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Course Objectives:

e To describe discrete time signals and systems.

e To teach importance of FFT algorithm for computation of Discrete Fourier Transform.

o To expose various implementations of digital filter structures.

e Topresent FIR and IIR Filter design procedures.

e To outline need of Multi-rate Processing.
Course Outcomes:

o Formulate difference equations for the given discrete time systems

e Apply FFT algorithms for determining the DFT of a given signal

o Compare FIR and IIR filter structures

o Design digital filter (FIR & IIR) from the given specifications

e Outline the concept of multirate DSP and applications of DSP.
UNIT I
Introduction to discrete time signals and systems
Introduction to digital signal processing, review of discrete-time signals and systems, analysis of
discrete-time linear time invariant systems, frequency domain representation of discrete time signals
and systems, analysis of linear time-invariant systems in the z-domain, pole-zero stability.
UNIT 1l
Discrete Fourier Transform - Introduction, Discrete Fourier Series, properties of DFS, Discrete
Fourier Transform, Inverse DFT, properties of DFT, Linear and Circular convolution, convolution
using DFT.
Fast Fourier Transform - Introduction, Fast Fourier Transform, Radix-2 Decimation in time and
Decimation in frequency FFT, Inverse FFT (Radix-2).
UNIT I
IIR Filters - Introduction to digital filters, Analog filter approximations — Butterworth and
Chebyshev, Design of IIR Digital filters from analog filters by Impulse invariant and bilinear
transformation methods, Frequency transformations, Basic structures of IIR Filters - Direct form-I,
Direct form-I1, Cascade form and Parallel form realizations.
UNIT IV
FIR Filters - Introduction, Characteristics of FIR filters with linear phase, Frequency response of
linear phase FIR filters, Design of FIR filters using Fourier series and windowing methods
(Rectangular, Triangular, Raised Cosine, Hanging, Hamming, Blackman), Comparison of 1IR & FIR
filters, Basic structures of FIR Filters — Direct form, Cascade form, Linear phase realizations.
UNIT V
Quantization Errors in Digital Signal Processing: Representation of numbers, Quantization
of filter coefficients, Round-off Effects in digital filters.
Multirate Digital Signal Processing: Decimation, Interpolation, Sampling rate conversion by
a rational factor; Frequency domain characterization of Interpolator and Decimator;
Polyphase decomposition.
Textbooks:
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UNIT -1

Introduction to Digital Signal Processing

DSP is a technique of performing the mathematical operations on the signals in digital domain.
As real time signals are analog in nature we need first convert the analog signal to digital, then we
have to process the signal in digital domain and again converting back to analog domain. Thus ADC is
required at the input side whereas a DAC is required at the output end. A typical DSP system is as
shown in figure 1.1.
* The main function of low pass ant aliasing filter is to band limit the input signal to the
foldingfrequency without distortion.
« It should be noted that even if the signal is band limited, there is always wide-band
additivenoise which will be folded back to create aliasing.
* When an analog voltage is connected directly to an ADC, the conversion
process can beadversely affected if the voltage is changing during the
conversion time.
* The quality of conversion process can be improved by using sample and hold circuit
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Advantages of DSP

e Programmability: software digital signal processes can be quickly modified, in contrast to analog

circuits,which must be physically rearranged.
e Versatility: Flexible and easy to upgrade.
o Stability: Less sensitive environmental changes such as electromagnetic interference.




Need for DSP

Analog signal Processing has the following drawbacks:
They are sensitive to environmental changes
Aging
Uncertain performance in production units
Variation in performance of units
Cost of the system will be high
Scalability
If Digital Signal Processing would have been used we can overcome the above shortcomings of
ASP.
REVIEW OF DISCRETE TIME SIGNALS AND SYSTEMS
Anything that carries some information can be called as signals. Some examples are
ECG, EEG, ac power, seismic, speech, interest rates of a bank, unemploymentrate of
a country, temperature, pressure etc.
A signal is also defined as any physical quantity that varies with one or moreindependent
variables.
A discrete time signal is the one which is not defined at intervals between two successive
samples of a signal. It is represented as graphical, functional, tabularrepresentation and
sequence.
Some of the elementary discrete time signals are unit step, unit impulse, unitramp,
exponential and sinusoidal signals (as you read in signals and systems).
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Classification of discrete time signals
Energy and Power signals

oc
E= ) Iximf
A==
If the value of E is finite, then the signal x(n) is called energy signal.

] i
P = .~h—l:n-_-.m—l' ; lxin}

If the value of the P is finite, then the signal x(n) is called Power signal.

Periodic and Non periodic signals
A discrete time signal is said to be periodic if and only if it satisfies the condition X
(N+n) =x (n), otherwise non periodic

Symmetric (even) and Anti-symmetric (odd) signals
The signal is said to be even if x(-n)=x(n)The
signal is said to be odd if x(-n)= - x(n)

Causal and non causal signal
The signal is said to be causal if its value is zero for negative values of ‘n’.

Some of the operations on discrete time signals are shifting, time reversal, timescaling,
signal multiplier, scalar multiplication and signal addition or multiplication.

Discrete time systems
A discrete time signal is a device or algorithm that operates on discrete timesignals
and produces another discrete time output.

Classification of discrete time systems
Static and dynamic systems



A system is said to be static if its output at present time depend on the input atpresent
time only.



Causal and non causal systems
A system is said to be causal if the response of the system depends on present andpast
values of the input but not on the future inputs.

Linear and non linear systems
A system is said to be linear if the response of the system to the weighted sum of
inputs should be equal to the corresponding weighted sum of outputs of the systems. This
principle is called superposition principle.

Time invariant and time variant systems
A system is said to be time invariant if the characteristics of the systems do not
change with time.

Stable and unstable systems
A system is said to be stable if bounded input produces bounded output only.

TIME DOMAIN ANALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS
Representation of an arbitrary sequence
Any signal x(n) can be represented as weighted sum of impulses as given below

ol
x(n)= Y x(k)b(n — k)
kh=—2¢
The response of the system for unit sample input is called impulse response of thesystem
h(n)
~
vin) = Tlem] =T | ) xtkydin — )
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By time invariant property, we have
-
yin) = Z x(kyhin — k)
k=—=

The above equation is called convolution sum.
Some of the properties of convolution are commutative law, associative law and
distributive law.

Correlation of two sequences

It is basically used to compare two signals. It is the measure of similarity betweentwo
signals. Some of the applications are communication systems, radar, sonar etc.
The cross correlation of two sequences x(n) and y(n) is given by



by
rely= > xmyn—0)  I=0.%1 %2 ...

n==

One of the important properties of cross correlation is given by

rx_r“} = F_-”{'—”
The auto correlation of the signal x(n) is given by
oo

rex(l) = Z x(n)x(n = 1)

A==00C

Linear time invariant systems characterized by constant coefficient difference
equation
The response of the first order difference equation is given by

n
y(n) =a"y(=1)+ Y a'x(n—k) nx0
k=0
The first part contain initial condition y(-1) of the system, the second part containsinput
x(n) of the system.
The response of the system when it is in relaxed state at n=0 or
y(-1)=0 is called zero state response of the system or forced response.

"
Vpslit) = atxin — k) n=>0
k=I)

The output of the system at zero input condition x(n)=0 is called zero inputresponse of
the system or natural response.

The impulse response of the system is given by zero state response of the system
n
Yosn) = 3 a*8(n — k)
k=0
=aq" n>0

The total response of the system is equal to sum of natural response and forcedresponses.




UNIT-II
Discrete Fourier Transform

Discrete Fourier Series

The Fourier series representation of a continuous-time periodic signal can consist of an
infinite number of frequency components, where the frequency spacing between two successive
harmonically related frequenciesis 1 / T p, and where Tp is the fundamental period.

Since the frequency range for continuous-time signals extends infinity on both sides it is
possible to have signals that contain an infinite number of frequency components.

In contrast, the frequency range for discrete-time signals is unique over the interval. A
discrete-time signal of fundamental period N can consist of frequency components separated by 2n /
N radians.

Consequently, the Fourier series representation o f the discrete-time periodic signal will
contain at most N frequency components. This is the basic difference between the Fourier series
representations for continuous-time and discrete-time periodic signals.




The expression for the Fourier coefficients ¢ can be obtained by multiplying
both sides of (4.2.1) by the exponential ¢~/>""/* and summing the product from
n=0ton=N~1. Thus

Z x(n)e I=TININ — Zl Z] L e (4.2.4)
n={ k=(

n=0
If we perform the summation over n first, in the right-hand side of (4.2.4),

we obtain
N-l

ik — /N / ’t—lz()i.‘v izN...
_)-?'”k n/N i . ' . .
Z d B l 0 otherwise (623
na=U

where we have made use of (4.2.2). Therefore. the right-hand side of (4.2.4)
reduces to N¢; and hence

Cr = —Zx(n)e Janin/N P =0:F 0 N—1 (426)

=0
Thus we have the desired expression for the Founer coefficients in terms of the
signal x(n).




4.2.3 The Fourier Transform of Discrete-Time Aperiodic
Signals

Just as in the case of continuous-time aperiodic energy signals, the frequency anal-
ysis of discrete-time aperiodic finite-energy signals involves a Fourier transform of
the time-domain signal. Consequently, the development in this section parallels
to a large extent, that given in Section 4.1.3.

The Fourier transform of a finite-energy discrete-time signal x (n) is defined as
o
X(w) = Z x(n)e~ " (4.2.23)
n=-=oc
Physically. X(w) represents the frequency content of the signal x(n). In other
words. X (w) is a decomposition of x(n) into its frequency components.

We observe two basic differences between the Founer transform of a discrete-
time finite-energy signal and the Fourier transform of a finite-energy analog signal.
First, for continuous-time signals, the Fourier transform, and hence the spectrum
of the signal, have a frequency range of (—oc, o0). In contrast. the frequency
range for a discrete-time signal is unique over the frequency interval of (-, 7)
or, equivalently, (0. 2rr). This property is reflected in the Fourier transform of the

signal. Indeed. X (w) is periodic with period 2. that is.

o o
Xlw+ 272'[() — z x(n)e"‘-“’-‘z"’kf'"
n=—2C
m .
o Z x(N)e—/Me_Jhk" (4'2'24)
n=—oC
P
= Y x(me” = X(w)
n=—o¢

Hence X (w) is periodic with period 2. But this property is just a consequence of
the fact that the frequency range for any discrete-time signal is limited 1o (=, )
or (0,2m). and any frequency outside this interval is equivalent to a frequency
within the interval.

The second basic difference is also a consequence of the discrete-time nature
of the signal. Since the signal is discrete in time. the Fourier transform of the
signal involves a summation of terms instead of an integral, as in the case of
continuous-time signals.

Since X(w) is a periodic function of the frequency variable w, it has a Fourier
series expansion, provided that the conditions for the existence of the Fourier
series, described previously, are satisfied. In fact, from the definition of the
Fourier transform X (w) of the sequence x(n). given by (4.2.23). we observe that
X (w) has the form of a Fourier series. The Founer coefficients in this series
expansion are the values of the sequence x(n).




To demonstrate this point. let us evaluate the sequence x(n) from X (w). First,
we multiply both sides (4.2.23) by ¢/ and integrate over the intervai (—x, ).

Thus we have
f X (w)e’“"dw = f [Z x(n)e‘!‘""] e duw (4.2.25)

n -n = -0

The integral on the right-hand side of (4.2.25) can be evaluated if we can inter-
change the order of summation and integration. This interchange can be made if
the series
N
Xnlw) = Z x(nye "

n=-N

converges uniformly to X (w) as N — oc. Uniform convergence means that, for
every w, Xy(w) — X(w), as N — oc. The convergence of the Fourier transform
is discussed in more detail in the following section. For the moment. let us as-
sume that the series converges uniformly, so that we can interchange the order of
summation and integration in (4.2.25). Then

® 27 m=n
Jwim—n) - '
[_”e dw-lO‘ -

Consequently,

. > . 2ax(m). m=n :
Jurim—g | —
";x x(n_)/:” e dw = {0‘ T (4.2.26)
By combining (4.2.25) and (4.2.26). we obtain the desired resuit that
l n
x(n) = f X(we!"duw (4.2.27
— -

If we compare the integral in (4.2.27) with (4.1.9), we note that this is just
the expression for the Fourer series coefficient for a function that is periodic with
period 2n. The only difference between (4.1.9) and (4.2.27) is the sign on the
exponent tn the integrand, which 1s a consequence of our definition of the Fourier
transform as given by (4.2.23). Therefore. the Fourier transform of the sequence
x(n), defined by (4.2.23), has the form of a Fourier series expansion.




FREQUENCY DOMAIN SAMPLING: THE DISCRETE FOURIER
TRANSFORM

Before we introduce the DFT. we consider the sampling of the Fourier transform of
an aperiodic discrete-time sequence. Thus. we establish the relationship between
the sampled Fourier transform and the DFT.

