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UNIT-1 
Introduction 
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Signal Processing 
• Humans are the most advanced signal processors 

– speech and pattern recognition, speech synthesis,… 

• We encounter many types of signals in various 
applications 

– Electrical signals: voltage, current, magnetic and electric fields,… 
– Mechanical signals: velocity, force, displacement,… 
– Acoustic signals: sound, vibration,… 
– Other signals: pressure, temperature,… 

• Most real-world signals are analog 
– They are continuous in time and amplitude 
– Convert to voltage or currents using sensors and transducers 

• Analog circuits process these signals using 
– Resistors, Capacitors, Inductors, Amplifiers,… 

• Analog signal processing examples 
– Audio processing in FM radios 
– Video processing in traditional TV sets 



4  

Limitations of Analog Signal Processing 
• Accuracy limitations due to 

– Component tolerances 
– Undesired nonlinearities 

• Limited repeatability due to 
– Tolerances 
– Changes in environmental conditions 

• Temperature 
• Vibration 

• Sensitivity to electrical noise 
• Limited dynamic range for voltage and currents 
• Inflexibility to changes 
• Difficulty of implementing certain operations 

– Nonlinear operations 
– Time-varying operations 

• Difficulty of storing information 
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Digital Signal Processing 
• Represent signals by a sequence of numbers 

– Sampling or analog-to-digital conversions 
• Perform processing on these numbers with a digital processor 

– Digital signal processing 
• Reconstruct analog signal from processed numbers 

– Reconstruction or digital-to-analog conversion 
 

 

analog 
signal 

digital 
signal 

 
 

digital 
signal 

 
 

 
analog 
signal 

 
 

• Analog input – analog output 
– Digital recording of music 

• Analog input – digital output 
– Touch tone phone dialing 

• Digital input – analog output 
– Text to speech 

• Digital input – digital output 
– Compression of a file on computer 

D/A DSP A/D 
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Pros and Cons of Digital Signal Processing 
• Pros 

– Accuracy can be controlled by choosing word length 
– Repeatable 
– Sensitivity to electrical noise is minimal 
– Dynamic range can be controlled using floating point numbers 
– Flexibility can be achieved with software implementations 
– Non-linear and time-varying operations are easier to implement 
– Digital storage is cheap 
– Digital information can be encrypted for security 
– Price/performance and reduced time-to-market 

• Cons 
– Sampling causes loss of information 
– A/D and D/A requires mixed-signal hardware 
– Limited speed of processors 
– Quantization and round-off errors 
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Analog, digital, mixed signal 
processing 
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Digital Signal Processing 
 



Sampling and reconstruction 
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Sample and hold (S/H)circuit 
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A/D converter 
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A/D converter 
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Quantization noise 
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D/A convertion 
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D/A convertion 
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Reconstruction 



Reconstruction 
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Reconstruction 

18 
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Signals 
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• Continuous-time signals are functions of a real argument 
x(t) where t can take any real value 
x(t) may be 0 for a given range of values of t 

• Discrete-time signals are functions of an argument that 
takes values from a discrete set 
x[n] where n ∈ {...-3,-2,-1,0,1,2,3...} 
Integer index n instead of time t for discrete-time systems 

• x may be an array of values (multi channel signal) 
• Values for x may be real or complex 



Discrete-time Signals and Systems 
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• Continuous-time signals are defined over a 
continuum of times and thus are represented by a 
continuous independent variable. 

• Discrete-time signals are defined at discrete times 
and thus the independent variable has discrete 
values. 

• Analog signals are those for which both time and 
amplitude are continuous. 

• Digital signals are those for which both time and 
amplitude are discrete. 



Analog vs. Digital 
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-1 

 
 
 

• The amplitude of an analog signal can take any real or complex value at each 
time/sample 

 
 
 
 

 

• The amplitude of a digital signal takes values from a 
discrete set 
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Periodic (Uniform) Sampling 
• Sampling is a continuous to discrete-time conversion 

 

 
-3 -2 -1 0 1 2 3 4 

 

• Most common sampling is periodic 
 

x [n ] = x (nT ) −  ∞ <  n <  ∞ 
 

• T is the sampling period in second 
• fs = 1/T is the sampling frequency in Hz 
• Sampling frequency in radian-per-second Ωs=2πfs rad/sec 
• Use [.] for discrete-time and (.) for continuous time signals 
• This is the ideal case not the practical but close enough 

– In practice it is implement with an analog-to-digital converters 
– We get digital signals that are quantized in amplitude and time 
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Periodic Sampling 
• Sampling is, in general, not reversible 
• Given a sampled signal one could fit infinite continuous signals 

through the samples 
1 

0.5 

0 

-0.5 
 

-1 
0 20 40 60 80 100 

 

• Fundamental issue in digital signal processing 
– If we loose information during sampling we cannot recover it 

• Under certain conditions an analog signal can be sampled without 
loss so that it can be reconstructed perfectly 
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s(t) 
 

x 
Convert impulse 
train to discrete- 
time sequence 

Representation of Sampling 
• Mathematically convenient to represent in two stages 

– Impulse train modulator 
– Conversion of impulse train to a sequence 

 
 
 
 
 
 
 
 

xc(t) x[n]=xc(nT) 
 
 
 
 
 
 

xc(t)  
 
 
 

-3T-2T-T 0 

 
 
 
 
T 2T3T4T 

s(t) 

t 

x[n] 

n 
-3 -2 -1 0 1 2 3 4 
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… 1 
… 

Unit Sample Sequence 
 

δ[n] = 0, n ≠ 0 
= 1, n = 0. 

 
 
 
 
 
 
 
 
 
 

0 n 
 
 
 
 
 
 

The unit sample sequence plays the same role for discrete-time sequences and 
systems that the unit impulse (Dirac delta function) does for continuous-time 
signals and systems. 
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Impulse Function 
 

The impulse function, also known as Dirac’s delta function, is used to 
represented quantities that are highly localized in space. Examples include 
point optical sources and electrical charges. 

 
 
 
 

The impulse function can be visualized as a narrow spike having infinite 
height and zero width, such that its area is equal to unity. 
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1 

Definition of Impulse Function 
 
 

The impulse function may be defined from its basic properties. 
 
 
 
 

δ( x − x 0 ) = 0 , x ≠ x 0 
 

x 2 

f ( x ) δ( x − 
x1 

x 0 ) dx = 
 

f ( x 0 ), x <  x 0   <  x 2 

 
 

Where f(x) is any complex-valued function of x. If f(x) is discontinuous at the 
point x0, the value of f(x0) is taken as the average of the limiting values as x 
approaches x0 from above and below. 

 
 
 
 
 
 
 

This property is called the sifting property. 

∫ 
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1 

δ( x − x 0 ) 

x 0 

Graphical Representation 
 
 
 

On graphs we will represent δ(x-x0) as a spike of unit 
height located at the point x0. 
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f(x0) 

f ( x ) δ( x − x 0 ) 

x 0 

Sampling Operation 
 
 

The delta function samples the function f(x). 
 
 
 

 
The function f(x) δ(x-x0) is graphed as a spike of height f(x0) located at the point x0. 
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… 1 
… 

Unit Step Sequence 
 

u[n] = 1, n ≥ 0 
= 0, n < 0. 

 
 
 
 
 
 
 
 
 

0 n 
 
 

u [ n ] = δ [ n ] + δ [ n − 1] + δ [ n − 2 ] +  
 

 
u [ n ] = 

∞ 

∑ δ [ n 
k = 0 

 
n 

 
− k ] 

 

Conversely, the impulse sequence can be expressed 
as the first backward difference of the unit step 
sequence: 

or u [ n ] = ∑ δ 
k = −∞ 

[ k ]  
δ [ n ] = 

 
u [ n ] − 

 
u [ n 

 
− 1] 



32 

 

 

… 

… 

Exponential Sequence 
 

x[n] = A α n 

0 n 

If we want an exponential sequence that is 
zero for n < 0, we can write this as: 

 

x [ n ] = A α n u [ n ] 



 

 

Geometric Series 
A one-sided exponential sequence of the form 

 
α n , for n ≥ 0 and α an arbitrary constant 

is called a geometric series. The series converges for |a| < 1, and its sum converges 
to 

 

∞ 

∑ α n → 
n = 0 

1 
 

 

1 − α 
 

The sum of a finite number N of terms is 
 

N 

∑ α n → 1 − α N + 1 

 
n = 0 

 
A general form can also be written: 

1 − α 

 
N 2 

∑ α n   → α N 1    − α N 2 + 1 

 
 

n = N 1 1 − α 33 
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Sinusoidal Sequence 
 
 

x [ n ] = A cos( ω n + φ ) 
 
 
 
 
 

 

… 

… 0 n 
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Sequence as a sum of scaled, delayed 
impulses 

 
 
 

a1 

 
 
 
 

p [ n ] = a − 3 δ[ n + 3 ] + a 1 δ[ n − 1] − a 2 δ[ n − 2 ] − a 7 δ[ n − 7 ] 

a-3 

-4 -2 0 4 6 

a2 a7 
n 
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Sequence Operations 

• The product and sum of two sequences are defined as the sample-by- 
sample product and sum, respectively. 

• Multiplication of a sequence by a number is defined as multiplication 
of each sample value by this number. 

• A sequence y[n] is said to be a delayed or shifted version of a sequence 
x[n] if 

y[n] = x[n – nd] 
where nd is an integer. 

• Combination of Basic Sequences 
Ex 1 x[n] = Kα n, n ≥ 0, 

= 0, n < 0, 
or x[n] = Kα n u[n]. 
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Systems 
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Systems 
 
 
 
 
 
 

x[n] y[n] 
 
 
 

A discrete-time system is a transformation that maps an 
input sequence x[n] into an output sequence y[n]. 

System Characteristics 

 
1. Linear vs. non-linear 

2. Causal vs. non-causal 

3. Time invariant 

T{⋅} 



System Characteristics 
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x[n] y[n] 
 
 
 
 

1. Linear vs. non-linear 

2. Time invariant vs. time variant 

3. Causal vs. non-causal 

4. Stable vs. unstable 

5. Memoryless vs. state-sensitive 

6. Invertible vs. non-invertible 

T{•} 



Discrete-Time Systems 
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• Discrete-Time Sequence is a mathematical operation that maps a given 
input sequence x[n] into an output sequence y[n] 

 
 

y[n] = T { x[n]} x[n] y[n] 
 
 
 

• Example Discrete-Time Systems 
– Moving (Running) Average 

 

y[n] = x[n] + x[n − 1] + x[n − 2 ] + x[n − 3 ] 
 
 

– Maximum 
 

y[n] = 

 
 
max 

 
{x[n], 

 
 
x[n 

 
 
− 1], 

 
 
x[n 

 
− 2 ]} 

 

– Ideal Delay System  
 
y[n] = 

 

x[n 
 
− n o ] 

T{.} 



Linearity 
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1
 

 

2
 

 

 
 
 

A linear system is one that obeys the principle of 
superposition, 

 

T {a x [ n ] + a x [ n ]} = a 1 y1 [ n ] + a 2 y 2 [ n ] 
 
 

where the output of a linear combination of inputs is the 
same linear combination applied to the individual outputs. 
This result means that a complicated system can be 
decomposed into a linear combination of elementary 
functions whose transformation is known, and then taking 
the same linear combination of the results. Linearity also 
implies that the behavior of the system is independent of 
the magnitude of the input. 
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1 2 

1 

Linear Systems 
• Linear System: A system is linear if and only if 

T { x 1 [n] + 

and 

x 2 [n]} = T {x [n]} + T {x [n]} (additivit y) 

T {ax [n] } = aT {x[n]} (scaling) 
 
 
 
 

• Examples 
– Ideal Delay System 

y[n] = 

 

 
x[n 

 
 
− n o ] 

 

T { x 1 [n] + 

T { x 2 [n ]} + 

x 2 [n ]} = 

T {x [n]} = 

x 1 [n 

x 1 [n 

− n o ] + 

− n o ] + 

x 2 [n 

x 2 [n 

− n o ] 

− n o ] 

T {ax [n]} = ax 1 [n − n o ] 

aT {x[n]} = ax 1 [n − n o ] 
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Time (Shift) Invariance 
 

A system is said to be shift invariant if the only effect caused by 
a shift in the position of the input is an equal shift in the position 
of the output, that is 

 
 
 

T {x [ n − n 0 ]} = y [ n − n 0 ] 
 
 
 
 
 
 

The magnitude and shape of the output are unchanged, only the 
location of the output is changed. 
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Time-Invariant Systems 
• Time-Invariant (shift-invariant) Systems 

– A time shift at the input causes corresponding time-shift at output 
y[n] = T { x[n]}  ⇒ y[n − n o ] = T {x[n − n ]} 

 
 

• Example 
– Square 

 
 
 
 

Delay 

 
 
 

the 

 
 
 
input 

 
 
 

the output is 

 
 

y [n ] = 

 

 
(x[n − n 

 
 
] )2

 

y[n] =  (x[n])2  
Delay 

 
the 

 
output 

 
gives y [n 

1 

- n o ] = 

o 

(x[n − n 
o ] )

2
 

 
 

• Counter Example 
– Compressor System 

Delay 

 
 
 

the 

 
 
 
input 

 
 
 

the 

 
 
 
output is 

 
 

y [n ] = 

 
 
 
x[Mn 

 
 
 

− n ] 
y[n] = x[Mn ]  

Delay 
 

the 
 
output 

 
gives y [n 

1 

- n o ] = x [M (n 

o 

− n o )] 
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Impulse Response 
When the input to a system is a single impulse, the output is called 
the impulse response. Let h[n] be the impulse response, given by 

 
 

T {δ [ n ]} = h [ n ] 
 
 

A general sequence f [x] can be represented as a linear combination 
of impulses, since 

 
 

f ( x ) = f ( x ) ∗ δ ( x ) = 
∞ 

∫− ∞ 
f ( u )δ ( x − u ) du 

 

 
f [ n ] = 

 
f [ n ] ∗ δ 

 
[ n ] = 

∞ 

∑ 
k = −∞ 

 
f [ k ]δ [ n 

 
− k ] 



 

 

∞ ∞ 

Linear Shift-Invariant Systems 
Suppose that T{} is a linear, shift-invariant system with h[n] as its 
impulse response. 

Then, using the principle of superposition, 
 

{ }   
{ } 

T s [ n ] = T  ∑ s [ k ]δ [ n − k ]  = ∑ s [ k ]T δ [ n − k ] 
 k = −∞  k = −∞ 

and finally after invoking shift-invariance 
∞ ∞ 

T {s [ n ]} = ∑ 
k = −∞ 

s [ k ]T {δ [ n − k ]} = ∑ 
k = −∞ 

s [ k ]h [ n − k ] 

 

T {s [ n ]} = s [ n ] ∗ h [ n ] 
 

This very important result says that the output of any linear, shift- 
invariant system is given by the convolution of the input with the 
impulse response of the system. 46 
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Causality 
A system is causal if, for every choice of n0, the output 
sequence at the index n = n0 depends only on the input 
sequence values for n ≤ 0. 

 
All physical time-based systems are causal because they are 
unable to look into the future and anticipate a signal value 
that will occur later. 
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• Causality 
Causal System 

– A system is causal it’s output is a function of only the current and 
previous samples 

 
 

• Examples 
– Backward Difference 

y[n] = 

 
 

x[n] − 

 
 

x[n 

 
 

− 1] 
 
 

• Counter Example 
– Forward Difference 

 
 
 
y[n] = 

 
 
 
x[n 

 
 
 
+ 1] + 

 
 
 
x[n] 
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y 

Stability 
A system is stable in the bounded-input, bounded-output 
(BIBO) sense if and only it every bounded input produces a 
bounded output sequence. 

The input x[n] is bounded if there exists a fixed positive finite 
value Bx such that 

 
 

x [ n ] ≤ B < ∞ for all n 
 

Stability requires that for any possible input sequence there exist 
a fixed positive value By such that 

 
 

y [ n ] ≤ B < ∞ 
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B x 

Stable System 
• Stability (in the sense of bounded-input bounded-output BIBO) 

– A system is stable if and only if every bounded input produces a bounded 
output 

 
 

 
• Example 

– Square 

x[n] ≤ B x <  ∞  ⇒ y[n] ≤ B y <  ∞ 

y[n] = (x[n])2 
 

if input is bounded by x[n] ≤ B x <  ∞ 
 

output 

• Counter Example 
– Log 

is bounded by y[n] ≤ 2 

y[n] = log 10 ( x[n] ) 
 

even if input is bounded by x[n] ≤ B x <  ∞ 

output not bounded for x [n ] = 0 ⇒ y [0 ] = log ( x [n ] ) = −∞ 

< ∞ 

1
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Memory (State) 
 

A system is referred to as memoryless if the output y[n] at every 
value of n depends only on the input x[n] at the same value of n. 

 

If the system has no memory, it is called a static system. Otherwise 
it is a dynamic system. 
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Memoryless System 
• Memoryless System 

– A system is memoryless if the output y[n] at every value of n depends 
only on the input x[n] at the same value of n 

 
 

• Example Memoryless Systems 
– Square  

y[n] = (x[n])2 
 

 
– Sign  

y[n] = 
 
sign {x[n]} 

 
 
 

• Counter Example 
– Ideal Delay System 

y[n] = x[n − n o ] 



53 

 

 

Invertible System 
 

A system is invertible if for each output sequence we can find a 
unique input sequence. If two or more input sequences produce 
the same output sequence, the system is not invertible. 
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2 

Passive and Lossless Systems 
A system is said to be passive if, for every finite energy input 
sequence x[n], the output sequence has at most the same energy: 

 
 

∞ 

∑ 
n = −∞ 

 
2 

y [ n ] 
∞ 

≤ ∑ 
n = −∞ 

 
x [ n ] < ∞ 

 
 

If the above inequality is satisfied with an equal sign for every 
input signal, the system is said to be lossless. 
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Examples of Systems 
 
 
 
 

Ideal Delay System y [ n ] = x [ n − n d ] 
 
 

Moving Average System 
 

y [ n ] = 
1 

M 2   + M 1 

M 2 

∑ 
+ 1 k = − M 

 
x [ n 
1 

 
− k ] 

 
 

Memoryless non-linear System y [ n ] = x [ n ]2 
 

Accumulator System 
 

y [ n ] = 
n 

∑ 
k = −∞ 

 
x [ k ] 

 
 
 

where M is a 
Compressor System 

 
Backward Difference System 

y [ n ] = 
 

y [ n ] = 

x [ Mn 
 
 
x [ n ] − 

] 
 
 
x [ n 

positive integer 
 
 
− 1] 
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Impulse Response of LTI Systems 
 

Find the impulse response by computing the response to δ[n]. 
 

Systems whose impulse responses have only a finite number of 
nonzero samples are called finite-duration impulse response 
(FIR) systems. 

 
Systems whose impulse responses are of infinite duration are 
called infinite-duration impulse response (IIR) systems. 

