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CHAPTER 11

LINEAR DIFFERENTIAL EQUATIONS OF SECOND
AND HIGHER ORDER

11.1 Introduction

2
A differential equation of the form F(x,y,%,% ,d y) 0 in which the
dependent variable y(x) and its derivatives viz. Z—z : 3—2 etc occur in first

degree and are not multiplied together is called a Linear Differential Equation.
11.2 Linear Differential Equations (LDE) with Constant Coefficients

A general linear differential equation of n™ order with constant coefficients is
given by:

ko L+ kldn b — = — =tk 2+ kyy =F(x)
where k's are constant and F (x) is a function of x alone or constant.
= (kD" + kD" '+ ————+k,_1D+ k,)y =F(x)
= n — n-1 — L_l = i
Or f(D)y = F(x), where D™ = et D = o= D =are called

differential operators.

11.3 Solving Linear Differential Equations with Constant Coefficients
Complete solution of equation f(D)y = F(x) isgivenby y = C.F +P.l.
where C.F. denotes complimentary function and P.1. is particular integral.
When F(x) = 0, then solution of equation f(D)y = 0 is given by y = C.F
11.3.1 Rules for Finding Complimentary Function (C.F.)

Consider the equation f(D)y = F(x)
= (keD"+ kD" '+ ————=+k,_ 1D+ k,)y =F(x)

Step 1: Put D = m, auxiliary equation (A.E) is given by f(m) =0
=>kom"+ kym" 4+ ————+k,_m+ k, =0...... ®)
Step 2: Solve the auxiliary equation given by 3
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I.  If the nroots of A.E. are real and distinct say m,, m,,... m,
CF.= c,e™* + c,e™* 4 ... 4 ¢ e™n¥
[1.  If two or more roots are equal i.e. m;=m,=...=my, k <n
C.F.= (c1+ cox + c3x? + -+ + cpx®~1)e™* + ... + ¢, e™n¥
1. If A.E. has a pair of imaginary rootsi.e. m; =a+if3, m, =a—ip

C.F.= e™(cycosPx + c,sinPx) + c;e™* + .- 4 ¢, e™n*
IV. If 2 pairs of imaginary roots are equal i.e. m; =m, = a +1ip,
m3 - m4 =0o—- IB
C.F.= e™[(c; + cx) cosPx + (c3 + cux) sinPx] + -+ + c,e™n*

Ly _ gy _
5~ 8=+15y=0

Example 1 Solve the differential equation:

Solution: = (D> — 8D +15)y =0

Auxiliary equation is: m? —8m+15=0

> (m-3)(m-5)=0

=> m=23,5

C.F.= e + ¢ e

Since F(x) = 0, solution is given by y = C.F

>y = e® + ce

Example 2 Solve the differential equation: ﬂz — 6@ + 112 6y =0
dx dx dx

Solution: = (D3 —6D%? + 11D —6)y =0

Auxiliary equation is: m3 —6m? + 11lm—6=0 ....... @

By hit and trial (m — 2) is a factor of O

~( May be rewritten as

m3—2m?—-4m?+ 8m+3m—-6=0

>m?*’(m—2)—4m(m—2)+3(m—-2)=0

> (mM2—4m+3)(m—-2)=0

>mMm-3)(m—-1)(m—-2)=0

=> m=123
Page | 2



C.F.= cie* + ce®* + cze3*

Since F(x) = 0, solution is given by y = C.F

>y = e’ + ce® + e

Example 3 Solve (D* — 10D3 + 35D — 50D + 24)y =0
Solution: Auxiliary equation is:

m* —10m3 + 35m? — 50m+24=0 ....... @

By hit and trial (m — 1) is a factor of ®

~( May be rewritten as

m* —m3 —9m3 +9m? + 26m? — 26m —24m+24 =0
>m3(m-1)—-9m?*(m—1)+26m(m—1) —24(m—-1) =0
=>(m—-1)mM3—9m? +26m—24)=0 ...... @

By hit and trial (m — 2) is a factor of @

~(@ May be rewritten as

(m—1)(m3® —2m? —7m? + 14m + 12m — 24) = 0
=>m-1)[m?*(m—-2)—7m(m—-2)+12(m—-2)] =0
S>mMm—-1DmM*-=7m+12)(m—-2)=0
>m-1)(m-3)(m—-4)(m—-2)=0

= m=12,34

C.F.= cie* + c,e?* + cze3* + ce™

Since F(x) = 0, solution is given by y =C.F

=Sy = e’ + e + czed + e

3 2
Example 4 Solve the differential equation: 2 + 222 1 2 — o
dx dx dx

Solution: = (D3 +2D?*+ D)y =0

Auxiliary equation is: m3 +2m?+m =0
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>m(m?+2m+1)=0

>mim+1)%2=0

> m=0,-1,-1

CF.= ¢+ (c; +c3x)e™

Since F(x) = 0, solution is given by y =C.F
=2y = ¢+ (¢ +c3x)e”™

d* d?
y_z y+

Example 5 Solve the differential equation: —= —2——
Solution: = (D* —2D%?+ 1)y =0

Auxiliary equation is: m* —2m? +1 =0

> (m?*—-1)2=0

=>m+1)2*m-1)%=0

> m=-1,-1,1,1

C.F.= (c; + cx)e™ + (c3 + cux)e”

Since F(x) = 0, solution is given by y = C.F

=y = (c; +cx)e™ + (c3 + cux)e”

3y

y=20

Example 6 Solve the differential equation: 2y _> Z—z +4y =0

dx3
Solution: = (D®* —2D +4)y =0
Auxiliary equationis: m3 —2m +4 =0 ....... @
By hit and trial (m + 2) is a factor of O
~( May be rewritten as
m3+2m?—-2m?— 4m+2m+ 4=0
>m*(m+2)—-2m(m+2)+2(m+2)=0
>m+2)(m?*-2m+2)=0

> m=-2,1+i
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C.F.= c;e ™ + e*(c, cosx + ¢3 sinx)
Since F(x) = 0, solution is given by y = C.F

>y = e+ e*(cycosx + c3sinx)

Example 7 Solve the differential equation: (D% — 2D + 5)2y =0

Solution: Auxiliary equation is: (m? —2m + 5)%....... @

Solving @, we get

> m=1x2i,1+%2i

C.F.= e*[(c; + c; x) cos 2x + (c3 + c4x) sin 2x

Since F(x) = 0, solution is given by y = C.F

=2y = e*[(c; +cy3x)cos2x + (c3 + cux) sin 2x]

Example 8 Solve the differential equation: (D? + 4)3y = 0

Solution: Auxiliary equation is: (m? + 4)3....... @

Solving @, we get

= m = 12i,+2i,+2i

C.F.=(c; + c3x + c3x?) cos 2x + (cq4 + csx + ccx?) sin 2x

Since F(x) = 0, solution is given by y = C.F

=y = (c;+ cx +c3x?)cos2x + (¢4 + csx + cgx?) sin 2x
11.3.2 Shortcut Rules for Finding Particular Integral (P.1.)

Consider the equation (D)y = F(x) ,F(x) #0
= (keD"+ kD" '+ ————=+k,_ 1D+ k,)y =F(x)

Then P.I = Tlm F(x), ClearlyP.l.=0if F(x) =0
Case I: When F(x) = e%*

1 1
Use therule P.l = —e%= —¢%* 0
> Tl Sl

In case of failurei.e. if f(a) =0

Page | 5



1 1
Pl= x—e%= x—e% a)# 0
f (D) f@) f()

If f(a)=0,Pl.=x —e“x f"(a) # 0 and so on

f'(@

2
Example 9 Solve the differential equation: % -2 Z—Z + 10y = e%*

Solution: = (D? — 2D + 10)y = e?*
Aucxiliary equation is: m? —2m + 10 = 0
> m=1+x3i

C.F.= e*(cy cos 3x + ¢, sin 3x)

1

P.I. F(x) = 2x = e?* | by putting D = 2

f(D) - f(D) D)

— 1 2x — 1 2x
22-2(2)+10 10

Complete solutionis: y = C.F. +P.l

. 1
=y e*(c; cos3x + ¢, sin 3x) + Eer

Example 10 Solve the differential equation:

Solution: = (D> +D —2)y = e*
Aucxiliary equationis: m> +m—2 =10
>m+2)(m—-1)=0

> m=-21

C.F.= cie ™ + c,e*

d?y
dx?

P.l = f(D) F(x) —me ,puttingD =1, f(1) =0
~P.l= xﬁex P L= xf,(a)eax if f(a)=0
=Pl = X ex—f(l) () #0

= P.l.==

dy _ _x
+dx 2y =e
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Complete solutionis: y = C.F. +P.l

-2 xe*
=y = (e x+ce+3

Example 11 Solve the differential equation: 32732’ — 4y = sinh(2x + 1) + 4%
Solution: = (D? — 4)y = sinh(2x + 1) + 4*

Auxiliary equation is: m?2 —4 =0

> m=42

CF.= cie®* + c,e™*

- X
= f( > (sinh(2x + 1) + 4%)

(x+1)_ ,—(2x+1)
= ! (e e )+ 1 (exlog4)
D2- 4 2 D2- 4

. e¥—e™* log 4
~ sinhx = > and 4* = e*'°8

e 1 el 1 _ 1
- £ 2x e 2x+ exlog4

2D%-4 2 D%2-4 D?— 4

Putting D = 2,—2 and log 4 in the three terms respectively
f(2) =0and f(—2) =0 for first two terms

1 e”! 1 _ 1
~P.l __x_er__x_e 2x exlog4—
2D 2 72D (log4)?—4

ax —
@ if f(a)=0

Now putting D = 2, —2 in first two terms respectively

-1 4x

=P | = ﬂer + e xe—Zx exlog4:4x

8 8 (log4)%- 4

x [e(@X+1) ;4 o—(2x+1) 4%
=>P.l. ==

4 2 (log4)?- 4

x 4% eX+e™*
=>P.l.==cosh(2x + 1) + ——— ~ coshx =

4 (log4)?- 4

Page | 7



Complete solutionis: y = C.F. +P.l

4_.?(

— 2x —2x 4 X
>y = ce*+ ce +4cosh(2x+ 1+ (logi)—4

Case Il: When F(x) = Sin (ax + b)or Cos (ax + b)
If F(x) = Sin (ax + b) or Cos (ax + b), put D? = —a?,
D3 =D2?D = —a?D, D* = (D?)2 = a*,......

This will form a linear expression in D in the denominator. Now rationalize the
denominator to substitute D? = —a?. Operate on the numerator term by term

. _d
by taking D = =

In case of failure i.e.if f(—a?) =0

1

Pl =x—
X rcar

Sin (ax + b) or Cos (ax + b), f (—a?®) # 0

1
f'(=a?

If f'(—a?) =0, P.l.= x? Sin (ax + b) or Cos (ax + b), f ' (—a?) # 0

Example 12 Solve the differential equation: (D% + D — 2)y = sinx
Solution: Auxiliary equationis: m?* +m —2 =0
>mMm+2)(m-1)=0

> m=-21

C.F.= cie ™ + c,e*

Pl =— F(x) = ——sinx =

- sin x
f(D) f(D) D2+D-2

putting D? = —12 = —1

1. D+3
Pl= —sinx =

sin x , Rationalizing the denominator
D-3 D2-9

_ (D+3)sinx

, Putting D? = —1
-10

~P.L= i(D sinx + 3 sinx)

10

:%(cosx + 3 sin x)
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Complete solutionis: y = C.F. +P.l

Sy = e ¥ +ce” —11—0 (cosx + 3 sinx)

Example 13 Solve the differential equation: (D% + 2D + 1)y = cos?x
Solution: Auxiliary equationis: m? +2m+1 =10

(m+1)%=0

> m=-1,-1

CF.= e™(cy + c3x)

1 1 1 1+cos2x
Pl.=—— F(x) = ——cos?x = ( )
f(D) f(D) D2+42D+1 2

1 1 1
=——e°x - ————(C0S 2x
2 DZ2+2D+1 2 D2+2D+1

Putting D = 0 in the 1% term and D2 = —22 = —4 in the 2"’ term

1 1
PI=2 42
2 2 2D-3

CoS 2x

2D+3
4p2 —32

= % + % cos 2x, Rationalizing the denominator

1 1
=- 4 -
2 2

(2D43)Cos2X pbtting D? = —4

1 1

~P.l.=- — — (—4sin2x + 3 cos 2x)
2 50

Nowy = C.F.+P.l

>y = e *(c; +cx) + % - % (—4 sin 2x + 3 cos 2x)

Example 14 Solve the differential equation: (D% + 9)y = sin 2x cos x
Solution: Auxiliary equation is: m? +9 =0

= m=+13i

C.F.= ¢y cos3x + ¢, sin 3x

! F(x) = sin2xcosx = ~—

Pl.=—
f(D) f(D) 2D249

(sin 3x + sin x)
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1 ) 1 )
=3 sin 3x + 5 sin x

D249 D2+9

Putting D2 = —9 inthe 1 term and D2 = —1 in the 2" term
We see that f(D? = —9 ) = 0 for the 1* term
~Pl =2Ix2sin3x+ <sinx

2 2D 2 8

1
f'(-a?)

Pl = x Sin (ax +b), f'(—a?) # 0

=P.l.=—Xcos3x + —sinx
12 16
Complete solutionis: y = C.F. +P.l
=y = ¢1€083x + C,Sin 3x —f—zcos 3x + %sinx
Case ll1: When F(x) = x™, nis apositive integer

1 1
Pl =— F(x) = —xn
o Fl) =755%

1. Take the lowest degree term common from f( D) to get an expression
of the form [1 + ¢&(D)] in the denominator and take it to numerator to

become [1 + ¢(D)]?

2. Expand [1+ ¢(D)]~! using binomial theorem up to n" degree as

(n+1)" derivative of x™ is zero
3. Operate on the numerator term by term by taking D = dix

Following expansions will be useful to expand [1 + ¢(D)] *in ascending

powers of D

A+x)t=1—x+x2—x3+--
1-x0)t=1+x+x2+x3+--
(1+x)2=1-2x+3x%—4x3+ -
(1—x)"2=14+2x+3x%+4x3+ -

Example 15 Solve the differential equation: &y _ y=5x—2
dx?

Solution: = (D? — 1)y = 5x — 2

Auxiliary equationis: m?2 —1=0
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> m==1

— X -X
C.F.= cie* + cye

Pl = f(D) Fl) =3

2)

= (5x = 2)

-(1- DZ)
= —(1-D?)"1(5x — 2)
—[14+ D%+ -](5x — 2)

= —(5x —2)
~P.l==5x+2
Complete solutionis: y = C.F. +P.l
>y = e¥+ce ™ -5x+2
Example 16 Solve the differential equation: (D* + 4D?)y = x%2 + 1
Solution: Auxiliary equation is: m* + 4m? = 0
> m?(m?+4)=0
>m=0,0,%2i

C.F.= (cq +c3x) + (c3cos 2x + ¢, sin 2x)

Pl = f(D) FOO) =5

D2 x*+1)

- D4+4D2 (x* +1)

=———= (x? +1)
4D2(1 —)

:4.7(1"'7) 1(x2+1)

L -2t + )

4-D2

4D2(x +1__)
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= ()
=2 [ (x*+2)dx
=5(5+3)
= (G

4 2
~Pl= l(x_+x_)
4 \12 4

Complete solutionis: y = C.F. +P.l

4 2
=y = (c; +cyx) + (c3c082x + ¢, Sin2x) + = (12 + x:)

Example 17 Solve the differential equation: (D? — 6D + 9)y = 1 + x + x2
Solution: Auxiliary equation is;: m> —6m+9 =0

= (m-3)2=0

>m=3,3

C.F.=e3*(c; + cx)

P'I':f(p) ()—D2 6D+9(1+x+x)
=9<_£+D_2)(1+x+x)
3 9
o\ 1
1 2D D
1 D2 2D D?\? 2
=35 1+(——?)+(?—?) +---](1+x+x)
2
=§1+———+ﬂ+---](1+x+x2)
1
=1+ 24+ 2 A+ x+a?)

HEEF TN
9 3 3 3
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sPI=2(24 24 42)
9 \3 3

Complete solutionis: y = C.F. +P.l
=y = e¥(¢ + cx) + $(§+7?x+x2)

Case IV: When F(x) = e™g(x), where g(x) is any function of x

1 ax — ,ax
Use the rule: 5 € gx) =e (f(D+a) g(x )>

Example 18 Solve the differential equation: (D? + 2)y = x2e3*

Solution: Auxiliary equation is: m? +2 = 0

=m = +V2i

C.F. = (c; cos(v'2 x) + ¢, sin(:v/2 x))

P.I. F(x) x2%e3x

f(D) _-D2+2

1
— p3x xz
(D+3)%2+2

1
— 53X xz
D2+6D+11

e3x 1 2
= 6D D?2 X
1 (1 ——+——J

-1
— (14 (24 D_2)> 2
11 11 11

3x [ 2 2\ 2
_ & 1_(@4_ D_)+(g+ D_) +...]x2

11 11 11 11 11
3x 2 2
e 6D D 36D
= [1-2- 242 p
11 11 11 121
3x 2
e D 25D
= [1-24+ 224 ]x?
11 11 121

3x
e 12x
11 11 121
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e3% 12x 50
cPl = (- 2
11 11 121

Complete solutionis: y = C.F. +P.l

=y = (c; cos(v2x) + ¢, sin(+v2 x)) + % (xz 2=y 5—0)

11 121
Example 19 Solve the differential equation: (D3 + 1)y = e** sinx
Solution: Auxiliary equationis: m®+1=0
=>m?=-1

1+4/3i

>m=-—1,
2

CF.=cie™+ eg (cz cos (?x) + c5 sin (?x))

1 1 o
P.1. = F(x) =3¢ sinx

sin x
(D+2)3+1

2x

sin x
D3+6D2%2+ 12D+9

1 : :
= e?* —————sinx , Putting D? = —1
—D—6+ 12D+9

1 .
= e?¥ sin x
11D+3

oy 11D-3

= e¢*¥ ———sin x, Rationalizing the denominator
121D%-9

2X
= —%(111) — 3)sinx , Putting D? = —1

2Xx

~Pl =—=—(11cosx — 3sinx)
130

Complete solutionis: y = C.F. +P.l
=y =ce 4+ 632_6 (cz cos (?x) + c5 sin (?x))

2Xx
—%(Mcosx — 3sinx)
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d?y

Example 20 Solve the differential equation: e 4y = x sinhx
Solution: = (D? — 4)y = x sinhx
Auxiliary equation is: m? —4 =0
=> m==2
CF.= cqe®™ + c,e™*
Pl =— F(x)
f(D)
= (x sinhx)
f(D)
1 eX—e™X . eX—e™X
= (x ) v sinhx =
D2—4 2 2
1 ( ex e_x)
= X——Xx—
D2—4 2 2
ex 1 e™* 1
=X —— X
2 (D+1)%2-4 2 (D-1)%-4
e* 1 e ™ 1
=— X — X
2 (D%2+42D-3) 2 D2?-2D-3
_ e 1 X e 1 X
- 2 - 2
2 —3(1—%—?) 2 —3(1—%+?)

- @] - -2

-2 (14 2o (1- )

X —-X
--2(x+Y+ (-
6 3 6 3

_ x (ex— e_x) 2 (ex+ e_x)
3 2 9 2

X . 2
~ Pl = —gsmhx —;coshx

Complete solutionis: y = C.F. +P.l

- X . 2
>y = e + e 2"—;smhx—;coshx
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Example 21 Solve the differential equation: (D% + 1)y = x? sin 2x

Solution: Auxiliary equationis: m?+1=0

>m= *i

C.F.=c;cosx + c,sinx

Pl =—F() =

f(D)

— : 1 2 ,12x
Imaginary part of o Xe

Now xzeLZx — ele x2
D2+1 (D+2i)%2+1
i 1
— ele ' ' xz
D2+4i%+ 4iD+1
i 1
— ele . xz
D2+ 4iD-3
_ pi2x 1 2
— ¢ T pz_m)¥
3 3
—el2x pz  aip\]"! ,
= []_ — (— + —)] X
3 3 3

sz[1+ T+ ) (21 ]xz

—el2xy D2 4iD = 16i%D2
= 1++—+ ] x?
3 9
—el2xp 13D2  4iD
= 1- + —[x2
3 | 9 3
—el2xp 26 . 8x
= x2——=+i—
3 | 9 3

=—2(cos 2x + i sin 2x) [xz SR
3 9 3
. — ; 1 2 20 —_1(8% 2 _ 26
=~ P.I. = Imaginary part of sa X e ; ( S COs 2x + (x . )sm Zx)
= —%xcos 2x + %(26 — 9x2) sin 2x
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Complete solutionis: y = C.F. +P.l

=7y =, C08x + ¢, Sinx —S?XCOSZX +%(26 — 9x2) sin 2x
Example 22 Solve the differential equation: (D? — 4D + 4)y = x%e?* sin 2x
Solution: Auxiliary equation is: m? —4m+4 =0
= (m —2)?
>m=22
C.F.=(c; + cx)e?*

Pl =—— F(x) = x%e%* sin 2x

f(D) D?2-4D+4

1
— er

2 -
x“sin 2x
(D+2)2-4(D+2)+4

1 .
= e?* —x?sin 2x
DZ

1 :
= e[ x?sin2x dx

= e 2| (737) - @0 () + @ ()]

1[ 1 1 1
= ezxs[—zxz cos 2x + X sin 2x + , COs 2x]

= e%* [—%fx2c052x+ %fxsiandx+ifcostdx]

— 2% [_%[(xz) (sinZZx) (2x )( cost) n (2)( sm2x)] n

12v—cos2x2—1-sin2x4+14sin2x2

a2
~ Pl =e%* [isin 2x —Zcos 2x + >sin Zx]
4 2 8
Complete solutionis: y = C.F. +P.l
A2
=y = (¢ +cx)e?™ +e?* [% sin 2x — gcos 2x + gsin Zx]
Case V: When F(x) = x g(x), where g(x) is any function of x

Use the rule: —(x g(x) = xf(D)g( x) + (dD f(D)) g(x)
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Example 23 Solve the differential equation: (D% + 9)y = x cos x

Solution: Auxiliary equation is: m? +9 =0

>m = +3i

C.F. = (¢, cos 3x + ¢, sin 3x)

P.1.
f(D) Feo =
_ -2D
= Dore) COSX
= xﬁ cosx + (__11[;)2 cos X, Putting D? = —1

X COSX 2D cosx

8 64

X COSX 2D cosx

8 64

X COSX sinx
8 32

~P.l =

Complete solutionis: y = C.F. +P.l

. xcosx | sinx
=y =, €0S83x + ¢, sin 3x + T+ -

Example 24 Solve the differential equation:
(D? — 1)y =xsinx + (1 + x?)e*
Solution: Auxiliary equation is: m? —1 =0
>m==1
CF.=ce* +c,e*

Pl = (D) F(x) =

*)e*)

sin x

1 ) 1, -2D
D2-1 ~ 7 p2—1 (D2-1)2
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sin x, Putting D% = —1

= x—— sinx + —=
T T o1 (-1-1)?

= —%(xsinx+cosx)

1
D2-1

1
(D+1)2-1

Also (1 +x%)e* = e* (1+x?)

X 3 2
%P1 == (xsinx + cosx) +e—[x——x—+3—x]
2 2Lz 27 2

Complete solutionis: y = C.F. +P.I

1 . e*[x3 x?  3x
=y =ce*+ce* —E(xsmx+cosx) +7[?—7+7

Case VI: When F(x) is any general function of x not covered in shortcut
methods | to V above

Resolve f(D) into partial fractions and use the rule:
1 —
— F(x) =e % [ e F(x) dx
Example 25 Solve the differential equation: (D2 + 3D + 2)y = e®”
Solution: Auxiliary equationis: m?> +3m+2 =0

>m+1)(m+2)=0
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>m=-1,-2

CF.=cie™ + e

ex
P.l. f(D) Fl) = D2+3D+2 €
— 1 e*
- (D+1)(D+2)

- ((D-ll-l) B (Diz) ) et

=e ™ [eXe dx — e™?* [e¥e dx

=e ™ [De® dx — e ?* [ e*De® dx

=e e — e"¥[e¥e®” — [e*e"dx]|, Integrating 2™ term by parts

= e *e® — e ¥ [e¥e®” — [De® dx]

= e%e®" — e 2 [e%e” — ']
AP = e 2xee”

Complete solutionis: y = C.F. +P.l

oy = e + cpe2F 4 o2l

Example 26 Solve the differential equation: (D? + 4)y = tan 2x

Solution: Auxiliary equation is: m? +4 =0

=>m= 12

C.F. =c¢; cos 2x + ¢, sin 2x

Pl = =
f(D) ( )
= %tan 2x
(D-20)(D+20)
1 1 1
T4 ((D—Zi) T (p+20) ) tan 2x

P.l. = i(D_lzitan 2x) —l(—tan Zx) ....... @

D+2
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Now D_Lzl,tan 2x = e [ e™2% tan 2x dx
= e2?™ [(cos 2x — isin 2x) tan 2x dx

_ le _ sin?2x
= [(sin2x — i ——)dx

1-cos?2x
= Z‘xf(sm2x—1 )dx

0S2Xx

= eZixj(siHZx—isec2x+ic052x)dx

. 1 [ [
= g% (—Ecos 2x — Eloglsec 2x + tan 2x| + Esin Zx)

: DTtan 2x =e?¥ (—%e‘Zix —éloglsech + tan 2x|) ..©

Replacing i by -i

mtan 2x = e %X (—%e”x + éloglsec 2x + tan 2x|) 6

Using @and @ in O

1 [QZix (_%e—m — éloglsec 2x + tan 2x|)]

4i

P.l.=

1

—— e‘Zi"( e?* 4 - loglsec 2x + tan 2x|)]
41 2

1

41 2

1 ele+ e—le

= — —lfloglsec 2x + tan 2x|]

~P.l= —i[cos 2x log|sec2x + tan 2x|]
Complete solutionis: y = C.F. +P.l.

=Yy =, C082X + C,Sin2x — i [cos2x log|sec2x + tan 2x]]

Exercise 11A

Solve the following differential equations:

1. (D?+D?—-5D+3)y=0 Ans. y = (cyx + cy)e* + cge”

== —1—5 2i¥]pg|sec 2x + tan 2x]| +——Ee‘2ixlog|sec 2x + tan 2X|]

3x
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ko x

10.—
dx?

dty
nd’y n—
o + kyx

dz—y—Sd—y+6y=e3x Ans. y = cie? + cye3* + e3¥(x — 1)
dx? dx ' 1 2

_z+——6y = e¥ cosh 2x
dx ) )

Ans.y = cie** + ce™ +—e¥ ——e™¥
(D —1)*(D* + 1)%y = e*

2
Ans. y = (c;x + c3)e* + (c3x + ¢c4) cosx + (csx + ¢cg) sinx + %ex
(D% — 6D +9)y = x2 + 2e?*
Ans. y = (c1x + c;)e3* +$(x2 + %x + g) + 2e2*

(D?+ D —2)y =x+sinx
Ans. y = ce % + c,e* —i(2x+ 1) —1—10(cosx+ 3 sin x)

(D?+ D)y =(1+e*)?
Ans.y =c; + e +x— (1 +eMlog (1 +e%)

(D? + 5D + 6)y = e"**sec?x (1+2tan x)
Ans.y = cie?* + c,e 3 + " (tanx — 1)

dz_y d_y_ - _ 2x
2T 4dx 12y = (x — 1)e

2Xx 2 9
Ans. y = c,e? + c,e”% + %(x? - ;x)

d?y dy 3
—3 +2y 4x+ex,g|veny—1 =—1whenx =0

3x

Ans.yz—%ex—262x+2x+3+7

11.4 Differential Equations Reducible to Linear Form with Constant
Coefficients

Some special type of homogenous and non homogeneous linear differential
equations with variable coefficients after suitable substitutions can be reduced
to linear differential equations with constant coefficients.