5.1.1 Frequency-Domain Sampling and Reconstruction of
Discrete-Time Signals

We recall that aperiodic finite-energy signals have continuous spectra. Let us
consider such an aperiodic discrete-time signal x(n) with Fournier transform

X(w) = Z x(nye " (5.1.1)

Suppose that we sample X (w) periodically in frequéency at 2 spacing of dw radians
between successive sampiles. Since X (w) is periodic with period 2. only samples
in the fundamental frequency range are necessary. For convenience. we take N
equidistant samples in the interval ( < @ < 2x with spacing dw = 27 /N, as shown
in Fig. 5.1. First, we consider the selection of N. the number of samples in the

frequency domain.
If we evaluate (5.1.1) at w = 27k/N, we obtain

an = —j2nkn/N
X —N—k - Z x(n)e=1? Bl To oo N-—1 (5.1.2)

n=—x
The summation in (5.1.2) ¢an be subdivided 1nto an infinité number of summations.

where each sum contains N terms. Thus
N-1

2n . I o
X (.‘-N-"k) v Z x(n)tl‘/‘”‘"/h + Z X(‘n)e—jz.‘rkn/h
n==N n=0

AN

— Aok AN
4s E xinyeTRN o

n=N

i

o INAN-]

— i 2nknIN
= Z Z x{nye~IrkuiN

l=- n=IN

If we change the index in the inner summation from »n to » — /N and interchange
the order of the summation. we obtain the result




‘r)J N-1 o . '
X (%}1) = Z [ x{n — IN)} e IeXEnN (5:1:3)

n=0 { I=—2
for = 1idiia N -1
The signal
)= Y x(n~IN) (5.1.4)
{=—2c

obtained by the periodic repetition of x(n) every N samples. is clearly periodic
with fundamental period N. Consequently. it can be expanded in a Fourier

X{w)

~R 0 kdw n 1wtk 2n

Figure 5.1 Freguency-domain sampling of the Fourier transform.

series as
N-1
xp(n) =) cpe N g =0,1,.... N -1 (5.1.5)
k=0
with Fourier coefficients
1 = .
o= Zx,,(n)e"z"k"m k=0,1.....N-1 (5.1.6)
n={)

Upon comparing (5.1.3) with (5.1.6), we conclude that
1 2
— (—”k) k=0.1.... N—=1 5.1.7)
Therelore,

A=1
X,(n) = l Z X (2—’(&) @lerkafN n=20,1 N-= 1 (5.1.8)
Apln) = N = = Wy:lu.eaice ! ) W




5.1.2 The Discrete Fourier Transform (DFT)

The development in the preceding section is concerned with the frequency-domain
sampling of an aperiodic finite-energy sequence x(n). In general, the equally
spaced frequency samples X (27k/N), k =0,1,..., N—1, do not uniquely represent
the original sequence x(n) when x(n) has infinite duration. Instead, the frequency
samples X(2nk/N), k=0, 1...., N — 1, correspond to a periodic sequence x,(n)
of period N, where x,(») is an aliased version of x(n), as indicated by the relation
in (5.1.4), that is,
oo
xp(n)= Y x(n—IN) (5.1.15)

[=—

When the sequence x(n) has a finite duration of length L < N, then x,(n)
is simply a periodic repetition of x(n), where x,(n) over a single period is

given as
; x(n), O<n=<L~1
; o ot R 5. 16)
Xeli) {0. LS. SN =] (.}
Consequently. the frequency samples X (2nk/N), k = 0. 1.....N — 1, uniquely

represent the finite-duration sequence x{n). Since x(n) = x,(n) over a single pé
riod (padded by N — L zeros). the original finite-duration sequence x{n) can be
obtained from the frequency samples (X (27k/N | by means of the formula (5.1.8)-

It is important to note that zero padding does not provide any additional
information about the spectrum X(w) of the sequence (x(n)}. The L equidis

tant samples of X(w) are sufficient to reconstruct X {w) using the reconstruction
formula (5.1.13). However., padding the sequence (x(n)} with N — L zeros and
computing an N-point DFT results in a “better display™ of the Fourier transform
X(w).

In summary. a finite-duration sequence x(n) of length L [i.e.. x(n) = 0 for
n <0 and n > L] has a Fourier transform

L=1
X(w) = Zx'(n)e'_j‘”” O<w<2n (5.1.17
n=0
where the upper and lower indices in the summation reflect the fact that x(n) =0
outside the range 0 < m < L — 1. When we sample X(w) at equally spaced
frequencies w; = 27k/N. &k = 0. 1, 2..... N — 1. where N > L. the resultant
samples are

L1

2rk’ ok
Xk)y= X (—;-,-) — Zx(n)c'hxmf“\
pey ¢ (5.1.18)
Xk) = D x(nye 2N j=i0,1,2 00N =1
n={)

where for convenience. the upper index in the sum has been increased from L -1
to N - 1since x(n) =0forn > L.




The relation in (5.1.18) is a formula for transforming a sequence {x(n)} of
length L < N into a sequence of frequency samples (X (k)] of length N. Since
the frequency samples are obtained by evaluating the Fourier transform X(w)
at a set of N (equally spaced) discrete frequencies. the relation in (5.1.18) is
called the discrete Fourier rransform (DFT) of x(n). In turn. the relation given
by (5.1.10). which allows us to recover the sequence x{n) from the frequency
samples

1 &= 2k

x(m)= =3 X(e TN p =01 N =] (5.1.19)
k=0

is called the inverse DFT (IDFT). Clearly. when x(n) has length L < N, the N-

point IDFT vyields x(n) = 0 for L < n < M — 1. To summarize, the formulas for

the DFT and IDFT are

DFT
N-1
X(ky=Y x(me "N k=0,1,2,....N -1 (5.1.18)
n=0
IDFT
1 N=1 .
x(n) = — g X (kyenN  p —0,1,2,... . N—1 (5.1.19)

5.1.3 The DFT as a Linear Transformation

The formulas for the DFT and IDFT given by (5.1.18) and (5.1.19) may be ex-
pressed as

N—I

Xth) =Y x(mWy  k=01,... . N-1 (5.1.20)
n=X)
1 N-1
x(n) = -N-ZX(A-)W,;“" n=01..N-1 (5.1.21)
k=(}

where, by definition,

Wy = e i&/N (5.1.22)

which is an Nth root of unity.

With these definitions, the N-point DFT may be expressed in matrix form as
Xy =Wyxy (5.1.249)

where Wy, is the matrix of the linear transformation. We observe that Wy is a
symmetric matrix. If we assume that the inverse of Wy exists, then (5.1.24) can
be inverted by premultiplying both sides by W},'. Thus we obtain

xy = WXy (5.1.25)




Relationship to the Fourier series coefficients of a periodic sequence.
A periodic sequence [x,(n)} with fundamental period N can be represented in a
Fourier series of the form
N~1

xp(n) = qu"z”"”” ~00<n <00 (5.1.29)
k=X
where the Fourier series coefficients are given by the expression
1 A= .
==Y xp(me /TN k=01, N-1 (5.1.30)
N r
n={)

If we compare (5.1.29) and (5.1.30) with (5.1.18) and (5.1.19), we observe that the
formula for the Fourier series coefficients has the form of a DFT. In fact, if we
define a sequence x(n) = x,(n), 0 < n < N —1, the DFT of this sequence is simply

X(k) = Nc, (5.1.31)

Furthermore, (5.1.29) has the form of an IDFT. Thus the N-point DFT provides
the exact line spectrum of a periodic sequence with fundamental period N.

Relationship to the Fourier transform of an aperiodic sequence. We
have already shown that if x(n) is an aperiodic finite energy sequence with Fourier
transform X(w), which is sampied at N equally spaced frequencies w; = 2nk/N,
k=0,1,..., N — 1, the spectral components

X() = X (@umzmipy = 3 x(me N g =01,... . N-1 (5132
n==—00
are the DFT coefficients of the periodic sequence of period N, given by
o0
xp(n) = Y x(n—IN) (5.1.33)
{=—00

Thus x,(n) is determined by aliasing {x(n)} over the interval 0 <n < N —~ 1. The
finite-duration sequence

s ) xp(n), O<n<N-1
x(n) = lo' baiera (5.1.34)




bears no resemblance to the original sequence {x(n)}, unless x(n) is of finite dura-
tion and length L < ¥, in which case

x{n) = x(n) O<n<N-1 (5.1.35)
Only in this case will the IDFT of {X (k)] yield the original sequence {x(n)}.

Reiationship to the z-transform. Let us consider a sequence x(n) having
the z-transform

o
X@)= Y x(mz™" (5.1.36)
n=-0oC

with a ROC that includes the unit circle. If X(z) is sampled at the N equally

spaced points on the unit circle z; = ¢/>*/¥ 0 1,2,..., N — 1, we obtain

X(k)EX(Z)l:a,hu/N k=0.1....,N—1
[«%}

_ Z < (nye-TmIN (5.1.37)

=00

The expression in (5.1.37) is identical to the Fourier transform X (w) evaluated at
the N equally spaced frequencies w; = 27k/N. &k =0,1,.... N ~ 1, which is the
topic treated in Section 5.1.1.

If the sequence x(n) has a finite duration of length N or less, the sequence can
be recovered from its N-point DFT. Hence its z-transform is uniquely determined
by its N-point DFT. Consequently, X (z) can be expressed as a function of the
DFT [X(k)) as follows

N1
X@ =Y x(mz™"
n=(

N-1 1 N-1 :
X@2) =) [ﬁ > X(k)e’z"*"’":l ™"

i (5.1.38)
1 N-1 N-1 TR

X(z) = pgxmg(e! 1)
B k

X(2) = Z X (k)

o2k /N =1
N k-Ol e z

When evaluated on the unit circle, (5.1.38) yields the Fourier transform of the
finite-duration sequence in terms of its DFT, in the form

1 —e-ioN X2 X (k)

339
N k=0 1 — g~ Jjlw=2xk/N) (5.1.39)

X(w) =




Relationship to the Fourier series coefficients of a continuous-time
signal. Suppose that x,(r) is a continuous-time periodic signal with fundamental
period T, = 1/F,. The signal can be expressed in a Fourier series

oC
Xa(r) = Z cpel2kFo (5.1.40)

k=—aC

where {c.} are the Fourier coefficients. If we sample x,(r) at a uniform rate
F, = N/T, =1/T, we obtain the discrete-time sequence

o0 o
x(.n) = x, ("T) =2 Z (_L‘ejZNkFunT - Z C‘p}eﬂ(n/,\'
k=—x h=—=nC
(5.1.41)
N-I| " .
o Z l: Z (.‘_IN:I (,;.rrln/N
k=tl =
It is clear that (5.1.41) is in the form of an IDFT formula. where
X(ky=N Z v = NG (5.1.42)
I=—
and
G = Z Ci—IN (5.1.43)
l=—
Thus the {¢;} sequence is an aliased version of the sequence (¢ }.
PROPERTIESOFDFI: . .- ..
Property Time Domain  Frequency Domain
Notation x(n), v(n) Xk}, Y(k)
Periodicity x{n) =x(n+ N) Xk) =Xk +N)
Linearity ajxy(n) +ayxz(r)y X1 (k) +axX,0k)
Time reversal x(N —n) X(N —=k)
Circular time shift x((n = D)x X (kyeizntiin
Circular frequency shift x(n)eitrin¥ X((k = D)y
Complex conjugate x"(n) X' (N —=k)
Circular convolution x:(m) (N) xa(m) Xy (k) X3(k)
Circular correlation x{n) @ y*{(—n) X Y=(k)
. 1
Multiplication of two sequences xy(n)xa(n) Fxl{k) @ X2(k)
N1 1 N=1
Parseval's theorem x(n)y*(n — XYY" (k)
; PUORE ; )

LINEAR FILTERING METHODS BASED ON THE DFT

Since the D F T provides a discrete frequency representation o f a finite-duration Sequence in
the frequency domain, it is interesting to exp lore its use as a computational tool for linear system
analysis and, especially, for linear filtering. We have already established that a system with
frequency response H { w ) y w hen excited with an input signal that has a spectrum possesses an
output spectrum.

The output sequence y(n) is determined from its spectrum via the inverse Fourier transform.
Computationally, the problem with this frequency domain approach is that are functions o f the




continuous variable. As a consequence, the computations cannot be done on a digital computer, since
the computer can only store and perform computations on quantities at discrete frequencies.
On the other hand, the DFT does lend itself to computation on a digital computer. In the discussion
that follows, we describe how the DFT can be used to perform linear filtering in the frequency
domain. In particular, we present a computational procedure that serves as an alternative to time-
domain convolution.

In fact, the frequency-domain approach based on the DFT, is computationally m ore efficient
than time-domain convolution due to the existence of efficient algorithms for computing the DFT .
These algorithms, which are described in Chapter 6, are collectively called fast Fourier transform
(FFT) algorithms.

5.3.1 Use of the DFT in Linear Filtering

In the preceding section it was demonstrated that the product of two DFTs is
equivalent to the circular convolution of the corresponding time-domain sequences.
Unfortunately, circular convolution is of no use to us if our objective is to deter-
mine the output of a linear filter to a given input sequence. In this case we seek
a frequency-domain methodology equivalent to linear convolution.

Suppose that we have a finite-duration sequence x(n) of length L which
excites an FIR filter of length M. Without loss of generality, let

x(n) =0, n<Qandn=>1L
hiny=0, n<Oandn>M

where h(n) is the impulse response of the FIR filter.
The output sequence y(n) of the FIR filter can be expressed in the time
domain as the convolution of x(n) and k(n), that is

M=
y(n) = Z h(k)x(n — k) (5.3.1)
k=0

Since h(n) and x(n) are finite-duration sequences, their convolution is also finite
in duration. In fact, the duration of y(n) is L + M — 1.
The frequency-domain equivalent to (5.3.1) is

Y (@) = X (w)H (@) (5.3.2)




If the sequence y(n) is to be represented uniquely in the frequency domain by
samples of its spectrum Y (w) at a set of discrete frequencies, the number of distinct
samples must equal or exceed L+ M —1. Therefore, a DFT of size N > L+ M -1,
is required to represent (y(n)} in the frequency domain.

Now if

Y(k) = Y(0)|am2ni/V k=0,1,....,.N -1
= X(w)H (@)|we2ri/N k=0,1,...,.N=1
then
Y(k) = X(k)H (k) k=01,... N-1 (5.3.3)

where {X(k)} and {H(k)} are the N-point DFTs of the corresponding sequences
x(n) and h(n), respectively. Since the sequences x(n) and h(n) have a duration
less than N, we simply pad these sequences with zeros to increase their length to
N. This increase in the size of the sequences does not alter their spectra X (w) and
H (w), which are continuous spectra, since the sequences are aperiodic. However,
by sampling their spectra at N equally spaced points in frequency (computing the
N-point DFTs), we have increased the number of samples that represent these
sequences in the frequency domain beyond the minimum number (L or M, re-

spectively).

Since the N = L + M — 1-point DFT of the output sequence y(n) is sufficient
to represent y(n) in the frequency domain. it follows that the multiplication of the
N-point DFTs X (k) and H (k), according to (5.3.3), followed by the computation
of the N-point IDFT, must yield the sequence {y(n)}. In turn, this implies that
the N-point circular convolution of x(n) with h(n) must be equivalent to the linear
convolution of x(n) with h(n). In other words, by increasing the length of the
sequences x(n) and k(n) to N points (by appending zeros), and then circularly
convolving the resulting sequences, we obtain the same result as would have been
obtained with linear convolution. Thus with zero padding, the DFT can be used
to perform linear filtering.




