴ 
c

𝐹⃗  ∙ 𝑑𝑟 =
2𝑎3

3
  − 𝑎𝑏2  −

2𝑎3

3
−  2𝑎𝑏2 − 𝑏2𝑎 

                                       =  −4𝑎𝑏2      … . (2) 

From (1) and (2)    
c

𝐹⃗  ∙ 𝑑𝑟 =  
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛⃗⃗ 𝑑𝑆 

             Hence Stoke’s theorem is verified. 

Example: 2.74 Verify Stoke’s theorem for 𝑭⃗⃗⃗ =  (𝟐𝒙 − 𝒚)𝒊 −  𝒚𝒛𝟐 𝒋 −  𝒚𝟐𝒛𝒌⃗⃗⃗ where S is the upper half of 

the sphere 𝒙𝟐 + 𝒚𝟐 +  𝒛𝟐 = 𝟏 and c is the Circular boundary on 𝒛 = 𝟎 plane. 

Solution: 

             By Stokes theorem, 
c

𝐹⃗  ∙ 𝑑𝑟 =  
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 

Given 𝐹⃗ =  (2𝑥 − 𝑦)𝑖 −  𝑦𝑧2 𝑗 −  𝑦2𝑧𝑘⃗⃗ 

  𝐶𝑢𝑟𝑙 𝐹⃗ =  |

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

2𝑥 − 𝑦 −𝑦𝑧2 −𝑦2𝑧

| 

   =  𝑖[−2𝑦𝑧 + 2𝑦𝑧] −  𝑗 [0 − 0] +  𝑘⃗⃗ [0 + 1] 

   =  𝑘⃗⃗ 

Here 𝑛⃗⃗ = 𝑘⃗⃗ since C is the Circular boundary on 𝑧 = 0 plane. 

  ∴  
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 =  
S

𝑑𝑥 𝑑𝑦 = area of the circle 
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     = 𝜋(1)2 =  𝜋 

Example: 2.75 Verify stokes theorem in a plane  𝒇𝒐𝒓    𝑭⃗⃗⃗ = (2 𝒙 𝒚 − 𝒙 2)𝒊  − (𝒙 2 − 𝒚 2)𝒋  Where C is the 

boundary of the region bounded by the parabolas 𝒚𝟐 = 𝒙 and 𝒙𝟐 = 𝒚. 

Solution: 

                                      

By Stokes theorem, 
c

𝐹⃗  ∙ 𝑑𝑟 =  
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 

To evaluate: 
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 

Given 𝐹⃗ = (2𝑥𝑦 − 𝑥 2)𝑖  − (𝑥 2 − 𝑦 2)𝑗 

 Curl 𝐹⃗  = ∇ × 𝐹⃗ 

              = |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

(2𝑥y − 𝑥2) −(𝑥2 − 𝑦2) 0

| 

             = 𝑖 [
𝜕

𝜕𝑦
(0) −

𝜕

𝜕𝑧
(−(𝑥2 − 𝑦2)) ]− 𝑗 [

𝜕

𝜕𝑥
(0) −

𝜕

𝜕𝑧
(2𝑥𝑦 − 𝑥2)] 

                            + 𝑘⃗⃗[
𝜕

𝜕𝑥
(−(𝑥2 − 𝑦2)) −

𝜕

𝜕𝑦
(2𝑥𝑦 − 𝑥2)] 

= 𝑖 (0) − 𝑗 (0 – 0) + 𝑘⃗⃗ (− 2 𝑥 –2 𝑥)] 

   = −4𝑥𝑘⃗⃗ 

Since the surface is a rectangle in the 𝑥𝑦 −plane, 𝑛̂ = 𝑘⃗⃗ , 𝑑𝑆 =  𝑑𝑥𝑑𝑦 

Curl 𝐹⃗  ∙  𝑛̂ = − 4𝑥𝑘⃗⃗  ∙ 𝑘⃗⃗ = − 4 𝑥 

Order of integration is 𝑑𝑥𝑑𝑦 

Limits: 

𝑥 varies from 𝑦2 to √𝑦. 

𝑦 varies from 0 to 1  

 ⇒ 
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆   = ∫ ∫ −4𝑥 𝑑𝑥 𝑑𝑦
√𝑦

𝑦2

1

0
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                                                 = −4 ∫ [
𝑥2

2
]

𝑦2

√𝑦1

0
𝑑𝑦 

                = −2 ∫ (𝑦
1

0
 − 𝑦4)𝑑𝑦 

               = −2 [
𝑦2

2
−

𝑦5

2
]

0

1

 

                                               = −2 (
1

2
−

1

5
) 

              = −
3

5
 

             ∴ 
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 = −
3

5
          … (1) 

To evaluate: 
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 

Here the line integral over the simple closed curve C bounding the surface 𝑂𝐴𝑂 consisting of the curves 𝑂𝐴 

and 𝐴𝑂. 

            

c

𝐹⃗  ∙ 𝑑𝑟 = 
OA

+ 
AO

…  (2) 

       

𝐹⃗  ∙ 𝑑𝑟 = (2𝑥𝑦 − 𝑥 2)𝑖  − (𝑥 2 − 𝑦 2)𝑗        … (3)         

On 𝑂𝐴:  𝑦 = 𝑥2, 𝑑𝑦 = 2𝑥𝑑𝑥, 𝑥 varies from 0 𝑡𝑜 1   

(3)  ⇒ 𝐹⃗ . d𝑟 = (2𝑥𝑥2 − 𝑥2)𝑑𝑥 − (𝑥2 − 𝑥4)2𝑥𝑑𝑥  

                      = (2𝑥3 − 𝑥2 − 2𝑥3 + 2𝑥5)𝑑𝑥 

                      =  (2𝑥5 − 𝑥2)𝑑𝑥   

 
OA

𝐹⃗  ∙ 𝑑𝑟 = ∫ (2𝑥5 − 𝑥2)𝑑𝑥  
1

0
 

   = [
2𝑥6

3
−  

𝑥3

3
]

0

1

 = 
1

3
−

1

3
= 0 

On 𝐴𝑂:  𝑥 = 𝑦2, 𝑑𝑥 = 2𝑦𝑑𝑦, 𝑦 varies from 1 𝑡𝑜 0   

(3)  ⇒ 𝐹⃗ . d𝑟 = (2𝑦2𝑦 − 𝑦4)2𝑦𝑑𝑦 − (𝑦4 − 𝑦2)𝑑𝑦  

                      = (4𝑦4 − 2𝑦5)𝑑𝑦 −  (𝑦4 − 𝑦2)𝑑𝑦 

                      = (4𝑦4 − 2𝑦5 − 𝑦4 + 𝑦2)𝑑𝑦 

                      =  (3𝑦4 − 2𝑦5 + 𝑦2)𝑑𝑦   

 
AO

𝐹⃗  ∙ 𝑑𝑟 = ∫ (3𝑦4 − 2𝑦5 + 𝑦2)𝑑𝑦  
0

1
 

   = [
3𝑦5

5
−  

2𝑦6

6
+

𝑦3

3
]

1

0

 = −
3

5
+

1

3
−

1

3
= −

3

5
 

(2) ⇒ 
c

𝐹⃗  ∙ 𝑑𝑟  = 0 −
3

5
= −

3

5
          … (3) 

From (3) and (1) 
c

𝐹⃗  ∙ 𝑑𝑟 =  
S

𝐶𝑢𝑟𝑙 𝐹⃗  ∙ 𝑛̂ 𝑑𝑆 
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Hence Stokes theorem is verified. 

Example: 2.76 Verify Stoke’s theorem in a plane for 𝑭⃗⃗⃗ =  (𝒚 − 𝒛 + 𝟐)𝒊 −  (𝒚𝒛 + 𝟒)𝒋 −  𝒙𝒛 𝒌⃗⃗⃗, where S is 

the open surface of the cube formed by the planes 𝒙 = 𝟎, 𝒙 = 𝟐, 𝒚 = 𝟎,   𝒚 = 𝟐,   

 𝒛 = 𝟎, 𝒛 = 𝟐 above the 𝒙𝒚 – plane. 

Solution: 

                                              

             Stoke’s theorem is 
c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠  

Given 𝐹⃗ =  (𝑦 − 𝑧 + 2)𝑖 −  (𝑦𝑧 + 4)𝑗 −  𝑥𝑧 𝑘⃗⃗ 

 𝐹⃗  ∙ 𝑑𝑟 = (𝑦 − 𝑧 + 2)𝑑𝑥 − (𝑦𝑧 + 4)𝑑𝑦 −  𝑥𝑧 𝑑𝑧 

L.H.S = 
c

𝐹⃗  ∙ 𝑑𝑟 = 
OA

+ 
AB

+ 
BC

+ 
CO

 

 

In 𝑥𝑦 plane 𝑧 = 0 ⇒ 𝑑𝑧 = 0 

 𝐹⃗  ∙ 𝑑𝑟 =  (𝑦 + 2𝑥)𝑑𝑥 + 4𝑑𝑦 

On 𝑂𝐴: 𝑦 = 0 ⇒ 𝑑𝑦 = 0, 𝑥 varies from 0 to 2. 

 ⇒  
OA

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 2 𝑑𝑥
2

0
 

                          = 2[𝑥]0
2 = 4 

On 𝐴𝐵: 𝑥 = 2 ⇒ 𝑑𝑥 = 0, 𝑦 varies from 0 to 2. 

 ⇒  
AB

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 4 𝑑𝑦
2

0
 

                          = 4[𝑦]0
2 = 8 

On 𝐵𝐶: 𝑦 = 2 ⇒ 𝑑𝑦 = 0, 𝑥 varies from 2 to 0. 

 ⇒  
BC

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 4 𝑑𝑥
0

2
 

                          = 4[𝑥]2
0 = −8 

On 𝐶𝑂: 𝑥 = 0 ⇒ 𝑑𝑥 = 0, 𝑦 varies from 2 to 0. 
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 ⇒  
CO

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 4 𝑑𝑦
2

0
 

                          = 4[𝑦]0
2 = −8 

 ∴ 
c

𝐹⃗  ∙ 𝑑𝑟 = 4 + 8 − 8 − 8 =  −4     … (1) 

R.H.S =  
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠 

             𝑐𝑢𝑟𝑙 𝐹⃗ =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑦 − 𝑧 + 2 𝑦𝑧 + 4 −𝑥𝑧

|  

                        =  𝑖 (0 − 𝑦) −  𝑗 (– 𝑧 + 1) +  𝑘⃗⃗ (0 − 1) 

                         =  𝑦𝑖  − (𝑧 − 1) 𝑗 −  𝑘⃗⃗  

Given S is an open surface consisting of the 5 faces of the cube except, 𝑥𝑦 − plane. 