11.4.1 Cauchy’s Linear Differential Equation

The differential equation of the form:

dn
dn1+____+kn 1x + k,y =F(x)
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is called Cauchy’s linear equation and it can be reduced to linear differential
equations with constant coefficients by following substitutions:

t

x=¢e" =logx=t

dy _dydt _dy1l

dx  dtdx dtx

dy dy

> X— =
dx dt

= Dy, where D =

Slmllarlyx =D(D —-1)y,x*— =D(D - 1)(D — 2)y and so on.
Example 27 Solve the differential equation:
3 &’y

d2
x3SL 4 322

dy .
4 — T x5 +8y =13cos(logx), x>0 ... @D

Solution: This is a Cauchy’s linear equation with variable coefficients.

Puttingx = et .~ logx =t

= x d——Dy, ——D(D—l)y and x ——D(D—l)(D—Z)y

~( May be rewritten as

(bD(Db-1)(D—-2)+3D(D—-1)+D+8)y =13cost

= (D® +8)y =13cost ,D = ”
Aucxiliary equationis: m®+8 =0

>m+2)(m?*-2m+2)=0

m=-2,1+3i
C.F.= ce 2t + et(c, cos V3t + c5 sin V3t)

= % + x(c, cos(v3log x) + c3 sin(v3log x)

P.l.=

f(D)
= 13— —cost , Putting D? = —1
-D+8

=135 cost = 1352
4-D

cost Putting D% = —1
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P.I.=1§(8cost + D cost)
1 .
:;(8cost — sint)
= 1; (8 cos(log x) — sin(log x))
Complete solutionis: y = C.F. +P.l
c
=>y = x—; + x(c2 cos(\/§logx) +c3 sin(\/§logx) +
% (8 cos(log x) — sin(log x))
Example 28 Solve the differential equation:
o d?y dy x

x*—=+x—=—y =
dx2 dx y 1+x2

Solution: This is a Cauchy’s linear equation with variable coefficients.

Puttingx = et .~ logx =t
=X d——Dy, ——D(D—l)y

~(D May be rewritten as

3t

(MDD -1)+D—-1)y =

1+e2t

t
=>(D2—1)y— e’ D

1+e2t’

&=

Aucxiliary equationis: m?* —1=0
= m==l1
C.F.= cie t + cyet
- &
= + Cyx

3t

P.I = F(x) = ©

(D) D2 1 1+4e2t

1 e3t 1( 1 1 ) e3t
(D 1)(D+1) 1+e2t 2 \(D-1) (D+1)/ 1+e2t
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_1( 1 e3t 1 e3f)
T 2\(D-1) 1+e2t  (D+1) 1+e?t

3t

= (etfe‘t et — et fet=

1+e?t 1+e2t

N | =

dt) D—ia F(x) =e % [e™F(x) dx

_ l t ezt _ —t e4-t )
o 2(e f1+e2tdt € f1+e2fdt

Put e2t = u = 2e2tdt = du

. — Yot (L gy — ot [
~P.1= 4(6 f1+udu € f1+udu)

1 ¢ ltu-1
=Z(etlog(1+u)—e tf du)

1+u

_ 1( ¢ _ ot __r
= 4(6 log(1+u)—e f(l 1+u) du)
= i(et log(1 +u) —e t(u—log(1 +u))
= %(et log(1 + e?t) —e~t(e? —log(1 + e?))
1 2y _ 1.2 2
= —-(xlog(1+ x*%) (x* —log(1 + x2)

4 x
= %(x +§)log(1 + x?) —E
Complete solutionis: y = C.F. +P.l

1 1
>y = %+czx+ Z(x+;)log(1+x2)—§

1 1 1
>y = %+63x+ Z(x+;)log(1+x2) ) C3=Cp =7
Example 29 Solve the differential equation:
x2D? —2xD—4y = x?>+2logx, x>0 .. @

Solution: This is a Cauchy’s linear equation with variable coefficients.

Puttingx = e* -~ logx =t

d

= xD = 6y, x’D? = 6(6 — 1)y ,SEE

~(D May be rewritten as
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(66 —1)—26—4)y = e?* +2t
= (62—-386 —4)y =e? + 2t
Auxiliary equation is: m2 —3m—4=0
>m+1)(m—-4)=0
> m=-14

C.F.=cje”t + ce*t

G, C
T ox x4
Pl=— F(x) = ——— (e? +2t)
Y {C)) §2-35-4
_ 1 2t 1
= 57-35-4° 62—36—42t
=letyp— 14 Putting § = 2 in the 1*' term
-6 _4<1_5_+£)
4 4
2t 2 -1
_ e _1<1_ (Lﬁ)) .
6 2 4 4
_g2t 2
6 2 4 4
6 2 4
-x? 1 3
RS P.I.—T—E[logx—z]

Complete solutionis: y = C.F.+P.I

—x2 1[10 X 3]
x x* 6 2 & 4

11.4.2 Legendre’s Linear Differential Equation

The differential equation of the form:  k,(ax + b)" % +

n—1

d""y
k, (ax + b)" 1 =

is called Legendre’s linear equation and it can be reduced to linear differential
equations with constant coefficients by following substitutions:

d
btk (ax+b)d—z+ k,y = F(x)
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(ax +b) = e* =t =1log(ax + b)

dy _dydt _dy a

dx  dtdx  dtax+b

= (ax + b) ad—y = aDy,where D = %

.. d2y
Similarly(ax + b)? == a’D(D — 1)y
d3y
(ax + b)3§ = a®*D(D — 1)(D — 2)y and so on.
Example 30 Solve the differential equation:

(3x+2)2 +3(3x+2)——36y—3x +4x+1 ... @

Solution: This 1s a Legendre’s linear equation with variable coefficients.

Putting (3x + 2) = e -~ t=1log(3x + 2)
= (B3x+ 2) = 3Dy, (3x + 2)2 =3?D(D — 1)y
Also 3x? +4x + 1 = %(9x2 + 12x + 3)
= 2((B0)?+232x +4—4+3)
= ~(Bx+2)2-1)
= (e -1
-~ May be rewritten as
(9D(D — 1) + 9D — 36)y = i(e” -1)
= 9(D? — 4)y = g(e% - 1)

Aucxiliary equation is: 9(m? —4) =0
= m=42

C.F.= cie™? + ¢ e?t

= G +2)2 + ¢, (3x + 2)?
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—_ = 2t
) Fx) = 9(D2 —4) 3( -

zi( L eor)
27 \(D%-4) (D2%-4)

= i(ie“ — Le"f) Putting D = 2 in 1% term, it is a
(0-4)

27 \2.2
case of failure .. ——e2t = t——e2¥, also D = 0 in the 2" term.
(D#-4) f(2)
Pl=—(te? +3)
27 \4 4

-1 (log(3x+2) (3 n 2)2 _)

27

E [(Bx + 2)%1log(3x + 2) + 1]

Complete solutionis: y = C.F. +P.l

=Sy = + ¢,(3x + 2)? + — [(3x + 2)?log(3x + 2) + 1]

(3x +2)2

Example 31 Solve the differential equation:

(x + 1)2 + (x + 1) +y =2sin(log(x + 1)), x>—-1....... )

Solution: This is a Legendre’s linear equation with variable coefficients.
Putting (x + 1) = et -~ t=log(x+ 1)
= (x+1) —Dy (x+1)2 =1°D(D — )y
~( May be rewritten as
(D(D—-1)+D+ 1)y = 2sint
= (D? + 1)y = 2sint
Aucxiliary equationis: (m?+1) =0
> m==i
C.F.= c;cost+c,sint

= ¢, cos(log(x + 1)) + ¢, sin(log(x + 1))
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_ ! 2
= Grio)? +c,(3x + 2)

Pl=— F(x) = —

2sint
f(D) D241

:2t$ sint, Putting D? = —1 , case of failure

1 . 1 .
e 0?11 sint = t%SIHt

=t [sintdt = —tcost
=~ P.l= —log(x + 1) cos (log(x + 1))
Complete solutionis: y = C.F. +P.I
y = ¢; cos(log(x + 1)) + ¢, sin(log(x + 1)) — log(x + 1) cos (log(x + 1))
11.5 Method of Variation of Parameters for Finding Particular Integral

Method of Variation of Parameters enables us to find the solution of 2™ and
higher order differential equations with constant coefficients as well as variable
coefficients.

Working rule

Consider a 2" order linear differential equation:

2
u_{_P%_FQy =F(x)....... )

dx2

1. Find complimentary function given as: C.F. = c,;y; + ¢, ¥5,

where y, and y, are two linearly independent solutions of (D

noove| o _
2. Caleulate w = |, 7|, wis called Wronskian of y,; andy,
Yyi V2
3. Compute u; = _f%(x)dx, w, = fylslfx) dx

4. FindP.l. = w,y; + uyy,
5. Complete solution is given by: y = C.F. +P.I

Note: Method is commonly used to solve 2" order differential but it can be
extended to solve differential equations of higher orders.

2
Example 32 Solve the differential equation: % +y = cosecx
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using method of variation of parameters.

Solution: = (D% + 1)y = cosecx
Aucxiliary equation is: (m? +1) =0

=> m==i

C.F.= c;cosx + cysinx = ¢ y; + ¢3)5

~y; =cosx and y, = sinx

cosx Sinx

W=|y1, YZ,|=| ; |:1
yi V2 —sinx cosx

u1=—f%(x)dx=—fsinx cosecx dx = — [1dx = —x
U, = f%(x)dx = [cosx cosecx dx = [ cotxdx = log|sin x|
~Pl=uy; + uzy,
= —xcosx + sinx log|sin x|
Complete solutionis: y = C.F. +P.I
=y =, C0sXx + ¢, sinx — xcosx + sinx log|sin x|
Example 33 Solve the differential equation: (D? — 2D + 1)y = e*
using method of variation of parameters.
Solution: Auxiliary equationis: (m? —=2m+1) =0
> m=1,1
CF.= (c; +cyx)e* =cie* +cxe® =iy, + ¢y,

~y;=e*andy, = xe*

Yi Y2 e* x e* 2
|J’1' Y2 '| e* xe*+ e*
XX 2
u1=—f%(x)dx=—fx;§ dx=—fxdx=—x?
XpX
u2=f%(x)dx=feezex dx = [1ldx = «x
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~Pl=wy +uzy,

2 2

X X
= ——e* + x%e¥ =—¢”
2 2

Complete solutionis: y = C.F. +P.I
x2
=y =(c; +cyx)e* +7ex

2
Example 34 Solve the differential equation: % + 4y = xsin2x

using method of variation of parameters.

Solution: = (D% + 4)y = x sin 2x
Aucxiliary equationis: (m? +4) =0

= m=1x2i

C.F.= c¢;cos2x + ¢, sin2x = c1y; + ¢35

s y; = cos 2x and y, = sin 2x

:|J’1 3’2|_ cos 2x sin2x|:

yi' ¥ 'l T 1=2sin2x 2cos2x

u, = —f%(x)dx = —%fxsinZZx dx = —ifx(l—cosllx)dx

-t () - o (=)

2 .
X X sin4x cos 4x
[ ]
16 64

U, =f%(x)dx =%fxsin2xc052x dx = ifxsinélx dx

-2[(-222) - oo (-2

X COS4x sin 4x
= -2+
16 64

~Pl=wy, +uzy,

x sin 4-x cos 4x
16

X COS4x sin4x
_ 4 sintx)

] + sin 2x
16 64

= cos 2x [—%+
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= f—é (sin 4x cos 2x — cos 4x sin 2x) + 61—4 (cos 4x cos 2x + sin 4x sin 2x)

x2 x . 1 x2
——cos2x =—sin2x 4+ —cos2x ——cos 2x
8 16 64 8

Complete solutionis: y = C.F. +P.I

. x . 1 x?
= Yy =1 C0S2X + Cy sm2x+gsm2x+ac052x —gCOSZX

Example 35 Solve the differential equation: (D? — D — 2)y = e(©*+3%)
using method of variation of parameters.

Solution: Auxiliary equation is: (m? —m —2) =0

> m=-12

CF.= e +ce™ =y + 6y,

sy, =e*andy, = e?*

_ V1 Y2 ] e™ e2x _ x
W = 1 = —x 2wl = 3e
yi V2 —e 2e
x x
_ Y2 F (%) _ 2% o (€7 +3x) _ e2Xge” g3x
w == [HE = - [ —da = - [

:—%f e* e dx , Putting e* =t = e*dx = tdt

uy = —2 [ 3etdt = —=[(t3)(e") — B2 (e?) + (61) (") — (6)(eV)]
= u; = —<-[e% — 3¢%* + 6e* — 6]

—x ,(eX+3x) —xge¥ ,3x x e*
R e
~Pl=uy; +upy,

X _y e* 2x

S 39_ [e3* — 3e2* + 6e* — 6] + ——

=< [3¢* — 6+ 6¢7]
Complete solutionis: y = C.F. +P.l
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ex
Sy=cge*+c e+ eT [3e* — 6 + 6e7¥]

Example 36 Giventhat . y; = xand y, = 1 are two linearly independent

dzy dy

solutions of the differential equation: x?2 T TY THXF 0

Find the particular integral and general solution using method of variation of
parameters.

1dy 1, _1
Solution: Rewriting the equation as: — +de =Y =7
Giventhat . y; = xand y, =
~CF. =y, + ¥, = c1x + i—z
)’1 | _ x __2
yl 1 X
x?
[ Y2F) _ llf _ 1 -1
U = f—W dx—fx.x.2 = f dx logx
_ (VF) 1x _ o x?
u, = [ = dx = fx.xzdx— "

~Pl=wy; +uzy,
=X _x
208X ]

Complete solutionis: y = C.F. +P.I
— 2, X _x
Sy =cx+ - +210gx ”
2
Example 37 Solve the differential equation: x? % - 4x% + 6y =x%logx
using method of variation of parameters.
Solution: This is a Cauchy’s linear equation with variable coefficients.

Puttingx = et - logx =t

Zd

> xZ =Dy, x2=X=D(D - Dy
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~ Given differential equation may be rewritten as
(D(D—1) —4D + 6)y = te?t
= (D? = 5D + 6)y = te?*
Auxiliary equationis: (m—2)(m—-3) =0
> m=23
C.F.= ce® + et = ¢y, + 6y,

~y; =e?andy, = 3

Y1 Vs 2t 3t
W=| / ’|=|ezt e3t|:e5t
Yi Y2 Ze 3e
. Y2F(t) . e3tte?t . 2
w=—[FFdt=—[——dt= - [tdt= ——
eZtteZt

uy = (28 qe = [T dt = [te~tdt = [()(—e™") — (1)(e™)]

-t _ -t

= —te e

~Pl=wy; +uzy,

2
= —%eZt — (te7t +e7Hed

= _Bert et o2t = 2 (§+ t+ 1)
Complete solutionis: y = C.F. +P.l
2
=y =ce®t +c,e3t —e?t (t;+ t+ 1)

2
ory=clx2+c2x3—x2(@+logx+1)

2
=y =c3x? + ¢y x3 —%(logx)2 —x%logx,c3=¢, — 1

11.6 Solving Simultaneous Linear Differential Equations

Linear differential equations having two or more dependent variables with
single independent variable are called simultaneous differential equations and
can be of two types:
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Type 1: f1(D)x + f2(D)y = F(®) , g1(D)x + g(D)y = G(¢), D = ;

Consider a system of ordinary differential equations in two dependent variables
x and y and an independent variable t:

fiD)x + f,b(D)y=F(t), g1.(D)x+ g(D)y =G(t),D =—
Given system can be solved as follows:

1. Eliminate y from the given system of equations resulting a differential
equation exclusively in x.

2. Solve the differential equation in x by usual methods to obtain x as a
function of t .

3. Substitute value of x and its derivatives in one of the simultaneous
equations to get an equation in y.

4. Solve for y by usual methods to obtain its value as a function of t.

Example 38 Solve the system of equations: % +y =et, ‘ji—f —x =et

Solution: Rewriting given system of differential equations as:

Dy—x=et...@ D=2

Multiplying D by D

= D?’x+Dy=e*....Q
Subtracting @ from (@), we get
(D2+Dx=et—et ... @

which is a linear differential equation in x with constant coefficients.
To solve @ for x, Auxiliary equationism?+1 =10
=>m = *i

C.F.= cicost+c,sint

. P T S S
P.l. f(D) FO) = ) = p2+1° p2+1°
= iet — ie‘t, Putting D = 1 and D = —1 in 1* and 2™ terms respectively
o — ; 1 1 —¢
nX=crcost+cysint+oet — ~e Tt ®
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Using ®in ® = D [cl cost + ¢, sint +%et — %e‘t] +y=et
= [—c1 sint + c, cost +%et + %e‘t] +y=cet
— - 1t _ 1 ¢
=y =csint—cycost+-ef— et ®
(® and ©® give the required solution.

Example 39 Solve the system of equations: ti—f +y =0, % +x =0

giventhat x(1) =1, y(-1) =0
Solution: Given system of equations is:
dx _
tg +y= 0...... @
y _
t—+x=0 ......@,d
Multiplying @ by ¢t —

d dx
ta(tzi-y) =0

d?x dx dy
= 2~ —_ _ =
St +t—=0 ... @

Subtracting @ from 3, we get

which is Cauchy’s linear differential equation in x with variable coefficients.
Puttingt = ek -~ logt =k

dx _ 2 d%x _ _ _d
=t =Dy, ?E=D(D-1x , D=2

~ @ may be rewritten as

MOO-1)+D—-1Dx=0 ...... ®

> D*-1)x=0

Tosolve ® for x, Auxiliary equationism? —1 =10
>m=+1

CF.= cef+ce ™= it + CTZ
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. . d C2 _
US|ng@|n®=>tE(c1t+7)+y—0
Also giventhatat t=1,x=1andat t=-1,y =0

Usingin®and @ ¢; +c¢c, =1, ¢;—¢c, =0 $C1=C2:%

Usingc; = ¢, = % in ®and @, we get

2+ =160

Example 40 Solve the system of equations:

2

d?x d
t2+y = sint, ﬁ+x = cost

d

Solution: Rewriting given system of differential equations as:

D*x +y =sint......D
D%y +x =cost ..., D=2

Multiplying O by D?

D?*(D*x +y) = D%sint

= D*x + D?y = —sint .....®
Subtracting @ from 3, we get

(D* — 1)x = —sint — cost ....... @

which is a linear differential equation in x with constant coefficients.
Tosolve @ for x, Auxiliary equationism*—1=0

> m2-—1)@m2+1)=0

>m==1,+i

CF.=ciet+c,e”t +(cacost+c,sint
1 2 3 4

Pl = f(D) F@t) = 1% =) D4—1

cost

Page | 37



Putting D2 = —1 i.e. D* = 1in 1% and 2" terms, it is a case of failure
~ Pl = —t%sint - t%cost
4D 4D
= lsint+ fZcost putting D2 = —1
4D 4D
= —Zcost+ Zsint
4 4
— t —t : trcs
~x = (ciet +ce™") +(c3cost + c,sint) +Z(sm t —cost)....... ®
Using ®in @
= D? [clet + c,e”t + (cgcost + ¢y, sint) +£(sint — cos t)] + y =sint
t t - t - 1 -
=>D[c1e —cye” —C3Slnt+C4COSt+Z(COSt+Slnt) +Z(51nt—cost)]
+y =sint
t _t . t . 1 -
= [cle + c,e —c3cost—c4smt+z(—smt+cost) +Z(cost+smt)

1
+Z(cost+sint) +y =sint
>y =—(cet +ce ")+ (cgcost+cysint) + G + %) (sint — cost) ...®
® and ® give the required solution.

Type I1: Symmetric simultaneous equations of the form % = == —

. . . . . d d d
Simultaneous differential equations in the form —~ = % = — can be solved

by the method of grouping or the method of multipliers or both to get two
independent solutions: u =c¢,;,,v=c,; Where c; and c, are arbitrary
constants.

Method of grouping: In this method, we consider a pair of fractions at a time

which can be solved for an independent solution.

Method of multipliers: In this method, we multiply each fraction by suitable

multipliers (not necessarily constants) such that denominator becomes zero.
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- d d d dx+bdy+cd
If a, b, c are multipliers, then = = & = Z = 22220077
P Q R aP+bQ+cR

Example 41 Solve the set of simultaneous equations:

dx _ dy _ dz
(z2-2yz-y?)  (xy+zx)  (xy-zx)

Taking x, v,z as multipliers, each fraction equals

xdx+ydy+zdz __ xdx+ydy+zdz

(xz2-2xyz-xy2%+ xy2+xyz+xyZ-%x22) 0

= xdx+ydy+zdz=0

2 2 2
Integrating, we get % + y; + Z; =c,

1% independent solution is: u = x2 +y%2 +z%2 =¢;......D

Now for 2" independent solution, taking last two members of the set of

equations: =22 = %
g 04D x0-2)

= (y—2)dy = (y +2)dz
= ydy — (zdy + ydz) — zdz =0
= ydy —d(yz) — zdz =0

Integrating, we get

2 2

(D and @ give the required solution.

Exercise 11B

Q1. Solve the following differential equations:
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2
i. xZ%—Bx%+4y=(1+x)2

Ans. (y = (¢ + ¢, log x)x? +7 St 42 (logx) )

2dy+4x ~+2y=e"

AnS. (_’y = ; x_2 x_2>

i, (2x+3)2 2 - (2x +3)2 - 12y = 6x

3+4/57 3—/57

Ans. (y = c;(2x+3) + +c(2x+3) + ——(2x+3)+2)

iv. (x+ 1)2 + (x + 1) —ty=4 cos(log(x + 1))

Ans.(y = C1 Cos(log(x + 1)) + ¢, sin(log(x + 1)) + 2log(x +
1.simoga+1

Q2. Solve the following differential equations using method of variation of
parameters
d2

i + vy = xsinx
dx2 Y=

. 1 X . x?
Ans. (y = ¢y cosx + ¢, sinx +gcosx +Zsmx—:cosx)

ii. (D? — 1)y = e **sine™™

Ans. (y =c,e* + c,e ™ —sine™

—e*cose™™)

iii. (D? —2D)y = e*sinx
Ans. (y = ¢; + c,e?* — %ex sin x)

i %y 22 = ¥
iv. A =e*logx
dx? &

Ans: (y = ¢; + c,e®* + %ex(Z log x — 3))

Q2. Solve the following set of simultaneous differential equations

- dx _ —0 YW_9r_cy=
I. m 7x+y =0, m 2x =5y =0

Ans:(x = e%(c; cost + c,sint),y = e®(c; — ¢;) cost + (¢, + ¢p)sint) )

ii. D+Dx+@D+y=et, D-Dx+D+1y=1
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Ansi(x = et + e +2e7t,y = 3ciet + 2c,e7% + 3e7F)
iii dx _ dy _ dz
' (z2-2yz-y2)  (xy+zx)  (xy—zx)

Ans{xy —z =c¢;, x> —y? 4+ z% = ¢,)
11.7 Previous Years Solved Questions
Q1. Solve (D*+D +1)2(D—-2)y=0

(Q1(h),GGSIPU, December 2012)

Solution: Auxiliary equationis: (m? + m + 1)2(m —2)y =0.......

Solving @, we get
>m=2--+20,— -+
2 2

CF.= e + e_Tx[(c2 + 5 x) COS?X + (¢4 + c5x) sin?x
Since F(x) = 0, solution is given by y = C.F
>y = ce*+ e_Tx[(c2 + c3 x) cos?x + (c4 + Cc5X) sin?x
Q2. Solve (D? — 1)y = coshx cosx

(Q8(b), GGSIPU, December 2012)
Solution: Auxiliary equationis: m?* —1=0
> m=+=1

CF.= cie*+ c,e™

1
P.l.=— F(x)
(D)
1 eX+e X eX+e X
= CoS X w coshx =
D%2-1 2 2
1 e* e X
= —COSX +—cosx
D2-1\2 2
= e? ! cosx + e’ L COS Xx
T2 (D+1)%2-1 2 (D-1)2-1
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e* 1 e X

= — CcosS X +
2 (D2+2D) 2 D2-2D

COS X Putting D? = —1

= —g(ZD + 1) cosx +i—0_x(2D —1)cosx Putting D? = —1

e—x

X
= —i—o(—Zsinx+cosx)+ (—2sinx — cos x)

10

e* . e X .
E(Z sin x — cos x) _T(Z sin x + cos x)

~ Pl =
Complete solutionis: y = C.F. +P.l

—-X

e* . e ¥ .
>y = cef+ ce +E(251nx—cosx)—T(Zsmx+cosx)

2
Q3. Solve % + 4y = 4 tan 2x by the method of variation of parameters.

(Q9(a), GGSIPU, December 2012)
Solution: = (D% + 4)y = 4tan 2x
Aucxiliary equation is: (m? +4) =0
> m=12i
C.F.= c¢;cos2x + ¢, sin2x = c1y; + ¢,

=~y = cos2x and y, = sin 2x

:|y1 3’2|= cos 2x Sin2x|:
v, oy, —2sin2x 2cos2x
2
w, = _:[X%gfzdx ::-%J'shlzxtarlzx dx =:'_2_fiz;;: d
a2
—2 [ gy = —2 [(sec 2x — cos 2x) dx
COS 2Xx

= -2 Eloglsec 2x + tan 2x| — %sin Zx]
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= [sin 2x — log|sec 2x + tan 2x|]

U, =fy1;,(x)dx =%f4tan2xc052x dx = 2 [ sin2x dx

= —cos2x
~Pl=wy; +uzy,
= cos 2x [sin 2x — log|sec 2x + tan 2x|] — sin 2x cos 2x
= — cos 2x log|sec 2x + tan 2x|
Complete solutionis: y = C.F. +P.I

= y = ¢, €0S 2X + ¢, sin 2x — cos 2x log|sec 2x + tan 2x]|
Q4. Solve the system of equations: % +x =y+et, % +y =x+et

(Q9(b), GGSIPU, December 2012)

Solution: Rewriting given system of differential equations as:
D+Dx—y=et..... @
D+1)y—x=e'....0, D=—

Multiplying D by (D + 1)

= (D +1)2x — (D + 1)y = (D + 1)et
(D?2+2D +1)x — (D + 1)y = 2e*....Q
Adding @ and (3, we get

(D? + 2D)x = 3et ....... @

which is a linear differential equation in x with constant coefficients.
To solve @ for x, Auxiliary equationism? +2m =0
>m=0,-2

CF.= ¢, +ce™?

1

-1 _ t
P.l.= = F(t) =355 e
= et Putting D =1
Lx =0 et 4et ®
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Using ®in @ = D[c; + ce ™ +et]+ ¢y + e +et —y =et

= -2 +el+o+ et —y=0

® and ® give the required solution.