FAST FOURIER TRANSFORM
In this section we represent several methods for computing dft efficiently. In view of the
importance of the DFT in various digital signal processing applications such as linear filtering,
correlation analysis and spectrum analysis, its efficient computation is a topic that has received
considerably attention by many mathematicians, engineers and scientists. Basically the computation
is done using the formula method.

N-1
X(k):Zx(n)Wﬁ," O0<k<N-1
n=0

where
WN — e‘j?'”IN

In general, the data sequence x(n) is also assumed to be complex valued.
Similarly, the IDFT becomes

lN-l _
x(n):-ﬁ;;oX(k)WN" 0<n<N-1

We observe that for each value of k, direct computation of X (k) involves
N complex multiplications (4N real multiplications) and N — 1 complex additions
(4N —2 real additions). Consequently, to compute all N values of the DFT requires
N? complex multiplications and N? — N complex additions.

6.1.1 Direct Computation of the DFT

For a complex-valued sequence x(n) of N points, the DFT may be expressed as

— 2rkn . 2mkn
Xg(k) = § [xk(n)cos N + x;(n) sin N ] (6.1.6)
N-1
X (k) = —§ [xR(n)sin i — x;(n) cos Zn;n] (6.1.7)

The direct computation of (6.1.6) and (6.1.7) requires:

1. 2N? evaluations of trigonometric functions.
2. 4N? real multiplications.

3. 4N(N — 1) real additions.
4. A number of indexing and addressing operations.

These operations are typical of DFT computational algorithms. The operations
in items 2 and 3 result in the DFT values Xg(k) and X,(k). The indexing and
addressing operations are necessary to fetch the data x(n), 0 <n < N -1, and
the phase factors and to store the results. The variety of DFT algorithms optimize
each of these computational processes in a different way.

Divide-and-Conquer Approach to Computation of the DFT

The development of computationally efficient algorithms for the DFT is made possible if we
adopt a divide-and-conquer approach. This approach is based on the decomposition of an N-point
DFT into successively smaller DFT. This basic approach leads to a family o f computationally
efficient algorithm s know n collectively as FFT algorithms.




T o illustrate the basic notions, let us consider the computation of an N point DFT , where N can be
factored as a product of two integers, that is, N=L M

Algorithm 1

1. Store the signal column-wise.

2. Compute the M-point DFT of each row.

3. Multiply the resulting array by the phase factors W:f.
4. Compute the L-point DFT of each column

5. Read the resulting array row-wise.

Algorithm 2

1. Store the signal row-wise.

2. Compute the L-point DFT at each column.

3. Muttiply the resulting array by the factors Wy".
4, Compute the M-point DFT of each row.

5. Read the resulting array column-wise.

6.1.3 Radix-2 FFT Algorithms

Let us consider the computation of the N = 2" point DFT by the divide-
and-conquer approach specified by (6.1.16) through (6.1.18). We select M = N/2
and L = 2. This selection results in a split of the N-point data sequence into two
N/2-point data sequences fi(n) and f>(n), corresponding to the even-numbered
and odd-numbered samples of x(n), respectively, that is,

filn) = x(2n)
N (6.1.23)

fa(n) = x(2n +1), n=0.l....,7-1

Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and hence
the resulting FFT algorithm is called a decimation-in-time algorithm.

Now the N-point DFT can be expressed in terms of the DFTs of the deci-
mated sequences as follows:

N-1
X(k) =) x(mWf  k=01,...,N—1
na=(




= Y xmWE+ Y x(mWy (6.1.24)
n odd

n even
(N)-1 (N2)-1

= Y xCm)WFt+ Y xQm+ 1wt
m=0 m=0

But W} = Wyp. With this substitution, (6.1.24) can be expressed as

(N/2y-1 (N2)-1

X(k)y= 3 [mWNp+Wh Y fHmW,
m=0 m=(

= k) +WiFRk) k=0,1,....N-1

(6.1.25)

where Fi(k) and F>(k) are the N/2-point DFTs of the sequences fi(m) and fi(m),
respectively.

Since Fi(k) and F3(k) are periodic, with period N /2, we have Fi(k+ N/2) =
Fi(k) and F(k + N/2) = F(k). In addition, the factor W;*”” = —W}. Hence
(6.1.25) can be expressed as

X(k)y = Fitk)+ WEFa(k)  k =0,1.....§ = (6.1.26)
N
X(k+5) = Fi(k) — Wy Fa(k) k=0.1.....§-1 (6.1.27)
To be consistent with our previous notation, we may define
G = A® k=015 -1
" N
Gob) = WyR() k=01,... -1
Then the DFT X (k) may be expressed as
N
X(k) = Gitk)+ Gak) k=0,1,..., 3 -1
N N (6.1.28)
X(k+-2—)=G|(k)—Gz(k) k=0,1.....—2——1




N{4-point sequences

N
vi(n) = f;(2n) n=0,1.....—4—-—1
N (6.1.29)
vi2(n) = fi2n+1) n=0.1.....7—1
and f>(n) would yield
) = ) n=01... 7 -1
(6.1.30)
N

ve(n) = f2(2n+1) n=0,l.....-—4—-—l

By computing N/4-point DFTs, we would obtain the N/2-point DFTs Fj(k) and
F>(k) from the relations

N
Fi(k) = Vu(k)+W§,7V12(k) k=0.1.....-z-1
N 3 (6.1.31)
F (k+7) = Vi (k) = Wh , Via (k) k=01....2 -1
i N
Fak) = Va (k) + WypVnh)  k=01,..., 7 —1
% % (6.1.32)
Fz (k+-4-) =V21(k)—W;/2V22(k) k=0,...,—4——1
where the {V;;(k)} are the N/4-point DFTs of the sequences {v;;(n)).
x(0)——  2.point
4) =i DFT s
e gom{bme —e X(0)
-point
X(2) =——  2.point DFT’s =)
6)—— DFT . S
iml:'m e X(3)
poi
W) ——  2-poimt DFT's f,i:;
DFT ) .
x(5) — g‘m—bjm X6
-point
: —e X(7)
X ———  2-poim DFT’s
) —— DFT

Figure 6.5 Three stages in the computation of an N = B-point DFT.
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Figure 6.6 Eight-point decimation-in-time FFT algorithm.

Another important radix-2 FFT algorithm, called the decimation-in-frequency
algorithm, is obtained by using the divide-and-conquer approach described in Sec-
tion 6.1.2 with the choice of M = 2 and L = N/2. This choice of parameters
implies a column-wise storage of the input data sequence. To derive the algo-
rithm, we begin by splitting the DFT formula into two summations, one of which
involves the sum over the first N/2 data points and the second sum involves the

last N/2 data points. Thus we obtain

(N/2)-1 N-1
Xky= Y. xmWh+ Y xmWwh
Aw( n=N/2
(N/2)-1 i MR (N/2)-1 N i
= Z-; Wy + Wy Y x(n-&-i) win
n n=(

Since W,",” 2 = (=1)*, the expression (6.1.33) can be rewritten as

(N/2)-1

Xky= [x(n) + (-1)*x (u + -zhf)] wi

n=0

(6.1.33)

(6.1.34)




Data Data

decimation ] decimation 2
Memory address Memory
(decimal} (binary)
] 000 x(0} - x(0) - x(0)
1 001 x(1) x(2) >< xi4)
2 010 x(2) x(4) x2)
|
3 011 x(3) x(6} x6)
4 100 x(4) x(1) a(l)
5 101 x(5) x(3) >< x(5)
f 110 x(6) x(5) (3
7 111 x(7) ~  x(7) ! (T}
Natural Bil-reversed
order order

(a)

Now, let us split (decimate) X (k) into the even- and odd-numbered samples. Thus
we obtain

(N/2)-1 N o N -
— - || W =01,...,—— A
X (2k) }_‘;5 [x(n)+x(n+2)] va  k=0l...5-1 (6
and
(N/2)-1 N N
X2Z+1)= Z l[x(n)—x(n-f-—-)]w,'{,lw;"n k=01,...,— -1
ne=0 2 <
(6.1.36)
where we have used the fact that W} = Wy ;.
If we define the N/2-point sequences g;(n) and g(n) as
gi1(n) = x(n) +x (n + %)
= - (6.1.37)
gz(n)=[x(n)—x(n+—2—)]wg, n=0,1,2..‘..5—1
then
(N/2)=1
X2k = ) aimWiy,
n=0 (6.1.38)
(NR)-1

X+ = ) Wy,

n=0




-~

We observe from Fig. 6.11, that the input data x(n) occurs in natural order,
but the output DFT occurs in bit-reversed order. We also note that the computa-
tions are performed in place. However, it is possible to reconfigure the decimation-
in-frequency algorithm so that the input sequence occurs in bit-reversed order
while the output DFT occurs in normal order. Furthermore, if we abandon the
requirement that the computations be done in place, it is also possible to have

both the input data and the output DFT in normal order.
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6.1.4 Radix-4 FFT Algorithms

When the number of data points N in the DFT is a power of 4 (i.e., N = 4"), we
can, of course, always use a radix-2 algorithm for the computation. However. for
this case, it is more efficient computationally to employ a radix-4 FFT algorithm.

Let us begin by describing a radix-4 decimation-in-time FFT algorithm, which
is obtained by selecting L =4 and M = N/4 in the divide-and-conquer approach
described in Section 6.1.2. For this choice of L and M, we have |, p=0,1,2, 3. m,
g=01,..., N/A -1, n=4m+1I, and k = (N/4) p + g. Thus we split or decimate
the N-point input sequence into four subsequences, x(4n), x(4n + 1), x(4n + 2),
x(@n+3).n=0,1..... N/ - 1.

By applying (6.1.15) we obtain

3
X(pgy=3 [w,’;'ru.q)] W p=0.1.2.3 (6.1.39)

1=
where F(l.qg) 1s given by (6.1.16), that is,
(N =1 I=0.1223,

Fl.g) = ); x(U.mWyY, q=().l.2....,%l— 1 (6.1.40)

and
x(l.m) = x(d4m + 1) (6.1.41)
X(p.g) =X (%p +q) (6.1.42)

Thus, the four N/4-point DFTs obtained from (6.1.40) are combined according
to (6.1.39) to vield the N-point DFT. The expression in (6.1.39) for combining
the N/4-point DFTs defines a radix-4 decimation-in-time butterfly, which can be
expressed in matrix form as

11 1] WaF0.9

X081 T WS F(l.q)
x(1.g) 1 &5 =k 3§ vF(l.q
1.43
X(2.q) 1 -1 1 -1 Wf,"F(Z,q} 18 )
3, i -1 -
X(3.q) 1 j -1 =id| whra.g)
wh -
wi O

&t
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6.1.5 Split-Radix FFT Algorithms

An inspection of the radix-2 decimation-in-frequency flowgraph shown in Fig. 6.11
indicates that the even-numbered points of the DFT can be computed indepen-
dently of the odd-numbered points. This suggests the possibility of using different
computational methods for independent parts of the algorithm with the objective
of reducing the number of computations. The split-radix FFT (SRFFT) algorithms
exploit this idea by using both a radix-2 and a radix-4 decomposition in the same
FFT algorithm.

We illustrate this approach with a decimation-in-frequency SRFFT algorithm
due to Duhamel (1986). First, we recall that in the radix-2 dectmation-in-frequency
FFT algorithm, the even-numbered samples of the N-point DFT are given as

2

Note that these DFT points can be obtained from an N /2-point DFT without any
additional multiplications. Consequently, a radix-2 suffices for this computation.

The odd-numbered samples {X (2% + 1)) of the DFT require the premultipli-
cation of the input sequence with the twiddie factors W}. For these samples a
radix-4 decomposition produces some computational efficiency because the four-
point DFT has the largest multiplication-free butterfly. Indeed, it can be shown
that using a radix greater than 4, does not result in a significant reduction in com-
putational complexity.

If we use a radix-4 decimation-in-frequency FFT algorithm for the odd-
numbered samples of the N-point DFT, we obtain the following N /4-point DFTs:

NR2-1 N N
X(2k) = Z [x(n) +x (n + —)] W,’}‘ﬂ k=0,1,.... e 1 (6.1.55)

n=l)

N/a-1
X@k+1) = Y {[x(n) = x(n + N/2)] (6.1.56)
n=0
— jlx(n 4 N/8) — x(n + 3N /O WRL WY,
Njd-1
X(@k+3)= Y {[x(n) —x(n+ N/2)] (6.1.57)
n=(

+ j[x(n + N/4) = x(n + 3N/A}WRWN,
Thus the N-point DFT is decomposed into one N /2-point DFT without additional
twiddle factors and two N /4-point DFTs with twiddle factors. The N-point DFT
is obtained by successive use of these decompositions up to the last stage. Thus
we obtain a decimation-in-frequency SRFFT algorithm.
Figure 6.15 shows the flow graph for an in-place 32-point decimation-
in-frequency SRFFT algorithm. At stage A of the computation for N = 32, the
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An additional factor of 2 savings in storage of twiddle factors can be obtained by introducing
a 90° phase offset at the mid point of each twiddle array , which can be removed if necessary at the
ouput of the SRFFT computation. The incorporation of this improvement into the SRFFT results in

an other algorithm also due to price called the PFFT algorithm.

Implementation of FFT Algorithms

Now that w e has described the basic radix-2 and radix -4 F FT algorithm s, let us consider

some of the implementation issues. Our remarks apply directly to
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radix-2 algorithms, although similar comments may be made about radix-4 and
higher-radix algorithms.

Basically, the radix-2 FFT algorithm consists of taking two data points at a
time from memory, performing the butterfly computations and returning the re-
sulting numbers to memory. This procedure is repeated many times ((N log, N)/2
times) in the computation of an N-point DFT.

The butterfly computations require the twiddle factors {W} ) at various stages
in either natural or bit-reversed order. In an efficient implementation of the algo-
rithm, the phase factors are computed once and stored in a table, either in normal
order or in bit-reversed order, depending on the specific implementation of the
algorithm.