 ∫ ∫ 𝑐𝑢𝑟𝑙 𝐹⃗  ∙ n̂
 
𝑑𝑠 = 

1S

+ 
2S

+ ⋯ + 
5S

 

 

          𝑐𝑢𝑟𝑙 𝐹⃗ =  𝑦𝑖  − (𝑧 − 1) 𝑗 −  𝑘⃗⃗ 

Faces Plane 𝑑𝑠 n̂  𝑐𝑢𝑟𝑙 𝐹⃗  ∙ n̂   

Top (𝑆1) 𝑥𝑦 𝑑𝑥𝑑𝑦 𝑘⃗⃗ −1 

∫ ∫ −1 𝑑𝑥𝑑𝑦

2

0

2

0

 

Left (𝑆2) 𝑥𝑧 𝑑𝑥𝑑𝑧 −𝑗 −(𝑧 − 1) 

∫ ∫(−𝑧 + 1) 𝑑𝑥𝑑𝑧

2

0

2

0

 

Right (𝑆3) 𝑥𝑧 𝑑𝑥𝑑𝑧 𝑗 (𝑧 − 1) 

∫ ∫(𝑧 − 1) 𝑑𝑥𝑑𝑧

2

0

2

0

 

Back (𝑆4) 𝑦𝑧 𝑑𝑦𝑑𝑧 −𝑖 𝑦 

∫ ∫ 𝑦 𝑑𝑦𝑑𝑧

2

0

2

0

 

Front (𝑆5) 𝑦𝑧 𝑑𝑦𝑑𝑧 𝑖 −𝑦 

∫ ∫ −𝑦 𝑑𝑦𝑑𝑧

2

0

2

0

 

On 𝑆1:  ∫ ∫ (−1) 𝑑𝑥𝑑𝑦
2

0

2

0
  

                       =  − ∫ [𝑥]0
2 𝑑𝑦

2

0
 

                       = 2 ∫ 𝑑𝑦
2

0
 

                       =  −2[𝑦]0
2   =  −4 

On 𝑆2:  ∫ ∫ (−𝑧 +  1) 𝑑𝑥𝑑𝑧
2

0

2

0
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                        =  ∫  (– 𝑧 + 1)[𝑥]0
2 𝑑𝑧

2

0
 

                        = 2 ∫ (−𝑧 + 1) 𝑑𝑧
2

0
 

                        = 2 [−
𝑧2

2
+  𝑧]

0

2

 =  2(0) = 0 

On 𝑆3:  ∫ ∫ (𝑧 −  1) 𝑑𝑥𝑑𝑧
2

0

2

0
 

                       =  ∫  (𝑧 − 1)[𝑥]0
2 𝑑𝑧

2

0
 

                       = 2 ∫ (𝑧 − 1) 𝑑𝑧
2

0
 

                       = 2 [
𝑧2

2
−  𝑧]

0

2

  =  2(0) = 0 

On 𝑆4:  ∫ ∫ 𝑦 𝑑𝑦𝑑𝑧
2

0

2

0
 

                       =  ∫ [
𝑦2

2
]

0

2

 𝑑𝑦
2

0
 

                       = 2 ∫ 𝑑𝑧
2

0
 

                       = 2[𝑧]0
2   =  4 

On 𝑆5:  ∫ ∫ −𝑦 𝑑𝑦𝑑𝑧
2

0

2

0
 

                        =  − ∫ [
𝑦2

2
]

0

2

 𝑑𝑦
2

0
 

                        = −2 ∫ 𝑑𝑧
2

0
 

                        = −2[𝑧]0
2   = − 4 

 ∴ 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠 =  −4 + 0 + 0 + 4 − 4 =  −4    … (2) 

From (1) and (2) 
c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠  

Hence Stoke’s theorem is verified. 

Example: 2.77 Verify Stoke’s theorem in a plane for 𝑭⃗⃗⃗ =  𝒙𝒚𝒊 −  𝟐𝒚𝒛𝒋 −  𝒛𝒙 𝒌⃗⃗⃗, where S is the open 

surface of the rectangular parallelopiped formed by the planes 𝒙 = 𝟎, 𝒙 = 𝟏, 𝒚 = 𝟎,  𝒚 = 𝟐, 𝒛 = 𝟎, 

𝒛 = 𝟑 above the 𝒙𝒐𝒚 – plane. 

Solution: 

           Stoke’s theorem is 
c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠  

Given 𝐹⃗ =  𝑥𝑦𝑖 −  2𝑦𝑧𝑗 −  𝑧𝑥 𝑘⃗⃗ 

 𝐹⃗  ∙ 𝑑𝑟 = 𝑥𝑦𝑑𝑥 −  2𝑦𝑧𝑑𝑦 −  𝑧𝑥 𝑑𝑧 

L.H.S = 
c

𝐹⃗  ∙ 𝑑𝑟 = 
OA

+ 
AB

+ 
BC

+ 
CO
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In 𝑥𝑦 plane 𝑧 = 0 ⇒ 𝑑𝑧 = 0 

 𝐹⃗  ∙ 𝑑𝑟 =  𝑥𝑦𝑑𝑥 

On 𝑂𝐴: 𝑦 = 0 ⇒ 𝑑𝑦 = 0, 𝑥 varies from 0 to 1. 

 ⇒  
OA

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 0 𝑑𝑥
1

0
 

                          = 0 

On 𝐴𝐵:  𝑥 = 1 ⇒ 𝑑𝑥 = 0, 𝑦 varies from 0 to 2. 

 ⇒  
AB

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 0 𝑑𝑦
2

0
 

                          = 0 

On 𝐵𝐶:  𝑦 = 2 ⇒ 𝑑𝑦 = 0, 𝑥 varies from 1 to 0. 

 ⇒  
BC

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 2𝑥 𝑑𝑥
0

1
 

                          = 2 [
𝑥2

2
]

1

0

= −1 

On 𝐶𝑂: 𝑥 = 0 ⇒ 𝑑𝑥 = 0, 𝑦 varies from 2 to 0. 

 ⇒  
CO

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 0 𝑑𝑦
0

2
 

                          = 0 

 ∴ 
c

𝐹⃗  ∙ 𝑑𝑟 = 0 + 0 − 1 + 0 =  −1     … (1) 

R.H.S =  
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠 
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             𝑐𝑢𝑟𝑙 𝐹⃗ =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥𝑦 −2𝑦𝑧 −𝑥𝑧

|  

 

                        =  𝑖 (0 + 2𝑦) −  𝑗 (– 𝑧 − 0) +  𝑘⃗⃗ (0 − 𝑥) 

                         =  2𝑦𝑖 + 𝑧 𝑗 − 𝑥 𝑘⃗⃗  

Given S is an open surface consisting of the 5 faces of the cube except, 𝑥𝑦 − plane. 

 ∫ ∫ 𝑐𝑢𝑟𝑙 𝐹⃗  ∙ n̂  
𝑑𝑠 = 

1S

+ 
2S

+ ⋯ + 
5S

 

 

          𝑐𝑢𝑟𝑙 𝐹⃗ =  2𝑦𝑖 + 𝑧 𝑗 − 𝑥 𝑘⃗⃗ 

Faces Plane 𝑑𝑠 n̂  𝑐𝑢𝑟𝑙 𝐹⃗  ∙ n̂   

Top (𝑆1) 𝑥𝑦 𝑑𝑥𝑑𝑦 𝑘⃗⃗ −𝑥 

∫ ∫ −𝑥 𝑑𝑥𝑑𝑦

1

0

2

0

 

Left (𝑆2) 𝑥𝑧 𝑑𝑥𝑑𝑧 −𝑗 −𝑧 

∫ ∫ −𝑧 𝑑𝑥𝑑𝑧

1

0

3

0

 

Right (𝑆3) 𝑥𝑧 𝑑𝑥𝑑𝑧 𝑗 𝑧 

∫ ∫ 𝑧 𝑑𝑥𝑑𝑧

1

0

3

0

 

Back (𝑆4) 𝑦𝑧 𝑑𝑦𝑑𝑧 −𝑖 −2𝑦 

∫ ∫ −2𝑦 𝑑𝑦𝑑𝑧

2

0

3

0

 

Front (𝑆5) 𝑦𝑧 𝑑𝑦𝑑𝑧 𝑖 2𝑦 

∫ ∫ 2𝑦 𝑑𝑦𝑑𝑧

2

0

3

0

 

On 𝑆1:  ∫ ∫ (−1) 𝑑𝑥𝑑𝑦
1

0

2

0
  

                       =  − ∫ [
𝑥2

2
]

0

1

 𝑑𝑦
2

0
 

                       = −
1

2
∫ 𝑑𝑦

2

0
 

                       =  −
1

2
[𝑦]0

2   =  −1 

On 𝑆2:  ∫ ∫ −𝑧 𝑑𝑥𝑑𝑧
1

0

3

0
 

                        =  − ∫ [𝑧𝑥]0
1 𝑑𝑧

3

0
 

                        = − ∫ 𝑧 𝑑𝑧
2

0
 

                        = − [
𝑧2

2
]

0

3

 = − 
9

2
 

On 𝑆3:  ∫ ∫ 𝑧 𝑑𝑥𝑑𝑧
1

0

3

0
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                       =  ∫  [𝑧𝑥]0
1 𝑑𝑧

3

0
 

                       = 2 ∫ 𝑧 𝑑𝑧
3

0
 

                       = [
𝑧2

2
]

0

3

 =  
9

2
 

On 𝑆4:  ∫ ∫ −2𝑦 𝑑𝑦𝑑𝑧
2

0

3

0
 

                       =  −2 ∫ [
𝑦2

2
]

0

2

 𝑑𝑧
3

0
 

                       = −4 ∫ 𝑑𝑧
3

0
 

                       = −4[𝑧]0
3   =  −12 

On 𝑆5:  ∫ ∫ 2𝑦 𝑑𝑦𝑑𝑧
2

0

3

0
 

                        =  2 ∫ [
𝑦2

2
]

0

2

 𝑑𝑧
3

0
 

                        = 4 ∫ 𝑑𝑧
3

0
 

                        = 4[𝑧]0
3   = 12 

 ∴ 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠 =  −1 −
9

2
+

9

2
− 12 + 12 =  −1    … (2) 

From (1) and (2) 
c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠  

Hence Stoke’s theorem is verified. 

Example: 2.78 Verify Stoke’s theorem for 𝑭⃗⃗⃗ =  𝒚𝟐𝒛𝒊 +  𝒛𝟐𝒙𝒋 +  𝒙𝟐𝒚 𝒌⃗⃗⃗, where S is the open surface of 

the cube formed by the planes 𝒙 = ±𝒂,  𝒚 = ±𝒂,  and 𝒛 = ±𝒂 in which the plane 𝒛 = −𝒂 is a cut. 

Solution: 

                Stoke’s theorem is 
c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠  

Given 𝐹⃗ =  𝑦2𝑧𝑖 + 𝑧2𝑥𝑗 +  𝑥2𝑦 𝑘⃗⃗ 

 𝐹⃗  ∙ 𝑑𝑟 = 𝑦2𝑧𝑑𝑥 + 𝑧2𝑥𝑑𝑦 +  𝑥2𝑦 𝑑𝑧 

This square ABCD lies in the plane 𝑧 =  −𝑎 ⇒ 𝑑𝑧 = 0 

 ∴ 𝐹⃗  ∙ 𝑑𝑟 =  −𝑎𝑦2𝑑𝑥 +  𝑎2𝑥 𝑑𝑦 

L.H.S = 
c

𝐹⃗  ∙ 𝑑𝑟 = 
AB

+ 
BC

+ 
CD

+ 
DA

 

 

On 𝐴𝐵: 𝑦 = −𝑎 ⇒ 𝑑𝑦 = 0, 𝑥 varies from −𝑎 to 𝑎. 

 ⇒  
AB

𝐹⃗  ∙ 𝑑𝑟 =  ∫ −𝑎3 𝑑𝑥
𝑎

−𝑎
 

                        =  −𝑎3 [𝑥]−𝑎
𝑎  

                        = −𝑎3(2𝑎) =  −2𝑎4 
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On 𝐵𝐶: 𝑥 = 𝑎 ⇒ 𝑑𝑥 = 0, 𝑦 varies from −𝑎 to 𝑎. 