3x

Q5. Solve by method of variation of parametersy "' — 6y ' + 9y = ex—z

(Q8(a), GGSIPU, December 2013), (Q3(b), GGSIPU, 2™ term 2014)
Solution: Auxiliary equation is: m? —6m+9 =0
(m—3)2=0
= m=3,3
CF.= (c; +cpx)e3* =ce3* + c,x e3* = ¢y, + ¢,y

~y, =e3*andy, = xe3*

__|Y1 YZ| | e3* xe3* — 6%
yi' y2 3e3* 3xe3* + e3*
3X 3x
——fy—zsv(x)dx fxez e = —fidxz —log x
F( ) 3X ,3x 1
uzzfylwx dxzfexzeéx dx = f sdx = —~
~Pl=uy; +upy,
= —e3*logx — e3* = —e3*(1 + logx)

Complete solutionis: y = C.F. +P.I
=y = (c; + cx)e3* —e3* (1 + logx)
Q6. Solve the differential equation: Ly +2LY + e?* + sin 2x

dx3 dx?
(Q8(b),GGSIPU, December 2013)
Solution: = (D3+ 2D? + D)y = e** + sin 2x

Aucxiliary equation is: m3+2m? +m =0
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>m@m?+2m+1)=0
>mim+1)2=0
> m=0,-1,-1

CF.=c,+ e™*(cy + c3x)

Pl=—"F() =

2 .
f(D) D3+2D2+D( " + sin 2x)
— 1 2x

———sin 2x
D3+ 2D2+D D3+ 2D2+D

=—e? + —sm 2x, putting D = 2 in 1* term, D? = —4 in the 2" term

18 —4D—-8+

1 3D-8 . 1 3D-8
= —p2x _ "~ "  gin2x = —e?¥ —

18 (3D+8)(3D-8) 18 (9D2-64) sin 2x

= _er +— (3D — 8)sin 2x
100

= 1—1862" + Flo (6cos2x — 8sin2x)
Complete solutionis: y = C.F. +P.l
>y =c¢ + e *(c; +c3x) + %em + ﬁ(6c052x — 8sin2x)
Q7. Solve (D? —2D + 1)y = xe* cosx
(Q8(a), GGSIPU, December 2014)
Solution: Auxiliary equationis: m? —2m+1 =10
= (m—1)2
>m=11
C.F.=(c; + cyx)e*
P.1. F(x) = — L xe*cosx

f(D) D2-2D+1

1
(D+1)2-2(D+1)+1

— pX

X COS X

x 1
= e —=XCosXx
D2
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1
= e* =[x cosxdx

= e~ [(x)(sin x) — (1)(— cos x)]
= ex%[xsinx + cos x]
= e*[[ xsinx dx + [ cos x dx]
= ex[[(x)(— cosx) — (1)(—sinx)] + sin x]
~P.l. = e*[—x cosx + 2 sin x]
Complete solutionis: y = C.F. +P.l
=y = (¢, + cx)e* + e*[—x cosx + 2 sin x]
Q8. Solve by M.O.V.P. S¥— 2% 1y = ¢*logx
(Q8(b),GGSIPU, December 2014)
Solution: Given differential equation may be rewritten as
(D> —2D + 1)y = e*logx
. Auxiliary equation is: m?* —2m+1 =20
= (m — 1)?
>m=1,1

C.F.=(c; + cx)e* = c1y; + ¢y,
Sy, =e*andy, = xe*

X xex

W=|:V1, )’2l|= e _ 2
Vi Y2 e* xe*+ e*

X ,X
ulz_f%mdxz_f“:%dxz—fxlogxdx

fxlogxdx =1 =[(0)(xlogx —x) — (1) (1-Z)|
w [logxdx = xlogx — x

:21=x210gx—x2+x7
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=1=[xlogxdx = xz—zlogx—g

x2 le
SU=—— —10g X
1= 75 5 108

Uz = fylsl,(x) dx = fexe:;fgx dx = [logxdx = xlogx —x

2 2
~P.l= (x: — %logx) e* + (xlogx — x)xe*

2

=e* (x: — xz—zlogx + x%logx — xz)
2 3
=x7ex(logx _E)
Complete solution is: y = C.F. +P.I
2 3
=y =(c, + cyx)e* +x7ex(logx _E)
Q9. Solve (D —1)*(D +1)* =sin*~+e* +x

(Q1(a),GGSIPU, December 2015)
Solution: Auxiliary equation is: (m — 1)2(m+ 1) =0
> m=11-1,-1

C.F.= (c1 + cpx)e* + (c3 + cyx)e™

1 1 X
PlL.=—F(x) =———(sin?=+e* +x
f(D) () ((D—l)(D+1))2( 2 )
_ 1 1 _ 1 x 1
T 2D*-2D2%2+1 (1—cosx) + Di_zp2+1 © + Di_zp241%
11 ox _1__ 1 1 x 1
2D*-2D2+1 2D*-2D2+1 cosx + D*-2D2+1 e’ + D*-2D2+1 x
l 1 0ox _— l H —
Now -—-——— e~ = ,putting D = 0
1 1 1 . 2
Als0O =————cos x = =cos x putting D* = —1
2D*-2D%2+1 8
. 1 x _ 1 x _ . .
Again o € T Xipip €8s f(1) = 0, acase of failure 2 times
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— 2 1 x _ X

12D%-4 8

e*, puttingD =1

1 1
—_— ) = —
D*-2D2+1 1+(D*-2D?)

And x=[14+(D*-2D?)]x=x

1 1 x2
~Pl==—=cosx+=¢e*+x
2 8 8

Complete solutionis: y = C.F. +P.l
2
>y = (¢ tcx)e* + (cz +cx)e™ —écosx +% e* +x +%
2d%  , dy — d
Q.10 Solve x " 4x ol 6y = x*sinx
(Q3(b),GGSIPU,December 2015)
Solution: This is a Cauchy’s linear equation with variable coefficients.
Puttingx = et .~ logx =t
ay _ 2d%y _ _

= x—== Dy, x == D(D — 1)y
~ Equation may be rewritten as
(D(D—1) —4D + 6)y = e*'sinet
= (D? —5D + 6)y = e**sinet, E%

Aucxiliary equation is: m?* —5m+6 =0
>m-2)(m-3)=0
> m=2,3

C.F.= ¢ e? + c,e®t

c1x? + cyx3

1
D?2-5D+6

et sin et

-1 —
P.l.= ) F(x)

1 .
= et sin et
(D+4)2-5(D+4)+6

1 .
= et sinet = e*

t
————S
D2+3D+2 (D+1)(D+2)

ine
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4t

1
[(D+1) (D+2)

. 1,
—e ]sm et=e# [ sinet —

(D+1) (D+2)
=e*[e7! [etsinet dt — e 2! [ e?t sinet dt]

.o 1
" (D+a)

F(t) = e % [ e*F(t)dt

= e*[e t(—coset) — e ?*(—et cose’ + sinet]

sin et]

Solving the two integrals by putting et = u, .. etdt = du

~P.I=—e? sinet=—x?%sinx
Complete solutionis: y = C.F. +P.I

=y = ;X% + cx3 — x?sinx
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2.2. First Order Linear Partial Differential Equations, Lagrange’s Method
Let P(x,y,z), Q(z,y,2) and R(z,y,z) be continuous differentiable functions with respect to
each of the variables. Being x,y independent variables and z = z(z,y) dependent variable,

consider

0z 0z
P(l’,y, Z)% +Q(xay>z)a_y - R(I’,y, Z) (1)

This equation is called the first order quasi-linear partial differential equation. A method for
solving such an equation was first given by Lagrange. For this reason, equation (1) is also

called the Lagrange linear equation. If P and () are independent of z and
R(z,y,z) = G(x,y) — C(x,y)z,

(1) gives the equation with linear partial differential, so a linear partial differential equation
can also be considered as a quasi-linear partial differential equation. Therefore, the Lagrange

method is also valid for linear partial differential equations.

Lagrange’s Method

Let’s assume that in a region of three-dimensional space, the functions P and () are not both
zero, and that the function z = f(z,y) has a solution to the equation (1). Considering a fixed

point M (x,y, z) on the S surface defined by z = f(x,y), we can give a simple geometrical



meaning to equation (1).

(pr qr_]') ‘_\_

Figure 2.2.1

The normal vector N of surface S at point M is given by

n = grad{f(z,y) - 2}

= (fa:7 fya _1>
- <p7Q) _]-)
If we write the equation (1) in the form
Pp+Qq—R=0, (2)

it is seen that the scalar product of the vectors (p,q, —1) and (P, Q, R) is zero. These two
vectors are perpendicular to each other. This means that there is a line L that passes through
the point M and is perpendicular to the normal vector n, such that the direction cosines
(P,Q, R) of L is tangent to the surface S. Let the plane passing through N and L cut the
surface S along a curve C. The direction cosines of the tangent of C' on M is (dz,dy,dz)

and this tangent is parallel to L. Therefore, the direction cosines of these two lines must be



proportional. That is,
dv dy dz

P00 R (3)

The first order ordinary differential equation system formed by the equations (3) is called the
auxiliary system of the Lagrange equation or the Lagrange system. A system equivalent to

system (3), being = independent variable, is

dy Q dz R
g _ X - 4
de. P ' dx P (4)

The general solution of (4) is

y=yl(x,c1,02) , z=2z(x c,0o) (5)

where ¢; and ¢y are arbitrary constants. If these equations are solved according to ¢; and cs

the general solution of the system (3) can be as follows

u(z,y,z) =c , v(z,y,2)=cs. (6)

Each of u = ¢; and v = ¢y is called first integral of Lagrange system. The functions u and v

must also be functionally independent. So at any point M (z,y, z) € 0, all Jacobians

should not be zero at once. Each of the first integrals obtained by (6) is a surface family of

one-parameter. Intersection curves of surfaces defined by (6) form the surfaces

F(u,v) =0 (7)

The equation (7), where F' is an arbitrary function, gives the general solution to the partial
differential equation (1).

It is also possible to explain this situation as follows: exact differential of (6) is in the form

uzdr + u,dy + u,dz =0
yaY (8)

vpdx + vydy + v,dz =0



Since u and v are the solutions of the system (3), the equations (3) and (8) show that u and

v functions satisfy

v P +v,Q +v.R=0

(9)

If we solve the system (9) according to P, @ and R, we obtain

P Q
A(uw) — O(uw)  I(uw) (10)
0(y,z) O(z,x) A(z,y)

On the other hand, from the equation F'(u,v) = 0, we eliminate the arbitrary function F, we

obtain the partial differential equation

(11)

If the expressions P, @, R in (10), which are proportional with Jacobians, are written in (11),

we have

Pp+Qq =R,

which shows that (7) is the solution of (1). Since F' is arbitrary in this solution, it is the general

solution.
. . . 5,02 , 0%
Example 1. Find the general solution of the equation x pp +y i (x +y)z.
T Y
Solution: The corresponding Lagrange system is in the form
dv dy  dz
22 (r+y)
From this system, the first integrals are obtained as follows:
d d 1 1 1
i) From—f:—?; we have —— = ——+4+¢ or u=-——=¢
T Y T Y y
d d dx — d dr —d d d(x — d
ji) From 42 = Qv _dr—dy  dv—dy - dz g e my)de
2y -y (e-y)lety)  (+y)z (z—y) 2
= In(zr—y)=nz+lne = v= " = (3.
z



So, the general solution of the given equation is

r—y
z

P —é, ) =0

< |

where F' is arbitrary function.

Remark: The general solution given above is also written as

z= (v —y)f(

S
|
SHE
SN—

where f is arbitrary function.

Example 2. Find the general solution of the equation zzp + yzq = — (2% + y?).

Solution: The corresponding Lagrange system is

A _dy_ s

vz yz —(x?24y?)

The first integrals:

d d d d

z)—x:—y =>—$:—y:lnx—lnyzlncl:u:fzcl.
xz Yz x y Y

i) dr dy wxdxr ydy xdr+ydy dz

M) — = — = = = =
rz  yz 22z y?z z(e?+y?) —(22+?)

= zdr + ydy = —zdz = xdr + ydy + zdz = v =22+ y> + 22 = c,.
The general solution of the given equation is
z 2 2 2
F(—, 2*+y°+2°)=0
Y
where F' is arbitrary function.

0z 0z

Example 3. Find the general solution of the equation (y + x)% + (x — y)é?_y =




Solution: The corresponding Lagrange system is

dy  dx dz
-y y+z 2P +y*
z
The first integrals:
, dy dx dz + dy dz dz + dy
i) From = = we have = :
r—y y+x 2z Y+ 2z
(z +y)? 2 2 2
(x+y)d(z+y) —2xde=0= d —g 2 =0=(r+y)*—22°=¢ or
= u(z,y,2) =y* + 2xy — 22 = ¢;.
dy — xd d dy — xd d
i7) From yey — rax =4z yey —rer 242 = ydy — xdx + zdz =0

yo—y) —a(r+y) 2+ —@ty?) 24P

vz, y,2) =y -1+ 22 =c

The general solution is

F(y? +2zy — 22, 4 — 2%+ 2%) =0
where F' is arbitrary function.

Remark: It should be noted that the first independent pair of integrals obtained above is not

the only pair used to write the general solution. In the last example, the pair of first integrals

W(l',y, Z) = 27 +2zy =

v(z,y,2) = Y¥—22+22=c

form an independent pair of the first integrals of the auxiliary equation system. Hence the

general solution can writen as
F(22+2zy, y* —2*+2%) =0

where F' is an arbitrary function.



Formation of Partial Differential Equations

Partial differential equations can be obtained by the elimination of arbitrary
constants or by the elimination of arbitrary functions.

By the elimination of arbitrary constants

Let us consider the function

o(xy,z,a,b )=0 ----mmmmmmm- (1)

where a & b are arbitrary constants

Differentiating equation (1) partially — w.r.tx &y, we get

+ P =0 (2)
ox oz
oo of
+tq =0 (3)
oy oz

Eliminating a and b from equations (1), (2) and (3), we get a partial differential
equation of the first order of the form f (x,y,z, p,q) =0

Example 1
Eliminate  the arbitrary constantsa & b from z=ax + by +ab
Consider z =ax+hby+ab (1)
Differentiating (1) partially w.rt  x &y, we get
oz
= a 1L, p=a (2)
[3).9
0z
= b 1€, q=b (3)

[ A
(/}'

Using (2) & (3) in (1), we get
z = px +qy+ pq
which is the required partial differential equation.
Example 2
Form the partial differential equation by eliminating the arbitrary constants a and b
from
z=(x2+a2)(y2+b2)
Givenz=(x2+a2) (y2+b2)  ....... (1)
Differentiating (1) partially w.rt  x &Yy, we get



P =2x (y2+h2)

q =2y (x+a)

Substituting the values of p and g in (1), we get
4xyz = pq

which is the required partial differential equation.
Example 3

Find the partial differential equation of the family of spheres of radius one whose
centre lie in the xy - plane.

The equation of the sphere is given by

(x-a)+(y-b)2+ z2 =1 Q)

Differentiating (1) partially w.rt x &y, we get
2 (x-a)+2zp = O
2(y-b)+2z9= 0

From these equations we obtain

X-a = -zp (2)

y-b=-zq 3)

Using (2) and (3) in (1), we get
2p2+z202+z2 =1

or z2(p2 +g2 +1)=1

Example 4
Eliminate the arbitrary constants a, b & ¢ from
2 2 2
X Y Z
a2 b‘.’ 2

and form the partial differential equation.
The given equation is



s A == = (1)

Differentiating (1) partially wrt x & y, we get

2x  2zp
—_— =0
&
2y  2zq
s = 0
b* &

Therefore we get

X zp
=k =0 2)

2 2

a C

y zq
— + — = 0 (3)
b~ c:

Again differentiating (2) partially w.rt “x’, we set

(1/a* )+ (1/ ) (zr+p°) =0 (4)

Multiplying (4) by x. we get

s
X GXEF PX

— +— +— =0

2
a2 (vB C

From (2) , we have

or -zp + xzr + p2x= 0

or -zp+xzr+p2x=0



By the elimination of arbitrary functions

Let uand v be any two functions arbitrary function. This relation can be
expressed as
u = f(v) (1)
Differentiating (1) partially w.rt x & y and eliminating the arbitrary
functions from these relations, we get a partial differential equation of the
first order of the form

f(x,y,z,p,q) =0.

Example 5

Obtain the partial differential equation by eliminating ,.f,,from z = ( x+y ) f ( x2 -
y2)

Let us now consider the equation

z = (xty) f(x2- y2) (1)
Differentiating (1) partially w.rt x &y, we get
p=(x+y)f'(x2-y2).2x + f(x2- y2)
q=(x+y)f'(x2-y2).(-2y) +f(x2-y2)

p-f(xX-y) = (x+y)f'(x-y').2x (2)
q-f(x'-y) =(x+y)f'(x-y).(-2y) (3)
Hence, we get
i R ) X
q-f (X-y") y

e, py - yf(x2-y2) =-gx +xf (x2-y2)
e py tox =(xt+y)f(x2-y2)
Therefore, we have by(1), py +gx =z

Example 6

Form the partial differential equation by eliminating the arbitrary function f
from



z=eyf(x+y)

Consider z =eyf(x+y) (1)

Differentiating (1) partially w.r.t x &y, we get
p =eyf'(x +y)

q =eyf'(x +y)+f(x+y).ey
Hence, we have

q=p+z

Example 7
Form the PDE by eliminating f & @ from z = f(x+ay ) + ®( x—ay)

Consider z= f(x+ay) + ®( x—ay) (1)

Differentiating (1) partially wrt x &y ., we get

p=f'(x+ay) +®d' (x—ay) (2)

q= f'(x+ay) a+® (x-ay)(-a) (3)

Differentiating (2) & (3) again partially w.rt x &y, we get

r =f"(xt+ay) +®"( x—ay)
t =f"(xtay).a”+®"( x—ay) (-a)

ie, t=a {f'(x+ay)+®"( x—ay)}

or t= 82I'

Exercises:
1. 1. Form the partial differential equation by eliminating the arbitrary constants
,a" & ,,b™ from the following equations.



(i) z=ax+by

(i) Pty 2

t: = =]
a’ b

(i) z=ax+by+Va +b’

(iv) ax’+ by” +cz2=1

(v) z=a'x + bzy +ab

[S5]

2. Find the PDE of the family of spheres of radius 1 having their centres lie on
the xy plane{Hint: (x —a)2 + (y -b)2 + z2 =1}

3. Find the PDE of all spheres whose centre lie on the (i) z axis (ii) x-axis
4, Form the partial differential equations by eliminating the arbitrary functions

in the following cases.

i) z=f(x+y)

(i) z=1f(x2-y2)

(i) z=f(x2+y2+22)

(iv)  o(xyz,x+y+2)=0

(v), FXxy+z2,x+y+2)=0
(vi) z=f(x+iy)+f(x-iy)
(vii) z=1(x3+ 2y) +g(x3-2y)
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Lecture 21: The one dimensional Wave Equation:
D’Alembert’s Solution

(Compiled 3 March 2014)

In this lecture we discuss the one dimensional wave equation. We review some of the physical situations in which the
wave equations describe the dynamics of the physical system, in particular, the vibrations of a guitar string and elastic
waves in a bar. We describe the relationship between solutions to the the wave equation and transformation to a moving
coordinate system known as the Galilean Transformation. The galilean transformation can be used to identify a general
class of solutions to the wave equation requiring only that the solution be expressed in terms of functions that are
sufficiently differentiable. We show how the second order wave equation can be decomposed into two first order wave
operators, one representing a left-moving and the other a right moving wave. This decomposition is used to derive the
classical D’Alembert Solution to the wave equation on the domain (—oo,00) with prescribed initial displacements and
velocities. This solution fully describes the equations of motion of an infinite elastic string that has a prescribed shape
and initial velocity.

Key Concepts: The one dimensional Wave Equation; Characteristics; Traveling Wave Solutions; Vibrations in a
Bar; a Guitar String; Galilean Transformation; D’Alembert’s Solution.

Reference Section: Boyce and Di Prima Section 10.7

21 The one dimensional Wave Equation

21.1 Types of boundary and initial conditions for the wave equation

% = 02% (21.1)
% — expect 2 initial conditions u(z,0) = f(x)
o P (w,0) = g(x) (212
Ox?

— expect 2 boundary conditions  u(0,t) =0
0



21.2 Some examples of physical systems in which the wave equation governs the dynamics

21.2.1 The Guitar String

A
FARS

I” I N

Cffg s }\

U (2,002 Fex) INITIAL
/ 4,00 = fex) (\’ bl

%lé (x,0)= gex)

UCo )= O

UiLyt)=0

Pa) EQuUiL 184000 LOS 176N P

FIGURE 1. Initial condition and transient solution of the plucked guitar string, whose dynamics is governed by (21.1).

21.2.2 Longitudinal Vibrations of an elastic bar

0 LLAST7C AR

H i liet,
Ei!"—" "I:Eild
o CorPassion  RARE FhCTroN &

C='/(?'

FIGURE 2. Compression and rarefaction waves in an elastic bar, whose dynamics is governed by (21.1).

21.3 A sneak preview - exponential solutions and the dispersion relation

To investigate the nature of the solutions to the wave equation that we might expect, let us look for exponential
solutions of the form:
u = eikm+ot

Substituting this trial solution into (21.1) yields
Ugt — gy = [02 - (zk’)2 ethrtat —

Therefore in order that the exponential function (21.3 be a solution of (21.1), we require that o satisfy the dispersion

relation

o? = —2k?



The Wave Equation 3
or
o= *tkc
which implies that there are two solutions of the form

u = ezk(wict) _ eizkctezk:w

We will now demonstrate physical significance of the argument (x =+ ct) of the exponential and show that this leads
to a much more general class of solutions. The products of time varying sinusoids with arguments ikct with spatially
varying sinusoids with arguments kx are precisely the same form as the solutions one would obtain by separation of
variables for the wave equation defined on a finite domain. The selection of permissable wavenumbers k that apply

in a particular problem will be determined by solving the appropriate eigenvalue problem.

21.4 The Galilean Transformation and solutions to the wave equation

Claim 1 The Galilean transformation ¥’ = x + ct associated with a coordinate system O'x’ moving to the left at a

speed ¢ relative to the coordinates Ox, yields a solution to the wave equation: i.e., u(x,t) = G(x + ct) is a solution to

(21.1)

u =G uy = AG" (21.3)
Upg = G Upy =G, (21.4)

Therefore
Ut — Cge = G — AG" = 0. (21.5)

Similarly u(z,t) = F(x — ct) is also a solution to (21.1) associated with a right moving coordinate system O’z’ such

that 2’ =  — ct. Is the sum of two solutions also a solution?

Claim 2 Because the wave equation is linear, superposition applies: i.e., If u; and ug are solutions to (21.1) then

u(z,t) = aquy(z,t) + asus(x,t) is also a solution.

8—2(a up + aaus) = %—i—a Ous
e
02 0?
= ayc? 3521 + aac? 8::22 since u; and usy solve (21.1)
Thus
32 82
@(alul + Oég’tl,g) = C2ﬁ(alul + a2u2)~

Therefore, the general solution to the one dimensional wave equation (21.1) can be written in the form
u(z,t) = F(x — ct) + G(z + ct) (21.6)

provided F' and G are sufficiently differentiable functions.



4

Observations:

(1) This property is due to the linearity of uy = c?ug, (21.1).

(2) Every solution for (21.1) on (—o0, 00) is of this form.

21.4.1 Decomposition of the wave operator into left and right moving waves

We observe that the wave operator can be decomposed as follows:

02 5 02 0 0 0 0
_— _— = _ _— _— — C— = U. 21
(8152 ¢ a:ﬂ) ul(z,t) <8t +C§x> <8t 08x> u(,8) =0 (21.7)
0 0 . . . .
Let w = i c—ax u then solving the wave equation can be reduced to solving the following system of first order
wave equations:
ou Ju ow ow
== 4 =0. 21.
5 oy =Y and 5 + C o 0 (21.8)

In Lecture 2 we used the Galilean Transformation to interpret and identify solutions to these two first order wave
operators.

In particular,

% + Ca% — {right moving pulse} = KRI6HT Moy iné PusLsa
and
2 — ¢Z — {left moving pulse} = KEFT rovine PuLsa

21.5 D’Alembert’s Solution

Motivated by the left and right moving coordinate systems we consider the following change of variables.

r = x+ct s = x—ct

r = L(r+s) t = $(r—s)’ (2L9)
0 0 o0x 0 Ot 1 /0 0

c’?raxarJr&t@ch(@tJrC@x) (21.10)
0 0 o0x 0 0Ot 1 /0 0

95— 9505 T o005~ o (8t_8x> (2L11)

Therefore

0%u 0 0 0 0 0%u 0%u
— 2 = P R —_— — C— = — — 27 =
e Sras <6t +C@x> (6‘t Cm) “=or o =0 (21.12)



The Wave Equation

Therefore
0%y
Ords (r,5) =0
9 B
= 22(r5) = é1(s)

= u(r,s) = [ ¢1(s)ds + ¢a(r) = ¢1(s) + d2(r).

Say we have the IC:
) =ug(z) displacement
) =wvp(x) velocity
u(z,t) = F(x —ct) + G(z + ct)
) = F(x) + G(x) = uo(x)
)

x

= —cF'(2) + ¢G'(z) = vo(x

)

—cF(x) 4+ cG(z) = /vo(ﬁ) ¢+ A

0

Uo
z

) el
F:;{mﬁ<]%@@+

0

0

G{/Uo(f)dé‘i’A‘i’CuO

Therefore

Jvo(§)dé+ A

)

|

|

u(z,t) = % [uo(x — ct) + up(x + ct)] + —

2c

)

x+ct

—ct

vo(§) d€

D’Alembert’s Solution to the wave equation on (—oo, 00).

(21.22)

(21.23)

(21.24)

(21.25)



Classification Of Partial Differential
Equations And Their Solution
Characteristics
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Partial Differential Equations

e An equation which involves several independent
variables (usually denoted x, y, z ¢, ..... ), a dependent
function u of these variables, and the partial
derivatives of the dependent function u with respect to
the independent variables such as

Fx,y,2 ¢t ..., U, Uy Uy Upy eeoeey Uy Uy e,
is called a partial differential equation.

e Partial differential equations are used to formulate,
and thus aid the solution of, problems involving
functions of several variables; such as the propagation

of sound or heat, electrostatics, electrodynamics, fluid
flow, and elasticity.

Uyy -ne-)=0



Partial Differential Equations cont.

e Examples:

I.

Il.

Il

IV.

u=k(u,+ u, + u,) [linear three-dimensional
heat equation]

Uy + U, + u,=0 [Laplace equation in three
dimensions]

u,=c’(u, +u,+u,) [linear three-dimensional
wave equation]

u, + uu~=uu, [nonlinear one-dimensional
Burger equation]



Partial Differential Equations cont.

* The order of a partial differential equation is
the order of the highest derivative occurring in
the equation.

e All the above examples are second order
partial differential equations.

* us=uu,, + sin x is an example for third order
partial differential equation.



Ordinary Differential Equations vs.
Partial Differential Equations

Partial Differential Equations

e A relatively simple partial
differential equation is

u.(x, y)=0
e General solution of the
above equation is

u(x, y)=fly)

e General solution involves
arbitrary functions

Ordinary Differential Equations

e The analogous ordinary
differential equation is

u’(x)=0
e General solution of the
above equation is
u(x)=c
e General solution involves
arbitrary constants



Linear Partial Differential
Equations

e The equation is called linear if the unknown
function only appears in a linear form.

a(x, y)u,+ b(x, y)u,+ c(x, y)u=d(x, y)
* Almost linear partial differential equations
P(x, y)u, + Q(x, y)u,=R(x, y, u)
e Quasi-linear partial differential equations

P(x, y, ulu,+Q(x, y, uu,= R(x, y, u)



Classification of second order linear
PDEs

Consider the second order linear PDE in two variables
Au,, + Bu,, +Cu,, +Du,+ Eu + Fu=G (1)

The discriminant
d=B%(x, yo) — 4A(Xy Vo)ClXy Vo)
At (x, y,), the equation is said to be
= Ellipticif d<0
= Parabolicif d=0
= Hyperbolicif d>0

If this is true at all points in a domain Q, then the
equation is said to be elliptic, parabolic, or hyperbolic
in that domain



Classification of second order linear
PDEs cont.

* If there are n independent variables x,, x, , ...,
X,, a general linear partial differential equation
of second order has the form

. ZZa,-,quixj plus lower order terms =0

 The classification depends upon the signature
of the eigenvalues of the coefficient matrix.



Classification of second order linear
PDEs cont.