Memory requirement is another factor that must be considered. If the com-
putations are performed in place, the number of memory locations required is 2N
since the numbers are complex. However, we can instead double the memory to
4N, thus simplifying the indexing and control operations in the FFT algorithms. In
this case we simply alternate in the use of the two sets of memory locations from
one stage of the FFT algorithm to the other. Doubling of the memory also allows
us to have both the input sequence and the output sequence in normal order.

Finally. we note that the emphasis in our discussion of FFT algorithms was
on radix-2, radix-4, and split-radix algorithms. These are by far the most widely
used in practice. When the number of data points is not a power of 2 or 4. it is a
simple matter to pad the sequence x(n) with zeros such that N =2" or N = 4".

The measure of complexity for FFT algorithms that we have emphasized
is the required number of arithmetic operations (muitiplications and additions).
Although this is 2 very important benchmark for computational complexity, there
are other issues to be considered in practical implementation of FFT algorithms.
These include the architecture of the processor, the available instruction set. the
data structures for storing twiddle factors, and other considerations.

For general-purpose compuiers, where the cost of the numerical operations
dominate, radix-2. radix-4, and split-radix FFT algorithms are good candidates.
However. in the case of special-purpose digital signal processors, featuring single-
cycle multiply-and-accumulate operation, bit-reversed addressing, and a high de-
gree of instruction parallelism. the structural regularity of the algorithm is equally
important as arithmetic complexity. Hence for DSP processors, radix-2 or radix-
4 decimation-in-frequency FFT algorithms are preferable in terms of speed and
accuracy. The irregular structure of the SRFFT may render it less suitable for
implementation on digital signal processors. Structural regularity is also important
in the implementation of FFT algorithms on vector processors, multiprocessors,
and in VLSI. Interprocessor communication is an important consideration in such
implementations on parallel processors,

In conclusion, we have presented several important considerations in the
implementation of FFT algorithms. Advances in digital signal processing technol-
ogy, in hardware and software, will continue to influence the choice among FFT
algorithms for various practical applications.




APPLICATIONS OF FFT ALGORITHMS

The FFT algorithms described in the preceding section find application in a variety
of areas, including linear filtering, correlation, and spectrum analysis. Basically,
the FFT algorithm is used as an efficient means to compute the DFT and the IDFT.
In this section we consider the use of the FFT algorithm in linear filtering
and in the computation of the crosscorrelation of two sequences. The use of the
FFT in spectrum analysis is considered in Chapter 12. In addition we illustrate
how to enhance the efficiency of the FFT algorithm by forming complex-valued
sequences from real-valued sequences prior to the computation of the DFT.

6.2.1 Efficient Computation of the DFT of Two Real
Sequences

The FFT algorithm is designed to perform complex multiplications and additions,
even though the input data may be real valued. The basic reason for this situation is

Suppose that x,(n) and x,(n) are two real-valued sequences of length N, and
let x(n) be a complex-valued sequence defined as

x{(n) = x1(n) + jxa(n) O=sn=<N-1 6.2.1)
The DFT operation is linear and hence the DFT of x(n) can be expressed as
X (k) = X, (k) + j X2 (k) (6.22)
The sequences x;(n) and xz2(n) can be expressed in terms of x(n) as follows:
x(m) + x*(n)

x1(n) = — (6.2.3)
xa(n) = M (6.2.4)
2j
Hence the DFTs of x;(n}) and x»(n) are
X)) = %—{DFT[x(n)] + DFT[x" )} (6.2.5)
1

Xa(k) = E{I)FT[x(n)] - DFT[x*(n)]} (6.2.6)

Recall that the DFT of x*(n) is X*(N — k). Therefore.

1

Xi(k) = 5[X() + X*(N = )] (6.2.7)
Xa(k) = ;—Z[X{k) - X" (N — k)] (6.2.8)

6.2.2 Efficient Computation of the DFT of a 2N-Point
Real Sequence

Suppose that g(n) is a real-valued sequence of 2N points. We now demonstrate
how to obtain the 2ZN-point DFT of g(n) from computation of one N-point DFT
involving complex-valued data. First, we define

x1(n) = g(2n)

(6.2.9)
x2(n) = g(2n + 1)




Let x(n) be the N-point complex-valued sequence
x(n) = x1(n) + jxa(n) (6.2.10)
From the results of the preceding section, we have
Xi(k) = %[X(k) + X' (N - k)]
y (6.2.11)
Xa(k) = Z[X(k) — X*(N — k)]

Finally. we must express the 2N-point DFT in terms of the two N-point DFTs,
X (k) and X2(k). To accomplish this, we proceed as in the decimation-in-time FFT
algorithm, namely,

N-1 N=1
Gy = Y Wit + 3 e2n+ Dy

n=0) n=0)
N-1 N-1
= Zx] (MWt + wi, Z X)W
n=l) n=[)
Consequently,
Giky = X (k) + WiNX2(k) k=01,.... N -1
. (6.2.12)
Ghk+N) = Xl(k)-wz"NXg{k) RO N -1

Thus we have computed the DFT of a 2N -point real sequence from one N-point
DFT and some additional computation as indicated by (6.2.11) and (6.2.12).

6.2.3 Use of the FFT Algorithm in Linear Filtering and
Carrelation

An important application of the FFT algorithm is in FIR linear filtering of long
data sequences. In Chapter 5 we described two methods, the overlap-add and the
overlap-save methods for filtering a long data sequence with an FIR filter, based
on the use of the DFT. In this section we consider the use of these two methods
in conjunction with the FFT algorithm for computing the DFT and the IDFT.

Let A(n), 0 < n < M -1, be the unit sample response of the FIR filter and let
x(n) denote the input data sequence. The block size of the FFT algorithm is N,
where N = L + M -1 and L is the number of new data samples being processed
by the filter. We assume that for any given value of M, the number L of data
samples is selected so that N is a power of 2. For purposes of this discussion, we
consider only radix-2 FFT algorithms.

The N-point DFT of #(n), which is padded by L —1 zeros, is denoted as H (k).
This computation is performed once via the FFT and the resulting N complex
numbers are stored. To be specific we assume that the decimation-in-frequency




FFT algorithm is used to compute H(k). This yields H(k) in bit-reversed order,
which is the way it is stored in memory.

In the overlap-save method. the first M —1 data points of each data block are
the last M — 1 data points of the previous data block. Each data block contains L
new data points, such that N = L + M — 1. The N-point DFT of each data block
is performed by the FFT algorithm. If the decimation-in-frequency algorithm is
employed, the input data block requires no shuffling and the values of the DFT
occur in bit-reversed order. Since this is exactly the order of H (k). we can multiply
the DFT of the data, say X, (k), with H(k) and thus the result

Ym(k) = H (k) Xy (k)
1s also in bit-reversed order.

The inverse DFT (IDFT) can be computed by use of an FFT algorithm that
takes the input in bit-reversed order and produces an output in normal order.
Thus there is no need to shuffle any block of data either in computing the DFT
or the IDFT.,

If the overlap-add method is used to perform the linear filtering, the compu-
tational method using the FFT algorithm is basically the same. The only difference
is that the N-point data blocks consist of L new data points and M — 1 additional
zeros. After the IDFT is computed for each data block, the N-point filtered blocks
are overlapped as indicated in Section 5.3.2, and the M — 1 overlapping data points
between successive output records are added together.

6.3.1 The Goertzel Algorithm
The Goertzel algorithm exploits the periodicity of the phase factors [W}} and

allows us to express the computation of the DFT as a liear filtering operation.
Since WY = 1, we can multiply the DFT by this factor. Thus

N—1 N-1
Xy =W 3 " ximywim = 3 xomywgté (6.3.1)
m={ m=l

We note that (6.3.1) i1s in the form of a convolution. Indeed. if we define the
sequence y;(n) as

N-1
veln) = 3 x(myWwgtm (6.3.2)

m=0
then it is clear that ys(n) 1s the convolution of the finite-duration input sequence
x{n) of length N with a filter that has an impulse response
h(n) = Wi¥u(n) (6.3.3)

The output of this filter at n = N yields the value of the DFT at the frequency
w; = 2rk/N. That is,

X (k) = yx(n)lnmn (6.3.4)

as can be verified by comparing (6.3.1) with (6.3.2).
The filter with impulse response h.(n) has the system function

1

_— 6.3.5)
1—wykz= (

Hy(z) =




Thas fAlter has a pole on the unit circle at the frequency wy = 2Zrk/N. Thus, the
entire DFT can be computed by passing the block of input data into a paral-
lel bank of N single-pole filters (resonators), where each filter has a pole at the
corresponding frequency of the DFT.

Instead of performing the computation of the DFT as in (6.3.2), via convelu-
tion. we can use the difference equation corresponding to the filter given by (6.3.5)
to compute y;(n) recursively. Thus we have

weln) = WHI':.'l- in =14+ x(n) wi=1)=10 (6.3.6)

The desired output is X (k) = w(N), fork =0, 1,...,N — 1. To perform this
compultation, we can compute once and store the phase factors Wr:*_

The complex multiplications and additions inherent in (6.3.6) can be avoided
by combining the pairs of resonators possessing complex-conjugate poles. This
leads to two-pole filters with system functions of the form

- wiz! 6a)
1 = 2cos(2rk/N)z—" + -2 37

6.3.2 The Chirp-z Transform Algorithm

Hiiz) =

The DFT of an N-point data sequence x(n) has been viewed as the z-transform
of x(n) evaluated at N equally spaced points on the unit circle. It has also been
viewed as N equally spaced samples of the Founer transform of the data sequence
x(n). In this section we consider the evaluation of X (z) on other contours in the
7-plane, including the unit circle.
Suppose that we wish to compute the values of the z-transform of x(n) at a
set of points {z;). Then,
N-1
X(z) =) x(mz;" k=01,....L—1 (6.3.10)
n=0

For exampile, if the contour is a circle of radius r and the z, are N equally spaced
points, then

2, = resimnkni¥ k=01,2,...,N =1

N-l _ : (6.3.11)
X(z) =Y [xn)r~"fe 20Nk =0.1.2,... N -1
n=0
In this case the FFT algorithm can be applied on the modified sequence x(n)r=".
More generally, suppose that the points z; in the z-plane fall on an arc which
begins at some point
20 = rpe’™
and spirals either in toward the origin or out away from the origin such that the
points {z;} are defined as
= roe!®(Roe/*Y k=0,1,...,L-1 (6.3.12)
When points {z;} in (6.3.12) are substituted into the expression for the z-
transform, we obtain
N-1

X(z) = Y x(m)z"
= (6.3.13)

N=1

= Z x{(nMroe/®) "y
LE




where. by definition.

V = Roe'® {6.3.14)
We can express (6.3.13) in the form of a convolution, by noting that
nk = 1[n* + k? — (k — n)?] (6.3.15)
Substitution of (6.3.15) into (6.3.13) yields
N—1
X(z) = VTR Y [x(ndroelt)y v Ay honi (6.3.16)
n={
Let us define a new sequence g(n) as
g(n) = x(my(roe’®)y ="V =" 7 (6.3.17)
Then (6.3.16) can be expressed as
N=1
X(z) = VEA Y gmv s (6.3.18)
a={

The summation in (6.3.18) can be interpreted as the convolution of the sequence
g(n) with the impulse response h(n) of a filter, where

h(m) = V72 (6.3.19)
Consequently, (6.3.18) may be expressed as

X(z) = VF2y(k)

(6.3.20
DL RS R )
k)

where y(k} is the output of the filter
N=1
y[k}:Eg{n}h{k—n} k=0.1,....L-1 (6.3.21)

n={

QUANTIZATION EFFECTS IN THE COMPUTATION OF THE DFT*

As we have observed in our previous discussions, the DFT plays an important role
in many digital signal processing applications, including FIR filtering, the compu-
tation of the correlation between signals, and spectral analysis. For this reason
it is important for us to know the effect of quantization errors in its computa-
tion. In particular, we shall consider the effect of round-off errors due to the
multiplications performed in the DFT with fixed-point arithmetic.




6.4.1 Quantization Errors in the Direct Computation of
the DFT

Given a finite-duration sequence {x(m)}, 0 = n = N — 1, the DFT of {x(m)} is

defined as
w1

Xth)y= Y xmWy  k=0.1,.... N-1 (6.4.1)

n=ll

where Wy = ¢ /7% We assume that in general. {x(n)] is a complex-valued se-
quence. We also assume that the real and imaginary components of {x(»)] and
{W}"} are represented by b bits. Consequently, the computation of the product
x{m)W," requires four real multiplications. Each real multiplication is rounded
from 2k bits 10 b bits, and hence there are four guantization errors for cach
complex-valued multiplication.

In the direct computation of the DFT, there are N complex-valued multiplica-
tions for each point in the DFT. Therefore, the total number of real multiplications
in the computation of a single point in the DFT is 4N. Consequently. there are
4N gquantization errors.

Let us evaluate the variance of the quantization errors in a fixed-point com-
putation of the DFT. First. we make the following assumptions about the statistical
properties of the quantization errors.

1. The quantization errors due to rounding are uniformly distributed random
variables in the range (—A /2. A/2) where A = 2-b,

2. The 4N quantization errors are mutually uncorrelated.
3. The 4N quantization errors are uncorrelated with the sequence {x(n)}.

Since each of the quantization errors has a variance

Al 2@
2 _A° _ &7 6.4.2
TN (042
the variance of the guantization errors from the 4N multiplications is
a; = 4Na}
_ E P (6.4.3)

3




as
) F=2ib-vil
o, = 5 (6.4.4)
This expression implies that every fourfold increase in the size N of the DFT
requires an additional bit in computational precision to offset the additional quan-
tization errors.
To prevent overflow, the input sequence to the DFT requires scaling. Clearly,
an upper bound on |X (k)| is

N=1
X = Y x(m)] (6.4.5)
n=l]
Ii the dynamic range in addition is (=1, 1), then |X (k)| < 1 requires that
N=1
E|xl’_u}| =1 (6.4.6)

n=i)

I |x(n)| is initially scaled such that |x(n)| < 1 for all n, then each point in the
sequence can be divided by N 1o ensure thai (6.4.6) is satisfied.