 ⇒  
BC

𝐹⃗  ∙ 𝑑𝑟 =  ∫ 𝑎3 𝑑𝑦
𝑎

−𝑎
 

                        =  𝑎3 [𝑦]−𝑎
𝑎  

                        = 𝑎3(2𝑎) =  2𝑎4 

On 𝐶𝐷: 𝑦 = 𝑎 ⇒ 𝑑𝑦 = 0, 𝑥 varies from 𝑎 to −𝑎. 

 ⇒  
CD

𝐹⃗  ∙ 𝑑𝑟 =  ∫ −𝑎3 𝑑𝑥
−𝑎

𝑎
 

                        =  −𝑎3 [𝑥]𝑎
−𝑎 

                        = −𝑎3(−2𝑎) =  2𝑎4 

On 𝐷𝐴: 𝑥 = −𝑎 ⇒ 𝑑𝑥 = 0, 𝑦 varies from 𝑎 to −𝑎. 

 ⇒  
DA

𝐹⃗  ∙ 𝑑𝑟 =  ∫ −𝑎3 𝑑𝑦
−𝑎

𝑎
 

                        =  −𝑎3 [𝑦]𝑎
−𝑎 

                        = −𝑎3(−2𝑎) =  2𝑎4 

 ∴ 
c

𝐹⃗  ∙ 𝑑𝑟 = −2𝑎4 + 2𝑎4 + 2𝑎4 + 2𝑎4 =  4𝑎4     … (1) 

R.H.S =  
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠 

             𝑐𝑢𝑟𝑙 𝐹⃗ =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑦2𝑧 𝑧2𝑥 𝑥2𝑦

|  

                        =  𝑖 (𝑥2 − 2𝑥𝑧) −  𝑗 (𝑦2 − 2𝑥𝑦) +  𝑘⃗⃗ (𝑧2 − 2𝑦𝑧) 

Given S is an open surface consisting of the 5 faces of the cube except, 𝑧 =  −𝑎. 

 ∫ ∫ 𝑐𝑢𝑟𝑙 𝐹⃗  ∙ n̂
 
𝑑𝑠 = 

1S

+ 
2S

+ ⋯ + 
5S

 

 

          𝑐𝑢𝑟𝑙 𝐹⃗ =  2𝑦𝑖 + 𝑧 𝑗 − 𝑥 𝑘⃗⃗ 

Faces Plane 𝑑𝑠 n̂  Eqn 𝑐𝑢𝑟𝑙 𝐹⃗  ∙ n̂  ∇ × 𝐹⃗  ∙ n̂  

Top (𝑆1) 𝑥𝑦 𝑑𝑥𝑑𝑦 𝑘⃗⃗ 𝑧 =  𝑎 𝑧2 − 2𝑦𝑧 𝑎2 − 2𝑎𝑦 

Left (𝑆2) 𝑥𝑧 𝑑𝑥𝑑𝑧 −𝑗 𝑦 =  −𝑎 𝑦2 − 2𝑥𝑦 𝑎2 + 2𝑎𝑥 

Right (𝑆3) 𝑥𝑧 𝑑𝑥𝑑𝑧 𝑗 𝑦 =  𝑎 −(𝑦2 − 2𝑥𝑦) −(𝑎2 − 2𝑎𝑥) 

Back (𝑆4) 𝑦𝑧 𝑑𝑦𝑑𝑧 −𝑖 𝑥 =  −𝑎 −(𝑥2 − 2𝑥𝑧) −(𝑎2 + 2𝑎𝑧) 

Front (𝑆5) 𝑦𝑧 𝑑𝑦𝑑𝑧 𝑖 𝑥 =  𝑎 𝑥2 − 2𝑥𝑧 𝑎2 − 2𝑎𝑧 

On 𝑆1:  ∫ ∫ (𝑎2 − 2𝑎𝑦) 𝑑𝑥𝑑𝑦
𝑎

−𝑎

𝑎

−𝑎
  

                       =  ∫ [(𝑎2𝑥 − 2𝑎𝑦𝑥)]−𝑎
𝑎  𝑑𝑦

𝑎

−𝑎
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                       = ∫ (𝑎3 − 2𝑎2𝑦) −  (−𝑎3 +  2𝑎2𝑦) 𝑑𝑦
𝑎

−𝑎
 

                       =  ∫ 2𝑎3 − 4𝑎2𝑦 𝑑𝑦
𝑎

−𝑎
 

                       =  [2𝑎3𝑦 − 4𝑎2 𝑦2

2
]

−𝑎

𝑎

 

                       = (2𝑎4 −  2𝑎4) −  (−2𝑎4 −  2𝑎4) 

                       = 2𝑎4 −  2𝑎4 +  2𝑎4 +  2𝑎4 

                        = 4𝑎4       

On 𝑆2 + 𝑆3 ∶  ∫ ∫ (𝑎2 + 2𝑎𝑥) 𝑑𝑥𝑑𝑧 + 
𝑎

−𝑎

𝑎

−𝑎
∫ ∫ −(𝑎2 − 2𝑎𝑥) 𝑑𝑥𝑑𝑧

𝑎

−𝑎

𝑎

−𝑎
  

                       =  ∫ ∫ (𝑎2 +  2𝑎𝑥 −  𝑎2 +  2𝑎𝑥) 𝑑𝑥 𝑑𝑧
𝑎

−𝑎

𝑎

−𝑎
 

                       = ∫ ∫ 4𝑎𝑥 𝑑𝑥 𝑑𝑧
𝑎

−𝑎

𝑎

−𝑎
 

                       =  4𝑎 ∫ [
𝑥2

2
]

−𝑎

𝑎

𝑑𝑧
𝑎

−𝑎
 

                       =  2𝑎3 ∫ 𝑑𝑧
𝑎

−𝑎
 

                       = 2𝑎3 [𝑧]−𝑎
𝑎  

                       = 2𝑎3(0) = 0 

   On 𝑆4 + 𝑆5 :  ∫ ∫ −(𝑎2 + 2𝑎𝑧) 𝑑𝑦𝑑𝑧 + 
𝑎

−𝑎

𝑎

−𝑎
∫ ∫ (𝑎2 − 2𝑎𝑧) 𝑑𝑦𝑑𝑧

𝑎

−𝑎

𝑎

−𝑎
  

                       =  ∫ ∫ (−𝑎2 −  2𝑎𝑧 +  𝑎2 −  2𝑎𝑧) 𝑑𝑦 𝑑𝑧
𝑎

−𝑎

𝑎

−𝑎
 

                       = ∫ ∫ −4𝑎𝑧 𝑑𝑦 𝑑𝑧
𝑎

−𝑎

𝑎

−𝑎
 

                       =  −4𝑎 ∫ [𝑧𝑦]−𝑎
𝑎 𝑑𝑧

𝑎

−𝑎
 

                       =  −4𝑎 ∫ 𝑧(2𝑎)𝑑𝑧
𝑎

−𝑎
 

                       = −6𝑎2  [
𝑧2

2
]

−𝑎

𝑎

 

                       = −3𝑎2(𝑎2 −  𝑎2) = 0 

∴ 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠 =  4𝑎4 + 0 + 0 =  4𝑎4    … (2) 

From (1) and (2) 
c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠  

Hence Stoke’s theorem is verified. 

Example: 2.79 Evaluate 
c

𝑭⃗⃗⃗  ∙ 𝒅𝒓⃗⃗ by stoke’s theorem, where 𝑭⃗⃗⃗ =  𝒚𝟐𝒊 +  𝒙𝟐𝒋 +  (𝒙 + 𝒛) 𝒌⃗⃗⃗, and C is the 

boundary of the triangle with vertices at (𝟎, 𝟎, 𝟎), (𝟏, 𝟎, 𝟎) 𝒂𝒏𝒅 (𝟏, 𝟏, 𝟎). 

Solution: 

                Stoke’s theorem is 
c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠    … (1) 

Given  𝐹⃗ =  𝑦2𝑖 +  𝑥2𝑗 +  (𝑥 + 𝑧) 𝑘⃗⃗ 
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 And C is triangle (0, 0, 0), (1, 0, 0) 𝑎𝑛𝑑 (1, 1, 0). 

Since 𝑧 −coordinate of each vertex is zero the triangle lies in 𝑥𝑦 − plane with corners 

(0, 0), (1, 0) 𝑎𝑛𝑑 (1, 1). 

To evaluate : 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠  

 𝐼𝑛 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 n̂ = 𝑘⃗⃗, 𝑑𝑠 = 𝑑𝑥𝑑𝑦 

                𝑐𝑢𝑟𝑙 𝐹⃗ =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑦2 𝑥2 −(𝑥 + 𝑧)

| 

                           =  𝑖 (0) −  𝑗 (−1) +  𝑘⃗⃗ (2𝑥 − 2𝑦) 

                           = 𝑗 +   2(𝑥 − 𝑦)𝑘⃗⃗       

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  = (𝑗 +   2(𝑥 − 𝑦)𝑘⃗⃗)  ∙  𝑘⃗⃗         

                    = 2(𝑥 − 𝑦)  

Limits: 

 𝑥 varies from 𝑦 to 1. 

𝑦 varies from 0 to 1. 

∴  
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠 =  ∫ ∫ 2(𝑥 − 𝑦)𝑑𝑥𝑑𝑦
1

𝑦

1

0
                   

                                    = 2 ∫ [
𝑥2

2
−  𝑥𝑦]

𝑦

1

 𝑑𝑦
1

0
         

                                     = 2 ∫ (
1

2
−  𝑦 −  

𝑦2

2
+  𝑦2)  𝑑𝑦

1

0
      

                                    = 2 [
𝑦

2
−  

𝑦2

2
−  

𝑦3

6
+  

𝑦3

3
]

0

1

 

                                     = 2 [
1

2
−  

1

2
−  

1

6
+  

1

3
] 

                                    = 2 [
1

6
] =  

1

3
 

From (1), 
c

𝐹⃗  ∙ 𝑑𝑟 =  
1

3
 

Example: 2.80 Evaluate the integral 
c

(𝒙 + 𝒚)𝒅𝒙 +  (𝟐𝒙 − 𝒛)𝒅𝒚 + (𝒚 + 𝒛)𝒅𝒛, where C is the 

boundary of the triangle with vertices (𝟐, 𝟎, 𝟎), (𝟎, 𝟑, 𝟎) 𝒂𝒏𝒅 (𝟎, 𝟎, 𝟔) using stoke’s theorem. 

Solution: 
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Stoke’s theorem is 
c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠  

Given 𝐹⃗  ∙ 𝑑𝑟 = (𝑥 + 𝑦)𝑑𝑥 +  (2𝑥 − 𝑧)𝑑𝑦 +  (𝑦 + 𝑧)𝑑𝑧 

 ∴ 𝐹⃗ =  (𝑥 + 𝑦)𝑖 +  (2𝑥 − 𝑧)𝑗 +  (𝑦 + 𝑧) 𝑘⃗⃗ 

            𝑐𝑢𝑟𝑙 𝐹⃗ =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥 + 𝑦 2𝑥 − 𝑧 𝑦 + 𝑧

| 

                        =  𝑖 (1 − 1) −  𝑗 (0) +  𝑘⃗⃗ (2 − 1) 

                        = 2𝑖 + 𝑘⃗⃗ 

Given C is the triangle with vertices (2, 0, 0), (0, 3, 0) 𝑎𝑛𝑑 (0, 0, 6). 