 
If h[n] = 0 for n < 0, the system is causal. 
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1 

Impulse Response for Examples 
 
 

Find the impulse response by computing the response to δ[n] 
 
 
 

Ideal Delay System y [ n ] = δ[ n − n ] 
d 

 
 

 1 

FIR 

Moving Average System y [ n ] = 
 
 M 2  + 

, 
M + 1 

-M 1  ≤ n ≤ M 2 FIR 
 0 , otherwise 

 

Accumulator System 
 

y [ n ] 
n 

= ∑ 
k = −∞ 

 
δ[ k ] = 

 1, 
 
 0 , 

n ≥ 0 

n < 0 
IIR 

 

y [ n ] = u [ n ] 
 

Backward Difference System y [ n ] = δ[ n ] − δ[ n − 1] FIR 
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Stability Condition for LTI Systems 
 

An LTI system is BIBO stable if and only if its impulse response 
is absolutely summable, that is 

 
 

∞ 

S = ∑ 
k = −∞ 

 
h [ k ] < ∞ 



59 

 

 

Stable and Causal LTI Systems 
• An LTI system is (BIBO) stable if and only if 

– Impulse response is absolute summable 
∞ 

∑ 
k = −∞ 

h [k ] < ∞ 

– Let’s write the output of the system as 
∞ ∞ 

y [n ] = ∑ 
k = −∞ 

h [k ]x [n − k ] ≤ ∑ 
k = −∞ 

h [k ] x [n − k ] 

– If the input is bounded  
x[n] 

 
≤ B x 

– Then the output is bounded by ∞ 

y [n ] ≤ B x ∑ 
k = −∞ 

h [k ] 

 

– The output is bounded if the absolute sum is finite 
• An LTI system is causal if and only if 

h [k ] = 0 for k <  0 



Difference Equations 
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An important subclass of LTI systems are defined by 
an Nth-order linear constant-coefficient difference equation: 

 
N M 

∑ a k y [ n − k ] = ∑ bm x [ n − m ] 
0 0 

 

Often the leading coefficient a0 = 1. Then the output y[n] can be 
computed recursively from 

 

 
y [ n ] = 

 
N 

− ∑ a k 
k = 1 

 
y [ n 

 
− k ] + 

 
M 

∑ 
m = 0 

 
bm x [ n 

 
− m ] 

 

A causal LTI system of this form can be simulated in 
MATLAB using the function filter 

y = filter(a,b,x); 



Accumulator Example 
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+ 

delay 
one sample 

0 

0 

1 

 
 
 

Accumulator System 
 

y [ n ] = 
n 

∑ 
k = −∞ 

 
x [ k ] 

 
 
 

 
y [ n ] = 

n 

∑ 
k = −∞ 

 
x [ k ] = 

 
x [ n ] + 

n − 1 

∑ 
k = −∞ 

 
x [ k ] = 

 
x [ n ] + 

 
y [ n 

 
− 1]; 

 
 
 
 
 

b = 1 

a = 1 

a = − 1 

x[n] y[n] 
 
 
 
 

positive feedback system 



Total Solution Calculation 
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h 

 
 
 

N 

∑ a k 
k = 0 

 
y [ n 

 
− k ] = 

 
M 

∑ 
m = 0 

 
bm x [ n 

 
− m ] 

 
 

The output sequence y[n] consists of a homogeneous solution yh[n] and a 
particular solution yp[n]. 

y [ n ] = y [ n ] + y p [ n ] 
 

where the homogenous solution yh[n] is obtained from the homogeneous equation: 
 
 

N 

∑ a k 

k = 0 

 
y h [ n 

 
− k ] = 0 



Homogeneous Solution 
 

 

λ 

k 0 1 N 

n 

 

Given the homogeneous equation: 
N 

∑ a k 

k = 0 

 
y h [ n 

 
− k ] = 0 

Assume that the homogeneous solution is of the form 
 
 

then 
N 

y h [ n ] = λ 

y h [ n ] = ∑ 
k = 0 

a λ n − k = λ n − N (a λ N + a  λ N − 1  +  +  a ) = 0 

 

defines an Nth order characteristic polynomial with roots λ1, λ2 … λN 
 
 

The general solution is then a sequence yh[n] 
 

N 

y h [ n ] = ∑ Am m 

1 
 

(if the roots are all distinct) The coefficients Am may be found from the 
initial conditions. 63 

n 



Particular Solution 
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h 

 
 

The particular solution is required to satisfy the difference equation for a specific 
input signal x[n], n ≥ 0. 

 
N 

∑ a k 
k = 0 

 
y [ n 

 
− k ] = 

M 

∑ 
m = 0 

 
bm x [ n 

 
− m ] 

 

To find the particular solution we assume for the solution yp[n] a form that depends 
on the form of the specific input signal x[n]. 

 
 

y [ n ] = y [ n ] + y p [ n ] 
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General Form of Particular Solution 
 
 
 
 
 
 
 

Input Signal 
x[n] 

Particular Solution 
yp[n] 

A (constant) K 
AMn KMn 

AnM K0nM+K1nM-1+…+KM 

AnnM An(K0nM+K1nM-1+…+KM) 
 A cos( ω o n )  
  
 A sin( ω o n )  

 
K  cos( ω n ) + K  sin( ω n ) 

 
1 o 2 o 



Example (66
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λ + A n 
= 

n 

2 

 

Determine the homogeneous solution for 
 
 

y [ n ] + y [ n − 1] − 6 y [ n − 2 ] = 0 
 
 

Substitute y h [ n ] = λ 
 

 
λ n + 

 
λ n − 1 

 
− 6 λ n − 2 = λ n − 2 (λ 2 + λ − 6 ) = 0 

= λ n − 2 (λ + 3 )(λ − 2 ) = 0 
 
 

Homogeneous solution is then 
 
 

yh [ n ] =  A1 1 2 2 A1 (− 3 )n   
+ A (2 )n

 λ 

n 



Example (67
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Determine the particular solution for 
 
 

y [ n ] + y [ n − 1] − 6 y [ n − 2 ] = x[ n ] 
 

with 
 

x[ n ] = 
 
8 u [ n ] and y[-1] = 1 and y[-2] = -1 

 
 

The particular solution has the form y p [ n ] =  β 
 
 

 

which is satisfied by β = -2 

β + β − 6 β = 8 



Example (68
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h 1 2 

1 2 1 

2 

1 2 

 

Determine the total solution for 
 
 

y [ n ] + y [ n − 1] − 6 y [ n − 2 ] = x[ n ] 
 

with 
 

x[ n ] = 
 
8 u [ n ] and y[-1] = 1 and y[-2] = -1 

 
 

The total solution has the form 
 

y [ n ] = 

 
then 

y [ n ] + y p [ n ] = 

 
1 

A (− 

 
1 

3 )n   
+ A  (2 )n   

−  2 

y [ − 1] = − A + 
3 2 

1 1 

A − 2 = 1 A = − 1 .8 

A = 4 .8 
y [ − 3 ] = A +  A − 2 = − 1 

9  4 

y [ n ] =  − 1 .8 (−  3 )n   
+  4 .8 (2 )n   

−  2 



Initial-Rest Conditions 
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The output for a given input is not uniquely specified. 
Auxiliary information or conditions are required. 

 
Linearity, time invariance, and causality of the system will 
depend on the auxiliary conditions. If an additional condition is 
that the system is initially at rest (called initial-rest conditions), 
then the system will be linear, time invariant, and causal. 



Zero-input, Zero-state Response 
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An alternate approach for determining the total solution y[n] of a difference equation 
is by computing its zero-input response yzi[n], and zero-state response yzs[n]. Then 
the total solution is given by y[n] = yzi[n] + yzs[n]. 

 

The zero-input response is obtained by setting the input x[n] = 0 and satisfying the 
initial conditions. The zero-state response is obtained by applying the specified input 
with all initial conditions set to zero. 



Example (1/2) 
 

 

λ 

1 

+ A n 
= 

n 
2 

1 

1 
2 

1 

2 

y [ n ] + y [ n − 1] − 6 y [ n − 2 ] = 0 y [ − 1] = 1 
 

yh [ n ] =  A1 1 2 2 A1 (− 3 )n   
+ A (2 )n

 
y [ − 2 ] = − 1 

Zero-input response: 
 
 

27 
A = − 

 
 
 

= − 5 .4 
y zi [ 0 ] = A + A =  − y [ − 1] + 6 y [ − 2 ] = − 1 − 6 = − 7 1 5 

y zi [1] = A  ( − 3 ) + A 2 ( 2 ) = − y [ 0 ] + 6 y [ − 1] = 7 + 6 = 13 8 
A = − 

5 

 
= − 1 .6 

 
 
 

Zero-state response: y [ n ] + y [ n − 1] − 6 y [ n − 2 ] = x[ n ] 
 

 
 

y zs 

 
 

[ 0 ] = 

 

 
A + A 

 
 

− 2 = 

 

 
x[ 0 ] = 8 

with x[ n ] = 8 u [ n ] 
18 

A1 = 
5 

 
 

= 3 .6 

y zs [1] = A  ( − 3 ) + A 2 ( 2 ) − 2 = x[1] − y [ 0 ] = 8 − 8 = 0 32 
A = = 

5 
6 .471 

λ 

2 

2 



Mitra Example (2/2) 
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z
 

Zero-input response: 
 
 

y zi [ n ] = − 5 .4 ( − 3 ) n − 1 .6 ( 2 ) n 
 

Zero-state response: 
 

y zs [ n ] = 3 .6 ( − 3 ) n + 6 .4 ( 2 ) n − 2 
 
 

Total solution is  
 
y [ n ] = 

 
 
y [ n ] + 

 
 
y zs [ n ] 

 
 

y [ n ] = 1 .8 ( − 3 ) n + 4 .8 ( 2 ) n − 2 
 
 

This is the same as before 



Impulse Response 
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The impulse response h[n] of a causal system is the output 
observed with input x[n] = δ[n]. 

For such a system, x[n] = 0 for n >0, so the particular solution is 
zero, yp[n]=0. Thus the impulse response can be generated from the 
homogeneous solution by determining the coefficients Am to satisfy 
the zero initial conditions (for a causal system). 



Example 
 

 

1 2 

2 

2 2 

1 

Determine the impulse response for 
 
 

y [ n ] + y [ n − 1] − 6 y [ n − 2 ] = x[ n ] 
 

The impulse response is obtained from the homogenous solution: 
 

 
h [ n ] = A  (− 3 )n    

+ A (2 )n
 

 
 

For n=0  
y [ 0 ] + 

 
y [ − 1] − 

 
6 y [ − 2 ] = 

 
x[ 0 ] 

 

h[ 0 ] = δ[ 0 ] = 1 A + A = 1 

For n=1  
y [1] + 

 
y [ 0 ] − 

 
6 y [ − 1] = 

 
x[1] (− 3 A1  + 2 A ) + ( A + A ) = 0 

 

h[1] + h[ 0 ] = δ[1] = 0 A1   = 

 

n ≥ 0 

3 2 
, A 2 = 

5 5 
 
 

74 
h [ n ] = 

3 

5 
(−  3 )n    

+ 
2 

5 
(2 )n

 

1 



DSP Applications 
 

 

 
 
 

• Image Processing 
– Pattern recognition 
– Robotic vision 
– Image enhancement 
– Facsimile 
– Satellite weather map 
– Animation 

• Instrumentation/Control 
– Spectrum analysis 
– Position and rate control 
– Noise reduction 
– Data compression 

• Speech/audio 
– Speech recognition/synthesis 
– Text to speech 
– Digital audio 
– equalization 

• Military 
– Secure communication 
– Radar processing 
– Sonar processing 
– Missile guidance 

• Telecommunications 
– Echo cancellation 
– Adaptive equalization 
– ADPCM transcoders 
– Spread spectrum 
– Video conferencing 
– Data communication 

• Biomedical 
– Patient monitoring 
– Scanners 
– EEG brain mappers 
– ECG analysis 
– X-ray storage/enhancement 
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Image enhancement 
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More Examples of Applications 
 

• Sound Recording 
Applications 
– Compressors and Limiters 
– Expanders and Noise Gates 
– Equalizers and Filters 
– Noise Reduction Systems 
– Delay and Reverberation 

Systems 
– Special Effect Circuits 

• Speech Processing 
– Speech Recognition 
– Speech Communication 

• Telephone Dialing 
Applications 

• FM Stereo Applications 
• Electronic Music 

Synthesis 
– Subtractive Synthesis 
– Additive Synthesis 

• Echo Cancellation in 
Telephone Networks 

• Interference Cancellation 
in Wireless 
Telecommunication 
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Reasons for Using DSP 
 
 

• Signals and data of many types are 
increasingly stored in digital 
computers, and transmitted in 
digital form from place to place. In 
many cases it makes sense to 
process them digitally as well. 

• Digital processing is inherently 
stable and reliable. It also offers 
certain technical possibilities not 
available with analog methods. 

• Rapid advances in IC design and 
manufacture are producing ever 
more powerful DSP devices at 
decreasing cost. 

• Flexibility in reconfiguring 
• Better control of accuracy 

requirement 
• Easily transportable and possible 

offline processing 
• Cheaper hardware in some case 
• In many case DSP is used to 

process a number of signals 
simultaneously. This may be done 
by interlacing samples (technique 
known as TDM) obtained from the 
various signal channels. 

 
• Limitation in speed & Requirement 

in larger bandwidth 
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System Analysis 
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Frequency Response 
 



83 

 

 

Ideal lowpass filter-example 
 



84 

 

 

Non causal to causal 
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Phase distortion and delay 
 



Phase delay 
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Phase delay 
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Group delay 
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Group delay 
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The Z-Transform 
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Z-Transform Definition 
-Counterpart of the Laplace transform for discrete-time signals 
-Generalization of the Fourier Transform 

-Fourier Transform does not exist for all signals 
 

The z-transform of a sequence x[n] is defined as 
∞ 

Z { x [ n ]} = ∑ 
n = −∞ 

x [ n ] z − n = X ( z ) 

The inverse z-transform is given by 
 

x [ n ] = 
1 

2 π j 
X ( z ) z n −1dz 

C 

 
 

This expression denotes a closed contour integral taken counterclockwise 
about the origin and in the region of convergence (ROC). It incorporates the 
Cauchy integral theorem from the theory of complex variables. This result is 
not given directly in Oppenheim, but may be found in Proakis. 

∫ 
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Relationship to Fourier Transform 
 
 

The z-transform of a sequence x[n] is defined as 
 
 
 

 
X ( z ) = 

∞ 

∑ 
n = −∞ 

x [ n ] z − n 

 

The Fourier transform of a sequence x[n] is defined as 
 
 

X (e jω ) = 
∞ 

∑ 
n = −∞ 

x [ n ]e − 
 
jω n 

 
 

For z  =  e tjhωe z-transform reduces to the Fourier transform 
 
 
 

This domain is a circle of unit radius in the complex plane, that is 
|z| = 1. 
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Convergence of the z-Transform 
• DTFT does not always converge 

X (e jω ) = 

 
∞ 

∑ 
n = −∞ 

x [n ] 
 
e − jω n 

– Infinite sum not always finite if x[n] no absolute summable 
– Example: x[n] = anu[n] for |a|>1 does not have a DTFT 

 
• Complex variable z can be written as r ejω so the z-transform 

 
 

( jω ) [ ] ( −  jω  )− n ( [ ] − n )  − jω n 

X re = ∑ x n r e 
n = −∞ 

= ∑ x n r e 
n = −∞ 

• DTFT of x[n] multiplied with exponential sequence r -n 

– For certain choices of r the sum maybe made finite 
 
 

∞ 

∑ 
n = −∞ 

x [n ] r - n < ∞ 

∞ ∞ 
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Unit Circle in Complex Z-Plane 
-The z-transform is a function of the complex z variable 
-Convenient to describe on the complex z-plane 
-If we plot z=ejω for ω=0 to 2π we get the unit circle 

Im 
z = e − jω 

 

Unit Circle 
 
 

ω 
Re 

1 
 
 
 

z-plane 
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For any given sequence, the set of value of z for which the z-transform converges 
is called the region of convergence, ROC. The criterion for convergence is that 
the z-transform be absolutely summable: 

If some value of z, say, z = z1, is in the ROC, then all values of z on the circle defined 
by |z| = |z1| will also be in the ROC. So, the ROC will consist of a ring in the z-plane 
centered about the origin. Its outer boundary will be a circle (or the ROC may extend 
outward to infinity), and its inner boundary will be a circle (or it may extend inward 
to include the origin). 

Region of Convergence (ROC) 
 
 
 

 
 
 

∞ 
− n 

x [ n ] z < ∞ 
− ∞ 

∑ 



 

 

Region of Convergence 
Im 

 
 
 
 
 
 

r1     
r2 

 
 

Re 
 
 
 
 
 
 

z-plane 
 
 
 
 
 

The region of convergence (ROC) as a ring in the z-plane. For specific cases, the inner boundary 
can extend inward to the origin, and the ROC becomes a disk. In other cases, the outer boundary 
can extend outward to infinity. 96 
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Laurent Series 
 
 

X ( z ) = 

 
 
 

∞ 

∑ 
n = −∞ 

 
 
x [ n ] z − n 

 

A power series of this form is a Laurent series. A Laurent series, and therefore 
a z-transform, represents an analytic function at every point within the region 
of convergence. This means that the z-transform and all its derivatives must be 
continuous functions of z within the region of convergence. 

P ( z ) 
X ( z ) = 

Q ( z ) 
 
 
 

Among the most useful z-transforms are those for which X(z) is a rational 
function inside the region of convergence, for example where P(z) and Q(z) 
are polynomials. The values of z for which X(z) are zero are the zeros of X(z) 
and the values for which X(z) is infinite are the poles of X(z). 
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Properties of the ROC 
1. The ROC is a ring or disk in the z-plane centered at the origin 

0 ≤ rR   < z  < rL  ≤ ∞ 
 

2. The Fourier transform of x[n] converges absolutely if and only if the ROC of the z- 
transform of x[n] includes the unit circle. 

3. The ROC cannot contain any poles. 

4. If x[n] is a finite-duration sequence, then the ROC is the entire z-plane except possibly 
z=0 or z=∞. 

5. If x[n] is a right-handed sequence (zero for n < N1 <∞ ), the ROC extends outward from 
the outermost (largest magnitude) finite pole in X(z) to (and possibly including infinity). 

6. If x[n] is a left-handed sequence (zero for n > N2 > -∞ ), the ROC extends inward from 
the innermost (smallest magnitude) nonzero pole in X(z) to (and possibly including) zero. 

7. A two-sided sequence is an infinite-duration sequence that is neither right-sided or left- 
sided. If x[n] is a two-sided sequence, the ROC will consist of a ring in the z-plane, 
bounded on the interior and exterior by a pole and , consistent with property 3, not 
containing any poles. 