I. Elliptic: The eigenvalues are all positive or all
negative.

ii. Parabolic : The eigenvalues are all positive or
all negative, save one which is zero.

iii. Hyperbolic: There is only one negative
eigenvalue and all the rest are positive, or
there is only one positive eigenvalue and all
the rest are negative.



Canonical Forms

 Transformation of independent variables x
and y of eq.(1) to new variables &, n, where

$=¢&(x, y), n=n(x, y)
i. Elliptic: g+ u, =@(& n, u, ug u,)
ii. Parabolic: u.=@(¢, n, u, u, wu,) or
U, =(P(‘$ n, u, U,g;U)
ii. Hyperbollc. Uge = U,.=@(§, n, u, ug, u,) or
U§n=cp(§/ n,u,ug Un)



Characteristics

e Consider Llu]=f(x, y, u, u, u) --(2) where
Llu]=a(x, y)u,, + b(x, y)u,, + c(x, y)u,,
e [[u]isthe principle part of the equation
* §=¢(x, y), n=n(x, y)
* Transformed equation: Mfuj=g(¢, n, u, ug, u,) with
principle part
M[u]=A(§, n)ug + B(E, n)ug, + C(&, n)u,, where
A=aé? + bE £, +c€ ]
B=2aé,n, + b(én, +&,n,) +2cén,
C=an? + bn,n, +cn,?



Characteristics cont.

e An integral of an ordinary differential equation is a
function ¢ whose level curves, ¢@(x, y)=k, characterize
solutions of the equation implicitly.

o a(x, y)§ + b(x, y)E&, + c(x, y)§, =0 iff & is an integral of
the ordinary differential equation
alx, y)y? - b(x, y)y’ +c(x, y)=0  --(3)
=>y’=[b(x, y) £ {b%(x, y) — 4a(x, y)c(x, y)}*/?]/2a
 An integral curve, @(x, y)=k, of (3) is a characteristic

curve, and (3) is called the characteristic equation for
the partial differential equation (2)



Characteristics cont.

e Therefore,

i. Elliptic partial differential equations have no
characteristic curves

ii. Parabolic partial differential equations have a
single characteristic curve

iii. Hyperbolic partial differential equations have
two characteristic curves



Initial and Boundary Conditions

(a) Elliptic Equations: Boundary conditions

e.g. u, + uU,=G in a finite region R bounded by a
closed curve C.

Y




Initial and Boundary Conditions cont.

We must specify

(i) uoncurve Cor

(ii) u,on C(nisoutward normal to C) or

(iii) ccu + 6u, on C (a and 6 are given constants) or

(iv) a combination of (i), (ii) and (iii) on different parts of
C

e |n Cartesian coordinates the simplest case is if R is
rectangular with boundary condition (i).

* R can extend to infinity, in which case we must specify
how the solution behaves as x or y (or both x and y)
tend to infinity.



Initial and Boundary Conditions cont.

(b) Parabolic Equations: Initial conditions and
boundary conditions.

e.g. u,=u, in the open region R in the (x, t)
plane. Ristheregiona<x<b,0<t<eoo

t
uoru,

or
au + Bu,

uoru,
or
au + Bu,




Initial and Boundary Conditions cont.

 We must specify u on t=0 (i.e. u(x, 0)) fora < x <
b. This is an initial condition (e.g. an initial
temperature distribution) and suitable boundary
conditions x on a and b are as shown.

(c) Hyperbolic Equations: e.g. u,=u, Initial
conditions and boundary conditions as for (b)
except that we must also specify u, at t=0 for a < x

< b (in addition to u) and R is the region a < x < b,
o< < oo



Elliptic Partial Differential Equations

e The discriminant B?-4AC<0

e Solutions of elliptic PDEs are as smooth as the
coefficients allow, within the interior of the

region where the equation and solutions are
defined.

* For example, solutions of Laplace's equation
are analytic within the domain where they are
defined, but solutions may assume boundary
values that are not smooth.



Elliptic Partial Differential Equations
cont.

e Region of Influence: Entire domain
e Region of Dependence: Entire domain

 Any disturbance at P is felt throughout the
domain



Elliptic Partial Differential Equations cont.

Examples:

(i) Laplace Equation: Au=0

The Laplace equation is often encountered in heat and
mass transfer theory, fluid mechanics, elasticity,

e

P
T

ectrostatics, and other areas of mechanics and
NYSICS.

ne two dimensional Laplace equation has the

following form:

u,, +Uu,,=0inthe Cartesian coordinate system,

(1/r)(ru,). +(1/r?)uss=0 in the polar coordinate system



Laplace Equation cont.

A function which satisfies Laplace's equation is
said to be harmonic.

* A solution to Laplace's equation has the property
that the average value over a spherical surface is
equal to the value at the center of the sphere
(Gauss’ harmonic function theorem).

e Solutions have no local maxima or minima.

e Because Laplace's equation is linear and
homogeneous, the superposition of any two
solutions is also a solution



Laplace Equation cont.

Solution of Laplace’s equation:

Consider u,, +u,=0 (2)

Solve by separation of variables

Let u=X(x)Y(y)

Substituting it in (2), we get
(1/X)X"’=-(1/Y)Y"' =k



Solution of Laplace Equation cont.

o _ 2. _ _ _ o

i. k=p<: X=c,eP + c,eP*, Y=c,cos py + c,sin py
ii. k=-p?: X=c-cos px + csin px, Y=c,e¥ + c,e
iii. k=0:X=cgX + €,y Y=C,,y +C,,

Thus, various possible solutions are:

u=(c,eP + c,eP)(cscos py + c,sin py)

u=(c.cos px + cssin px)(c,e?” + cq,e’)

u=(cgX + C1p)(C11y + C15)



Laplace Equation cont.

Analytic functions:

The real and imaginary parts of a complex analytic
function both satisfy the Laplace equation.

If f(x + iy)=u(x, y) + iv(x, y) is an analytic function, then
Up + U, =0, v, + v, =0

The close connection between the Laplace equation
and analytic functions implies that any solution of the
Laplace equation has derivatives of all orders, and can

be expanded in a power series, at least inside a circle
that does not enclose a singularity.



Elliptic Partial Differential Equations
cont.

(ii) Poisson Equation: Au + @=0

e The two dimensional Poisson equation has the
following form:
Uy + U, +f(x y)=0in the Cartesian coordinate system,

(1/r)(ru,). +(1/r’)ugs + g(r, 3)=0 in the polar coordinate
system

e Poisson’s equation is a partial differential equation
with broad utility in electrostatics, mechanical
engineering and theoretical physics.

e E.g.In electrostatics: AV=-p/c



Elliptic Partial Differential Equations
cont.

(iii) Helmholtz Equation: Au + Au=-@

e Many problems related to steady state
oscillations (mechanical, acoustical, thermal,
electromagnetic) lead to the two dimensional
Helmholtz equation. For . A< O, this equation
describes mass transfer processes with
volume chemical reactions of the first order.



Helmholtz Equation cont.

e The two dimensional Helmholtz equation has
the following form:

Uy * U, + Au=-f(x, y) in the Cartesian coordinate
system,
(1/r)(ru,). +(1/r’)ugs + Au=-g(r, 3) in the polar
coordinate system



Parabolic Partial Differential
Equations

e The discriminant B?-4AC=0

 Equations that are parabolic at every point can
be transformed into a form analogous to the
heat equation by a change of independent
variables.

e Solutions smooth out as the transformed time
variable increases



Parabolic Partial Differential Equations
cont.

e Region of influence: Part of domain away from
initial data line from the characteristic curve

e Region of dependence: Part of domain from
the initial data line to the characteristic curve

Boundary

Characteristic curve at P
Region
of
influence

Initial data line

Boundary




Parabolic Partial Differential Equations
cont.

Examples:

i. u~=au,heat equation (linear heat equation)

ii. u=au, + f(x, t) non-homogeneous heat
equation

iil. u=au,, + bu, + cu + f(x, t) convective heat
equation with a source

iv. u=alu, + (1/r)u,) heat equation with axial
symmetry



Parabolic Partial Differential Equations
cont.

v. u=a(u, + (1/r)u)+ g(r, t) heat equation with
axial symmetry (with a source)

vi. u=a(u, + (2/r)u) heat equation with central
symmetry

vii. u=a(u,, + (2/r)u.) + g(r, t) heat equation with
central symmetry (with a source)

viii.ihu,=-(h?/2m)u,, ~ +  h(xJu  Schrodinger
equation (linear schrodinger equation)



Parabolic Partial Differential Equations
cont.

e Heat equation:

e The maximum value of u is either earlier in time than
the region of concern or on the edge of the region of
concern.

e even if u has a discontinuity at an initial time t = ¢, the
temperature becomes smooth as soon as t > t, For
example, if a bar of metal has temperature 0 and
another has temperature 100 and they are stuck
together end to end, then very quickly the temperature
at the point of connection is 50 and the graph of the
temperature is smoothly running from 0 to 100.



Parabolic Partial Differential Equations
cont.

Solution of the heat equation:
Consider u=au,, (3)

* |n plain English, this equation says that the
temperature at a given time and point will rise or fall at
a rate proportional to the difference between the
temperature at that point and the average temperature
near that point.

Solve by separation of variables

Let u(x, t)=X(x)T(t)

Substituting this in (3), we get
X"/X=T"/aT=k



Solution of heat equation cont.

] 2
. k=p2: X=c,eP* + c,e ™, T=c;e%"!

ji. k=-p?: X=c,cos px + c.sin px, T=c,e Pt
iii. k=0: X=cx + cg T=C,

Thus, various possible solutions are:
u=(c,e” + c.eP)(c;e")

u=(c,cos px + c:sin px)(c,e°t)

u=(c,x + Cg)Cq



Parabolic Partial Differential Equations
cont.

e Let u(x, t) be a continuous function and a
solution of u,=au,, for0<x </, 0<t< T where
T >0 is a fixed time. Then the maximum and
minimum values of u are attained either at
time t=0 or at the end points x=0 and x=/ at
some time intheinterval 0<t<T



Hyperbolic Partial Differential
Equations

The discriminant B?- 4AC > 0

Hyperbolic equations retain any discontinuities of
functions or derivatives in the initial data

If a disturbance is made in the initial data of a
hyperbolic differential equation, then not every point
of space feels the disturbance at once. Relative to a
fixed time coordinate, disturbances have a finite
propagation speed. They travel along the
characteristics of the equation

An example is the wave equation



Hyperbolic Partial Differential
Equations cont.

e Region of influence: Part of domain, between the
characteristic curves, from point P to away from the
initial data line

e Region of dependence: Part of domain, between the
characteristic curves, from the initial data line to the

point P
///i;;;on

of
influence

N\

Characteristic curves at P

of
dependence

Initial data line




Hyperbolic Partial Differential
Equations cont.

Examples:

wave equation (linear wave
equation)

non-homogeneous wave
equation

Klein-Gordon equation

non-homogeneous
Klein-Gordon equation



Hyperbolic Partial Differential
Equations cont.

non-
homogeneous wave equation with axial
symmetry

non-
homogeneous wave equation with central
symmetry

Telegraph equation



Hyperbolic Partial Differential
Equations cont.

Solution of the wave equation:
Consider u,=a?u,, (4)

 The equation has the property that, if u and its first time
derivative are arbitrarily specified initial data on the initial
line t = 0 (with sufficient smoothness properties), then
there exists a solution for all time.

D’Alembert’s solution
Introduce new independent variables:
y=x + at, z=x —at
Substituting these in (4), we get
u,=0 (5)



Solution of Wave Equation cont.

Integrating (5) w.r.t. z, we get u =f(y)  (6)
Integrating (6) w.r.t. y, we obtain

u=@(y) + Y(z), where @(y)=[f(y)dy
Thus, u(x, t)=@(x +at)+ Y(x—at) (7) isthe
general solution of (4)
Now suppose, u(x, 0)=g(x) and u,(x, 0)=0, then (7)
takes the form u(x, t)=g(x + at) + g(x - at)
which is the d’Alembert’s solution of the wave
equation (4)



Summary

e Second order semi-linear equation in two
variables: A(x, y)u,, + B(x, y)u,, + C(x, y)u,, =
o, y, u, u, uy) classified as

i. Elliptic: B°-4AC<0
ii. Parabolic: B°-4AC=0
iii. Hyperbolic: B’ -4AC >0



Summary & Conclusion

General relation between the physical problems
and the type of PDEs

 Propagation problems lead to parabolic or
hyperbolic PDEs.

e Equilibrium equations lead to elliptic PDE.

e Most fluid equations with an explicit time
dependence are Hyperbolic PDEs

e For dissipation problem, Parabolic PDEs
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The One-Dimensional Heat Equation

1-D Heat Equation



The heat equation
Introduction

Goal: Model heat flow in a one-dimensional object (thin rod).

Set up: Place rod of length L along x-axis, one end at origin:

0 i
Lheated rod

Let u(x,t) = temperature in rod at position x, time t.

X

(Ideal) Assumptions:

@ Rod is given some initial temperature distribution f (x ) along
its length.

o Rod is perfectly insulated, i.e. heat only moves horizontally.

o No internal heat sources or sinks.

1-D Heat Equation



The Heat Fauation

One can show that u satisfies the one-dimensional heat equation
Ut = C2Uxx.

Remarks:
@ This can be derived via conservation of energy and Fourier's
law of heat conduction (see textbook pp. 143-144).
@ The constant c? is the thermal diffusivity:

Ko = thermal conductivity,
¢ = @, s= spedific heat,

Sp
p = density.

1-D Heat Equation



Initial and Boundarv Conditions

To completely determine u we must also specify:

Initial conditions: The initial temperature profile
u(x,0) =f(x) for 0 < x <L.

Boundary conditions: Specific behavior at xo = 0, L:
1. Constant temperature: u(xo,t) = T fort > 0.

2. Insulated end: ux(xo,t) = 0 fort > 0.

3. Radiating end: ux(xo,t) = Au(xo,t) fort > 0.

1-D Heat Equation



Homogeneous Dirichlet conditions

Solving the Heat Equation

Case 1: homoaeneous Dirichlet boundarv conditions

We now apply separation of variables to the heat problem

Ut = C2Uxx (0<x<L, t>0),
u(0,t) = u(L,t)=0 (t >0),
u(x,0) = f(x) (0<x<L).
We seek separated solutions of the form u(x,t) = X(x)T(t). In
this case
ue = XT' roa X" 1
U = XT > XT =cXT = X—CZ——k.

Together with the boundary conditions we obtain the system
X" —kX =0, X(0) = X(L) =0,
T —c2kT =0.

1-D Heat Equation



Homogeneous Dirichlet conditions

Already know: up to constant multiples, the only solutions to the
BVP in X are

T 2

L
. . nTX
X = Xp = sin(Ppx) = sin - n €N.

kz_ur%:_

Therefore T must satisfy

: ., onm
T -ckT=T'+ —— T=0
S
An

T '=-NT = T=T,=he ™.
We thus have the normal modes of the heat equation:

Un(X,t) = Xn(X)Tn(t) = bre Mtsin(pnx), n € N.

1-D Heat Equation



Homogeneous Dirichlet conditions

Superposition and initial condition

Applying the principle of superposition gives the general solution

i PIsS 5
ux,t) =  us(x,t) =  bpe Mtsin(pnx).

n=1 n=1
If we now impose our initial condition we find that

ZOO
f(x) = u(x,0) = bpsin %”‘

n=1

which is the sine series expansion of f (x). Hence

L

1-D Heat Equation



Homogeneous Dirichlet conditions
RENEINS

@ As before, if the sine series of f (x) is already known, solution
can be built by simply including exponential factors.

@ One can show that this is the only solution to the heat
equation with the given initial condition.

@ Because of the decaying exponential factors:

* The normal modes tend to zero (exponentially) ast — oo.
* Overall, u(x,t) — 0 (exponentially) uniformly in x ast — oo.

*As ¢ increases, u(x,t) — 0 more rapidly.

This agrees with intuition.

1-D Heat Equation



Homogeneous Dirichlet conditions

Solve the heat problem

Ut = 3uxx O0O<x<2 t>0),
u(0,t) =u(2,t) =0 (t >0),
u(x,0) = 50 (0<x<2).

We have ¢ = \/3, L = 2 and, by exercise 2.3.1 (withp=L = 2)

2002 1 . (2k + 1)
f(x)=50= — sin
L 2k +1 2
v
. 2k +1 3(2k +1
Since Apk+1 = o 3 T = ( 5 )TT, we obtain

200
u(x,t)=%) ZK%E_XZHI)Z“Z”“SM (2k + 1T
k=0

1-D Heat Equation



Inhomogeneous Dirichlet conditions

Solving the Heat Equation

Case 2a: steadv state solutions

Definition: We say that u(x,t) is a steady state solution if us = 0
(i.e. u is time-independent).

If u(x,t) is a steady state solution to the heat equation then

U=0 = cPux=U=0 = Ux=0 = u=Ax+B.

Steady state solutions can help us deal with inhomogeneous
Dirichlet boundary conditions. Note that

U(O,t)=T 1 B=T 1 TZ_

u(L,t) = T2 AL+B =T,

1-D Heat Equation



Inhomogeneous Dirichlet conditions

Solving the Heat Equation

Case 2b: inhomoaeneous Dirichlet boundarv conditions

Now consider the heat problem

Ut = C2Uxx (0O<x<L, t>0),
u(o,t) =Ty, u(L,t) =T (t >0),
u(x,0) = f(x) (0<x <L).

Step 1: Let u; denote the steady state solution from above:
T2-T
up = —Z—L_l X+ Ty.

Step 2: Let u = u —us.

Remark: By superposition, uz still solves the heat equation.

1-D Heat Equation



Inhomogeneous Dirichlet conditions

The boundary and initial conditions satisfied by u; are

u2(0,t) = u(0,t) —u1(0) =T1 —T1 = 0,
u(L,t) = u(L,t) —ui(L) = T2 -T2 =0,
u2(x,0) = f(x) — u(x).

Step 3: Solve the heat equation with homogeneous Dirichlet
boundary conditions and initial conditions above. This yields us.

Step 4: Assemble u(x,t) = ui(x) + uz(x,t).
Remark: According to our earlier work, tlim u(x,t) = 0.

@ We call uz(x,t) the transient portion of the solution.

@ We have u(x,t) — ui(x) ast — oo, i.e. the solution tends to
the steady state.

1-D Heat Equation



Inhomogeneous Dirichlet conditions

Solve the heat problem.

Ut = 3Uxx 0<x<2 t>0),
u(0,t) = 100, u(2,t)=0 (t > 0),
u(x,0) = 50 (0<x<2).

We have ¢ = \/3, L=2, T:1 =100, T2 = 0and f(x) = 50.
The steady state solution is

U = %) X + 100 = 100 — 50x.

The corresponding homogeneous problem for uy is thus

Ut = 3Uxx (0O<x<2 t>N0),
u(0,t) =u(2,t) =0 (t > 0),
u(x,0) =50 — (100 — 50x =50(x — 1) (0 <x <2).
)

1-D Heat Equation



Inhomogeneous Dirichlet conditions

According to exercise 2.3.7 (with p = L = 2), the sine series for
50(x — 1) is
_ e
—100 1 sin
m k=1 K

2k TiX

c2krr  /_

i.e. only even modes occur. Since Ayx = = 3k,

_ 2%
Uy(X,t) = LT[OO %e‘3’<2"2f sin (k) .
k=1

Hence

100200 1 73k2ﬂ2t .
— <& sin(kT) .

k=1

u(x,t) = ur(x)+u2(x,t) = 100—50x—

1-D Heat Equation
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Engineering Mathematics - II

UNIT - 11

VECTOR CALCULUS
INTRODUCTION

In this chapter we study the basics of vector calculus with the help of a standard vector differential
operator. Also we introduce concepts like gradient of a scalar valued function, divergence and curl of a
vector valued function, discuss briefly the properties of these concepts and study the applications of the

results to the evaluation of line and surface integrals in terms of multiple integrals.
2.1 GRADIENT - DIRECTIONAL DERIVATIVE

Vector differential operator

-

The vector differential operator V (read as Del) is denoted by V = L:—x + j% +k % where 7,7, k are
unit vectors along the three rectangular axes 0X, 0Y and 0OZ.

It is also called Hamiltonian operator and it is neither a vector nor a scalar, but it behaves like a
vector.
The gradient of a scalar function

Ifo(x,y,z) is a scalar point function continuously differentiable in a given region of space, then the gradient

50 | 0@ 7o
lax + ay +k 0z

of ¢ is defined as Vo =
It is also denoted as Grad ¢.

Note

(i) Ve is a vector quantity.

(ii) Voo = 0 if ¢ is constant.

(iii) V(p1902) = 91V2 + 92V,

. Voi1— Y .
(,V)V(%): LV =01V 02 gy 4 )

¢
V) V(pt+x) = Vo £Vy
Problems based on Gradient
Example: 2.1 Find the gradient of ¢ where ¢ is 3x%*y — y3z% at (1,-2,1).
Solution:

Given ¢ = 3x2%y — y3z2

— 09 200 pPO®
Grad<p—lax+]ay+kaz

9¢ _ 9¢ _ 2 _ 2.2 99 _ 5.3
Nowax—6xy, ay—3x 3y“z*, 5, = 2y°z

~grad ¢ = T6xy + j(3x2 — 3y2z2) — k2y3z
»(grad @) 1y = —121— 9] + 16k
Example: 2.2 If ¢ = log(x? + y% + z2) then find V.

Vector Calculus Page 2
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Solution:
Given ¢ = log(x? + y? + z?)

_ 209 | 209
Vo = lax-l'jay

2x 2y 7 2z
=i’(2 22)+j(2 22)+k(2 22)
X“+yc+z X“+yc+z X“+y“+z

=L (it yitzR) = L7

x2+y2+ z2

P
+k62

Example: 2.3 Find V(r),V G),V(logr) wherer = |Fland = xT +yj+ zk.
Solution:

Given 7= xT +yJ+ zk

=> |l =r=x2+ y2 + 22

=>r2=x24 y*+ z?

ar ar ar
2r—=2 2r —=2 2r — =2z
ox X oy Yy 0z
ar _x o _y ar_z
ax r’ ay r’ 0z r
- —>6r —>6r = adr
DVr)=T—+]—+ k—
V) =T -+j5+ kg,

= 124724 k2

r r r

1 - - 7 _l—)
—;(xl+ yi+ zk) = -T

()= 28 26, p0

0x ay z

— (—1\ or — (-1\ or — -1\ dr
=7 (Z)5+ (ﬁ)£+ K(Z)%

=(=3) [7 477+ &

r2

=—r—13(xi’+ yj+ ZE) =— r—1317

(iii) V(logr) = X7 2080

|¥

=27

R IR X |R
R IRQ
xR

_ X

Il
M ™M ™M
~

[1 =

1 - - > 1 -

=ﬁ(xl+ yj+ Zk)z =T

Example: 2.4 Prove that V(r™®) = nr®* 2 7
Solution:

Given 7= xI +yj+ zk

Vector Calculus Page 3
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_1 0r _1 07 - _10r
=T l—+7nr" 1 —+ knr 11—
ax dy 0z

=1 [1(5) +7(2) + K (2)]

nr N

= (xT+ yj+ zk) = nr" 27

r
Example: 2.5 Find |Ve| if ¢ = 2xz* — x*y at (2,-2,-1)
Solution:

Given ¢ = 2xz* — x?y
—>a(,0 —>a_(,0 _’a_(P

Vo = la+]ay+ kaz
00 _ 5 4 d¢ _ .2 99 _ 3
Now o =2z 2xy, 3y xe, o= 8xz

2V =102z%= 2xy)+ j(—x?) + k(8xz3)
2 (V@) (g1 = 107 — 4] — 16k

|Vp| = V100 + 16 + 256 = /372
Directional Derivative (D.D) of a scalar point function
The derivative of a point function (scalar or vector) in a particular direction is called its directional
derivative along the direction.
The directional derivative of a scalar function ¢ in a given direction d is the rate of change of ¢ in
that direction. It is given by the component of V¢ in the direction of a.
The directional derivative of a scalar point function in the direction of a is given by

DD = Vo -a

@l
The maximum directional derivative is|V¢| or |grad ¢|.
Problems based on Directional Derivative
Example: 2.6 Find the directional derivative of ¢ = 4xz% + x%yz at (1,—2,1) in the direction of 27 —
j— 2k.
Solution:

Given ¢ = 4xz? + x%yz
Vo =122+ jg—‘;’ + k2

=1(Q2xyz +4z%) + J (x%2) + k (x2y + 8xz)
& (V@)-g-1) = 81—]— 10k

Givend = 27 — J— 2k

Al= VATTI54=3
D.D= Y£¢@

|al

o - 7\ | (20— - 2k)
= (87—~ 10k) - ——
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= - (16+1+20)= =
Example: 2.7 Find the directional derivative of @(x,y, z) = xy? + yz?3 at the point P(2,—1,1) in the
direction of PQ where Q is the point (3,1, 3)
Solution:
Given ¢ = xy? + yz3

Vo = ?a—(p+%6—(p+ ka(p

=7(y2) + J Q@xy + z3) + k (3yz?)
£ (V@)1 n=1—37—3k
Givend = PQ = 00 — OP

= (31+ J+3k)— (2i— ]+ k)

=7+ 2j+ 2k

3l=Vi+4+4=3
D.D= 24

|dl
(i-37-3k) - (i+ 2j+ 2k)
3

=-(1-6-6)=—=

Example: 2.8 In what direction from (—1, 1, 2) is the directional derivative of ¢ = xy? z3 a
maximum? Find also the magnitude of this maximum.
Solution:

Given ¢ = xy? z3

—>6(p _>6(p

Vo =1 Pl e +k

=7(y2z%) + ] (2xy z%) + k (3xy?z?)
2 (V@)ey 1, 2= 81— 16] — 12k
The maximum directional derivative occurs in the direction of Vo = 87— 16] — 12k.

~ The magnitude of this maximum directional derivative

|Vo| = V64 + 256 + 144 = /464
Example: 2.9 Find the directional derivative of the scalar function ¢ = xyz in the direction of the

outer normal to the surface z = xy at the point(3,1, 3).

Solution:
Given ¢ = xyz
Vo= 1524750+ k3

=1(yz) + J (x2) + k (xy)
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oo (V (p)(3, 1, 3) = 3?"‘ 97"‘ 37;
Givensurfaceisz=xy =2z—xy =0

-

>0y . -0y oy
lax +j dy + k 0z

Vy =
=1(=y) + j(=x) + k (D)
Leta = VX(3’1’3) = _i)_ 3]_>+ E
>al=v1+9+1=+11

D.D= ‘2@

|al

_ (31+9j+3k) - (<i- 3j+ k)
= N
27

1
= = (-3-274+3)= — =

Example: 2.10 Find the directional derivative of ¢ = xy + yz + zx at (1,2, 0) in the direction of 7 +

2 j+ 2k. Find also its maximum value.
Solution:
Givenp = xy + yz + zx
= 7284 700 o

=T(y+2)+ j7(x+2)+ E(y+x)
“(Ve)a 2 0= 20+ +3k

Givend = T+ 2j+ 2k

3= Vv1+4+4=3
D.D= 24

|al
(21+j+3k) - (T+ 2j+ 2k)
3

1 10
=;@+2+6) =+
Maximum value is |[Vg| = V4 +1+9 = V14
Unit normal vector to the surface

If ¢(x,y,z) be ascalar function, then ¢ (x, y,z) = c represents a surface and the unit normal vector to the

Vo
Vol

surface ¢ is given by A=
Normal Derivative = |V|
Problems based on unit normal vector

Example: 2.11 Find the unit normal to the surface x? + y? = z at the point (1, -2, 5).
Solution:

Givengp = x2+ y?—z
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_ 209 , 20p , 709
V(p—lx+ja +kaz

dp . 0@
y
=720+ 7@y + k(-1
“ (V)2 5= 20—4] - k
IVop| = VA+16 +1 = 21

. R Vo 21—4j-k
Unitnormal h= — =
Vol V21

Example: 2.12 Find the unit normal to the surface x* + xy + y? + xyz at the point (1, -2, 1).
Solution:

Given ¢ = x2+xy + y* + xyz

=T1Q2x+y+yz)+ J(x+ 2y +x2) + E(xy)
~ (v (P)(L—z, 1) = —27— Zj_ ZE
Vol = VA+4+4=+12=2V3

. A~ Vo _ —20-2j-2k
Unit normal A= ol = 23
-1 /> - 7
=5 @+7+k)

Example: 2.13 Find the normal derivative to the surface x?y + xz? at the point (—1,1,1).
Solution:

Given ¢ = x%y + xz2

_ 20 200 | 700
V(p—lax+]ay+k

=1Qxy+ z2)+ J(x?) + k (2x2)

~ (v (P)(—L 1, 1) = _?+f_ ZE
Normal derivative [Vp| = VI+ 1+ 4= V6

Example: 2.14 What is the greatest rate of increase of ¢ = xyz? at the point (1,0, 3).
Solution:
Given ¢ = xyz?