Equation of the plane is 
𝑥

𝑎
+  

𝑦

𝑏
+  

𝑧

𝑐
= 1 

                                      ⇒ 3𝑥 + 2𝑦 + 𝑧 = 6 

            Let 𝜑 = 3𝑥 + 2𝑦 + 𝑧 − 6 

             ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+  𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

                    = 3𝑖 + 2𝑗 + 𝑘⃗⃗ 

           |∇𝜑| =  √9 + 4 + 1 =  √14  

              n̂ =  
∇𝜑

|∇𝜑|
=  

3𝑖+2𝑗+𝑘⃗⃗

√14
 

Let R be the projection on 𝑋𝑌 −plane. 

                ∴ 𝑑𝑠 =  
𝑑𝑥 𝑑𝑦

| n̂  ∙ 𝑘⃗⃗|
=  

𝑑𝑥 𝑑𝑦

(
1

√14
)
  

           Where  n̂  ∙  𝑘⃗⃗ =  (
3𝑖+2𝑗+𝑘⃗⃗

√14
)  ∙  𝑘⃗⃗ 

                       =  
1

√14
        

Now 𝑐𝑢𝑟𝑙 𝐹⃗ ∙ n̂  =  (2𝑖 + 𝑘⃗⃗) ∙  (
3𝑖+2𝑗+𝑘⃗⃗

√14
) 
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                           =  
6+1

√14
=  

7

√14
 

 ⇒ 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠 = 
R

 
7

√14
 

𝑑𝑥𝑑𝑦

(
1

√14
)
 

                                     = 7 
R

  𝑑𝑥𝑑𝑦 

                                     = 7 [𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒]           

                                     = 7 [
1

2
 (2) (3)] = 21   [∵ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =  

1

2
𝑏ℎ] 

Example: 2.81 Evaluate by Stoke’s theorem 
c

(𝒆𝒙𝒅𝒙 +  𝟐𝒚𝒅𝒚 − 𝒅𝒛), where C is the  

Curve 𝒙𝟐 +  𝒚𝟐 = 𝟒, 𝒛 = 𝟐. 

Solution: 

             Stoke’s theorem is 
c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 𝑐𝑢𝑟𝑙 𝐹⃗ ∙  n̂  𝑑𝑠   … (1) 

Given 𝐹⃗  ∙ 𝑑𝑟 = 𝑒𝑥𝑑𝑥 +  2𝑦𝑑𝑦 −  𝑑𝑧 

 ∴ 𝐹⃗ =  𝑒𝑥𝑖 +  2𝑦𝑗 −   𝑘⃗⃗ 

            𝑐𝑢𝑟𝑙 𝐹⃗ =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

 𝑒𝑥 2𝑦 −1

| 

                        =  𝑖 (0 − 0) −  𝑗 (0 − 0) +  𝑘⃗⃗ (0 − 1) 

                        = 0⃗⃗ 

 ∴  (1)  ⇒ 
c

𝐹⃗  ∙ 𝑑𝑟 = 0  

 (𝑖. 𝑒) 
c

(𝑒𝑥𝑑𝑥 +  2𝑦𝑑𝑦 − 𝑑𝑧) = 0 

Example: 2.82 Evaluate 
c

(𝒚𝒛𝒊 +  𝒙𝒛𝒋 + 𝒙𝒚𝒌⃗⃗⃗) ∙ 𝒅𝒓⃗⃗, where C is the boundary of the surface S. 

Solution: 

                Given  𝐹⃗ =  𝑦𝑧𝑖 +  𝑥𝑧𝑗 + 𝑥𝑦 𝑘⃗⃗ 

    Stoke’s theorem is 
c

𝐹⃗  ∙ 𝑑𝑟 = 
S

 (∇ × 𝐹⃗) ∙  n̂  𝑑𝑠   … (1) 

     𝑐𝑢𝑟𝑙 𝐹⃗ =  |

𝑖 𝑗 𝑘⃗⃗
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

 𝑦𝑧 𝑥𝑧 𝑥𝑦

| 

                 =  𝑖 (𝑥 − 𝑥) −  𝑗 (𝑦 − 𝑦) +  𝑘⃗⃗ (𝑧 − 𝑧) 

                = 0⃗⃗ 
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 ∴  (1)  ⇒ 
c

𝐹⃗  ∙ 𝑑𝑟 = 0 

Exercise: 2.5 

1. Verify Stoke’s theorem for the function 𝐹⃗ =  𝑥2𝑖 +  𝑥𝑦𝑗,  integrated round the square in  

     the 𝑧 = 0 plane whose sides are along the lines 𝑥 = 0, 𝑦 = 0,  𝑥 = 𝑎, 𝑦 = 𝑎.  Ans: 
𝑎3

2
 

2. Verify Stoke’s theorem for  𝐹⃗ =  𝑦𝑖 + 𝑧𝑗 +  𝑥 𝑘⃗⃗, where S is the upper half surface of the 

    sphere 𝑥2 + 𝑦2 + 𝑧2 = 1 and C is its boundary.                                        Ans: −𝜋 

3. Evaluate 
c

[𝑥𝑦𝑑𝑥 + 𝑥𝑦2𝑑𝑦] by Stoke’s theorem where C is the square in 𝑥𝑦 plane with vertices 

(1, 0), (−1, 0), (0, 1) 𝑎𝑛𝑑 (0, −1)                                                      Ans: 
1

2
 

4. Verify Stoke’s theorem for  𝐹⃗ =  (𝑦 − 𝑧 + 2)𝑖 + (𝑦𝑧 + 4)𝑗 −  𝑥𝑧 𝑘⃗⃗, where S is the open 

     surface of the cube 𝑥 = 0, 𝑦 = 0,  𝑧 = 0, 𝑥 = 2, 𝑦 = 2, 𝑧 = 2 above the 𝑥𝑦 plane. 

                                                                                                        Ans: Common value = −4 

5. Verify Stoke’s theorem for 𝐹⃗ =  (𝑥2 − 𝑦2)𝑖 + 2𝑥𝑦𝑗 +  𝑥𝑦𝑧 𝑘⃗⃗, over the surface of the box 

     bounded by the planes 𝑥 = 0, 𝑦 = 0,  𝑥 = 𝑎, 𝑦 = 𝑏, 𝑧 = 𝑐 above the 𝑥𝑦 plane. 

                                                                                                        Ans: Common value 2𝑎𝑏2 

6. Verify Stoke’s theorem for 𝐹⃗ =  𝑥𝑦𝑖 − 2𝑦𝑧𝑗 −  𝑧𝑥 𝑘⃗⃗, where S is the open surface of the rectangular 

parallelepiped formed by the planes 𝑥 = 0, 𝑥 = 1,  𝑦 = 0, 𝑦 = 2, 𝑧 = 3 above the 𝑥𝑜𝑦 plane. 

                                                                                                        Ans: Common value −1 

7. Verify Stoke’s theorem for 𝐹⃗ =  −𝑦𝑖 + 2𝑦𝑧𝑗 +  𝑦2 𝑘⃗⃗, where S is the half of the sphere  

     𝑥2 + 𝑦2 + 𝑧2 = 𝑎2 and C is the circular boundary on the xoy plane.  

                                                                                                  Ans: Common value = 𝜋𝑎2 

8. Using Stoke’s theorem 
c

𝐹⃗  ∙ 𝑑𝑟 where 𝐹⃗ =  (sin 𝑥 − 𝑦)𝑖 − cos 𝑥 𝑗 and C is the boundary   

     of the triangle whose vertices (0, 0), (
𝜋

2
, 0)  𝑎𝑛𝑑 (

𝜋

2
, 1)                  Ans: 

𝜋

4
+

2

𝜋
    

  2.6 GAUSS DIVERGENCE THEOREM 

                        This theorem enables us to convert a surface integral of a vector function on a closed surface 

into volume integral. 

Statement of Gauss Divergence theorem 

If V is the volume bounded by a closed surface S and if a vector function  𝐹⃗ is continuous and has continuous 

partial derivatives in V and on S, then 

                                   
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

Where 𝑛̂ is the unit outward normal to the surface S and 𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧 
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Problems based on gauss Divergence theorem 

Example: 2.83 Verify the G.D.T for 𝑭⃗⃗⃗ = 𝟒𝒙𝒛𝒊 − 𝒚𝟐𝒋 + 𝒚𝒛𝒌⃗⃗⃗ over the cube bounded by 𝒙 = 𝟎, 𝒙 = 𝟏,

𝒚 = 𝟎, 𝒚 = 𝟏, 𝒛 = 𝟎, 𝒛 = 𝟏. 

Solution:  

                                                   

Gauss divergence theorem is  
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

                        Given  𝐹⃗ = 4𝑥𝑧𝑖 − 𝑦2𝑗 + 𝑦𝑧𝑘⃗⃗ 

                              ∇ ∙ 𝐹⃗ = 4𝑧 − 2𝑦 + 𝑦 

                                       = 4𝑧 − 𝑦 

Now, R.H.S = 
V

∇  ∙  𝐹⃗ 𝑑𝑣 

                    = ∫ ∫ ∫ (4𝑧 − 𝑦)𝑑𝑥𝑑𝑦𝑑𝑧
1

0

1

0

1

0
 

                    = ∫ ∫ [(4𝑥𝑧 − 𝑦𝑧)]0
11

0

1

0
 𝑑𝑦𝑑𝑧 

                   = ∫ ∫ (4𝑧 − 𝑦)𝑑𝑦𝑑𝑧
1

0

1

0
 

                   = ∫ (4𝑧𝑦 −
𝑦2

2
)

0

11

0
 𝑑𝑧 

                   = ∫ (4𝑧 −
1

2
)  𝑑𝑧

1

0
 

                  = [4
𝑧2

2
−

1

2
𝑧]

0

1

   = (2 −
1

2
) − 0 =

3

2
 

Now, L.H.S = 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
1S

+ 
2S

+ 
3S

+ 
4S

+ 
5S

+ 
6S

 

   Faces Plane 𝒅𝑺 𝒏̂ 𝑭⃗⃗⃗ ⋅ 𝒏̂ Equation 𝑭⃗⃗⃗ ⋅ 𝒏̂ on S = 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 

𝑆1(Bottom) 𝑥𝑦   dxdy −𝑘⃗⃗ −𝑦𝑧 𝑧 = 0   0 
∫ ∫ 0 𝑑𝑥𝑑𝑦

1

0

1

0

 

  𝑆2(Top) 𝑥𝑦   dxdy 𝑘⃗⃗ 𝑦𝑧 𝑧 = 1   𝑦 
∫ ∫ 𝑦 𝑑𝑥𝑑𝑦

1

0

1

0
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𝑆3(𝐿𝑒𝑓𝑡) 𝑥𝑧   dxdz −𝑗 𝑦2 𝑦 = 0 0 
∫ ∫ 0 𝑑𝑥𝑑𝑧

1

0

1

0

 

𝑆4(𝑅𝑖𝑔ℎ𝑡) 𝑥𝑧   dxdz 𝑗 −𝑦2 𝑦 = 1 −1 
∫ ∫ −1𝑑𝑥𝑑𝑧

1

0

1

0

 

𝑆5(𝐵𝑎𝑐𝑘) 𝑦𝑧   dydz −𝑖 −4𝑥𝑧 𝑥 = 0 0 
∫ ∫ 0 𝑑𝑦𝑑𝑧

1

0

1

0

 

𝑆6(𝐹𝑟𝑜𝑛𝑡) 𝑦𝑧   dydz 𝑖 4𝑥𝑧 𝑥 = 1 4𝑧 
∫ ∫ 4𝑧 𝑑𝑦𝑑𝑧

1

0

1

0

 