8. The ROC must be a connected region. 
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Properties of ROC Shown Graphically 
Finite-Duration Signals 

 
 

Causal Entire z-plane 
Except z = 0 

Anticausal Entire z-plane 
Except z = infinity 

Two-sided Entire z-plane 
Except z = 0 and z = ∞ 

Infinite-Duration Signals 
 

Causal  
|z| > r2 

Anticausal |z| < r1 

Two-sided 
r2 < |z| < r1 

  
  
 
  
  

 
  
  

 

  
  

 



Example: Right-Sided Sequence 
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x [ n ] = a n u [ n ] 
 
 

X ( z ) = 
∞ 

∑ 
n = −∞ 

 
x [ n ] z − n 

 

 
X ( z ) 

∞ 

= ∑ 
n = 0 

(az − 1 )n 
1 

= 
1 − az −1 

 

ROC 
 

or 

az − 1 < 1 

 
z >  a 



Example: Left-Sided Sequence 
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x [ n ] = − a n u [ − n − 1] 
 

nonzero for n ≤ − 1 
 

 
X ( z ) = 

∞ 

∑ 
n = −∞ 

 
x [ n ] z − n 

 

 
X ( z ) = 

− 1 

− ∑ 
n = −∞ 

(az − 1 )n 

 
1 

 
= 1 − 

∞ 

∑ 
n = 0 

 
1 

(a −1 z )n
 

= 1 − 
1 − a − 1 z = 

1 − az −1 
 
 

ROC a − 1 z < 1 
 
 

or z <  a 



 

 

z z 

2 3 2 

 

2 

z < 1 − 

2 

3 

Example: Sum of Two Exponential 
Sequences 

 

 
x [ n ] = 

n 
 1  
  
 2  

u [ n ] + 

 

 
∞ 

n 
1  

 u [ n ] 
3  

X ( z ) = ∑ 
n = −∞ 

x [ n ] z − n 

 
 

X ( z ) = 
1 

1 − 1 − 1 

1 
+ 

1 + 1 − 1 
 

 
 

ROC 1 and 1 
2 3 

z > 1  

2 + 1 z − 1 − 1 z − 1 2 z ( z −   1 ) X ( z ) =   3 2 =   12  

(1 − 1 z −1 )(1 + 1 z − 1 ) ( z − 1 )( z + 1  

Poles at ½ and -1/3, zeros at 0 and 1/12 102 

3 

) 

− 

z < 1 
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− 

2 

 

3 

− 1 

2 

3 

Example: Two-Sided Sequence 
 
 
 

x [ n ] = 

 

1  
 u [ n ] − 

n 
 1  
  

 
u [ − n 

 
− 1] 

 
 

n 
 1  
  

3  

 

u [ n ] ⇒ 

 2  

 
1 1 

− 1 z > 
 3  1 + 1 z 3 

 
 

n 
 1  
  

 
 
u [ − n 

 
1 1 

− 1] ⇒     z < 
 2  1 − 1 z 2 

2 z ( z − 1 ) 
X ( z ) = 12  

( z − 1 )( z + 1  

ROC 

 
1 1 

< z < 
3 2 

− 

) 

− 



104 

 

 

Example: Finite Length Sequence 
 
 
 
 
 

 
x [ n ] = 

 a n 

 
0 ≤ n ≤ N  − 1 

 0 otherwise 
∞ 

X ( z ) = ∑ 
n = −∞ 

x [ n ] z − n 

 

 
X ( z ) 

 
N − 1 

= ∑ az −1 )n
 

1 − (az 
= 

− 1 )N 

− 1 
 

n = 0 
 

The sum is finite, so 

1 − az 

 
 

 

Pole-zero plot for N = 16 
ROC a < ∞ and z ≠ 0 

( 



 

 

Z-transforms with the same pole-zero locations 
illustrating the different possibilities for the ROC. 
Each ROC corresponds to a different sequence. 

 
 
 
 
 
 
 
 
d) A two-sided sequence 

 
 
 
 
 
 

e) A two-sided sequence 
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c) A left-sided sequence 

 
 
 
 
 
 
 
 
 
 
 
 
 
b) A right-sided sequence 



Common Z-Transform Pairs 
 

 

 

  
 

*All z except 0 (if m > 0) or ∞ (if m<0) 106 

Sequence Transform ROC 
[cos ω n ]u [ n ] 

0 
1 − [cos ω ] z − 1 

  0  

1 − [ 2 cos ω ] z −1 + z − 2 
0 

 
z > 1 

 
[sin ω n ]u [ n ] 

0 

[sin ω ] z − 1 
  0  

1 − [ 2 cos ω ] z −1 + z − 2 
0 

 
z > 1 

 
[cos ω n ]u [ n ] 

0 

1 − [ r cos ω ] z − 1 
  0  

 1 − [ 2 r cos ω ] z −1 + r 2 z − 2 0 

 
z > r 

 
[sin ω n ]u [ n ] 

0 

[ r sin ω ] z − 1 
  0  

 1 − [ 2 r cos ω ] z −1 + r 2 z − 2 0 

 
z > r 

a n , 0 ≤ n ≤ N − 1 

0 , otherwise 

1 − a N z − N 

1 − az −1 

 
z > 0 

 

Sequence Transform ROC 

δ [ n ] 1 All z 
 

u [ n ] 
1 

1 − z −1 

 
z > 1 

− u [ − n − 1] 
1 

1 − z −1 

 
z < 1 

δ [ n − m ] z − m * 
 

a n u [ n ] 
1 

   

1 − az −1 
z > a 

 
− a n u [ − n − 1] 

1 

1 − az −1 

 
z < a 

 
na n u [ n ] 

az − 1 

(1 −  az −1 )2
 

 
z > a 

 
− na n u [ − n − 1] 

az − 1 

(1 −  az −1 )2
 

 
z < a 

 



Z-Transform Properties (1/2) 
 

 

1 2 x x 

0 

0 

 
 

 Linearity 
 
 

ax [ n ] + bx [ n ] ←Z → aX 1 ( z ) + bX 2 ( z ) ROC contains R ∩  R 
1 2 

 

 Time Shifting 
 
 

x [ n − n ] ←Z → z − n 0   X ( z ) ROC = Rx (except for possible addition 
or deletion of 0 or ∞) 

 

 Multiplication by an Exponential Sequence 
 

n Z  z   
z x [ n ] ← → X   

 z 0    
ROC = z 0  R x 

 Differentiation of X(z) 
 
 

Z dX ( z ) 
nx [ n ] ← → − z 

dz 
ROC =  R x 
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Z-Transform Properties (2/2 
 

 

1 2 x x 

  

 
 

 Conjugation of a Complex Sequence 
 

x ∗ [ n ] ←Z → X * ( z * ) 
 

ROC 
 

= R x 

 
 

 Time Reversal 
 

x * [ − n ] ←Z → 

 
X *   1   

 z * 
 

 

 
1 

ROC = 
R x 

 

 Convolution of Sequences 
 
 
 

x [ n ] ∗ x [ n ] ←Z → X 1 ( z ) X 2 ( z ) ROC contains R ∩  R 
1 2 

 

 Initial-Value Theorem 
 
 

x [ 0 ] = lim 
z → ∞ 

X ( z ) 
 

provided that x[n] is zero for n < 0, i.e. that x[n] is causal. 
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Inverse z-Transform 
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k 

= 

M 

N 

k 
= 

 
 

Method of inspection – recognize certain transform pairs. 
 
 

Partial Fraction Expansion 
 
 

M 

∑ b z − k ∏ (1 − c z −1 ) 
k b 0     k = 1  

X ( z ) =  k = 0  Factor to X ( z ) 
N 

∑ 
k = 0 

a k z 
a 0 ∏

 
k = 1 

(1 − d k z − 1 ) 

 
 
 
 

N 
X ( z ) = ∑   Ak  

 
where A = (1 − d z − 1 )X 

 
( z ) 

k = 0 1 − d z − 1 k k 
z d k 

− k 
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4 2 

z z 

z z 

4 

1 

Example: Second-Order Z-Transform 
 
 
 
 

X ( z ) = 
(1 − 

1 
1 z −1 )(1 − 1 z − 1 ) z > 

 
 
 

 
X ( z ) = 

A1 

1 − 1 − 1 
+ 

A2 

1 − 1 − 1 
 

 

 
 

1 
A = 

1 −   1  (  1  )− 1 
= − 1 

2 4 
 

1 A = = 2 
1 −   1  (  1  )− 1 

4 2 
 

− 1 2 
X ( z ) = + 

1 − 1 − 1 1 − 1 − 1 

  2 4 

2 

1 

2 

2 
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i 
i 

k 

k i 

m 

Partial Fraction Expansion 
 
 

M − N N A 
If M > N X ( z ) = ∑ B z − r + ∑ k 

 
r 

r = 0 k = 1 1 − d z − 1 

 

Br can be obtained by long division of numerator by denominator, stopping 
when the remainder is of lower degree than the denominator. 

 
If M > N and X(z) has multiple-order poles, specifically a pole of order s at z=di 

 
 

M − N N A s C 
X ( z ) = ∑ B z − r + ∑   k + ∑ m  

r 

r = 0 k = 1 , k ≠ i 1 − d z − 1  
m = 1 (1 − d  z −1 )m

 
 
 

1  d 
 

 

s − m [( )s
 ( − 1 )] 

C = 
( s − m )! ( − d ) s − m  

 dw s − m 1 − d i w X w  
 w = d − 1 
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2 z z 

z 

z 
2 

2 

2 

2 

 
0 

2 
2 

Example 
 
 

 
X ( z ) = (1 + z − 1 )2 

 
1 + 2 z −1 + = 

 
z − 2 

 
 z > 1 

(1 − 1 z −1 )(1 − z − 1 ) 1 − 3 −1 + 1 − 2 
2 

 
 

A1 A2 z − 2   + 
B = = 2 

 

X ( z ) = B + 
1 − 1 − 1 

 

 

+ 
1 − z −1 

0 1  
2 z − 2 +  

A A (1 + (  1 ) −1 )2
 (3 )2

 
X ( z ) = B + 1 + 2  A = 2 = = − 9 

0 1 − 1 − 1 
2 1 −  z −1 1 −  (  1  )− 1 

− 1 
 

− 9 8 X ( z ) = 2 + + 
  

(1 + 1) 2 
1 − 1  z − 1 1 − z −1 A = = 8 

1 −   1  (1 )− 1
 

 
 
 
 

x [ n ] = 2δ [ n ] − (  1  )n  
u [ n ] + 8 u [ n ] 

2 

1 
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2 2 

2 2 z 

Power Series Expansion 
 
 

 
X ( z ) = 

∞ 

∑ 
n = −∞ 

x [ n ] z − n 

 
 

Note that δ [ n − m ] ←Z → z − m 

 

Example : 
 
 
 

X ( z ) = z 2 (1 − 1 z − 1 )(1 − z − 2 ) = z 2   −  1  1 − 1 
2 

 
 

x [ n ] = 2 δ [ n + 2 ] − 1 δ [ n + 1] − δ [ n ] + 1 δ [ n − 1] 

z − 1 + 
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Example 
 
 
 

X ( z ) = log (1 + az − 1 ) z  >  a 
 
 

Expand in power series: 
 

(  
− 1 ) 

 
 

∞ ( − 1) n + 1 a n z − n 
 log 1 + az = ∑ 

n = 1 n 
 
 
 

 a n 
 ( − 1) n +1 , n ≥ 1 

x [ n ] =  
 

n 
0 , n ≤ 0 



Contour Integration 
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Cauchy integral theorem 

 
1 

2 π j 

 
 

z − k dz 
C 

 
 

 1, 
=  

 0 . 

 
 

k  = 1 

k  ≠ 1 
 

C is a counterclockwise contour that encircles the origin. 
 
 

Then one can show that 
 

x [ n ] = 
1 

2 π j 
X ( z ) z n −1dz 

C 

 

x [ n ] = ∑ [residues of X(z)z 
 

n −1 at the poles inside C ] 

∫ 

∫ 



Residue Calculation 
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0 

0 0 

 

If X(z) is a rational function of z, we can write 
 

X ( z )z n −1 = ψ ( z ) 
 

 

( z  −  d ) s
 

 
 

Then one can show that 
 
 
 
 

Res [X ( z ) z n −1 at z = d ] = 
1 

(s − 
ψ 

1 )! 
(d ) 



Quick Review of LTI Systems 
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• LTI Systems are uniquely d∞ etermined by their impulse response 
y [n ] = ∑ x [k ] h [n − k ] = x [k ] ∗ h [k ] 

• We can write the input-ouk t=p−∞ut relation also in the z-domain 
 
 

Y (z ) = H (z )X (z ) 
 

• Or we can define an LTI system with its frequency response 
 

Y (e jω ) = H (e jω )X (e jω ) 
• H(ejω) defines magnitude and phase change at each frequency 
• We can define a magnitude response 

 
• And a phase response 

Y (e jω ) = H (e jω ) X (e jω ) 
 

∠ Y (e jω ) = ∠ H (e jω ) + ∠ X (e jω ) 
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i
 

d i
 

Phase Distortion and Delay 
• Remember the ideal delay system 

h [n ] = δ [n −  n  ]  DTFT→ H (e jω ) = e − jω n d 

 
 

• In terms of magnitude and phase response 
H id 

∠ H id 

(e jω ) = 

(e jω ) = 

 
1 
 
− ω n d 

 
 

ω < π 
 
 

• Delay distortion is generally acceptable form of distortion 
– Translates into a simple delay in time 

• Also called a linear phase response 
– Generally used as target phase response in system design 

• Ideal lowpass or highpass filters have zero phase response 
– Not implementable in practice 
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k k 

k k 

N 

System Functions for Difference Equations 
• Ideal systems are conceptually useful but not implementable 
• Constant-coefficient difference equations are 

– general to represent most useful systems 
– Implementable 
– LTI and causal with zero initial conditions 

N 

∑ 
k = 0 

a y [n − k ] = 
M 

∑ 
k = 0 

b x [n − k ] 

• The z-transform is useful in analyzing difference equations 
• Let’s take the z-transform of both sides 

 
 

N 

∑ 
k = 0 

a z − k Y (z ) = 

 
M 

∑ 
k = 0 

b z − k X (z ) 
 

 − k  ( )  − k  ( ) 
 ∑ 
 k = 0 

ak z  Y z 
 

=  ∑ 
 k = 0 

b k z  X z 
 

M 



120 

 

 

1 
 

 

1  

k 

k 

a N 

k 

−  

+  

System Function 
• Systems described as difference equations have system functions of the 

form 
 

Y (z ) 
M 

∑ b k z − k 
M 

 b  ∏ (1 − c z − 1 ) 
H (z ) = = k = 0 = 

 
     0   k = 1  

 
 

• Example 

X (z ) N 

∑ 
k = 0 

a z − k 
  
 0  ∏ (1 − 

k = 1 

d z − 1 ) 

H (z ) = (1 + z − 1 )2 1 + 2 z − 1 = + z − 2 Y (z ) 
= 

 

 1 
z − 1  

1 +
 

 2  

3 
z − 1  

4  

1 + 
1 

z − 1 + 
4 

3 
z − 2 

8 

X (z ) 

 

 1 
z − 1   + 

 4 

3 
z − 2 

8 
 Y (z ) = 
 

(1 + 2 z − 1 + z − 2 )X (z ) 

y [n ] + 
 
1 y [n 
4 

− 1 ] + 
 
3 y [n 
8 

− 2 ] = x [n ] + 2 x [n − 1 ] + x [n − 2 ] 
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Stability and Causality 
• A system function does not uniquely specify a system 

– Need to know the ROC 
• Properties of system gives clues about the ROC 
• Causal systems must be right sided 

– ROC is outside the outermost pole 
• Stable system requires absolute summable impulse response 

∞ 

∑ 
k = −∞ 

h [n ] < ∞ 

– Absolute summability implies existence of DTFT 
– DTFT exists if unit circle is in the ROC 
– Therefore, stability implies that the ROC includes the unit circle 

• Causal AND stable systems have all poles inside unit circle 
– Causal hence the ROC is outside outermost pole 
– Stable hence unit circle included in ROC 
– This means outermost pole is inside unit circle 
– Hence all poles are inside unit circle 
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 

Example 
• Let’s consider the following LTI system 

y [n ] − 
 
5 y [n 
2 

− 1 ] + y [n − 2 ] = x [n ] 

• System function can be written as 
 
 
 
 
 

H (z ) = 
 
 
 

1 

− 
1 

z − 1 
 (1 

2  

 
− 2 z − 1 ) 

 

• Three possibilities for ROC 
– If causal ROC1 but not stable 
– If stable ROC2 but not causal 
– If not causal neither stable ROC3 

 
ROC 

ROC 

ROC 

 
1 : z > 2 

1 
: < z < 2 

2 
2
 

1 
3 : z < 

2 

1 
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Structures for Discrete-Time Systems 
 

• Block Diagram Representation of Linear Constant-Coefficient 
Difference Equations 

• Signal Flow Graph Representation of Linear Constant-Coefficient 
Difference Equations 

• Basic Structures for IIR Systems 
• Transposed Forms 
• Basic Network Structures for FIR Systems 
• Lattice Structures 
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• Example: The system function of a discrete-time system is 
 

b + b z − 1 

H ( z ) =     0 1 , |z| > |a| 
1 − az −1 

 
 
 
 

• Its impulse response will be 
h[n] = b0anu[n] + b1an-1u[n-1] 

• Its difference equation will be 
y[n] –ay[n-1] = b0x[n] + b1x[n-1] 

Since this system has an infinite-duration impulse response, it is not possible 
to implement the system by discrete convolution. However, it can be rewritten 
in a form that provides the basis for an algorithm for recursive computation. 

y[n] = ay[n-1] + b0x[n] + b1x[n-1] 

Introduction 



Block Diagram Representation of Linear Constant-coefficient 
Difference Equations 
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z-1 

 
 
 
 
 
 
 
 

x[n] a ax[n] 
 

 
 
 

x[n] x[n-1] 

Multiplication of a 
sequence by a constant 

Unit delay 

 
Addition of two sequences 

x1[n] + x [n] + x [n] 1 2 

x2[n] 



Block Diagram Representation of Linear Constant-coefficient 
Difference Equations 
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k 

 M 

k 

 k  

 
 
 
 
 

M ∑ bk z 
− k 

 
 

Y ( z ) 
H ( z ) =   k = 0  

N 

 
 

X ( z ) 
1 − ∑ 

k = 1 
 
 
 1 

a z − k 

 
 
 
 1 

 
 

 

  − k  
H ( z ) = H 2 ( z ) H 1 ( z ) =  

 N 
 

 ∑ bk z  
 

 
V ( z ) = 

 
 
H 1 ( z ) X 

 
 
 
( z ) 

 1 − 
 

∑ 
k = 1 

a z − k  k = 0  
 
 

Y ( z ) = 

2 
H 2 ( z )V ( z ) 

  M 

  
  

− k    1  
 H ( z ) = H 1 ( z ) H 2 ( z ) =  ∑ 

 k = 0 

bk z  
  1 − 

 

N 

∑ 
k = 1 

a z − k    

 

W ( z ) = 

Y ( z ) = 

H 2 ( z ) X 

H 1 ( z )W 

( z ) 

( z ) 

= 



Block diagram representation for a general Nth-order 
difference equation: 

Direct Form 127 

127 

 

 

 
 
 

x[n] b0 

 
z-1 

+ v[n] +  
 

z-1 

y[n] 

x[n-1] 

z-1 

x[n-2] 
 

z-1 

x[n-M] 

b1 + 

 
bM-1     + 

bM  

+ a1 

 
+ aN-1 

aN 

y[n-1] 

z-1 

y[n-2] 

 

z-1 

y[n-N] 



Block diagram representation for a general Nth-order 
difference equation: 

Direct Form 128 

128 

 

 

 
 

x[n] + w[n] b0 + 

 z-1 

y[n] 

+ a1 

 
+ aN-1 

w[n-1] 

z-1 

w[n-2] 

 

z-1 

w[n-1] 

z-1 

w[n-2] 
 

 

 
z-1 

b1 + 

 
bM-1     + 

aN w[n-N] w[n-M] bM  
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Combination of delay units (in case N = M) 
 
 
 
 
 

x[n] + 

+ a1 

 
+ aN-1 

aN 

w[n] 

 
z-1 

 

z-1 

 
 

z-1 

b0 + 

b1 + 

 
bN-1 + 

bN 

y[n] 
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Block Diagram Representation of Linear Constant- 
coefficient Difference Equations 2 

 
• An implementation with the minimum number of delay elements is 

commonly referred to as a canonic form implementation. 
• The direct form I is a direct realization of the difference equation 

satisfied by the input x[n] and the output y[n], which in turn can be 
written directly from the system function by inspection. 