The scaling implied by (6.4.6) is extremely severe. For example, suppose
that the signal sequence {x(n)} is white and. after scaling. each value |x(n)j of the
sequence is uniformly distributed in the range (—1/N. 1/N}. Then the variance of
the signal sequence is

al= 2/N) = _1_ (6.4.7)
: 12 aN-
and the variance of the output DFT coefficients |X (k)| is
a; = Na?
1 (6.4.8)
T 3N
Thus the signal-to-noise power ratio is
2 2
o 2 (6.4.9)
o* M=

9

We observe that the scaling is responsible for reducing the SNR by N and

the combination of scaling and quantization errors result in a total reduction that

is proportional to N°. Hence scaling the input sequence {x(n)} to satisfy (6.4.6)
imposes a severe penalty on the signal-to-noise ratio in the DFT.




UNIT -111
IR Digital Filters

IIR FILTER DESIGN
DESIGN OF IIR FILTERS FROM ANALOG FILTERS

Just as in the design of FIR filters, there are several methods that can be used to
design digital filters having an infinite-duration unit sample response. The tech-
niques described in this section are all based on converting an analog filter into
a digital filter. Analog filter design is a mature and well developed field, so it is
not surprising that we begin the design of a digital filter in the analog domain and
then convert the design into the digital domain.

An analog filter can be described by its system function.

B, Zﬁw"
_ DS k=0
Hy(s) = 0 = (8.3.1)

where {o;) and {8} are the filter coefficients, or by its impulse response, which is
related to H,(s) by the Laplace transform

H,(s) = f h(t)e™*'dt (8.3.2)
Alternatively, the analog filter having the rational system function H(s) given in
(8.3.1), can be described by the linear constant-coefficient differential equation

¥ oodtyi) L dixin)
ap———= 3 B {8.3.3)

where x(r) denotes the input signal and y(r) denotes the output of the filter.

Each of these three equivalent characterizations of an analog filter leads to
alternative methods for converting the filter into the digital domain, as will be
described in Sections 8.3.1 through 8.3.4. We recall that an analog linear time-
invariant system with system function H(s) is stable if all its poles ke in the left
half of the s-plane, Consequently, if the conversion technique is to be effective, it
should possess the following desirable properties:

1. The jQ axis in the s-plane should map into the unit circle in the z-plane.
Thus there will be a direct relationship between the two frequency variables
in the two domains.




2. The left-half plane (LHP) of the s-plane should map into the inside of the
unit circle in the z-plane. Thus a stable analog filter will be converted to a

stable digital filter.

We mentioned in the preceding section that physically realizable and stable
IIR filters cannot have linear phase. Recall that a linear-phase filter must have a
system function that satisfies the condition

Hiz)=+:""H(™) (8.3.4)

where ;7" represents a delay of N units of time. But if this were the case, the
filter would have a mirror-image pole outside the unit circle for every pole inside
the unit circle. Hence the filter would be unstable. Consequently, a causal and
stable IIR filter cannot have linear phase.

If the restriction on physical realizability is removed, it is possible to obtain
a linear-phase IIR filter, at least in principle. This approach involves performing a
time reversal of the input signal x(n), passing x(—n) through a digital filter H(z),
time-reversing the output of H(z), and finally, passing the result through H(z)
again. This signal processing is computationally cumbersome and appears to offer
no advantages over linear-phase FIR filters. Consequently, when an application
requires a linear-phase filter, it should be an FIR filter.

In the design of IIR filters, we shall specify the desired filter characteristics
for the magnitude response only. This does not mean that we consider the phase
response unimportant. Since the magnitude and phase characteristics are related,
as indicated in Section 8.1, we specify the desired magnitude characteristics and
accept the phase response that is obtained from the design methodology.

8.3.1 IR Filter Design by Approximation of Derivatives

One of the simplest methods for converting an analog filter into a digital filter is to
approximate the differential equation in {8.3.3) by an equivalent difference equa-
tion. This approach is often used to solve a linear constant-coefficient differential
equation numerically on a digital computer.

For the derivative dy(r)/dt at time ¢ = nT, we substitute the backward dif-
ference [y(nT) — y(nT — 1)}/T. Thus

dy(r) _ ¥@T) = y(nT —T)
dr f=nT - T
- -1

where T represents the sampling interval and y(n) = y(nT). The analog differ-
entiator with output dy(r)/dr has the system function H(s) = s, while the digi-
tal system that produces the output [y(n) — y(n — 1)]/T has the system function
H(z) = (1 — z71)/T. Consequently, as shown in Fig. 8.29, the frequency-domain
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] T T Figure 829 Substitution of the
= — backward difference for the derivative
(b) implies the mapping s = (1 - z7')/T.

equivalent for the relationship in (8.3.5) is

BEs

5 =
T
The second derivative d°y(r)/d¢* is replaced by the second difference, which
is derived as follows:

(8.3.6)

dy@|  _ d[dy®
de2 | _,r  dt| dr J.p
_ ynT) = y(nT = TY)/T = [y(nT = T) = y(nT = 2T)}/T
a T
win) =2vin =1} 4 vin = 2)
= 73 (83.7)
In the frequency domain, (8.3.7) is equivalent 1o
- 2

2 _ 1-2z714 22 _ 1-2z"1
£ = T2 = 7 (8.3.8)

It easily follows from the discussion that the substitution for the kth derivative
of y(r) results in the equivalent frequency-domain relationship

I
st = (1 ~ ) {8.3.9)

T

Consequently, the system function for the digital IIR filter obtained as a result of
the approximation of the derivatives by finite differences is

H(z2) = Ha(s)s=—z1y/r (8.3.10)
where H,(s) is the system function of the analog filter characterized by the differ-
ential equation given in (8.3.3).

Let us investigate the implications of the mapping from the s-plane to the
z-plane as given by (8.3.6) or, equivalently,

1
l1—sT
If we substitute s = jQ in (8.2.11), we find that
1
= 1-jar

(8.3.11)

 —
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As © varies from —oc to oo, the corresponding locus of points in the z-plane is a
circle of radius %— and with center at 7 = ,1-,, as illustrated in Fig. 8.30.

It is easily demonstrated that the mapping in (8.3.11) takes points in the
LHP of the s-plane into corresponding points inside this circle in the z-plane and
points in the RHP of the s-plane are mapped into points outside this circle. Con-
sequently, this mapping has the desirable property that a stable analog filter is
transformed into a stable digital filter. However, the possible location of the poles
of the digital filter are confined to relatively small frequencies and, as a conse-
quence, the mapping is restricted to the design of lowpass filters and bandpass
filters having relatively small resonant frequencies. It is not possible, for exam-
ple, to transform a highpass analog filter into a corresponding highpass digital
filter.

In an attempt to overcome the limitations in the mapping given above, more
complex substitutions for the derivatives have been proposed. In particular, an
Lth-order difference of the form

dy(1)
di

(8.3.12)

*—E y(ni"-{-kT};}(nT—kT) (83.13)

r=nT k=1

has been proposed, where {e;} are a set of parameters that can be selected to
optimize the approximation. The resulting mapping between the s-plane and the
z-plane is now

L
%Z o (2t - 2” (8.3.14)
k==

Unit circle
z-plane

<

s-plane

o

Figure 8.30 Thcmappmg::{l-z"}ﬂ"ukes[}IPmlhg:plul:mtnpmnu
inside the circle of radius 4 and center z = § in the z-plane.




When z = ¢/*, we have

2 i
5= JF Ea; sin wk (8.3.15)

which is purely imaginary. Thus

2 L
Q== > oysinwk 8.3.16
7 E ' (8.3.16)
is the resulting mapping between the two frequency variables. By proper choice
of the coefficients {ax} it is possible to map the j{i-axis into the unit circle. Fur-
thermore, points in the LHP in s can be mapped into points inside the unit circle
n z.

Despite achieving the two desirable characteristics with the mapping of
(8.3.16), the problem of selecting the set of coefficients {e;) remains. In general,
this is a difficult problem. Since simpler techniques exist for converting analog
filters into IIR digital filters, we shall not emphasize the use of the Lth-order
difference as a substitute for the derivative.

8.3.2 liR Filter Design by Impulse Invariance

In the impulse invariance method, our objective is to design an IIR filter having a
unit sample response k(n) that is the sampled version of the impulse response of
the analog filter. That 1s,

hin) =h(nT) n=012,... (8.3.17)

where 7 is the sampling interval.

To examine the implications of (8.3.17), we refer back to Section 4.2.9. Recall
that when a continuous time signal x,(r) with spectrum X,(F) is sampled at a
rate F, = 1/T samples per second, the spectrum of the sampled signal is the
periodic repetition of the scaled spectrum F,X,(F) with period F,. Specifically,
the relationship is

X(f)=F ) Xf(f=KF] 8.3.18)
k=—00
where f = F/F, is the normalized frequency. Aliasing occurs if the sampling rate
F, is less than twice the highest frequency contained in X, (F).
Expressed in the context of sampling the impulse response of an analog
filter with frequency response H,(F), the digital filter with unit sample response
h(n) = h,(nT) has the frequency response

H(f)=F, Y H[(f~kF] (8.3.19)
k=—00
or, equivalently,
Hw)=F, Y Hl(w—27k)F,] (8.3.20)

k=—00
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H(QT) = % > H, (n - %:5) (8.3.21)

k=—nC

Figure 8.31 depicts the frequency response of a lowpass analog filter and the
frequency response of the corresponding digital filter.

It is clear that the digital filter with frequency response H(w) has the fre-
quency response characteristics of the corresponding analog filter if the sampling
interval T is selected sufficiently small to completely avoid or at least minimize
the effects of aliasing. It is also clear that the impulse invariance method is in-
appropriate for designing highpass filters due the to spectrum aliasing that results
from the sampling process.

To investigate the mapping of points between the z-plane and the s-plane
implied by the sampling process, we rely on a generalization of (8.3.21) which
relates the z-transform of k(n) to the Laplace transform of k.(r). This relation-
ship is

1 & 2k
H@lmer = = 3 Ha (s - j—) (8322

ke—po




where
(==
H(z) = ) h(m)z™
n={)

[~ =]
H(2)|imer = ) h(n)e™*™" (8.3.23)
Rl

Note that when s = j£2, (8.3.22) reduces to (8.3.21), where the factor of j in H, (52}
is suppressed in our notation.
Let us consider the mapping of points from the s-plane to the z-plane implied
by the relation
r=¢ (8.3.24)

If we substitute s = o + 2 and express the complex variable ; in polar form as
z = re/®, (8.3.24) becomes

rel® = 9T /49T
Clearly, we must have
r=e¢7
(8.3.25)
w = T

Conseguently, ¢ < 0 implies that 0 < r < 1 and ¢ > 0 implies that r = 1. When
o = (), we have r = 1. Therefore, the LHP in s 1s mapped inside the unit circle in
z and the RHP in s is mapped outside the unit circle in z.

Also, the jQ-axis is mapped into the unit circle in z as indicated above. How-
ever, the mapping of the jQ-axis into the unit circle is not one-to-one. Since w
is unigue over the range (—n, 7}, the mapping @ = QT implies that the interval
—n/T <= Q < n/T maps into the corresponding values of —7 < w < m. Fur-
thermore, the frequency interval m/T < € < 3x/T also maps into the interval
-7 < w = 7 and, in general, so does the interval (2k — 1)a/T <= Q < (2k+ 1)7/T,
when k is an integer. Thus the mapping from the analog frequency 2 to the fre-
quency variable w in the digital domain is many-tc-one, which simply reflects the
effects of aliasing due to sampling. Figure 8.32 illustrates the mapping from the
s-plane to the z-plane for the relation in (8.3.24).

To explore further the effect of the impulse invariance design method on
the characteristics of the resulting filter, let us express the system function of the
analog filter in partial-fraction form. On the assumption that the poles of the
analog filter are distinct, we can write

N

Ci
H,(s) = (8.3.26)
; §—= P

where {p;) are the poles of the analog filter and {c;} are the coefficients in the
partial-fraction expansion. Consequently,

N
ho() = Z e >0 (8.327)
k=1




/ Figure 8.32 The mapping of z = &7
/,ﬁ maps strips of width 2xr/T (for o < 0) in
22 an th . L L
T e s-plane into points in the unit circle
+ in the z-plane.

If we sample h,(1) periodically at r =nT, we have
hin) = h,(nT)

= Z Cg—é"m?‘" (8-32’8}

Now, with the substitution of (8.3.28), the system function of the resulting digital
IIR filter becomes

oo
H(z) = ) h(mz™"
i}

§ ()

=l hk=l
N o
=5 ") (Y (8.3.29)
k=1 =l
The inner sum in (8.3.29) converges because p; < 0 and yields
o . 1
;[EF'Tz Iyn — T (8.3.30)

Therefore, the system function of the digital filter is

N
Ck
H(z) = g T (8:3.31)
We observe that the digital filter has poles at
n=e k=12 .. N (8.3.32)

8.3.3 IIR Filter Design by the Bilinear Transformation

The IIR filter design techniques described in the preceding two sections have a
severe limitation in that they are appropriate only for lowpass filters and a limited
class of bandpass filters.

In this section we describe a mapping from the s-plane to the z-plane, called
the bilinear transformation, that overcomes the limitation of the other two design




methods described previously. The bilinear transformation is a conformal mapping
that transforms the ;j-axis into the unit circle in the z-plane only once, thus
avoiding aliasing of frequency components. Furthermore, all points in the LHP of
s are mapped inside the unit circle in the z-plane and all points in the RHP of s
are mapped into corresponding points outside the unit circle in the z-plane.