(𝑖) 
1S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
2S

𝐹⃗  ∙ n̂ 𝑑𝑠  = ∫ ∫ 0 𝑑𝑥𝑑𝑦
1

0

1

0
+ ∫ ∫ 𝑦 𝑑𝑥𝑑𝑦

1

0

1

0
 

                                     = 0 + ∫ ∫ 𝑦 𝑑𝑥𝑑𝑦
1

0

1

0
 

                    = ∫ [𝑦𝑥]0
11

0
 𝑑𝑦 

                                                     = ∫ 𝑦 𝑑𝑦
1

0
 

                                                     = [
𝑦2

2
]

0

1

    =
1

2
− 0   =

1

2
  

(𝑖𝑖) 
3S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
4S

𝐹⃗  ∙ n̂ 𝑑𝑠  = ∫ ∫ 0 𝑑𝑥𝑑𝑧
1

0

1

0
+ ∫ ∫ −1 𝑑𝑥𝑑𝑧

1

0

1

0
 

                                                      = 0 + ∫ ∫ −1 𝑑𝑥𝑑𝑧
1

0

1

0
 

                                                             = − ∫ [𝑥]0
11

0
 𝑑𝑧 

                                                             = − ∫  𝑑𝑧
1

0
 

                                                             = −[𝑧]0
1   = −[1] 

(𝑖𝑖𝑖) 
5S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
6S

𝐹⃗  ∙ n̂ 𝑑𝑠  = ∫ ∫ 0 𝑑𝑦𝑑𝑧
1

0

1

0
+ ∫ ∫ 4𝑧𝑑𝑦𝑑𝑧

1

0

1

0
 

                                                       = 0 + ∫ ∫ 4𝑧 𝑑𝑦𝑑𝑧
1

0

1

0
 

                                                       = ∫ [4𝑧𝑦]0
11

0
 𝑑𝑧 

                                                       = ∫ 4𝑧 𝑑𝑧
1

0
 

                                                       = 4 [
𝑧2

2
]

0

1

    = 4 (
1

2
− 0)    = 2  

 ∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
1S

+ 
2S

+ 
3S

+ 
4S

+ 
5S

+ 
6S

 

                     =    (𝑖)  +  (𝑖𝑖) + (𝑖𝑖𝑖) 

                     =  
1

2
− 1 + 2  =

3

2
 

                ∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇  ∙  𝐹⃗ 𝑑𝑣 

                     Hence Gauss divergence theorem is verified. 
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 Example: 2.84 Verify the G.D.T for 𝑭⃗⃗⃗ = (𝒙𝟐 − 𝒚𝒛)𝒊 + (𝒚𝟐 − 𝒙𝒛)𝒋 + (𝒛𝟐 − 𝒙𝒚)𝒌⃗⃗⃗ over the rectangular 

parallelopiped 𝟎 ≤ 𝒙 ≤ 𝒂,  𝟎 ≤ 𝒚 ≤ 𝒃, 𝟎 ≤ 𝒛 ≤ 𝒄.                      (OR) 

   Verify the G.D.T for 𝑭⃗⃗⃗ = (𝒙𝟐 − 𝒚𝒛)𝒊 + (𝒚𝟐 − 𝒙𝒛)𝒋 + (𝒛𝟐 − 𝒙𝒚)𝒌⃗⃗⃗ over the rectangular parallelopiped  

bounded by  𝒙 = 𝟎, 𝒙 = 𝒂, 𝒚 = 𝟎, 𝒚 = 𝒃, 𝒛 = 𝟎, 𝒛 = 𝒄 .               

Solution:  

               Gauss divergence theorem is  
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇  ∙  𝐹⃗ 𝑑𝑣 

 Given  𝐹⃗ = (𝑥2 − 𝑦𝑧)𝑖 + (𝑦2 − 𝑥𝑧)𝑗 + (𝑧2 − 𝑥𝑦)𝑘⃗⃗ 

                          ∇ ∙ 𝐹⃗ = 2𝑥 + 2𝑦 + 2𝑧   = 2(𝑥 + 𝑦 + 𝑧) 

Now, R.H.S = 
V

∇  ∙  𝐹⃗ 𝑑𝑣 

          = 2 ∫ ∫ ∫ (𝑥 + 𝑦 + 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
𝑎

0

𝑏

0

𝑐

0
 

`         = 2 ∫ ∫ [(
𝑥2

2
+ 𝑥𝑦 + 𝑥𝑧)]

0

𝑎𝑏

0

𝑐

0
 𝑑𝑦𝑑𝑧 

         = 2 ∫ ∫ (
𝑎2

2
+ 𝑎𝑦 + 𝑎𝑧) 𝑑𝑦𝑑𝑧

𝑏

0

𝑐

0
 

         = 2 ∫ (
𝑎2𝑦

2
+

𝑎𝑦2

2
+ 𝑎𝑧𝑦)

0

𝑏𝑐

0
 𝑑𝑧 

         = 2 ∫ (
𝑎2𝑏

2
+

𝑎𝑏2

2
+ 𝑎𝑧𝑏)  𝑑𝑧

𝑐

0
 

         = 2 [
𝑎2𝑏𝑧

2
+

𝑎𝑏2𝑧

2
+

𝑎𝑏𝑧2

2
]

0

𝑐

 

         = 2 (
𝑎2𝑏𝑐

2
+

𝑎𝑏2𝑐

2
+

𝑎𝑏𝑐2

2
) 

         = 𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐) 

Now, L.H.S = 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
1S

+ 
2S

+ 
3S

+ 
4S

+ 
5S

+ 
6S

 

   Faces Plane 𝒅𝑺 𝒏̂ 𝑭⃗⃗⃗ ⋅ 𝒏̂ Eqn 𝑭⃗⃗⃗ ⋅ 𝒏̂ on S = 
S

𝑭⃗⃗⃗  ∙ n̂ 𝒅𝒔 

𝑆1(Bottom) 𝑥𝑦   dxdy −𝑘⃗⃗ −(𝑧2 − 𝑥𝑦) 𝑧 = 0   𝑥𝑦 
∫ ∫ 𝑥𝑦 𝑑𝑥𝑑𝑦

𝑎

0

𝑏

0

 

  𝑆2(Top) 𝑥𝑦   dxdy 𝑘⃗⃗ (𝑧2 − 𝑥𝑦) 𝑧 = 𝑐   𝑐2 − 𝑥𝑦 
∫ ∫ 𝑐2 − 𝑥𝑦 𝑑𝑥𝑑𝑦

𝑎

0

𝑏

0

 

𝑆3(𝐿𝑒𝑓𝑡) 𝑥𝑧   dxdz −𝑗 −(𝑦2 − 𝑥𝑧) 𝑦 = 0 𝑥𝑧 
∫ ∫ 𝑥𝑧 𝑑𝑥𝑑𝑧

𝑎

0

𝑐

0

 

𝑆4(𝑅𝑖𝑔ℎ𝑡) 𝑥𝑧   dxdz 𝑗 (𝑦2 − 𝑥𝑧) 𝑦 = 𝑏 𝑏2 − 𝑥𝑧 
∫ ∫ 𝑏2 − 𝑥𝑧 𝑑𝑥𝑑𝑧

𝑎

0

𝑐

0
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𝑆5(𝐵𝑎𝑐𝑘) 𝑦𝑧   dydz −𝑖 −(𝑥2 − 𝑦𝑧) 𝑥 = 0 𝑦𝑧 
∫ ∫ 𝑦𝑧 𝑑𝑦𝑑𝑧

𝑏

0

𝑐

0

 

𝑆6(𝐹𝑟𝑜𝑛𝑡) 𝑦𝑧   dydz 𝑖 (𝑥2 − 𝑦𝑧) 𝑥 = 𝑎 𝑎2 − 𝑦𝑧 
∫ ∫ 𝑎2 − 𝑦𝑧 𝑑𝑦𝑑𝑧

𝑏

0

𝑐

0

 

(𝑖) 
1S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
2S

𝐹⃗  ∙ n̂ 𝑑𝑠  = ∫ ∫ 𝑥𝑦 𝑑𝑥𝑑𝑦
𝑎

0

𝑏

0
+ ∫ ∫ 𝑐2 − 𝑥𝑦 𝑑𝑥𝑑𝑦

𝑎

0

𝑏

0
 

    = ∫ ∫ 𝑐2 𝑑𝑥𝑑𝑦
𝑎

0

𝑏

0
 

    = 𝑐2 ∫ 𝑑𝑥
𝑎

0
∫ 𝑑𝑦

𝑏

0
 

    = 𝑐2[𝑥]0
𝑎[𝑦]0

𝑏   = 𝑐2𝑎𝑏 

(𝑖𝑖) 
3S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
4S

𝐹⃗  ∙ n̂ 𝑑𝑠  = ∫ ∫ 𝑥𝑧 𝑑𝑥𝑑𝑧
𝑎

0

𝑐

0
+ ∫ ∫ 𝑏2 − 𝑥𝑧 𝑑𝑥𝑑𝑧

𝑎

0

𝑐

0
 

    = ∫ ∫ 𝑏2 𝑑𝑥𝑑𝑧
𝑎

0

𝑐

0
 

    = 𝑏2 ∫ 𝑑𝑥
𝑎

0
∫ 𝑑𝑧

𝑐

0
 

    = 𝑏2[𝑥]0
𝑎[𝑧]0

𝑐   = 𝑏2𝑎𝑐 

(𝑖𝑖𝑖) 
5S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
6S

𝐹⃗  ∙ n̂ 𝑑𝑠  = ∫ ∫ 𝑦𝑧 𝑑𝑦𝑑𝑧
𝑏

0

𝑐

0
+ ∫ ∫ 𝑎2 − 𝑦𝑧 𝑑𝑦𝑑𝑧

𝑏

0

𝑐

0
 

    = ∫ ∫ 𝑎2 𝑑𝑦𝑑𝑧
𝑏

0

𝑐

0
 

    = 𝑎2 ∫ 𝑑𝑦
𝑏

0
∫ 𝑑𝑧

𝑐

0
 

    = 𝑎2[𝑦]0
𝑏[𝑧]0

𝑐    = 𝑎2𝑏𝑐 

∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
1S

+ 
2S

+ 
3S

+ 
4S

+ 
5S

+ 
6S

                           

                          =    (𝑖)  +  (𝑖𝑖) + (𝑖𝑖𝑖) 

                          = 𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐) 

                ∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

              Hence Gauss divergence theorem is verified. 

Example: 2.85 Verify divergence theorem for 𝑭⃗⃗⃗ = (𝟐𝒙 − 𝒛)𝒊 + 𝒙𝟐𝒚𝒋 − 𝒙𝒛𝟐𝒌⃗⃗⃗ over the cube bounded by 

𝒙 = 𝟎, 𝒙 = 𝟏, 𝒚 = 𝟎, 𝒚 = 𝟏, 𝒛 = 𝟎, 𝒛 = 𝟏. 