• The direct form II or canonic direct form is an rearrangement of the 
direct form I in order to combine the delay units together. 
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Attenuator 

Node: Adder, Separator, Source, or Sink 

Signal Flow Graph Representation of Linear Constant- 
coefficient Difference Equations 

 
 
 
 
 
 
 

x[n] d e y[n] 

 

 

 
 
 

a z-1 

c 
b 

z-1 

Delay Unit z-1 

a 



Basic Structures for IIR Systems 
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• Direct Forms 
• Cascade Form 
• Parallel Form 
• Feedback in IIR Systems 



Basic Structures for IIR Systems 
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k 

k 

 
 
 

• Direct Forms 
 
 
 
 

 
y [ n ] − 

N 

∑ a k 
k = 1 

M 

 
y [ n 

 
− k ] = 

M 

∑ 
k = 0 

 
bk x [ n 

 
− k ] 

∑ b z − k 

H ( z ) =   k = 0  
N 

1 − ∑ 
k = 1 

a z − k 



Direct Form I (M = N) 
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Direct Form II (M = N) 
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136 

 

 

Direct Form II 
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x[n] 

 
 
 
 
 
 

x[n] 

+ 
z-1 

2 + 
z-1 

 
+ 

+ 

+ 0.75 

-0.125 
 

+ 

 
 
z-1 

 

z-1 

y[n] 

 
 
 
 
 
 

y[n] 

 

+ 0.75 
z-1 

2 
 
z-1 

+ 
H ( z ) = 

 
 

 
1 + 2 z − 1 + 

 
 

 
z − 2 

-0.125 1 − 0 .75 z − 1 + 0 .125 z − 2 
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x[n] 

 
 
 
 
 
 

x[n] 

y[n] 

 
 
 
 
 
 

y[n] 
 

 

z-1 

0.75 2 

z-1 

-0.125 

z-1 
2 0.75 

z-1 

z-1 z-1 

-0.125 
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k 

k 

k k 

k k 

Basic Structures for IIR Systems 2 
 

• Cascade Form 
 

M 1 

∏ (1 − 

M 2 

g z −1 ) ∏ 
 
(1 − 

 
h z −1 )( 1 − h ∗ z − 1 ) 

H ( z ) = A  k = 1 k = 1  
N 1 

∏ 
k = 1 

(1 − 
N 2 

c z −1 ) ∏ 
k = 1 

(1 − d z −1 )( 1 − d ∗ z − 1 ) 

 

where M = M1+2M2 and N = N1+2N2 . 
• A modular structure that is advantageous for many types of 

implementations is obtained by combining pairs of real factors and 
complex conjugate pairs into second-order factors. 

 

N s b + b z − 1 + b z − 2 

H ( z ) = ∏   0 k 1 k 2 k  

 
k = 1 1 − a z − 1 − a 2 k z − 2 

where Ns is the largest integer contained in (N+1)/2. 
1 k 
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z-1 
0.5 z-1 z-1 z-1 

0.25 

 

x[n] y[n] 

 

 
H ( z ) = 1 + 2 z − 1 + z − 2 (1 + 

= z − 1 )( 1 + z − 1 ) 

1 − 0 .75 z − 1 + 0 .125 z − 2 (1 − 0 . 5 z −1 )( 1 − 0 . 25 z − 1 ) 
 

x[n] y[n] 

 

x[n] y[n] 

z-1 z-1 

0.5 0.25 

w1[n] y1[n] 
b01 

w2[n] y2[n] 
b02 

w3[n] y3[n] 
b03 

z-1 z-1 z-1 
a11 b11 a12 b12 a13 b13 

z-1 
a21 b21 

z-1 
a22 b22 

z-1 
a23 b23 
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k k k 

Basic Structures for IIR Systems 3 
 
 

• Parallel Form 
 

N P 

 
 

N 1 A 

 
 

N 2 B 

 
 

(1 − e 

 
 
z − 1 ) H ( z ) = ∑ C z − k 

+ ∑ k + ∑   k k  
k 

k = 0 k =1 1 − c z −1  
k =1 (1 − d z −1 )( 1 − d ∗ z −1 ) 

 

where N = N1+2N2 . If M ณ N, then NP = M - N; otherwise, the first summation in 
right hand side of equation above is not included. 

• Alternatively, the real poles of H(z) can be grouped in pairs : 
 
 

N P N S e + e z − 1 

H ( z ) = ∑ C z − k 
+ ∑ 0 k 1 k  

k 

k = 0 k = 1 1 − a 1 k z − 1 − a 2 k z − 2 

 

where NS is the largest integer contained in (N+1)/2, and if NP = M - N is 
negative, the first sum is not present. 
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x[n] 

 
 
 

a11 

a21 

 
a12 

a22 

 
a13 

a23 

C0 
 

w1[n] 

z-1 

z-1 

 
w2[n] 

z-1 

z-1 

w3[n] 

z-1 

z-1 

 
 
b01 

b11 

 
b02 

b12 

 
b03 

b13 

 

y1[n] 

 
 

y2[n] 

 

 
y3[n] 

 
Parallel form structure for 

 
 
 
 
 
y[n] 

sixth order system (M=N=6). 
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H ( z ) = 1 + 2 z − 1 + z − 2  

= 8 + − 7 + 8 z − 1 

1 − 0 .75 z − 1 + 0 .125 z − 2 1 − 0 .75 
18 

z − 1 + 0 .125 
25 

z − 2 

= 8 + 

 
8 

1 − 0 .5 z −1 
− 

1 − 0 .25 z − 1 

 

x[n] y[n] 

-7 8 

0.75 
z-1 

8 x[n] 18 y[n] 

-0.125 
z-1 0.5 z-1 

-25 

0.25 z-1 
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z-1 
a 

Transposed Forms 
 

• Transposition (or flow graph reversal) of a flow graph is accomplished by 
reversing the directions of all branches in the network while keeping the 
branch transmittances as they were and reversing the roles of the input and 
output so that source nodes become sink nodes and vice versa. 

 
 
 
 
 
 
 
 

x[n] y[n] y[n] x[n] 
 

 

x[n] y[n] 

z-1 

a a z-1 
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z-1 
b 1 a z-1 

1 

z-1 b2 a2 
z -1 

z-1 

bN-1 

bN 

aN-1 

aN 
z -1 

z-1 
a 1 b z-1 

1 

z-1 a2 b2 
z -1 

z-1 

aN-1 

aN 

bN-1 

bN 
z -1 

x[n] b0
 y[n] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

x[n] b0 
y[n] 
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a1 

a2 

z -1 
b 1 

z -1 
b 2 

aN-1 bN-1 

a N 
z-1 

b
 
N 

b 1 
z-1 

a
 
1 

b2 
z -1 

a2 

bN-1 

bN 
z -1 

aN-1 

aN 

x[n] b0 
y[n] 

 
 
 
 
 
 
 
 
 
 
 
 

x[n] b0
 y[n] 



147 

 

 

z + b 

Basic Network Structures for FIR Systems 
 

• Direct Form 
– It is also referred to as a tapped delay line structure or a transversal filter 

structure. 
• Transposed Form 
• Cascade Form 

 

 
H ( z ) = 

M 

∑ 
n = 0 

h [ n ] z − n 
M S 

= ∏ 
k = 1 

 
( b0 k 

 
− 1 

1 k 2 k z − 2 ) 

 

where MS is the largest integer contained in (M + 1)/2. If M is odd, one of 
coefficients b2k will be zero. 

+ b 
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Direct Form 
 

• For causal FIR system, the system function has only zeros (except for 
poles at z = 0) with the difference equation: 

y[n] = SM
k=0 bkx[n-k] 

• It can be interpreted as the discrete convolution of x[n] with the 
impulse response 

h[n] = bn , n = 0, 1, …, M, 
0 , otherwise. 
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Direct Form (Tapped Delay Line or Transversal Filter) 
 
 
 
 
 

x[n] b0
 y[n] 

 
 
 
 
 
 
 
 

 bN-1 
 

z-1 
 
 

x[n] 
 

z-1 z-1 z-1 

 

h[0] h[1] h[2] h[M-1] h[M] y[n] 

z-1 
b1 

z-1 b 2 

 
bN 
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Transposed Form of FIR Network 
 
 
 
 
 
 
 
 
 

z-1 z-1 z-1 z-1 y[n] 

 

x[n] 

h[M] h[M-1] h[M-2] h[2] h[1] h[0] 
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Cascade Form Structure of a FIR System 
 
 
 
 
 
 
 
 
 

x[n] b01 b02 b0Ms 
y[n] 

z-1 b11 
z-1 b12 

z-1 b1Ms 

z-1 b 21 z-1 b 22 z-1 b 2Ms 
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• Structures for Linear Phase FIR Systems : 
– h[M-n] = h[n] for n = 0, 1, ..., M 

• For M is an even integer : Type I 
y[n] = Sk=0

(M/2)-1 h[k](x[n-k] + x[n-M+k]) + h[M/2]x[n-M/2] 
• For M is an odd integer : Type II 

y[n] = Sk=0
(M-1)/2 h[k](x[n-k] + x[n-M+k]) 

– h[M-n] = -h[n] for n = 0, 1, ..., M 
• For M is an even integer : Type III 

y[n] = Sk=0
(M/2)-1 h[k](x[n-k] - x[n-M+k]) 

• For M is an odd integer : Type IV 
y[n] = Sk=0

(M-1)/2 h[k](x[n-k] - x[n-M+k]) 

Structures for Linear-Phase FIR Systems 
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Direct form structure for an FIR linear-phase when M is even. 
 

x[n] 

 
 
 
 

y[n] 

z-1 z-1 z-1 

 
 

z-1 z-1 z-1 

h[0] h[1] h[2] h[(M/2)-1] h[M/2] 
 
 

Direct form structure for an FIR linear-phase when M is odd. 
 

x[n] z-1 z-1 z-1 

 
 

z-1 z-1 z-1 

 
 

z-1 

 

y[n] h[0] h[1] h[2] h[(M-3)/2] h[(M-1)/2] 
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Lattice Structures 
 

• Theory of autoregressive signal modeling : 
– Lattice Structure 

• Development of digital filter structures that are analogous to analog 
filter structures : 
– Wave Digital Filters 

• Another structure development approach is based on state-variable 
representations and linear transformations. 
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Lattice Structures 2 
 
 

• FIR Lattice 
 

H 

 
 

( z ) = 

 
 

Y ( z ) 
= 

X ( z ) 

 
 

A ( z ) = 

 
 
 
1 − 
 

 
 

 
N 

∑ 
m = 1 

 
 

− m  
a m z  

 
 

The coefficients {ki} in the lattice structures are referred 
to as the k-parameters, which are called reflection 
coefficients or PARCOR coefficients. 
– When used in signal modeling, the k-parameters 

are estimated from a data signal . 
– Given a set of k-parameters, the system function 

can be found and therefore the impulse response : 
by recurrence formula for computing A(z) in terms 
of the intermediate system functions 
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0 1 2 N-1
  

Reflection coefficients or PARCOR coefficients structure 
 
 
 
 
 
 

x[n] e0[n] e1[n] e2[n] eN-1[n] eN[n] y[n] 
 
 
 
 
 
 
 
 

e~ [n] e~ [n] e~ [n] e~ [n] e~ [n] 
 
 
 
 
 

Signal flow graph of an FIR lattice system 
 

e0[n] = e~ [n] = x[n] 
0 

ei[n] = ei-1[n] – kie~
i-1[n-1], i = 1, 2, …, N, 

e~ [n] = -k e [n] + e~ [n-1] 
i i i-1 i-1 

y[n] = eN[n] 

z-1 

-kN 

-kN 
z-1 

-k1 

-k1 
z-1 

-k2 

-k2 



157 

 

 

m 

i 

A recurrence formula for computing A(z) = H(z) = Y(z)/X(z) can be 
obtained in terms of intermediate system functions: 

 
 
 
 

E ( z )  i  
Ai ( z ) =   i = 

E O ( z ) 1 − 
 

∑ 
m = 1 

a ( i ) z − m 


 

 
 
 

By recursive technique: 
 

a (i) = k , 
i i 

a (i) = a (i-1) - k a (i-1) , m m i i-m 

m = 1, 2, ..., (i-1) 
 

Or by reverse recursive technique: 

ki = a (i) 

a (i-1) = [a (i) + k a (i)]/[1 – k 2], m = 1, 2, …, (i – 1) 
m m i i-m i 
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3 

1 2
  

2 

1 

Example: 
 

A(z) = (1-0.8jz-1)(1+0.8jz-1)(1-0.9z-1) = 1 – 0.9z-1 + 0.64z-2 – 0.576z-3. 
Then, a (3) = 0.9, a (3) = -0.64, and a (3) = 0.576 
The k-parameter can be computed as follow: 

k3 = a (3) = 0.576 
a (2) = [a (3) + k a (3)]/[1 – k 2] = 0.79518245 

1 1 3 2 3 
a (2) = [a (3) + k a (3)]/[1 – k 2] = - 0.18197491 

2 2 3 1 3 

k2 = a (2) = - 0.18197491 
a (1) = [a (2) + k a (2)]/[1 – k 2] = 0.67275747 

1 1 2 1 2 

k1 = a (1) = 0.67275747 



159 

 

 

-0.6728 

-0.6728 

z-1 

+0.182 
+0.182 

z-1 

-0.576 
-0.576 

z-1 

 
 
 
 
 
 

x[n] y[n] 
 
 
 
 
 
 
 
 
 
 
 

 
x[n] 

z–1 z–1 z-1  
 

y[n] 
-0.9 0.64 -0.576 



 

 

N N-1 1
  

All-Pole Lattice 
 
 
 
 
 

• 
 
 
 
 
 

 
eN[n] = x[n] 

Ei-1[n] = ei[n] + kie~
i-1[n-1], i = N, (N-1), …1, 

ei[n] ei-1[n] 

e~ [n] = -k e [n] + e~ [n-1] 
i i i-1 

~ 
i-1 e~ [n] e~ [n] 

y[n] = e0[n] = e 0[n] i i-1 
 

x[n] e0[n] e1[n] e2[n] eN-1[n] eN[n] y[n] 

  

e~ [n] e~ [n] e~ [n] e~ [n]  160 

k1 

-k1 
z-1 

kN 

-kN 

kN-2 

z--1kN-2 
z-1 

A lattice system with an all-pole system function H(z) = 1/A(z) can be 
developed from the FIR lattice . 
– all roots of A(z) must be inside the unit circle: |ki| < 1, i = 1, ..., N 

z-1 

ki 

-ki z-1 
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θ 

Basic all-pole lattice structures 
 
 
 

• Three-multiplier form 
• Four-multiplier, normalized form 

 
 
 
 
 

N 

∏ cos i 

H ( z ) =     i = 1  

A ( z ) 
 
 

• Four-multiplier, Kelly-Lochbaum form : was first derived as an acoustic tube 
model for speech synthesis. 