The bilinear transformation can be linked to the trapezoidal formula for
numerical integration. For example, let us consider an analog linear filter with
system function

H(s) = (8.3.33)
5+a
This system is also characterized by the differential equation
dv(r
% + ay(1) = bx(r) (8.3.34)

Instead of substituting a finite difference for the derivative, suppose that we in-
tegrate the derivative and approximate the integral by the trapezoidal formula.
Thus

wi) = f yithdt + y(rg) (8.3.35)
t

where ¥'(r) denotes the derivative of v(r). The approximation of the integral in
(8.3.35) by the trapezoidal formula at r = rT and iy = nT — T yields

T
y(inT) = -z-—[y'(nT} + ¥ (nT — T+ vinT — T) (8.3.36)

Now the differential equation in {8.3.34) evaluated at r = nT yields
¥i(nT) = —ayinT) + bxi{nT) (8.3.37)

We use (8.3.37) to substitute for the derivative in (8.3.36) and thus obtain a dif-
ference equation for the equivalent discrete-time system. With vi{n) = y(nT) and
x(n) = x(nT), we obtain the result

T T T
(1 + "T) yn) — (1 - "T) yin = 1) = L [x(m) + x(n — 1)) (8.3.38)
The z-transform of this difference equation is
aT aT bT
1+ — ¥ — |1~ )z = o -1
( +3 ) (z) ( > )z Y(z) 5 (1+z7")X(z)
Consequently, the system function of the equivalent digital filter is

Y(z) BT/2)1 +z71)
X(z) 14+alf2—(1—al/2)z1

Hiz) =

or, equivalently,

H(z) = b (8.3.39)

2 1—-2"")
—— ) +a

T\1+2z1




Clearly, the mapping from the s-plane to the z-plane is

- =1
5= ; (%) (8.3.40)

This is called the bilinear transformation.

Although our derivation of the bilinear transformation was performed for a
first-order differential equation, it holds, in general, for an Nth-order differential
equation.

To investigate the characteristics of the bilinear transformation, let

z=re®
s =0+ jQ2
Then (8.3.40) can be expressed as
2z-1
§= ——
Tz+1
_ 2rev -1
T Trew4]

2 -1 L, 2rsinw
T T\1+ri+2rcosw 1+ +2rcosw

Consequently,
2 |
- = 3.41
¢ Tl4+ri42rcosw @8 )
2 2r sinw (83.42)

T T1+4r2+2rcosw

First, we note that if r < 1, then ¢ < 0, and if r > 1, then ¢ > 0. Conse-

quently, the LHP in s maps into the inside of the unit circle in the z-plane and the
RHP in s maps into the outside of the unit circle. When r =1, then o = 0 and

2 sinw
Q= ———noo-—
T1+cosw
2 )
or, equivalently,
w=2tan"’ f;—T (8.3.44)

The relationship in (8.3.44) between the frequency variables in the two domains
is illustrated in Fig. 8.36. We observe that the entire range in £ is mapped only
once into the range —w < @ < . However, the mapping is highly nonlinear. We
observe a frequency compression or frequency warping, as it is usually called, due
to the nonlinearity of the arctangent function.

It is also interesting to note that the bilinear transformation maps the point
5§ = oo into the point z = -1. Consequently, the single-pole lowpass filter in
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Chebyshev filters, There are two types of Chebyshev filters. Type 1
Chebyshev filters are all-pole filters that exhibit equiripple behavior in the pass-
band and a monotonic characteristic in the stopband. On the other hand, the
family of type I Chebyshev filters contains both poles and zeros and exhibits a

monotonic behavior in the passband and an equiripple behavior in the stopband.
The zeros of this class of filters lie on the imaginary axis in the s-plane.

The magnitude squared of the frequency response characteristic of a type 1
Chebyshev filter is given as
1

+ 2T/ Q,)

where € is a parameter of the filter related to the ripple in the passband and Ty(x)
is the Nth-order Chebyshev polynomial defined as

(8.3.51)

I
|HE)" = -

_ | cos(N cos71x), x| <1
Tv(x) = [msh[H cosh~lx),  |x|>1 ®.3.52)

The Chebyshev polynomials can be generated by the recursive equation
Ty p1(x) = 2x Ty(xy = T (x) N=12... (8.3.53)

where Ty(x) = 1 and Ti(x) = x. From (8.3.53) we obtain T3(x) = 22— 1, Thix) =

4x* — 3x, and so on.
Some of the properties of these polynomials are as follows:

1. [Tyix) = 1 forall x| = 1.
2. Ty(l)y =1 for all N.
3. All the roots of the polynomial Ty (x) occur in the interval -1 <x < 1.




The filter parameter € is related to the ripple in the passband, as illustrated
in Fig. 8.39, for N odd and N even. For N odd, Ty (0) = 0 and hence |H(0)]> = 1.
On the other hand, for N even, Ty(0) = I and hence |[H(0)* = 1/(1 + €%). At the
band edge frequency §2 = £2,, we have Ty (1) = 1, so that

L 14
1+ e

or, equivalently,
. 1
T (1= )
where 4, is the value of the passband ripple.
The poles of a type | Chebyshev filter lie on an ellipse in the s-plane with
major axis

€ 1 (8.3.54)

f+1
r o= 52, d T, (8.3.55)
and minor axis
g -1
r =, m_._a_zﬁ (8.3.56)
where f# is related to ¢ according to the equation
/N
JTFel4+1
= [—*_‘_.Jf_] (8.3.57)
€

The pole locations are most easily determined for a filter of order N by first locating
the poles for an equivalent Nth-order Butterworth filter that lie on circles of radius
ry or radius ry, as illustrated in Fig. 8.40. If we denote the angular positions of the
poles of the Butterworth filter as

x  {2k+ 1w
==+ —— k=0,1,2,... N-1 8.3.58
=5 o ( )
then the positions of the poles for the Chebyshev filter lie on the ellipse at the
coordinates (x,, w). k=0,1,..., N =1, where

Xp = ry Cos gy, k=01,...,N=1
: (B.3.59)
i = 1 SIn ¢, E=0,1,..., N-1

A type II Chebyshev filter contains zeros as well as poles. The magnitude
squared of its frequency response is given as

1
[H(Q) = - (8.3.60)
1+ €3[T5(/2,)/T 5 (/)
where Ty(x) is, again, the Nth-order Chebyshev polynomial and £, is the stopband
frequency as illustrated in Fig. 8.41, The zeros are located on the imaginary axis
at the poinis

k=] k=01,....N-1 (8.3.61)

sin ¢y




The poles are located at the points (v, wi), where

£2,
W= —k . k=01, N=1 (8.3.62)
NER
n:;}'k
Wy = ———— k=01,....N=-1 (8.3.63)
..'I.le +1f

where {x;} and {y,} are defined in (8.3.59} with 8 now related to the ripple in the
stopband through the equation

1/N
14 ,/1-8
f= 0 (8.3.64)
2

Iugl:(,f] -8 +,/1-801+ 53}) ffﬁz]
I'Dg- [{Rﬂ(ﬁp:’ + v {nsfrﬂp}z = 1]

_ cosh™!(8/¢)
cosh™' (£, /)
where, by definition, é; = 1/4'1 + &

Frequency Transformations in the Analog Domain

Band edge
Type of frequencies of
transformation Transformation new filter
EP'
Lowpass § — n—;,s Il‘l,
0,0
Highpass § = el o,
5
PN 1N
ropass T e - ) &
58 — i)
Bandst — 2 .
ﬂ‘p Ll i 31 + ﬂh ;1; rlf ﬂll

Frequency Transformations in the Digital Domain
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transformation Transformation Parameters
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Il

band edge frequency
» i of new filter
Lowpass SR p—— sinf(w, — wp)/2]

sinf(wp + wy) /2]
w, = band edge frequency
-1 new filter
. =1 _ Z =+ a
Highpass e P cos{(w, + w))/2]

= T Cos[(w, — wp)/2)

k=]

lower band edge frequency
upper band edge frequency
—2aK/(K +1)

P —agr (K =1)/(K +1)
armaiel ol te]

"~ cos[(w, — wy)/2]

iy =y Wp

7y

lower band edge frequency
upper band edge frequency
=2a/(K +1)
Bandstop 1, =g+, (1-K)}(1+K)
- ae~? —ayz-l + 1 cosf(w, + ar)/2]
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STRUCTURES FOR IIR SYSTEMS

In this section we consider different IIR system s structures described by the difference equation
given by the system function. Just as in the case o f FIR system s, there are several types o f
structures or realizations, including direct-form structures, cascade-form structures, lattice structures,
and lattice-ladder structures. In addition, IR systems lend them selves to a parallel form realization.
We begin by describing two direct-form realizations.

DIRECT FORM STRUCTURES:

The rational system function as given by (7.1.2) that characterizes an IIR system
can be viewed as two systems in cascade, that is,

H(z) = Hi(2)Ha(2) (7.3.1)
where H;(z) consists of the zeros of H(z), and H>(z) consists of the poles of H(z),

M
Hi(2) = Zbaz_t (7.3.2)
k=)

and

1
Hy(2) = ———— (7.3.3)

N
1+Zmz_l

k=1
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DIRECT FORM II
xin)

-4 by

- by
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Signal Flow Graphs and Transposed Structures

1
R
e #a . [
L L
v 1
1 ]
+ +

A signal flow graph provides an alternative, N but equivalent, graphical representation to a
block diagram structure that we have been using to illustrate various system realizations. T he basic
elements o f a flow graph are branches and nodes. A signal flow graph is basically a set o f directed
branches that connect at nodes. By definition, the signal out of a branch is equal to the branch gain
(system function) times the signal into the branch. Furthermore, the signal at anode o f a flow graph
is equal to the sum o f the signals from all branches connecting to the node.
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Cascade-Form Structures

Let us consider a high-order 1R system with system function given by equation. Without loss o
f generality we assume that N > M . T h e system can be factored into a cascade o f second-
order subsystem s, such that H (z) can b e expressed as




K
H{z) = ]_[ Hi(z)

k=]

where K is the integer part of (N + 1)/2. Hi(z) has the general form

H(z) =

bgo + bz~ + bzt

1+agz ' +apz?

The general form of the cascade structure is illustrated in Fig. 7.19. If we
use the direct form Il structure for each of the subsystems, the computational
algorithm for realizing the IIR system with system function H(z) is described by

the following set of equations.

yo(n) = x(n) (7.3.16)
wiln) = —agwiln — 1) —ﬂuu.'k{ﬂ—Z}-l'_‘ﬂ;_]{n} k=1,2.....K {?.3.17}
yeln) = bowe(n) + byyuwr(n — 1) + bawe(n — 2) k=1,2..... K (7.3.18)
y(n) = yg(n) (7.3.19)
xin) =x,(n) xylmy Xyln)
Hiz) Haiiz) - —] Hylz)
¥(n) ¥gim) wnm)
(a}
xglm) . I,/':\.L ;1 b:: Yilry =23 4 yin)
¢
21
— by
Cf) g :I
I—i
—ay by
(b)

Parallel-Form Structures

A parallel-form realization o f an IIR system can be obtained by performing a partial-fraction
expansion o f H( z) . Without loss o f generality, w e again assume that N > M and that the poles are

distinct. Then, by performing a partial-fraction expansion o f H( z ), we obtain the result

Ag

N
H=C+) +———

k]

prz”!
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The realization of second order form is given by
xim) by 7N YR

+ 1'\‘l.::-'."‘)I—--—--———ll--

-

—dyy by

——]

2]

—&y3

The general form of parallel form of structure is f\given by
wiln) = —apuw(n = 1) — gqppwi(n — 2) + x(n) k=12 .... K

yeln) = byowy(n) + buwe(n — 1) k=12,....K

K
¥(n) = Cx(n)+ ) _ wiln)
k=1
Lattice and Lattice-Ladder Structures for IR Systems
In Section 7.2.4 we developed a lattice filter structure that is equivalent to an FIR
system. In this section we extend the development to IIR systems.
Let us begin with an all-pole system with svstem function
1 _ 1
L] AN
14+ antk)z™*

k=1
The direct form realization of this system is illustrated in Fig. 7.23. The difference
equation for this IIR system is

H(z) = (7.3.26)

il
yny=—3 ank)y(n - k) + x(n) (7.3.27)

k=1

It is interesting to note that if we interchange the roles of input and output
[i.e., interchange x(n) with y(n) in (7.3.27)], we obtain

N
x(n) ==Y an(K)x(n — k) + y(n)
k=1




or, equivalently,

N
y(n) =x(m)+)_ an(k)x(n —k) (7.3.28)

k=]
We note that the equation in (7.3.28) describes an FIR system having the
system function H (z) = Ay(z), while the system described by the difference equa-
tion in (7.3.27) represents an IIR system with system function H(z) = 1/An(2-
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UNIT - IV

FIR DIGITAL FILTERS
The transfer function is obtained by taking Z transform of finite sample impulse response. The filters
designed by using finite samples of impulse response are called FIR filters.
Some of the advantages of FIR filter are linear phase, both recursive and non recursive, stable and
round off noise can be made smaller.
Some of the disadvantages of FIR filters are large amount of processing is required and non integral
delay may lead to problems.
DESIGN OF FIR FILTERS

An FIR filter of length M with input x(n) and output y(n) is described by the
difference equation

yin) = bpx(n) +byxin=1)+---+ by_1x(in—M+ 1)

M1 (8.2.1)
= Z bixi{n — k)
oy

where (b.) is the set of filter coefficients. Alternatively, we can express the output
sequence as the convolution of the unit sample response h(n) of the system with
the input signal. Thus we have

M-1
ym) =Y h(k)x(n = k) 822)
k=l

where the lower and upper limits on the convolution sum reflect the causality and
finite-duration characteristics of the filter. Clearly, (8.2.1) and (8.2.2) are identical
in form and hence it follows that by = h(k), k=0,1,... . M - 1.
The filter can also be characterized by its system function
M-l

H(z)=)_ hik)z™* (8.2.3)

k=0

which we view as a polynomial of degree M — 1 in the variable z='. The roots of
this polynomial constitute the zeros of the filter.