Solution:  
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            Gauss divergence theorem is  
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

                        Given  𝐹⃗ = (2𝑥 − 𝑧)𝑖 + 𝑥2𝑦𝑗 − 𝑥𝑧2𝑘⃗⃗  

                              ∇ ∙ 𝐹⃗ = 2 + 𝑥2 − 2𝑥𝑧 

Now, R.H.S = 
V

∇  ∙  𝐹⃗ 𝑑𝑣 

                    = ∫ ∫ ∫ (2 + 𝑥2 − 2𝑥𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
1

0

1

0

1

0
 

                   = ∫ ∫ [(2𝑥 +
𝑥3

3
−

2𝑧𝑥2

2
)]

0

11

0

1

0
 𝑑𝑦𝑑𝑧 

                  = ∫ ∫ (2 +
1

3
− 𝑧) 𝑑𝑦𝑑𝑧

1

0

1

0
 

                  = ∫ (2𝑦 +
1

3
𝑦 − 𝑧𝑦)

0

11

0
 𝑑𝑧 

                  = ∫ (2 +
1

3
− 𝑧)  𝑑𝑧

1

0
 

                 = [2𝑧 +
1

3
𝑧 −

𝑧2

2
]

0

1

  

                  = (2 +
1

3
−

1

2
) − 0 =

11

6
 

  Now, L.H.S = 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
1S

+ 
2S

+ 
3S

+ 
4S

+ 
5S

+ 
6S  

   Faces Plane 𝒅𝑺 𝒏̂ 𝑭⃗⃗⃗ ⋅ 𝒏̂ Equation 𝑭⃗⃗⃗ ⋅ 𝒏̂ on S = 
S

𝑭⃗⃗⃗  ∙ n̂ 𝒅𝒔 

𝑆1(Bottom) 𝑥𝑦   dxdy −𝑘⃗⃗ 𝑥𝑧2 𝑧 = 0   0 
∫ ∫ 0 𝑑𝑥𝑑𝑦

1

0

1

0

 

     𝑆2(Top) 𝑥𝑦   dxdy 𝑘⃗⃗ −𝑥𝑧2 𝑧 = 1   −𝑥 
∫ ∫ (−𝑥) 𝑑𝑥𝑑𝑦

1

0

1

0

 

𝑆3(𝐿𝑒𝑓𝑡) 𝑥𝑧   dxdz −𝑗 −𝑥2𝑦 𝑦 = 0 0 
∫ ∫ 0 𝑑𝑥𝑑𝑧

1

0

1

0

 

𝑆4(𝑅𝑖𝑔ℎ𝑡) 𝑥𝑧   dxdz 𝑗 𝑥2𝑦 𝑦 = 1 𝑥2 
∫ ∫ 𝑥2𝑑𝑥𝑑𝑧

1

0

1

0

 

𝑆5(𝐵𝑎𝑐𝑘) 𝑦𝑧   dydz −𝑖 −(2𝑥 − 𝑧) 𝑥 = 0 𝑧 
∫ ∫ 𝑧 𝑑𝑦𝑑𝑧

1

0

1

0

 

𝑆6(𝐹𝑟𝑜𝑛𝑡) 𝑦𝑧   dydz 𝑖 (2𝑥 − 𝑧) 𝑥 = 1 2 − 𝑧 
∫ ∫ 2 − 𝑧 𝑑𝑦𝑑𝑧

1

0

1

0

 

(𝑖) 
1S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
2S

𝐹⃗  ∙ n̂ 𝑑𝑠    =  ∫ ∫ 0 𝑑𝑥𝑑𝑦
1

0

1

0
+ ∫ ∫ (−𝑥) 𝑑𝑥𝑑𝑦

1

0

1

0
 

          = ∫ ∫ (−𝑥) 𝑑𝑥𝑑𝑦
1

0

1

0
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         = − ∫ [
𝑥2

2
]

0

11

0
 𝑑𝑦 

        = − ∫
1

2
 𝑑𝑦

1

0
 

                                           = − [
1

2
𝑦]

0

1

    = − (
1

2
− 0)    =

−1

2
  

(𝑖𝑖) 
3S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
4S

𝐹⃗  ∙ n̂ 𝑑𝑠  = ∫ ∫ 0 𝑑𝑥𝑑𝑧
1

0

1

0
+ ∫ ∫ 𝑥2 𝑑𝑥𝑑𝑧

1

0

1

0
 

           = ∫ ∫ 𝑥2 𝑑𝑥𝑑𝑧
1

0

1

0
 

          = ∫ [
𝑥3

3
]

0

11

0
 𝑑𝑧 

          = ∫
1

3
 𝑑𝑧

1

0
 

         = [
1

3
𝑧]

0

1

    = (
1

3
− 0)    =

1

3
  

(𝑖𝑖𝑖) 
5S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
6S

𝐹⃗  ∙ n̂ 𝑑𝑠  = ∫ ∫ 𝑧 𝑑𝑦𝑑𝑧
1

0

1

0
+ ∫ ∫ (2 − 𝑧)𝑑𝑦𝑑𝑧

1

0

1

0
 

            = ∫ ∫ 2 𝑑𝑦𝑑𝑧
1

0

1

0
 

            = 2 ∫ [𝑦]0
11

0
 𝑑𝑧 

           = 2 ∫ 𝑑𝑧
1

0
 

                                                               = 2 [𝑧]0
1     = 2                                                            

∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
1S

+ 
2S

+ 
3S

+ 
4S

+ 
5S

+ 
6S

                    

                        =    (𝑖)  +  (𝑖𝑖) + (𝑖𝑖𝑖) 

                       =  −
1

2
+

1

3
+ 2  =

11

6
 

                        ∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

              Hence Gauss divergence theorem is verified. 

Example: 2.86 Verify divergence theorem for 𝑭⃗⃗⃗ = 𝒙𝟐𝒊 + 𝒛𝒋 + 𝒚𝒛𝒌⃗⃗⃗ over the cube bounded by  𝒙 = ±𝟏,

𝒚 = ±𝟏, 𝒛 = ±𝟏. 

Solution:  

              Gauss divergence theorem is  
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

          Given  𝐹⃗ = 𝑥2𝑖 + 𝑧𝑗 + 𝑦𝑧𝑘⃗⃗                               

                              ∇ ∙ 𝐹⃗ = 2𝑥 + 𝑦 

Now, R.H.S = 
V

∇  ∙  𝐹⃗ 𝑑𝑣 

                   = ∫ ∫ ∫ (2𝑥 + 𝑦)𝑑𝑥𝑑𝑦𝑑𝑧
1

−1

1

−1

1

−1
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                   = ∫ ∫ [(2
𝑥2

2
+ 𝑦𝑥)]

−1

11

−1

1

−1
 𝑑𝑦𝑑𝑧 

                  = ∫ ∫ [(1 + 𝑦) − (1 − 𝑦)]𝑑𝑦𝑑𝑧
1

−1

1

−1
 

       = ∫ ∫ [2𝑦]𝑑𝑦𝑑𝑧
1

−1

1

−1
 

                 = ∫ (2
𝑦2

2
)

−1

11

−1
 𝑑𝑧 

                 = ∫ [(1) − ((−1)2)] 𝑑𝑧
1

−1
 

      = ∫ [0] 𝑑𝑧
1

−1
 

                 = 0 

Now, L.H.S = 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
1S

+ 
2S

+ 
3S

+ 
4S

+ 
5S

+ 
6S

 

   Faces Plane 𝒅𝑺 𝒏̂ 𝑭⃗⃗⃗ ⋅ 𝒏̂ Equation 𝑭⃗⃗⃗ ⋅ 𝒏̂ on S = 
S

𝑭⃗⃗⃗  ∙ n̂ 𝒅𝒔 

𝑆1(Bottom) 𝑥𝑦   dxdy −𝑘⃗⃗ −𝑦𝑧 𝑧 = −1   𝑦 
∫ ∫ 𝑦 𝑑𝑥𝑑𝑦

1

−1

1

−1

 

     𝑆2(Top) 𝑥𝑦   dxdy 𝑘⃗⃗ 𝑦𝑧 𝑧 = 1   𝑦 
∫ ∫ 𝑦 𝑑𝑥𝑑𝑦

1

−1

1

−1

 

𝑆3(𝐿𝑒𝑓𝑡) 𝑥𝑧   dxdz −𝑗 −𝑧 𝑦 = −1 −𝑧 
∫ ∫ −𝑧 𝑑𝑥𝑑𝑧

1

−1

1

−1

 

𝑆4(𝑅𝑖𝑔ℎ𝑡) 𝑥𝑧   dxdz 𝑗 𝑧 𝑦 = 1 𝑧 
∫ ∫ 𝑧𝑑𝑥𝑑𝑧

1

−1

1

−1

 

𝑆5(𝐵𝑎𝑐𝑘) 𝑦𝑧 dydz −𝑖 −𝑥2 𝑥 = −1 −1 
∫ ∫ −1 𝑑𝑦𝑑𝑧

1

−1

1

−1

 

𝑆6(𝐹𝑟𝑜𝑛𝑡) 𝑦𝑧   dydz 𝑖 𝑥2 𝑥 = 1 1 
∫ ∫ 𝑑𝑦𝑑𝑧

1

−1

1

−1

 

(𝑖) 
1S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
2S

𝐹⃗  ∙ n̂ 𝑑𝑠  =  ∫ ∫ 𝑦 𝑑𝑥𝑑𝑦
1

−1

1

−1
+ ∫ ∫ 𝑦 𝑑𝑥𝑑𝑦

1

−1

1

−1
 

        = ∫ ∫ 2𝑦 𝑑𝑥𝑑𝑦
1

−1

1

−1
 

       = 2 ∫ [𝑥𝑦]−1
11

−1
 𝑑𝑦 

       = 2 ∫ [(𝑦) − (−𝑦)]
1

−1
 𝑑𝑦 

       = 2 ∫ 2𝑦𝑑𝑦
1

−1
 

                                          = 4 [
𝑦2

2
]

−1

1

 = 4 [(
1

2
) − (

1

2
)]    = 0  

(𝑖𝑖) 
3S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
4S

𝐹⃗  ∙ n̂ 𝑑𝑠 = ∫ ∫ −𝑧 𝑑𝑥𝑑𝑧
1

−1

1

−1
+ ∫ ∫ 𝑧 𝑑𝑥𝑑𝑧

1

−1

1

−1
 

        = ∫ ∫ 0 𝑑𝑥𝑑𝑧
1

−1

1

−1
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        = 0    

(𝑖𝑖𝑖) 
5S

𝐹⃗  ∙ n̂ 𝑑𝑠 + 
6S

𝐹⃗  ∙ n̂ 𝑑𝑠  = − ∫ ∫  𝑑𝑥𝑑𝑧
1

−1

1

−1
+ ∫ ∫  𝑑𝑥𝑑𝑧

1

−1

1

−1
 

            = 0     

∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
1S

+ 
2S

+ 
3S

+ 
4S

+ 
5S

+ 
6S

                                     

                         =    (𝑖)  +  (𝑖𝑖) + (𝑖𝑖𝑖) 

                         =  0 

      ∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

                        Hence , Gauss divergence theorem is verified. 

Example: 2.87 Verify divergence theorem for the function 𝑭⃗⃗⃗ = 𝟒𝒙𝒊 −  𝟐𝒚𝟐𝒋 +  𝒛𝟐𝒌⃗⃗⃗ taken over the 

surface bounded by the cylinder 𝒙𝟐 +  𝒚𝟐 = 𝟒 𝒂𝒏𝒅 𝒛 = 𝟎, 𝒛 = 𝟑. 