 
 
 
 

N 

∏ (1 + 
 
k i ) 

H ( z ) =    i = 1  

A ( z ) 
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ei[n] ei-1[n] 

 
 
 

 
 

e’i[n] (1 - ki
2) e’i-1[n] 

 
ei[n] cos qi ei-1[n] 

 
 
 

e’i[n] cos qi e’i-1[n] 

Three-multiplier form 
 
 
 
 

Four-multiplier, normalized 
form 

 

ei[n] (1 + ki) ei-1[n] 
 
 
 
 

e’i[n] (1 - ki) e’i-1[n] 

Four-multiplier, Kelly- 
Lochbaum form 

-ki ki 

-sin qi sin qi 

-ki ki 



y[n] 
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Section 

N 

 
Section 

e’01[n] 

m m 

 
 
 
 Y ( z ) N c z − i A ( z − 1 )  B ( z ) 

H ( z ) = = ∑ i i = 
X ( z ) i = 0 A ( z ) A ( z ) 

 
B ( z ) = 

 
N 

∑ bm 
m = 0 

N 

 
z − m 

b = c − ∑ c i a ( i ) 
i − m 

i = m + 1 
 
 
 
 

x[n] = eN[n] eN-1[n] eN-2[n] e1[n] e0[n] 

Section 
e’N[n] e’N-1[n] N - 1e’N-2[n] e’1[n] 

 
 

cN cN-1 cN-2 c1 c0 

Lattice Systems with Poles and Zeros 



y[n] 
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z-1 
0.9 3 

z-1 
-0.64 3 

z-1 
0.576 

 
 
 
 
 
 

x[n] y[n] 

 
x[n] 

Example of lattice IIR filter with poles and zeros 

0.576 
-0.576 

-0.182 
0.182 

0.6728 
-0.6728 

z-1 
3.9 z-1 

5.4612 
z-1 
4.5404 
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UNIT-2 
DFS , DFT & FFT 



Fourier representation of signals 
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Fourier representation of signals 
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Fourier representation of signals 
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Discrete complex exponentials 
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Discrete Fourier Series 
• Given a periodic sequence 

~ 

~ 
x [n] 
~ 

with period N so that 
x [n] = x [n + rN ] 

 

• The Fourier series representation can be written as ~ 1 
∑

 
 

 

~ [ ] j (2 π / N )kn x [n] = 
N 

X k e 
k 

 

• The Fourier series representation of continuous-time 
periodic signals require infinite many complex exponentials 

• Not that for discrete-time periodic signals we have 
e j(2 π / N )(k + mN )n = e j(2 π / N )kn e j(2 π mn ) = e j(2 π / N )kn 

• Due to the periodicity of the complex exponential we only 
need N exponentials for discrete time Fourier series 

 

~ 1 N − 1 ~ 
[ ]

 
 

 

 j (2 π / N )kn 

x [n] = ∑ X k e 
N k = 0 
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~ 

Discrete Fourier Series Pair 
• A periodic sequence in terms of Fourier series coefficients 

~ 1 N − 1 ~ 
[ ]

 
 

 

j (2 π / N )kn 

x [n] = ∑ X k e 
N k = 0 

• The Fourier series coefficients can be obtained via 
 

~ [ ] N − 1 
~

  − j (2 π / N )kn 

X k = ∑ 
n = 0 

x [n]e 

• For convenience we sometimes use 
 

• Analysis equation W N 

 
~ [ ] 

= e − j (2 π / N ) 

 
N − 1 kn 

• Synthesis equation 
X k = ∑ 

n = 0 

x [n]W N 

 
 

~ 1 N − 1 ~ 
[ ]

 
 

 

 − kn 

x [n] = ∑ X k W N 
N k = 0 



 

 

Fourier series for discrete-time periodic 
signals 
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(DTFS) 
Discrete-time Fourier series 
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Fourier representation of aperiodic 
signals 
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Discrete-time Fourier transform 
(DTFT) 



Discrete Fourier Transform 
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Discrete Fourier Transform 
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Discrete Fourier Transform 
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Discrete Fourier Transform 
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Discrete Fourier Transform 
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Summary of properties 
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DFT Pair & Properties 
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• The Discrete Fourier Transform pair 
 

X [k ] = 
N − 1 

∑ 
n = 0 

 
x[n]e 

 
− j (2 π / N )kn 

 
x [ n ] = 

1 N − 1 

∑ X 
N k = 0 

[k ]e 
 
j ( 2 π / N ) kn 

 
 
 
 

 



Circular convolution 
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Modulo Indices and Periodic 
Repetition 

 
 
 



185 

 

 

Overlap During Periodic 
Repetition 

 
 
 
 
 
 
 
 
 



Periodic repetition: N=4 
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Periodic repetition: N=4 
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Modulo Indices and the Periodic 
Repetition 

188 

 

 

 
 
 
 
 
 
 
 

 



Modulo Indices and the Periodic 
Repetition 

189 

 

 

 
 
 

 
 
 
 



Modulo Indices and the Periodic 
Repetition 
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Modulo Indices and the Periodic 
Repetition 
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Circular convolution 
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Circular convolution 
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Circular convolution-another 
interpretation 
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Using DFT for Linear 
Convolution 

 
 



Using DFT for Linear Convolution 
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Using DFT for Linear Convolution 
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Using DFT for Linear 
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Convolution 



Using DFT for Linear 
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Convolution 
 
 



Using DFT for cicular 
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Convolution 



Using DFT for cicular 
Convolution 
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Using DFT for cicular 
Convolution 
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Filtering of Long Data Sequences 
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Filtering of Long Data Sequences 
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Over-lap Add 
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Over-lap Add 
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Over-lap Add 
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Over-lap Add 
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Over-lap Add 

209 

 

 

 
 
 
 

 



Over-lap Add 
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Over-lap Add 
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Over-lap save 
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Over-lap save 
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Over-lap save 
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Over-lap save input segment stage 
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Over-lap save input segment stage 
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Over-lap save input segment stage 
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Over-lap save filtering stage 
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Over-lap save output blocks 
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Over-lap save output blocks 
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Over-lap save output blocks 
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Over-lap save 
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Over-lap save 
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Relationships between CTFT, 
DTFT, & DFT 
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Relationships between CTFT, 
DTFT, & DFT 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

225 



Relationships between CTFT, DTFT, 
& DFT 
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Fast Fourier Transform 
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Discrete Fourier Transform 
• The DFT pair was given as 

N − 1 1 N − 1 
( )

 

X [k ] = ∑ 
n = 0 

x[n]e − j (2 π / N )kn x[n] = ∑ 
N k = 0 

X [k ]e j 2 π / N kn 

• Baseline for computational complexity: 
– Each DFT coefficient requires 

• N complex multiplications 
• N-1 complex additions 

– All N DFT coefficients require 
• N2 complex multiplications 
• N(N-1) complex additions 

• Complexity in terms of real operations 
• 4N2 real multiplications 
• 2N(N-1) real additions 

• Most fast methods are based on symmetry properties 
– Conjugate symmetry e − j(2 π / N )k (N − n ) = e − j(2 π / N )kN e − j(2 π / N )k ( − n ) = e j(2 π / N )kn 

– Periodicity in n and k e − j(2 π / N )kn = e − j(2 π / N )k (n + N ) = e j(2 π / N )(k + N )n 



Direct computation of DFT 
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Direct computation of DFT 
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FFT 
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N 

N / 2 

N 

Decimation-In-Time FFT Algorithms 
• Makes use of both symmetry and periodicity 
• Consider special case of N an integer power of 2 
• Separate x[n] into two sequence of length N/2 

– Even indexed samples in the first sequence 
– Odd indexed samples in the other sequence 

 

X [k ] = 
N − 1 

∑ 
n = 0 

x[n]e − j (2 π / N )kn 
N − 1 

= ∑ 
n even 

x[n]e − j (2 π / N )kn 
N − 1 

+ ∑ 
n odd 

x[n]e − j (2 π / N )kn 

 
 

• Substitute variables n=2r for n even and n=2r+1 for odd 
N / 2 − 1 N / 2 − 1 

X [k ] = ∑ 
r = 0 

x[2 r ]W 2 rk + ∑ 
r = 0 

x[2 r + 1]W (2 r + 1 )k 
N 

N / 2 − 1 N / 2 − 1 

= ∑ 
r = 0 

x[2 r ]W rk + k 
N 

r = 0 

x[2 r + rk 
N / 2 

= G [k ] + W k H [k ] 
• G[k] and H[k] are the N/2-point DFT’s of each subsequence 

W 1]W ∑ 
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Decimation In Time 
 

• 8-point DFT example using 
decimation-in-time 

• Two N/2-point DFTs 
– 2(N/2)2 complex multiplications 
– 2(N/2)2 complex additions 

• Combining the DFT outputs 
– N complex multiplications 
– N complex additions 

• Total complexity 
– N2/2+N complex multiplications 
– N2/2+N complex additions 
– More efficient than direct DFT 

• Repeat same process 
– Divide N/2-point DFTs into 
– Two N/4-point DFTs 
– Combine outputs 
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Decimation In Time Cont’d 
• After two steps of decimation in time 

 
 
 
 
 
 
 
 
 
 
 

• Repeat until we’re left with two-point DFT’s 
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Decimation-In-Time FFT Algorithm 
• Final flow graph for 8-point decimation in time 

• Complexity: 
– Nlog2N complex multiplications and additions 
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Butterfly Computation 
• Flow graph constitutes of butterflies 

 
 
 
 
 
 

• We can implement each butterfly with one multiplication 
 
 
 
 
 
 

• Final complexity for decimation-in-time FFT 
– (N/2)log2N complex multiplications and additions 
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In-Place Computation 
• Decimation-in-time flow graphs require two sets of registers 

– Input and output for each stage 

• Note the arrangement of the input indices 
– Bit reversed indexing 

 
 

X 0 [0 ] = x [0 ] ↔ X 0 [000 ] = x [000 ] 
X 0 [1 ] = x [4 ] ↔ X 0 [001 ] = x [100 ] 
X 0 [2 ] = x [2 ] ↔ X 0 [010 ] = x [010 ] 
X 0 [3 ] = x [6 ] ↔ X 0 [011 ] = x [110 ] 
X 0 [4 ] = x [1 ] ↔ X 0 [100 ] = x [001 ] 
X 0 [5 ] = x [5 ] ↔ X 0 [101 ] = x [101 ] 
X 0 [6 ] = x [3 ] ↔ X 0 [110 ] = x [011 ] 
X 0 [7 ] = x [7 ] ↔ X 0 [111 ] = x [111 ] 



Decimation-In-Frequency FFT Algorithm 
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N 

N N N 

N N / 2 

N / 2 

• The DFT equation  
X [k ] = 

 
 
 

N − 1 

∑ 
n = 0 

 
 
x[n]W nk 

• Split the DFT equation into even and odd frequency indexes 
N − 1 N / 2 − 1 N − 1 

X [2 r ] = ∑ x[n]W n 2 r = ∑ x[n]W n 2 r + ∑ x[n]W n 2 r 
n = 0 

• Substitute variables to get 
n = 0 n = N / 2 

 

N / 2 − 1 N / 2 − 1 N / 2 − 1 

X [2 r ] = ∑ 
n = 0 

x[n]W n 2 r + ∑ 
n = 0 

x[n + N / 2 ]W (n + N / 2 )2 r 
N ∑ 

n = 0 

(x[n] + x[n + N / 2 ])W nr 

 
 

• Similarly for odd-numbered frequencies 
N / 2 − 1 

X [2 r + 1 ] = ∑ 
n = 0 

(x[n] − x[n + N / 2 ])W n (2 r + 1 )
 

= 



Decimation-In-Frequency FFT Algorithm 
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• Final flow graph for 8-point decimation in frequency 
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UNIT-3 
IIR filters 
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x [n ] y [n ] 

D/C H(ejω) C/D 

c 

Filter Design Techniques 
• Any discrete-time system that modifies certain frequencies 
• Frequency-selective filters pass only certain frequencies 
• Filter Design Steps 

– Specification 
• Problem or application specific 

– Approximation of specification with a discrete-time system 
• Our focus is to go from spec to discrete-time system 

– Implementation 
• Realization of discrete-time systems depends on target technology 

• We already studied the use of discrete-time systems to implement a 
continuous-time system 
– If our specifications are given in continuous time we can use 

 
xc(t) yr(t) 

 
 

H(e jω ) = H (jω / T ) ω <  π 



Digital Filter Specifications 
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• Only the magnitude approximation problem 
• Four basic types of ideal filters with magnitude responses 

as shown below (Piecewise flat) 
 

 

  



Digital Filter Specifications 
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• These filters are unealisable because (one of the 
following is sufficient) 
– their impulse responses infinitely long non- 

causal 
– Their amplitude responses cannot be equal to a 

constant over a band of frequencies 
Another perspective that provides some 

understanding can be obtained by looking at the 
ideal amplitude squared. 



Digital Filter Specifications 
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• The realisable squared amplitude response transfer 
function (and its differential) is continuous in 

• Such functions ω 
– if IIR can be infinite at point but around that 

point cannot be zero. 
– if FIR cannot be infinite anywhere. 

• Hence previous differential of ideal response is 
unrealisable 



Digital Filter Specifications 
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• For example the magnitude response of a digital 
lowpass filter may be given as indicated below 
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• In the passband 0 ≤ ω ≤ ω p we require 
that G ( e jω ) ≅ 1 with a deviation± δ p 

 

1 − δ p ≤ G ( e jω ) ≤ 1 + δ p , ω ≤ ω p 
 
 
 
 

• In the stopband ω s ≤ ω ≤ π we reδ qs uire 
that G ( e jω ) ≅ 0 with a deviation 

 
 

G ( e jω ) ≤ δ s , ω s ≤ ω ≤ π 

Digital Filter Specifications 
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• ω 

• ω s 

• δ p 

• δ s 

Filter specification parameters 
- passband edge frequency 
- stopband edge frequency 
- peak ripple value in the passband 
- peak ripple value in the stopband 

Digital Filter Specifications 

p 
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• Practical specifications are often given in 
terms of loss function (in dB) 

• G (ω ) = − 20 log 10 G ( e jω ) 
 

• Peak passband ripple 
 

α p = − 20 log 10 (1 − δ p ) dB 
• Minimum stopband attenuation 

α s = − 20 log 10 (δ s ) dB 

Digital Filter Specifications 



 

 

p 

p 

 
 
 
 
 

• In practice, passband edge frequency F and 
stopband edge frequency arFes 

Hz 
specified in 

• For digital filter design, normalized bandedge 
frequencies need to be computed from 
specifications in Hz using Ω 2π F 

ω p = = 
FT 

p = 2π 
FT 

Fp T 

Ω s 
ω s = = 

2π Fs 
= 2π 

 
Fs T 

FT FT 250 

Digital Filter Specifications 
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• Example - Let F p = 7 kHz, Fs = 3 

kHz, and 
• Then 

FT = 25 kHz 

ω p = 
2π ( 7 × 10 3 ) 

3 0 .56 π 
25 × 10 

 

ω s = 
2π ( 3 × 10 3 ) 

3 0 .24 π 
25 × 10 

Digital Filter Specifications 

= 

= 



IIR Digital Filter Design 
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Standard approach 
(1) Convert the digital filter specifications into 

an analogue prototype lowpass filter 
specifications 

(2) Determine the analogue lowpass filter 
transfer function H a ( s ) 

(3) Transform H a ( s ) by replacing the complex 
variable to the digital transfer function 

 

G ( z ) 



IIR Digital Filter Design 
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• This approach has been widely used for the 
following reasons: 
(1) Analogue approximation techniques are 
highly advanced 
(2) They usually yield closed-form 
solutions 
(3) Extensive tables are available for 
analogue filter design 
(4) Very often applications require digital 
simulation of analogue systems 
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• Let an analogue transfer function be 
 

H a ( s ) = 
Pa ( s ) 

 

D a ( s ) 
 

where the subscript “a” indicates the 
analogue domain 

• A digital transfer function derived from this 
is denoted as 

G ( z ) = 
P ( z ) 

 
 

D ( z ) 

IIR Digital Filter Design 
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• Basic idea behind the conversion of H 
a ( s ) intoG ( z ) 

is to apply a mapping from the s-domain to the z- 
domain so that essential properties of the analogue 
frequency response are preserved 

• Thus mapping function should be such that 
– Imaginary (j Ω ) axis in the s-plane be 

mapped onto the unit circle of the z-plane 
– A stable analogue transfer function be mapped 

into a stable digital transfer function 

IIR Digital Filter Design 
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Specification for effective frequency response of a continuous-time lowpass 
filter and its corresponding specifications for discrete-time system. 

 
 

dp or d1 passband ripple 
ds or d2 stopband ripple 
Wp, wp passband edge frequency 
Ws, ws stopband edge frequency 
e2 passband ripple parameter 

 
1 – dp = 1/√1 + e2 

 
BW bandwidth = wu – wl 
wc  3-dB cutoff frequency 
wu, wl upper and lower 3-dB cutoff 

frequensies 
Dw transition band = |wp – ws| 
Ap passband ripple in dB 

= ± 20log10(1 ± dp) 
As stopband attenuation in dB 

= -20log10(ds) 



257 

 

 

Design of Discrete-Time IIR Filters 
 

• From Analog (Continuous-Time) Filters 
– Approximation of Derivatives 
– Impulse Invariance 
– the Bilinear Transformation 
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Reasons of Design of Discrete-Time IIR Filters from 
Continuous-Time Filters 

 
 

• The art of continuous-time IIR filter design is highly advanced and, 
since useful results can be achieved, it is advantageous to use the 
design procedures already developed for continuous-time filters. 

 
• Many useful continuous-time IIR design methods have relatively 

simple closed-form design formulas. Therefore, discrete-time IIR 
filter design methods based on such standard continuous-time design 
formulas are rather simple to carry out. 

 
• The standard approximation methods that work well for continuous- 

time IIR filters do not lead to simple closed-form design formulas 
when these methods are applied directly to the discrete-time IIR case. 
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Characteristics of Commonly Used Analog Filters 
 

• Butterworth Filter 
• Chebyshev Filter 

– Chebyshev Type I 
– Chebyshev Type II of Inverse Chebyshev Filter 
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Butterworth Filter 
 

• Lowpass Butterworth filters are all-pole filters characterized by the magnitude-squared 
frequency response 

 
|H(W)|2 = 1/[1 + (W/Wc)2N] = 1/[1 + e2(W/Wp)2N] 

 
where N is the order of the filter, Wc is its – 3-dB frequency (cutoff frequency), Wp is 
the bandpass edge frequency, and 1/(1 + e2) is the band-edge value of |H(W)|2. 

 
• At W = Ws (where Ws is the stopband edge frequency) we have 

1/[1 + e2(Ws/Wp)2N] = d2
2 

and 
N = (1/2)log10[(1/d2

2) – 1]/log10(Ws/Wc) = log10(d/e)/log10(Ws/Wp) 
where d2= 1/√1 + d22. 

 
• Thus the Butterworth filter is completely characterized by the parameters N, d2, e, and 

the ratio Ws/Wp. 
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c c 

c c 

Butterworth Lowpass Filters 
• Passband is designed to be maximally flat 
• The magnitude-squared function is of the form 

H (jΩ  ) 2 

1 
= 

1 + (jΩ / 
 
jΩ c 

 
)2 N 

H (s ) 2 = 
1 + (s 

1 

/ jΩ c 

 
)2 N 

 
 

 
 

sk = (−  1 )1 / 2 N (jΩ ) = Ω e ( jπ / 2 N )(2 k + N − 1 ) for k =  0,1,...,2N - 1 
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Frequency response of lowpass Butterworth filters 
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N
 
 

Chebyshev Filters 

• The magnitude squared response of the analog lowpass Type I Chebyshev 
filter of Nth order is given by: 

 
|H(W)|2 = 1/[1 + e2T 2(W/W )]. 

where TN(W) is the Chebyshev polynomial of order N: 
TN(W) = cos(Ncos-1 W), |W| ≤ 1, 

= cosh(Ncosh-1 W), |W| > 1. 
 

The polynomial can be derived via a recurrence relation given by 
Tr(W) = 2WTr-1(W) – Tr-2(W), r ≥ 2, 

with T0(W) = 1 and T1(W) = W. 
 

• The magnitude squared response of the analog lowpass Type II or inverse 
Chebyshev filter of Nth order is given by: 

|H(W)|2 = 1/[1 + e2{TN(Ws/Wp)/ TN(Ws/W)}2]. 
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N 

c N 

Chebyshev Filters 
• Equiripple in the passband and monotonic in the stopband 
• Or equiripple in the stopband and monotonic in the passband 

H ( jΩ ) 2 

1 
= 

1 + ε 2 V 2 (Ω / Ω c ) 
V (x ) = cos (N cos − 1 x ) 
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N
 
 

 
 
 
 
 
 

Frequency response of 
lowpass Type I Chebyshev filter 

 
|H(W)|2 = 1/[1 + e2T 2(W/W )] 

 
 
 
 
 
 
 

Frequency response of 
lowpass Type II Chebyshev filter 

 
|H(W)|2 = 1/[1 + e2{TN

2(Ws/Wp)/TN
2(Ws/W)}] 
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2 

 
 
 
 
 
 

N = log10[(√ 1 - d2
2 + √ 1 – d 2(1 + e2))/ed2]/log10[(Ws/Wp) + √ (Ws/Wp)2 – 1 ] 

= [cosh-1(d/e)]/[cosh-1(Ws/Wp)] 
 

for both Type I and II Chebyshev filters, and where 
d2 = 1/ √ 1 + d2. 