10

->6(p
l
dx

V(p: +]3

+ k;
=T(yz?)+ j(xz?) + k (2xyz)
(V@) o 3= 00+9]+ 0k

- Greatest rate of increase |Vp| = V92 =9
Angle between the surfaces

Ve,V
cos @ = 21 "%z
Vo1 [[V@2]

Vector Calculus
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V@1'V¢2]

= 0 = cos~! [
Vo1 | Ve,

Problems based on angle between two surfaces
Example: 2.15 Find the angle between the surfaces z = x* + y* — 3 and x> + y? + z? = 9 at the
point (2,—1,2).
Solution:
Giveng = x2+ y?—z-3

Vo, = *aﬂ+fa(p1 + k

=720+ ] @)+ k(1)
“ (Vo1 2= 41—-2] - k

Vil = VIE+ 451 = V21

Vo, = 1522422 4 22

=7(2x)+ 7 (2y) + k (22)
oo (V (pz)(z’_ll 2) = 4‘?_ 2f+ 4‘E
Vo, = VI6 +4 + 16 = V36 =6

. v -V
The angle between the surfaces is cos 6 = — %2

Vo1 | [Ve,|
(41-2j-k) (41-2j+4k)
V21(6)
16+4—4
V21(6)
16 8
V21(6) 3421

_ -1 |_8
= 6 = cos . m]
Example: 2.16 Find the angle between the normals to the surfaces x* = yz at the point

(1,1,1) and (2,4,1).
Solution:
Givenp = x2 —yz

_->6_(p ->6<p —’6_<p
Vo =1 +]a +kaz

=1(2x) + j(=2) + k (-y)

-

- (V <P1)(1, 1, 1) — 21—J— k
Vo, = Va+1+1= 6
“(Vode 4, n=4—-T— 4k
Vo,| = VIGF 116 = V33

. \Y Y
The angle between the surfaces is cos § = — %2

[Voq | [Vea|
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(2i-j-k) (4i-j-4k)

V6v33
_ 8+1+4
RGEE
13 _ 13

J23)/11(3) 322

= 0= cos™?! [3 1/32_2]
Example: 2.17 Find the angle between the surfaces x log z = y?> — 1 and x?y = 2 — z at the point
(1,1,1).
Solution:

Giveng, = y2 —xlogz— 1

_ —>a(P1 —>a<P1 _’a(P1
Vo, = (r +]—ay + k_az

_3 > P(—%
=7(-logz)+ JQ2y) + k ( Z)
“ (Vo 1, =00+ Zf_E
Vo, = VOFAF1= 5

_ —>6(P2 —>a<P2 _)a(pZ
Vo, = 1= +]—ay + k_az

=7TQxy)+ J (M) + k(1)
Y (Pz)(1, 1, 1) = 20+ + E
IVo,| = VAT 1+ 1= 6

. v -V
The angle between the surfaces is cos 6 = —+ 22

Vo1 | Ve
(0i+2j-k) - (2i+]j+k)
V5v6

o

+2 -1

al-

= 0 = cos™?! [\/%]
Problems based on orthogonal surfaces
Two surfaces are orthogonal if Vo, - V@, =0
Example: 2.18 Find a and b such that the surfaces ax? — byz = (a + 2)x and
4x*y + z3 = 4 cut orthogonally at (1,-1, 2).
Solution:
Given ax? — byz = (a + 2)x
Let p; = ax?— byz— (a+2)x

-9
I &P
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=7(2ax — (a+2))+ j(-bz) + k (—by)
2 (Vo 29 = a—2)+](—2b) + k(b)
Let p, = 4x%y+ z3—4

_ —)a(Pz —>6§02 ﬁa(pZ
Vo, = 1= +]—6y + k_az

=17(8xy) + J (4x2) + k (32%)
2 (Vo)1 2= —8l+4]+ 12k
Since the two surfaces are orthogonal if Vg, - V@, =0
= (ia—2) +7 (=2b) + k(b)) - (=87 + 4] + 12k ) = 0
> —8(a—2)—8b+12b=0
= —8a+16—-8b+12b=0
= —8a+16+4b =0
~byd=> —2a+4+b=0

>2a—-b—-4=0 ..(1)

To find a and b we need another equation in a and b.
The point (1,—1,2) liesin ax? — byz— (a+2)x =0
ca-b(-1)2)— (a@+2)(1)=0
>a+2b—a—-2=0
=2b—-2=0
>b=1
Substitute b = 1 in (1) we get
>2a—-1-4=0
=22a—-5=0

5
S>a= -
2

Example: 2.19 Find the values of a and b so that the surfaces ax® — by?z = (a + 3)x? and
4x*y — z3 = 11 may cut orthogonally at (2,—1, —3).
Solution:
Given ax® — by?z = (a + 3)x?

Let o, = ax® — by?*z— (a+ 3)x?

— 2001, 2001, 7001
Vo, = 1= +]6y+k62

=7(3ax? - 2x(a+3)) + j(—2byz) + k (=by?)

~ (V1) a-1-3 = 1(8a—12) +j(—6b) + E(—b)
Let ¢, = 4x%y— z3 —11

50¢@2 | 0@z | 7 0@
Vo, = 1—= — + k—
®2 ax T dy TR,

Vector Calculus Page 10
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=7(8xy) + J (4x2) + k (—322)
2 (Vo) (a-1-3 = —161+16] — 27k
Given the two surfaces cut orthogonally if Vo, - V@, =0
= (i(8a — 12) + (—6b) — k(b)) - (~167 + 16] — 27k ) = 0
= —16 (8a—12) — 16(6b) +27b =0
= —128a+192—-69b =0

= 128a+69h—192=0 .. (1)

To find a and b we need another equation in a and b.
The point (2,—1,—3) liesin ax® — by?z— (a+3)x? =0
~8a—-b(1)(-3)—(a+3)4) =0
=>4a+3b—-12=0..(2)

Solving (1) and (2) we get, a = —g &b = %

Equation of the tangent plane and normal to the surface
Equation of the tangent plane is (* — @) - Vo =0
Equation of the normal line is ( — @) x Vo = 0

Problems based on tangent plane

Example: 2.20 Find the equation of the tangent plane and normal line to the surface xyz = 4 at the

point i + 2j + 2k .
Solution:
Given ¢ = xyz — 4

Vo= 1524750+ k52

=1 (y2) + ] (x2) + k (xy)
c(VQ) 2 = 4T+2]+2k
Equation of the tangent plane at the point @ = 7+ 2+ 2k is (F — @) - Vo =0
= [(xi+ yJ+ zk) — T+ 2]+ 2k] - (47+ 2]+ 2k) = 0
= [x—Di+ (y=2)]+ (z—2) k] - (47+ 2] +2k) =0
>4(x—-1)+ 2(y—2)+ 2(z—-2)=0
>4x—-4+2y—4+2z2—4=0
=>4x+ 2y +2z=12
=>2x+y+z=26

Equation of the normal line (¥ — @) x V¢ = 0

Vector Calculus
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7 j k|
x—1 y—-2 z-2|=0
4 2 2

SI2G-0)-2@-]-JRG-D-4E-)]+ k[2(x-1) - 4(y-2)]
=07+ 0]+ Ok

Equating the coefficients of 7,7, k we get

>2(y—-2)—2=-2)=0

> wy-2)= (z-2) .. (1)

22(x-1)—4(z-2)=0

> x-1)=2(=-2)

>==(z-2 ..@

22(x-1)-4@W-2)=0

> x-1)=2(Up-2)

>== (-2 .0

1 _y-2 _ z-2

From (1), (2) and (3) weget ~——=>—= =

Which is the required equation of the normal line.
Exercise: 2.1

1. Find Vg if ¢ = %log(x2 + y? + z?) Ans:ri2
2. Find the directional derivative of

() @ = 2xy + 22 at the point (1, —1,3) in the direction 7+ 2 + 2k . Ans: 13—4

(i) @ = xy?+ yz?3 at the point (2,—1, 1) in the direction of PQ where Q is the point

(3,1,3). Ans: _Tll

3. Prove that the directional derivative of ¢ = x3y?z at (1,2, 3)is maximum along the

direction 97 + 37 + k. Also, find the maximum directional derivative. ~ Ans: 4v/91

4. Find the unit tangent vector to the curve 7 = (t? + 1)7 + (4t — 3)] + (2t% — 65)k at

I

— . T+2j-k
t=1. Ans: 7
5. Find a unit normal to the following surfaces at the specified points.

(i) x2y + 2xz = 4 at (2,—2,3) Ans: + = (i - 2] - 2k)
- . 1 - - 7
(i) x2 +y?2 =zat (1,-2,5) Ans: E(ZL — 47— k)
- . 1 - - '
(ii) xy®z2 = 4 at (-1,-1,2) Ans: —(—T—3] + k)
(iv) x2 +y?2 =zat(1,1,2) Ans: 5(2?+ 2j - k)

6. Find the angle between the surfaces x> — y% — z% = zand xy + yz — zx — 18 = 0 at the

Vector Calculus Page 12
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. ) 1 [ —24
point (6,4, 3). Ans: cos \/8_6\/5]
7. Find the angle between the surfaces xy?z = 3x + z%and 3x% — y2 + 2z = 1 at the point
_ o1 | 22
(1,-2,1). AnNs: cos [7\/3]
8. Find the equation of the tangent plane to the surfaces 2xz2 — 3xy — 4x = 7 at the point
(1,-1,2). Ans:7x —3y+8z—-26=0
9. Find the equation of the tangent plane to the surfaces xz2 + x?y = z — 1 at the point
(1,-3,2). Ans:2x—y—3z+1=0
10. Find the angle between the surfaces xlogz = y? — 1 and x?y = 2 — z at the point
. -1 L
(1,1,1). Ans: cos [m]

2.2 DIVERGENCE, CURL - IRROTATIONAL AND SOLENOIDAL VECTORS
Divergence of a vector function

If F(x,y,z) is a continuously differentiable vector point function in a given region of space, then the
divergence of F is defined by

V.E=divF=(To+ Ta—ay + Ko).(FiT + Foj + FoK)

OF.
—t4 =2
x ay

divF = + ‘;i; whereF = F,T+ F,j+ F3k
Note: V.F Is a scalar point function.
Solenoidal vector
A vector F is said to be solenoidal if div F= 0 (i.e)V.l—f =0
Curl of a vector function
Ifl—f(x, v, z) is a differentiable vector point function defines at each point (x,y, z) in some region of

space, then the curl of F is defined by
CurlF=V x F =

> (OF: JF, > [OF. OF
-1 (-
dy 0z 0x 0z

SR~
NRRCA R
R =

R (2 o)
0x dy

Note: Vx F Is a vector point function.
Irrotational vector
A vector is said to be irrotational if Curl F =0 (i.e) Vx F=0

Scalar potential

Vector Calculus Page 13



Engineering Mathematics - II

If F is an irrotational vector, then there exists a scalar function ¢ such that F= V. Such a scalar
function is called scalar potential of F.

Problems based on Divergence and Curl of a vector

Example: 2.21 If ¥ = xi+ yj + zk then find div £ and curlf
Solution:

Given7 = xi+ yj+ zk
Now divi=V -7

P P 9
=a(x)+ a_y(Y)+E(Z)

=1+1+1=3
Andcurl 7=V X T

T ]k
Vxp=1[9 90 39
dx 0y 0z

X y z

=i(z@-20)-T (5@ - z®)+ k(0 - 5 ®)
= 7(0) +j(0) + k(0) = O.

Example: 2.22 If F = xy?T + 2x2yzj — 3yz2k find V.F and V x F at the point (1,-1, 1).
Solution:

Given F = xy?27 + 2x2yzj — 3yz2k
AU F=29 (12 90 (9.2 9 a2
(i) V.F—ax(xy )+ % (2x?yz) +6z( 3yz*%)
= y2+2x%z — 6yz
VFi1n=1+2+6=9

7 7 k
.. > _| o a d
(") VXr= a 5 5
xy? 2x%yz 3yz?
_ > 6(—3yzz) _ 6(2X2yz) > '6(—3yzz) _ a(xyz) I 6(2x2yz) _ a(xyz)
_1[ ady 0z ]] 0x 0z ]+k[ ]

ox ay

= T(-3z% — 2x%y) = 7(0) + k(4xyz — 2xy)
VxFu_11) = 0(=3+2) + k(-4 +2)
=-7- 2k
Example: 2.23 If F= (x>— y2+2x 2)i +(x z— x y + ¥ 2)] +(Z%+ x )k, then find V- F ,V(V-F), V x F,

V- (VX ﬁ), andV x (V x ﬁ) at the point (1,1,1).
Solution:

Given F = (x2— y 242 x )T +(x z— x y +Yy2)] +(Z%+ x )k

Vector Calculus Page 14
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NU.B=9 (2 _ 2 9 _ 9.2 2
(HVv F—ax(x y +2xz)+ay(xz xy+yz)+az(z + x2)

= 2x+2z)+ (—x+2z)+ 2z

=x+5z
o V " F(l,l,l) = 6
i 7 Kk
(i) VxF= 92 9 9
0x dy 0z

x2—y2+2xz xz— xy+yz z?+x?

_»[0(z%2+x?)  a(xz—xy+yz) S[a(z2+x%)  8(x?-y?+2xz) = ld(xz—xy+yz) O(x*-y?+2xz)
=1 - -] - +k -
ay 0z 0x 0z ox ady

= —(x+y)r'—Qx—-2x)7+(y+ z)ig
S V X ﬁ(l,l,l) = _2? + ZE
mowviyﬁ%@+5@+ﬁ%@+5@+E%@+5@
=7+ 5k
oo V(V ) ﬁ)(l,l,l) = i) + SE
i Bzl (_ 9 9
(V) V- (VXF) =2 (=x+y)+ 2O+ +2)
=—1+0+1
V- (Vx?)(l,l,l):o

T 7K

B — d a )

(V) VX (VX F)= ~ 5 o
—(x+y) 0 y+z

SUX (VX By =17+ k

Example: 2.24 Find div F and curl F, where F = grad(x*+y3+2z°—3xyz)
Solution:

Given F = grad(x®+y3+23—3xyz)
= T% (x3+ y3 + 23 — 3xyz) +j’aiy x3+y3 +23—3xyz) + E%(x3 +y3 + 23 — 3xyz)
F = 1(3x% — 3yz) +](3y? — 3xz) + k(322 — 3xy)

VEF=V.F=2 (332 _ 9 (3y2 _ 9 (3,2 _
Now divF =V F—aX(BX 3yz)+ay(3y 3XZ)+az(32 3xy)

= 6x + 6y + 62
=6(x+y+2z)
i j Kk
CurlF=V x F= 92 9 92
ax dy 0z

3x2 —3yz 3y?—3xz 3z%-—3xy

=1[—3x + 3x] — j[-3y + 3y] + K [-3z + 3z]
Vector Calculus Page 15
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=0
Example: 2.25 Find div(grad ¢) and curl(grad ¢) at (1,1,1) for ¢ = x?y3z*
Solution:
Given ¢ = x%y3z*

>0¢ | 509 | 7200
ax J ady 0z

=1(2xy3z*) + J(x23y2z*) + k(x%y34z3)
Div(grad ¢) = V- (grad ¢)

a 0
= (2xy3z*) + 3 (x%3y2%z%) +

= 2y3z* +6x%yz* +12x%y°z*
~Div(grad ¢)a1y=2+6+12 =20

9

2,343
2 (y42)

7 1 Kk
i} i} 0
Curl(grad (p) = 6_X 6_y a

2xy3z* x?3y?z* x2y3473
= T(12x2y?z3 — 12x2y2z3) — J'(8xy3z3 — 8xy3z3)+k(6xy?z* — 6xy%z*)
=0
~Curl grad(p(lllll): 0
Vector Identities
1) V-((pl_f):(p(V-l_f) + l_f-V(p
2) Vx (¢F)=¢(VxF)+ (Vo)x F
3) V-(AxB)=B-(VxA)—A-(VxB)
4) Vx (AxB)=A(V-B)-B(V-A)+(B-V)A— (A-V)B
5) V(A-B)= Ax (VxB)—(A-V)B+Bx (VxA) — (B-V)A
6) V- (Vo)=0
7) V-(VxF)=0
8) Vx (VxF)=V(V-F) - V2F

62

ox?

22 | 02 . .
tostozisa laplacian operator

9) V-Vo = (V-V)p = V3@ where V2= P

1) If ¢ is ascalar point function, F is a vector point function, then V. (¢ ﬁ) = (p(V . ﬁ) + F- Vo

Proof:
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V- (¢F) =<P(V'ﬁ) + F-Vo
2) If @ is a scalar point fuction, F is a vector point function, thenV x (¢ F) = @(V x F) + (V@)x F

Proof:
Vx(9F)=2Tx~(oF)
=T X [(pg—f+ ﬁ%]
=T X (Z—zﬁ+ (pZ—f)
=(Z?%) xff+(p[2?>< Z—f]
“VX (pF) =V x F + ¢(VxF)

3) If A and B are vector point functions, then V- (A x B) =B - (V x A) —A - (V x B)
Proof:

V.(Kx§)=2?-%(zx§)
i (Ax B4 By
=37 (Ax £ + 2 xE)
=37 (Ax )+ 27 (% E)
(Z X ) K+(Z?x )§
=—(VxB).A+(VxA)-B
~V-(AxB)=B-(VxA)—A-(VxB) [+ (VxA)-B=B-(VxA)]
4) If A and B are vector point functions, then
Vx (AxB)= A(V-B)-B(V-A) +(B-V)A— (A-V)B
Proof:

Vx (AxB)= Z?x%(KX_B’)

Vx(KxB)—Z[(* B (? a—A)_B’] +2[(?-%)K—(?-K)%
=(zi: Zi)
(2t )R- (215 )B+(B Zl—) - (& Zfi)

~Vx (AxB)= A(V-B)-B(V-A)+(B-V)A— (A V)B
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(5) If 4 and B are vector point functions, then
V(A - B)=Ax(VxB)+ (A-V)B+ B x (VxA)+ (B-V)4

Proof:

=3 Di+s(i-Dr .

= (B-V)A+ B x (Vx4 .. (2
In (2) interchanging 4 and B we get,
S(A-Z)i= (A -VE+Ax (VxB) .(3)
Substitute in equation (1)
WD=>V(A-B)=(B-V)A+Bx (VxA)+(A-V)B+ 4 x (V x B)

(6) If ¢ is ascalar point function, then V. x (V) = 0.

(or)
Prove that curl(grad ¢) = 0
Solution:
— 790, 209, 709
Vo = L= + 3y + k 5,
|7 7 k|
9 92 32
VXVep=lox ay az
99 29 99
dx Ody 0z
_ )
Z [63/62 6263/]
=Y7(0)=0
(7) If F is a vector point function, then V - (V x F) = 0.
(or)
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Prove that div(curl F) = 0.

Solution:

T 7k
VxF=1[2 2 29
dx 0y 0z
F, F, F;
> (OF. dF. > (OF oF = (F. OF.
(G- )T G- SR (-5
> 5 0 5 0 > 9
V(V X F)=(l£+]£+ ka)
 (OF. OF. > (OF. oF = (F, OF
G- ) -7 G- )RG5l
_ 0%F 0%F, 0%F; 0°F, 0%F, 0%F,
- dxdy - 6xaz_ dydx 0yoz azax_ dzoy
=0
(8) If is a vector point function, then V x (Vx F) = V (V- F) — V2F

(or)

Prove that curl (curl F) = grad (div F) — VZF

Solution:
Let F = F,i+ F,] + Fsk

V X (Vxﬁ)z?(%i;—%)_ %(%_ﬂ)_l_ ﬁ(%_%)

.p_0Fh  0F  0F
And V F_6x+6y+ 5,

7 7 K

N d 0 0

LHS Vx(V xF)= % P 37
F;  OF, dF; 0F, 0F, 0F
9y 9z  ox | a8z oax oy

BZFZ]
0x?2 0x0y 0z90y 0z2

=7 [
dydx dy? 0z0x 0z2
+l_c) [_ 0%F;3 0°F,  0%F aze]
0x?2 0x0z dy? dydz

9°%F, 9%F; 0%F; azpl] - [aze 9%F, 9%F;

RHS V (V- F)— V2F
— (L IR D) (P ey ) (L T ) (ki B4R
- (l 6x+ J 6y+ k az) (6x + dy 0z 0x2 ay2+ 9z2 (Fll+ F2]+F3k)
0%F, | 0%F, ang] - [62F1 0°%F, ang]

dydx  9y? T d0yoz 0zdx  9zdy  0z2

_i,[azF1 0°F, 62F3] _>[
“ “loxz ' axay ' 9xoz

2 2 2 N

dx2 0z

0°F, 0%F; 0°F, 62F1] - [aze 9%F, 0%F3 aze] n
dy? dz2 0x2 0xdy 0zdy 0z2

dxdy 0x0z

:i’[

0x2 0x0z dy? d0yoz

E [_ 0%F; 0%F; 0%F; aze]
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LH.S = RH.S
2V x (VxF)=V(V-F)— V?F
QV:-(Vo)= (V- V)gp= Vg

Proof:
Vo= 52 +50 + K52
P = 5 () () ()
V-V=V? a—2.|_ i+ 9%

Solution:
Let7=xi+ yj+ zk
- > 0 5 0 d - - i
(i) v T=(la+ a_+k5) (xT+ yj+ zk)
P P )
—a(x)+5(Y)+£(Z)
—14+1+1=3
T 7k
(i)Vx7r=1]9 90 9
dx 0y 0z
X y z

= {(0)+j () + k(©0)=0
Example: 2.27 Find V - G ?) where# =xi+ yj+ zk

Solution:

_;__ w12 = (x2 4+ y? + 22)
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Example: 2.28 If is a constant vector and is the position vector of any point, prove that
V- (@x7)=0(i)V x(@xr) =2a
Solution:

Let7=x{+ yj+ zk

r7 R

- =

a X r= a, a, as
X y z

= (a2 — asy) — J(a1z — asx) + k(a;y — ax)

) v a a a
V- (@xr)= a(azz — azy) + 5(—6112 + azx) + g(aﬂ’ — a,x)

=04+04+0=0
7 7 k
. > 2 d ] d
X X = —_ - -
(i) V x (ax7) - -~ -

a,z—azy —aZz+azx ay—azx
= 1(a; + ay) — j(=a, — ap) + E(as + as)
= 2a,7+ 2a,] + 2ask
=2(a, 7+ a,J + a3E) =2d
Example: 2.29 Prove that curl(f(r)7) = 0
Solution:
Let f(r)r = f(r)[x?+ yJ+ ZE]

= xf()T+ yf(f + zf Nk

-

7 7 k
V(N =| = % =

xf(r) yf(r) zf(r)
= Yi|zf @) -y &
=31 [zr' ) (2) - v’ ()]
=% [2F0) - 210
= X7(0)
=07+ 0/+ 0k=0
Example: 2.30 Prove that curl[¢ Vo] = 0
(or)

—

Prove that V X [@ V] = 0
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Solution:
oo = ol 75
= i(052)+i(05) + E(03)
T 7k
9 9 9

ay
dp
i[5 (o ) (03]
0z ay
f[ Teie e _yle b5
yaz 0z gDazay ay 0z

+0/+0k=0
Example: 2.31 If w is a constant vector and ¥ = w X 7, then prove that w = %(V X V).

Solution:

Let7=xi+ yj+ zk

T ] k
W X T =
W = |0 Wy w3
X y z

= W(wyz — w3y) — J(w1z — ws3x) + E(wﬂ’ — wyX)

7 ji k
VXV = 9 9 9
0x ay 0z

WyZ — W3y —wq 1z + wW3X W1y — WX
= l(w, + wy) — J(—w; — wy) + k(ws + ws)
= 2w, + 2wy] + 2wsk
=2(w T+ w,] + wgﬁ) =2w
&= 2(VxP)
Problems based on solenoidal vector and irrotational vector and scalar potential

Example: 2.32 Prove that the vector F = zT+ xj + y k is solenoidal.

Solution:

-

Given F=zl+ xj+ vk
To prove V - F=0
=9 ] ]
V-F= E(Z)-I_ @(x)+ 5()’)

=0
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= F is solenoidal.
Example: 2.33 Show that the vector F = 3y*227 + 4x3z%] — 3x2y2k is solenoidal.

Solution:
Given F = 3y*227 + 4x32%] — 3x%y%k

ToproveV- F=0
LR 9 4.2 o 3.2 9 2,2
V:F= 6x(3yz)+ay(4xz)+az(3xy)
=04+04+0=0

. F is solenoidal.
Example: 2.34 If F= (x+ 3)i+ (y—22)j+ (x+ A2)k is solenoidal, then find the value of A.

Solution:
Given F is solenoidal.

(ie)V- F=0
> 2 (x+30) + = (y—22) + = (x+ 12) = 0
dx y ay y 0z
=214+14+1=0

A= =2
Example: 2.35 Find asuch that 3x — 2y + z2)i+ (4x+ay—2z)j+ (x—y + 22)k is solenoidal.

Solution:
Given Bx —2y+2)i+ (4x+ay—2)]+ (x—y+ 22)k is solenoidal.

(ie)V- F=0
2 d ?
= -Bx—-2y+2)+ 5(4x+ay—z)+ S, —y+22)=0
=3+a+2=0

&~ a= =5
Example: 2.36 Show that the vector F = (6xy + z3)i+ (3x% — z)j + (3xz% — y)k is irrotational.

Solution:
Given F = (6xy +z3)i+ (3x%2 —2)] + (3xz% — Wk

To prove curl F=0
(i.e)To prove V X F=0

7 7 k

= a a 3}
UxF=| < 2 2
dx ady 0z

N

6xy +z3 3x%?—3z% 3xz*-y
(—1+1)— J(3z% — 322) + k(6x—6x) =0

-

~ F is irrotational.
Example: 2.37 Find the constants a, b, ¢ so that the vectors is irrotational

Vector Calculus
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F= (x+2y+az)i+ (bx+3y—2)j+ (4x+cy + 22)k .
Solution:

Given F= (x + 2y+az)i+ (bx+3y—2)j+ (4x+cy+ 22)k is irrotational.