Solution: 

          

                                      

            Gauss divergence theorem is 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇  ∙  𝐹⃗ 𝑑𝑣 

Given 𝐹⃗ = 4𝑥𝑖 −  2𝑦2𝑗 +  𝑧2𝑘⃗⃗ 

          ∇ ∙  𝐹⃗ = 4 − 4𝑦 + 2𝑧 

Limits: 

 𝑧 = 0 𝑡𝑜 3 

 𝑥2 + 𝑦2 = 4 ⇒  𝑦2 = 4 −  𝑥2 

                        ⇒  𝑦 = ±√ 4 −  𝑥2 

 ∴ 𝑦 =  −√ 4 −  𝑥2 𝑡𝑜 √ 4 − 𝑥2   

Put 𝑦 = 0 ⇒  𝑥2 = 4 
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                  ⇒  𝑥 = ± 2  

 ∴ 𝑦 =  −2 𝑡𝑜 2   

 ∴ R.H.S = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

               =  ∫ ∫ ∫ (4 − 4𝑦 + 2𝑧) 𝑑𝑧𝑑𝑦𝑑𝑥
3

0

√ 4− 𝑥2

−√ 4− 𝑥2

2

−2
 

               =  ∫ ∫ [4𝑧 − 4𝑦𝑧 + 2
𝑧2

2
]

0

3

 𝑑𝑦𝑑𝑥
√ 4− 𝑥2

−√ 4− 𝑥2

2

−2
 

               = ∫ ∫ (12 − 12𝑦 + 9)𝑑𝑦𝑑𝑥
√ 4− 𝑥2

−√ 4− 𝑥2

2

−2
  

               = ∫ ∫ (21 − 12𝑦)𝑑𝑦𝑑𝑥
√ 4− 𝑥2

−√ 4− 𝑥2

2

−2
 

                = 2 ∫ ∫ 21 𝑑𝑦𝑑𝑥
√ 4− 𝑥2

0

2

−2
                       [

∵ ∫ 𝑓(𝑥) 𝑑𝑥
𝑎

−𝑎
= 2 ∫ 𝑓(𝑥)

𝑎

0
 𝑖𝑓 𝑓(𝑥) 𝑖𝑠 𝑒𝑣𝑒𝑛

    = 0 𝑖𝑓 𝑓(𝑥) 𝑖𝑠 𝑜𝑑𝑑
] 

                = 42 ∫ [𝑦]0
√ 4− 𝑥2

 𝑑𝑥
2

−2
 

                = 42 ∫ √ 4 −  𝑥22

−2
 𝑑𝑥                    

                = 42 × 2 ∫ √ 4 −  𝑥2 𝑑𝑥
2

0
                          [∵ 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛] 

                = 84 [
𝑥

2
√ 4 −  𝑥2 + 

4

2
𝑠𝑖𝑛−1 𝑥

2
]

0

2

 

     = 84 [0 + 2 𝑠𝑖𝑛−1(1)] 

  = 84 [2 × 
𝜋

2
] 

  = 84 𝜋 

L.H.S = 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 

           = 
1S

+ 
2S

+ 
3S  

Along 𝑆1 (bottom): 

𝑥𝑦 −plane ⇒ 𝑧 = 0, 𝑑𝑧 = 0 

And 𝑑𝑠 = 𝑑𝑥𝑑𝑦, n̂ =  − 𝑘⃗⃗ 

 ∴ 𝐹⃗  ∙ n̂  = (4𝑥 𝑖 −  2𝑦2 𝑗 +  𝑧2 𝑘⃗⃗)  ∙ (−𝑘⃗⃗) 

                 =  − 𝑧2 = 0  

 ∴ 
1S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
1S

 0 = 0 

Along 𝑆2 (top): 

𝑥𝑦 −plane ⇒ 𝑧 = 3, 𝑑𝑧 = 0 

And 𝑑𝑠 = 𝑑𝑥𝑑𝑦, n̂ =   𝑘⃗⃗ 

 ∴ 𝐹⃗  ∙ n̂  = (4𝑥 𝑖 −  2𝑦2 𝑗 +  𝑧2 𝑘⃗⃗)  ∙ (−𝑘⃗⃗) 
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                 =   𝑧2 = 9  

 ∴ 
2S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
2S

 9 𝑑𝑥𝑑𝑦 

                           =  
R

 9 𝑑𝑥𝑑𝑦     

                           = 9 (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒) 

                           = 9 (𝜋𝑟2)                          [∵ 𝑟 = 2] 

                            = 36 𝜋           

   Along 𝑆3 (curved surface): 

Given 𝑥2 +  𝑦2 = 4 

       Let 𝜑 = 𝑥2 +  𝑦2 − 4 

             ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+  𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

                    = 2𝑥𝑖 + 2𝑦𝑗 

           |∇𝜑| =  √4𝑥2 + 4𝑦2 =  2√4 = 4  

 n̂ =  
∇𝜑

|∇𝜑|
=  

2(𝑥𝑖+𝑦𝑗)

4
  

                  =  
𝑥𝑖+𝑦𝑗

2
    

The cylindrical coordinates are  

 𝑥 = 2 cos 𝜃, 𝑦 = 2 sin 𝜃 𝑑𝑠 = 2𝑑𝑧𝑑𝜃 

Where 𝑧 varies from 0 to 3 

 𝜃 varies from 0 to 2𝜋 

Now 𝐹⃗  ∙ n̂  = (4𝑥 𝑖 −  2𝑦2 𝑗 +  𝑧2 𝑘⃗⃗)  ∙ (
𝑥𝑖+𝑦𝑗

2
)  

                    = 2𝑥2 −  𝑦3 

                    = 2(2 cos 𝜃)2 −  (2 sin 𝜃)3 

                    = 8 cos2 𝜃 − 8 sin3 𝜃    

                    = 8 [
1+cos 2𝜃

2
−  (

3 sin 𝜃−sin 3𝜃

4
)] 

 ∴ 
3S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 8 ∫ ∫ (
1

2
+  

cos 2𝜃

2
−  

3 sin 𝜃

4
+  

sin 3𝜃

4
)  2𝑑𝑧𝑑𝜃

3

0

2𝜋

0
 

                           = 16 ∫ (
1

2
+  

cos 2𝜃

2
− 

3 sin 𝜃

4
+  

sin 3𝜃

4
) [𝑧]0

3 𝑑𝜃
2𝜋

0
 

                           = 48 [
𝜃

2
+  

sin 2𝜃

4
−  

3 cos 𝜃

4
−  

cos 3𝜃

12
]

0

2𝜋

 

                           = 48 [(
2𝜋

2
+  

3

4
−  

1

12
) −  (

3

4
−  

1

12
)] 

                           = 48 𝜋 
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 L.H.S = 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 0 + 36 𝜋 + 48𝜋 

                                      = 84 𝜋   

 ∴ L.H.S = R.H.S 

 (𝑖. 𝑒) 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

Hence Gauss divergence theorem is verified. 

Example: 2.88 Verify divergence theorem for the function 𝑭⃗⃗⃗ = 𝒚𝒊 +  𝒙𝒋 +  𝒛𝟐 𝒌⃗⃗⃗ over the cylindrical 

region bounded by 𝒙𝟐 +  𝒚𝟐 = 𝟗 𝒂𝒏𝒅 𝒛 = 𝟎, 𝒛 = 𝟐. 

Solution: 

                                                           

  Gauss divergence theorem is 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇  ∙  𝐹⃗ 𝑑𝑣 

Given 𝐹⃗ = 𝑦𝑖 +  𝑥𝑗 + 𝑧2𝑘⃗⃗ 

          ∇ ∙  𝐹⃗ = 2𝑧 

Limits: 

 𝑧 = 0 𝑡𝑜 2 

 𝑥2 + 𝑦2 = 9 ⇒  𝑦2 = 9 −  𝑥2 

                        ⇒  𝑦 = ±√ 9 −  𝑥2 

 ∴ 𝑦 =  −√9 −  𝑥2 𝑡𝑜 √ 9 − 𝑥2   

Put 𝑦 = 0 ⇒  𝑥2 = 9 

                  ⇒  𝑥 = ± 3  

 ∴ 𝑦 =  −3 𝑡𝑜 3  

 ∴ R.H.S = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

               =  ∫ ∫ ∫ (2𝑧) 𝑑𝑧𝑑𝑦𝑑𝑥
2

0

√9− 𝑥2

−√9− 𝑥2

3

−3
 

               =  ∫ ∫ [2
𝑧2

2
]

0

2

 𝑑𝑦𝑑𝑥
√ 9− 𝑥2

−√ 9− 𝑥2

3

−3
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                = 4 ∫ ∫ 𝑑𝑦𝑑𝑥
√ 9− 𝑥2

−√ 9− 𝑥2

3

−3
  

               = 4 ∫ [𝑦]
−√ 9− 𝑥2
√9− 𝑥2

 𝑑𝑥
3

−3
 

                = 4 ∫ 2√ 9 −  𝑥23

−3
 𝑑𝑥                    

                = 8 × 2 ∫ √ 9 −  𝑥2 𝑑𝑥
3

0
                          [∵ 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛] 

                = 16 [
𝑥

2
√ 9 −  𝑥2 + 

9

2
𝑠𝑖𝑛−1 𝑥

3
]

0

3

 

     = 16 [0 +
9

2
 𝑠𝑖𝑛−1(1)] 

     = 16 [
9

2
 ×  

𝜋

2
] 

      = 36 𝜋 

L.H.S = 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 

           = 
1S

+ 
2S

+ 
3S  

Along 𝑆1 (bottom): 

𝑥𝑦 −plane ⇒ 𝑧 = 0, 𝑑𝑧 = 0 

And 𝑑𝑠 = 𝑑𝑥𝑑𝑦, n̂ =  − 𝑘⃗⃗ 

 ∴ 𝐹⃗  ∙ n̂  = (𝑦 𝑖 + 𝑥 𝑗 + 𝑧2 𝑘⃗⃗)  ∙ (−𝑘⃗⃗) 

                 =  − 𝑧2 = 0  

 ∴ 
1S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
1S

 0 = 0 

Along 𝑆2 (top): 

𝑥𝑦 −plane ⇒ 𝑧 = 2, 𝑑𝑧 = 0 

And 𝑑𝑠 = 𝑑𝑥𝑑𝑦, n̂ =   𝑘⃗⃗ 

 ∴ 𝐹⃗  ∙ n̂  = (𝑦 𝑖 +  𝑥 𝑗 + 𝑧2 𝑘⃗⃗)  ∙ (𝑘⃗⃗) 

                 =   𝑧2 = 4  

 ∴ 
2S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
2S

 4 𝑑𝑥𝑑𝑦 

                           =  
R

 4 𝑑𝑥𝑑𝑦     

                           = 4 (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒) 

                           = 4 (𝜋𝑟2)                          [∵ 𝑟 = 2] 

                            = 36 𝜋           

   Along 𝑆3 (curved surface): 

Given 𝑥2 +  𝑦2 = 9 



Engineering Mathematics - II 
 

Vector Calculus Page 83 
 

       Let 𝜑 = 𝑥2 +  𝑦2 − 9 

             ∇𝜑 =  𝑖
𝜕𝜑

𝜕𝑥
+  𝑗

𝜕𝜑

𝜕𝑦
+  𝑘⃗⃗

𝜕𝜑

𝜕𝑧
 

                    = 2𝑥𝑖 + 2𝑦𝑗 

           |∇𝜑| =  √4𝑥2 + 4𝑦2 =  2√9 = 6  

 n̂ =  
∇𝜑

|∇𝜑|
=  

2(𝑥𝑖+𝑦𝑗)

6
  

                  =  
𝑥𝑖+𝑦𝑗

3
    

The cylindrical coordinates are  

 𝑥 = 3 cos 𝜃, 𝑦 = 3 sin 𝜃 

 𝑑𝑠 = 3𝑑𝑧𝑑𝜃 

Where 𝑧 varies from 0 to 2 

 𝜃 varies from 0 to 2𝜋 

Now 𝐹⃗  ∙ n̂  = (𝑦 𝑖 +  𝑥 𝑗 +  𝑧2 𝑘⃗⃗)  ∙ (
𝑥𝑖+𝑦𝑗

3
)  

                    =
𝑥𝑦

3
+ 

𝑥𝑦

3
=

2𝑥𝑦

3
 

                    =
2

3
(3 cos 𝜃) (3 sin 𝜃) 

                    = 2 × 3 sin 𝜃 cos 𝜃    

                    = 3 sin 2𝜃 

 ∴ 
3S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 3 ∫ ∫ (sin 2𝜃) 3𝑑𝑧𝑑𝜃
2

0

2𝜋

0
 

                           = 9 ∫ (sin 2𝜃) [𝑧]0
2 𝑑𝜃

2𝜋

0
 

                           = 9 [− 
cos 2𝜃

2
]

0

2𝜋

 

                           = −9 [1 −  1] 

                           = 0 

 L.H.S = 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 0 + 36 𝜋 + 0 

                                      = 36 𝜋   

 ∴ L.H.S = R.H.S 

 (𝑖. 𝑒) 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

Hence Gauss divergence theorem is verified. 
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Example: 2.89 If S is any closed surface enclosing a volume V and if 𝑭⃗⃗⃗ = 𝒂𝒙𝒊 +  𝒃𝒚𝒋 +  𝒄𝒛𝒌⃗⃗⃗, prove that 


S

𝑭⃗⃗⃗  ∙ n̂ 𝒅𝒔 = (𝒂 + 𝒃 + 𝒄)𝑽 . Deduce that 
S

𝑭⃗⃗⃗  ∙ n̂ 𝒅𝒔 =
𝟒𝝅

𝟑
(𝒂 + 𝒃 + 𝒄) if S is the surface of the sphere 

𝒙𝟐 +  𝒚𝟐 + 𝒛𝟐 = 𝟏.  