 
• The poles of a Type I Chebyshev filter lie on an ellipse in the s-plane with major 

axis r1 = Wp{(b2 + 1)/2b] and minor axis r1 = Wp{(b2 - 1)/2b] where b is related to 
e according to 

b = {[√ 1 + e2 + 1]/e}1/N 

• The zeros of a Type II Chebyshev filter are located on the imaginary axis. 
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2
 
 

k k 

k k 

 
 
 
 
 

Type I: pole positions are 
xk = r2cosfk 
yk = r1sinfk 

fk = [p/2] + [(2k + 1)p/2N] 
r1 = Wp[b2 + 1]/2b 
r2 = Wp[b2 – 1]/2b 

 

b = {[√ 1 + e2 + 1]/e}1/N 

 
Type II: zero positions are 
sk = jWs/sinfk 

and pole positions are 
 

vk = Wsxk/√ x 2 + y 2 
 

wk = Wsyk/√ x 2 + y 2 

 
 

 

Determination of the pole locations 
for a Chebyshev filter. 

b = {[1 + √ 1 – d 2 ]/d }1/N 

 
k = 0, 1, …, N-1. 



268 

 

 

Approximation of Derivative Method 
 

• Approximation of derivative method is the simplest one for converting an 
analog filter into a digital filter by approximating the differential equation by 
an equivalent difference equation. 

– For the derivative dy(t)/dt at time t = nT, we substitute the backward difference 
[y(nT) – y(nT – T)]/T. Thus 

 

 
= 

t = nT 

y ( nT ) − y ( nT 

T 

− T ) 
≅ 

y [ n ] − y [ n 

T 

− 1] 

where T represents the sampling period. Then, s = (1 – z-1)/T 
– The second derivative d2y(t)/dt2 is derived into second difference as follow: 

 
 
 

≅ 
t = nT 

y [ n ] − 2 y [ n − 1 ] + 

T 2 

y [ n − 2 ] 

which s2 = [(1 – z-1)/T]2. So, for the kth derivative of y(t), sk = [(1 – z-1)/T]k. 

dy ( t ) 

dt 

dy ( t ) 

dt 
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Approximation of Derivative Method 
 

• Hence, the system function for the digital IIR filter obtained as a result of the 
approximation of the derivatives by finite difference is 

H(z) = Ha(s)|s=(z-1)/Tz 

 
• It is clear that points in the LHP of the s-plane are mapped into the 

corresponding points inside the unit circle in the z-plane and points in the 
RHP of the s-plane are mapped into points outside this circle. 

– Consequently, a stable analog filter is transformed into a stable digital filter due 
to this mapping property. 

 
 
 
 
 
 

jW 
Unit circle 

 
 
 

s 
 
 

s-plane 

z-plane 
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Example: Approximation of derivative method 
 
 

Convert the analog bandpass filter with system function 
Ha(s) = 1/[(s + 0.1)2 + 9] 

Into a digital IIR filter by use of the backward difference for the derivative. 
 

Substitute for s = (1 – z-1)/T into Ha(s) yields 
H(z) = 1/[((1 – z-1)/T) + 0.1)2 + 9] 

 
 

 
H ( z ) = 

T 2 
 

1 + 0 .2 T + 9 .01 T 2 
 

1 − 2 ( 1 + 0 .1 T ) 

1 + 0 .2 T + 9 .01 T 2 
z − 1 + 1 

1 + 0 .2 T + 9 .01 T 2 
z − 2 

T can be selected to satisfied specification of designed filter. For example, if T = 0.1, 
the poles are located at 

p1,2 = 0.91 ± j0.27 = 0.949exp[± j16.5o] 



271 

 

 

 k 

c 

 

 

 

Filter Design by Impulse Invariance 
• Remember impulse invariance 

– Mapping a continuous-time impulse response to discrete-time 
– Mapping a continuous-time frequency response to discrete-time 

h [n ] = T dh c (nT 
 

H (e jω ) = 
∞ 

∑ H 
k = −∞ 

 ω 2 π  
c 

 j +  j  
 Td T d  

 

• If the continuous-time filter is bandlimited to 

H ( jΩ ) = 0 

jω  ω  

Ω ≥ π / T d 

H (e ) = H c  j 
 

 
T d  

ω ≤ π 

 

• If we start from discrete-time specifications Td cancels out 
– Start with discrete-time spec in terms of ω 
– Go to continuous-time Ω= ω /T and design continuous-time filter 
– Use impulse invariance to map it back to discrete-time ω= ΩT 

• Works best for bandlimited filters due to possible aliasing 

) 
d 
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k 

c 

N 

c 

Impulse Invariance of System Functions 
• Develop impulse invariance relation between system functions 
• Partial fraction expansion of transfer function 

H (s ) = ∑ 
A k

 

k = 1 s − s k 

• Corresponding impulse response 
 N 

h (t ) = 
 ∑ 
k = 1 

 

A e s k t 

 
0 

t ≥  0 
 

t <  0 
• Impulse response of discrete-time filter 

 

N [ ] ( ) N s k nT d [ ] (  s k T d  )n 
[  ] 

h n = T dh c nT d = ∑ T d A k e u n = ∑ T d A k   e u n 

• System function k = 1 
 
 

N ( ) 
 

T d A k 

k = 1 

H z = ∑ 
k = 1 1 − e s k T d z − 1 

• Pole s=sk in s-domain transform into pole at e s k T d 
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• Step 1: define specifications of filter 
– Ripple in frequency bands 
– Critical frequencies: passband edge, stopband edge, and/or cutoff frequencies. 
– Filter band type: lowpass, highpass, bandpass, bandstop. 

• Step 2: linear transform critical frequencies as follow 
W = w/Td 

• Step 3: select filter structure type and its order: Bessel, Butterworth, Chebyshev 
type I, Chebyshev type II or inverse Chebyshev, elliptic. 

• Step 4: convert Ha(s) to H(z) using linear transform in step 2. 
• Step 5: verify the result. If it does not meet requirement, return to step 3. 

Impulse Invariant Algorithm 
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a 

Example: Impulse invariant method 
 
 

Convert the analog filter with system function 
Ha(s) = [s + 0.1]/[(s + 0.1)2 + 9] 

into a digital IIR filter by means of the impulse invariance method. 
 

The analog filter has a zero at s = - 0.1 and a pair of complex conjugate poles at pk = - 0.1 ± j3. 
Thus, 

H (s ) = 
1 1  

  2 + 2  

s + 0 .1 − j 3 s + 0 .1 + j 3 
 
 
 
 

Then H ( z ) = 

 
1 1  

  2 + 2  

1 − e − 0 .1 T e j 3 T  z − 1 1 − e − 0 .1 T e − j 3 T z − 1 
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Frequency response 
of digital filter. 

 
 
 
 
 
 
 

Frequency response 
of analog filter. 
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Disadvantage of previous 
techniques: frequency 
warping  aliasing effect 
and error in specifications 
of designed filter (frequencies) 
So, prewarping of frequency 
is considered. 

 

∞ 
 
 
 
 
 
 
 

∞ 
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c c 

c 

Example 
• Impulse invariance applied to Butterworth 

0 . 89125 ≤ H (e jω ) ≤ 1 0 ≤ ω ≤ 0 . 2 π 

H (e jω ) ≤ 
 
0.17783 

 
0 . 3 π ≤ 

 
ω ≤ π 

• Since sampling rate Td cancels out we can assume Td=1 
• Map spec to continuous time 

 
 

0 . 89125 ≤ H ( jΩ ) ≤ 1 
 

0 ≤ Ω 
 

≤ 0 . 2 π 

H ( jΩ ) ≤ 0.17783 0 . 3 π ≤ Ω ≤  π 

• Butterworth filter is monotonic so spec will be satisfied if 
H (j0 .2 π ) 

 
≥  0 .89125 

 
and H (j0 .3 π ) 

 
≤ 0.17783 

H (jΩ  ) 2 

1 
= 

1 + (jΩ / 
 
jΩ c 

 
)2 N 

• Determine N and Ωc to satisfy these conditions 
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Ω Ω 

c c 

Example Cont’d 
• Satisfy both constrains 

2 N 2 
 0 . 2 π   1  1 +   =   

 and 
2 N 2 

 0 . 3 π   1  1 +   =   
 

  

  
 c   0 . 89125  

  
 c   0 . 17783  

• Solve these equations to get 
N = 5 . 8858 ≅  6 and Ω c   = 0 . 70474 

• N must be an integer so we round it up to meet the spec 
• Poles of transfer function 

sk = (−  1 )1 / 12 (jΩ ) = Ω e ( jπ / 12 )(2 k + 11 ) for k = 0,1,...,11 
• The transfer function 

H (s ) = 0 . 12093 

(s 2 + 0 . 364 s + 0 . 4945 )(s 2 + 0 . 9945 s + 0 . 4945 )(s 2 + 1 . 3585 s + 0 . 4945 ) 
• Mapping to z-domain 

 

H (z ) = 0 . 2871 − 0 . 4466 z − 1 − 2 . 1428 
+ + 1 . 1455 z − 1 

1 − 1 . 2971 z − 1 + 0 . 6949 z − 2 1 − 1 . 0691 z − 1 + 0 . 3699 z − 2 

1 . 8557 
+ − 0 . 6303 z − 1 

1 − 0 . 9972 z − 1 + 0 . 257 z − 2 
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Example Cont’d 
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1 

 

 

 

d 

Filter Design by Bilinear Transformation 
• Get around the aliasing problem of impulse invariance 
• Map the entire s-plane onto the unit-circle in the z-plane 

– Nonlinear transformation 
– Frequency response subject to warping 

• Bilinear transformation 

s = 
 

• Transformed system function 

2   1 − 
 

T d  + 

z − 1  
 

− 1  
 

 

H (z ) =  2 H c  
 1 −  z − 1   

  
 

 

 T d  

 
 

− 1  
  

• Again Td cancels out so we can ignore it 
• We can solve the transformation for z as 

1 + (T / 2 )s 1 + σ T / 2 + jΩ T / 2 
z =   d =   d d  s =  σ  +  jΩ 

1 − (T / 2 )s 1 − σ T d / 2 − jΩ T d / 2 
 

• Maps the left-half s-plane into the inside of the unit-circle in z 
– Stable in one domain would stay in the other 

1 

z 

+ z 
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 
 

 

Bilinear Transformation 
• On the unit circle the transform becomes 

z = 
1 + jΩ T d / 2 

1 − jΩ T d / 2 

 
= e jω 

 
 

• To derive the relation between ω and Ω 
2   1 − e − jω    2  2 e − jω / 2 j sin (ω / 2 )  2 j  ω  

s =  
Td  

 
+ e − jω     

Td   2 e 
 
− jω / 2 

 
cos (ω / 

= 

2 )  
tan   

Td  2  
 

• Which yields 

Ω = 

 
 

2 
tan 

 
 ω  
  or 

 
 

ω  = 2 

 
 
arctan 

 
 Ω Td  
  

Td  2   2  

1 
= σ + j

 
= 
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Bilinear Transformation 
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c 

c 

 
Ω Ω 

Example 
• Bilinear transform applied to Butterworth 

0 . 89125 ≤ H (e jω ) ≤ 1 0 ≤ ω ≤ 0 . 2 π 

H (e jω ) ≤ 
 
0.17783 

 
0 . 3 π ≤ 

 
ω ≤ π 

• Apply bilinear transformation to specifications 
 

0 . 89125 ≤ H ( jΩ ) ≤ 1 
 

0 ≤ Ω ≤ 
2 

tan 
 0 . 2 π  
  

 
H ( jΩ ) 

 
 
≤ 0.17783 

 
2 

tan 

T d 

 0 . 3 π  
  

 2  
 
≤ Ω < ∞ 

T d  2  

• We can assume Td=1 and apply the specifications to 
 

 
• To get 

H (jΩ  ) 2 

1 
= 

1 + (Ω / 

 
Ω )2 N 

 
 

 2 1 +  tan 
2 N 

0 . 1 π   1  =  
2  

and  2 1 +  tan 
2 N 2 

0 . 15 π   1   =   
 

 

  
 c  

 

 0 . 89125  
  
 c   0 . 17783  
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c 

c c 

− 
 

− 
 

c 

• 
Solve N and Ω

Example Cont’d 
 

 
log 

  1 
  

2    1 
 1    

2   
 1   

  0 . 17783     0 . 89125    
       Ω = 0 . 766 

N = 
2 log [tan (0 . 15 π ) tan (0 . 1 π )] 

= 5 . 305 ≅  6 c 

• The resulting transfer function has the following poles 
sk = (−  1 )1 / 12 (jΩ ) = Ω e ( jπ / 12 )(2 k + 11 ) for k = 0,1,...,11 

• Resulting in 
H (s ) = 

(s 2
  

+ 0 . 3996 
 
s + 0 . 5871 )(s 2 

0 . 20238 

+ 1 . 0836 s + 0 . 5871 )(s 2 
 
+ 1 . 4802 s + 0 . 5871 ) 

 

• Applying the bilinear transform yields 
0 . 0007378 (1 + z − 1 )6 

H (z ) = 

 
× 

(1 − 

 
(1 − 

 
1 . 2686 
 
 
0 . 9044 

 
z − 1 + 

1 

z − 1 + 

 
0 . 7051 
 
 
0 . 2155 

z − 2 )(1 

z − 2 ) 

 
− 1 . 0106 

 
z − 1 

 
+ 0 . 3583 z − 2 ) 
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Example Cont’d 
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• To obtain G(z) replace s by f(z) in H(s) 
• Start with requirements on G(z) 

 
 

G(z) Available H(s) 
Stable Stable 
Real and Rational in z Real and Rational 

in s 
Order n Order n 
L.P. (lowpass) cutoffΩ 

c 
L.P. cutoff ω T 

c 

IIR Digital Filter: The bilinear 
transformation 



287 

 

 

 
 
 
 

• Mapping of s-plane into the z-plane 
 
 
 
 
 
 

Bilinear Transformation 



Bilinear Transformation 
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• For z = e jω with unity scalar we have 

j Ω = 1 − 
1 + 

− jω 
= 

e − jω 
j tan( ω 

 
/ 2 ) 

 

or Ω = tan( ω / 2 ) 
 
 

 

e 



Bilinear Transformation 
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• Mapping is highly nonlinear 
• Complete negative imaginary axis in the s- 

plane from Ω = −∞ to Ω = 0 is mapped into 
the lower half of the unit circle in the z-plane 
from z = − 1 to z = 1 

 

• Complete positive imaginary axis in the s- 
plane from Ω = 0 toΩ = ∞ is mapped into the 
upper half of the unit circle in the z-plane 
from z = 1 toz = − 1 



Bilinear Transformation 

290 

 

 

 

• Nonlinear mapping introduces a distortion 
in the frequency axis called frequency 
warping 

• Effect of warping shown below 
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Spectral Transformations 
 
 
 

• To transform G L ( z ) a given lowpass transfer 
function to another transfer function G D ( ẑ ) 
that may be a lowpass, highpass, bandpass or 
bandstop filter (solutions given by 
Constantinides) 

• z −1 has been used to denote the unit delay in 
the prototype lowpass filter G L ( z ) and ẑ −1 

to denote the unit delay in the transformed 
filter G D ( ẑ ) to avoid confusion 



Spectral Transformations 

292 

 

 

 
 

• Unit circles in z- and ẑ -planes defined by 
z = e jω , ẑ = e j ω  ̂

• Transformation from z-domain to 
 

ẑ -domain given by 
 
 
 
 

• Then  
z = F 

 
( ẑ ) 

 
 

G D ( ẑ ) = G L { F ( ẑ )} 



Spectral Transformations 
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= 

<  

 
 

• From z = F ( ẑ ) , thusz = F ( ẑ ) , hence 
 

 > 1, 
 

F ( ẑ )  1, 

 1, 

if z > 1 

if z = 1 

if z < 1 

• Therefore1 / F ( ẑ ) must be a stable allpass function 
 
 

1 L  1 − α * ẑ  
= ± ∏  𝑙𝑙  , α 𝑙𝑙 < 1 

F ( ẑ ) 𝑙𝑙 =1  ẑ − α 𝑙𝑙  



Lowpass-to-Lowpass 
Spectral Transformation 
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c 

1 

L 

− 
  

• To transform a lowpass filterG ( z ) with a cutoff 
frequency ω c to another lowpass filter G D ( ẑ ) 
with a cutoff frequency ω̂ , the transformation is 

 

z − 1 = 
1 = 

1 − α ẑ 

F ( ẑ ) ẑ − α 
 

• On the unit circle we have 
− j ω  ̂

e − jω =   e − α   

which yields 
1 − α e − j ωˆ 

tan( ω / 2 ) = 
 1 + α 

 α 

 tan( 
 

ω̂ / 2 ) 



Lowpass-to-Lowpass 
Spectral Transformation 

 

 

• Solving we get sin ((ω − ω̂ ) / 2 ) 
α = c c  

sin ((ω c + ω̂ c ) / 2 ) 
• Example - Consider the lowpass digital filter 

 

 
G L ( z ) = 

0 .0662 
−1 

(1 + z −1 ) 3 

−1 − 2 
(1 − 0 .2593 z )( 1 − 0 .6763 z + 0 .3917 z ) 

which has a passband from dc to 
a 0.5 dB ripple 

0 . 25 π with 

• Redesign the above filter to move the 
passband edge to 

0 . 35 π 295 



Lowpass-to-Lowpass 
Spectral Transformation 

 

 

• Here  
α = − sin( 0 .05 π ) 

= 
 
− 0 .1934 

sin( 0 .3π ) 
• Hence, the desired lowpass transfer function is 

 

G D ( ẑ ) = G L ( z )  z − 1 = ẑ  − 1 + 0 .1934 

1 + 0 .1934 ẑ  − 1 

 
 

0 
 

-10 
 

-20 
 

-30 
 

-40 
0 0.2 0.4 0.6 0.8 1 

ω/π 
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G (z) 
L 

G (z) 
D 

G
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Lowpass-to-Lowpass 
Spectral Transformation 
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• The lowpass-to-lowpass transformation 
 

z − 1 = 
1 = 

1 − α ẑ 

F ( ẑ ) ẑ − α 
 

can also be used as highpass-to-highpass, 
bandpass-to-bandpass and bandstop-to- 
bandstop transformations 



Lowpass-to-Highpass 
Spectral Transformation 
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• Desired transformation 
 

z −1 = − ẑ −1 
+ α 

 
 