(ie)Vx F=0
7 i k
dx ay 0z

x+2y+az bx+3y—z 4x+cy+2z

> Wc+1)—JA—a)+ k(b=2)=0

>c+1=0; 4—a=0; b—2=0

=>c=—1; 4=aq; b=2
Example: 2.38 Prove that F = (6xy + 23)T + (3x% — 2)] + (3x2% — y)ﬁ is irrotational and find ¢
such that F = V.
Solution:

Given F = (6xy +z3)7+ (3x%2 —2)] + (3xz2 — y)l_é

To prove V X F=0

7 7 k

> a a 7}
UxF=| =< 2 2
x ay 0z

N

6xy+2z3 3x2—z 3xz’-—y

= U(-1+1) — J(32z2 — 322) + k(6x — 6x)
=0

-

-~ F is irrotational.

To find ¢ such that F= V.

k_
ay T 0z

_ 209 | 509
V(p—lax+]

Equating the coefficients of 7,7 and k we get,

29 . d¢ 2 . de 2
— = 6xy + 73 — = 3x%? -2z — = 3xz?% —
ox y+z7 oy ! 0z y

Integrating the above equations partially with respect to x, y, z respectively

@ = 3x*y+xz3+ fi(y,2)

¢ = 3x’y —yz+ fo(x,2)

o= xz’—yz+ fs(x,y)

s~ @ = 3x%y +xz3 — yz + ¢ where c is constant.

Example: 2.39 Prove that F = (y2cos x + z3)i + (2y sinz — 4)j + (3xz?)k is irrotational and find
its scalar potential.

Solution:
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Given F = (y2cos x + z3)T+ (2y sinz — 4)] + (3xz2)k

To prove V X F=0

7 ji k

> a 3} 3}
VXF = — — —
dx dy 0z

y?cos x +z3 2ysinz—4 3xz?
=7(0-0)— j(3z%2 - 3z%) + E(Zy cosx — 2ycos x)
=0

-

~ F is irrotational.

To find ¢ such that F = V.

o9

Vo =1

700 | 109
+J 3y + k 3,
Equating the coefficients of 7,7 and k we get,

} p— 2 3. ‘ —_ r - —_
- + - Z — 4 _] 2
y COS X zZ, ySln X y - 3XZ

Integrating the above equations partially with respect to x, y, z respectively

@ = yisinx+z3x + f1(y,2)

@ = yisinx —4y + f,(x,2)

= xz>+ f3(x,y)

.~ @ = y?sinx + z3x — 4y + c is scalar potential.

Example: 2.40 Prove that F= (2x+ yz)i + (4y + zx)j + (6z — xy)l_é is solenoidal as well as
irrotational also find the scalar potential of F.

Solution:

Given F = (2x + yz)i+ (4y + zx)j+ (6z — xy)E

(i) To prove F is solenoidal.

(ie) To prove V - F=0

<

- F = aa—x(Zx +yz) + %(4y+ zx) + ;—Z(—6z+ xy)
=24+4-6=0

« F is solenoidal.

(ii) To prove F is irrotational.

(ie) To prove V X F=0

i 7 K
VxF=| 29 o 9
dx dy 0z

2x+yz 4y+zx —6z+xy

= M —x) = jly—y) + k(z—2)
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=0
~ F is irrotational.
(iii) To find ¢ such that F = V.

- - _ —>_ _>a_(p _>a_(p —>a_(p
(2x +yz)i+ (4y + z0)j + (6z —xy)k = 1~ oy + k22

Equating the coefficients of 7,7 and k we get,

99 _ . 09 _ : 9% _ _
ax—2x+yz, 6y—4y+zx, 5, = 6z + xy

Integrating the above equations partially with respect to x, y, z respectively
o= x*+xyz+ f1(y,2)
@ = 2y*+xyz+ f,(x,2)
o= =3z + xyz+ f3(x,y)
s~ @ = x%+ 2y?—3z% + xyz + c where c is a constant.
« @ is a scalar potential of F.

Example: 2.41 If Vo = 2xyz3T + x2z3] + 3x2yz%k find ¢ if 9(—1,2,2) = 4
Solution:

Given Vo = 2xyz3T + x2z%] + 3x%yz%k .. (1)
— 790, 200, 19
We know that Vo = (4] % + k 5, (2)

Comparing (1) and (2)

9 _

20 _
ax -

ay

2. 3. 99 _

2xyz3; x%z3; S, = 3x2yz?

Integrating the above equations partially with respect to x, y, z respectively
o= x*yz3+ fi(y,2)
¢ = x*yz°> + fo(x,2)
¢ = x*yz® + f3(x,y)
s~ @ = x%yz3 + ¢ where ¢ is a constant.
Given ¢(—1,2,2) = 4
=>16+c=4
=>c=-12
W= xtyz3 — 12
Example: 2.42 If A and B are irrotational, then prove that A x B is solenoidal.
Solution:

Given 4 and B are irrotational.
(ie)V x A=0andVx B=0
We knowthatV - (4 x B) = (VxA4) - B— (VxB) - 4

=0-A-0-B
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Hence 4 x B is solenoidal.
Example: 2.43 if 4 is a constant vector, then prove that (i) div 4 = 0 and (ii) curl 4 = 0
Solution:
LetA = A0+ Ay 7+ Ak
945

Mg Wm_ o Mg
ax ay ' az
- rd 6A1 6A2 6A3

() v dx +-6y + 0z

=0+0+0=0

Hence div A = 0.

T 7k
(i)vx 4=[2 2 2
dx dy 0z
Ay A; A
= 70—-0)— j(0—0)+ k(0 —0)
=0
. curlF =0

Example: 2.44 If ¢ and y are differentiable scalar fields, prove V¢ X Vy is solenoidal.
Solution:
Consider V - (Vo x Vy)
= Vy -Vx (Vo) =Veo- [V x ()] [-V:-(AxB)=B - (VxA)— 4 (VxB)]
=Vy-0—Ve -0
=0
~ Ve X Vyissolenoidal.
Example: 2.45 Find f(r) if the vector f(r)7 is both solenoidal and irrotational.
Solution:
(i) Given f(r)7 is solenoidal.
V- (fr)H =0
We know that # = xT+ y ]+ z k
S fOF = O+ Y]+ ) 2k
NowV - (f(r)¥) =0
> (1 + Ja+ k) (f)xi+ f@yj+ fG)zk) =0
= 2 (M0 + = O+ (@) =0

>3- (f)x) =0
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S>E[f) 1+x @ =0

> :f(r)+xf’(r)§] =0

s3[fm+Z )] =0

r

=3f(M) + [+ L+ Z] =0
53+ 1202 =0 [+ a2+ y2+ 22 = 1]
>3fr)+f'(r)r=0

= f'(r)r= =3f()
) _ -3

f@ o
Integrating with respect to r, we get

'@ g — (=3
:ff(r) dr= [—dr
= logf(r) = —3logr + logc

=logr—3 + logc

= log (r—13) +logc

- os(2)
C

L f) =5

7"3
(ii) Given f(r)7 is irrotational.
7 7 k
S_| o d 2
VX f(r)r = o Pie >

xf(r) yf@) zf(r)
Sz F0) -y = £
= Li[zr'® % - y L]

= Li [z -y
Sif'() [2- 2

r

= 0 forall f@r)
Example: 2.46 Prove that ¥™7 is irrotational for every n and solenoidal only for n = —3.
Solution:
We know that # = xT+ yj+ zk
A=t x4y 4tz k

(i) To prove ™7 is irrotational.
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7 7k
)y =| 2 A
VX(T‘ T‘)— ax dy 0z
r"x r*y r'*z
— s[ n—1a _ n-1
= Zl_znr 3 ynr 62]
= Z?_an”‘lz ynrt1 r]
= Z?_nr”‘l 4 rn-l y]
= %1(0)
=07+ 0j+ 0k =

~ r™7 is irrotational for every n.
(ii) To prove r™# is solenoidal.
V- =V -(r"xl+ry ]+ 1" ZE)
—yv9 cn
=Y (r"x)

=) [r” (1) + xnr™? z—:]

= [r” + xnrn-l jr—c]
= Y[r" + x?nr"-2]
=3r" + nr"2(x? + y? + z2)
= 3r" + nr"2(r?)
=3r" +nr™
=r"(3 +n)
Whenn = —-3,wegetV-("#) =0
~ 7 is solenoidal only if n = —3.
Problems based on Laplace operator
Example: 2.47 Find VZ(log 1)

Solution:
2
V2(logr) = X (logr)
_y0o (Lor
=25 (;5:)

ax \r ox
-x2 ()
e s(-2)2
-zf- <)
-2

o

2 (% + y* + 2°)

72 T
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3 )
= 5= =09
3 2 1

e

Example: 2.48 Prove that VZ(r™) = n(n + 1)r" 2, where ¥ = xi+ yJj+ zk and
r = |#|and hence deduce V? G)
(or)
Prove that div (grad ™) = n(n + 1) r*2
Solution:

Letr = |#]| = \/x2+ y? + z?

Hence L =% L _2  ZX_Z
ox r

6y_;’ az

V() = 525 ()

=3 9 [nr”‘1 8_r]

dx dx
]
= —|nr -
Z:f’)x n r

= Z;—x[n xr™? ]

=Yn [x(n —2)rn3 0" 4 yn-2 (D ]

ox
=Yn [x(n —2)rn3 §+ rn-2 ]
= Y[n[(n—2)r"*x2% + r* 2] ]
= Y[nn—-2)r"*x2+ nrn2]
=nn—-2)r"*(x%2+ y?2+ z3)+3nr"?
=nn—-2)r"*r2+3nrn2
=nn-2)r"2 +3nr*?
=nr"2(n-2+3)
=nr"2(m+1) ..
(i) v2 () = w20 )
= (1D (1+1)r12 by(1)
=(=D@Or==0
Example: 2.49 Prove that V2(r"#) = n (n + 3)r™ 2%
Solution:

Wehave # =xT+ yj+ zk

677 = _ - _ >
Hence Pyl = J; =k

Alsor = |#]| = \/x2+ y2+ z2
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air vy, ar _ z

Hence 2 =%,
ax 7 dy az

2 2 i >
VZ(r"y) = Zaxz (r"r)

il [ n 07 n—1 or _>]
= — |\r° — nr —7r
Zax ax + ox

d 5 X
= y— [r”l+nr” 1 £r]
ox r

= X [P i+ nrm 2 x 7]

dx
=y [n rn-1 Z—:?+ n [r”‘zx (Z—z) +r" 2 (D)7 + [(n - 2)rn3 Z—Z] x?”

=Y [n rn-1 §?+ nr* 2 xi+nr*?*+nn- 2)r*3 ; x?]
= Y[nr"2xT+nr" 2 xi+nr* % + n(n — 2) r"** x%#]
=nr"2(xi+ yj+ zk) +nr"2(xi+ yj+ zk) +3nrv 27
nn— 2) 47 (x? + y? + z?)
=nr"2F+ nr" % + 3nr" %% + n(n — 2)r4r?
=5n7r" % + n(n — 2)r"* 27
=nr" 25 +n—-2)
=nr*?#(n+3)
= n(n+3)r" %7

Example: 2.50 Prove that V2f(r) = f""(r) + (%) f'()

Solution:
Vf(r) = £ 25 f(r)
=Sl
=3 [rm?
= 2= [roxd
=3[ e [ZE]+ o)) 24 £10) L xd

=Z[Fex i+ F@ ) E

=3[ 322+ 10 2400 L 7

=) S+ + 2D O+ 0 5 @+ YR+ 22)
=—f'() ZED+=f' O+ ') 5 D)

=—f'@) 2+ O+ @)

= f'(r) +2f' @)

Exercise: 2.2
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1. When ¢ = x3 + y3+ 23— 3xyz, find Vo,V - Vo,V X Ve at the point (1, 2, 3).
Ans: (V) (123 = —150+ 3]+ 21k
(V- (P)(1,2,3) = 36
(VX V@) (123 = 0
2. Show that, div G) = %
3.FindV - FandV x F of the vector point function F = xz37— 2x%yzj+ 2yz*k at

(1,-1,1). Ans: (V- F) = —9,(VxF) = 3]+ 4k

1-11) (1,-1,1)

4. Show that the vector F = (sin y+2)T+ (xcosy—2)]+ (x —y) k is irrotational.

5. Show that the vector F = (2xy — z2)T+ (x2 + 2yz)j+ (y2 — 2zx) k is irrotational
and find its scalar potential. Ans: x2y —xz? + y?z + ¢

6. Show that the vector F = (3x2+ 2y2+ 1)i+ (4xy— 3y2z—3)7+ (2— y® kis
irrotational and find its scalar potential. Ans: x3 + 2y?x + x — y3z -3y + 2z +¢

7. Show that the vector F = (y2 + 2xz2)i+ (2xy — z) ]+ (2x2z—y +22) ks
irrotational and find its scalar potential. Ans: xy? + x2z%2 —yz+ z%+¢

8. Prove that F = (x2 — y? +x)T— (2xy + z)Jis irrrotational and hence, find its scalar

3 2 2
potential. Ans: x?— xy? + x?— y?+ c

9. Find the constants a, b, ¢ so that the following vector is irrotational.
() F = (axy + bz3)i+ (3x% — cz)J+ (3xz? —y) k Ans:a=6b=1c=1
(i) 4 = (axy — z3)i+ (a - 2)x?7+ (1 - a)xz? k Ans: a = 4
10. Show that the following vectors are solenoidal.
a= (x+ 3y)i+ (y— 32)J+ (x—22) k
(i) d = 5y*z37+ 8xz2] — y*x k
2.3 VECTOR INTEGRATION
Line Integral

An integral which is evaluated along a curve then it is called line integral.

Let C be the curve in same region of space described by a vector valued function

#=2xT+ y]+ zk ofapoint (x,y,z) and let F = F,i+ F, ]+ F k be a continuous vector valued
function defined along a curve C. Then the line integral F over C is denoted by

| F-ar.

c

Work done by a Force

If F(x, y,z) is a force acting on a particle which moves along a given curve C, then
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J' F - d# gives the total work done by the force F in the displacement along C.

Thus work done by force F = j F -d?

Conservative force field
The line integral ff F -d depends not only on the path C but also on the end points A and B.

If the integral depends only on the end points but not on the path C, then F is said to be conservative vector
field.

If F is conservative force field, then it can be expressed as the gradient of some scalar function ¢.

Froai= (15247524 k52) - (dxi+ dyj+dzk)

_ 9¢ 99 9¢ —
=2 dx + 3y dy + 5, dz= 0¢

= [pl§
= @[B] - ¢[A4]
~work done by F = ¢[B] — ¢[A]

Note:

If F is conservative, then V X F=Vx (Vo) = 0 and hence F is irrotational.

Problems based on line integral

Example: 2.51 If F = 3xyi — y2%j, evaluate [ F - d¥ where c is the curve y = 2x2 from (0, 0) to
J

(1,2).
Solution:

Given F = 3xyl — y?]

dr =dxi+ dy7J
F-d7 = 3xydx — y2dy
GivenCisy = 2x?
s dy = 4xdx

Along C, x varies from 0 to 1.

I F-dif = fol 3x (2x2)dx — 4x*(4xdx)

= fol 6x3 — 16x° dx
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Example: 2.52 Find the work done, when a force F = (x%2 — y% + x)— (2xy + y)j moves a particle
from the origin to the point (1, 1) along y? = x.
Solution:
GivenF = (x2 — y2 + x)i— xy + )]
dr = dxt+ dyj
F-di = (x%— y2+ x)dx — Qxy +y)dy
Given y? = x = 2ydy = dx

Along the curve C, y varies from 0 to 1.

[ Frai= [[(D? - y?+ yD) 2ydy - QO2y +y)dy

= [J(2y° - 2y* +2y% — 2y — y) dy
1
Jy @y®=2y*— y)dy

e a2- 2

6 4 2
2 2 1 2
6 4 2 3

Example: 2.53 Find the work done in moving a particle in the force field
F= 3x%1+ (2xz—y)j—zk fromt = 0to ¢ = 1 along the curve x = 2t%,y = t, z = 4¢3,
Solution:
Given F = 3x21+ (2xz—y)] — zk
d7 = dxi + dyj + dzk
F-d# = 3x%dx + (2xz —y)dy — zdz
Givenx = 2t?, y=t, z=4t3
dx = 4tdt, dy =dt, dz=12t%dt
j F-di = [ 48t5dt + (16t° — t)dt — 48¢° dt

c

= [/ (16t° — t)dt

[16t6 e21! 16 1 _ 13
2

6 21 6

Example: 254 If F = (3x% + 6y)i+ 14yzj + 20xz2k, evaluate _[ F - d7 from (0,0,0) to (1,1,1)

alongthecurvex =t, y = t?, z = t3.

Solution:
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Given F = (3x2 + 6y)T+ 14yz] + 20xz2k
d7 = dxi+ dyj+ dzk
F-di = 3x% 4 6y)dx + 14yzdy + 20xz%dz
Givenx=t, y=t? z=t3
dx =dt, dy=2tdt, dz=3t%dt

The point (0,0,0) to (1,1,1) on the curve correspondtot = Oandt = 1.

[ F-df = [[(3t2+ 6t?)dt + 14t5(2t dt) + 20t7(3t?)dt

= [1(9¢% + 2815+ 60t°) dt

1

0L +285 + 60 £ |
0

=24+ 242344+ 6=13units.
3 7 10

Example: 2.55 Find _[ F -drfwhere F = 2y + 3)i + xzj + (yz — x)k along the line joining the

points (0,0,0) to (2,1, 1).
Solution:
Given F = Qy+ 3T+ xzj+ (yz— x)k
dit = dxi+ dyj + dzk
F-di = 2y + 3)dx + xzdy + (yz—x)dz
X—x, _ Y-y _ z-74

Equation of Straight line " = =

27 X1 Y2— )1 Z2— 21

The equation of the straight line joining (0,0,0) to (2,1, 1).

x—0 y—20 z—0
= = =

2—-0 1-0 1-0

x y z
>-==-=>-=t (sa

S= 7= 1=t (say)

x=2t, y=t z=t

dx =2dt, dy=dt, dz=dt
Whent =0 we get (0,0,0)
Whent=1weget (2,1,1)

~ t varies from 0 to 1.

j F-di= [/(2t+ 3)2dt + 0O)tdt + (t2 —2t)dt

= [(4t+6+2t% + t2 - 2t) dt

_ f01(31:2 + 2t +6)dt

- [3§+2§+ 6t]:
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=24+ 24 6=38units
3 2
Example: 2.56 Find the work done in moving a particle in the force field
F =3x*1+ (2xz — vJj+ zk along the straight line (0,0, 0) to (2,1, 3).
Solution:
Given F = 3x21+ (2xz— ) + zk
d7 = dxi+ dyj+ dzk

F-d# =3x%dx + (2xz—y)dy + zdz

X—X1 _ Y—=YV1 _ Z—Z3

X2~ X1 Y2— )1 Z2— 21

Equation of Straight line

The equation of the line joining two points (0,0,0) to (2,1,3) is

x-0 __ y-0__ z-0
2—-0 1-0 3—-0

x=2t, y=t z=3t

dx =2dt, dy=dt, dz=3dt
Whent = 0 we get (0,0,0)
Whent = 1 weget (2,1,3)

[ F-di = 3at)2dt + [2(2)(30) — t]dt + (3t)3dt

= [J(24t2 +12¢* — ¢t +9t) dt

= [/ (36t +8t) dt
1

3 2
= [365+8%
3 2 1g

= 124 4 = 16 units

Example: 2.57 Find _[ F - d7 where c is the circle x% + y% = 4 in the xy plane where

F = (2xy + z3)i + x%] + 3x2’k.
Solution:
Given F = (2xy + z3)7+ x%] + 3xz2k
Inxyplanez=0 =dz=0
dit = dxi+ dyj+ dzk
F-d# = 2xydx + x2dy
GivenCisx? +y? =4
The parametric form of circle is
X =2cos0, y =2sin6
dx = —2sinf0df, dy = 2cos6df
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And 9 varies from 0 to 27

I F.dif= f02”[2(2 cos8)(2sin8)] (—2sin0dB) + (2 cosB)?2cosO db

= fozn —16 cos @sin®6 + 8cos® 6 do

— fozn —16 cos0(1 — cos20) + 8cos36do
= fozn —16cos8 + 16 cos*0 + 8cos® 6 db
= —16 fozn cos 6 d6 + 24 fozn cos®0do

= —16 fozn cos 8 do + 24 f2”—3 cos6+cos36 ;g

0 4
_ . 27 24 . sin30]%"
=16 [sin 6]§" + ” [3 sin 6 + — ]o
=0 [+ sinnm = 0,sin0 = 0]

Example: 2.58 State the physical interpretation of the line integral ffl_f - d7.
Solution:

Physically ff F - d7 denotes the total work done by the force F, displacing a particle from A to B
along the curve C.

Example: 2.59 If F = (4xy — 3x222)i + 2x2] — 2x%zk, check whether the integral
I F - d¥ is independent of the path C.

Solution:
Given F = (4xy — 3x222)7 + 2x%) — 2x2zk
d7 = dxi + dyj + dzk
F-d# = (4xy — 3x%z2)dx + 2x2dy — 2x%zdz
Then I F -diis independent of path C if V x F=0

7 7 k

= a d d
UxF = < 2 2
0x ady dz

4xy — 3x%z%  2x? -—2x3z
= 7(0 — 0) — j(—6x%z + 6x%z) + k(4x — 4x)
=0
Hence the line integral is independent of path.

Example: 2.60 Show that F = x2i+ y%j + z%k is a conservative vector field.

Solution:

If F is conservative, then V x F=0.
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i ]k
Now, V X F= 2 2 2
ax dy 0z
x2 y2 Z2
= 70—-0)— j(0—0)+ k(0—0)

=0
« F is a conservative vector field.
Surface Integral
An integral which is evaluated over a surface is called a surface integral.
Consider a surface S. Let F be a vector valued function which is defined at each point on the surface and let P
be any point on the surface and 7i be the unit outward normal to the surface at P. The normal component of F
atPis F - 7.

The integral of the normal component of F is denoted by j I F - @i ds and is called the surface integral.
S

Evaluation of surface integral

Let R, be the projection of S on the xy — plane, k is the unit vector normal to the xy — plane then

dx d
ds = fqy
|7 - k|
- - d d
jF ﬁds=” F.pie
|7 - k|
S R1

] Fodds= [ PRl

S R2

Problems based on surface integral

Example: 2.61 Evaluate ” F -ndsifF= (x+ yHOI— 2x]+ ZyzE and s is the surface of the plane
S

2x +y + 2z = 6 in the first octant.
Solution:

Given F = (x + y)T— 2x] + 2yzk
Letop = 2x+y+2z—6

_j00, 200 00
ThenV<p—lax+]ay+k

zZ
=21+ 17+ 2k
Vol= VAT T4 =9 =3
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A~ Vo  20+1j+2k
Vel 3

20+ 1]+ 27&)

Fof= G+ 2T - 20+ 2yzK] - (
[2(x + y?) — 2x + 4yz]
[y? + 2yz]

yly + 27]

WIN WIN WIN W]k

yly +6 — 2x — y] [v2z2=6—-2x—y]

wIiN

y[6 — 2x]

= 2 y[3 —x]
Let R be the projection of S on the xy — plane

dx dy

L —

s ds =

PO 20+ 17+ 2k = 2
1 () g

jﬁ-ﬁdg: | F-pie

S

n-kx

4 dx dy
= -y(B—x)
s g
=2 [ [(3—x)ydxdy
In R, (2x + y = 6), x varies from 0 to 6_73’
y varies from 0 to 6
¢ 6
=2 fo foz y(3—X)dXdy

66—y

=2 [y [px- 5] @y

~205 [3(2)- 1 () o
=2 [;>(18y -3y — 2 (6—y)* dy

2 3 8 3(-1)
= [96)2 - ©*+ Z©@] - [0-0+ L (67
= 81 units

Example: 2.62 Show that ” (yzi+ zxj+ xy E) -hds = %Where s is the surface of the sphere
S

x% + y? + z? = 1 in the first octant.

Solution:
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GivenF =yzT+ zx]+ xyk
Letp =x2+y?+ z2 -1
Vo =152+j20+ k%2

= 2xT+ 2y] + 2zk

V| = J4x2 + 4y2 + 422 = 2(1)

i . A v 2(xi+ yj+ zk
= The unit outward normal is A = |\7_Z| = W

F-Ai= lyzT + zx] + xyE] (kT + i+ ZE)

= 3xyz
Let R be the projection of S on xy —plane
ods = dx dy
A - | (xl+y]+zk) =z

dxdy

= [ [3xyz
= [[3xy dxdy
In R, (x? + y2 = 1), x varies from 0 to /1 — y?2

y varies from0to 1

= fol Jy 1= 3xy dxdy

_3f

= 2 f, y - y?dy

e

3 r1
=L y-yidy

3[3/2 y4]1
212 4 g

_ E(l_ 1) =3
T 2\2 4/ s
Volume integral

An integral which is evaluated over a volume bounded by a surface is called a volume integral.

If F = Fii+ F,j+ F k is a vector field in V, then the volume integral is defined by
[[[ F v
\

Problems based on volume integral
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Example: 2.63 If F = (2x% — 32)i — 2xyj — 4xk, evaluate f” V x F dv where v is the volume of
\

the region bounded by x = 0,y = 0,z=0and 2x + 2y + z = 4.
Solution:

Given F = (2x2 — 32)T— 2xy] — 4xk

7 7k

= i} i} 3}
UxF=| 2 2 2
dx ay 0z

2x? =3z —2xy —4x
= 7(0 — 0) — j(—4 +3) + k(-2y —0)
= j— 2yk
For limits
Givenx =0,y=0,z=0and2x+2y+z=4
~z:0 >4—-2x—-2y
Putz=0 =2x+2y=4(or)x+y=4

.'.y:O -2 —-x
Putz=0,y=0 =2x =4 (or) x =2
Sx:0 -2

afffVxFav= [ [27 [T (7 - 2yk)dzdydx
= [0 777G~ 2yk)[2g > dydx

= 2[4~ 2x — 2y)] — 2y(4 — 2x - 2y)K] dydx

2—x

= foz {[431 — 2xy — ZZLZ]f— [4y2 — 2xy? — 4?3,3] E}o dx
= [{l42-x) - 2x(2—x) - (2-x)]] -
42 - %)% = 2x(2 - x)? =2 2 - )%k} dx
= [[8 — 4x — 4x +2x2 — 4+ 4x — x?] ] -
|16 — 16x + 4x2 — 8x +8x2 — 2x3 — 2 (8 — 12x + 6x% — x*) k| dx
k

= [@—4x+x0) 7 £ (16— 24 + 1222 — 2x%)] dx

w | =

= [4x - 222 + ";]Zj+ [16x — 12x% + 42° - "2—4]2

(32—-48+32-18)

w =

- (s-5+9);-

-2G-9)

Exercise: 2.3
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1. If F = x27+ xy?J, evaluate the line integral J' F - d# from (0,0) to (1, 1)along the

pathy = x. Ans: %

2. Evaluate I F -d#where F = x2y2T+ yjand C is y2 = 4x in the XY plane from

(0,0) to (4,4). Ans: 264

3.0 F = xyi+ (x2 + y?)J, then find J' F - d#, where C is the arc of the parabola

y = x%— 4 from (2,0) to (4,12) Ans: 732

4.1FF = xXyl+ z]— xyz k, then evaluate I F - d#, from the point (0,0,0) to (1,1,1) where C is the

curvex =t y=tlz=t Ans:%
5. Find the work done in moving a particle in the field
F=3x2T+ (2xz—y) j+ (x% + y?) k along the straight line from (0,0,0) to (2,1, 3).
Ans: 16
6. Evaluate the line integral [, (x* + xy)dx + (x* + y?)dy, where C is the square formed
by the linesx = +1andy = +1. Ans: 0
7. Find the total work done in moving a particle by a force field F = yzi+ xz]+ xy k
along the curve x = t,y = t2,z = t3 from (0,0,0) to (2,4,8) Ans: 64
8. Evaluate ” F - A dswhere F = 1827 — 127+ 3yk and S is the part of the plane
S

2x + 3y + 6z = 12 which is in the first order. Ans:24

9. Evaluate ” F - Adswhere F = (x +y2)7— 2xJ+ 2yzkand S is the surface of the
S

plane 2x + y + 2z = 6 which is in the first order. Ans:24
10. Evaluate IH VxF dvwhere F= (2x%2—32)0— 2y ] — 4xz k and V is bounded
\

by the planes x =0,y =0,z=0and 2x + 2y + z =4 Ans:g

2.4 Green’s Theorem

Green’s theorem relates a line integral to the double integral taken over the region bounded by the closed
curve.