Solution:    

               Gauss divergence theorem is 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

Given 𝐹⃗ = 𝑎𝑥𝑖 +  𝑏𝑦𝑗 +  𝑐𝑧𝑘⃗⃗ 

          ∇ ∙  𝐹⃗ =
𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
= 𝑎 + 𝑏 + 𝑐 

     ∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

(a + b + c) 𝑑𝑣 

                               =  (𝑎 + 𝑏 + 𝑐)𝑉     

If S is the surface of the sphere 𝑥2 +  𝑦2 + 𝑧2 = 1 then 𝑉 =
4

3
𝜋(1)3 =

4𝜋

3
 

     ∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = (a + b + c) 
4𝜋

3
 

                              =
4𝜋

3
 (𝑎 + 𝑏 + 𝑐) 

Example: 2.90 Using the divergence theorem of Gauss evaluate 
S

𝑭⃗⃗⃗  ∙ n̂ 𝒅𝒔 where 𝑭⃗⃗⃗ = 𝒙𝟑𝒊 +  𝒚𝟑𝒋 +

 𝒛𝟑𝒌⃗⃗⃗, and S is the sphere 𝒙𝟐 +  𝒚𝟐 + 𝒛𝟐 = 𝒂𝟐. 

Solution: 

           Gauss divergence theorem is 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

      Given 𝐹⃗ = 𝑥3𝑖 +  𝑦3𝑗 +  𝑧3𝑘⃗⃗ 

                 ∇ ∙  𝐹⃗ = 3𝑥2 + 3𝑦2 + 3𝑧2 

                             = 3(𝑥2 + 𝑦2 + 𝑧2) 

          ∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 3 
V

(𝑥2 + 𝑦2 + 𝑧2) 𝑑𝑥𝑑𝑦𝑑𝑧 

Here we have to use spherical polar co – ordinates. 

    𝑥 = 𝑟 sin 𝜃 cos 𝜑 , 𝑦 = 𝑟 sin 𝜃 sin 𝜑,   𝑧 = 𝑟𝑐𝑜𝑠 𝜃         

    𝑥2 +  𝑦2 + 𝑧2 = 𝑎2    and 𝑑𝑥𝑑𝑦𝑑𝑧 =  𝑟2𝑠𝑖𝑛 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜑 

                     ∴ 3 
V

(𝑥2 + 𝑦2 + 𝑧2) 𝑑𝑥𝑑𝑦𝑑𝑧 = 3 ∫ ∫ ∫ 𝑟2𝑟2 sin 𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜑
𝑎

0

𝜋

0

2𝜋

0
  

                                                                             = 3 ∫ ∫ [
𝑟5

5
 𝑠𝑖𝑛 𝜃]

0

𝑎

 𝑑𝜃 𝑑𝜑
𝜋

0

2𝜋

0
    

                                                                              =
3𝑎5

5
∫ [− cos 𝜃]0

𝜋 𝑑𝜑
2𝜋

0
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                                                                               =
3𝑎5

5
∫ (− cos 𝜋 + cos 0) 𝑑𝜑

2𝜋

0
   

                                                                                 =  
6𝑎5

5
[𝜑]0

2𝜋         

                                                                                  =
6𝑎5

5
(2𝜋) =  

12𝜋𝑎5

5
 

Example: 2.91 Show that 
S

𝒄𝒖𝒓𝒍 𝑭⃗⃗⃗  ∙ n̂ 𝒅𝒔 = 𝟎 where S is any closed surface. 

Solution: 

              Gauss divergence theorem is 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇  ∙  𝐹⃗ 𝑑𝑣 

        ∴ 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  (∇ × F⃗⃗) 𝑑𝑣 

where V is the volume of the closed surface S. 

Since ∇ ∙ (∇ × 𝐹⃗) = 0, 𝑤𝑒 𝑔𝑒𝑡 
V

∇  ∙  (∇ × F⃗⃗) 𝑑𝑣 = 0 

                     ∴ 
S

(∇ × F⃗⃗) ∙ n̂  𝑑𝑣 = 0 (𝑜𝑟) 
S

𝑐𝑢𝑟𝑙𝐹⃗  ∙ n̂ 𝑑𝑠 = 0  

Example: 2.92 Prove that 
S

 𝒓⃗⃗ ∙ n̂
𝒓𝟐 𝒅𝒔 = 

V

dv

r2   

Solution:  

                Gauss divergence theorem is 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇  ∙  𝐹⃗ 𝑑𝑣 

        ∴ 
S

 𝒓⃗⃗

𝒓𝟐  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  (
 𝒓⃗⃗

𝒓𝟐)  𝑑𝑣 

Now ∇ ∙
 𝑟

𝑟2 =  (𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘⃗⃗

𝜕

𝜕𝑧
) ∙ (

𝑥𝑖+𝑦𝑗+𝑧𝑘⃗⃗

𝑟2 ) 

                    =  
𝜕

𝜕𝑥
(

𝑥

𝑟2) +
𝜕

𝜕𝑦
(

𝑦

𝑟2) +
𝜕

𝜕𝑧
(

𝑧

𝑟2) 

                    = ∑
𝑟2(1)−𝑥 2𝑟 

𝜕𝑟

𝜕𝑥

𝑟4  

                    = ∑
𝑟2− 2𝑥𝑟 (

𝑥

𝑟
)

𝑟4  

                     = ∑
𝑟2− 2𝑥2 

𝑟4  

                    =  
3𝑟2−2(𝑥2+𝑦2+𝑧2)

𝑟4  

                     =  
3𝑟2−2𝑟2

𝑟4 =
𝑟2

𝑟4 =
1

𝑟2     

 ∴ 
S

 𝒓⃗⃗

𝒓𝟐  ∙ n̂ 𝑑𝑠 = 
V

1

𝑟2  𝑑𝑣 

Example: 2.93 Evaluate 
S

𝒓⃗⃗  ∙ n̂ 𝒅𝒔 where S is a closed surface using Gauss divergence theorem. 
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Solution: 

               Gauss divergence theorem is 
S

𝐹⃗  ∙ n̂ 𝑑𝑠 = 
V

∇ ∙  𝐹⃗ 𝑑𝑣 

        ∴ 
S

𝑟  ∙ n̂ 𝑑𝑠 = 
V

(∇ ∙  𝑟) 𝑑𝑣 

                                 = 
V

[∇ ∙  (𝑥𝑖 +  𝑦𝑗 +  𝑧𝑘⃗⃗)] 𝑑𝑣 

                                = 
V

(1 + 1 + 1) 𝑑𝑣 

                               = 3 
V

 𝑑𝑣 

                              = 3𝑉 

 Exercise: 2.5 

1. Verify divergence theorem for the function 𝐹⃗ = (𝑥2 − 𝑦𝑧)𝑖 −  (𝑦2 − 𝑧𝑥)𝑗 +  (𝑧2 − 𝑥𝑦)𝑘⃗⃗  

      over the surface bounded by 𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 2, 𝑧 = 0, 𝑧 = 3  Ans: 36 

2. Verify divergence theorem for the function 𝐹⃗ = 4𝑥𝑧𝑖 −  𝑦2𝑗 +  𝑦𝑧𝑘⃗⃗  

      over the cube 𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 1, 𝑧 = 0, 𝑧 = 1           Ans: Common value =
3

2
 

3. Verify divergence theorem for the function 𝐹⃗ = (2𝑥 − 𝑧)𝑖 −  𝑥2𝑦𝑗 −  𝑥𝑧2𝑘⃗⃗  

      over the cube bounded by  𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 1, 𝑧 = 0, 𝑧 = 1   

                                                                                                           Ans: Common value =
11

6
 

4. Verify divergence theorem for 𝐹⃗ = 𝑥𝑦2𝑖 +  𝑦𝑧2𝑗 +  𝑧𝑥2𝑘⃗⃗  over the region  

    𝑥2 +  𝑦2 = 4 𝑎𝑛𝑑 𝑧 = 0, 𝑧 = 3                   Ans: Common value = 84𝜋 

5. Using divergence theorem, prove that (i)  
S

𝑅⃗⃗  ∙ 𝑑𝑆 = 3𝑉 (ii) 
S

∇𝑟2  ∙ 𝑑𝑆 = 6𝑉 

6. 𝐹⃗ = 𝑥2𝑖 +  𝑧𝑗 +  𝑦𝑧𝑘⃗⃗  over the cube bounded by  𝑥 = 0, 𝑥 = 𝑎, 𝑦 = 0, 𝑦 = 𝑎, 𝑧 = 0, 𝑧 = 𝑎   

                                                                                                        Ans: Common value =
3𝑎

2
 

7. 𝐹⃗ = (𝑥3 − 𝑦𝑧)𝑖 −  2𝑥2𝑦𝑗 +  2𝑘⃗⃗  over the parallelopiped bounded by the planes 

     𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 2, 𝑧 = 0, 𝑧 = 3                                  Ans: Common value = 2 

8. 𝐹⃗ = 2𝑥𝑦𝑖 + 𝑦 𝑧2𝑗 +  𝑥𝑧𝑘⃗⃗  over the parallelopiped bounded by the planes  

    𝑥 = 0, 𝑦 = 0, 𝑧 = 0, 𝑥 = 2, 𝑦 = 1, 𝑧 = 3                                   Ans: Common value = 20 

9. 𝐹⃗ = 2𝑥2𝑦𝑖 −  𝑦2𝑗 + 4 𝑥𝑧2𝑘⃗⃗  taken over the region in the first octant bounded 

    𝑥2 +  𝑦2 = 9 and   𝑥 = 2                                                           Ans: Common value = 180 

10. 𝐹⃗ = 𝑥2𝑖 +  𝑦2𝑗 +  𝑧2𝑘⃗⃗  taken over the cuboid formed by the planes  

    𝑥 = 0, 𝑥 = 𝑎, 𝑦 = 0, 𝑦 = 𝑏, 𝑧 = 0, 𝑧 = 𝑐               Ans: Common value = 𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐) 
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