1 + α ẑ −1 

• The transformation parameter α is given by 
 

α = − 
cos 

cos 

((ω c 

((ω c 

+ ω̂ c ) / 2 ) 
− ω̂ c ) / 2 ) 

where ω c is the cutoff frequency of the lowpass 
filter and ω̂ c is the cutoff frequency of the desired 
highpass filter 



Lowpass-to-Highpass 
Spectral Transformation 
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• Example - Transform the lowpass filter 

G L ( z ) = 
0 .0662 

−1 
(1 + z −1 ) 3 

−1 − 2 
(1 − 0 .2593 z )( 1 − 0 .6763 z + 0 .3917 z ) 

 

• with a passband edge at 0 . 25 π to a highpass 
filter with a passband edge at 0 . 55 π 

 

• Here α = − cos( 0 .4π ) / cos( 0 .15 π ) = − 0 .3468 
 

• The desired transformation is 
z −1 = − ẑ −1 − 0 .3468 

1 − 0 .3468 ẑ −1 



Lowpass-to-Highpass 
Spectral Transformation 
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• The desired highpass filter is 
 

G D ( ẑ ) = G ( z )  z −1 = − zˆ − 1 
− 0 .3468 

 
 

1− 0 .3468 ẑ  − 1 

 

0 

−20 

−40 

−60 

−80 

 

 

0 0.2π 0.4π 0.6π 0.8π π 
Normalized frequency 

G
ai

n,
 d

B
 



Lowpass-to-Highpass 
Spectral Transformation 
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• The lowpass-to-highpass transformation can 
also be used to transform a highpass filter with 
a cutoff at ω c to a lowpass filter with a cutoff 
at ω̂ c 

• and transform a bandpass filter with a center 
frequency at ω o to a bandstop filter with a 
center frequency at ω̂ o 
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• Desired transformation 
 
 

ẑ − 2 − 2αβ 
ẑ 

−1 + 
β − 1 

z −1 = − β − 1 
β + 1 β + 1 

2αβ 
 
 

 

β + 1 
ẑ − 2 − 

β 
ẑ −1 + 1 

+ 1 

Lowpass-to-Bandpass 
Spectral Transformation 



Lowpass-to-Bandpass 
Spectral Transformation 
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• The parameters α and β are given by 
 
 

α = 
cos 

cos 

((ωˆ c 2 

((ωˆ c 2 

+ ω̂ c 1 ) / 2 ) 
− ω̂ c 1 ) / 2 ) 

 

β = cot ((ωˆ c 2 − ω̂ c 1 ) / 2 ) tan( ω c / 2 ) 

where ω c is the cutoff frequency of the lowpass 
filter, and ω̂ c 1 and ω̂ c 2 are the desired upper and 
lower cutoff frequencies of the bandpass filter 



Lowpass-to-Bandpass 
Spectral Transformation 
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• Special Case - The transformation can be 
simplified if ω c = ω̂ c 2 − ω̂ c 1 

• Then the transformation reduces to 
− ẑ −1 

− α 
z 1 = − ẑ −1     

1 − α ẑ −1 

where α = cos ω̂ o with ω̂ o denoting the 
desired center frequency of the bandpass filter 



Lowpass-to-Bandstop 
Spectral Transformation 
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• Desired transformation 
 
 
 
 
 

ẑ − 2 − 2αβ 
ẑ −1 + 

1 − β 

z −1 = 1 + β 1 + β 
1 − β 

ẑ − 2 − 2αβ ẑ −1 + 1 
1 + β 1 + β 



Lowpass-to-Bandstop 
Spectral Transformation 
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• The parameters α and β are given by 

α = 
cos 

cos 

((ωˆ c 2 

((ωˆ c 2 

+ ω̂ c 1 ) / 2 ) 
− ω̂ c 1 ) / 2 ) 

β = tan ((ωˆ c 2 − ω̂ c 1 ) / 2 ) tan( ω c / 2 ) 
where ω c is the cutoff frequency of the 
lowpass filter, and ω̂ c 1 and ω̂ c 2 are the desired 
upper and lower cutoff frequencies of the 
bandstop filter 
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UNIT-4 
FIR Filters 



 

 

− 1 − 2 

− 1 − 2 

Selection of Filter Type 
 
 
 
 
 
 

• The transfer function H(z) meeting the 
specifications must be a causal transfer 
function 

• For IIR real digital filter the transfer 
function is a real rational function of z − 1 

 

 
H ( z ) = p 0 + p1 z + p 2 z +  + p M z 

d 0 + d 1 z + d 2 z +  + d N z − N 

• H(z) must be stable and of lowest order N or 
M for reduced computational complexity 

 
 
 
 

308 

− M 
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Selection of Filter Type 
 

• FIR real digital filter transfer function is a 
polynomial in 
coefficients 

z − 1 (order N) with real 
N 

H ( z ) = ∑ 
n = 0 

h [ n ] z − n 

• For reduced computational complexity, degree N 
of H(z) must be as small as possible 

• If a linear phase is desired then we must have: 
 
 
 

h [ n ] = ± h [ N − n ] 
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Selection of Filter Type 
• Advantages in using an FIR filter - 

(1) Can be designed with exact linear phase 
(2) Filter structure always stable with quantised 
coefficients 

• Disadvantages in using an FIR filter - Order of an 
FIR filter is considerably higher than that of an 
equivalent IIR filter meeting the same 
specifications; this leads to higher computational 
complexity for FIR 



 

 

FIR Filter Design 
Digital filters with finite-duration impulse response (all-zero, or FIR filters) 
have both advantages and disadvantages compared to infinite-duration 
impulse response (IIR) filters. 

FIR filters have the following primary advantages: 
 

• They can have exactly linear phase. 
• They are always stable. 
• The design methods are generally linear. 
• They can be realized efficiently in hardware. 
• The filter startup transients have finite duration. 

 

The primary disadvantage of FIR filters is that they often require a much 
higher filter order than IIR filters to achieve a given level of performance. 
Correspondingly, the delay of these filters is often much greater than for an 
equal performance IIR filter. 



312 

 

 

FIR Digital Filter Design 

 

 
 

Three commonly used approaches to FIR 
filter design - 
(1) Windowed Fourier series approach 
(2) Frequency sampling approach 
(3) Computer-based optimization methods 

FIR Design 
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• The transfer function is given by 
 

N − 1 
− n

 
H ( z ) = ∑ 

n = 0 

h ( n ). z 

 

• The length of Impulse Response is N 
 

• All poles are at z = 0. 
 

• Zeros can be placed anywhere on the z- 
plane 

Finite Impulse Response Filters 
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For phase linearity the FIR transfer 
function must have zeros outside the 

unit circle 

FIR: Linear phase 
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Linear Phase 
• What is linear phase? 
• Ans: The phase is a straight line in the passband of 

the system. 
• Example: linear phase (all pass system) 
• I Group delay is given by the negative of the slope 

of the line 
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Linear phase 

• linear phase (low pass system) 
• Linear characteristics only need to pertain to 

the passband frequencies only. 
 
 
 
 
 



FIR: Linear phase 
 

 

N 
2 − 1 

N 
2 −1 

 
 
 

• For Linear Phase t.f. (order N-1) 
 

• h ( n ) = ± h ( N − 1 − n ) 

• so that for N even: 
 
 

N − 1 

H ( z ) = 
 

 
= 

∑ 
n = 0 

 
 
 

∑ 
n = 0 

h ( n ). z − n ± 

 
 
h ( n ). z − n  ± 

∑ 
n = N 

 
 

∑ 
n = 0 

h ( n ). z − n 

2 
 
 

h ( N − 1 − 

 
 
 
 
n ). 

 
 
 
z − ( N 

 
 
 
 
 
−1 − n ) 

 

= ∑ 
n = 0 

h ( n ) [z − n  ± z − m ] m = N − 1 − n 
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FIR: Linear phase 
 

 

 

  

n  

 
 
 

• for N odd: 
 
 

N − 1 
− 1

 
 

 N − 1  

H ( z ) = 
2 
∑ 

n = 0 
h ( n ). [z − n ± z − m ]+ 

 N − 
 
 2 

1  −  
2 

 

 z 
 

 

• I) On C : z = 1 we have for N even, and 
+ve sign  

− jω T 
 
 
N − 1  N − 1 

 

H ( e jω T ) = e   
 2  . 

2 
∑ 

n = 0 

2 h ( n ). cos 
 

ω T 
 

− 
  

N − 1   
  

2   
318 

h 



 

 

 n  

n ω T 
 

 

 
 
 

• II) While for –ve sign 
 

− jω T 

 N − 1  N − 1 
 

H ( e jω T  ) = e   
 2  . 

2 
∑ 

n = 0 

j 2 h ( n ). sin 
 

ω T 
 

− 
  

N − 1   
  

2   

• [Note: antisymmetric case adds π / 2 rads to 
phase, with discontinuity atω 

• III) For N odd with +ve sign 
= 0 ] 

− jω T  N − 1  
 

 

N − 1 
H ( e jω T  ) = e  2    

h      
   
  2  

N − 3  
 

2 

+ ∑ 
n = 0 

2 h ( n ). cos 
  

 
 − 

N − 1    
   

2   
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 n ω T 
 

 
 

• IV) While with a –ve sign 
 

 N −1  
 

 

 N − 3  
 

H ( e jω T  ) = − jω T 

 

e 2
 

 2 

 ∑ 2 

 n = 0 

j .h ( n ). sin 
  

 
 − 

N − 1    
   

2   
 

 

• [Notice that for the antisymmetric case to have 
linear phase we require 

 

 N − 1  
  = 0 . 
 2  

 

The phase discontinuity is as for N even] 

h 



FIR: Linear phase 
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• The cases most commonly used in filter 
design are (I) and (III), for which the 
amplitude characteristic can be written as a 
polynomial in 

 

ω T 
cos 

2 



 

 

Summary of Properties 
K 

H (ω ) = e jω 0 e − jω N / 2 F (ω )∑ a k 

k = 0 

cos (k ω ) 
 
 
 
 

Type I II III IV 
Order N even odd even odd 
Symmetry symmetric symmetric anti-symmetric anti-symmetric 
Period 2π 4π 2π 4π 

ω0 0 0 π/2 π/2 
F(ω) 1 cos(ω/2) sin(ω) sin(ω/2) 
K N/2 (N-1)/2 (N-2)/2 (N-1)/2 
H(0) arbitrary arbitrary 0 0 
H(π) arbitrary 0 0 arbitrary 
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(i) Start with ideal infinite duration {h ( n )} 
 

(ii) Truncate to finite length. (This produces 
unwanted ripples increasing in height near 
discontinuity.) 

(iii) Modify to ~ 
h ( n ) = h ( n ). w ( n ) 

 

Weight w(n) is the window 

Design of FIR filters: Windows 
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d  

 

• Simplest way of designing FIR filters 
• Method is all discrete-time no continuous-time involved 
• Start with ideal frequency response 

( jω ) ∞ [ ] − jω n 
 

 

[ ] 1 
 

 

( jω )  jω n 

H d e = ∑ h d n e 
n = −∞ 

h d n = 
2 π ∫ H d e e d ω 

− π 

• Choose ideal frequency response as desired response 
• Most ideal impulse responses are of infinite length 
• The easiest way to obtain a causal FIR filter from ideal is 

 
 

h [n ] = 
h [n ] 0 ≤ n ≤ M 
 

• More generally 
 0 else 

 
 

h [n ] = h [n ]w [n ] 
 

where w [n ] = 
1

 0 ≤ n ≤ M 

0 else 

π 

Design of FIR filters: Windows 
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Properties of Windows 
• Prefer windows that concentrate around DC in frequency 

– Less smearing, closer approximation 

• Prefer window that has minimal span in time 
– Less coefficient in designed filter, computationally efficient 

• So we want concentration in time and in frequency 
– Contradictory requirements 

• Example: Rectangular window 
( jω ) M − jω n 1 − e − jω (M + 1 )  − jω M / 2 sin [ω (M + 1 ) / 2 ] 

W e = ∑ e 
n = 0 

= =  e 
1 − e − jω sin [ω / 2 ] 
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Windowing distortion 

• increasing window length generally reduces the 
width of the main lobe 

• peak of sidelobes is generally independent of M 
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Commonly used windows 
• Rectangular 1 
• Bartlett 1 −

 

 

n < 
N 

 2 π n  

 
N − 1 

 
 

2 

• Hanning 
• Hamming 

1 + cos  
 N 

   2 π n  
 0 .54 

• 
+ 0 .46 cos   

 N  

• Blackman 
• 

0 .42 + 

 
 

0 .5 cos 
 2 π n  
  
 N  

 

0 .08 cos 
 4 π n  
  
 N  

• Kaiser J 0   β 
 

 J 0 ( β ) 
 

Windows 

2 n 

1 − 


  
2 n  

2 

 N − 1  
 

+ 
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 

Rectangular Window 
• Narrowest main lob 

– 4π/(M+1) 
– Sharpest transitions at 

discontinuities in frequency 
 

• Large side lobs 
– -13 dB 
– Large oscillation around 

discontinuities 
 

• Simplest window possible 
 

w [n ] = 
1

 
 0 

0 ≤ n ≤ M 

else 
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 

0  

Bartlett (Triangular) Window 
• Medium main lob 

– 8π/M 

 
• Side lobs 

– -25 dB 

 
• Hamming window 

performs better 
• Simple equation 

 

 2 n / M 0 ≤ n ≤ M / 2 

w [n ] = 

 − 2 n / M M / 2 ≤ n ≤ M 

 else 

2 



Hanning Window 
• Medium main lob 

– 8π/M 
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• Side lobs 
– -31 dB 

 
• Hamming window performs 

better 
 

• Same complexity as 
Hamming 

 

 
w [n ] = 

 1  
 1 − 

 
cos 

 2 π n   
   

 
0 ≤ n ≤ M 

 2  
 
 

 M   
0 

 
else 



Hamming Window 
Medium main lob 
– 8π/M 

• 
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• Good side lobs 
– -41 dB 

 
• Simpler than Blackman 

 
 

 
w [n ] = 

 
 0 . 54 

 
− 0 . 46 

 
cos 

 2 π n  
  

 
0 ≤ n ≤ M 

  M  
 
 

 
else 0 



Blackman Window 
• Large main lob 

– 12π/M 
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0  

 
 

• Very good side lobs 
– -57 dB 

 
 

• Complex equation 
 

 
 

 2 π n  

 
 

 4 π n  

w [n ] = 
 0 . 42 
 

− 0 . 5 cos  
 M 

 + 0 . 08 
 

cos   
 M  

0 ≤ n ≤ M 

 else 
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I 

Kaiser Window Filter Design Method 
• Parameterized equation 

forming a set of windows 
– Parameter to change main-lob 

width and side-lob area trade-off 
 

  
 n − M / 2  

2 
 

 I  β 1 −     
w [n ] = 

 
  M / 2   

   0 ≤  n ≤  M 
 (β ) 
 0 

 0 else 
 
 

– I0(.) represents zeroth-order 
modified Bessel function of 1st 

kind 
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Comparison of windows 
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• Kaiser window 
 

β Transition 
width (Hz) 

Min. stop 
attn dB 

2.12 1.5/N 30 

4.54 2.9/N 50 

6.76 4.3/N 70 

8.96 5.7/N 90 

Kaiser window 



 

 

 
 

 
 
 

• Lowpass filter of length 51 and ω c = π / 2 
 

Lowpass Filter Designed Using Hann window 
0 

Lowpass Filter Designed Using Hamming window 
0 

 
 

-50 -50 
 
 

-100 -100 
 

0 0.2 0.4 0.6 0.8 1 
ω/π 

0 0.2 0.4 0.6 0.8 1 
ω/π 

Lowpass Filter Designed Using Blackman window 
0 

 
 
 

-50 
 
 
 

-100 
 

0 0.2 0.4 0.6 0.8 1 
ω/π 

336 

Example 



 

 

 

 
 
 

• In this approach we are given H ( k ) and 
need to find H ( z ) 

 

• This is an interpolation problem and the 
solution is given in the DFT part of the 
course 

1 N − 1 1 − z − N 
H ( z ) = 

N 
∑ H 

k = 0 
( k ). 

1 − 

 
2 π 

j k 
e N . z −1 

 

• It has similar problems to the windowing 
approach 
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Frequency Sampling Method 
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p 

 
 
 
 
 
 

Kaiser’s Formula: 
 
 

N ≅ 
14 .6 (ω 

+ 1 
− ω ) / 2 π 

 

• ie N is inversely proportional to transition 
band width and not on transition band 
location 

FIR Digital Filter Order Estimation 

− 20 log 10 ( δ δ ) − 13 p s 

s 
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UNIT-5 
Multirate signal processing & 

Finite Word length Effects 
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Single vs Multirate Processing 
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Basic Multirate operations: Decimation 
and Interpolation 
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M-fold Decimator 
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d c 

Sampling Rate Reduction by an Integer Factor: 
Downsampling 

• We reduce the sampling rate of a sequence by “sampling” it 
x [n ] = x [nM ] = x (nMT ) 

 
 

• This is accomplished with a sampling rate compressor 
 
 
 

 
• We obtain xd[n] that is identical to what we would get by 

reconstructing the signal and resampling it with T’=MT 
• There will be no aliasing if 

 
π π 

= 
T ' MT 

> Ω N 



Frequency Domain Representation of Downsampling 

344 

 

 

d j j 

d 

− 

d 

  

 

• Recall the DTFT of x[n]=xc(nT) 

X (e jω ) = 
1 ∞ 

∑ 
T k = −∞ 

 
X c  

 

 ω 2 π k   
   
 T T   

• The DTFT of the downsampled signal can similarly written as 
 

X (e jω ) = 
1
 

∞   ω 
∑ X c   

2 π r   1 
−   = 

∞   ω 
∑ X c   

2 π r   
−   

T ' r = −∞   T ' T '   MT r = −∞   MT MT   

• Let’s represent the summation index as 

r = i + kM where - ∞ < k <  ∞ and 0 ≤  i <  M 

1 M − 1  1 ∞   ω 2 π k 2 π i    

X (e jω ) = 

• And finally 
∑  

M i = 0  
∑ 

r = −∞ 

X c  
 

j − 
 MT T 

−    
MT    

1 M − 1  j
 ω 

− 
2 π i   

 
  

X (e jω ) = ∑ 
M i = 0 

X  e  M 
 
 

M     
 
 

j 

T 



Frequency Domain Representation of Downsampling 
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Aliasing 
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Frequency Domain Representation of Downsampling w/ Prefilter 
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Decimation filter 
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L-fold Interpolator 
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Increasing the Sampling Rate by an Integer Factor: 
Upsampling 

• We increase the sampling rate of a sequence interpolating it 
x [n ] = x [n / L ] = x (nT / L ) 

 

• This is accomplished with a sampling rate expander 
 

• We obtain xi[n] that is identical to what we would get by 
reconstructing the signal and resampling it with T’=T/L 

• Upsampling consists of two steps 
– Expanding 

[ ]  x [n / L ] n = 0 ,∓ L ,∓ 2L ,... ∞ [ ] [ ] 
x e n =  

 0 
 

else 
= ∑ x k δ n − kL 

k = −∞ 
 

– Interpolating 
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Frequency Domain Representation of Expander 
• The DTFT of xe[n] can be written as 

( jω ) 
∞  ∞ 

[ ] [ ]  − jω n ∞ [ ] − jω Lk ( jω L ) 
X e e = ∑   ∑ x k δ n − kL  e = ∑ x k e =  X e 

n = −∞  k = −∞  k = −∞ 

• The output of the expander is frequency-scaled 
 

 

 
 



 

 

Input-output relation on the Spectrum 
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Periodicity and spectrum images 
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Frequency Domain Representation of Interpolator 

• The DTFT of the desired interpolated signals is 
 

• The extrapolator output is given as 
 

• To get interpolated signal we apply the following LPF 
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Interpolation filters 
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Fractional sampling rate convertor 
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Fractional sampling rate convertor 



 

 

Interpolator Decimator 

x[n] xe[n] xi[n] xo[n] xd[n] 
M 

 
Lowpass filter 

Gain = 1 
Cutoff = p/M 

L 

 
Lowpass filter 

Gain = L 
Cutoff = p/L 

x[n] xe[n] xo[n] xd[n] 
M L 

Lowpass filter 
Gain = L 
Cutoff = 

min(p/L, p/M) 

Changing the Sampling Rate by Non-Integer Factor 
 
 

• Combine decimation and interpolation for non-integer factors 
 
 

 

T T/L T/L T/L TM/L 
• The two low-pass filters can be combined into a single one 

 

 

T T/L T/L TM/L 358 
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i 

i 

i c c 

∞ 

Time Domain 
• xi[n] in a low-pass filtered version of x[n] 
• The low-pass filter impulse response is 

h [n ] = sin (π n / L ) 
i π n / L 

• Hence the interpolated signal is written as 
[ ] [ ] sin (π (n − kL ) / L ) 

x i n = ∑ x k 
k = −∞ π (n 

 
− kL ) / L 

• Note that 
h [0 ] = 1 

h [n ] = 0 

 
 

n = ∓ L, ∓ 2L,... 
 