An FIR filter has linear phase if its unit sample response satisfies the condi-
tion

hin) = xh(M — 1 —n) n=01....M -1 (8.2.4)

When the symmetry and antisymmetry conditions in (8.2.4) are incorporated into
(8.2.3), we have

H(z) = R0+ hiDz7  + A(Dz7  + -+ WM —2)z7 M2 L (M — 1)z~ ™D

M—1 (M-=3)2
= y-M-12 )y ( ) + Z hin) [Z{M—I—HJH iz—hﬂ'-—-l-—l‘-ﬁ:jﬂ] M odd
2 n=0
(M 21
= 7M1 Z R(n)[z M 17203 4 oM =1-26/2] M even (8.2.5)

r=l
Now, if we substitute z~' for z in (8.2.3) and multiply both sides of the resulting
equation by ‘¥~ we obtain
M UHGETY = 2 H(z) (8.2.6)




When h(n) = h(M — 1 —n), H(w) can be expressed as
H(w) = H,(w)e /eM-D2 (8.2.7)

where H,.(w) is a real function of w and can be expressed as

M’ - 1 {H"'l.:'fz —
H,[m}=h( )+2 E h(n}COSw(MZ 1 mn) M odd (8.2.8)
n=l}
(M2)-1 M-1
H(w) =2 ; h{n}cosm( 3 -—n) M even (8.2.9)
The phase characteristic of the filter for both M odd and M even is
—w(Mz_l), if H{w) =0
Bw) = M- 1 (8.2.10)
—w( 5 )+rr, if H{w) <0
When

hin) = —h(M =1 —n)

the unit sample response is antisymmetric. For M odd, the center point of the
antisymmetric k(n) is n = (M — 1)/2. Consequently,

b (252) -0

It is straightfarwa;rd to show that the frequency res];uns-e of an FIR filter with
an antisymmetric unit sample response can be expressed as

H(w) = H, (w)e/l-@M-12+17) (8.2.11)
where
(M=3)72 M~1
Hiw) =2 3 h{n}sinm( —n) M odd (8.2.12)
rizl)
(M 2)-1 M1
Hy(w) =2 E h{n]sinm( —n) M even (8.2.13)

==l
The phase characteristic of the filter for both M odd and M even is
T M-1 .
—-m( 3 ), if Hy(w) =0
3m M- 1)

if H(w) <0




The choice of a symmetric or antiSymmetric unit sample response depends
on the application. As we shall see later, a symmetric unit sample response is
suitable for some applications, while an antisymmetric unit sample response is
more suitable for other applications. For example, if h(n) = —h(M —1—n) and M
is odd, (8.2.12) implies that H,(0) = 0 and H,(r) = 0. Consequently, (8.2.12) is not
suitable as either a lowpass filter or a highpass filter. Similarly, the antisymmetric
unit sample response with M even also results in H,(0) = 0, as can be easily verified
from (8.2.13). Consequently, we would not use the antisymmetric condition in the
design of a lowpass linear-phase FIR filter. On the other hand, the symmetry
condition h(n) = h(M — 1 — n) vyields a linear-phase FIR filter with a nonzero
response at w = 0, if desired, that is,

(M~3)2
H,(0) = h ( ) +2 E hin), M odd (8.2.15)
{M2)-1
H)=2 ) h{n), M even (8.2.16)
n=0

8.2.2 Design of Linear-Phase FIR Filters Using Windows

In this method we begin with the desired frequency response specification Hy(w)
and determine the corresponding unit sample response hy(n). Indeed, hy(n) is
related to Hs(w) by the Fourier transform relation

Hy@) =) _ ha(n)e™ /o (8.2.17)
a={

where
x

1 .
=— Jaom
hg(n) = Hy(w)e!™dw (8.2.18)
Thus, given Hs{w), we can determine the unit sample response hy(n) by evaluating
the integral in (8.2.18).




In general, the unit sample response hy(n) obtained from (8.2.17) is infinite
in duration and must be truncated at some point, say at n = M — 1, to yield an
FIR filter of length M. Truncation of hy(n) to a length M — 1 is equivalent to
multiplying hs(n) by a “rectangular window,” defined as

vm= {é ;t:e?;}n;é' M (8.2.19)
Thus the unit sample response of the FIR filter becomes
h(n) = hg(n)w(n)
- { ha(n), n=01,....M—1 (8.2.20)
0, otherwise

It is instructive to consider the effect of the window function on the de-
sired frequency response H,(w). Recall that multiplication of the window function
w(n) with hs(n) is equivalent to convolution of H;(w) with W(w), where W(w) is
the frequency-domain representation (Fourier transform) of the window function,
that is,

M-1
Ww) = _ win)e (8.2.21)
m=0
Thus the convolution of Hy(w) with W(w) yields the frequency response of the
(truncated) FIR filter. That is,

m

Hw) = 2—:; Hy(v)Wiw — v)dv (8.2.22)

The Fourier transform of the rectangular window is

M=1
Ww) = ) e /o
praml)

1 = g=JuM _ p-JetM-D2 sin(wM [2)
1—e-iw sin(w/2)

This window function has a magnitude response

| sin(wM [2)| <
| sin(ew/2)| .

(8.2.23)

IW(w)] = (5.2.24)

{A
)

and a piecewise linear phase

2

-m(H; 1) +m,  when sm(eM/2) <0

The magnitude response of the window function is illustrated in Fig. 8.4 for M = 31
and 61. The width of the main lobe [width is measured to the first zero of W(w)]

-m(‘"‘l), when sin(wM/2) > 0

O(w) = (8.2.25)




Name of Time-domain

seguence,

window hin),0=n<M-=1
2o 221
Bartle i -
Lt (trizmgular) 1 o1
2mn 4rn
Blackman U.42-—Ujmsa§_—1~+ﬂ,{lﬁmsy_1
Hamming 0.54 — 0.46 cos 21n
M-1
. 1 2an
Hanning E(l—cos”_l)
, / M — 132 M—13
v ““1.( 2 )"(" 2 )
Kaiser — . M1
o[« (557)]
- L
sin[h(n-Hz 1)/{”-1}}
Lancros 2( M—l) (Mu-l) L=0
Tlr— 3 / 3
M=1 M-1
1|0~ 5 = 3 lew =1
1 a—(l+alM-1)72
Tuk =1+
ukey 1P N\ TT-—am -2 ﬂ]
(M —1)/2 = n-HH1|5M;]

8.2.3 Design of Linear-Phase FIR Filters by the

Frequency-Sampling Method

In the frequency sampling method for FIR filter design, we specify the desired
frequency response H,(w) at a set of equally spaced frequencies, namely

o= Z(k+a) k=0,1....
k=0.1,..
a=0 or

M-=1

2
M
-,-i—~1
1

3

M odd

M even (8.2.30)

and solve for the unit sample response h(n) of the FIR filter from these equally




spaced frequency specifications. To reduce sidelobes, it is desirable to optimize the
frequency specification in the transition band of the filter. This optimization can be
accomplished numerically on a digital computer by means of linear programming
techniques as shown by Rabiner et al. (1970).

In this section we exploit a basic symmetry property of the sampled frequency
response function to simplify the computations. Let us begin with the desired
frequency response of the FIR filter, which is [for simplicity, we drop the subscript
in Hy(w}],

M-=1

H(w) =) h(me /" (8.2.31)
n==(}

Suppose that we specify the frequency response of the filter at the frequencies
given by (8.2.30). Then from (8.2.31) we obtain

Hk+ea)=H (zﬁ{k—ku})

M=1
Hk+a) = ) h(n)e™/2rt+amid— j =01, . M—1 (8.2.32)
ne=l)

It is a simple matter to invernt (8.2.32) and express h(n) in terms of H(k + o).
If we multiply both sides of (8.2.32) by the exponential, exp(j27km/M), m = 0,
1,....,M — 1, and sum over k = 0, 1,..., M — 1, the right-hand side of {8.2.32)
reduces to Mh(m)exp{— j2ram/M). Thus we obtain
1 M-1 .
h(n) = — Y H(k +a)e/2tam =01, . M-1 (8.2.33)
M =
The relationship in (8.2.33) allows us to compute the values of the unit sample
response h(r) from the specification of the frequency samples H(k + o), k = 0,
..., M — 1. Note that when o = 0, (8.2.32) reduces to the discrete Founer
transform (DFT) of the sequence {h(n)} -and (8.2.33) reduces to the inverse DFT
(IDFT).
Since {h(n)} is real, we can easily show that the frequency samples {H (k+a)}
satisfy the symmetry condition

Hk+a)=H* M —k — ) (8.2.34)

This symmetry condition, along with the symmetry conditions for {k(n)}, can be
used to reduce the frequency specifications from M points to (M + 1)/2 points for
M odd and M/2 points for M even. Thus the linear equations for determining
{h(n)} from {H(k + a)} are considerably simplified.

In particular, if (8.2.11) is sampled at the frequencies w; = 2w (k + a)/M,
k=0,1,...,M ~1, we obtain

Hk +a) = H, (%(t + cr}) g/1Px2-2mik+a)(M-11/2M] (8.2.35)




where £ = 0 when [h(n)) is symmetric and § = 1 when {h(n)} is antisymmetric. A
simplication occurs by defining a set of real frequency samples {G(k + m)}

2m
Gk +a) = (~-1)'H, (;{-{k + r:r}) k=0,1,...,M—1 (8.2.36)

We use (8.2.36) in (8.2.35) to eliminate H,(w;). Thus we obtain
H(k + @) = Gk + a)e/ ™ e/lPn2-IrlktelM-1)/2M] (8.2.37)

Now the symmetry condition for H(k + a) given in (8.2.34) translates into a corre-
sponding symmetry condition for G(k + a), which can be exploited by substituting
into (8.2.33), to simplify the expressions for the FIR filter impulse response {h(n))
for the four cases @ =0, @ = 1, £ =0, and B = 1. The results are summarized in
Table 8.3. The detailed derivations are left as exercises for the reader.

8.2.4 Design of Optimum Equiripple Linear-Phase FIR
Filters

The window method and the frequency-sampling method are relatively simple
techniques for designing linear-phase FIR filters. However, they also possess some
minor disadvantages, described in Section 8.2.6, which may render them undesir-
able for some applications. A major probiem is the lack of precise control of the
critical frequencies such as w, and w;.

The filter design method described in this section is formulated as a Cheby-
shev approximation problem. It is viewed as an optimum design criterion in the
sense that the weighted approximation error between the desired frequency re-
sponse and the actual frequency response is spread evenly across the passband

and evenly across the stopband of the filter minimizing the maximum error. The
resulting filter designs have ripples in both the passband and the stopband.

To describe the design procedure, let us consider the design of a lowpass
filter with passband edge frequency w, and stopband edge frequency w,. From
the general specifications given in Fig. 8.2, in the passband, the filter frequency
response satisfies the condition

-8 <H@w=<1+6 |o|l<aw, (8.2.43)

Similarly, in the stopband, the filter frequency response is specified to fall between
the limits £4;, that is,

—5h<Hw <& |o>ao (8.2.44)

Thus 4, represents the ripple in the passband and §; represents the attenuation or
ripple in the stopband. The remaining filter parameter is M, the filter length or
the number of filter coefficients.




Case 1: Symmetric unit sample response hin) = h(M —1—n) and M Odd.
In this case, the real-valued frequency response charactenstic H,(w) 18

M-1 e M~1
H,{m}:h( 3 )+2 Z h[n]oosa.-( 3 —n) (8.2.45)

()
If we let k = (M —1)/2 — n and define a new set of filter parameters {a(k)} as

h(ﬁl) k=0

2
a(k) = (8.2.46)
M-1 M-1
M(T-k). k=1.2,_.,,T
then (8.2.45) reduces to the compact form
(M—1)72
H(w)= )  a(k)coswk (8.2.47)
k=0

Case 2: Symmetric unit sample response h(n) = h(M —1—n) and M Even.
In this case, H,(w) is expressed as

(M/2)-1 M—1
H,(w) =2 }: h(n) cos w ( - n) (8.2.48)

n={) 2

Again, we change the summation index from n to k = M/2 — n and define a new
set of filter parameters [b(k)} as

b{k}=2&(%{—k).k=l,2,,..,&fﬁ (8.2.49)

With these substitutions {8.2.48) becomes

M2
Ho(w) = Z b(k) cos w (k - %) (8.2.50)

e
In carrying out the optimization, it is convenient to rearrange (8.2.50) further into
the form

o MR-
H(w)=cos= Y b(k)coswk (8.2.51)
2 k=l

where the coefficients {b(k)] are linearly related to the coefficients {b(k)}]. In fact,
it can be shown that the relationship is

b(0) = 1b(1)

b(k) = 2b(k) — bk — 1) J¢=1,2,3,...,g

1(4-1)-2(%)

-2 (8252)




Case 3: Antisymmetric unit sample response h(n) = —h(M — 1 — n) and
M Odd. The real-valued frequency response characteristic H,(w) for this case is

(M=-32 M-=1
H(w) =2 Z h(n) sin w ( - n) (8.2.53)

L)

If we change the summation in (8.2.53) from n to k = (M — 1),/2 — n and define a
new set of filter parameters {c(k)} as

e(k) = 2k (Eg;l-k) k=L2,....(M=1]2 (8.2.54)
then (8.2.53) becomes
(M—=1)/2
H,(w) = Z c(k) sin wk (8.2.55)
k=l

As in the previous case, it is convenient to rearrange (8.2.55) into the form

(M-3)72
H (w) =sinw Y &k)coswk (8.2.56)
k=)

Case 4: Antisymmetric unit sample response hin) = —h(M — 1 — n) and
M Even. In this case, the real-valued frequency response characteristic H, (w) is

M21-1 M~ 1
Hiw) =2 Z h{ﬂjsinw( 7~ n) (B.2.58)

n={

A change in the summation index from n to k = M /2—n combined with a definition
of a new set of filter coefficients {d(k)], related to {h{n)} according to

d(k) = 2h (%r -—k) k= 1.2....,% (8.2.59)

results in the expression

M2
1
How) = dik)sinew | k — = §.2.60
(@) ; (k) ( 2) (8.2.60)
As in the previous two cases, we find it convenient to rearrange (8.2.60) into the
form

(M /231

Z dik) cos wk (8.2.61)
k=0

w

2

H. (w) = sin




Filter type O {ew) P (ew)

hin) = h(M — 1 — n) (M =1)2
M odd 1 E a(k) cos ek
(case 1) Py

hin) =h(M —1—n) (M2-1
M even cosz 3 bk)coswk
(case 2) 2z —

hin) = —h(M —1 —n) (b =312
M odd sin w Z cik) cos wk
(case 3) Py

hin) = —h(M =1 —n) (M-l
M even sin = > dik) cos wk
(case 4) 2 [T

STRUCTURES FOR FIR SYSTEMS

In general, an FIR system is described by the difference equation
M=1
y(n) = Z byx(n — k) 721
k=0

or, equivalently, by the system function
M-1
Hiz)=) bz (7.2.2)
k=0

Furthermore, the unit sample response of the FIR system is identical to the coef-

ficients {b:}, that s,

ht b 0<n<M-1
10, otherwise

Direct-Form Structure
The direct form realization follows immediately from the non recursive difference equation given

below

M1
y(n) = h(K)x(n — k)
k=0
x(n} 1 -1 o= =1
< - 1 i z =
1 A0) h(1) k(1) 1h(3) (M -2) h(M-1)
1

Cascade-Form Structures
The cascaded realization follows naturally system function given by equation. It is simple matter to

factor H(z) into second order FIR systenTso that




where

K
H(z) = [ [ ()

k=1

He(2) = b+ bﬂz*l -+ bﬂz'z

k=1,2,..