Statement

If M(x,y) and N(x, y) are continuous functions with continuous, partial derivatives in a region R of the xy -

plane bounded by a simple closed curve C, then

§ Mdx + Ndy = ” (Z—: — Z—I\;) dx dy,where C is the curve described in the positive direction.

Vector Calculus Page 42



Engineering Mathematics - II

Vector form of Green’s theorem

f F-ar=|[ (vxF)- kdr

c

Problems based on Green’s theorem

Example: 2.64 Verify Green’s theorem in the plane for _[ (3x% — 8y*)dx + (4y — 6xy)dy where C

is the boundary of the region defined by x =0,y =0,x+y = 1.

Solution:
b
N\ B(0,1) y=1
§\
\Q%% +y=1
A 4
X
R A(1,0
\\\\>\\ (1,0
5 y—o N *
(0,0
ON  aM
We have to prove that I Mdx + Ndy = J:[ (5_ E) dx dy
c R
Here, M = 3x? — 8y?and N = 4y — 6xy
aM aN

c

I (3x2 —8y?)dx + (4y — 6xy)dy = I M dx + N dy

By Green’s theorem in the plane,

_[ Mdx+ Ndy = J;I (g—:— Z—A;)dxdy

= [, I, "(10y) dy dx
_ 1 yz 1-x
=10 [ [5] ax
2
=5 fol(l —x) dx

=5 [(1:;‘)3]: = 5.

3

Consider [ M dx + N dy = I +J' +.[

OA AB BO

Along OA,y = 0 = dy = 0,x varies from 0 to 1

# | Mdx+Ndy= [, 3x2dx = 15 = 1
OA
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Along AB,y =1 —x = dy = —dx and x varies from 1 to 0

'[ Mdx +Ndy = f10[3x2 —8(1—x)?—-4(1—-x)+ 6x(1 —x)]dx

0

— — + 3x? — 2x3]
3 _3 2

_ [ﬁ 8(1—x)3 4(1- x)?
1

=%42-1-342=2¢
3 3

Along BO,x = 0 = dx = 0 and y varies from 1 to 0

.[ Mdx +Ndy = f104ydy= [2y%]? = -2
BO

“] Mdx+Ndy=1+3-2=2 ..(2)

~ From (1) and (2)
_[ Mdx+Ndy = J;I (3_1:_ E;—A;)dxdy

Hence Green’s theorem is verified.

Example: 2.65 Verify Green’s theorem in the XY —plane for I (xy + y?)dx + x*dy where C is the
c

closed curve of the region bounded by y = x,y = x2.

Solution:
y A

We have to prove that _[ Mdx + Ndy = ” (g—:— Z—A;) dx dy
C R

Here, M = xy + y? and N = x?

oM N
> ol X+ 2y == 2x
N oM
RH.S = jRj (5 - E) dx dy
Limits:
x varies from y to \/y
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y varies from 0 to 1

N

” (E_ Z—f)dxdy=f01fyﬁ2x— (x + 2y) dx dy
R

LHS= [ Mdx+Ndy

Consider [Mdx+Ndy= [ + |

OA AO

Along 04,y = x?> = dy = 2x dx, x varies from 0 to 1

J- Mdx + Ndy = fol[(x(xz) + (x2)?)dx + x? - 2x dx]

OA

= f01(3X3 + x4) dx

1
3x* x5
e
4 51g
19

3 1
= -4 - =
4 5 20

Along A0,y = x = dy = dx and x varies from1t0 0

I Mdx + Ndy = flo(x2 + x?%)dx + x%dx
A0
= flo 3x%dx = [x3]9 = -1

20 20

LHS= [ Mdx+Ndy= 22— 1= ——
c

~ LHS=RH.S

Hence Green’s theorem is verified.

Example: 2.66 Verify Green’s theorem in the plane for _[ (3x% — 8y?)dx + (4y — 6xy)dy where C

c

is the boundary of the region defined by y = x?, x = y2.
Solution:
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Y 4
A(1, 1)
o
0,0
Wehavetoprovethatj de+Ndy—” (Z—N——)dxdy
c R
Here, M = 3x? —8y2 and N = 4y — 6xy
aM_ _ N _
RH.S = ” (a—N——)dxdy

Limits:
x varies from y? to ,/y

y varies from 0 to 1

” (Z_: - _) xdy = fol f;/zy(—6y + 16y) dx dy

1
= [ T10xy1Ydy

10 fl(y\/?— y®)dy

:10[__ ’

S0y

LHS= j M dx + N dy

Consider [ M dx + N dy = I + j

OA AO

Along OA,y = x? = dy = 2x dx, x varies from 0 to 1

- J- Mdx + N dy = f01(3x2 —8x*)dx + (4x? — 6x3)(2x)dx

OA
= fol(3x2 — 8x* +8x3 — 12xY)dx

= fol(—ZOx4 + 8x3 + 3x?)dx
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= [-20Z+8Z+ 3";]:)

=—4+2+1= -1
Along A0, x = y? = dx = 2ydy and y varies from 1to 0

f [ Mdx+Ndy= [[3y*— 8y)2ydy+ (4y — 6yy) dy

Ao
= f10(6y5 —16y% + 4y — 6y3)dx
= f10(6y5 —22y3 + 4y)dx
= [6% - 222+ 4%2](1)
=0- [1- 2+ 2]

- (-9

LHS= [ Mdx+Ndy=—-1+>=

N | W

~ LHS=RH.S

Hence Green’s theorem is verified.

Example: 2.67 Verify Green’s theorem in the plane for the integral I (x —2y)dx + xdy taken

around the circle x> + y* = 1.

Solution:
We have to prove that _[ Mdx + Ndy = ” (g—:— Z—A;) dx dy
c R
Here, M = x —2yand N = x

=
ay 0x

RH.S = jRj (Z—’:—Z—’;’)dxdy

1

Lj (Z—I:—aa—]:)dxdy=ﬂ (1+ 2)dxdy

R

=3 j dxdy
R

= 3 (Area of the circle)
= 3mr?

=3n (v radius =1)

LHS= [ Mdx+Ndy

GivenCisx?+ y2 =1
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The parametric equation of circle is
x =cosf, y=sin@
dx = —sin 68d6, dy = cos6 do

Where 6 varies from 0 to 27

_[ Mdx+ Ndy = fozn(cos 6 —2sinB) (-sin0 df) + cos O (cosH dO)

= fozn(— sin @ cos 6 + 2sin? @ + cos? 0) db
= fozn(— sinfcos@ +sin?0 +1)df (- sin?0 + cos?6 = 1)

_ f027t (_sin229+ 1—cc2)526+ 1) de

- [ 2o 1) o

[cos(47t) 27 sin 47

+
4 2 4

+ 271] — [
= i+ T+ 21 — i= 37 [vsinnm =0,sin0 =0,cos0 = 1], [cosnmt = (—1)"]
~LHS=RH.S
Hence Green’s theorem is verified.

Example: 2.68 Using Green’s theorem evaluate _[ (y — sin x)dx + cos x dy where C is the triangle

bounded by y = 0,x = g,y = Z;X

Solution:
y
//L X
(0,0) y=0 &2, 0)

ON

We have to prove that j Mdx+ Ndy = ” (ax
c R

oM
Here, M = y —sinx and N = cosx

oM N .
>—=1-0 = — = —sinx
dy dx

Limits:
x varies from yf to g

y varies from 0 to 1
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Hence j (y — sinx)dx + cos x dy = f01 fﬁ(— sinx — 1) dx dy

= fol(cosx — x)g_n dy
2

= (s - (eos(2)- )]

e b4 yIT yIT
= J, [O— > —cos—+ 7] dy

N
Qv 3Inv d N

Example: 2.69 Evaluate by Green’s theorem _[ [e*(siny dx + cos y dy)] where C being the
c

. . T T
rectangle with vertices (0,0), (m, 0), (n, E) and (0, 5).

Solution:

(0,7/2) y=7/2 (7, 7/2)

x = 0777271777 27777) * ="

(z0) *

Il
(=}

y

(0,0)

We have to prove that _[ Mdx+ Ndy = J.J. (3_1:_ Z—A;) dx dy
c R

Here, M = e ™ siny and N = e ¥ cosy

:>6M— e ¥ cos :>6N = —e " cos
dy - y ax y

Limits:
x varies fromOto
y varies from 0 to

j [e*(siny dx + cos y dy)] = [2 f:(—e‘x cosy —e *cosy) dxdy

c
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= fogfgr —2e *cosy dx dy
T —x T
_ ~[e *cosy
= —2 foz [ -1 ]0 dy
=2 [?[e " cosy — e cosy]dy

=2 [2[e™™ cosy — cosyldy
= 2 [e ™ siny — sin y]g
=2 [(e‘” sing — sin%) — (e ™sin 0 — sin 0)]
=2[e™™ — 1]
Example: 2.70 Prove that the area bounded by a simple closed curve C is given by

2 2
% I (xdy — ydx). Hence find the area of the ellipse Z—Z + i—z = 1 by using Green’s theorem.

Solution:
By Green theorem, I Mdx + N dy = ” (Z—: - aa—l';) dx dy
c R

LetM = —yand N =x

am _
6y_

J' (xdy — ydx) = ” (1+ 1) dxdy

N _
ax

-1 1

=2 I _[ dx dy = 2 (Area enclosed by C)
R

= Area enclosed by € = % I (xdy — ydx)
C

Equation of ellipse in parametric form is x = acos8 and y = b sin @ where 0 < 6 < 2.

- Area of the ellipse = % fozn (acos 8) (b cos ) — (bsin 8)(—asin8) db

= lab fozn(cosze + sin%0) d@

2
1

2
= ~ab [,"d0 = > ab [0]3" = mab
Example: 2.71 Evaluate the integral using Green’s theorem

_[ (2x% — y®)dx + (x* + y*)dy where C is the boundary in the xy - plane of the area enclosed by

the x - axis and the semicircle x* + y? = a? in the upper half xy - plane.

Solution:
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(-10) o

In this figure 'a’ is represented as 1

By Green theorem, I Mdx + Ndy = ﬂ (Z—: - 2_1;4) dx dy
C R

Let M = 2x%2 — y? and N = x? + y?

oM oN
= 5 = —Zy = a = 2x
Limits:
y varies from 0 to va? — x2

x varies from —a to a

” (g—: - Z—IZ) dy dx = f_aa Jy az_xz(Zx + 2y)dydx
R

2qVa2—x2
=2 f_aa [xy + y?]o dx

=2 f_aa [xVaZ - x2+ az_zxz] dx

In the first integral, the function is odd function.

~ The value is zero.

2 2
a“—x
dx
2

- we get 2 f_aa
- e o

= (@-5)- (= + %)

4a3

3
Exercise: 2.4

1. Using Green’s theorem in the plane, evaluate I (x% — y?)dx + 2xydy where C is the

closed curve of the region bounded by y = x?and y? = x Ans: %

2. Find by Green’s theorem the value of _[ (x2ydx + ydy) along the closed curve formed

by y = x2and y? = x between (0,0) to (1,1) Ans: %
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3. Verify Green’s theorem for the integral I [(x —y)dx + (x + y)dy] taken around the

boundary area in the first quadrant between the curves y = x2and y? = x.
Ans: Common value = 3
4. Find the area of a circle of radius ‘a’ using Green’s theorem. Ans: Ta?

5. Evaluate J' [(sinx — y)dx — cos x dy], where C is the triangle with vertices
c

b4 b4 L2 s
(O; O); (E, O) and (;, 1) Ans: ; + Z
6. Using Green’s theorem, find the value of I [(xy — x?)dx + x?ydy] along the closed

curve Cformedby y =0,x =1landy = x Ans: _%

7. Verify Green’s theorem for I [(x? —y?)dx + 2xydy], where C is the boundary of the

rectangle in the xoy — plane bounded by the lines x = 0,x =a,y = 0and y = b.

Ans: Common value = 2ab?

8. Verify Green’s theorem for I [(2x — y)dx + (x + y)dy], where C is the boundary of the

Circle x% + y2 = a? in the xoy — plane. Ans: 2ma?
2.5 STOKE’S THEOREM
Statement of Stoke’s theorem

If S is an open surface bounded by a simple closed curve C if F is continuous having continuous

partial derivatives in S and C, then

I ﬁ-d?z” curl F+ A ds

c S

(or)
j ﬁ-d?z” Vx F- fids
c S

A is the outward unit normal vector and C is traversed in the anti — clockwise direction.
Problems based on Stoke’s theorem
Example: 2.72 Verify stokes theorem for a vector field defined by F= (x?2—y?)Tl+2xyjina

rectangular region in the xoy plane bounded by the linesx = 0,x = a,y =0,y = b.

Solution:
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1
e y=2a i
) K

(a,b)

N %

i = ) ANAx = a

o >
X
y=0 A

©.0) (@0)

By Stokes theorem, I F -d7 = ” Curl F -7 dS
S

c

To evaluate: ” Curl F -7 dS
S

Given F = (x2—y2)T+2x y]

CurlF=VXF
7 ik
- 2 8 9
x ay 0z

x2—y2 2xy 0
=7(0) =7 (0-0) +k[ 2y - (0~2y)]
=4y k
Since the surface is a rectangle in the xy plane, 7 = k,dS = dxdy
Curl F - =4y k -E:4y
Order of integration is dxdy

x varies fromx = 0tox = a

yvariesfromy = 0toy = b

5 b
= L[ Curl F -7 dS = [ f0a4ydxdy

b

= [, 4y [x]§dy
b

= [, 4aydy

_ [4ay?]?

B [ 2 ]0

= 2ab?

= ” Curl F -AdS = 2ab? ..(1)
S
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Here the line integral over the simple closed curve C bounding the surface OABCO consisting of the edges

0OA, AB ,BC and CO.

Curve Equation Limit
0A y =20 x = 0tox a
AB X =a y =0toy =b
BC y=5» x =atox 0
co x =0 y =btoy =0
dt= [ F-df

F -d# = (x2—y?) + 2xydy
On 0A: y =0,dy = 0,x varies from 0 to a

(2) = F .d7 = x2dx

jﬁ-d?

OA

= foaxz dx

E-

a3
3

On AB: x = a,dx =0,y variesfrom 0 to b

(2) = F.d7 =2ay dy

J. F -d?:fObZaydy

AB

2

- -

OnBC: y =b,dy = 0,x variesfroma to 0

() = F .dif =
jﬁ-d?

BC

(x? — b?)dx

:f;xz — b% dx

On CO: x =0,dx = 0,y varies from b to 0

() > F.d#=0
j F-dif=0

CcOo

(2)= F.dF = < +ab? —% + ab? = 2ab?

. (3
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From(3)and(1)j F-dif= ” Curl F -7 dS
S

c

Hence Stokes theorem is verified.

Example: 2.73 Verify Stoke’s theorem for F = (x2 + y2)i — 2xy J taken around the rectangle
bounded by the linesx = +a,y =0,y = b.

Solution:
~ y
("'a’b)
y =2>b
D I c
(a,b)
A 'S
b Gt R x=0 /\X = a
A > >
=0 S
a0y 277 B x
R (a,0)

By Stokes theorem, _[ F-df = I Curl F -7 dS
Given F = (x%2+ y?)i— 2xyJ

B 9 9
CurlF = e

Since the region is in xoy plane we can take i = k and dS = dx dy
Limits:
x varies from -a to a.

y varies from 0 to b.

” Curl F -AdS = —4 fob f_aay dx dy
S

b
= —4 [, [xy]2q dy

_ _ga [y;]’; = —4ap?  ..(1)

di= [ + [ +] +DIA

AB BC CD

T

/

Along AB:y = 0,dy = 0,x varies from-a to a
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d dx

+ dyj

[t
- a
d7 = [ x%dx
—a

_ H _
T lsl_, T 3
Along BC,x = a,dx = 0, yvariesfromO0to b

I F-df= fob(—Zay) dy

BC

-
r =
-
F

AB

= —aly’]§ = —ab?
Along CD:y = b,dy = 0,x varies froma to — a
N _ -a
[ Frar= [0+ b dx =[S+ bx]
CcD 3 a

3 3 3
a a 2a
= ——— ab? - —— ab? = —=—— 2ab?
3 3 3

Along DC: x = —a,dx = 0,y varies from b to 0

—_—
T
QU
=S

Il
S
<)
\S]
Q
<
QU
<

From (1) and (2) _[ F-dif= I Curl F -7 dS

Hence Stoke’s theorem is verified.

Example: 2.74 Verify Stoke’s theorem for F = (2x — y)i — yz?j — y%zk where S is the upper half of
the sphere x> + y% + z? = 1 and c is the Circular boundary on z = 0 plane.

Solution:

By Stokes theorem, _[ F-df = ” Curl F -7 dS
S

c

Given F = (2x —y)i — yz2j— y?zk

i j k

c_ | 2 9 9

Curl F = e 3y py
2x —y —yz? —y?z

= {[-2yz+2yz] — J[0—0]+ k [0+ 1]
=k
Here 7i = k since C is the Circular boundary on z = 0 plane.

” Curl F -AdS = ” dx dy = area of the circle
S S
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=n(l)?’=n
Example: 2.75 Verify stokes theorem in a plane for F=(2xy —x2i — (x2—y?j Where C is the
boundary of the region bounded by the parabolas y* = x and x? = y.

Solution:
Y 1»
x2=y
y=x
A(l, 1)
o > X

(©,0)

%

By Stokes theorem, j F -di = ” Curl F -7 dS
c S
To evaluate: ” Curl F -7 dS
S

Given F = (2xy —x37 — (x2 —y?J
CurlF=VxF

%lm ~
o

k
9
0z
(2xy —x*) —(x*—=y* 0
=T[5 (0) — = (—(x? = %) |- ] [5= (0) — = (2xy — )]
ady 0z y J 0x 0z y
I (—(x2 — v2)) = 2 2
t kI, (G = y9) =55 Cxy = x%)]
=7(0)—7(0-0)+k (—2x-2x)]
= —4xk
Since the surface is a rectangle in the xy —plane, 7 = k,dS = dxdy
Curl F - i=—4xk -k=—4x
Order of integration is dxdy
Limits:
x varies from y? to ,/y.
y varies from0to 1

- ~ 1 \/—
= ISI Curl F - dS = [, fyzy—4x dx dy
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= —4 fol [x;]zf dy

=-2[(y - y"dy

To evaluate: ” Curl F -7 dS
S

Here the line integral over the simple closed curve C bounding the surface OAO consisting of the curves 0OA
and A0.

jﬁ-d?:j +j . (2)
F-di=C@xy—x)l —(x2—=vy3] ..(3)

On 0A: y = x?,dy = 2xdx, x varies from 0 to 1
(3) = F.d7 = (2xx? — x2)dx — (x% — x*)2xdx
= (2x3 — x?% — 2x3 4+ 2x5)dx
= (2x° —x?)dx
[ Frar  =[j@x®—x%)dx

OA

1
2x® x3 1 1
= |l— — — :———:0
[3 3lg 73 3

On A0: x = y?,dx = 2ydy, y varies from 1 to 0
(3) = F.d# = (2y%y —y"2ydy — (v* — yDdy
= (4y* —2y°)dy — (y* —y?)dy
— (4y4— _ 2y5 _ y4- + yZ)dy
= By* —2y°+y*)dy
[ Frdf  =['Gy*—2y>+yDdy

AO

S S S [ TS Y
5 6 314 5 3 3 5

(2):>jﬁ-d?=0—§=—§ . (3)

From(s)and(l)j Fdif= ” Curl F -7 dS
C S
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Hence Stokes theorem is verified.
Example: 2.76 Verify Stoke’s theorem in a plane for F = (y—z+2)i— (yz+4)j— xz k, where S is
the open surface of the cube formed by the planesx =0,x =2,y =0, y =2,

z =0,z = 2 above the xy - plane.

Solution:
z4
G D
F E
0,0,0) i
(0] C Yy
A
(2,0,0) B(2,2,0)

X

Stoke’s theorem is I F-df= ” curl F- fi ds
S

Given F = (y—z+2)i— (yz+4)]— xz k

F dir =(y—z+2)dx — (yz+4)dy — xzdz

LHS=[ F-di=[ + [ + ] +]
c OA AB BC Cco

Inxyplanez=0 =dz=0

F-di = (v 4 2x)dx + 4dy

On0OA:y =0 = dy = 0, x varies from 0 to 2.

> [ F-di= [ 2dx
OA

=2[x]3=4
On AB:x =2 = dx = 0, y varies from 0 to 2.
> [ F-di= [, 4dy

AB
=4[yl =8
OnBC:y =2 =dy =0, x varies from 2 to 0.
> [ F-di= [ 4dx

BC
= 4[x]9 = -8
OnCO:x =0 = dx =0, y varies from 2 to 0.
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= 4[y]3 = -8
.-.jﬁ-d?=4+8—8— = -4 .
R.H.S = curl F- fi ds

S
7 7 k
curl F = 9 2 9
dx ay 0z

y—z+2 yz+4 —xz
=70-y)-J(z+D+ k(0-1)
=yi-(@-1j-k
Given S is an open surface consisting of the 5 faces of the cube except, xy — plane.

ffcurlﬁ-ﬁdsz” +” +...+J‘J‘

curlF =yl —(z=1]—-k

Faces Plane ds i curl F - A
Top (S,) xy dxdy k -1 z 2
J.J.—l dxdy
00
Left (S,) Xz dxdz -7 —(z—-1) zz
f f(—z + 1) dxdz
00
Right (S3) Xz dxdz j (z—-1) 2z
f f(z —1) dxdz
00
Back (S,) yz dydz -1 y Z 2
ffydydz
00
Front (Ss) vz dydz [1 -y z Z
ff—y dydz
00

onS;: [ [7(~1) dxdy
= —foz[x]%dy

2
=2, dy
= 2[yl = -4
on S,: foz foz(—z + 1) dxdz
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= [ (-z+ D[x3 dz

=2[/(~z+1)dz

=2|-Z+ z]o =2(0)=0
On S: f02 foz(z— 1) dxdz

= [J (z-DIx3 dz

=2 foz(z —1)dz

=2[Z - z]o = 2(0)=0
on S, f02 fozydydz

292

= foz [%]0 dy
= Zfoz dz
=2[z]2 =4

2 2
OnSs: [, J, —y dydz
N P
== [7]0 dy
= -2 foz dz
=-2[z]3 =-4

” curlF- Ads= —4+0+0+4—4=—4 .. (2)
S

From (1) and (2)_[ F-di= ” curl F- A ds
S

c

Hence Stoke’s theorem is verified.

Example: 2.77 Verify Stoke’s theorem in a plane for F = xyi — 2yzj — zx k, where S is the open
surface of the rectangular parallelopiped formed by the planesx =0,x=1,y=0, y =2, z=0,
z = 3 above the xoy - plane.

Solution:

Stoke’s theorem is I F-df= ” curl F+ A ds
c S
Given F = xyl— 2yzj — zx k

-

F -d7 = xydx — 2yzdy — zx dz

LHS=[ F-di=[ + [ + [ +]
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z4A
C E
F G
(0, 0, 0) 0,2,0)
0 B )
A
(1,0,0) D(1,2,0)

x
Inxyplanez=0 =dz=0
F -d# = xydx
On0OA:y =0 = dy =0, x varies from 0 to 1.
> [ F-di= fj0dx

OA
=0
OnAB: x =1 = dx =0, y varies from 0 to 2.

> [ F-di= [ ody

AB
=0
OnBC: y=2 =dy =0, x varies from 1 to 0.

= I F -di = flozxdx

BC
0
-ofgf =

OnCO:x =0 = dx =0, y varies from 2 to 0.
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Xy -—2yz -—xz

=7(0+2y)—j(-z—0)+ k(0 —x)
= 2yl+zj—xk
Given S is an open surface consisting of the 5 faces of the cube except, xy — plane.

ffcurlﬁ-ﬁds=” +” .|...._|_”

curl F = 2yT+zj—xk

Faces Plane ds q curl F - A
Top (Sy) Xy dxdy k —x z 1
J J —x dxdy
00
Left (S,) Xz dxdz -7 —z 31
J J —z dxdz
00
Right (S3) Xz dxdz Ji z 31
J. J. zdxdz
00
Back (S,) yz dydz ~T —2y 27
f f —2ydydz
00
Front (Ss) yz dydz v 2y 27
f f 2y dydz
00

onS;: [, [ (~1) dxdy

- 02 [x;]z dy

on S,: f03 fol —z dxdz
= —f03[zx]$ dz

= —fozzdz

3

_ [22] _ 9
21p 2

On S: f03 folz dxdz

Vector Calculus Page 63



Engineering Mathematics - II

= f03 [Zx !
=2f032dz

ons,: [ [ —2ydydz

_ 312

= -2 [7]0 dz

=—4 f03 dz

= —4[7]} = -12
On Ss: f03 foz 2y dydz

3 y2 2
2f0 [7]0 dz
= 4f03 dz
= 4[z]3 =12

” curlﬁ-ﬁds=—1—§+§—12+12=—1 .. (2)
S

From (1) and (2)_[ F-dif= ” curl F- A ds

S

Hence Stoke’s theorem is verified.

Example: 2.78 Verify Stoke’s theorem for F = y2zi + z2xj + x2y k, where S is the open surface of
the cube formed by the planes x = +a, y = +a, and z = +a in which the plane z = —a is a cut.

Solution:

-

Stoke’s theorem is I F -dr = I curl F+ fi ds
c S
Given F = y2z7+ z2x] + x%yk
F -d# = y2zdx + z%xdy + x%y dz
This square ABCD liesintheplanez= —a =dz =10

“F -d? = —ay?dx + a®x dy
LHS=[ F-ai=[ + [ + [ +|
¢ A8 BC CD DA
OnAB:y = —a = dy = 0, x varies from —a to a.
= J- dr = [ —a3 dx
= —a® [x]g,
= —a3(2a) = —2a*
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OnBC:x =a = dx = 0, y varies from —a to a.
= j F -df = ffaa3dy
BC
= a3 [y]%,

=a®(2a) = 2a*

OnCD:y=a = dy =0, x varies from a to —a.
= .[ F-di= [ “—a®dx
CD
= —a’® [x];"

= —a3(—2a) = 2a*

OnDA:x = —a = dx = 0, y varies from a to —a.