• Therefore the filter output can be written as 
x [n ] = x [n / L ] = x (nT / L ) = x (nT ') for n = 0, ∓ L, ∓ 2L,... 



Sampling of bandpass signals 

360 

 

 

 

 



Sampling of bandpass signals 
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Over sampling -ADC 
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Sub band coding 
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Sub band coding 
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Digital filter banks 
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Finite Word length Effects 
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• Finite register lengths and A/D converters 
cause errors in:- 

(i) Input quantisation. 
(ii) Coefficient (or multiplier) 

quantisation 
(iii) Products of multiplication truncated 

or rounded due to machine length 

Finite Wordlength Effects 



Finite Wordlength Effects 
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• Quantisation 
eo ( k ) 

 
 

Output 

 
 
 
 

Q 
e i ( k ) 

Input 
 
 
 
 
 

Q Q 
− ≤ ei , o ( k ) ≤ 

2 2 



Finite Wordlength Effects 
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Q 

 
 

• The pdf for e using rounding 
1 

 

Q 
− 

2 
 
 

• Noise power σ 2 = 

Q 
 

 

2 

 
Q 2 

∫ e 2 

 
 
 
p ( e ). de 

 
 

= E { e 2 } 

or 2 

σ 2 = 
Q

 

− Q 2 

12 
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• Let input signal be sinusoidal of unity 
amplitude. Then total signal power P = 

1 
2 

 

• If b bits used for binary then Q  = 2 2 b 
 

so that 
• Hence 

σ 2 = 

 
P σ 

2 − 2 b 

 
2 = 

3 
 
3 

.2 + 2 b 

2 
 

or SNR = 1 .8 + 6 b dB 

Finite Wordlength Effects 
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• Consider a simple example of finite 
precision on the coefficients a,b of second 
order system with poles ρ e ± jθ 

 

 

H ( z ) = 
1 − 

1 

az −1 + bz − 2 
 
 

H ( z ) = 
1 − 2 ρ 

 

cos 

1 

θ . z −1 + 

 
ρ 2 . z − 2 

 
 

• where a = 2 ρ cos θ b = ρ 2 

Finite Wordlength Effects 
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• 

Finite Wordlength Effects 
bit pattern 2 ρ cos θ , ρ 2 ρ 

000 0 0 
001 0.125 0.354 
010 0.25 0.5 
011 0.375 0.611 
100 0.5 0.707 
101 0.625 0.791 
110 0.75 0.866 
111 0.875 0.935 
1.0 1.0 1.0 
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• Finite wordlength computations 
 
 
 
 

+ 
 

INPUT 
 

  +  

 

OUTPU 
T 

 
 
 
 

+ 

Finite Wordlength Effects 
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− 1 − 2 

 
 
 
 

• Observe that for H ( z ) = 1 
(1 + 

 
b1 z + 

 
b 2 z ) 

 

• instability occurs when 
• i.e. poles are 

b 2 → 1 

• (i) either on unit circle when complex 
• (ii) or one real pole is outside unit 

circle. 
• Instability under the "effective pole" model 

is considered as follows 

Limit-cycles; "Effective Pole" 
Model; Deadband 



Finite Wordlength Effects 
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• In the time domain with 
• 

H ( z ) = Y ( z ) 
X 

 
( z ) 

y ( n ) = x ( n ) − b1 y ( n − 1) − b 2 y ( n − 2 ) 
 
 

• With b 2 → 1 for instability we have 
Q [b 2 y ( n − 2 ) ] indistinguishable from y ( n − 2 ) 

• Where Q [⋅] is quantisation 



Finite Wordlength Effects 
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• With rounding, therefore we have 
 

b 2 y ( n − 2 ) ± 0 .5 y ( n − 2 ) 

are indistinguishable (for integers) 
 

or 
• Hence 

b 2 y ( n − 2 ) ± 

± 

0 .5 = 

0 .5 
y ( n − 2 ) 

y ( n − 2 ) =   

1 − b 2 
 

• With both positive and negative numbers 
 

y ( n − 2 ) = 
± 0 .5 

 
 

1 − b 2 



Finite Wordlength Effects 
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• The range of integers ± 0 .5 
 

 

1 −  b 2 
 

constitutes a set of integers that cannot be 
individually distinguished as separate or from the 
asymptotic system behaviour. 

• The band of integers  0 .5 0 .5  
 − , 
 1 − b 2 

+  
1 −  b 2  

is known as the "deadband". 
• In the second order system, under rounding, the 

output assumes a cyclic set of values of the 
deadband. This is a limit-cycle. 



Finite Wordlength Effects 
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− 2 

 
 

• Consider the transfer function 
 

G ( z ) = 1 
(1 + 

 
b1 z 

 
+ b 2 z ) 

 

y k = x k − b1 y k − 1 − b 2 y k − 2 
 

• if poles are complex then impulse response 
is given by h 

 
hk = 

 

ρ k 

sin θ 

 
 
 
. sin 

 
 
[( k 

 
 
+ 1)θ ] 

− 1 

k 



Finite Wordlength Effects 
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b1 

2 b 

 

θ = cos −1  −    
• Where ρ =   

 2  
• If b 2 = 1 then the response is sinusiodal 

with frequency 
 

ω = 
1
 

T 
cos −1 

 
− b1 


 

 2  
 

• Thus product quantisation causes instability 
implying an "effective “ b 2 = 1 . 

b 2 



Finite Wordlength Effects 
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• Notice that with infinite precision the 
response converges to the origin 

 
• With finite precision the reponse does not 

converge to the origin but assumes 
cyclically a set of values –the Limit Cycle 



Finite Wordlength Effects 
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2 

12 
= σ 

2 

= σ 

 

• Assume {e1 ( k )} ,{e 2 ( k )} ….. are not 
correlated, random processes etc. 

σ 0 i = σ e 

∞ 

∑ hi ( k ) 2 Q 
k = 0 e 

Hence total output noise power 
 

 
2 2 

0 01 + σ 02 

 
= 2 . 

2 − 2 b 

12 

∞ 

∑ ρ 
k = 0 

2 k . 
sin 2 [( k + 

sin 2 θ 

1)θ ] 

 

• Where Q = 2 − b and  
 

k sin 
 
[( k 

 
+ 1)θ ] 

h1 ( k ) = h 2 ( k ) = ρ . 
sin θ 

; k ≥ 0 

2 2 

σ 
2 



Finite Wordlength Effects 
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1 

 
 
 
 
 
 

• ie 
 
 

 
σ 2 = 2 − 2 b 1 + ρ 2 1  . 

 
  

0  2 
6  − ρ 1 + ρ 4 − 2 ρ 2 cos 

 
2θ  



Finite Wordlength Effects 
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• For FFT A(n) 
B(n) 

B(n+1) 
 

B(n+1) 
 
 
 
 

A ( n + 1) = A ( n ) + W ( n ). B ( n ) 
 

B ( n + 1) = A ( n ) − W ( n ). B ( n ) 
 
 

A(n) 
 
 

B(n) 

 
A(n+1) 

B(n)W(n) 
B(n+1)

 

- 

W(n) 



Finite Wordlength Effects 
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• FFT  
 

A ( n 

 

+ 1) 
2 

+ 

 

 
B ( n 

 

+ 1) 
2 

= 2 
 
 

A ( n + 1) 
2
 = 2 A ( n ) 

2
 

 

A ( n ) = A ( n ) 
 

• AVERAGE GROWTH: 1/2 BIT/PASS 

2 



Finite Wordlength Effects 
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• FFT IMAG 1.0 

 
 

-1.0 1.0 
REAL 

 
 
 
 
 

-1.0 
 

A x ( n + 1) = A x ( n ) + B x ( n ) C ( n ) − B y ( n ) S ( n ) 
 

A x ( n + 1) < A x ( n ) + B x ( n ) C ( n ) − B y ( n ) S ( n ) 
 
 

 
A x ( n ) 

< 1 . 0 + C ( n ) − S ( n ) = 2 . 414 .... 

 

• PEAK GROWTH: 1.21.. BITS/PASS 

A x ( n + 1) 



Finite Wordlength Effects 
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• Linear modelling of product quantisation 
 
 

x(n) 
 
 

• Modelled as 

~x  ( n ) 
 

 
 

x(n)  
 

q(n) 

~x ( n )  = x ( n ) + q ( n ) + 

Q [⋅] 



Finite Wordlength Effects 

390 

 

 

 
 

• For rounding operations q(n) is uniform 
distributed between − 

Q , Q 
2 2 

and where Q is 
the quantisation step (i.e. in a wordlength of 
bits with sign magnitude representation or 
mod 2, Q = 2 −)b. 

 

• A discrete-time system with quantisation at 
the output of each multiplier may be 
considered as a multi-input linear system 



Finite Wordlength Effects 
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{ x ( n )} 

• Then 

q1 ( n )... q 2 ( n )... q p ( n ) 
 

 
 

 

{ y ( n )} 

y ( n ) = 
∞ 

∑ 
r = 0 

x ( r ). h ( n − r ) + 
p  

∑ 
λ = 1 

∞ 

∑ q λ 
r = 0 

( r ). hλ ( n − r )  
 

• where hλ ( n ) is the impulse response of the 
system from λ 
to y(n). 

the output of the multiplier 

h(n) 

 



Finite Wordlength Effects 
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• For zero input i.e. 
p 

x ( n ) = 

∞ 

0 , ∀ n we can write 

y ( n ) ≤ ∑ 
λ = 1 

q̂ λ . ∑ hλ ( n − r ) 
r = 0 

 

• where q̂ λ is the maximum of qλ  ( r ) , ∀ λ , r 

which is not more than Q 
2 

 

• ie 
 

y ( n ) 
Q p  

≤ . ∑ 
2 λ = 1 

∞ 

∑ hλ ( n − 
n = 0 

r )  
 
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• However 
 
 

• And hence 

 
 
 

∞ 

∑ 
n = 0 

 
 
hλ ( n ) 

 
 
 

∞ 

≤ ∑ 
n = 0 

 
 

h ( n ) 

 
 

y ( n ) ≤ 
pQ ∞ 

. ∑ 
2 n = 0 

 
h ( n ) 

• ie we can estimate the maximum swing at 
the output from the system parameters and 
quantisation level 

Finite Wordlength Effects 
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Finite Precision Numerical 
Effects 
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Quantization in Implementing Systems 
• Consider the following system 

 
 
 
 

• A more realistic model would be 

• In order to analyze it we would prefer 
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Effects of Coefficient Quantization in IIR Systems 
 

• When the parameters of a rational system are quantized 
– The poles and zeros of the system function move 

• If the system structure of the system is sensitive to 
perturbation of coefficients 
– The resulting system may no longer be stable 
– The resulting system may no longer meet the original specs 

• We need to do a detailed sensitivity analysis 
– Quantize the coefficients and analyze frequency response 
– Compare frequency response to original response 

• We would like to have a general sense of the effect of 
quantization 
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k k 

 
 
 

M 

∑ b k 

Effects on Roots 
z − k Quantiza 

 
 
 

M 

∑ b̂ 
k 

 
 
z − k 

H (z ) =   k = 0  
N Ĥ (z ) =   k = 0  

N 

1 − ∑ 
k = 1 

a z − k tion 1 − ∑ 
k = 1 

â  z − k 

 

• Each root is affected by quantization errors in ALL coefficient 
• Tightly clustered roots can be significantly effected 

– Narrow-bandwidth lowpass or bandpass filters can be very 
sensitive to quantization noise 

• The larger the number of roots in a cluster the more sensitive it 
becomes 

• This is the reason why second order cascade structures are less 
sensitive to quantization error than higher order system 
– Each second order system is independent from each other 
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Poles of Quantized Second-Order Sections 
• Consider a 2nd order system with complex-conjugate pole pair 

 

• The pole locations after quantization will be on the grid point 
 
 

← 3-bits 
 
 

7-bits → 
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Coupled-Form Implementation of Complex-Conjugate Pair 

• Equivalent implementation of the 
second order system 

 
 
 
 

• But the quantization grid this time is 
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Effects of Coefficient Quantization in FIR Systems 
• No poles to worry about only zeros 
• Direct form is commonly used for FIR systems 

M 

H (z ) = ∑ 
n = 0 

h [n ]z − n 

• Suppose the coefficients are quantized 
M M 

Ĥ (z ) = ∑ 
n = 0 

ĥ [n ]z − n = H (z ) + ∆ H (z ) ∆ H (z ) = ∑ 
n = 0 

∆ h [n ]z − n 

• Quantized system is linearly related to the quantization error 
 

• Again quantization noise is higher for clustered zeros 
• However, most FIR filters have spread zeros 
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Round-Off Noise in Digital Filters 

• Difference equations 
implemented with finite- 
precision arithmetic are 
non-linear systems 

• Second order direct form I 
system 

• Model with quantization 
effect 

• Density function error 
terms for rounding 
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Analysis of Quantization Error 
• Combine all error terms to single location to get 

 
 
 
 
 
 
 
 
 

e [n ] + 

e [n ] + 

e [n ] 
e [n ] + 

 
e [n ] 

 
 

( ) 2 − 2 B 
 

 
 • The variance of e[n] in the general case is σ e = 

 
N 

M + 1 + N 
12 

• The contribution of e[n] to the output is 
 

• The variance of the output error term f[n] is 

f [n ] = ∑ 
k = 1 

a f [n − k ] + e [n ] 

 
σ 2 = (M + 1 + N ) 2 

− 2 B ∞ 

∑ h [n ] 2 

 
H ef (z ) = 1 / A (z ) 

f 12 ef 
n = −∞ 

2 

 
 
 

e [n ] = 

+ 
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1 

 

Round-Off Noise in a First-Order System 
• Suppose we want to implement the following stable system 

 

H (z ) = 
b 

1 − az − 1 

 
a  < 1 

• The quantization error noise variance is 
 

σ 2 = (M + 1 + N ) 2 
− 2 B ∞ 

∑ h [n ] 2 2 − 2 B ∞ 

=  2 ∑ 
 

2 n a = 2 
− 2 B   

  
f 

12
 ef 

n = −∞ 12 n = 0 
12  

 
2 

− a  

• Noise variance increases as |a| gets closer to the unit circle 
• As |a| gets closer to 1 we have to use more bits to compensate for the 

increasing error 
 
 

1 

2 
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Zero-Input Limit Cycles in Fixed-Point Realization of IIR Filters 
 

• For stable IIR systems the output will decay to zero when the input 
becomes zero 

• A finite-precision implementation, however, may continue to oscillate 
indefinitely 

• Nonlinear behaviour very difficult to analyze so we sill study by example 
• Example: Limit Cycle Behavior in First-Order Systems 

y [n ] = ay [n − 1 ] + x [n ] a < 1 
 
 

• Assume x[n] and y[n-1] 
are implemented by 4 bit register
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n y[n] Q(y[n]) 
0 7/8=0.111b 7/8=0.111b 
1 7/16=0.011100b 1/2=0.100b 
2 1/4=0.010000b 1/4=0.010b 

3 1/8=0.001000b 1/8=0.001b 
4 1/16=0.00010b 1/8=0.001b 

 

Example Cont’d 
y [n ] = ay [n − 1 ] + x [n ] a < 1 

 

• Assume that a=1/2=0.100b and the input is 

x [n ] = 
7 δ [n ] = 
8 

(0 . 111 b )δ [n ] 
 
 

• If we calculate the output for values of n 
 
 

• A finite input caused an oscillation with period 1 
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Example: Limit Cycles due to Overflow 
• Consider a second-order system realized by 

ŷ [n ] = x [n ] + Q (a  ̂y [n − 1 ]) + Q (a  ̂y [n − 2 ]) 
– Where Q() represents two’s complement rounding 
– Word length is chosen to be 4 bits 

• Assume a1=3/4=0.110b and a2=-3/4=1.010b 
• Also assume 

ŷ [−  1 ] =  3 / 4  =  0 . 110  b and ŷ [−  2 ] =   − 3 / 4 = 1 . 010 b 
 

• The output at sample n=0 is 
ŷ [0 ] =  0 . 110  b  ×  0.110b + 1 . 010 b × 1.010b 

 

= 0.100100b + 0.100100b 
 

• After rounding up we get 
ŷ [0 ] =  0.101b + 0.101b = 1.010b = -3/4 

 

• Binary carry overflows into the sign bit changing the sign 
• When repeated for n=1 

ŷ [0 ] =  1.010b +  1.010b =  0 . 110 =  3 / 4 
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Avoiding Limit Cycles 

• Desirable to get zero output for zero input: Avoid limit-cycles 
• Generally adding more bits would avoid overflow 
• Using double-length accumulators at addition points would 

decrease likelihood of limit cycles 
• Trade-off between limit-cycle avoidance and complexity 
• FIR systems cannot support zero-input limit cycles 
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