LK




Hi(2) = ol =z YA =zl =o'z =271

— =3 —_ -
= i +<CH 2 '+c;-zz i ] P Y4 4

It{"]. -~ :-I :—-I
|
)
[
z—l - z—!
Crp | k| 1 Cr2
¥e(r)

Frequency-Sampling Structures

The frequency-sampling realization is an alternative structure for an FIR filter in which the
parameters that characterize the filter are the values o f the desired frequency response instead of the
impulse response h(n). To derive the frequency sampling structure, we specify the desired frequency

response at a set o fequally spaced frequencies, namely

T M-1
wk='ﬁ?"[;.+ﬂ) k=0,1, ,-—i—--
M
k=01,..., — =1
2

a=0or }
The frequency response of the system is given by

M=1
Hw) = Z h(n)e /o

n==f)




M=1
— Z h{”)P-Jzﬂ{-‘T'Fﬂ?H;H k — {-}1 .l‘ o M _ l
A=l

1= .
hiny = — Y H(k+a)e/®tamM  p— 01, . M~1
M k=0

M-1
H(z) = Z h(mz™"
n=()

1

M-1[ 4 M- |
= Z o Z H{k +a]£Jhit+u}n.ru:| o

n=0 k=0
= 1 M=

H(z) = E Hk+a)| — Z(EJlﬂlfﬂrUMz-l}n
k=0 M =
] — z~Mpilna M-I Hk + )

p—

M 1 — gizntktayM ;-1
k=0




|
--1 ]._—‘
‘.il.-le'J.'l

Y
Hil + ) ::

L
Xin} M

—piine

a=llor =
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Lattice Structure

In this section w e introduce another F IR filter structure, called the lattice filter or

Lattice realization. Lattice filters are used extensively in digital speech processing

And in the implementation of adaptive filters. Let us begin the development by considering a
sequence of FIR filters with system functions

Hy(z) = Am(2) m=012....M-1 (7.217)
where, by definition, A.(2) is the polynomial

pilmM — | UM

An(@ =14 antk)z™  mz1 (7.2.18)
k=1

and Ap(z) = 1. The unit sample response of the mth filter is 4, (0) = 1 and
hm(k} = am(k), k =1,2,...,m. The subscript m on the polynomial A, (z) denotes
the degree of the polynomial. For mathematical convenience, we define «,, (0) = 1.

If {x{m)} is the input sequence to the filter A,.(z) and {v(n)} is the output
scquence, we have

yin) =x(n)+ D ank)x(n — k) (7.2.19)

k=1




Next, let us consider an FIR filter for which m = 2. In this case the output
from a direct-form structure is

yin) = xin) +ex(lixin — 1) + e2(2)x{n — 2) {7.2.22)

By cascading two lattice stages as shown in Fig. 7.10, it is possible 1o obtain the
same output as (7.2.22). Indeed. the output from the first stage is

fitn) = x{n) + Kixin — 1}

(7.2.23)
giln) = Kyxin) +x{n—1)
The output from the second stage is
Sfrln) = filn) + K2g1(n = 1)
(7.2.24)
g2in) = Kz fi(n) + g1{n—1)
i
Tolm) Jn)= yin)
x(m)
] ; o
gpln) — Eolm — 1} / f
Joln) = goln) = x(n)
Jiiny = foln) + K ggln = ) =x(n}+ Kxin = 1)
giln) = K foin} + goln — 1) =K x(n) +x(n = 1)
Joln} ___(:\L L)) _ ‘/‘:\' Falm) = yim)
xim) ’
] b | - -1 -
gom) L L am L NP

f2in) = x(n) + Kix(n = 1)+ Ka[Kix{n — 1) + x{(n — 2}]

= x(n) + K1(1+ Kp)x(n - 1) + Kyx(n = 2)
The general form of lattice structure for m stage is given by’

fo(n) = go(n) = x(n)
f,,,lfﬂ}: fm_1[H]+Km3m_1[n—1} m=12 ... M=1
gm("} - Kmfm-—t{n)'f'gn-l{ﬂ = 1] m=1, 21-”-1”_1

Conversion of lattice coefficients to direct-form filter coefficients. The
direct-form FIR filter cocfficients {a, (k)] can be obtained from the lattice coeffi-
cients {K;] by using the following refations:

Aplz) = Bp(z) =1 (7.2.47)
Am(Z) = Ap1(2) + Kuz 'Bpi(z)  m=1,2.... . M—1 (7248)
B.(z) =z ™ALGzY) m=12...M-1 (7.2.49)




Conversion of direct-form FIR filter coefficients to lattice coefficients.
Suppose that we are given the FIR coefficients for the direct-form realization or,
equivalently, the polynomial 4,(z), and we wish to determine the corresponding
lattice filter parameters {K,}. For the m-stage lattice we immediately obtain the
parameter K, = o, (m). To obtain K,_; we need the polynomials A, _;(z) since,
in general, K, is obtained from the polynomial A,(z) form=M-1 M-2 . . 1.
Consequently, we need to compute the polynomials A, (z) starting fromm = M —1
and “stepping down" successively to m = 1.

Kp = am(m) tp-1(0) =1
(k) — KmBm(k)

1- K2
X gy {k} — Oy {m}ﬁm{m - k)

- l<k<m-1
1= aZ(m) =t=m

-1 (k) =




UNIT -V
INTRODUCTION

The process of sampling rate conversion in the digital domain can be viewed as
a linear filtering operation, as illustrated in Fig. 10.1(a). The input signal x(n)
is characterized by the sampling rate F; = 1/T, and the output signal v(m) is
characterized by the sampling rate F, = 1/T,., where T, and T, are the corre-
sponding sampling intervals. In the main part of our treatment, the ratio F, /F, is
constrained to be rational,

F, f

F, 0
where D and [ are relatively prime integers. We shall show that the linear filter
is characterized by a time-variant impulse response. denoted as h(n.m). Hence
the input x(n) and the output v(m)} are related by the convolution summation for
Lime-variani systems.

The sampling rate conversion process can also be understood from the point
of view of digital resampling of the same analog signal. Let x(r) be the ana-
log signal that is sampled at the first rate F, to generate x{n). The goal of
rate conversion 15 to obtain another sequence v(m) directly from x(n). which
is equal to the sampled values of x{r) at a second rate F,. As is depicted in
Fig. 10.1(b), v(m) 15 a time-shifted version of x(n). Such a time shift can be

x(n) Linear filter | ¥(m)

[ . ————
Rase F, = L. Arm | gl
T, T,
(a}
ym) yim+1)
5
wm+2)
x(n+2) xn+3)  x(ndd) r(n+5)

x{n) X{n+1)

¥im+3) _/

P4 yim+3)  yp(m+6)

ib)




DECIMATION BY A FACTOR D

Let us assume that the signal x(n) with spectrum X(w) is to be downsampled
by an integer factor D. The spectrum X (w) is assumed to be nonzero in the
frequency interval < |w| < & or, equivalently, |F| = F,/2. We know that if we
reduce the sampling rate simply by selecting every Dth value of x(n), the resulting
signal will be an aliased version of x(n), with a folding frequency of F,/2D. To
avoid aliasing, we must first reduce the bandwidth of x(r) to Fpa = F. /2D or,
equivalently, to wmae = n/D. Then we may downsample by D and thus avoid
aliasing.

The decimation process is illustrated in Fig. 10.2. The input sequence x{(n) is
passed through a lowpass filter, characterized by the impulse response h{n) and a
frequency response Hp(w), which ideally satisfies the condition

1, lw| =m/D

Hplw) = I 0, otherwise

(10.2.1)
Thus the filter eliminates the spectrum of X(w) in the range 7/D < w < n. Of
course, the implication is that only the frequency components of x{n) in the range
|w| < 7/D are of interest in further processing of the signal.

The output of the filter is a sequence v(n) given as

s
vin) = Z hik)x(n — k) (10.2.2)
k=0
xin) him) ) ‘ I)nw[is;mpkf wm)
P l p o F
e Tz e _E'_

Figure 10.2 Decimation by a fagtor D.







which is then downsampled by the factor D to produce y(m). Thus
y(m) = v(imD)

= (10.2.3)
= Z h(k)x(mD — k)
=l

Although the filtering operation on x(n) is linear and time invariant, the
downsampling operation in combination with the filtering results in a time-variant
system. This is easily verified. Given the fact that x(n) produces y(m), we note
that x(n — ng) does not imply v(n —ng) unless ng is a multiple of D. Consequently,
the overall linear operation (linear filtering followed by downsampling) on x(n) is
not time invariant.

The frequency-domain characteristics of the output sequence y(m) can be
obtained by relating the spectrum of v(m)to the spectrum of the input sequence
x(n). First, it is convenient to define a sequence ¥(n) as

5(1) = {v{nL n=0,£D,£2D, ...
0, otherwise
Clearly, #(n) can be viewed as a sequence obtained by multiplying v(n} with a
periodic train of impulses p(n), with period D, as illustrated in Fig. 10.3. The
discrete Fourier series representation of p(n) is

(10.2.4)

1 D=1 .
= = f2mkn/D 10.2.5
p(n) D ;e { )

Hence
t{n) = vin)p(n) (10.2.6)
and
y(m) = #(mD} = vimD) p(mD) = v(mD) (10.2.7)

Now the z-transform of the output sequence y(m) is

Yiz)= Y yomz™
= z BmD)z™™ (10.2.8)

Y{z) = E o(m)z~™P

where the last step follows ﬁ-mﬁ‘t[,? fact that t(m} = 0, except at muitiples of D.
By making use of the relations in (10.2.5) and (10.2.6) in (10.2.8), we obtain

= - - =




INTERPOLATION BY A FACTOR /

An increase in the sampling rate by an integer factor of / can be accomplished
by interpolating / — 1 new samples between successive values of the signal. The
interpolation process can be accomplished in a variety of ways. We shall describe
a process that preserves the spectral shape of the signal sequence x(n).

Let v(m) denote a sequence with a rate F, = [ F,, which is obtained from
x(n) by adding / — 1 zeros between successive values of x(n). Thus

xim/l).,  m=0,+i +21. ...

0, otherwise (10.3.1)

vim) = [
and its sampling rate is identical to the rate of v(m). This sequence has a ;-
transform

V)= ) vim)z™”
P O '
Y x(mz™ (10.3.2)

==
= Xz")

The corresponding spectrum of v(m) is obtained by evaluating (10.3.2) on the unit

circle. Thus
Viw,) = X(w, ) (10.3.3)

where w, denotes the frequency variabie relative to the new sampling rate F, (ie.,
w, = 2n F/F.). Now the relationship between sampling rates is F, = /F, and
hence, the frequency variables w, and w, are related according to the formula

Wy, = — (10.3.4)

The spectra X(w,) and V(w,) are illustrated in Fig. 10.5. We observe that the
sampling rate increase, obtained by the addition of 7 — 1 zero samples between
successive values of x(n), results in a signal whose spectrum V({w,) is an 1-fold
periodic repetition of the input signal spectrum X (w,).

Since only the frequency components of x(n) in the range 0 < w, < n/f
are unique, the images of X(w) above w, = n/I should be rejected by passing
the sequence v(m) through a lowpass filter with frequency response H;(w,) that

ideally has the characteristic

C. 0 < fw,| =m/l

0. otherwise (10.3.5)

H.l' [ml" = {
where C is a scale factor required to properly normalize the oulput sequence v(m).
Consequently, the output spectrum is

CX{w.J). 0<|w,| </l (10.3.6)

Viwy) = {ﬂ. otherwise




We conclude that the spectrum ¥ (w, ). which is obtained by evaluating (10.2.9)
on the unit circle, can be expressed as

] D=1 .= - 3
Yiw,) = D Z Hp (E—Dz*ﬂ—k) X (Eﬂ—ﬁ-b—ri) (10.2.14)
pyr

With a properly designed filter Hp(w). the aliasing is eliminated and. consequently.
all but the first term in (10.2.14) vanish. Hence

1 @y w
Y = st (F)X(F)
1 )y
=pX (E)
for 0 = jwy| = m. The spectra for the sequences x(n). v(n}, and v(m) are illustrated
in Fig. 10.4.

(10.2.15)

ideally has the characteristic

C.  0<lwl=n/i

0. otherwise (10.3.5)

HI[m_L" = {

where C is a scale factor required to properly normalize the output sequence v(m).
Consequently. the output spectrum is

CX{w,.rl). 0 <jw,| <=a/l

Flwy) = {ﬂ. otherwise

(10.3.6)

The scale factor C is selected so that the output v{im) = x(m//) form = (),
+1.+2I..... For mathematical convenience, we select the point m = (). Thus

1 [ )

}‘{D‘] = _f Y{m;]‘dm‘

2 ), e
C it

=

(10.3.7)
.X {fl-'_v I }dw_\

Since w, = w, /I, (10.3.7) can be expressed as

vih = %EI; X{w, )dw,
- (10.3.8)

C
= e u
l,x{ )
Therefore, C = [ is the desired normalization factor.

Finally, we indicate that the output sequence y(m) can be expressed as a
convolution of the sequence v(n) with the unit sample response h(r) of the lowpass

filter. Thus

=
yim)= 3" him - k)vk) (10.3.9)
k=—pc
Since v(k) = 0 except at multiples of /, where v(k!) = x(k), (10.3.9) becomes

yimy= 3" him—kD)x(k) (10.3.10)

k=00
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