= I F-df = fa_a—a3dy
DA

= —a® [y]*

= —a3(-2a) = 2a*

I F-di =—-2a*+2a*+2a*+2a*= 4a* .. (1
C

RH.S = ” curl F+ A ds
S

T ]k
crlF=|2 2 2
0x ay 0z
y%z z%x x%y
= 1(x?—-2xz) — J(y? —2xy) + k (z% - 2yz)
Given S is an open surface consisting of the 5 faces of the cube except, z = —a.

ffcurlﬁ-ﬁds=” +” .|_..._|_“'

curl F = 2yT+zj—xk

Faces Plane ds A Egn curl F + A VXF -1
Top (S;) xy dxdy k z=a z2 = 2yz a’ — 2ay
Left (S,) Xz dxdz -7 = —a y? —2xy a’ + 2ax
Right (S3) Xz dxdz j =a —(y? = 2xy) —(a? — 2ax)
Back (S,) yz dydz -7 xX= —a —(x? — 2xz) —(a? + 2az)
Front (Ss) yz dydz [1 X=a x% —2xz a’? —2az

Oon S;: f_aa f_aa(a2 — 2ay) dxdy

= [° [(a%x — 2ayx)]%, dy
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= f_aa(a3 —2a%y) — (—a® + 2a?%y) dy
= f_aa 2a% — 4a’y dy
— 3. 2y_2 *
= [Za y—4a . ]_a
= (2614 — 2614) - (—2a4 — 2a4)
= 2a* — 2a*+ 2a* + 2a*
= 4a*
onsS, +Ss: [° [° (a®+2ax) dxdz + [° [ —(a? — 2ax) dxdz
= f_aa f_aa(a2 + 2ax — a? + 2ax) dx dz
= f_aa f_aa 4ax dx dz
a [x21%
=4af [7]_(1 dz
= 2a® f_aa dz
= 2a3 [z]%,
=2a3(0)=0
OonS, + Ss: f_aa f_aa —(a® + 2az) dydz + f_aa f_aa(a2 — 2az) dydz

= f_aa f_aa(—a2 — 2az+ a* — 2az) dydz
= f_aa f_aa —4az dy dz
= —4a f_aa[zy]‘_‘adz
= —4a f_aaz(Za)dz

214
= —6a? |=

@ 5],
= —3a%(a*—- a?)=0
” curlF- Ads= 4a*+0+0 = 4a* .. (2)
S

From (1) and (2)_[ F -df = ” curl F- A ds
S

c

Hence Stoke’s theorem is verified.

Example: 2.79 Evaluate_[ F - d7 by stoke’s theorem, where F = y2T + x%j + (x + z) k, and C is the

boundary of the triangle with vertices at (0,0,0),(1,0,0) and (1,1,0).

Solution:

Stoke’s theorem isj F -di = ” curl F- Ads .. (1)
S

c

Given F = y2T+ x2/+ (x+2) k
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And C is triangle (0,0,0),(1,0,0) and (1,1, 0).

Since z —coordinate of each vertex is zero the triangle lies in xy — plane with corners
(0,0),(1,0) and (1,1).

To evaluate : ” curl F- fi ds
S

Inxy —planef = k,ds = dxdy
T k
curlF= |2 2 9
dx Jdy 0z
y? x? —(x+2)

= 7(0)— J (-1 + k (2x —2y)
=j+ 2x—y)k
curl F- A =G+ 2(x—y)k) - k
=2(x—y)
Limits:
x varies from y to 1.

y varies from 0 to 1.

” curl F- A ds = fol fy12(x — y)dxdy
S

= Zfol [xz—z— xy]; dy

=2 fol(%— y— y?z+ yz) dy

2 6 3

2 2 6 3
:2[1 _1

6 3

Example: 2.80 Evaluate the integral _[ (x+y)dx+ (2x — z)dy + (y + z)dz, where C is the

boundary of the triangle with vertices (2,0, 0), (0,3,0) and (0,0, 6) using stoke’s theorem.
Solution:
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gl C(0,0,6)

0O

B(0,30) 7y
A(2,0,)

b
Stoke’s theorem is_[ F -di = I curl F+ fi ds

c S
Given F - d# = (x + y)dx + (2x —2)dy + (y + z)dz

W F = x+y)i+ Rx—2)]+ (y+z)7€

7 7 k
curlF=| 2 9 9
dx ay 0z

x+y 2x—z y+z
=i(1-1-70)+ k(2-1)
=2T+k
Given C is the triangle with vertices (2,0, 0), (0,3, 0) and (0,0, 6).

Equation of the plane is§+ %+ fz 1
>3x+2y+z=6

Letop =3x+2y+z—-6

_ 20, 200 | pde
V(p—lx+]ay+kaz

=31+ 2/+k
Vol = VOF 451 = V14

A~ Vo _ 3i+2j+k
Vool V14

Let R be the projection on XY —plane.

Now curl F- A = (27+k)- (377:/211;%)
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= 7 [Area of the triangle]
=7 E (2) (3)] =21 [ Area of the triangle = %bh]

Example: 2.81 Evaluate by Stoke’s theorem I (e*dx + 2ydy — dz), where C is the
c

Curve x2 + y?2 =4,z = 2.
Solution:
Stoke’s theorem is I F-di = ” curl F- Ads ... (1)
S

Given F - d#t = e*dx + 2ydy — dz

“F= e+ 2yf— k

7k
curlF= 12 2 2
x ay 0z
e* 2y -1
=7(0-0)—7(0-0)+ k(0-1)
=0
(1)=>j F -di =

(i.e)j (e*dx+ 2ydy —dz) =0

Example: 2.82 Evaluate I (yzi + xzj + xyﬁ) - d7, where C is the boundary of the surface S.

Solution:
Given F = yzi+ xzj + xy k

Stoke’s theorem is I F -dit = ” (VX ﬁ) Ads .. (1)
c S

T 7k
curlF =2 o 2
dx dy 0z
VYZ XZ XYy
=ix-0-J-»+ kz-2)
=0

Page 69

Vector Calculus



Engineering Mathematics - II

~ (1) =>j F-dif=0

Exercise: 2.5

1. Verify Stoke’s theorem for the function F = x27+ xyj, integrated round the square in

3

the z = 0 plane whose sides are along the linesx =0,y =0, x =a,y = a. Ans: “7

2. Verify Stoke’s theorem for F = yi+ zj + x k, where S is the upper half surface of the

sphere x2 + y2 + z2 = 1 and C is its boundary. Ans: —m

3. Evaluate I [xydx + xy?dy] by Stoke’s theorem where C is the square in xy plane with vertices

(1,0),(-1,0),(0,1) and (0,—-1) Ans:

4. Verify Stoke’s theorem for F = (y — z + 2)i + (yz + 4)] — xz k, where S is the open
surface of the cube x =0,y =0, z=0,x = 2,y = 2,z = 2 above the xy plane.
Ans: Common value = —4
5. Verify Stoke’s theorem for F = (x2 — y2)7+ 2xy] + xyz k, over the surface of the box
bounded by the planes x = 0,y = 0, x = a,y = b,z = ¢ above the xy plane.
Ans: Common value 2ab?
6. Verify Stoke’s theorem for F= Xyl — 2yz] — zx k, where S is the open surface of the rectangular
parallelepiped formed by the planes x = 0,x =1, y =0, y = 2, z = 3 above the xoy plane.

Ans: Common value —1
7. Verify Stoke’s theorem for F = —yi + 2yz] + y? k, where S is the half of the sphere

x2 + y? + z? = a? and C is the circular boundary on the xoy plane.

Ans: Common value = ra?

8. Using Stoke’s theorem _[ F -d# where F = (sinx — y)T — cosxJ and C is the boundary

of the triangle whose vertices (0, 0), (g 0) and (g 1) Ans: % + %

2.6 GAUSS DIVERGENCE THEOREM
This theorem enables us to convert a surface integral of a vector function on a closed surface
into volume integral.

Statement of Gauss Divergence theorem

If V is the volume bounded by a closed surface S and if a vector function F is continuous and has continuous
partial derivatives in V and on S, then

” ﬁ-ﬁds=m V- Fdv

S \Y

Where 11 is the unit outward normal to the surface S and dV = dxdydz
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Problems based on gauss Divergence theorem

Example: 2.83 Verify the G.D.T for F = 4xzi - v+ yzE over the cube bounded by x =0, x =1,

y=0y=1,2=0,z=1.

Solution:

4
N
€ F
/g v &
/ s s
/P /
% 7/ /s
7/ A
G
P TS P ae
/// //,r ///, ./// ,//;///
'/ S SN S
A AAS // > AP S 2
S S S S S A
[4‘

Gauss divergence theorem is ” F - Ads = m V- Fdv
S \%

Given F = 4xzi —

Now, R.H.S = jj V- Fdv
\

y*] + yzk

= Jy Jy Jo (4z —y)dxdydz

= fol fol[(4xz —yz)]§ dydz

= [, J, (4z = y)dydz

= fol (42 —y?z): dz

= fol (42 — %) dz

:[42__

2

2

—-Z
2

[ =G-9-0-2

oo~ £t +ff ¢ +]

Faces Plane ds n | F.n |Equation |F.fions$S - I F - Ads
S

S, (Bottom) | x dxd 5| = =0 0 trl

A ) [xy y k| vz | z ff()dxdy
0 0

S,(Top) Xy dxdy k yz z=1 y trl
ffydxdy
0 0
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S.(Left dxdz -7 2 =0 0 Lt
s(Left) |xz ] y y f dede

0 0

S.(Right dxdz 7 —y2 =1 -1 trl
4(Right) | xz J y y .f f 1dxdz

0 0

S-(Back dydz -7 | —4x x=0 0 Lt
5( ) |yz y l z j j 0 dydz

0 0

S.(Front dydz 7 4 =1 4 1t
6( ) |yz y l Xz x z f f4zdydz

0 0

W[ F-fds+ [[ F-fds =[] []0dxdy+ [, [ ydxdy
S1 S2

=0+ f01 foly dxdy
= [, yxJb dy

1
=J,vdy

(ii)” F - fds+ ” F-fds = folf;dedz+f01 fol—l dxdz
53 54

=0+ [, f, —1dxdz
= — [ [x]} dz
=—[) dz

=—[z]5 =-[1]

(iiD) ” F - fds+ ” F-fds = fol folodydz+ fol fol 4zdydz
S5 S6

1,1
=0+ [ [, 4zdydz
= f01[4zy](1, dz

=f014zdz
S

R R R R

S

= (i) + (iD) + (iid)
=-—1+2 =

[ Fotas= (] v Fav

S

Hence Gauss divergence theorem is verified.
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Example: 2.84 Verify the G.D.T for F = (x% — yz)i + (y® — xz)j + (2% — xy)k over the rectangular
parallelopiped 0 <x<a, 0<y<bh,0<z<c. (OR)

Verify the G.D.T for F = (x — yz)i + (¥ — xz)j + (22 — xy)k over the rectangular parallelopiped
boundedby x=0,x=a,y=0,y=b,z=0,z=c.
Solution:

Gauss divergence theorem is ” F -Ads = ” V- Fdv
S \%
Given F = (x? — y2)T + (y2 —x2)] + (22 — xy)k
V-F =2x+2y+2z =2(x+y+2)

Now, R.H.S = ” V- Fdv
\

=2 foc fob foa(x +y + z)dxdydz
_ ¢ b [(x? a
=2/, [(7 + xy + xz)]o dydz
=2 foc fob (a?z + ay + az) dydz

_ ¢ (a’y . ay? b
=2/, (T+T+azy)o dz

Zb bZ
= Zfoc(aT+aT+azb) dz

a?bz  ab?z = abz?]¢
= 2|t 2y
2 0

2 2
a’bc , ab®*c _ abc?
=2 (L4220
2 2 2

=abc(a+ b+ c)

w15 [ b= [ 1] 4 +f] 4] +]

Faces Plane | dS | n F-A Egn F-7ionS — ” F - fAds
S
S;(Bottom) | xy dxdy | ¢ | —(z2—xy) | z=0 xy b ra
ffxydxdy
0 Yo
S,(Top) Xy dxdy | ¥ | (z2—-xy) | z=c c?—xy b ra
ffcz—xydxdy
0 Y0
Ss(Left dxdz | =7 | =(y2 — =0 “re
s(Left) | xz J *—x2) | y Xz f f xz dxdz
0 Y0
S4(Right) | xz dxdz | f

2 _ — 2 _ ¢ ra
*—xz) | y=b b = xz f f b? — xz dxdz
o Jo
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Ss(Back) |yz dydz | -7 | -(x2—yz) | x=0 yz ¢ rb
f f yz dydz
0 Y0

S¢(Front) | yz dydz | 7 | x2—yz) | x=a a’ — yz “r°,
f f a—yzdydz
0 YO0

(l)J‘I ﬁ ' ﬁds+ II ﬁ . ﬁds :fobfoaxydxdy-l_fobfoacz_deXdy
S1 S2

= fob foa c? dxdy

= ¢? foa dx fob dy

c?x]§lyls = cab

(i1) ” F - fds+ ” F - fAds =foc foaxz dxdz + foc foa b? — xz dxdz
53 54

= [ J; b? dxdz
=b? [, dx [, dz
= b2[x]§[z]§ = b*ac

(iiD) ” F - fds+ ” F - fds = foc fob yz dydz + focfob a? —yz dydz
S5 S6

= foc fob a? dydz
_ o2b c
=a® [ dy /[, dz

= a’[yl§lzl§ = a’bc

o= ]
= (i) + (ii) + (iid)
=abc(a+b +c)

[ ﬁ-ﬁdszjvﬂ V- Fdv

S

>

J £

S

Hence Gauss divergence theorem is verified.
Example: 2.85 Verify divergence theorem for F=Q2x—-2)i+ x%yj — xz2k over the cube bounded by
x=0x=1y=0,y=12z=0,z=1.

Solution:
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Gauss divergence theorem is ” F - Ads = m V- Fdv
S \%
Given F = (2x — 2)T + x2yj — xz%k
V-F=2+x%—2xz

Now,RH.S = [[[ V- Fdv
\Y
= [, [} J, 2+ x* = 2xz)dxdydz
(R

= fol fol (2 + g — Z) dydz

= f01 (Zy +§y — zy): dz

1 1
=Jo (2 +5—Z) dz
21
=[ZZ+—Z——
3 0
=(2+:-3)-0=2
3 2 6
Now,LHS=[[ F-ads=[[ +[[ +[[ +[[ +[] +]f
S S1 S2 S3 S4 S5 S6
Faces Plane | dS n F-A Equation | F.fionS — I F - Ads
S
S;(Bottom) | x dxdy | _7% xz? z=0 0 Lt
1( ) | xy y k f dexdy
0 Jo
S,(To X dxd k —xz? z=1 —X Lt
2(Top) y Y| k ff(—x)dxdy
0 Y0
Ss(Left dxdz | —j —x? =0 0 ot
s(Left) | xz J x“y y fdede
0 Y0
S4(Right) | xz dxdz | 7 x%y y=1 x? Lt
ffxzdxdz
0 Y0
Ss(Back) |yz dydz | -7 |—-Q2x—-2)| x=0 z Lol
ffzdydz
0 Y0
S¢(Front) |yz dydz | 7 (2x — z) x=1 2—z Lt
ffz—zdydz
0o Y0

W[ F-hds+ [[ F-ids = [][50dxdy+ [ [)(—x) dxdy
S1 S2

= [, [} (=x) dxdy
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=_f01[x72](1) dy
= — 01% dy
-], =-G-0) -3

@) [[ F-hds+ [[ F-fds =[] [ 0dxdz+ f f, x* dxdz
S3 S4

= f01 f01x2 dxdz

(iii) ” F - fds+ ” F-fds = fol folzdydz+ fol f01(2 — z)dydz
S5 S6

= f01 f01 2 dydz
=2, [ylh dz
= Zfol dz

=2[z]} =2

sl el

= () + (i) + (i)
1

= _l+l+2 =
2 3 6

[ ﬁ-ﬁdszjvﬂ V- Fdv

S

>

J £

S

Hence Gauss divergence theorem is verified.

Example: 2.86 Verify divergence theorem for F =x21+ zj + yzE over the cube bounded by x = +1,
y==%1, z=+1.

Solution:

Gauss divergence theorem is ” F - fds = Hj V- Fdv
S \Y

Given F = x?T+ zj + yzk
V-ﬁ=2x+y

Now, R.H.S = V- Fdv
]

= f_ll f_ll f_ll(zx + y)dxdydz
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=[5+ yX)]il dydz
= [ [0 +y) = (1 - y)ldydz
=1, [}, [2yldydz
=11, (2%)., e

= [1I() - (D)) dz

= [ .[0] dz

=0

w45 [ £-bas= [ 1] 4 o] 4] +]

Faces Plane ds | n F- -7 Equation | F-7fion S _ I F - Ads
S
S;(Bottom) | xy dxdy | % —yz z=—1 y Lol
J J y dxdy
-1J-1
S,(Top) xy dxdy | % yz z=1 y bt
J. J. y dxdy
~1J-1
Ss(Left) |xz dxdz | —f -z y=-1 -z Lol
J. J. —z dxdz
~1J-1
S4(Right) | xz dxdz | 7 z y=1 z Lol
J. J. zdxdz
-1J-1
S<(Back z dydz | -7 —x? x=-1 -1 Lot
5( ) y y f f 1 dydz
-1J-1
S¢(Front) |yz dydz | 7 x? x=1 1 Lot
f dydz
-1J-1
A 1 1 1 1
Ads = [ [ ydxdy+ [ [ ydxdy

(i)” ﬁ-ﬁds+” F

(iD) ” F - fds+ ” F - fids= f_ll f_ll —z dxdz + f_ll f_llz dxdz
53 54

= [', J, 2y dxdy
=2 [xy]', dy
=211 - (=] dy

1
=2 [ 2ydy

o2 = e[0-0) o

= f_ll f_ll 0 dxdz
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=0
G [[ F-fds+ [[ F-fds ==[ [ dxdz+ [’ [’ dxdz
S5 S6
0

ERTS R RTRIRY

= (i) + (i) + (iid)
=0

= ﬁ-ﬁds=jvﬂ V- Fdv

S

Hence , Gauss divergence theorem is verified.
Example: 2.87 Verify divergence theorem for the function F = 4xi — 2y%j + z%k taken over the
surface bounded by the cylinder x> + y? =4 andz = 0,z = 3.

Solution:

X
Gauss divergence theorem is ” F-fds = ”I V- Fdv
S \

Given F = 4x7 — 2y%] + z%k
V-F=4—4y+2z

Limits:

z=0to3

x2+ y?2=4 = y2=4— x?

> y=4V4-— x2
cy=—V4—x2toV4— x?
Puty =0 = x2=14
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> x=12

Ly = —2to?2
~RHS= m V- Fdv
\Y

= f fmf (4 —4y + 2z) dzdydx
= f f_m[4z—4yz+2 ] dydx
= [’ fmmz 12y + 9)dydx

= [ f\/—(21 — 12y)dydx

_ f_zz f0\/4——x221 dydx l f_aaf(x) dx =2 foaf(x) if f(x)is even

=0if f(x) is odd
=42 [2,[yly* " dx

=42 [* Va— x% dx

=42 x2 foz V4— x2dx [+ even function]

= 84 [FVE— 27 + Loin1Y]

0
=84 [0+ 2sin"1(1)]
T
— 84 [2 X 5]
=84

L.H.szj F - Ads
S

=1l +]] +1
s1 52 53
Along S; (bottom):
xy —plane = z=0,dz=0
Andds = dxdy, Ah = — k
“F A =(4xi— 2y%]+ z2k) - (—k)
=—-2z2=0
“f[ F-fds=[[ 0=0
s1 s1
Along S, (top):
xy —plane = z=3,dz=0
And ds = dxdy, A = k
~F A = (4x7— 2y?j+ z? E) (—E)
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= z2=9

” F-fAds= ” 9 dxdy
S2 S2

” 9 dxdy

R
= 9 (Area of the circle)
=9 (nr?) [vr=2]
=361
Along S5 (curved surface):
Given x? + y? =4
Letp = x?+ y?—4

_ 0 300 70
Vo = lax+] y+k .
= 2xU+ 2y]
IVo| = J4x2 +4y2 = 2:/4 =4
A Vo _ 2(xT+y])
Vel 4
_ Xi+y]

2
The cylindrical coordinates are

x=2cos6, y=2sin0 ds = 2dzd0
Where z varies from 0 to 3

6 varies from 0 to 27

= A — > 2> 2—) . x?+y7
NowF - i = (4x7— 2y2]+ z%k) (—2 )
=2x2— y3
=2(2cos0)?>— (2sinH)3

= 8cos?H —8sin® 0

1+cos 260 (3 sin 8 —sin 39)]
2 4

:8[

J‘J‘ IE') ‘fAds =8 f027tf03 (%+ cosZB_ 3sin9+ sin39) 2dzd6
S3

2 4 4

2w (1 cos 26 3sin @ sin 36
=16 )" 5+ =2 - 204 2 [23 de

= 48 [g‘l' sin429 _ 3c:s9 _ c015239]21t
=8 |F+i-5)- (-5
=48
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LHS= [[ Ffids=0+36m+48n
S
=84n
~ LHS=RH.S
(i.e) ” F - Ads = ” V- Fdv
S \%
Hence Gauss divergence theorem is verified.

Example: 2.88 Verify divergence theorem for the function F = yi + xj + z2k over the cylindrical
region bounded by x> + y2 =9andz =0,z = 2.
Solution:

z
e

S3

S1

X
Gauss divergence theorem is ” F-Ads= Hj V- Fdv
S \

Given F = yi+ x] + z%k
V-F=2z

Limits:

z=0to?2

x’+ y2=9 = y2 =9 — x?

> y=+V9— x?
~y=—9— x2toV9— x2
Puty =0 = x2=9

> x==3

~y= —-3to3

~RHS= V- Fdv
(v

Vo xZ

= f_33 f_:/)g_—xxz foz(Zz) dzdydx
3 ~/9—x2 2212

= e [2 ?]0 dydx
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= 4f_33 f_\/\/f—sz dydx

=42y dx

=4 f_33 2V9 — x2 dx

=8 x2 f03 V9 — x2dx [+ even function]
=16 [EVo— xZ+ %sin‘lﬂz

=16 |0 +2 sin—1(1)]

=16 [5 x £

=367

L.H.S = ” F - fAds
S

=l +]] +1
51 52 53
Along S; (bottom):
xy —plane = z=0,dz=0
And ds = dxdy, h = — k
“F A =(yi+xj+ z2k) - (k)
= —-2z2=0
“f[ F-fds=[[ 0=0
51 51
Along S, (top):
xy —plane = z=2,dz=0
And ds = dxdy, A = k
“F A =T+ x]+ 22k) - (k)
= z2=4

” F-fAds= ” 4 dxdy
S2 S2

= J. 4 dxdy

R

= 4 (Area of the circle)
=4 (nr?) [ 7 =2]
=361

Along S5 (curved surface):

Givenx?+ y?=9
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Letp =x?+ y>—9

_ 00 200 pow
Vo = lax+jay+ kaz
= 2xU+ 2y]
IVo| = /4x2 +4y2 = 2/9 =6
A _ Vo 2(xT+y]))
Vol 6
_ xXi+yj

3
The cylindrical coordinates are

x =3cos6f, y=3sinf
ds = 3dzd6
Where z varies from 0 to 2

0 varies from 0 to 27

X1+ y])
3

NowF - A = (yT+ xj+ z2k) (
=§(3 cos ) (3sinH)

=2 X 3sinfcosb

= 3sin 260

+ [[ F-fids=3 [;" f; (sin26) 3dzde
S3

=9 fozn(sin 20) [z]3 d6

cos 20]2”

o]

=-9[1- 1]
=0

LH.S= ” F-Ads=0+36m+0
S

=367
~LHS=RH.S

(i.e) ” I:")-ﬁdszm V- Fdv

Hence Gauss divergence theorem is verified.
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Example: 2.89 If S is any closed surface enclosing a volume V and if F = axi + byj + czk, prove that

” F - Ads = (a+b+c)V.Deducethat” F - ﬁds=4?"(a+b+c) if S is the surface of the sphere

S S
x2+ y2+22=1.
Solution:

Gauss divergence theorem is ” F - Ads = H V- Fdv
S \%

Given F = axi+ byj+ czk

. P _0h  OF  O0F _
v F_ax+ay+az_a+b+c

” F-fAds = ”I (a+b+c)dv

S

= (a+b+ )V

41

If S is the surface of the sphere x2 + y2? + z2 = 1thenV = gn(l)3 =

” ﬁ-ﬁds=(a+b+c)4?n
S

=4?n(a+b+c)

Example: 2.90 Using the divergence theorem of Gauss evaluate ” F - ids where F = x37 + y3y +
S

23k, and S is the sphere x2 + y? + z2 = a2.

Solution:

Gauss divergence theorem is ” F - Ads = Hj V- Fdv
S \Y

Given F = x3T+ y3] + z%k
V- F =3x%+3y? + 322
=3(x%?+y%?+2?)
” F - Ads = 3”I (x% 4+ y? + z?%) dxdydz
S v
Here we have to use spherical polar co — ordinates.
x =rsinfcose, y=rsinfsing, z=rcos@

x>+ y?+z?2=a* anddxdydz = r?sin 0 dr d6 do

3”I (x2 4+ y% + 2z%) dxdydz =3 fozn fon foa r2r2sin @ dr d6 do
\

a
=3[ 7[5 sin6] dodo

3a° p2m
= [

5 0

—cos@|T do
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5
= 3%]02”(— cost + cos0) do

@[ 21

®l5

6a’ 12ma’
=5 @m) ==

Example: 2.91 Show that ” curl F - fids = 0 where S is any closed surface.
S

Solution:

Gauss divergence theorem is ” F -Ads = m V- Fdv
S \%

“f[ Fofds=[] v (VxF)dv
S \
where V is the volume of the closed surface S.

SinceV-(Vxﬁ)=O,weget”I V- (Vx ﬁ)dv=0
\

” (V X l_f) ﬁdv=0(or)” curlF - Aids =0
S S

-

Example: 2.92 Prove that ” rr'zﬁ ds = ”I %
S \

Solution:

Gauss divergence theorem is ” F -Ads= Hj V- Fdv
S \%

S
Now V -rl;z (?i+f—+ﬁi)-
+

=9 (x4 58 1) i(i)
- 6x(r2)+6 (rz 9z \r?

NlNl =l
>
QU
%)

Il
<

—
<

/N

Tl

N—"
QU
<

3r2-2(x%+y2+22)

r4

3r2-2r2  r2

r2

r4 r4
2] &-fds= [ 5 av
s v

Example: 2.93 Evaluate ” 7 - Ads where S is a closed surface using Gauss divergence theorem.
S
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Solution:

Gauss divergence theorem is ” F - fds = ” V- Fdv
S \

2] 7 fds = ij (V- ) dv

S

= ”I [V - (xi+ yj+ zk)] dv
=m 1+1+1Ddv
=[] @

=3V
Exercise: 2.5

. Verify divergence theorem for the function F = (x2 — y2)T— (y? — zx)j + (22 — xy)k

[EY

over the surface bounded by x =0,x =1,y =0,y =2,z=0,z=3 Ans: 36

N

. Verify divergence theorem for the function F = 4xzl — y2j + yzk

overthecube x =0,x =1,y=0,y=1,z=0,z=1 Ans: Common value = %

. Verify divergence theorem for the function F = (2x — 2)T — x2yj — xz2k

w

over the cube boundedby x =0,x=1,y=0,y=1,z=0,z=1

11
Ans: Common value = "

. Verify divergence theorem for F = xy2i + yz2j + zx?k over the region

o

x2+ y?=4andz=0,z=3 Ans: Common value = 84w

(621

. Using divergence theorem, prove that (i) ” R -dS=3v (i) ” vr? -dS =6V
S S

-

6.F=x%T+ z] + yzE over the cube bounded by x =0, x =a,y=0,y=a,z=0,z=a
Ans: Common value = 37‘1
7.F = (x3 — yz)T — 2x2y] + 2k over the parallelopiped bounded by the planes
x=0x=1,y=0,y=2,z=0,z=3 Ans: Common value = 2
8. F = 2xyl+ y z2] + xzk over the parallelopiped bounded by the planes
x=0,y=0z=0x=2,y=1,z=3 Ans: Common value = 20

-

9. F = 2x2y7 — y?j + 4 xz2k taken over the region in the first octant bounded

x?+ y?=9and x =2 Ans: Common value = 180

10. F = x27 4+ y2] + z2k taken over the cuboid formed by the planes

x=0x=ay=0y=bz=0,z=c Ans: Common value = abc(a + b + ¢)
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